El Colegio de la Frontera Sur

Transcription

El Colegio de la Frontera Sur
El Colegio de la Frontera Sur
REVISIÓN TAXONÓMICA DE LOS EUCYCLOPS DE MÉXICO Y EVALUACIÓN
DE NUEVOS CARACTERES MORFOLÓGICOS PARA SU IDENTIFICACIÓN
TESIS
presentada como requisito parcial para optar al grado de
Doctorado en Ciencias en Ecología y Desarrollo Sustentable
Por
NANCY FABIOLA MERCADO SALAS
2013
Dedicada
A mis padres Raquel y Enrique, a mis hermanos y sobrinos
Por su apoyo incondicional, motivación y cariño.
AGRADECIMIENTOS
A El Colegio de la Frontera Sur (ECOSUR) por proporcionarme los servicios e
infraestructura para realizar mis estudios de posgrado, a todo el personal
académico y administrativo por el apoyo a lo largo de estos años.
Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por su poyo al proyecto
133404- Investigación Científica Básica 2009 con el cual se financió la totalidad de
la investigación realizada en este trabajo de tesis. Agradezco además por la beca
otorgada para la realización de mis estudios doctorales.
AGRADECIMIENTOS
A mi tutor el Dr. Eduardo Suárez-Morales por su compromiso y dedicación en mi
formación académica desde hace más de 7 años. Agradezco la libertad y la
confianza que me ha brindado en la realización del trabajo de tesis. Por ser
además de mi tutor un amigo y escucharme en todo momento. Por enseñarme
que no existe receta mágica para ser un buen investigador más que la de sentir
pasión por lo que se hace y que el trabajo y la disciplina son herramientas más
valiosas en esta profesión.
A los miembros de mi comité tutelar por su confianza y disposición en todo
momento y por enriquecer el trabajo de tesis con todos sus comentarios y
sugerencias:
A la Dra. Martha Angélica Gutiérrez Aguirre por tener siempre la mejor disposición
para ayudarme a contestar mis dudas por más burdas que fueran. Por la confianza
en la disposición de material biológico del estado de Chiapas, por ser crítica a la
hora de las revisiones pero sobretodo por creer en mi trabajo y animarme a seguir
adelante en todo momento.
Al Dr. David González Solís por la revisión a fondo de todos los archivos enviados
a lo largo del programa de doctorado, por plantear siempre preguntas que me
ayudaron a enriquecer mi investigación. Por todas las pláticas tanto académicas
como personales y su disposición a escucharme siempre.
Al Dr. Marcelo Silva Briano quien me inició en el camino de la taxonomía y del
zooplancton; de quien siempre admiraré la pasión que siente por su trabajo. Por
todas sus asesorías y por su amistad incondicional en todo momento. Agradezco
en especial toda la ayuda que me brindó en el procesamiento de los organismos
usados para las fotografías al SEM, por la paciencia que tuvo con las disecciones
y por todas las risas compartidas a lo largo de estos años.
A los Doctores Luis Fernando Carrera Parra, Adrián Cervantes Martínez y Rebeca
Gasca Serrano por la revisión del trabajo final y por las asesorías brindadas a lo
largo de estos cuatro años. Agradezco su amistad y apoyo.
A la Biól. Araceli Adabache Ortíz de la Universidad Autónoma de Aguascalientes
por su paciencia, tiempo y dedicación en la toma de fotografías al SEM. Por ser mi
maestra y además amiga en todo momento, muchas gracias Ara. Agradezco la
ayuda, paciencia y asesoría en los análisis estadísticos de la M. en C. Laura
Fernández-Pérez, a Cuahutemoc Ruíz-Pineda por su ayuda en la edición de las
fotografías al SEM.
Agradezco el apoyo clave que me brindaron los encargados de las colecciones
donde se aloja el material tipo usado para la realización del trabajo de tesis: Dr.
Hans-Walter Mittmann (Staatliches Museum für Naturkunde, Karlsruhe), Dr.
Danielle Defaye (Muséum National d´Histoire Naturelle, Paris), Drs. Frank D.
Ferrari and Chad Walter (National Museum of Natural History Smithsonian
Institution, Washington D. C.), Dr. Victor Alekseev (Russian Academy of Sciences),
Dr. Peter C. Dworschak (Natuhistorisches Museum Wien, Viena) y Rosa María
Hernández (El Colegio de la Frontera Sur, Chetumal) por poner a mi disposición
no solo el material biológico sino por brindarme todas las facilidades técnicas y por
estar dispuestos siempre a compartir sus experiencias.
A los Doctores Alejandro Maeda (CIBNOR), Jorge Ciros (UNAM), Carmen
Serranía (UNAM) y Omar Barrera (UNAM) por poner a mi disposición muestras
con las que se pudo ampliar la cobertura geográfica del trabajo de tesis.
Al Dr. Juan J. Morrone (UNAM) y la Dra. Carmen Pozo (ECOSUR) por su apoyo,
asesoría y confianza en la realización del análisis de trazos de los Eucyclops del
continente Americano.
A Jörg Pertzel y Gerald Islebe -colegas y amigos- por su tiempo y paciencia en la
traducción de las descripciones originales de algunas especies del alemán al
inglés.
A Ivan Castellanos por toda su ayuda en el uso de equipo y materiales de
laboratorio, pero sobretodo por su amistad y apoyo incondicional. A Gabriela
Zacarías por dedicar su tiempo en la búsqueda de la bibliografía que se uso para
el trabajo de tesis y por su amistad.
Al Dr. Gerald Islebe, Dr. Alberto de Jesús Navarrete y a Patricia Bardales Pastrana
de la dirección de posgrado por toda su ayuda y asesorías en los trámites
escolares.
A mis padres Raquel Salas y Enrique Mercado Ruíz por siempre apoyarme y
motivarme a seguir adelante a pesar de las dificultades, por todo su amor y
paciencia en los momentos de ausencia. A mis hermanos Carlos, Raquel, Adriana,
Cinthya, Rocío, David y Luz y mis sobrinos Ileana, Alexa, Isaac, Carlitos y
Estefanía por su amor y por mantenerme cerca de casa siempre.
A mis amigos incondicionales: Karla (quesadilla), Sofía, Ana, Jolie, Pablo, Benjas,
Esteban, Salvador, Roxana, Jorge, Laura por estar cerca siempre a pesar de la
distancia, por todas las sonrisas compartidas y animos para seguir adelante.
A todas las personas que han contribuido de una u otra forma en mi formación
académica y personal.
ÍNDICE
Capítulo I. Introducción
Capítulo II. Registros históricos del género Eucyclops en el continente
Americano, análisis de trazos.
-Mercado-Salas, N.F., C. Pozo, J.J. Morrone and
E. Suárez-Morales. 2012.
“Distribution patterns of the American species of the Freshwater genus Eucyclops
(Copepoda: Cyclopoida). Journal of Crustacean Biology. 32(3): 457-464.
Capítulo III. Revisión de material tipo de las especies de Eucyclops
registradas en México, redescripciones y comentarios acerca de sus
registros en el continente Americano.
-Mercado-Salas, N. F. and E. Suárez-Morales. On Kiefer’s American Eucyclops
(Copepoda: Eucyclopinae): E. delachauxi, E. prionophorus, E. bondi and E.
leptacanthus, redescriptions and comments on historical records. Zookeys (En
revisión)
-Mercado-Salas, N. F. and E. Suárez-Morales. Complementary description and
taxonomical comments of three South American species of Eucyclops (Copepoda,
Cyclopidae): E. subciliatus Dussart, E. neumani Pesta and E. pseudoensifer
Dussart. Journal of Natural History. (enviado).
- Mercado-Salas, N. F. and E. Suárez-Morales. Morphological variation of the
freshwater copepod Eucyclops elegans (Herrick, 1884) in the Americas and
comments on records of Eucyclops conrowae Reid, 1992 Journal of Natural
History. (enviado).
Capítulo IV. Revisión taxonómica de los Eucyclops de México y evaluación
de nuevos caracteres morfológicos para su identificación.
-Gutiérrez-Aguirre, M. A., N. F. Mercado-Salas and A. Cervantes-Martínez. 2013.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and new record of E.
festivus Lindberg, 1955 (Cyclopoida, Cyclopidae, Eucyclopinae) in Chiapas,
Mexico. Zookeys. 351: 1-30
-Mercado-Salas, N. F., E. Suárez-Morales and M. Silva-Briano. Taxonomic revision
of the Mexican Eucyclops, with complementary descriptions of four species and
description of six new species (Copepoda, Cyclopoida, Eucyclopinae), and
comments on biogeography. Zootaxa.
Capítulo V. Conclusiones generales
Literatura citada
CAPÍTULO I.
INTRODUCCIÓN
La
subclase
Copepoda
Milne-Edwards,
microcrustáceos formado por más de
1840
es
un
grupo
de
13,000 especies, de las cuales
aproximadamente 2,800 habitan cuerpos de aguas continentales; el resto se
encuentra en ambientes marinos (Boxshall y Halsey, 2004). Los órdenes
Calanoida Sars, 1903, Harpacticoida Sars, 1903, Gelyelloida Rouch & LescherMoutoué, 1977 y Cyclopoida Rafinesque, 1815 incluyen todas las especies que
habitan los cuerpos de aguas continentales (Boxshall y Defaye, 2008). Sin duda,
este último orden incluye a los copépodos más diversificados y exitosos en los
cuerpos de aguas continentales, habitando ambientes como ríos, lagos, bordos e
incluso aguas subterráneas y hábitats semi-terrestres (musgos, líquenes,
hojarasca) (Reid, 1996). Este orden está compuesto por más de 1,500 especies
agrupadas en 89 familias; más de la mitad de estas especies pertenece a una sola
familia, la Cyclopidae Burmeister, 1834. Esta extensa familia está conformada por
más de 60 géneros, pertenecientes a cuatro subfamilias: Halicyclopinae Kiefer,
1927; Euryteinae Monchenko, 1974; Cyclopinae Burmeister, 1834 y Eucyclopinae
Kiefer, 1927. Las dos primeras son propias de ambientes costeros o salobres y las
dos últimas de ambientes dulceacuícolas (Boxshall y Defaye, 2008).
Generalidades de Cyclopidae
Hasta años recientes, la sistemática de los géneros de vida libre de la
familia Cyclopidae, se había basado en el estudio de un número limitado de
caracteres, algunos de los cuales han mostrado tener una alta variabilidad, ya que
dependen de factores ambientales (Dahms y Fernando, 1997; Rocha 1998;
Karaytug, 1999). Es por ello que son ahora considerados como caracteres poco
informativos en la diagnosis y delimitación morfológica de estos géneros. Aunado
a esa problemática, se encuentra el alto grado de traslape entre los caracteres
merísticos usados por distintos autores en la definición de especies, lo que no
permite establecer claramente las diferencias entre las mismas (Karaytug, 1999;
Rocha, 1998). Este es un esquema general que se hace evidente en mayor o
menor grado en la taxonomía de la mayor parte de los géneros de vida libre
reconocidos.
Otra problemática de diversos géneros y especies contenidos en la familia
es el referente a las formas consideradas como cosmopolitas, reconocidas ahora
como complejos de especies. Este aspecto se ha comenzado a resolver en
algunos géneros, como en el caso de especies de Paracyclops Claus 1893
(Karaytug, 1999), Mesocyclops G.O. Sars, 1914 (Van Velde, 1984, SuárezMorales y Gutiérrez-Aguirre, 2001, Ueda y Reid, 2003; Holynska et al.,2003;
Holynska, 2006), Acanthocyclops Kiefer, 1927 (Dodson, 1994; Mirabdullayeb y
Defaye, 2002, 2004; Dodson et al. , 2003) e incluso para los Eucyclops Claus,
1893 del continente Europeo (Ishida, 1997, 2001, 2002, 2003; Alekseev et al.,
2006). Hasta hace poco, la identificación de las especies de copépodos fuera de
Europa se hacía con base en claves diseñadas para organismos de esa región
geográfica (European-like species), con lo que se promovió la idea de que la
mayoría de estas especies tenían distribuciones cosmopolitas. Sin embargo, con
la incorporación de nuevos caracteres morfológicos y siguiendo trabajos pioneros
como el de Frey (1986) con cladóceros chidóridos, se reconoció que algunas de
estas
especies
eran
en
realidad
distintas
que
debían
ser
estudiadas
taxonómicamente y reasignadas. También se observó que, en su mayoría,
presentaban patrones de distribución bien definidos. Este enfoque en la
investigación taxonómica de las especies de copépodos ha llevado a sugerir que
ciertos grupos presentan un alto grado de endemismo en diferentes zonas
biogeográficas y se ha debilitado la idea de las distribuciones cosmopolitas en el
grupo (Boxshall y Defaye, 2008).
Es por lo anterior que, durante las tres últimas décadas de estudio de los
Cyclopoida de aguas continentales, se han evaluado un número cada vez mayor
de caracteres morfológicos para explorar su relevancia taxonómica potencial. Este
proceso ha incluido el análisis de microcaracteres presentes en los apéndices
cefálicos, ornamentaciones en las placas coxales de las patas natatorias y del
cuerpo en general. Esto ha revelado la importancia de lograr una evaluación
morfológica completa y detallada de las especies para lograr comparar y definir
con mayor certeza el estatus taxonómico de las especies nominales contenidas en
esta familia (Karaytug 1999; Boxshall y Halsey, 2004; Dussart y Defaye, 2006).
Adicionalmente, muchas de las descripciones originales de especies de
ciclopoides antes consideradas como cosmopolitas carecen del nivel de detalle
que exigen los estándares descriptivos actuales. Es por esto que la mayor parte
de los géneros de la familia requiere una revisión taxonómica a la luz de
estándares vigentes. Las relaciones filogenéticas de muchos taxa monotípicos
necesitan investigación ya que su diagnosis es vaga y en algunas ocasiones
resulta controversial (Karaytug, 1999; Boxshall y Halsey, 2004; Dussart y Defaye,
2006).
La subfamilia Eucyclopinae y la importancia de Eucyclops
Dentro de los Cyclopidae la subfamilia menos estudiada y en la que se ha
detectado una profunda problemática taxonómica es la Eucyclopinae. Esta
subfamilia está conformada por 10 géneros y aproximadamente 185 especies y
subespecies que se distribuyen principalmente en las regiones tropicales. El
género más diversificado es sin duda el de los Eucyclops, que incluye 108 de las
185 especies nominales que se reconocen (Dussart & Defaye, 2006) dentro de los
Eucyclopinae y representa uno de los género más complejos dentro de los
Cyclopoida. Este grupo se encuentra dividido en 3 subgéneros: Eucyclops s. str.,
que contiene a la mayoría de las especies conocidas, Stygocyclops Pleša, 1971,
con una sola especie, e Isocyclops Kiefer, 1957, con formas endémicas del lago
Tanganyka (Dussart y Defaye, 2001; Suárez-Morales, 2004). El género Eucyclops
tiene una amplia distribución geográfica, la cual abarca latitudes tropicales,
templadas y frías de todos los continentes. Desde el punto de vista ecológico, las
especies de Eucyclops se presentan principalmente en la zona litoral; sin
embargo, es posible encontrarlas en la zona limnética. Habitan una gran variedad
de ambientes, incluyendo lagos, lagunas, bordos, cuerpos de agua temporales,
rocas de los acantilados, ambientes subterráneos, aguas termales y ríos (Reid,
2001; Suárez-Morales, 2004). Algunas especies como E. elegans (Herrick, 1884),
han sido reportadas en ambientes modificados por el hombre como piletas,
bordos, pipas de agua y agua estancada en llantas. Cabe destacar que se ha
propuesto que algunas especies (E. elegans) pueden ser utilizados como
potenciales controladores biológicos de larvas de mosquitos transmisores de
enfermedades (paludismo y la malaria). Llegan a convertirse en depredadores de
estas larvas y pueden sobrevivir en ambientes tan variables como el agua
estancada en llantas usadas, un ambiente muy favorable para el desarrollo de
larvas de mosquito (Reid y Marten, 1995; Alvarez-Silva y Gómez-Aguirre, 2000 y
Reid, 2001). Del mismo modo, se ha registrado que algunos Eucyclops (no
identificados) pueden ser huéspedes intermediarios de nematodos parásitos de
peces, mamíferos e incluso de humanos. García-Márquez (2005) reportó algunas
especies de Gnathostoma Owen, 1836 observadas en Eucyclops de México. Tan
solo para nuestro país se han reportado más de 8000 casos de gnatostomosis en
humanos (Lamothe et al., 2001; García-Márquez, 2005).
Taxonomía y problemática de Eucyclops
En lo que refiere a la sistemática del género Eucyclops, los caracteres en
los que se basa su taxonomía actual fueron propuestos y aplicados por Reid
(1985),Morton (1990), Dussart y Defaye (2001) y Suárez-Morales (2004) e
incluyen: 1) la presencia de una quinta pata representada por un segmento simple
armado con dos setas y una espina interna, 2) la segmentación en la anténula (12
segmentos en las hembras y 16 en los machos), 3) la presencia de espinas a lo
largo del margen externo de las ramas caudales, 4) la presencia de sétulas en el
margen externo del quinto somita torácico, y 5) formula espinaria 3443. En
muchos casos dichos caracteres han sido insuficientes para la delimitación de las
especies del género, lo que ha generado un historial taxonómico que incluye
muchas especies o registros con un estatus incierto (Collado et al., 1984; Reid
1985; Ishida 1997, Suárez-Morales 2004) y una taxonomía compleja. Es por lo
anterior que se requiere hacer una revisión del género que incluya la incorporación
de nuevos caracteres para lograr la separación confiable de las especies. Cabe
señalar que, el último trabajo donde se incluyó una clave para la separación de las
especies del género (62 especies) y sus distribuciones a nivel mundial, es el de
Lindberg (1955), el cual incluye especies inválidas en la actualidad.
La problemática taxonómica general y complejidad de Eucyclops se puede
ejemplificar con la situación de la especie tipo, E. serrulatus (Fisher, 1851). Su
descripción original es incompleta en muchos aspectos y no existe ya el material
tipo; ello ha originado, dificultades en la comparación con formas similares o con
nuevas especies y una creciente confusión al asignarse bajo este nombre formas
con un estatus taxonómico incierto. Debido a estas circunstancias, E. serrulatus
era considerada, hasta hace un par de décadas, como una especie cosmopolita;
sin embargo, estudios relativamente recientes revelan que se trata de un complejo
de especies cercanamente emparentadas con sutiles variaciones morfológicas.
Las especies pertenecientes al grupo-serrulatus deben ser re-descritas con detalle
y se reconoce que es necesaria una revisión del grupo (Alekseev et al., 2006;
Dussart y Defaye, 2006). Esta es una gran tarea que ha sido abordada por
algunos investigadores, aunque de manera parcial. El trabajo de Alekseev et al.
(2006) marca un primer esfuerzo al redescribir a E. serrulatus a partir de
especímenes neotípicos y aplicando en este proceso diferentes metodologías que
complementan a la morfología tradicional (v. gr., análisis morfométricos,
merísticos, patrones de poros corporales, patrones de ornamentación antenal).
Estos autores, establecieron nuevas sinonimias y afirman que los E. serrulatus y
E. agilis registrados en el continente americano difieren consistentemente de los
ejemplares europeos. También recomiendan que los registros de ambas especies
en América sean reasignados (después de una cuidadosa reexaminación de los
especímenes) a Eucyclops pectinifer (Cragin, 1883). Cabe mencionar que estos
autores han sugerido que los ejemplares europeos presentan ornamentaciones en
el basis de la anténula que no se presentan en los especímenes americanos. Sin
embargo, en el estudio hecho por Mercado-Salas (2009) se muestra que dichos
patrones de ornamentación también se pueden presentar en algunas especies
distribuidas en el continente americano.
Otro claro ejemplo de la problemática taxonómica del género, es el de E.
agilis (ahora sinónimo de E. serrulatus). Hasta hace pocos años, esta especie era
válida, aunque las figuras y la descripción original eran extremadamente pobres,
hasta el punto de no poder reconocerse el género al que pertenecían (SuárezMorales, 2004; Alekseev et al., 2006; Dussart y Defaye, 2006). Aunado a lo
anterior, el uso de caracteres con poca validez taxonómica contribuyó a la
confusión que rodea a esta especie; por ejemplo, para definir a E. agilis se tomó
en cuenta como carácter diagnóstico su “agilidad al nadar”, claramente subjetivo.
Una controversia diferente es la que envuelve a las formas del grupo Eucyclops
elegans-solitarius-speratus; E. elegans, insuficientemente descrito por Herrick
(1884), fue reexaminado por Kiefer (1929) y validado como especie a partir de un
solo espécimen (del cual existe la preparación original pero se encuentra dañada,
lo que impide una nueva diagnosis). Muchos autores sinonimizan a E. elegans
con E. speratus (Liljeborg, 1901); sin embargo, se cree que E. speratus solamente
se encuentra distribuida en el continente europeo y; que la forma americana es E.
elegans, por lo que los registros asignados a E. speratus deben ser revisados y
reasignados (Reid y Marten, 1995). Actualmente se sabe que los registros de E.
solitarius corresponden a E. elegans, ya que se ha comprobado la sinonimia de
estas especies.
Ishida (1997, 2001, 2002, 2003) y Alekseev et al. (2006) han sido los
pioneros en el intento por resolver la problemática taxonómica del género, el
primero se enfocó al complejo de especies denominadas “serrulatus-like species”
y “speratus-like species” del Japón y, los segundos se enfocaron a tratar la
problemática de los E. serrulatus del continente europeo. Estos autores
desarrollaron un gran esfuerzo de revisión que resuelve satisfactoriamente
conflictos de las especies en sus regiones y han logrado incorporar caracteres
nunca antes usados en el género tales como los patrones de ornamentación
antenal, patrones de ornamentación las estructuras bucales, el patrón corporal de
poros e incluso la ornamentación de las placas coxales, los basipoditos y los
coxopoditos del cuarto par de patas natatorias. A partir de la aplicación de estos
caracteres han reconocido especies no antes detectadas mediante los caracteres
usuales. No obstante, los trabajos anteriores se hicieron con tan solo 6 especies
de las 106 reconocidas para el género, y no abarcan especies del continente
americano, por lo que la problemática sigue vigente y representa un importante
reto y un trabajo taxonómico de una magnitud inédita en el género.
En el continente americano, se han reconocido más de 800 registros del
género (obs. pers.), pertenecientes a 31 especies. Entre estos registros destaca el
hecho de que cerca de 300 fueron asignados a los taxa conflictivos mencionados;
por tanto, estos registros deben ser revisados y eventualmente reasignados a las
formas americanas o a posibles nuevas especies, después de una exploración con
los nuevos estándares. De esos registros aproximadamente 130 se han asignado
a E. serrulatus, 110 a E. agilis, 30 a E. speratus y 20 a E. solitarius. Las especies
restantes distribuidas en América -E. macrurus (G.O. Sars, 1863), E. pectinifer
(Crogin, 1887), E. delachauxi (Kiefer, 1925), E. neumani neumani (Pesta, 1927), E.
prionophorus Kiefer, 1931, E. bondi Kiefer, 1934, E. ensifer Kiefer, 1936, E.
neotropicus Kiefer, 1936, E. ariguanabaensis, Brehm, 1948, E. festivus Lindberg,
1955, E. leptacanthus Kiefer, 1956, E. alticola Kiefer, 1957; E. demacedoi
Lindberg, 1957, E. neumani titicacae Kiefer, 1957, E. serrulatus chilensis Loffler,
1961, E. breviramatus Loffler, 1963, E. siolii Herbst, 1963, E. pseudoensifer
Dussart, 1984, E. subciliatus Dussart, 1984, E. neomacruroides Dussart y
Fernando, 1990, E. conrowae Reid, 1992, E. borealis Ishida, 2001, E. torresphilipi
Suárez-Morales 2004, E. chihuahuensis Suárez-Morales y Walsh, 2009 y, E.
cuatrocienegas Suárez-Morales y Walsh, 2009- son, en su mayoría, difícilmente
identificables bajo los estándares actuales usados para la separación de las
especies, ya que en muchos casos presentan un alto grado de traslape entre los
caracteres diagnóstico para el género (proporciones en las ramas caudales y en el
tercer endopodito de la cuarta pata) (Marsh, 1893; Juday, 1915; Coker, 1926;
Kiefer, 1926, 1929, 1931, 1934, 1936, 1956; Pearse y Wilson, 1938; Osorio-Tafall,
1943; Comita, 1950; Lindberg, 1955; Robertson y Gannon, 1981; Collado et al.,
1984; Dussart, 1984; Reid, 1985; Suárez-Morales et al., 1985; Dussart y Frutos,
1986; Defaye y Dussart, 1988; Zamudio-Valdez, 1991; Zannata-Juárez, 1995;
Dodson y Silva-Briano, 1996; Santos, 1997; Grimaldo-Ortega et al., 1998; SuárezMorales y Reid, 1998; Gutiérrez-Aguirre, 1999; Álvarez-Silva y Gómez-Aguirre,
2000; Elías-Gutiérrez, 2000; Fiers et al., 2000; Reeves, 2000; Rodríguez-Almaraz,
2000; Barbiero et al. ,2001; Ishida, 2001; Carling et al. 2004; Suárez-Morales,
2004; Bruno et al. 2005; Frisch et al., 2005; Alelseev et al.,
2006; Gaviria y
Aranguren, 2007; Elías-Gutiérrez et al., 2008; Jiménez-Trejo y Vásquez-Vargas,
2008; Mercado-Salas, 2009; Suárez-Morales y Walsh, 2009; De los Ríos et al.,
2010).
Conocimiento de los Eucyclops en México
Para México, se cuenta con aproximadamente 460 registros del género,
publicados en bibliografía, reportes técnicos de proyectos y en bases de datos de
colecciones en museos tanto nacionales como del extranjero. Estos incluyen 16
especies nominales: E. agilis (sinónimo de E. serrulatus), E. bondi, E.
breviramatus, E. chihuahuensis, E. conrowae, E. cuatrocienegas, E. delachauxi, E.
elegans, E. festivus, E. leptacanthus, E. pectinifer, E. prionophorus, E.
pseudoensifer, E. serrulatus (posiblemente E. pectinifer), E. speratus (E. elegans
en América), E. torresphilipi (Juday, 1915; Pearse y Wilson, 1938; Osorio-Tafall,
1943; Comita, 1950; Lindberg, 1955; Suárez-Morales et al., 1985; ZamudioValdez, 1991;
Zannata-Juárez, 1995; Dodson y Silva-Briano, 1996; Grimaldo-
Ortega et al., 1998; Suárez-Morales y Reid, 1998; Gutiérrez-Aguirre, 1999;
Álvarez-Silva y Gómez-Aguirre, 2000; Elías-Gutiérrez, 2000; Fiers et al., 2000;
Rodríguez-Almaráz, 2000; Suárez-Morales, 2004; Elías-Gutiérrez et al., 2008;
Jiménez-Trejo y Vásquez-Vargas, 2008; Mercado-Salas, 2009; Suárez-Morales y
Walsh, 2009). Con base en la complejidad de este género y la inconsistencia en
su estudio taxonómico en el país, Suárez-Morales (2004) argumenta que la
diversidad de la fauna mexicana de Eucyclops podría estar subestimada.
Cabe resaltar que según Grimaldo-Ortega et al. (1998), Elías-Gutiérrez
(2000), Rodríguez-Almaraz (2000), Suárez-Morales (2004) y Mercado-Salas
(2009), existen variaciones en la morfología de los ejemplares mexicanos con
respecto a las descripciones originales y/o a los esquemas presentados por otros
autores en trabajos previos. Estas variaciones sugieren que existen posibles
nuevas especies que han sido registradas a lo largo de tiempo con nombres de
formas comunes o “cosmopolitas”. Lo anterior destaca la importancia de hacer un
estudio morfológico completo de las especies presentes en México que incluya, la
revisión de los holotipos de cada especie y de los registros que cuenten con
material depositado. Para con esto, hacer una evaluación de la variación entre las
poblaciones mexicanas y de ser posible explorar nuevos caracteres que ayuden a
la mejor delimitación de las especies presentes en México. Con lo anterior, se
espera proveer de elementos que den fundamento a una nueva taxonomía del
grupo que pudiera 1) resolver la taxonomía y diversidad del género en México, 2)
establecer y clarificar los patrones verdaderos de la distribución de las especies y,
3) ser extrapolada a las especies de otras regiones del planeta.
Caracteres morfológicos
Dentro de los nuevos caracteres a evaluar, se encuentra la topografía y el
número de poros integumentales distribuidos en el cuerpo, aún cuando la función
de dichos poros no es bien conocida, se sabe que estas estructuras son ricas en
información. En calanoides, Fleminger (1973) usó la distribución de los poros para
clasificar a especies de Eucalanus; Mauchline (1977, 1987), Mauchline &Nemoto
(1977), Malt (1983), Ohtsuka & Mitsuzumi (1990), Koomen (1992) y Park &
Mauchline (1994) continuaron con la diferenciación de especies en base al patrón
corporal de poros en otros grupos de calanoides. La conclusión general de dichos
trabajos fue que los poros son bilateralente simétricos y especie-específicos.
Desafortunadamente esta técnica no ha sido ampliamente usada en el grupo de
los ciclopoides; no obstante, existen trabajos que han explorado estos caracteres
en algunos géneros (Baribwegure y Dumont, 1990; Rocha, 1994; Alekseev et al.,
2006).
Los patrones de ornamentación en el basis de las antenas, mandíbulas,
maxílulas, maxilas y maxilípedos han sido usados para la separación de grandes
grupos dentro de los géneros Mesocyclops y Paracyclops, y han sido establecidos
como caracteres filogenéticamente relevantes dentro de estos géneros (Van
Velde, 1984; Karaytug, 1999; Ueda y Reid, 2003; Holynska et al.,2003; Holynska,
2006). Asímismo, el grado de fusión de los segmentos y los elementos presentes
en las anténulas de los machos han sido objeto de estudios evolutivos dentro de
los copépodos, principalmente para los Paracyclops (Karaytug y Boxshall, 1999)
Dichos caracteres, con excepción de la ornamentación del basis de las antenas,
serán explorados por primera vez para el género Eucyclops y se evaluará su
utilidad como caracteres diagnósticos.
Otros caracteres que han sido examinados principalmente en los géneros
Mesocyclops y Paracyclops, y que serán evaluados para
los Eucyclops
mexicanos son: el número y distribución de la ornamentación en placas coxales,
basipoditos y coxopoditos de las cuatro patas natatorias, así como las
proporciones entre los tres elementos que presenta el segmento del quinto par de
patas (Van Velde, 1984; Karaytug, 1999; Holynska et al., 2003; Ueda y Reid, 2003;
Holynska, 2006). Por último, se prestará particular atención a la forma del
receptáculo seminal de las hembras, estructura que ha sido excluida en todas las
descripciones de las especies del género, y que se cree puede funcionar para el
reconocimiento sexual de especies al momento de la cópula (com. Pers. Grace A.
Wyngaard). También se evaluará también el grado de fusión del somita genital, ya
que se sabe que es un carácter filogenéticamente importante en la separación de
grandes grupos de copépodos (Holynska, 2006).
Justificación
De acuerdo con lo antes mencionado, es incuestionable la necesidad de
establecer una taxonomía satisfactoria del género para las especies de México. El
estudio de las especies y las variaciones de las poblaciones en el país es una
tarea de gran magnitud, que abarcará cerca del triple de las especies estudiadas
con este detalle a nivel mundial Este proceso debe basarse en un análisis
morfológico detallado y descripciones completas, que generarán la información
básica necesaria para su utilización en diversos campos. Además, es importante
el establecimiento de una clave de identificación clara, con caracteres estables y
que considere la variabilidad intraespecífica de las especies para lograr
identificaciones confiables y, la detección de formas nuevas o exóticas. Los
caracteres morfológicos usualmente tomados en cuenta parecen no ser suficientes
para separar las especies en el país, el uso de la morfometría (v.gr. proporciones
de ramas caudales, setas de del endopodito de la cuarta pata) suele resultar
insuficiente para separar especies cercanamente emparentadas. Del mismo modo,
se deben incluir otros caracteres importantes e innovadores como los
mencionados en párrafos anteriores.
Los objetivos del presente estudio serán: 1) realizar una revisión
taxonómica de las especies de Eucyclops registradas en México; 2) efectuar un
análisis morfológico completo de estas especies que incluya observaciones con
microscopia óptica y electrónica de barrido, que permitan la observación y
valoración de las nuevas características morfológicas propuestas para facilitar la
separación de las especies presentes en el país; y 3) establecer y analizar los
patrones de distribución geográfica de las especies presentes en México.
Hipótesis
x La fauna de Eucyclops en México esta subestimada debido a la complejidad
morfológica y falta de certeza histórica en la determinación de especies. La
aplicación de nuevos criterios morfológicos en el estudio taxonómico de las
especies de México permitirá su separación de manera confiable y a partir
de ello se logrará la revisión y corrección de los registros, y el hallazgo de
especies nuevas de distribución restringida o potencialmente endémica
para el país.
x Las especies de Eucyclops del país seguirán los cinco patrones de
distribución previamente establecidos por Suárez-Morales y Reid (1998): 1)
especies de amplia distribución; 2) especies endémicas; 3) especies con
afinidad neotropical; 4) especies con afinidad neártica y; 5) especies
restringidas sólo a la región central de México.
CAPÍTULO II.
REGISTROS HISTÓRICOS DEL GÉNERO EUCYCLOPS EN EL CONTINENTE
AMERICANO, ANÁLISIS DE TRAZOS
Distribution Patterns of the American Species of the Freshwater Genus
Eucyclops (Copepoda: Cyclopoida)
Author(s) :Nancy F. Mercado-Salas, Carmen Pozo, Juan J. Morrone and Eduardo Suárez-Morales
Source: Journal of Crustacean Biology, 32(3):457-464. 2012.
Published By: The Crustacean Society
URL: http://www.bioone.org/doi/full/10.1163/193724012X626502
BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological,
and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books
published by nonprofit societies, associations, museums, institutions, and presses.
Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of
BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial
inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions,
research libraries, and research funders in the common goal of maximizing access to critical research.
J OURNAL OF C RUSTACEAN B IOLOGY, 32(3), 457-464, 2012
DISTRIBUTION PATTERNS OF THE AMERICAN SPECIES OF THE FRESHWATER
GENUS EUCYCLOPS (COPEPODA: CYCLOPOIDA)
Nancy F. Mercado-Salas 1,∗ , Carmen Pozo 1 , Juan J. Morrone 2 , and Eduardo Suárez-Morales 1
1 El
Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal, Av. Centenario km 5.5, Chetumal,
77014 Quintana Roo, Mexico
2 Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias,
Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 70-399, 04510 Mexico, D.F., Mexico
ABSTRACT
Based on the superposition of 19 individual tracks of American species of the freshwater copepod genus Eucyclops, two generalized
tracks were found. The Western Amazonian track (southern Peru, eastern Brazil, and central Colombia) corresponding to the Amazonian
subregion and the South American Transition Zone, and the Mesoamerican-Northwestern South American track (central Colombia, Central
America, and northeastern Mexico) corresponding to the Neotropical region, the Mexican Transition Zone, and the Nearctic region.
One node was found in Colombia, an area where both generalized tracks intersect. The distributional patterns of Eucyclops apparently
involve two cenocrons: one Holarctic, and another Paleotropical. The Western Amazonian generalized track can be correlated with the
existence of rivers that function either as barriers or dispersal passageways, the uplift of the Andes, and the presence of the Miocene
“Pebas lake/wetland system.” The Mesoamerican-Northwestern South American generalized track can be associated with climate changes
resulting from the uplift of North American mountain ranges, the presence of marine barriers (Isthmus of Tehuantepec and Panama) and
the uplift of mountains in southern Mexico and Central America. The closing of the marine barrier represented by the Isthmus of Panama
seems to have been a key event in the northward and southward dispersal of Eucyclops in the Americas.
K EY W ORDS: copepods, Cyclopinae, Eucyclops, generalized tracks, individual tracks, panbiogeography
DOI: 10.1163/193724012X626502
I NTRODUCTION
The freshwater copepod genus Eucyclops Claus, 1893 comprises 106 nominal species and subspecies (Dussart and Defaye, 2006). It is one of the most taxonomically challenging
genera in Cyclopidae, containing several problematic taxa
and some species groups with a high intraspecific variability. This, together with incomplete descriptions, has generated a taxonomic history that includes many species with
an uncertain status (Collado et al., 1984; Reid, 1985; Ishida,
1997) and a complex taxonomy that relies on only a few relatively stable characters. The species of Eucyclops are divided
into three subgenera: Eucyclops sensu stricto, which contains most of the known species; Stygocyclops Pleša, 1971,
with a single species (E. [S.] teras [Graeter, 1907]) from
Switzerland, and Isocyclops Kiefer, 1957, which includes
two species endemic to Lake Tanganyika (Dussart and Defaye, 2001, 2006; Suárez-Morales, 2004). In the Americas,
there are more than 800 records of the genus, corresponding to 28 nominal species, most of which are distributed in
eastern United States, Mexico, Argentina, and Brazil.
Few works have analyzed the biogeographic affinities of
the freshwater copepods of the New World. Menu-Marque
et al. (2000) studied the species of Boeckella Guerne and
Richard, 1889 using a track analysis. They found that their
biogeographical patterns reflect the existence of an ancient
Austral biota, the biotic evolution of which was influenced
∗ Corresponding
greatly by the break-up of the Gondwana supercontinent,
this genus is also distributed in Australia and New Zealand.
Suárez-Morales et al. (2004) analyzed the distributional
patterns of the cyclopoid species of the Yucatan Peninsula
and suggested that it reflects post-Pliocene events, with
a major Neotropical biotic influence. In a phylogenetic
analysis of all known species of Mesocyclops Sars, 1914,
Hołyńska (2006) highlighted the high level of endemism
of this genus in South America because of its isolation
during the Cretaceous, which allowed the preservation of
ancient lineages. De los Ríos et al. (2010) analyzed the
distributional patterns of the Chilean cyclopoids, finding
some species endemic to the Atacama and Magellanic
Moorland biogeographic provinces, and others reported in
several areas in South America.
Evolutionary biogeography integrates distributional, phylogenetic, molecular, and paleontological data in order to
discover biogeographic patterns and assess the historical
changes that shaped them (Morrone, 2009). It follows a series of steps that include: 1) identification of biotic components, which are sets of spatio-temporally integrated taxa
that coexist in given areas, graphically represented as generalized tracks and areas of endemism; 2) testing relationships
between biotic components, with help of cladistic biogeography, which uses information on the cladistic relationships
between taxa and their geographic distribution to postulate
author; e-mail: nmercado@ecosur.mx
© The Crustacean Society, 2012. Published by Koninklijke Brill NV, Leiden
DOI:10.1163/193724012X626502
458
JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 32, NO. 3, 2012
hypotheses on relationships between areas; 3) regionalization, which implies the recognition of successively nested
areas that allow a biogeographic classification; 4) identification of cenocrons, which are sets of taxa that share the
same biogeographic history, constituting identifiable subsets
within a biotic component by their common biotic origin and
evolutionary history; and 5) construction of a biotic scenario,
by accounting biological and non-biological data, which are
used to integrate a plausible scenario to help explain the
episodes of vicariance or biotic divergence and dispersal or
biotic convergence (Morrone, 2009).
The recognition of biotic components, the first step of an
evolutionary biogeographic analysis, can be done using the
panbiogeographic approach, which emphasizes the spatial
or geographic dimension of biodiversity to allow a better
understanding of evolutionary processes. Morrone (2006),
after a series of panbiogeographic analyses, recognized 70
biotic components in Latin America and the Caribbean region that were deemed as biogeographic provinces. These, in
turn, were grouped into major biotic components considered
as regions, subregions, and dominions; also, two transition
zones were distinguished. These biogeographic provinces
have been recognized by different authors analyzing several
groups including mammals, tropical snakes, fish parasites,
freshwater decapods and copepods, and terrestrial arthropods (Lopretto and Morrone, 1998; Menu-Marque et al.,
2000; Márquez and Morrone, 2003; Abrahamovich et al.,
2004; Escalante et al., 2004; Morrone and Márquez, 2008;
Yáñez-Ordoñez et al., 2008; Rosas-Valdéz and Pérez-Ponce
de León, 2008; Arzamendia and Giraudo, 2009; Asian et al.,
2010; Maya-Martínez et al. 2011).
Herein we analyze the geographical distribution of the
species of Eucyclops in the Americas using a track analysis,
which has been previously applied to other crustacean taxa
(Morrone and Lopretto, 1994; Lopretto and Morrone, 1998;
Menu-Marque et al., 2000). We identify individual and
generalized tracks, in order to contribute to the knowledge
of the spatial evolution of this copepod taxon.
M ATERIALS AND M ETHODS
Data
Distributional data were obtained from the literature (Marsh,
1893; Juday, 1915; Kiefer, 1926, 1929, 1931, 1934, 1936,
1956; Pearse and Wilson, 1938; Osorio-Tafall, 1943;
Comita, 1950; Lindberg, 1955; Robertson and Gannon,
1981; Collado et al., 1984; Dussart, 1984; Reid, 1985;
Suárez-Morales et al., 1985; Dussart and Frutos, 1986; Defaye and Dussart, 1988; Zamudio-Valdez, 1991; Reid and
Marten, 1995; Zannata-Juárez, 1995; Dodson and SilvaBriano, 1996; Santos, 1997; Grimaldo-Ortega et al., 1998;
Suárez-Morales and Reid, 1998; Gutiérrez-Aguirre, 1999;
Álvarez-Silva and Gómez-Aguirre, 2000; Elías-Gutiérrez,
2000; Fiers et al., 2000; Reeves, 2000; Barbiero et al.,
2001; Ishida, 2001; Rodríguez-Almaráz, 2002; Carling et
al., 2004; Suárez-Morales, 2004; Bruno et al., 2005; Frisch
et al., 2005; Alekseev et al., 2006; Gaviria and Aranguren,
2007; Elías-Gutiérrez et al., 2008; Jiménez-Trejo and
Vásquez-Vargas, 2008; Mercado-Salas, 2009; SuárezMorales and Walsh, 2009; De los Ríos et al., 2010). Additional records were obtained from the collection databases
of the Smithsonian Institution-National Museum of Natural
History and the zooplankton collection of El Colegio de la
Frontera Sur-Unidad Chetumal, ECO-CH-Z.
For some records lacking geographical data, localities
were geo-referenced with the aid of Google-Earth. Other
species, including Eucyclops macrurus (Sars, 1863), E.
neotropicus Kiefer, 1936, E. ariguanabaensis Brehm, 1948,
E. chilensis Löffler, 1961 (Menu-Marque and Locascio,
2011), E. siolii Herbst, 1962, E. breviramatus Löffler, 1963,
E. neomacruroides Dussart and Fernando, 1990, E. borealis
Ishida, 2001, and E. cuatrocienegas Suárez-Morales and
Walsh, 2009 have been cited for a single locality each.
These records do not provide relevant information for the
track analysis and were thus excluded. The records of E.
pectinifer (Cragin, 1883), E. serrulatus (Fischer, 1851), and
E. agilis (Koch, 1838) were a priori treated as referring to a
single species, following Alekseev et al. (2006). Eucyclops
agilis has been considered as a valid species by several
authors in the Americas, but its original description is
not accurate enough to consider it as a valid species; it
is currently recognized as a synonym of E. serrulatus
(Alekseev et al., 2006). Eucyclops serrulatus is distributed in
North Africa, the Mediterranean region, Europe, Russia, and
probably also in Central Asia. Records of the species in the
Americas should be carefully reexamined before assigning
them to the American form E. pectinifer, because some
of them could belong in fact to E. serrulatus. According
to Alekseev (personal communication to NFM-S, 2011)
the latter may have been introduced in the Americas by
human agency, other records could be E. pectinifer or even
undescribed species. Records of E. speratus (Lilljeborg,
1901), E. elegans (Herrick, 1884), and E. solitarius (Herbst,
1959) were merged into a single species, following Reid and
Marten (1995). After this process we obtained a database
of 446 records for E. pectinifer, E. delachauxi (Kiefer,
1925), E. silvestri (Brian, 1927), E. neumani neumani
(Pesta, 1927), E. prionophorus Kiefer, 1931, E. bondi
Kiefer, 1934, E. ensifer Kiefer, 1936, E. festivus Lindberg,
1955, E. leptacanthus Kiefer, 1956, E. alticola Kiefer,
1957, E. neumani titicacae Kiefer, 1957, E. demacedoi
Lindberg, 1957, E. serrulatus montanus Harris, 1978, E.
subciliatus Dussart, 1984, E. pseudoensifer Dussart, 1984,
E. conrowae Reid, 1992, E. torresphilipi Suárez-Morales,
2004, E. chihuahuensis Suárez-Morales and Walsh, 2009,
and E. elegans.
Methods
Panbiogeography is an approach originally proposed by
Croizat (1958, 1964), that aims to analyze the spatial and
temporal distribution patterns of organisms based on a
correlation between the history of the biota and the history of
the Earth. The panbiogeographic approach is based on three
basic concepts: 1) the individual track, which represents the
spatial coordinates of the taxon in space (the geographical
area in which its evolution has taken place), operationally
corresponding to a line that connects localities where a
species or supraspecific taxon is distributed; after these
tracks are constructed, their orientation or direction can
be determined using a baseline (geological feature such as
an ocean or sea basin, or other major tectonic structure,
crossed by the track), main massing (a concentration of
MERCADO-SALAS ET AL.: DISTRIBUTION OF THE AMERICAN EUCYCLOPS
numerical, genetical or morphological diversity within a
taxon in a given area), or phylogenetic evidence available
(directing the track from the most primitive to the most
derivated taxa); 2) the generalized track, which is the
distribution pattern obtained from the overlapping of at least
two individual tracks, indicates the existence of a shared
biogeographic history of the biota and the areas involved;
and 3) the node, which is a complex area where two or more
generalized tracks superimpose and are usually interpreted
as a tectonic/biotic convergence area (Morrone, 2009). For
details of the panbiogeographic methodology see Morrone
and Crisci (1995) and Morrone (2009).
To perform the panbiogeographic analysis, individual
databases were made for each species. Individual tracks
were obtained by using ArcView GIS 3.2 software and the
extension Trazos 2004 (Rojas, 2004); generalized tracks
were obtained superimposing the individual tracks. The
biogeographical system used in this work follows Morrone
(2006).
R ESULTS
We obtained 19 individual tracks (Figs. 1 and 2). Ten
species are restricted to South America, one is exclusive
to Cuba, and seven species are restricted to North America. Mexico is the country with most species recorded
(12), followed by Colombia (7), Brazil, the United States,
Venezuela, and Ecuador (6), Argentina and Peru (4), Chile,
Canada, Nicaragua, and Paraguay (3), Uruguay, Bolivia, and
Cuba (2), and Haiti, Jamaica, Costa Rica, Honduras, and
French Guiana (1). Considering the biogeographic regions
and transitional areas recognized for the Americas (Morrone, 2006), the Neotropical region shows the highest number of species recorded (18), with E. demacedoi, E. neotropicus, E. siloii, E. neumani neumani, and E. silvestri being
endemic to it. The Nearctic region is the second in species
richness with 14 species, with E. macrurus, E. cuatrocienegas, E. borealis, and E. agilis monticola being Nearctic endemics. The third richest area is the Mexican Transition
Zone, with 10 species, none of them endemic. The South
American Transition Zone has seven species, E. breviramatus being the only endemic. Finally, the Andean region
includes only two species (E. pectinifer and E. ensifer),
widespread in other regions as well. Eucyclops pectinifer is
the most widely distributed species, found in all the regions
and transition zones.
Based on the superposition of the individual tracks, two
generalized tracks were found (Fig. 2):
1) Western Amazonian track: southern Peru, eastern
Brazil, and central Colombia. It corresponds to the Amazonian subregion (Pantanal, Madeira, Napo, Imeri, and
Venezuelan Llanos biogeographic provinces) and the South
American Transition Zone (Puna province). Species and
subspecies supporting this track are E. alticola, E. demacedoi, and E. neumani titicacae.
2) Mesoamerican-Northwestern South American track:
central Colombia, Central America, and northeastern Mexico. It corresponds to the Neotropical region, the Mexican
Transition Zone, and the Nearctic region, in the Venezuelan Llanos, North Andean Paramo, Magdalena, Cauca,
Choco, Eastern Central America, Western Panamanian,
459
Mexican Pacific Coast, Chiapas, Sierra Madre del Sur, Balsas Basin, Transmexican Volcanic Belt, Sierra Madre Occidental, and Mexican Plateau biogeographic provinces. The
species supporting this track are E. bondi, E. chihuahuensis,
E. delachauxi, E. festivus, E. leptacanthus, E. pseudoensifer,
and E. torresphilipi.
One node was found in Colombia (Neotropical region), in
the area where both generalized tracks intersect.
D ISCUSSION
The knowledge of the diversity of the American species
of Eucyclops is still growing; several species have been
described recently from different environments. In South
America, many species with a restricted distribution were
described from explorations performed between 1920 and
1990 (Kiefer, 1926, 1929, 1931, 1934, 1936, 1956; Lindberg, 1955; Dussart, 1984; Reid, 1985; Dussart and Frutos, 1986; Defaye and Dussart, 1988). In North America,
the distribution of several species that were previously considered cosmopolitan, e.g., E. serrulatus and E. pseudoensifer, was reevaluated, revealing some new species, probably
with restricted distribution; this suggests that the diversity
of the genus may be underestimated (Reid, 1992; SuárezMorales, 2004; Alekseev et al., 2006; Suárez-Morales and
Walsh, 2009). In Central America, the knowledge about this
genus is still quite limited because surveys in the area are relatively scarce (Suárez-Morales, 2004; Alekseev et al., 2006;
Suárez-Morales and Walsh, 2009).
The distributional patterns of Eucyclops involve two
cenocrons (sensu Morrone, 2009): one Holarctic and the
other Paleotropical. The species of the Holarctic cenocron
have dispersed to the Americas by the Thulean bridge
(connecting North America and Europe) and the Beringian
bridge (connecting North America and eastern Asia) that
existed in the early Eocene when weather conditions were
warmer and wetter (San Martín et al., 2001; Wyngaard et
al., 2009). The individual track of E. pectinifer (Fig. 1)
supports this hypothesis, as the species complex to which
it belongs occurs in Eurasia. According to Alekseev et al.
(2006), E. serrulatus is distributed in North Africa, the
Mediterranean region, Europe, Russia, and probably extends
to Central Asia. The ancestor of E. pectinifer may have
dispersed to North America and then spread southwards.
There is a disjunction between North and South America,
as there are no records of this species in Central America,
linking the individual track from southern Mexico (near the
borderline with Guatemala and Belize) with the Galapagos
Islands. A similar connection through the Galapagos has
described for other organisms such as the staphylinid beetle
genus Rothium (Grehan, 2001). Croizat (1958) considered
the Galapagos Islands as a node that includes the intersection
of three tracks. He predicted that the line of the west
coast of America to the Galapagos previously included
and extended to Chile and Hawaii. Pacific tracks identified
by Croizat constitute evidence of geological connections
with East Asia, which resulted in a composed origin of
North and South America, though the union of lands in the
Pacific, Gondwana, and Laurasia. Grehan (2001), based on
panbiogeographic and geological evidence, considered that
at least some elements of the Galapagos biota have derived
460
JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 32, NO. 3, 2012
Fig. 1. Individual panbiogeographic tracks of American species of Eucyclops. Eucyclops pectinifer, E. elegans, E. bondi, E. leptacanthus, E. prionophorus,
E. pseudoensifer.
from the Pacific Islands biota that where in contact with the
Galapagos Islands, and then moved eastward to finally crash
with North or South America.
Ancestors of the South American Eucyclops evolved in
the Afro-Brazilian tropical fragment of Gondwana and diverged following its breakup in the Cretaceous. This has
been proposed by Banarescu (1992), Suárez-Morales et al.
(2005), Hołyńska (2006), and Wyngaard et al. (2009) for
other copepods, such as calanoids (Boeckellidae and Diaptomidae, considered to represent ancient freshwater lineages)
and the cyclopoid genus Mesocyclops. Most of the species
of Eucyclops are distributed in Africa, Central and Southern Asia, Australia, South America, and Mexico, supporting
the hypothesis that the origin of the genus is in the AfroBrazilian tropical fragment of Gondwana. This hypothesis
is also supported if we consider the main massing concept
(center of great diversity), because the distribution of most
species of Eucyclops in the Americas extends from northern-
central Mexico through Colombia, representing 42% of the
species (see individual tracks of E. bondi, E. leptacanthus, E.
pseudoensifer, E. torresphilipi, E. prionophorus, E. ensifer,
E. conrowae, and E. serrulatus montanus), and five species
have north-south tracks within South America (E. alticola,
E. neumani titicacae, E. demacedoi, E. silvestri, and E. neumani neumani).
The proximity of the individual tracks of E. neumani neumani, E. subciliatus, E. elegans, E. pectinifer, and E. silvestri
in the vicinity of northeastern Argentina and southern Brazil
(Chaco, Pampa, and Parana Forest biogeographic provinces)
can be related to the separation of the Paraguay and Paraná
rivers from the Amazonas basin. Castellanos (1965) postulated that the Paraguay River was a former tributary of the
Amazon River, and then splitted when the Andean orogeny
created an area of fracture where the Paraguay and Parana
rivers currently flow, thus changing its drainage to the La
Plata Basin, and acting as a vicariant event separating the
MERCADO-SALAS ET AL.: DISTRIBUTION OF THE AMERICAN EUCYCLOPS
461
Fig. 2. A-C, Individual panbiogeographic tracks of American species of Eucyclops. Eucyclops conrowae, E. torresphilipi, E. neumani titicacae, E.
demacedoi, E. ensifer, E. neumani neumani, E. alticola, E. festivus, E. serrulatus montanus, E. silvestri, E. subciliatus, E. chihuahuensis. Generalized
tracks: 1) Western Amazonian; 2) Mesoamerican-Northwestern South American. The circle with the “x” represents the node.
Amazon and La Plata biotas. The Chaco and Pampa biogeographic provinces belong to the Chacoan subregion, which
includes the Caattinga Province, where the oldest copepod
fossil was found (Kabatarina pattersoni, a parasite of a
teleost fish from the late Cretaceous about 69 m.y.a.) (Huys
and Boxshall, 1991; Lange and Schram, 1999).
The Western Amazonian track is defined by the exclusive presence of three species, E. alticola, E. demacedoi,
and E. neumani titicacae. It is localized mainly in the Amazonian subregion, the largest of the Neotropical subregions.
The history of the Amazonian biota has been reconstructed
differently by different authors. One of the first explanations
was provided by Wallace (1852), who considered that the
rivers of the Amazonian basin acted as barriers. Contrariwise, Arzamendia and Giraudo (2009) recently considered
the rivers as dispersal corridors for snake species. Antonelli
et al. (2009) suggested that the uplift of the tropical Andes in the Neogene strongly affected the history of South
America, changing the course of the Amazon River from a
northwestwards flow to the modern pattern flowing to the
Atlantic. This event changed the climate of the region by
forming the only barrier to atmospheric circulation in the
Southern hemisphere. Wesseling (2006) proposed another
explanation, who based his theory on the Miocene “Pebas
lake/wetland system,” viz., a shallow system of lakes and
wetlands that straddled the Equator in western Amazonia between 9 and 23 m.y.a. This system resulted from the uplift
of the eastern Cordillera in the Central Andes that caused
the western Amazonia to become flooded. The inland sea
thus formed acted as a barrier between the Andes and lowland Amazonia. Aquatic conditions seem to have persisted in
western-central Amazonia until 7 m.y.a., when the modern
Amazon system came into existence; this event could represent the vicariant event associated with the Western Amazonian track.
If divided into two sectors, the Mesoamerican-Northwestern South American generalized track can be compared to that found for other taxa. The northern part in-
462
JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 32, NO. 3, 2012
cludes mainly the Mexican Plateau and part of the Sierra
Madre Occidental biogeographical provinces, and agrees
with the Mexican Mountain general track proposed by Abrahamovich et al. (2004) for hymenopteran insects and the
western part of the northern Mexican generalized track proposed by Rosas-Valdéz and Pérez-Ponce de León (2008)
for helminth parasites of ictalurid fishes. It covers almost
all arid areas of north-central Mexico, formed between the
Late Oligocene and Middle Miocene, and was part of a
general trend toward greater aridity resulting from climate
change associated to intense volcanic activity and tectonics
of the Cenozoic, when the Rocky Mountains, the Mexican
and Central-American Plateaus, and the Sierras Madre were
formed. The formation of the Sierra Madre Occidental and
Sierra Madre Oriental during the Eocene and up until the
middle Miocene provided a new barrier to the atmospheric
flow, blocking the masses of warm, moist air from the Pacific Ocean and the Gulf of Mexico, and causing a severe
drought and aridity in the Mexican Plateau. The Miocene
climate change segregated the species along latitudinal and
longitudinal gradients, thus favoring radiation processes in
some lineages (Devitt, 2006). It has been suggested that
some areas (such as Cuatro Cienegas in Coahuila) functioned as refugia during the Pleistocene glaciations (Banarescu, 1992). The southern part of this portion includes
the intersection between the Balsas Basin, Transmexican
Volcanic Belt, and Sierra Madre del Sur biogeographic
provinces, where nodes were identified for arthropods (Morrone and Márquez, 2008; Yáñez-Ordóñez et al., 2008) and
mammals (Escalante et al., 2004). This pattern agrees with
the Mesoamerican generalized track found by Asiain et al.
(2010) for beetles of the genera Agrodes and Plochionocerus. It also coincides with the Meridional distribution
pattern of Maya-Martínez et al. (2011), based on Charaxinae, the Southern Mesoamerican track found by Abrahamovich et al. (2004) for species of Bombus, the Septentrional Mesoamerican and Meridional Mesoamerican generalized tracks described by Márquez and Morrone (2003) for
the staphylinids Heterolinus and Homalolinus, and also with
the Southern generalized track of Morrone and Márquez
(2001), based on beetles. These authors postulated different vicariant events, which occurred in different periods of
time, including the development of the marine barrier of the
Isthmus of Tehuantepec, the emergence of the mountains in
Chiapas, Guatemala, Honduras, and Nicaragua, the development of the Nicaraguan lowlands, and the highlands of
Costa Rica and Panama, and finally the development and
closure of the marine barrier represented by the Isthmus of
Panama. The intrusion of copepod species into Mexico from
the south has been associated with the Usumacinta basin,
mainly by the development of rivers and terraces in the Pleistocene (Gutiérrez-Aguirre and Suárez-Morales, 2001).
The node found in this study appears to be the result
from the mixture of Nearctic and Neotropical biotas after
the closure of the Panama Isthmus, when the connection of
the two subcontinents was consolidated. As already stated
(Menu-Marque et al., 2000), it is important to emphasize
that biogeographic patterns are the consequence not only of
vicariant events, but dispersal and/or extinction processes.
We attempted herein to clarify the distribution of American freshwater copepods using a panbiogeographic approach and covering a wide geographical area. We recognized some of the biogeographic provinces proposed by
Morrone (2006), but there are still many unexplored regions.
Of course, more detailed local and regional records would allow a better understanding of the history and evolution of the
group. A morphological study of the species of Eucyclops in
Mexico is now being conducted in order to correctly define
the species boundaries and clarify their distributional patterns. This study will serve as a platform to define the taxonomic status of the species of Eucyclops in the Americas
and their distributions, which will be analyzed in subsequent
papers.
ACKNOWLEDGEMENTS
We deeply appreciate the comments and help from Juan J. Schmitter-Soto.
We also appreciate the technical support from Holger Weissenberger, who
kindly helped us with the use of Geographic Information Systems. Rosa
Ma. Hernández kindly provided the records of specimens deposited in the
collection of ECOSUR. This contribution is part of the graduate work
of the senior author and was supported by CONACYT project 133404Investigación Científica Básica 2009.
R EFERENCES
Abrahamovich, A. H., N. B. Díaz, and J. J. Morrone. 2004. Distributional
patterns of the Neotropical and Andean species of the genus Bombus
(Hymenoptera: Apidae). Acta Zoológica Mexicana 20: 99-117.
Alekseev, V., H. J. Dumont, J. Pensaert, D. Baribwegure, and J. R.
Vanfleteren. 2006. A redescription of Eucyclops serrulatus (Fischer,
1851) (Crustacea: Copepoda: Cyclopoida) and some related taxa, with
a phylogeny of the E. serrulatus-group. Zoologica Scripta 35: 123-147.
Álvarez-Silva, C., and S. Gómez-Aguirre. 2000. Listado de la fauna de
copépodos (Crustacea) de las lagunas costeras de Veracruz, México.
Hidrobiológica 10(2): 161-168.
Antonelli, A., J. A. A. Nylander, C. Persson, and I. Sanmartín. 2009.
Tracing the impact of the Andean uplift on Neotropical plant evolution.
Proceedings of the National Academy of Sciences of the United States of
America 106: 9749-9754.
Arzamendia, V., and A. R. Giraudo. 2009. Influence of large South
American rivers of the Plata Basin on distributional pattern of tropical
snakes: a panbiogeographical analysis. Journal of Biogeography 36:
1739-1749.
Asiain, J., J. Márquez, and J. J. Morrone. 2010. Track analysis of the species
of Agrodes and Plochionocerus (Coleptera: Staphylinidae). Revista
Mexicana de Biodiversidad 81: 177-181.
Banarescu, P. 1992. Zoogeography of Fresh Waters. Vol. II: Distribution and
Dispersal of Freshwater Animals in North America and Eurasia. AULAVerlag, Wiesbaden.
Barbiero, R. P., R. E. Little, and M. I. Tuchman. 2001. Results fron U.S.
EPA’s biological open water surveillance program of the Laurentian
Great Lakes: III. Crustacean zooplankton. Journal of the Great Lakes
Research 27: 167-184.
Brehm, V. 1948. Datas para la fauna de agua dulce de Cuba. Publicaciones
del Instituto de Biología Aplicada de Barcelona 5: 95-112.
Brian, A. 1927. Aggiuntee noti sui Copepodi d’acqua dolce raccolti dai
Prof. Silvestri nell’Argentina. Bolletino della Società Entomologica
Italiana 59: 126-132.
Bruno, M. C., J. W. Reid, and S. A. Perry. 2005. A list and identification
key for the freshwater, free-living copepods of Florida (U.S.A.). Journal
of Crustacean Biology 25: 384-400.
Carling, K. J., I. M. Ater, M. R. Pellam, A. M. Bouchard, and T. B.
Mihuc. 2004. A guide to the zooplankton of lake Champlain. Scientia
Discipulorum – Journal of Undergraduate Research 1: 1-29.
Castellanos, A. M. 1965. Estudio fisiográfico de la Provincia de Corrientes.
Publicaciones del Instituto de Fisiografía y Geología de Rosario 49: 288297.
Claus, C. 1893. Weitere Mittheilungen über die Antennengliederung und
über die Gattungen der Cyclopiden. Anzeiger der Kaiserlichen Akademie
MERCADO-SALAS ET AL.: DISTRIBUTION OF THE AMERICAN EUCYCLOPS
der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 30:
116-120.
Collado, C., D. Defaye, B. H. Dussart, and C. H. Fernando. 1984. The
freshwater Copepoda (Crustacea) of Costa Rica with notes on some
species. Hydrobiologia 119: 89-99.
Comita, G. W. 1950. Studies on Mexican copepods. Transactions of the
American Microscopical Society 70: 367-379.
Cragin, F. W. 1883. A contribution to the history of freshwater Copepoda.
Transactions of the Kansas Academy of Science 8: 66-81.
Croizat, L. 1958. Panbiogeography. Published by the author, Caracas.
. 1964. Space, Time, Form: the Biological Synthesis. Published by
the author, Caracas.
de los Ríos, P., R. Rivera, and J. J. Morrone. 2010. Cyclopoids (Crustacea:Copepoda) reported from Chilean inland waters. Boletín de Biodiversidad de Chile 2: 10-20.
Defaye, D., and B. Dussart. 1988. Compléments à la faune des Crustacés
Copépodes des eaux intérieures de Guyane Française. Revista de Hidrobiología Tropical 71: 81-91.
Devitt, T. J. 2006. Phylogeography of the Western Lyresnake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across
the Nearctic-Neotropical transition. Molecular Ecology 15: 4387-4407.
Dodson, S. I., and M. Silva-Briano. 1996. Crustacean zooplankton richness
and associations in reservoirs and ponds of Aguascalientes State, Mexico.
Hydrobiologia 325: 163-172.
Dussart, B. H. 1984. Some Crustacea Copepoda from Venezuela. Hydrobiologia 113: 25-67.
, and D. Defaye. 2001. Introduction to the Copepoda. In: H. J. F.
Dumont (ed.), Guides to the Identification of the Microinvertebrates of
the Continental Waters of the World. SPB Academic Publishing, The
Hague, 289 pp.
, and
. 2006. World Directory of Crustacea Copepoda of
Inland Waters II – Cyclopiformes. Backhuys Publishers, Leiden.
, and C. H. Fernando. 1990. A review of the taxonomy of five
Ontario genera of freshwater cyclopoid Copepoda (Crustacea). Canadian
Journal of Zoology 68: 2594-2604.
, and S. M. Frutos. 1986. Sur quelques Copépodes d’ArgentineCopépodes du Paraná Medio. Revista de Hidrobiología Tropical 19: 241262.
Elías-Gutiérrez, M. 2000. Informe final del Proyecto S050: Microcrustáceos
zooplanctónicos y litorales del Sureste de México. CONABIO, Mexico,
53 pp.
, E. Suárez-Morales, M. A. Gutiérrez-Aguirre, M. Silva-Briano,
J. G. Granados-Ramírez, and T. Garfias-Espejo. 2008. Cladocera y Copepoda de las aguas continentales de México. UNAM-FESI-CONABIOECOSUR-CONACYT-SEMARNAT, Mexico City.
Escalante, T., G. Rodríguez, and J. J. Morrone. 2004. The diversification of
Nearctic mammals in the Mexican Transition Zone. Biological Journal
of the Linnean Society 83: 327-339.
Fiers, F., V. Ghenne, and E. Suárez-Morales. 2000. New species of continental Copepoda (Crustacea, Cyclopoida) from the Yucatan Peninsula.
Studies in Neotropical Fauna and Environment 35: 209-251.
Fischer, S. 1851. Beiträge zur Kennthis der in der Umgegend von St.
Petersburg sich findenden Cyclopiden. Bulletin de la Société Impériale
des Naturalistes de Moscou 24: 409-438.
Frisch, D., and S. T. Threlkeld. 2005. Flood-mediated dispersal versus
hatching: early recolonization strategies of copepods in floodplain ponds.
Freshwater Biology 50: 323-330.
Gaviria, S., and N. Aranguren. 2007. Especies de vida libre de la subclase
Copepoda (Arthropoda, Crustacea) en aguas continentales de Colombia.
Biota Colombiana 8: 53-68.
Graeter, E. 1907. Beiträge zur Kenntnis der schweizerischen Höhlenfauna.
II. Über Höhlencopepoden. Zoologischer Anzeiger 31: 841-851.
Grehan, J. R. 2001. Islas Galápagos: Biogeografía, tectónica y evolución
de un archipiélago oceánico, pp. 153-160. In, J. Llorente-Bousquets and
J. J. Morrone (eds.), Introducción a la biogeografía en Latinoamérica:
Teorías, conceptos, métodos y aplicaciones. Las Prensas de Ciencias,
UNAM, Mexico City.
Grimaldo-Ortega, D., M. Elías-Gutiérrez, M. Camacho-Lemus, and
J. Ciros-Pérez. 1998. Additions to Mexican freshwater copepods with the
description of the female Leptodiaptomus mexicanus (Marsh). Journal of
Marine Systems 15: 381-390.
Guerne, J., and J. Richard. 1889. Révision des Calanides d’eau douce.
Mémoires de la Société de Zoologie de France 2: 53-181.
463
Gutiérrez-Aguirre, M. A. 1999. Diversidad y distribución de los copépodos dulceacuícolas (Crustacea) del Sureste Mexicano. Master Thesis,
ECOSUR, Chetumal.
, and E. Suárez-Morales. 2001. Diversity and distribution of freshwater copepods (Crustacea) in southeastern Mexico. Biodiversity and
Conservation 10: 659-672.
Harris, M. J. 1978. Copepoda of northern Mississippi with a description of
a new subspecies. Tulane Studies in Zoology and Botany 20: 27-34.
Herbst, H. V. 1959. Brasilianische Süsswassercyclopoiden (Crustacea
Copepoda). Gewässer und Abwässer 27: 27-54.
. 1962. Crustacea aus dem Amazonasgebiet, gesammelt von Prof.
Dr. H. Sioli und Dr. R. Braun. I. Litorale und substratgebundene
Cyclopoida Gnathostoma (Copepoda). Crustaceana 3: 259-278.
Herrick, C. L. 1884. A final report on the crustacean of Minnesota
included in the orders Cladocera and Copepoda. 12th Annual Reports
of Geological and Natural History Survey of Minnesota 5, 191 pp.
Hołyńska, M. 2006. Phylogeny of Mesocyclops (Copepoda: Cyclopidae) inferred from morphological characters. Zoological Journal of the Linnean
Society 147: 1-70.
Ishida, T. 2001. Eucyclops borealis sp. nov. from Alaska, and E. tsushimensis sp. nov. from Tsushima Island, Japan (Crustacea, Copepoda, Cyclopoida). Biogeography 3: 51-57.
Jiménez-Trejo, L. A., and S. L. Vásquez-Vargas. 2008. Reserva de la
Biosfera “Los Tuxtlas”, patrimonio amenazado. Observatorio de la
Economía Latinoamericana 99, Málaga.
Juday, C. 1915. Limnological studies on some lakes in Central America.
Transactions of the Wisconsin Academy of Sciences, Arts and Letters
18: 214-250.
Kiefer, F. 1925. Eine neue Süsswasser-Copepode aus Süd-Amerika: Cyclops delachauxi, n. sp. Zoologischer Annzeiger 63: 46-47.
. 1926. Über einige Süsswasser Cyclopiden aus Peru. Archiv für
Hydrobiologie 16(3): 494-621.
. 1929. Zur Kenntnis der freilebenden Copepoden Nordamerikas.
Zoologischer Anzeiger 86: 97-100.
. 1931. Die Untergattung Tropocyclops der Gattung Eucyclops
(Copepoda, Cyclopoida). Zeitschrift für Wissenschaftliche Zoologie 138:
487-514.
. 1934. Neue Ruderfüsskrebse von der Inseln Haiti. Zoologischer
Anzeiger 108: 227-233.
. 1936. Mitteilungen von den Forschungsreisen Prof. Rahms.
Mitteilung VIII. Cyclopiden. Zoologiseher Anzeiger 115: 243-249.
. 1956. Freilebende Ruderfusskrebse (Crustacea, Copepoda).
Calanoida und Cyclopoida, pp. 233-268. In, F. Gessner and V. Vareschi
(eds.), Ergebnisse der Deutschen Limnologischen Venezuela-Expedition
1952. Band 1. Deutscher Verlag der Wissensehaften, Berlin.
. 1957. Freilebende Ruderfusskrebse (Crustacea Copepoda) des
Titicacasees. Veröffentlichungen der Zoologischen Staatssammlung
München 4: 125-150.
Koch, C. L. 1838. Deutschlands Crustaceen, Myriapoden und Arachniden.
Ein Beitrag zur Deutschen Fauna. Band 3. Friedrich Pustet, Regensburg.
Lilljeborg, W. 1901. Synopsis speciorum huc usque in Suecia observatorum
generis Cyclops. Svenska Vetenskapsakademiens Handlingar 35(4): 1118.
Lindberg, K. 1951. Cyclopides (Crustacés Copépodes). Exploration Hydrobiologique du Lac Tanganyika (1946-1947) 3: 45-91.
. 1955. Cyclopoïdes (Crustacés copépodes) du Mexique. Arkiv för
Zoologi 23: 459-489.
. 1957. Cyclopides (Crustacés Copépodes) récoltés au Pérou par le
Dr Hernando de Maccedo. 2. Folia Biologia Andina 1: 39-52.
Löffler, H. 1961. Zur Systematik und Ökologie der chilenischen süsswasser
Entomostraken. Beiträge zur Neotropischen Fauna 2: 143-222.
. 1963. Zur Ostrakoden- und Copepodenfauna Ekuadors. Archiv für
Hydrobiologie 59: 196-234.
Lopretto, E., and J. J. Morrone. 1998. Anaspidacea, Bathynellaceae
(Crustacea, Syncarida), generalized tracks, and the biogeographical
relationships of South America. Zoologica Scripta 27: 311-318.
Márquez, J., and J. J. Morrone. 2003. Análisis panbiogeográfico de las
especies de Heterolinus y Homalolinus (Coleoptera: Staphylinidae:
Xantholinini). Acta Zoológica Mexicana 90: 15-25.
Marsh, C. D. 1893. On the Cyclopidae and Calanidae of central Winsconsin.
Transactions of the Wisconsin Academy of Sciences 9: 189-224.
Maya-Martínez, A., J. J. Schmitter-Soto, and C. Pozo. 2011. Panbiogeography of the Yucatan Peninsula based on Charaxinae (Lepidoptera:
Nymphalidae). Florida Entomologist 94: 527-533.
464
JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 32, NO. 3, 2012
Menu-Marque, S., and C. Locascio. 2011. Löffler’s Chilean Eucyclops
(Copepoda, Cyclopidae) revisited. In, D. Defaye, E. Suárez-Morales,
and C. von Vaupel Klein (eds.), Studies on Freshwater Copepoda:
a Volume in Honour of Bernard Dussart. Crustaceana Monographs 16.
Brill, Leiden.
, J. J. Morrone, and C. Locascio. 2000. Distributional patterns of the
South American species of Boeckella (Copepoda: Centropagidae): a track
analysis. Journal of Crustacean Biology 20: 262-272.
Mercado-Salas, N. F. 2009. Diversidad y distribución de los Cyclopoida
(Copepoda) de las zonas áridas del centro-norte de México. Master
Thesis, ECOSUR, Chetumal.
Morrone, J. J. 2006. Biogeographic areas and transition zones of Latin
America and the Caribbean Islands based on panbiogeographic and
cladistic analyses of the entomofauna. Annual Review of Entomology
51: 467-494.
. 2009. Evolutionary Biogeography: an Integrative Approach with
Case Studies. Columbia University Press, New York.
, and J. V. Crisci. 1995. Historical biogeography: introduction to
methods. Annual Review of Ecology and Systematics 26: 373-401.
, and E. C. Lopretto. 1994. Distributional patterns of freshwater Decapoda (Crustacea: Malacostraca) in southern South America: a panbiogeographic approach. Journal of Biogeography 21: 97-109.
, and J. Márquez. 2001. Halffter’s Mexican Transition Zone, beetle
generalized tracks, and geographical homology. Journal of Biogeography
28: 635-650.
, and
. 2008. Biodiversity of Mexican terrestrial arthropods
(Arachnida and Hexapoda): a biogeographical puzzle. Acta Zoológica
Mexicana 24: 15-41.
Osorio-Tafall, B. 1943. Observaciones sobre la fauna acuática de las cuevas
de la región de Valles (San Luis Potosí, México). Revista de la Sociedad
Mexicana de Historia Natural 4: 43-71.
Pearse, A. S., and C. B. Wilson. 1938. Copepoda from Yucatan Caves.
Carnegie Institute of Washington Publications 491: 153-154.
Pesta, O. 1927. Ein Beitrag zur Kenntnis der Copepodenfauna von Argentinien. Zoologischer Anzeiger 73: 67-80.
Pleša, C. 1971. Contribution à la connaissance des Cyclopides (Crustacea,
Copepoda) des grottes et des eaux interstitielles de Suisse. Revue Suisse
de Zoologie 78: 833-850.
Reeves, W. K. 2000. Caecidotea caroliniensis (Isopoda: Asellidae): first
record of a stygobite from South Carolina. Journal of Cave and Karst
Studies 62: 18-19.
Reid, J. W. 1985. Clave de identificación y lista de referencias bibliográficas
para las especies continentales sudamericanas de vida libre del orden
Cyclopoida (Crustacea, Copepoda). Boletim de Zoología, Universidade
de São Paulo 9: 17-143.
. 1992. Copepoda (Crustacea) from fresh waters of the Florida
Everglades, U.S.A. with a description of Eucyclops conrowae n. sp.
Transactions of the American Microscopical Society 111: 229-254.
, and G. G. Marten. 1995. The cyclopoid copepod (Crustacea) fauna
of non-planktonic continental habitats in Louisiana and Mississippi.
Tulane Studies in Zoology and Botany 30: 39-45.
Robertson, A., and J. E. Gannon. 1981. Annotated checklist of the freeliving copepods of the Great Lakes. Journal of Great Lakes Research 7:
382-393.
Rodríguez-Almaráz, G. A. 2000. Informe final del Proyecto S104: Biodiversidad de los crustáceos dulceacuícolas del centro de Nuevo León y
noreste de Tamaulipas. CONABIO, Mexico, D.F., 33 pp.
Rojas, C. A. 2004. Automatización del método de la Panbiogeografía:
identificación de centros de diversidad del Parque Nacional Iztaccíhuatl,
Popocatépetl, Zoquiapan y anexas. Master Thesis, Universidad Nacional
Autónoma de Mexico.
Rosas-Valdez, R., and G. Pérez-Ponce de León. 2008. Composición
taxonómica de los helmintos parásitos de ictalúridos y heptaptéridos
(Osteichthyes: Siluriformes) de México, con una hipótesis de homología
biogeográfica primaria. Revista Mexicana de Biodiversidad 79: 473-499.
Sanmartín, I., H. Enghoff, and F. Ronquist. 2001. Patterns of animal
dispersal, vicariance and diversification in the Holarctic. Biological
Journal of the Linnean Society 73: 345-390.
Santos, L. U. 1997. Survey of cyclopoids (Crustacea, Copepoda) in Brazil
and preliminary screening on their potential as dengue vector predators.
Revista de Saúde Pública 31: 221-226.
Sars, G. O. 1863. Oversigt af de inderlandske Ferskvandscopepoder.
Forhandlinger i Videnskabs-Selskabet i Christiania (Jahr 1862): 212262.
. 1914. An account of the Crustacea of Norway. 6. Copepoda
Cyclopoida. Bergen Museum, Bergen, 225 pp.
Suárez-Morales, E. 2004. A new species of Eucyclops Claus (Copepoda:
Cyclopoida) from southeast Mexico with a key for the identification of
the species recorded in Mexico. Zootaxa 617: 1-18.
, and J. W. Reid. 1998. An updated list of free-living freshwater
copepods (Crustacea) of Mexico. The Southwestern Naturalist 43: 256265.
, and E. Walsh. 2009. Two new species of Eucyclops Claus (Copepoda: Cyclopoida) from the Chihuahuan Desert with a redescription of
E. pseudoensifer Dussart. Zootaxa 2206: 1-22.
, J. W. Reid, and M. Elías-Gutiérrez. 2005. Diversity and distributional patterns of Neotropical freshwater copepods (Calanoida: Diaptomidae). International Review of Hydrobiology 90: 71-83.
, L. Segura, and M. A. Fernández. 1985. Diversidad y abundancia
del plancton en la Laguna de Catemaco, Veracruz, durante un ciclo
anual. Anales del Centro de Ciencias del Mar y Limnología, Universidad
Nacional Autónoma de México 13: 313-316.
, J. W. Reid, F. Fiers, and T. M. Iliffe. 2004. Historical biogeography and distribution of freshwater Cyclopinae copepods (Copepoda,
Cyclopoida, Cyclopinae) of the Yucatan Peninsula, Mexico. Journal of
Biogeography 31: 1051-1063.
Wallace, A. R. 1852. On the monkeys of the Amazon. Proceedings of the
Zoological Society of London 20: 107-110.
Wesseling, F. P. 2006. Evolutionary ecology of the Pachydontinae (Bivalvia,
Corbulidae) in the Pebas lake/wetland system (Miocene, western Amazonia). Scripta Geologica 133: 395-417.
Wyngaard, G. A., M. Hołyńska, and J. A. Schulte. 2009. Phylogeny of the
freshwater copepod Mesocyclops (Crustacea: Cyclopidae) based on combined molecular and morphological data, with notes on biogeography.
Molecular Phylogenetics and Evolution 55: 753-764.
Yáñez-Ordóñez, O., M. Trujano-Ortega, and J. Llorente-Bousquets. 2008.
Patrones de distribución de las especies de la tribu Meliponini (Hymenoptera: Apoidea: Apidae) en México. Interciencia 33: 41-45.
Zamudio-Valdéz, J. A. 1991. Los copépodos de vida libre (Crustacea: Maxillopoda) del Valle de Cuatro Ciénegas, Coahuila, México. Undergraduate Thesis, Facultad de Ciencias Biológicas, Universidad Autónoma de
Nuevo León, Monterrey.
Zannata-Juárez, S. A. 1995. Composición, abundancia y distribución del
zooplancton del Lago de Catemaco, Veracruz. Undergraduate Thesis, Unidad Iztapalapa, División Hidrobiología, Universidad Autónoma
Metropolitana.
R ECEIVED: 14 June 2011.
ACCEPTED: 29 October 2011.
CAPÍTULO III.
REVISIÓN DE MATERIAL TIPO DE LAS ESPECIES DE EUCYCLOPS
REGISTRADAS EN MÉXICO, REDESCRIPCIONES Y COMENTARIOS ACERCA
DE SUS REGISTROS EN EL CONTINENTE AMERICANO
35
2Q.LHIHU¶V$PHULFDQEucyclops &RSHSRGD(XF\FORSLQDHE. delachauxi, E.
prionophorus, E. bondi DQG E. leptacanthusUHGHVFULSWLRQVDQGFRPPHQWVRQKLVWRULFDO
UHFRUGV
1DQF\)0HUFDGR6DODVDQG(6XiUH]0RUDOHV
(O&ROHJLRGHOD)URQWHUD6XU(&26858QLGDG&KHWXPDO$Y&HQWHQDULR.P
&KHWXPDO4XLQWDQD5RR0p[LFR
FRUUHVSRQGLQJDXWKRUQPHUFDGR#HFRVXUP[
$EVWUDFW
7KHIUHVKZDWHUFRSHSRGJHQXV(XF\FORSVFRQWDLQVPDQ\VXSSRVHGO\FRVPRSROLWDQVSHFLHV
ZKRVHWD[RQRPLFVWDWXVLVVWLOOXQGHUGLVFXVVLRQVRPHRIWKHPUHSUHVHQWVSHFLHV
FRPSOH[HV7KHSUREOHPLVQRWH[FOXVLYHWRWKHVHZLGHVSUHDGVSHFLHVWKHUHDUHVHYHUDO
$PHULFDQ(XF\FORSVQHHGLQJDWD[RQRPLFUHHYDOXDWLRQ%DVHGRQWKHH[DPLQDWLRQRI
)ULHGULFK.LHIHU¶VFROOHFWLRQLQ.DUOVUXKH*HUPDQ\W\SHVSHFLPHQVRIIRXU$PHULFDQ
VSHFLHVRI(XF\FORSV(GHODFKDX[L.LHIHU(SULRQRSKRUXV.LHIHU(ERQGL
.LHIHU(OHSWDFDQWKXV.LHIHUZHUHUHH[DPLQHGDQGUHGHVFULEHGXVLQJ
XSJUDGHGGHVFULSWLYHVWDQGDUGV.LHIHU¶VWUDQVODWHGGHVFULSWLRQVDQGXQSXEOLVKHGRULJLQDO
GUDZLQJVRIWKHVHVSHFLHVDUHDOVRSUHVHQWHG&KDUDFWHUVOLNHWKHRUQDPHQWDWLRQRIWKH
DQWHQQDOEDVLVRUQDPHQWDWLRQRIFR[DOSODWHVRIWKHVZLPPLQJOHJVOHQJWKRI
EDVLSRGDOVHWDRIOHJRUQDPHQWDWLRQRIFDXGDOUDPLERWKLQQHUDQGRXWHUPDUJLQVWKH
SUHVHQFHRIDHVWKHWDVFVDQGPRGLILHGVHWDHLQDQWHQQXOHVDQGWKHVWUXFWXUHRIWKHPDOHVL[WK
OHJDUHDGYDQFHGKHUHLQWRDLGLQDPRUHDFFXUDWHVHSDUDWLRQRIWKHVH$PHULFDQQRPLQDO
VSHFLHV$UHYLVLRQRI$PHULFDQUHFRUGVRIWKHVHVSHFLHVFRQILUPVWKDWVRPHDUHOLNHO\WR
UHSUHVHQWXQGHVFULEHGVSHFLHV2YHUDOOWKHGLYHUVLW\RIWKH$PHULFDQ(XF\FORSVDSSHDUVWR
EHXQGHUHVWLPDWHGDQGFHUWDLQO\GHVHUYHVIXUWKHUVWXG\
.H\ZRUGVIUHVKZDWHUFRSHSRGV(XF\FORSLQDHPRUSKRORJ\V\VWHPDWLFVWD[RQRP\
,QWURGXFWLRQ
7KHIUHVKZDWHUJHQXV(XF\FORSV&ODXVLVFXUUHQWO\NQRZQWRFRQWDLQPRUH
WKDQVSHFLHVDQGVXEVSHFLHV$OHNVHHYDQG'HID\HWKXVEHLQJRQHRIWKHPRVW
VSHFLRVHJHQHUDDPRQJWKH&\FORSRLGD2QO\DIHZVSHFLHVKDYHEHHQFRPSOHWHO\GHVFULEHG
IROORZLQJXSJUDGHGVWDQGDUGVLQDGGLWLRQWKHJHQXVWD[RQRP\ZDVEDVHGXQWLOUHFHQW
\HDUVRQDVPDOOQXPEHURIKLJKO\YDULDEOHFKDUDFWHUV&RQVHTXHQWO\(XF\FORSVKDVD
FRPSOH[WD[RQRPLFKLVWRU\WKDWLQFOXGHVVHYHUDOZLGHO\GLVWULEXWHGVSHFLHVZLWKDQ
XQFHUWDLQVWDWXV&ROODGRHWDO5HLG,VKLGD6XiUH]0RUDOHV
0HUFDGR6DODVHWDO
7KHWD[RQRPLFSUREOHPVZLWKLQWKLVWD[RQVWDUWHGZLWKWKHLQFRPSOHWHGHVFULSWLRQRI
WKHW\SHVSHFLHVRIWKHJHQXV(XF\FORSVVHUUXODWXV)LVKHUIURP5XVVLD$OHNVHHYHW
DO2QHRIWKHILUVWUHVHDUFKHUVLQSRLQWLQJRXWWKHVHGHILFLHQFLHVZDV)ULHGULFK
.LHIHU,QKLVGHVFULSWLRQRI(XF\FORSVGHODFKDX[L.LHIHUKHVWDWHGWKDWWKH
V\VWHPDWLFVDQGJHRJUDSKLFDOGLVWULEXWLRQRIWKLVJURXSZHUHIDUIURPEHLQJXQGHUVWDQGDEOH
LIHYHU\VLQJOH&\FORSVZLWK³VHUUD´ZDVLGHQWLILHGDVVHUUXODWXVDQGLIRWKHUFKDUDFWHUV
EHVLGHVWKH³VHUUD´ZHUHQRWLQFRUSRUDWHGLQWKHGHOLPLWDWLRQRIVSHFLHV+HDOVRUHPDUNHG
WKDWWKHZKROHVHUUDJURXSQRWWKHLQGLYLGXDOIRUPVDUHFRVPRSROLWHVDQGXELTXLWRXVDVLW
ZDVSUHYLRXVO\DVVXPHG$IWHU.LHIHUVVWDWHPHQWVPDQ\VSHFLHVZHUHGHVFULEHGDOORYHU
WKHZRUOGEXWPRVWRIWKHPFRQWLQXHGWKHXVHRIDUHGXFHGQXPEHURIYDULDEOHFKDUDFWHUV
7KHQRPLQDOVSHFLHV(VHUUXODWXVDQGLWVFRVPRSROLWDQVWDWXVUHPDLQHGXQFKDOOHQJHGXQWLO
UHFHQW\HDUV,VKLGD$OHNVHHYHWDO$OHNVHHY
DQG$OHNVHHYDQG'HID\HKDYHEHHQWKHSLRQHHUVVROYLQJWKHWD[RQRPLFDO
SUREOHPVDPRQJWKH(XF\FORSVZLWKWKHGHOLPLWDWLRQRIWKHVHUUXODWXVOLNHVSHFLHVDQG
VSHUDWXVOLNHVSHFLHVIURP-DSDQDQGWKHVHUUXODWXVJURXSZRUOGZLGH7KHHYDOXDWLRQRI
QHZFKDUDFWHUVOLNHWKHRUQDPHQWDWLRQRIWKHDQWHQQDOEDVLVWKHRUQDPHQWDWLRQRI
VZLPPLQJOHJVHVSHFLDOO\WKHIRXUWKDQGWKHSRUHVLJQDWXUHKDYHUHYHDOHGFRQVLVWHQW
GLIIHUHQFHVDPRQJVSHFLHVWKDWZHUHRYHUORRNHGZKHQXVLQJSUHYLRXVGHVFULSWLYHVWDQGDUGV
DQGVKRXOGEHUHYLHZHGLQWKHUHVWRIWKHVSHFLHVRIWKHJHQXV
'XULQJWKHGHYHORSPHQWRIDSURMHFWWRGHWHUPLQHDQGFODULI\WKHVSHFLHVGLYHUVLW\RI
WKHJHQXV(XF\FORSVLQ0H[LFRWKHW\SHPDWHULDORIVRPHRIWKHVHQRPLQDOVSHFLHVZDV
H[DPLQHG7KHUHDUHIRXUVSHFLHVGHVFULEHGE\.LHIHUWKDWKDYHEHHQUHFRUGHGLQ0H[LFR
(XF\FORSVGHODFKDX[L.LHIHU(SULRQRSKRUXV.LHIHU(ERQGL.LHIHU
DQG(OHSWDFDQWKXV.LHIHU6XiUH]0RUDOHVDQG5HLG*ULPDOGR2UWHJDHWDO
(OtDV*XWLpUUH]5RGUtJXH]$OPDUD]6XiUH]0RUDOHV0HUFDGR
6DODV6XiUH]0RUDOHVHWDO0HUFDGR6DODVDQG6XiUH]0RUDOHV,Q
RUGHUWRSHUIRUPDPRUSKRORJLFDOFRPSDULVRQRIWKH0H[LFDQPDWHULDOW\SHVSHFLPHQV
ZHUHH[DPLQHGDWWKH6WDDWOLFKHV0XVHXPIU1DWXUNXQGH.DUOVUXKH*HUPDQ\ZKHUH)
.LHIHUVFROOHFWLRQLVKHOG+HUHLQZHSUHVHQWWKHUHGHVFULSWLRQRIWKHIRXUVSHFLHV
PHQWLRQHGDERYHXVLQJXSJUDGHGVWDQGDUGVZHDOVRLQFOXGHXQSXEOLVKHG.LHIHU
VRULJLQDO
LOOXVWUDWLRQV,QDGGLWLRQZHSURYLGH(QJOLVKWUDQVODWLRQVRIWKHRULJLQDOGHVFULSWLRQVE\
.LHIHULQRUGHUWRPDNHDYDLODEOHKLVGHWDLOHGREVHUYDWLRQVDQGFRPSOHPHQWDU\XQSXEOLVKHG
GDWD
0HWKRGV
,QRUGHUWRSURYLGHDQXSJUDGHGPRUSKRORJLFDOUHGHVFULSWLRQRIWKHVSHFLHV(
GHODFKDX[L(SULRQRSKRUXV(ERQGLDQG(OHSWDFDQWKXVZHH[DPLQHGWKHW\SHPDWHULDO
RI.LHIHUVFROOHFWLRQGHSRVLWHGDWWKH6WDDWOLFKHV0XVHXPIU1DWXUNXQGH.DUOVUXKH
*HUPDQ\'UDZLQJVZHUHPDGHDW;ZLWKD/HLW]0HGLOX[FRPSRXQGPLFURVFRSH
HTXLSSHGZLWKDFDPHUDOXFLGD0DSSLQJRIURZVRIVSLQXOHVDQGVHWXOHVRQWKHDQWHQQDO
EDVLVDQGRQWKHFR[RSRGLWHDQGLQWHUFR[DOSODWHRI3IROORZHG$OHNVHHYHWDODQG
$OHNVHHYDQG'HID\H$EEUHYLDWLRQVXVHGLQWKHGHVFULSWLYHVHFWLRQDUHDVIROORZV
33ILUVWWRIRXUWKWKRUDFLFOLPEV([SH[RSRG(QSHQGRSRGVVHWDHDHDHVWKHWDVFVS
VSLQH%VSEDVLV)XFDXGDOUDPXV1RPHQFODWXUHXVHGIRUDUPDPHQWRIWKHDQWHQQXOHDQG
DQWHQQDIROORZHG$OHNVHHYHWDODQG$OHNVHHYDQG'HID\H&DXGDOVHWD
QRPHQFODWXUHDVIROORZV,,±DQWHURODWHUDOODWHUDOFDXGDOVHWD,,,±SRVWHURODWHUDO
RXWHUPRVWFDXGDOVHWD,9±RXWHUWHUPLQDOWHUPLQDOPHGLDQH[WHUQDOFDXGDOVHWD9±
LQQHUWHUPLQDOWHUPLQDOPHGLDQLQWHUQDOFDXGDOVHWD9,±WHUPLQDODFFHVVRU\
LQQHUPRVWFDXGDOVHWD9,,±GRUVDOVHWD
5HVXOWV
)RUHDFKRIWKHVHIRXUVSHFLHVZHSUHVHQWILUVWWKHFRPSOHWHWUDQVODWLRQIURP*HUPDQ
WR (QJOLVK RI .LHIHUV GHVFULSWLRQ IROORZHG E\ DQ XSJUDGHG GHVFULSWLRQ EDVHG RQ RXU
SHUVRQDO REVHUYDWLRQV RQ .LHIHUV PDWHULDO &KDUDFWHUV RU VWUXFWXUHV QRW REVHUYHG EXW
SUHYLRXVO\ SXEOLVKHG E\ RWKHU UHVHDUFKHUV DUH LQFOXGHG LQ WKH GHVFULSWLRQV ZLWK LWV
UHIHUHQFH)LJXUHVPHQWLRQHGLQWKHWUDQVODWHGWH[WFRUUHVSRQGWRWKHQXPEHUVRIWKHILJXUHV
LQWKHRULJLQDOGHVFULSWLRQVSXEOLVKHGE\.LHIHU
2UGHU&\FORSRLGD5DILQHVTXH
)DPLO\&\FORSLGDH5DILQHVTXH
6XEIDPLO\(XF\FORSLQDH.LHIHU
*HQXV(XF\FORSV&ODXV
Eucyclops delachauxi .LHIHU
)LJV
.LHIHUVGHVFULSWLRQ
7KHIHPDOHWKHJHQHUDODSSHDUDQFHRIWKHDQLPDOLVVLPLODUWR&\FORSVVHUUXODWXVWKHUHLV
QRWKLQJSDUWLFXODUWRVD\DERXWWKHVKDSHRIWKHSRVWHULRUERG\7KHILIWKVHJPHQWKDVRQ
WKHODWHUDOVLGHKDLUOLNHVHWDHDVDOOPHPEHUVRIWKHWULILGDJURXS7KHDEGRPHQLVVOHQGHU
7KHJHQLWDOVHJPHQWLVOLNHRWKHUIRUPVRI³VHUUXODWXVJURXS´ZLGHDWWKHSRVWHULRUSDUWEXW
DWWKHORFDWLRQRIWKHRYLGXFWSRUHDEUXSWO\QDUURZVIURPKHUHRQLWJHWVRQO\VOLJKWO\
QDUURZHULQSRVWHULRUGLUHFWLRQ7KHODVWDEGRPLQDOVHJPHQWLVQRWDEO\ORQJHUWKDQWKH
SUHYLRXVRQHLWVYHQWUDOPDUJLQLVSURYLGHGZLWKWKHXVXDOFURZRIVSLQHVEXWRQO\IRUPHG
E\DVPDOOQXPEHURIVSLQXOHVDERXWLQHDFKVLGH7KHFDXGDOUDPLFDQEHGHVFULEHGDV
UHODWLYHO\VKRUWDERXWWLPHVDVORQJDVZLGHDQGWKH\DUHSDUDOOHO7KHLQQHUPDUJLQLV
QDNHGWKHRXWHUPDUJLQKDVDVHUUDZKLFKFRQVLVWVLQHDFKVLGHRIDVPDOOQXPEHURIORQJ
VOHQGHUVSLQXOHV$OOWKHDQLPDOV,ORRNDWKDYHDVLPLODUIRUPRIVSLQHVEXWWKHQXPEHU
YDULHVZLWKLQFHUWDLQOLPLWVXVXDOO\,FRXQWHGWLPHDQGWLPH)LJDQG
7KHVHWDHRQWKHODWHUDOPDUJLQDUHKDLUVKDSHDQGFRPSDUHGWRWKHRQHVRI(XURSHDQ
VHUUXODWXVIRUPZHOOGHYHORSHG)LJDQG2IWKHIRXUWKVHWDHRQWKHHQGDSLFDORQO\
WKHWZRPHGLDVHWDHDUHVWURQJO\GHYHORSHGWKHORQJHVWLVDSSUR[LPDWHO\WZLFHWKHOHQJWKRI
WKHRWKHU7KHLU³SOXPDJH´FDQEHFDOOHGRQO\ZHDNO\KHWHURQRPRXVEHFDXVHWKHSOXPDJH
FRQVLVWVPDLQO\RIVLPLODUOLWWOHKDLUVDQGRQO\RQWKHVKRUWHUSUR[LPDOVHWDRQWKHRXWHU
VLGHWKHUHDUHVRPHVOLJKWO\VWURQJHUKDLUVWREHIRXQG7KHRXWHUPRVWVSLQHOLNHVHWDLVDV
ORQJDVWKHLQQHUKDLUOLNHVHWDRUDELWVKRUWHU,WVSOXPDJHFDQEHVHHQLQ)LJDQG7KH
WZHOYHVHJPHQWHGILUVWDQWHQQDVH[FHHGWKHSRVWHULRUPDUJLQRIWKHILUVWFHSKDORWKRUD[
VHJPHQWDERXWWKHOHQJWKRILWVODVWVHJPHQW7KHODVWWKUHHVHJPHQWVRIWKHILUVWDQWHQQD
VKRZDQDUURZK\DOLQHPHPEUDQH7KHODWHUDOVHWDRIWKHODVWVHJPHQWRULJLQVLQWKHFHQWHU
RIWKHPDUJLQ)LJ7KHELJEDVDOVHJPHQWRIWKHRXWVLGHIRRWSUDHFR[DRIPD[LOODKDVD
KXPSZLWKVSLQXOHVDWLWVORZHUHGJHVRPHVPDOOVSLQXOHV)LJ2QWKHRWKHUPRXWKSDUWV
QRWKLQJUHPDUNDEOHZDVIRXQG7KHEUDQFKHVRIWKHIRXUSDLUVRIVZLPPLQJOHJVDUHWKUHH
VHJPHQWHG7KHILQDOVHJPHQWRIWKH(QGRSRGRI3LVXVXDOO\H[DFWO\WZLFHDVORQJDV
ZLGHLWVWZRVHWDHRIWKHLQQHUDQGWKHRQHRIRXWHUPDUJLQDUHIRUPHGQRUPDOO\2IWKH
WZRDSLFDOVSLQHVWKHLQQHUVSLQHLVQRWLFHDEO\ORQJHUWKDQWKHODVWVHJPHQWDQGVWURQJO\
FXUYHGWRZDUGRXWVLGHRQGLVWDOWKLUG,FRXOGSHUFHLYHVSLQXOHVRQO\DWLWVFRQYH[HGJH7KH
RXWHUVSLQHLVVWUDLJKWDQGDVORQJDVWKHVHJPHQW)LJ6SLQHIRUPXOD7KH
UXGLPHQWDU\OHJLVRQHVHJPHQWHGSODWHLWVOHQJWKVLJQLILFDQWO\H[FHHGVWKHZLGWKWKH
LQVLGHHGJHLVVOLJKWO\GLVWHQGHG2IWKHWKUHHHOHPHQWVWKHLQQHUDQGRXWHUDUH
DSSUR[LPDWHO\HTXDOLQOHQJWKWKHPLGGOHLVPXFKORQJHU7KHLQQHUVSLQHLVDWLWVSRLQWRI
LQVHUWLRQDERXWWZLFHDVZLGHDVRQHRIWKHWZRVHWDH)LJ$VWKHDQLPDOVZHUHDOUHDG\
SUHVHUYHGIRU\HDUVRQO\WKHJHQHUDOVKDSHRIWKHVHPLQDOUHFHSWDFOHZDVGHWHFWHG)LJ
)URPQXPHURXVIHPDOHVH[DPLQHGQRQHFDUULHGHJJV$YHUDJHOHQJWK—PZLWKRXW
DSLFDOVHWDH
7KHPDOHLWLVVOLJKWO\VPDOOHUDQGVOHQGHUHUWKDQWKHIHPDOH7KHODVWDEGRPLQDOVHJPHQW
DOVRDSSHDUVPXFKORQJHUWKDQWKHSUHYLRXVRQH,WVSRVWHULRUPDUJLQFDUULHVRQYHQWUDOVLGH
WKHVDPHJURXSRIVSLQHVDVLQWKHIHPDOH7KHFDXGDOUDPLDOVRFRUUHVSRQGERWKLQOHQJWK
DQGIRUPZLWKWKHIHPDOH2QO\WKHRXWHUPDUJLQODFNRIWKH³VHUUD´LQVWHDGDERYHWKHSRLQW
RILQVHUWLRQRIWKHVHWDRQWKHODWHUDOPDUJLQWKHUHDUHRQO\VPDOOVSLQHVDWHDFKVLGH
7KHUHODWLYHOHQJWKDQGSOXPDJHRIWKHWZRDSLFDOPHGLDOVHWDHFRUUHVSRQGZLWKWKHDERYH
GHVFULSWLRQJLYHQIRUWKHIHPDOHVRIWKHWZRVKRUWHOHPHQWVRUDSSHQGL[RIWKHPDOHWKH
LQQHULVDOZD\VORQJHUWKDQWKHRXWHU)LJ)RRWSDLUVRIVZLPPLQJOHJVKDYHQRVSHFLDO
IHDWXUHV2QWKHJHQLWDOSODWHV3WKHLQQHUVSLQHLVSDUWLFXODUO\VWURQJLWH[FHHGVLQ
OHQJWKWKHVHFRQGDEGRPLQDOVHJPHQW)LJ
,KDYHQRGRXEWWKDWWKHF\FORSRLGMXVWGHVFULEHGKDVEHHQUHIHUUHGVLPSO\DV
³VHUUXODWXV´E\PDQ\RWKHUUHVHDUFKHUV0\VWDWHPHQWVDQGLOOXVWUDWLRQVVKRXOG
GHPRQVWUDWHKRZHYHUWKDWQRERG\FDQVD\WKDWWKHWZRIRUPVWKHRUGLQDU\(XURSHDQ
VHUUXODWXV> /HSWRF\FORSVDJLOLV@DQGWKH3HUXYLDQGHODFKDX[LDUHLGHQWLFDO$OWKRXJK
DOUHDG\/LOOMHERUJ6DUVDQG%UHKPKDYHVKRZQWKDWLQDGGLWLRQWRWKHZLGHVSUHDG
VHUUXODWXVIRUPLQ(XURSHDQZDWHUVWKHUHDUHPRUHVLPLODUIRUPVERWKLQVLGH(XURSHDQG
SDUWLFXODUO\RXWVLGH(XURSHLWGRHVQRWVHHPWRPHVXSHUIOXRXVSRLQWLQJRXWDJDLQWKDWZH
DUHIDUIURPXQGHUVWDQGLQJWKHV\VWHPDWLFVDQGWKHJHRJUDSKLFDOGLVWULEXWLRQRIWKLV
LQWHUHVWLQJ³VHUUXODWXVVLPLODU´JURXSLIZHFRQWLQXHZLWKWKHSUHYLRXVVXSHUILFLDOPHWKRG
RIUHIHUULQJHYHU\&\FORSVZLWK³VHUUD´VLPSO\DV³VHUUXODWXV´%HFDXVHWKHFKDUDFWHU
³VHUUD´LVLPSURSHUO\ZHLJKWHGDQGWKHUHIRUHRWKHUFKDUDFWHUVKDYHEHHQXQGHUHVWLPDWHG
7KHV\VWHPDWLFVKDVKRZHYHUWKHWDVNWRXVHDWRWDODPRXQWRIXVHIXOFKDUDFWHUVLQRUGHUWR
GLIIHUHQWLDWHDPRQJVSHFLHVDQGWRFKDUDFWHUL]HWKHP,IWKDWSURFHGXUHLVDSSOLHGWKHQLWLV
FOHDUWKDWWKHQXPHURXVIRUPVZKLFKKDYHLQFRPPRQWKHSRVVHVVLRQRIDVHUUDRQWKHRXWHU
PDUJLQRIFDXGDOUDPXVDUHQRWLGHQWLFDODQGVKRXOGEHVHSDUDWHLQGLIIHUHQWVSHFLHV
&\FORSVVHUUXODWXVZKLFKRFFXUVLQWKHIDXQDOLVWVRIDOOSDUWVRIWKHZRUOGLVDJURXS,WLV
LPSRVVLEOHWRUHFRJQL]HWKHDQLPDOVFRQFHDOLQJXQGHUWKDWQDPHGXHWRSRRUH[LVWLQJ
OLWHUDWXUHFRQFHUQLQJWRWKHGHWDLOV6RPDQ\FRSHSRGLGHQWLILHUVUHVHDUFKHUVVWLOOQRW
UHFRJQL]HDQGGLVWLQJXLVKWKHIRXUIRUPVWKDWDUHNQRZQLQ(XURSHWKH/LOOMHERUJDQG6DUV
&VHUUXODWXVIVSHUDWXVDQGPDFURURLGHV6RWKHZRUG³VHUUXODWXV´LQWKHSUHYLRXV
IDXQDOLVWVSDUWLFXODUO\WKRVHRIWURSLFDODUHDVLVFRPSOHWHO\ZRUWKOHVVIRUELRJHRJUDSKHUV
)RUWKHH[SDQVLRQDQGGHHSHQLQJRIRXUNQRZOHGJHRI&\FORSRLGVLVGHVLUDEOHWKDWLQIXWXUH
VWXGLHVRQ&\FORSVIRUPVLQJHQHUDOEXWSDUWLFXODUO\WKHVSHFLHVZLWK³VHUUD´VKRXOGEH
VWXGLHGZLWKVSHFLDODWWHQWLRQDQGFDUHIXOQHVV7KHQ,WKLQNZHZLOOVRRQVKRZQWKDWLQ
UHDOLW\WKHZKROH³VHUUD´JURXSEXWQRWWKHLQGLYLGXDOIRUPVDUHVXFKFRVPRSROLWHVDQG
XELTXLWRXVDVZHDVVXPHGXHWRSUHYLRXVDQGLQDFFXUDWHGHWHUPLQDWLRQV7KHVHJHQHUDOV¶
UHPDUNVVKRXOGEHVXIILFLHQW$GHWDLOHGFRPSDULVRQRIWKHQHZVSHFLHVGHODFKDX[LZLWK
RWKHUPHPEHUVRIWKHJURXSLVRPLWWHGKHUHVLQFH,VKDOOGHDOZLWKWKHZKROH³VHUUXODWXV
FRQJHQHUV´LQDVXEVHTXHQWZRUNZKLFKZLOOLQFOXGHDFULWLFDOFRPSDULVRQ'XHWRWKH
DERYHGHVFULSWLRQLWZLOOEHFHUWDLQO\SRVVLEOHWRGHWHFW&GHODFKDX[LLILWLVIRXQGDJDLQ
'HVFULSWLRQEDVHGRQ.LHIHUVPDWHULDO
0DWHULDOH[DPLQHG±+RORW\SH$GXOWƂ)URP+XDUyQFHQWUDOKLJKODQGVRI3HUXVSHFLPHQ
GLVVHFWHGVOLGHUHIHUHQFHQXPEHUV$GGLWLRQDOPDWHULDODGXOWƃ
IURP/DNH1DWLFRFKD3HUXVOLGHUHIHUHQFHQXPEHU6WDDWOLFKHV0XVHXPIU
1DWXUNXQGH.DUOVUXKH*HUPDQ\
)HPDOH$YHUDJHOHQJWKH[FOXGLQJFDXGDOVHWDH—P)LYHVHJPHQWHGXURVRPH)LJ$
$UHODWLYHO\HORQJDWHGSRVWHULRUPDUJLQRIDQDOVRPLWHZLWKRQHURZVWURQJVSLQXOHV
*HQLWDOGRXEOHVRPLWHV\PPHWULFDO6HPLQDOUHFHSWDFOHW\SLFDORIVHUUXODWXVJURXSZLWK
URXQGHGODWHUDODUPVRQSRVWHULRUPDUJLQ*HQLWDOGRXEOHVRPLWHWLPHVDVORQJDVZLGH
$QDOVRPLWHZLWKDJURXSRIKDLUOLNHVHWXOHVLQHDFKVLGHRIDQDORSHQLQJDQDORSHUFXOXP
URXQGHGVHH)LJ$/HQJWKZLGWKUDWLRRIFDXGDOUDPXV LQQHUPDUJLQRI
FDXGDOUDPXVQDNHG6HUUDZLWKVWURQJVSLQXOHVFRYHULQJRIRXWHUPDUJLQ
VSLQXOHVDERXWWKHVDPHVL]H)LJ%$'RUVDOVHWD9,,ORQJWLPHVWKHOHQJWKRI
FDXGDOUDPXVDQGWLPHVDVORQJDVRXWHUPRVWFDXGDOVHWD,,,5DWLRRILQQHUPRVW
FDXGDOVHWD9,RXWHUPRVWFDXGDOVHWD,,, /DWHUDOFDXGDOVHWD,,LQVHUWHGDW
RIFDXGDOUDPL$OOWHUPLQDOFDXGDOVHWDHSOXPRVH
$QWHQQXOH)LJ&&VHJPHQWHG$UPDPHQWSHUVHJPHQWDVIROORZVV VHWDDH DHVWKHWDVFVS VSLQHVVVVVVVSVVV
VVV1XPEHUVLQEROGIDFHLQGLFDWHVHJPHQWVZLWKLQFRPSOHWH
RUQDPHQWDWLRQ
$QWHQQD)LJ'%DVLVV([SSOXVVHJPHQWHG(QGVVDQGV%DVLV
RUQDPHQWDWLRQDVIROORZVVHQVX$OHNVHHYDQG'HID\H19111
11111111111
11
/DEUXP0D[LOOXOHDQG0D[LOOLSHGQRWREVHUYDEOHLQVOLGHV
0DQGLEOH)LJ(ZLWKVL[WHHWKRQJQDWKREDVH,QQHUPRVWPDUJLQZLWKRQHVSLQXORVH
VHWD
0D[LOOD)LJ'3UHFR[DZLWKURZRIVPDOOVSLQXOHVRQGRUVDOVXUIDFH
33(QGRSRGDQGH[RSRGVRIDOOVZLPPLQJOHJVWKUHHVHJPHQWHG$UPDWXUHIRUPXODDV
LQ7DEOH
/HJ)LJ$,QWHUFR[DOVFOHULWHZLWKJURXSRIVPDOOKDLUOLNHVHWXOHVLQHDFKVLGHRI
DQWHULRUVXUIDFHGLVWDOPDUJLQZLWKWZRURXQGHGFKLWLQL]HGSURMHFWLRQV%DVLSRGDOVSLQH
UHDFKLQJPLGGOHPDUJLQRI(QGWLPHVDVORQJDV(QS
/HJDQG*HQHUDOVKDSHDVLQILJXUHV%'
/HJ)LJ%,QWHUFR[DOVFOHULWHZLWKVKRUWKDLUVLQURZV,,,,,,&R[RSRGLWHZLWKURZ
$%&'()DQG+IURP$OHNVHHYDQG'HID\H/HQJWKZLGWK
UDWLR(QS3 OHQJWKUDWLRLQQHURXWHUVSLQHVRI(QS3 OHQJWKUDWLRLQQHU
VSLQHRI(QS3/HQJWKRI(QS3 OHQJWKUDWLRRXWHUVSLQHRI(QS3OHQJWKRI
(QS3 /DWHUDOVHWDRI(QS3LQVHUWHGDWRIWKHWRWDOOHQJWKRIWKHVHJPHQW
6HWDHRI(QG3ORQJDQGVOHQGHUODWHUDOVHWDORQJHUWKDQDSLFDOLQQHUVSLQHDUURZHGLQ
)LJ%
/HJ)LJ&2QHIUHHVHJPHQWVXEUHFWDQJXODUWLPHVORQJHUWKDQZLGH
EHDULQJRQHLQQHUVSLQHDQGWZRVHWDHPHGLDOVHWDDERXWWLPHVORQJHUWKDQRXWHUVHWD
,QQHUVSLQHWLPHVORQJHUWKDQRXWHUVHWDDQGWLPHVDVORQJDVPHGLDOVHWD
,QQHUVSLQHWLPHVDVORQJDVVHJPHQW
/HJ)LJ(5HSUHVHQWHGE\VPDOOORZSODWHZLWKRQHVOHQGHUDQGORQJVHWDDQGWZR
VPDOOVSLQHV2XWHUVHWDQRWLFHDEO\ORQJWLPHVORQJHUWKDQPHGLDOVSLQHDQGWLPHV
ORQJHUWKDQLQQHUVSLQH
0DOH8URVRPHVL[VHJPHQWHGSRVWHULRUPDUJLQRIXURVRPHVVHUUDWHG)LJ$&DXGDO
UDPXVUHFWDQJXODUWLPHVORQJHUWKDQZLGWKLQQHUPDUJLQRIFDXGDOUDPXVQDNHG
'RUVDOVHWD9,,WLPHVDVORQJDVFDXGDOUDPXVDQGWLPHVDVORQJDVRXWHUPRVW
FDXGDOVHWD,,,/HQJWKUDWLRRILQQHUPRVWFDXGDOVHWD9,RXWHUPRVWFDXGDOVHWD,,, /DWHUDOFDXGDOVHWD,,LQVHUWHGDWRIFDXGDOUDPLPDUJLQ$OOWHUPLQDOFDXGDO
VHWDHSOXPRVH
$QWHQQXOH)LJ%RQO\WKHJHQHUDODVSHFWRIWKLVDSSHQGDJHZDVREVHUYHG
RUQDPHQWDWLRQSHUVHJPHQWLQFRPSOHWH
/HJ)LJ$2QHIUHHVHJPHQWVXEUHFWDQJXODUWLPHVORQJHUWKDQZLGH
EHDULQJRQHLQQHUVSLQHDQGWZRVHWDHPHGLDOVHWDORQJHUWKDQRXWHUVHWDDERXWWLPHV
,QQHUVSLQHWLPHVORQJHUWKDQRXWHUVHWDDQGWLPHVDVORQJDVPHGLDOVHWD
/HJ)LJ$5HSUHVHQWHGE\RQHVPDOOORZSODWHQHDUODWHUDOPDUJLQRIJHQLWDO
VRPLWHZLWKRQHVWURQJORQJLQQHUVSLQHDQGWZRXQHTXDOVHWDH,QQHUVSLQHUHDFKLQJPHGLDO
PDUJLQRIIRXUWKXURVRPLWH,QQHUVSLQHDERXWWLPHVORQJHUWKDQPHGLDOVHWDDQG
DERXWWLPHVORQJHUWKDQRXWHUVHWD
5HPDUNV±,QWKHGHVFULSWLRQRI(GHODFKDX[L.LHIHUSRLQWHGRXWWKHWD[RQRPLF
SUREOHPVLQWKLVJHQXVGHULYHGIURPLPSURSHUO\ZHLJKWHGFKDUDFWHUVXVHGIRUWKHVSHFLHV
GHWHUPLQDWLRQV+HHQFRXUDJHVWKHH[SORUDWLRQDQGXVHRIDGGLWLRQDOVWUXFWXUHVWRDFKLHYHD
PRUHDFFXUDWHGHILQLWLRQRIVSHFLHVLQRUGHUWRHVWDEOLVKFRQVLVWHQWSDWWHUQVERWK
WD[RQRPLFDOO\DQGELRJHRJUDSKLFDOO\6LQFHLWVGHVFULSWLRQ(GHODFKDX[LKDVEHHQ
UHFRUGHGLQ0H[LFR&RORPELDDQG3HUX+DUGLQJ*DYLULD'HO5tRDQG
9DOGLYLD5RGUtJXH]$OPDUi]6XiUH]0RUDOHV(OtDV*XWLpUUH]HWDO
EXWQRQHRIWKHUHFRUGVLQFOXGHVGUDZLQJVRUGHVFULSWLRQVRIWKHVSHFLPHQVWKDW
FRXOGDOORZXVWRFRPSDUHZLWKWKHW\SHPDWHULDODQGFRQILUPWKHVHUHFRUGV,QWKHRULJLQDO
GHVFULSWLRQWKHSURSRUWLRQRIWKHOHQJWKZLGWKRI(QS3ZDVVWDWHGDVD
GLVWLQJXLVKLQJFKDUDFWHURIWKLVVSHFLHVEXWWKLVFKDUDFWHULVVKDUHGZLWKRWKHUUHODWHG
VSHFLHVYJU(SULRQRSKRUXV(OHSWDFDQWKXV(ERQGL(SVHXGRHQVLIHUWKXVPDNLQJLW
XQXVDEOHWRVHSDUDWHVSHFLHV$QRWKHUFKDUDFWHUUHPDUNHGE\.LHIHULVWKH
RUQDPHQWDWLRQRIWKHRXWHUPDUJLQRIWKHFDXGDOUDPLZKLFKLQFRPSDULVRQZLWKRWKHU
VSHFLHVLVZHDNO\RUQDPHQWHGXVXDOO\EHDULQJVSLQXOHVDQLPSRUWDQWYDULDWLRQKDVEHHQ
REVHUYHGIURPRXUREVHUYDWLRQVEXWVRPHWLPHVRU,QWKHUHFHQWHYDOXDWLRQRI
WKH(VHUUXODWXVFRPSOH[E\$OHNVHHYDQG'HID\HLWLVPHQWLRQHGWKDWDQRWKHU
SDUWLFXODUFKDUDFWHULVWLFRIWKLVVSHFLHVLVWKHOHQJWKRIWKHODWHUDOVHWDRQ(QS3LQ
FRPSDULVRQZLWKWKHOHQJWKRIWKHDSLFDORXWHUVSLQHZKHUHWKHODWHUDOVHWDLVDVORQJDVRU
HYHQORQJHUWKDQWKHLQQHUVSLQHDFKDUDFWHULVWLFWKDWLVXQLTXHIRUWKH$PHULFDQVSHFLHVRI
(XF\FORSV$VPHQWLRQHGE\.LHIHUUHFRUGVRIVSHFLHVVKRXOGEHFRQVLVWHQWERWK
WD[RQRPLFDOO\DQGJHRJUDSKLFDOO\KHQFHWKHUHFRUGVRI(GHODFKDX[LIURP0H[LFRRIWKLV
SUREDEO\6RXWK$PHULFDQVSHFLHVFRXOGEHDVVLJQDEOHWRDGLIIHUHQWVSHFLHV8QWLOUHFHQWO\
(GHODFKDX[LKDVEHHQLGHQWLILHGIROORZLQJQRQXQLTXHFKDUDFWHUVDVGHVFULEHGDERYH7KH
REVHUYDWLRQVPDGHE\.LHIHUDVWKHRUQDPHQWDWLRQSDWWHUQRIWKHFDXGDOUDPLZHUH
FKDUDFWHUVQHJOHFWHGLQWKHWD[RQRPLFNH\VDQGWKHUHIRUHVRPHRIWKHVSHFLHVWKDWKDYH
UHFRUGHGXQGHUWKHQDPH(GHODFKDX[LFRXOGEHLQIDFWFORVHO\UHODWHGVSHFLHV
Eucyclops prionophorus .LHIHU
)LJ
.LHIHUVGHVFULSWLRQ
7KHIHPDOH&DXGDOUDPLVOHQGHUIRXUWLPHVDVORQJDVZLGHURZRIVSLQXOHVRQWKHRXWHU
PDUJLQGLVWDOVSLQXOHVDUHORQJHUDQGSUR[LPDOVSLQXOHVDUHVOHQGHU)LJ)LUVWDQWHQQD
WZHOYHVHJPHQWHGVOLJKWO\VKRUWHUWKDQWKHFHSKDORWKRUD[ZLWKDQDUURZK\DOLQH
PHPEUDQHDORQJWKHPDUJLQRIODVWWKUHHVHJPHQWV6SLQHIRUPXODRIH[RSRGVRIIRXU
VZLPPLQJOHJV)LIWKOHJZLWKRQHVHJPHQWEHDULQJWKUHHHOHPHQWVRIZKLFKWKH
LQQHUVSLQHLVDWWKHLQVHUWLRQWZLFHDVZLGHDVERWKRWKHUVHWDH6HPLQDOUHFHSWDFOHVLPLODU
WR(VHUUXODWXV/HQJWKH[FOXGLQJFDXGDOVHWDPP
7KHPDOH6SLQHRIJHQLWDOSODWH3H[WUHPHO\ORQJORQJHUWKDQWKHJHQLWDOVHJPHQWZLWK
WZRVKRUWVOHQGHUSOXPRVHVHWDH/HQJWKH[FOXGLQJFDXGDOVHWDHPP
'LVWULEXWLRQ1RUWK$PHULFDFORVHWR1HZ+HDYHQ
'HVFULSWLRQEDVHGRQ.LHIHUVPDWHULDO
0DWHULDOH[DPLQHG±+RORW\SH$GXOWƂFROOHFWHGIURP1HZ+DYHQ86$
6SHFLPHQGLVVHFWHGVOLGHQXPEHU$GGLWLRQDOPDWHULDOIURP6DQ%HUQDUGLQR
3DUDJXD\VOLGHVQXPEHUV6WDDWOLFKHV0XVHXPIU1DWXUNXQGH.DUOVUXKH
*HUPDQ\
)HPDOH$YHUDJHOHQJWKH[FOXGLQJFDXGDOVHWDH—P8URVRPHILYHVHJPHQWHG)LJ
$UHODWLYHO\HORQJDWHGXURVRPDOIULQJHVVPRRWKRUVOLJKWO\VHUUDWHGSRVWHULRUPDUJLQ
RIDQDOVRPLWHZLWKRQHURZRIUHODWLYHO\ORQJVSLQXOHV*HQLWDOGRXEOHVRPLWH)LJ$
V\PPHWULFDO6HPLQDOUHFHSWDFOHW\SLFDORIWKHVHUUXODWXVJURXSZLWKURXQGHGODWHUDODUPV
RQSRVWHULRUPDUJLQ*HQLWDOGRXEOHVRPLWHVOLJKWO\ZLGHUWKDQORQJDERXWWLPHV$QDO
VRPLWHZLWKRQHURZRIKDLUOLNHVHWDHLQHDFKVLGHRIDQDORSHQLQJDQDORSHUFXOXPVOLJKWO\
URXQGHG)LJ&%/HQJWKZLGWKUDWLRRIFDXGDOUDPXV LQQHUPDUJLQRI
FDXGDOUDPXVQDNHGLQVSHFLPHQVIURP1HZ+DYHQDQGZLWKJURXSVRIVPDOOVSLQXOHVLQ
VSHFLPHQVIURP6DQ%HUQDUGLQRVHH)LJ$6HUUDRQRXWHUPDUJLQZLWKVWURQJVSLQHV
FRYHULQJRIODWHUDOPDUJLQVSLQXOHVLQFUHDVHLQVL]HGLVWDOO\)LJ$&%
'RUVDOVHWD9,,VKRUWWLPHVWKHOHQJWKRIFDXGDOUDPXVDQGWLPHVDVORQJ
DVRXWHUPRVWFDXGDOVHWD,,,/HQJWKUDWLRRILQQHUPRVWFDXGDOVHWD9,RXWHUPRVWFDXGDO
VHWD,,, /DWHUDOFDXGDOVHWD,,LQVHUWHGDWRIFDXGDOUDPXV$OOWHUPLQDO
FDXGDOVHWDHSOXPRVH
$QWHQQXOH)LJ&VHJPHQWHG$UPDPHQWSHUVHJPHQWDVIROORZVV VHWDDH DHVWKHWDVFVS VSLQHVVVVVVVZLWKDVPDOOSURMHFWLRQ
RQLQQHUPDUJLQDUURZHGLQ)LJ&VVVVV1XPEHUVLQEROG
LQGLFDWHVHJPHQWVZLWKLQFRPSOHWHRUQDPHQWDWLRQ
$QWHQQDPRXWKSDUWVDQG/HJQRWREVHUYDEOHLQVOLGHV
33(QGRSRGVDQGH[RSRGVRIDOOVZLPPLQJOHJVWKUHHVHJPHQWHG$UPDWXUHIRUPXODRI
DOOVZLPPLQJOHJVDVLQ7DEOH
/HJ)LJ$&1HZ+DYHQ,QWHUFR[DOVFOHULWHZLWKRXWRUQDPHQWDWLRQDQGZLWK
WZRURXQGHGFKLWLQL]HGSURMHFWLRQV&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DOVHWD
%DVLSRGDOVSLQHQRWUHDFKLQJPLGGOHPDUJLQRI(QSEDVLSRGDOVSLQHWLPHVDVORQJDV
WRWDOOHQJWKRI(QS7KLUGVHJPHQWRIHQGRSRGWLPHVDVORQJDVZLGHDSLFDOVSLQHRI
(QSWLPHVORQJHUWKDQOHQJWKRI(QGPRVWDSLFDOVHWDRI(QSWLPHVORQJHUWKDQ
DSLFDOVSLQH6SLQHVRIH[RSRGVOLJKWO\HORQJDWHG6DQ%HUQDUGLQR,QWHUFR[DOVFOHULWHQRW
DYDLODEOH%DVLSRGDOVSLQHORQJHUWKDQPHGLDOPDUJLQRI(QSEDVLSRGDOVSLQHWLPHV
DVORQJDVWRWDOOHQJWKRI(QS7KLUGVHJPHQWRI(QSWLPHVDVORQJDVZLGHDSLFDO
VSLQHRI(QSWLPHVORQJHUWKDQVHJPHQWPRVWDSLFDOVHWDRI(QS WLPHVORQJHU
WKDQDSLFDOVSLQH
/HJ)LJ%'1RRUQDPHQWDWLRQREVHUYHGRQLQWHUFR[DOVFOHULWHGLVWDOPDUJLQ
ZLWKWZRURXQGHGSURMHFWLRQV&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DOVHWD&R[D
ZLWKURZRIWLQ\VSLQXOHVDORQJRXWHUPDUJLQ(QSWLPHVORQJHUWKDQZLGHDSLFDO
VSLQHRQ(QGWLPHVDVORQJDVVHJPHQW([SWLPHVDVORQJDVZLGHPRVW
DSLFDOVSLQHVRI([SWLPHVDVORQJDVVHJPHQW
/HJ)LJ&'(,QWHUFR[DOVFOHULWHZLWKURZV,,,DQG,,,5RZ,ZLWKORQJ
VSLQXOHVLQHDFKVLGHDQGDVPDOOJDSEHWZHHQ5RZ,,ZLWKVSLQXOHVRQPLGGOHPDUJLQ
5RZ,,,GLYLGHGLQWKUHHVHFWLRQVWKHILUVWRQHZLWKVKRUWVSLQXOHVPLGGOHVHFWLRQZLWK
VKRUWVSLQXOHVDQGWKHWKLUGVHFWLRQZLWKVKRUWVSLQXOHVDOOREVHUYHGLQ6DQ
%HUQDUGLQRVVSHFLPHQVDVZHOO&DXGDOFR[DOVXUIDFHZLWKVSLQXOHIRUPXOD$%&'
VHQVX$OHNVHHYDQG'HID\H&R[DOVSLQHZLWKKHWHURJHQHRXVRUQDPHQWDWLRQ
EDVDOO\ZLWKORQJKDLUOLNHVHWDHGLVWDOO\ZLWKVSLQHOLNHVHWDHODWHUDOHGJHRIFR[DOVSLQH
ZLWKDSLFDOVSLQHOLNHVHWDHSUR[LPDOVXUIDFHQDNHG/HQJWKZLGWKUDWLR(QS3 OHQJWKUDWLRLQQHURXWHUVSLQHVRI(QS3 OHQJWKUDWLRLQQHUVSLQHRI
(QS3(QS3 OHQJWKUDWLRRXWHUVSLQHRI(QS3(QS3 /DWHUDO
VHWDRI(QG3LQVHUWHGDWRIWKHWRWDOOHQJWKRIWKHVHJPHQW0RGLILHGVHWDHRQ
(QSLQVSHFLPHQVIURP3DUDJXD\6HWDHRQ(QSORQJLQVSHFLPHQVIURP1HZ+DYHQDQG
3DUDJXD\DQGVKRUWVHWDHLQVSHFLPHQVIURP8UXJXD\([SWLPHVDVORQJDVZLGH
PRVWDSLFDOVSLQHVRI([SWLPHVDVORQJDVVHJPHQW
/HJ)LJ&'$%')UHHVHJPHQWVXEUHFWDQJXODUWLPHVORQJHUWKDQ
ZLGHEHDULQJRQHLQQHUVSLQHDQGWZRVHWDHPHGLDOVHWDORQJHUWKDQRXWHUVHWDDERXW
WLPHVDQGLQQHUVSLQHDERXWWLPHV,QQHUVSLQHDVORQJDVVHJPHQW
0DOH$YHUDJHOHQJWKH[FOXGLQJFDXGDOVHWDH—P8URVRPHVL[VHJPHQWHGSRVWHULRU
PDUJLQRIXURVRPLWHVVPRRWK&DXGDOUDPXVWLPHVORQJHUWKDQZLGWKLQQHUPDUJLQ
QDNHG*URXSRIVSLQXOHVDWLQVHUWLRQRIODWHUDOVHWD5DWLRRILQQHUPRVWFDXGDOVHWD
9,RXWHUPRVWFDXGDOVHWD,,, $OOWHUPLQDOFDXGDOVHWDHSOXPRVH
$QWHQQXOHVHJPHQWHG)LJ%DUPDPHQWSHUVHJPHQWDVIROORZVV VHWDPRGLILHG
VHWD PVDH DHVWKHWDVFVS VSLQHVPVDHPVVPVDH
VVVVVVSVV
/HJ)UHHVHJPHQWVXEUHFWDQJXODUWLPHVORQJHUWKDQZLGH
EHDULQJRQHLQQHUVSLQHDQGWZRVHWDHPHGLDOVHWDORQJHUWKDQRXWHUVHWDDERXWWLPHV
,QQHUVSLQHWLPHVORQJHUWKDQRXWHUVHWDDQGWLPHVDVORQJDVPHGLDOVHWD
/HJ)LJ(&$$5HSUHVHQWHGE\VPDOOORZSODWHQHDUODWHUDOPDUJLQRI
JHQLWDOVRPLWHZLWKRQHVWURQJDQGORQJLQQHUVSLQHDQGWZRXQHTXDOVHWDH,QQHUVSLQHQRW
UHDFKLQJPHGLDOPDUJLQRIIRXUWKXURVRPLWH,QQHUVSLQHDERXWWLPHVORQJHUWKDQ
PHGLDOVHWDDQGWLPHVORQJHUWKDQRXWHUVHWD
5HPDUNV±6LQFHLWVGHVFULSWLRQLQIURPPDWHULDORIWKH86$(XF\FORSV
SULRQRSKRUXVKDVEHHQUHFRUGHGIURPGLIIHUHQWHQYLURQPHQWVLQWKH$PHULFDVLQFOXGLQJWKH
/DXUHQWLDQ*UHDW/DNHVLQ&DQDGDDQGWKH86$WKH&KLKXDKXDQ'HVHUWLQ0H[LFRDQG
ZDWHUERGLHVLQVDYDQQDKVDQGGHFLGXRXVIRUHVWVLQ$UJHQWLQD3DUDJXD\DQG8UXJXD\
.LHIHU&]DLND5REHUWVRQDQG*DQQRQ'XVVDUWDQG)HUQDQGR
(LQVOH5HLGDQG0DUWHQ6XiUH]0RUDOHVDQG5HLG*ULPDOGR
2UWHJDHWDO6XiUH]0RUDOHV6XiUH]0RUDOHVHWDO0HUFDGR6DODVDQG
6XiUH]0RUDOHV,QWKHGHVFULSWLRQE\.LHIHULWLVSRLQWHGRXWWKDWWKHNH\
FKDUDFWHUVRIWKHVSHFLHVLQFOXGHWKHRUQDPHQWDWLRQRQRXWHUPDUJLQRIFDXGDOUDPLZLWK
VSLQXOHVLQFUHDVLQJLQVL]HGLVWDOO\WKHUHPDUNDEO\VWURQJZLGHVSLQHRIWKHILIWKOHJDQG
WKHH[WUHPHO\ORQJVSLQHRQWKHPDOHVL[WKOHJ$IWHU.LHIHUVFRQWULEXWLRQWKHPRVW
FRPSOHWHFRPSDULVRQDPRQJSRSXODWLRQVRI(SULRQRSKRUXVZDVSURYLGHGE\(LQVOH
EDVHGRQ1RUWK$PHULFDQPDWHULDOIURP.LHIHUVFROOHFWLRQ(LQVOHFRQFOXGHGWKDW
DVWKHW\SHPDWHULDORIWKHVSHFLHVLQQRORQJHUXVHIXOWKHFRPSDULVRQZLWKLQSRSXODWLRQV
ZDVPDGHWDNLQJDVUHIHUHQFHWKHPDWHULDOLGHQWLILHGE\.LHIHUDV(SULRQRSKRUXVIURP
3DUDJXD\$PRQJWKHPDLQFKDUDFWHULVWLFVWKDW(LQVOHIRXQGLQWKHVSHFLPHQVIURP
3DUDJXD\DUHGRUVDOFDXGDOVHWDVKRUWHUWKDQLQQHUPRVWDQGRXWHUPRVWVHWDHDQGVKRUWHU
WKDQFDXGDOUDPXVEDVLSRGDOVHWDRI3UHDFKLQJPLGGOHPDUJLQRI(QS3VHWDHRI
H[RSRGLWHVRI3DQG3VSDWXODWHWUDQVIRUPHGVHWDHRQ(QS3VKRUWGLIIHULQJIURP
.LHIHU¶VGHVFULSWLRQDQGWKHRXWHUHGJHRI3ZLGHUDQGORQJHUWKDQWKHFHQWUDOOREH
2XURZQREVHUYDWLRQVRI.LHIHUVPDWHULDOIURP3DUDJXD\ZHIRXQGWKDWWKHPDLQ
FKDUDFWHULVWLFVRI(SULRQRSKRUXVLVWKHGRUVDOFDXGDOVHWDEHLQJVKRUWHUWKDQDQ\RWKHU
UHODWHGVSHFLHVOLNH(ERQGLDQG(FRQURZDHEXWQRWDVVKRUWDVLQ(SVHXGRHQVLIHU
'XVVDUW6XiUH]0RUDOHVDQG:DOVK$UHPDUNDEOHFKDUDFWHULVWLFIRXQGLQ
WKHPDWHULDOIURP3DUDJXD\LVWKHRUQDPHQWDWLRQRIWKHLQQHUPDUJLQRIWKHFDXGDOUDPL
ZKHUHZHREVHUYHGDJURXSRIWLQ\VSLQXOHVWKDWZDVQHYHUUHSRUWHGIRUWKLVVSHFLHV)LJ
$DQGWKDWVKRXOGEHFRQILUPHGLQRWKHUSRSXODWLRQVLQRUGHUWRLGHQWLI\LWDVDVLPSOH
LQWUDVSHFLILFYDULDWLRQRUDXQLTXHVSHFLHVFKDUDFWHU<HWDQRWKHUVWUXFWXUHWKDWFRXOGEH
XVHIXOLQWKHVHSDUDWLRQRIWKLVVSHFLHVIURPLWVFRQJHQHUVLVWKHRUQDPHQWDWLRQRIWKHFR[DO
SODWHRIWKHIRXUWKOHJLQ(SULRQRSKRUXVWKDWURZ,LQFOXGHVORQJDQGVOHQGHUVSLQXOHV
)LJ&WKXVGLIIHULQJIURPWKHSDWWHUQLQ(ERQGLDQG(FRQURZDHLQZKLFKWKLVURZ
KDVDOZD\VVPDOOVWURQJVSLQXOHVDQGDOVRIURP(SVHXGRHQVLIHUZLWKYHU\ORQJKDLUOLNH
VHWXOHV,QRXUREVHUYDWLRQVRIVSHFLPHQVIURP0H[LFRLGHQWLILHGDV(SULRQRSKRUXVZH
IRXQGDYDULDQWSDWWHUQLQWKHRUQDPHQWDWLRQRIWKHFR[DOSODWHVRIOHJVDQGLQDOOWKH
VSHFLPHQVSRVVHVVLQJVWURQJVSLQXOHVRQURZ,RI3WKHFR[DOSODWHRUQDPHQWDWLRQRI3
KDVDOVRVSLQXOHVLQDWOHDVWRQHRIWKHWKUHHURZVRIWKHSODWH,QWKHFDVHRILQGLYLGXDOV
SRVVHVVLQJORQJKDLUOLNHVHWXOHVRQURZ,RI3WKHWKUHHURZVRIWKH3FR[DOSODWHZHUH
DOZD\VORQJKDLUOLNHVHWXOHV7KHVHREVHUYDWLRQVZLOOEHGLVFXVVHGDQGFRPSDUHGLQ
DQRWKHUPDQXVFULSWDERXWWKH0H[LFDQIDXQDRI(XF\FORSV5HFRUGVRI(SULRQRSKRUXVLQ
WKH$PHULFDVDSSHDUWREHZHOOGHWHUPLQHGDWOHDVWWKRVHLQFOXGLQJGUDZLQJVRIWKHFDXGDO
UDPLDQGWKHIRXUWKOHJZKLFKVKRZWKHFKDUDFWHULVWLFVUHPDUNHGE\.LHIHU
DQG(LQVOH,QWKHSUHVHQWZRUNZHDOVRSUHVHQWWKHILUVWLOOXVWUDWLRQRIWKHPDOH
DQWHQQXOHV)LJ%RIWKLVVSHFLHVZHIRXQGPRGLILHGVHWDHRQVHJPHQWVDQGDQG
DHVWKHWDVFVRQVHJPHQWVDQGWKLVSDWWHUQGLIIHUVIURPWKHSUHVHQWHGE\$OHNVHHYHWDO
IRU(VHUUXODWXVLQZKLFKDHVWKHWDVFDUHUHSRUWHGRQO\RQVHJPHQWVDQG
Eucyclops bondi .LHIHU
)LJV
.LHIHUVGHVFULSWLRQ
*HQHUDODVSHFWDVWKH$PHULFDQ(SULRQRSKRUXV&DXGDOUDPXVWLPHVORQJHUWKDQZLGH
ZLWKUDPLVOLJKWO\GLYHUJHQW,QQHUPDUJLQRIFDXGDOUDPXVQDNHGRXWHUPDUJLQVWURQJO\
RUQDPHQWHGZLWKVWURQJVSLQXOHV3UR[LPDOVSLQHVVPDOOEXWGLVWDOVSLQHVORQJ)LJ
,QQHUPRVWDSLFDOVHWDORQJHUWKDQRXWHUPRVWVHWDPLGGOHWZRVHWDHVKRZVWURQJO\
KHWHURQRPRXVSOXPDJH
$QWHQQXOHRQO\VOLJKWO\ORQJHUWKDQFHSKDORWKRUD[EHDULQJVHJPHQWVODVWWKUHH
VHJPHQWVZLWKDQDUURZK\DOLQHPHPEUDQHDORQJPDUJLQ
6ZLPPLQJOHJVQRUPDOO\VHJPHQWHGZLWKVSLQHVDQGVHWDH7KLUGHQGRSRGRI3
WZRWLPHVORQJHUWKDQZLGHLQQHUVSLQHORQJHUWKDQVHJPHQWDQGHYHQWLPHVORQJHUWKDQ
WKHRXWHUVSLQH7KHFRQQHFWLRQSODWHRIWKLVOHJLVKDLU\RQWKHIUHHPDUJLQ5XGLPHQWDU\
OHJ3ZLWKDVOHQGHULQQHUVSLQHDWLWVLQVHUWLRQLVDERXWWZLFHDVZLGHDVRQHRIWKHERWK
VHWDH6HPLQDOUHFHSWDFOHZLWKRXWVSHFLDOFKDUDFWHULVWLFV7RWDOOHQJWKRIDQLPDOVH[FOXGLQJ
DSLFDOVHWDHRIFDXGDOUDPXV—P
0DOHWRWDOOHQJWKH[FOXGLQJDSLFDOVHWDRIFDXGDOUDPXV—P$VDPDLQ
FKDUDFWHULVWLFWKHUHLQIRUFHPHQWSODWHRIJHQLWDOVRPLWH3VKRXOGEHFRQVLGHUHG2IWKH
WKUHHHOHPHQWVWKHLQQHUVSLQHRQO\PHDVXUHV—PFOHDUO\GLIIHULQJIURPWKHVLPLODU
1RUWK$PHULFDQVSHFLHV(SULRQRSKRUXVWKHRXWHUPRVWSOXPRVHVHWDLVORQJHUWKDQWKH
VSLQHWKHPHGLDOVHWDLVDVORQJDVWKHVSLQH,QWKHPDOHRI(SULRQRSKRUXVWKHLQQHUVSLQH
LVPRUHWKDQWKUHHWLPHVORQJHU—P
'HVFULSWLRQEDVHGRQ.LHIHUVPDWHULDO
0DWHULDOH[DPLQHG±+RORW\SH$GXOWƂFROOHFWHGIURP7URX&DLPDQ+DLWL
VSHFLPHQGLVVHFWHGVOLGHUHIHUHQFHQXPEHUV$GGLWLRQDOPDWHULDOIURP
/DJXQD5LQFRQ+DLWLVOLGHUHIHUHQFHQXPEHUV6WDDWOLFKHV0XVHXPIU
1DWXUNXQGH.DUOVUXKH*HUPDQ\
)HPDOH/HQJWKUDQJHH[FOXGLQJFDXGDOVHWDH—P3URVRPHH[SDQGHGDWILUVWDQG
VHFRQGVRPLWHV\PPHWULFDOLQGRUVDOYLHZ8URVRPHVHJPHQWHG)LJ&$%
UHODWLYHO\HORQJDWH8URVRPDOIULQJHVVWURQJO\VHUUDWHGSRVWHULRUPDUJLQRIDQDOVRPLWH
ZLWKURZRIORQJVSLQXOHV*HQLWDOGRXEOHVRPLWHV\PPHWULFDO6HPLQDOUHFHSWDFOHW\SLFDO
RIVHUUXODWXVJURXSZLWKURXQGHGODWHUDODUPVRQSRVWHULRUPDUJLQ*HQLWDOGRXEOHVRPLWH
WLPHVDVORQJDVZLGH$QDOVRPLWHZLWKKDLUOLNHVHWDHRQDQDORSHQLQJDQDORSHUFXOXP
VOLJKWO\URXQGHG)LJ$/HQJWKZLGWKUDWLRRIFDXGDOUDPXV .LHIHUV
REVHUYDWLRQV,QQHUPDUJLQRIFDXGDOUDPXVQDNHGRXWHUPDUJLQSDUWLDOO\FRYHUHG
E\VWURQJVSLQXOHVZKLFKLQFUHDVHLQVL]HGLVWDOO\)LJ&%'RUVDOVHWD9,,
ORQJWLPHVWKHOHQJWKRIFDXGDOUDPXVDQGWLPHVDVORQJDVRXWHUPRVWFDXGDO
VHWD,,,/HQJWKUDWLRRILQQHUPRVWFDXGDOVHWD9,RXWHUPRVWFDXGDOVHWD,,, /DWHUDOFDXGDOVHWD,,LQVHUWHGDWRIFDXGDOUDPL$OOWHUPLQDOFDXGDOVHWDH
SOXPRVH
$QWHQQXOH)LJ&VHJPHQWHGUHDFKLQJVHFRQGSURVRPLWHWKUHHGLVWDOVHJPHQWVZLWK
QDUURZK\DOLQHPHPEUDQH$UPDPHQWSHUVHJPHQWDVIROORZVV VHWDDH DHVWKHWDVFVS VSLQHVVVVVVVSVVVDHVV
V1XPEHUVLQEROGLQGLFDWHVHJPHQWVZLWKLQFRPSOHWHRUQDPHQWDWLRQ$HVWKHWDVFRI
QLQWKVHJPHQWVKRUWUHDFKLQJSRVWHULRUPDUJLQRIVHJPHQW
$QWHQQD/DEUXPDQG0DQGLEOHQRWREVHUYDEOHLQVOLGHV
0D[LOOXOH)LJ'3UHFR[DODUWKULWHZLWKVXUIDFHQDNHGZLWKWKUHHVWURQJFKLWLQL]HG
GLVWDOFODZV6SLQLIRUPVHWDRQIURQWDOVLGHDQGSDOSQRWREVHUYHG
0D[LOOD)LJ(SUDHFR[DDQGFR[DSDUWLDOO\IXVHG3UDHFR[DZLWKWZRDUPHGVHWDHRQ
HQGLWH&R[DOVXUIDFHQDNHGEHDULQJRQHELVHULDOO\SOXPRVHVHWD3UR[LPDOEDVLSRGDOHQGLWH
ZHOOGHYHORSHGZLWKWZRDSLFDOVHWDHRQHVWURQJDQGIXUQLVKHGZLWKVSLQXOHVDQGWKHRWKHU
QRWLFHDEO\WKLFNHUDQGORQJHU%DVDOFODZRIEDVLVZLWKSUR[LPDOURZRIVSLQXOHVDQGRQH
FKLWLQL]HGDUPHGVHWD(QGRSRGVHJPHQWHGILUVWVHJPHQWZLWKRQHVHWDVHFRQGZLWKWZR
VHWDH
0D[LOOLSHG)LJ)V\QFR[DQDNHGEHDULQJWKUHHVHWDH0D[LOOLSHGDOEDVLVZLWKRQHVHWD
DQGQRREVHUYDEOHDGGLWLRQDORUQDPHQWDWLRQ(QSVHJPHQWHG(QSZLWKRQHORQJVWURQJ
VHWD(QSZLWKWZRVHWDHSUR[LPDORQHFKLWLQL]HGDQGIXVHGZLWKVHJPHQWDSLFDOVHWD
QRUPDO
33(QGRSRGDQGH[RSRGVRIDOOVZLPPLQJOHJVWKUHHVHJPHQWHG$UPDWXUHIRUPXODRI
DOOVZLPPLQJOHJVDVLQ7DEOH
/HJ)LJ$&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DOVHWD%DVLSRGDOVSLQH
ORQJUHDFKLQJDSLFDOPDUJLQRI(QSEDVLSRGDOVSLQHDVORQJDVHQGRSRG7KLUGHQGRSRGDO
VHJPHQWWLPHVDVORQJDVZLGHDSLFDOVSLQHRI(QSWLPHVORQJHUWKDQOHQJWKRI
(QSPRVWDSLFDOVHWDRI(QSWLPHVORQJHUWKDQDSLFDOVSLQH6SLQHVRIDOOH[RSRGDO
VHJPHQWVHORQJDWH
/HJ)LJ%,QWHUFR[DOVFOHULWHZLWKVLQJOHJURXSRIVPDOOVSLQXOHVLQHDFKVLGHRI
DQWHULRUVXUIDFH'LVWDOPDUJLQRILQWHUFR[DOVFOHULWHZLWKWZRURXQGFKLWLQL]HGSURMHFWLRQV
&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DOVHWD(QSWLPHVDVORQJDVZLGH
DSLFDOVSLQHWLPHVORQJHUWKDQOHQJWKRI(QSPRVWDSLFDOVHWDRI(QSWLPHVORQJHU
WKDQDSLFDOVSLQH
/HJ)LJ&&R[DZLWKVWURQJELVHULDOO\VHWXODWHGFR[DOVHWD(QSWLPHVORQJHU
WKDQZLGHDSLFDOVSLQHDVORQJDV(QSPRVWDSLFDOVHWDRI(QSDVORQJDVDSLFDOVSLQH
0RGLILHGVHWDHRQ(QSDQG([S
/HJ)LJ$%'),QWHUFR[DOVFOHULWHZLWKURZV,,,DQG,,,5RZ,ZLWKVWURQJ
VSLQXOHVLQHDFKVLGHDQGDVPDOOJDSLQEHWZHHQ5RZ,,ZLWKVSLQXOHVURZ,,,
ZLWKVWURQJVSLQXOHV&DXGDOFR[DOVXUIDFHZLWKVSLQXOHIRUPXODDV$%&'
()*+,,QQHUVSLQHFR[DZLWKKHWHURJHQHRXVRUQDPHQWDWLRQEDVDOO\ZLWKORQJ
KDLUOLNHVHWDHGLVWDOO\ZLWKVSLQHOLNHVHWDHODWHUDOHGJHRILQWHUFR[DOVSLQHQDNHG
/HQJWKZLGWKUDWLR(QS3OHQJWKUDWLRLQQHURXWHUVSLQHVRI(QS3 OHQJWK
UDWLRLQQHUVSLQHRI(QS3(QS3 OHQJWKUDWLRRXWHUVSLQHRI(QS3(QS3 /DWHUDOVHWDRI(QG3LQVHUWHGDWRIVHJPHQW8QPRGLILHGVHWDHRQ(QGDQG([S
/HJ)LJ&)UHHVHJPHQWVXEUHFWDQJXODUWLPHVORQJHUWKDQZLGHZLWKRQHLQQHU
VSLQHDQGWZRVHWDHPHGLDOVHWDDVORQJDVRXWHUVHWDEXWORQJHUWKDQLQQHUVSLQH
DERXWWLPHV,QQHUVSLQHWLPHVDVORQJDVVHJPHQW
0DOH/HQJWKUDQJHH[FOXGLQJFDXGDOVHWDH—P8URVRPHVHJPHQWHGSRVWHULRU
PDUJLQVRIXURVRPLWHVVPRRWK&DXGDOUDPXVWLPHVORQJHUWKDQZLGHPHGLDOPDUJLQRI
FDXGDOUDPXVQDNHGVWURQJVSLQHVDWLQVHUWLRQSRLQWRIODWHUDOFDXGDOVHWD,,
/HJ)LJ&5HSUHVHQWHGE\VPDOOORZSODWHQHDUODWHUDOPDUJLQRIJHQLWDOVRPLWHZLWK
RQHVWURQJVKRUWLQQHUVSLQHDQGWZRXQHTXDOVHWDH,QQHUVSLQHQRWUHDFKLQJSRVWHULRU
PDUJLQRIWKLUGXURVRPLWH,QQHUVSLQHDERXWWLPHVDVORQJDVRXWHUVHWDDQGDVORQJDV
PHGLDOVHWD
5HPDUNV±$IWHU.LHIHUVGHVFULSWLRQRI(ERQGLWKLVVSHFLHVKDVEHHQUHFRUGHGLQ
&RORPELD&RVWD5LFD&XED'RPLQLFDQ5HSXEOLF*XDWHPDOD+DLWL0H[LFR7ULQLGDGDQG
WKH86$)ORULGD&ROODGRHWDO5HLG6XiUH]0RUDOHVHWDO6XiUH]
0RUDOHVDQG5HLG*ULPDOGR2UWHJDHWDO%UXQRHWDO'XVVDUWDQG
'HID\H*DYLULDDQG$UDQJXUHQ(OtDV*XWLpUUH]HWDO0HUFDGR6DODV
6XiUH]0RUDOHVHWDO6XiUH]0RUDOHVDQG:DOVK0HUFDGR6DODVHWDO
0HUFDGR6DODVDQG6XiUH]0RUDOHV7KHUHDUHRQO\DIHZUHFRUGVWKDWLQFOXGH
GUDZLQJVRIWKHPDLQVWUXFWXUHVXVHGLQWKHGHWHUPLQDWLRQRIWKLVVSHFLHVWKXVDOORZLQJXV
WRPDNHVRPHFRPSDULVRQVDQGVXJJHVWLRQVDERXWWKHLUVWDWXV7KHUHFRUGVRI(ERQGLIURP
&RVWD5LFDPDGHE\&ROODGRHWDOLQFOXGHGGUDZLQJVRIWKHIHPDOHDQGPDOHDQG
E\FRPSDULQJERWKJHQGHUVZHFRQFOXGHWKDWWKH&RVWDUULFDQUHFRUGVDUHQRWDVVLJQDEOHWR
(ERQGL2QHRIWKHPDLQFKDUDFWHULVWLFVUHPDUNHGLQ.LHIHUVGHVFULSWLRQLVWKHSDUWLFXODU
VKDSHDQGOHQJWKRIWKHWKUHHHOHPHQWVRIWKH3LQWKHPDOHVZKHUHWKHLQQHUVSLQHLV
SDUWLFXODUO\VKRUWLQFRPSDULVRQZLWKWKHRXWHUVHWDDFKDUDFWHULVWLFWKDWVHSDUDWHVWKLV
VSHFLHVIURPRWKHUFRQJHQHUVDV(GHODFKDX[L(SULRQRSKRUXVDQG(SVHXGRHQVLIHU7KH
VSHFLPHQVGHSLFWHGLQ&ROODGRHWDOVKRZDQLQQHUVSLQHDWOHDVWWZLFHORQJHUWKDQ
RXWHUVHWDWKXVGLIIHULQJIURP(ERQGL7KHFRPSDULVRQRIVWUXFWXUHVSUHVHQWLQWKHPDOHV
KDYHEHHQXVHIXOWRVHSDUDWHVSHFLHVRIRWKHU(XF\FORSLQDHHVSHFLDOO\LQ3DUDF\FORSV
.DUD\WXJ.DUD\WXJDQG%R[VKDOO6RWKHLQFOXVLRQRIPDOHFKDUDFWHUVOLNHWKH
VWUXFWXUHDQGDUPDWXUHRI3DQGWKHSUHVHQFHRIDHVWKHWDVFVDQGPRGLILHGVHWDHRQWKHPDOH
DQWHQQXOHVDSSHDUVWREHDYDOXDEOHWRROLQWKHVHSDUDWLRQRIVSHFLHVRI(XF\FORSV6XFK
FKDUDFWHUVVKRXOGEHLQFRUSRUDWHGLQWKHFXUUHQWWD[RQRP\RIWKHJHQXV,Q0H[LFRWKHUHDUH
PRUHWKDQUHFRUGVRI(ERQGL6XiUH]0RUDOHVHWDO*ULPDOGR2UWHJD
6XiUH]0RUDOHVDQG5HLG(OtDV*XWLpUUH]HWDO0HUFDGR6DODV6XiUH]
0RUDOHVDQG:DOVK0HUFDGR6DODVDQG6XiUH]0RUDOHV*XWLpUUH]$JXLUUH
DQG&HUYDQWHV0DUWtQH],QRUGHUWRFODULI\WKHWD[RQRPLFVWDWXVRIWKHVHVSHFLPHQV
ZHUHYLHZHGPRVWRIWKH0H[LFDQUHFRUGVDQGZHFDQRQO\FRQILUPWKHSUHVHQFHRID
VLPLODUIRUPRIWKHPDOHRI(ERQGLLQDVLQJOHORFDOLW\LQWKHFHQWUDOVWDWHRI
$JXDVFDOLHQWHVWKDWZHZLOOGLVFXVVLQDIRUWKFRPLQJSDSHUDERXWWKH0H[LFDQIDXQDRI
(XF\FORSV7KHUHPDLQLQJUHFRUGVVKRXOGEHUHYLVHGDQGSUREDEO\UHDVVLJQHGWRGLIIHUHQW
VSHFLHV5HFHQWO\DQHZVSHFLHVFORVHO\UHODWHGWR(ERQGLIURPVRXWKHDVW0H[LFRKDV
EHHQGHVFULEHGWKLVFRXOGUHSUHVHQWRQHRIWKHVSHFLHVWRZKLFKVRPHRIWKH0H[LFDQ
UHFRUGVRI(ERQGLKDGEHHQDVVLJQHG*XWLpUUH]$JXLUUHHWDOLQSUHVV2WKHUUHFRUGVRI
(ERQGLIURPWKH$PHULFDVWKDWLQFOXGHGGUDZLQJVEXWRQO\RIWKHIHPDOHVDUHE\5HLG
6XiUH]0RUDOHVHWDO*ULPDOGR2UWHJDDQG(OtDV*XWLpUUH]HWDO
:HORRNHGIRUWKHPDLQFKDUDFWHULVWLFVRIWKHVSHFLHVLQWKHGUDZLQJVDQGFRQFOXGHG
WKDWWKHRQO\UHFRUGVDIHO\DVVLJQDEOHWR(ERQGLLVWKHRQHE\5HLGIURP)ORULGD
EXWZHFRQVLGHUWKDWWKHPDOHVKRXOGEHUHYLHZHGLQRUGHUWRFRQILUPWKHVSHFLHV7KHUHVW
RIWKHUHFRUGV6XiUH]0RUDOHVHWDO*ULPDOGR2UWHJD(OtDV*XWLpUUH]HWDO
LQRXURSLQLRQGRQRWEHORQJWR(ERQGLEHFDXVHVRPHLPSRUWDQWGLIIHUHQFHVZHUH
IRXQG)RUH[DPSOHWKHGRUVDOVHWDHQ(ERQGLLVDOZD\VORQJHUWKDQWKHRXWHUPRVWFDXGDO
VHWDZKLOHLQDOORWKHUUHFRUGVIURP0H[LFRWKLVVHWDSUHVHQWVDQRSSRVLWHFRQGLWLRQD
GRUVDOVHWDVKRUWHUWKDQWKHRXWHUPRVWFDXGDOVHWD:HGHWHFWHGDGGLWLRQDOGLIIHUHQFHVVXFK
DVWKHSUHVHQFHRIPRGLILHGVHWDHRQWKHHQGRSRGDQGH[RSRGRIWKHIRXUWKVZLPPLQJOHJLQ
*ULPDOGR2UWHJDHWDODQGWKHSUHVHQFHRIKDLUOLNHVHWXOHVRQWKHDSLFDOPDUJLQRI
WKHFR[DOSODWHZKHQWKHWUXH(ERQGLKDVVSLQHVRQWKLVDSLFDOPDUJLQ
Eucyclops leptacanthus.LHIHU
)LJV
.LHIHUVGHVFULSWLRQ
7RWDOOHQJWKRIWKHRQO\IHPDOHIRXQGPPH[FOXGLQJFDXGDOVHWDH7KHFDXGDO
UDPXVH[DFWO\IRXUWLPHVDVORQJDVZLGH——3RVLWLRQDQGVKDSHRIWKHWZRUDPL
FDQEHVHHQLQ)LJ,QQHUPDUJLQLVQDNHGRXWHUPDUJLQSURYLGHGZLWKD³VHUUD´
H[WHQGLQJDORQJDOPRVWWKHHQWLUHOHQJWKRIUDPXVSUR[LPDOVSLQXOHVYHU\VPDOOYHU\ORQJ
VSLQXOHVDWWKHKHLJKWRILQVHUWLRQRIODWHUDOVHWDSUDFWLFDOO\VHWLIRUP0HDVXUHPHQWVRI
VHWDHRIFDXGDOUDPLIURPWKHLQQHUPRVWWRRXWHUPRVW————OHQJWKRI
GRUVDOVHWDDERXW—WKHUDGLREDVHGRQWKHRXWHUPRVWWHUPLQDOVHWDLVWKHUHIRUH
7KHWZRORQJHVWVHWDHDUHTXLWHZHDNDQGKHWHURQRPRXVO\SOXPRVH)LJ
7ZHOYHVHJPHQWHGDQWHQQXOHVPDUJLQRIODVWWKUHHVHJPHQWVZLWKDQDUURZK\DOLQH
PHPEUDQHPDUJLQRIPHPEUDQHILQHO\GHQWLFXODWH)LJ7KHVZLPPLQJOHJVDUH
VHJPHQWHGDQGZLWKVHWDHDVXVXDOWKHILQDOVHJPHQWRIWKHHQGRSRGRIIRXUWKOHJZLWKD
OHQJWKZLGWK—— ,QQHUDSLFDOVSLQHDERXW——QRWDEO\ORQJHUWKDQ
WKHOHQJWKRIVHJPHQWDQGVLJQLILFDQWO\ORQJHUWKDQWKHRXWHUVSLQHZKLFKPHDVXUHV—
)LJ6HJPHQWRIUXGLPHQWDU\OHJHORQJDWHGDQGZLWKDQLQQHUVSLQHVPDOODQGVOHQGHU
)LJ7KHVHPLQDOUHFHSWDFOHZDVQRWUHFRJQL]HG
7KHPDOHKDVQRW\HWEHHQIRXQG
6\VWHPDWLFSRVLWLRQLQWKHGLIILFXOWJHQXV(XF\FORSVZKHUHPDQ\IRUPVH[LVWWKDW
DUHVLPLODUWRWKHVLQJOHIHPDOHVSHFLPHQIRXQGDQHZVSHFLHVRQO\FDQEHHVWDEOLVKHG
ZKHQWKHQHZIRUPLVGLVWLQJXLVKHGE\VSHFLDOFKDUDFWHULVWLFV7KHKHUHLQGHVFULEHG
VSHFLPHQRI(XF\FORSVSRVVHVVHVDZHOOGHYHORSHGVHUUDRQWKHFDXGDOUDPLWKH
UXGLPHQWDU\OHJZLWKDVOHQGHULQQHUVSLQHORQJDSLFDOVSLQHVLQWKHODVWVHJPHQWRI
HQGRSRGRIIRXUWKOHJDVZHOODVDILQHO\GHQWLFXODWHK\DOLQHPHPEUDQHRQWKHWKUHHODVW
VHJPHQWVRIWKHDQWHQQXOHDFRPELQDWLRQRIFKDUDFWHUVWKDW,KDYHQRWVHHQLQQRQHRIWKH
NQRZQ(XF\FORSVVSHFLHV)RUWKLVUHDVRQ,VHHLWDVDQHZVSHFLHVDQGQDPHG(XF\FORSV
OHSWDFDQWKXVEHFDXVHRILWVVOHQGHUVSLQHVDWWKHILIWKDQGIRXUWKOHJV
,QWKHVDPSOHH,GLGILQGDQRWKHU(XF\FORSVIHPDOH7KHK\DOLQHPHPEUDQHRQ
WKHODVWVHJPHQWVRIWKHDQWHQQXOHVLVHTXDOO\ILQHO\GHQWLFXODWHWKHVHUUDRQWKHFDXGDO
UDPLLVQRWSDUWLFXODUO\UHPDUNDEOHWKHLQQHUVSLQHRIUXGLPHQWDU\OHJLVWKLFNHUDQGWKH
DSLFDOVSLQHRIODVWVHJPHQWRIHQGRSRGLWHRIIRXUWKOHJLVZLGHUWKDQWKHDERYHGHVFULEHG
7KLVVSHFLPHQPXVWUHPDLQXQGHWHUPLQHGEHFDXVHRIWKHIHZFKDUDFWHUVVHHQ7KHVDPHLV
WKHFDVHIRUWKHWZRPDOHVRI(XF\FORSVVSHFLHVIURPVDPSOH
'HVFULSWLRQEDVHGRQ.LHIHUVPDWHULDO
0DWHULDOH[DPLQHG±+RORW\SH$GXOWƂFROOHFWHGIURP/DNH2ULQRFR
%DUUDQFDV9HQH]XHODVOLGHVUHIHUHQFHQXPEHUV6WDDWOLFKHV0XVHXPIU
1DWXUNXQGH.DUOVUXKH*HUPDQ\
)HPDOH/HQJWKRIKRORW\SHH[FOXGLQJFDXGDOVHWDH—P8URVRPHVHJPHQWHG)LJ
$UHODWLYHO\HORQJDWHXURVRPDOIULQJHVVPRRWKRUZHDNO\VHUUDWHG*HQLWDOGRXEOH
VRPLWHV\PPHWULFDO6HPLQDOUHFHSWDFOHW\SLFDORIVHUUXODWXVJURXSZLWKURXQGHGODWHUDO
DUPVLQSRVWHULRUPDUJLQ*HQLWDOGRXEOHVRPLWHORQJHUWKDQZLGHDERXWWLPHV
/HQJWKZLGWKUDWLRRIFDXGDOUDPXV LQQHUPDUJLQRIFDXGDOUDPXVQDNHGRXWHU
PDUJLQZLWKVWURQJVSLQXOHVFRYHULQJRIVHJPHQWOHQJWKVSLQXOHVLQFUHDVHLQVL]H
GLVWDOO\)LJ$$'RUVDOVHWD9,,VKRUWWLPHVWKHOHQJWKRIFDXGDOUDPXVDQG
WLPHVDVORQJDVRXWHUPRVWFDXGDOVHWD,,,5DWLRRILQQHUPRVWFDXGDOVHWD
9,RXWHUPRVWFDXGDOVHWD,,, /DWHUDOFDXGDOVHWD,,LQVHUWHGDWRIFDXGDO
UDPL$OOWHUPLQDOFDXGDOVHWDHSOXPRVH
$QWHQQXOH)LJ$%&VHJPHQWHG$UPDPHQWSHUVHJPHQWDVIROORZVV VHWD
DH DHVWKHWDVFVS VSLQHVVVVVVVSVVV
VVV1XPEHUVLQEROGIDFHLQGLFDWHVHJPHQWVZLWKLQFRPSOHWH
RUQDPHQWDWLRQ
$QWHQQD)LJ'%DVLVV([SVHJPHQWHG(QGVVDQGV2QO\URZ1RQ
EDVLVZDVREVHUYDEOHLQWKHKRORW\SH
0RXWKSDUWVQRWREVHUYDEOHLQWKHVOLGH
33(QGRSRGDQGH[RSRGVRIDOOVZLPPLQJOHJVWKUHHVHJPHQWHG$UPDWXUHIRUPXODRI
DOOVZLPPLQJOHJVDVLQ7DEOH
/HJ)LJ%$&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DOVHWD%DVLSRGDO
VSLQHQRWUHDFKLQJPLGGOHPDUJLQRI(QSEDVLSRGDOVSLQHWLPHVDVORQJDVHQGRSRGDO
UDPXV(QSWLPHVDVORQJDVZLGHDSLFDOVSLQHRI(QSDVORQJDVVHJPHQW(QS
PRVWDSLFDOVHWDRI(QSWLPHVORQJHUWKDQDSLFDOVSLQH
/HJ)LJ%1RRUQDPHQWDWLRQREVHUYHGRQLQWHUFR[DOVFOHULWHGLVWDOPDUJLQZLWKWZR
URXQGHGSURMHFWLRQV&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DOVHWD(QSWLPHV
ORQJHUWKDQZLGHDSLFDOVSLQHRQ(QSWLPHVDVORQJDVVHJPHQW([SWLPHVDV
ORQJDVZLGHDSLFDOVSLQHVRI([SWLPHVDVORQJDVVHJPHQW1RPRGLILHGVHWDHZHUH
REVHUYHG
/HJ)LJ&1RFXWLFXODURUQDPHQWDWLRQZDVREVHUYHGRQLQWHUFR[DOVFOHULWHGLVWDO
PDUJLQZLWKWZRURXQGHGSURMHFWLRQV&R[DZLWKVWURQJELVHULDOO\VHWXODWHGLQQHUFR[DO
VHWD(QSWLPHVORQJHUWKDQZLGHDSLFDOVSLQHRQ(QSWLPHVDVORQJDVVHJPHQW
DSLFDOVHWDRI(QSWLPHVDVORQJDVDSLFDOVSLQH([SWLPHVDVORQJDVZLGHDSLFDO
VSLQHRI([SDVORQJDVVHJPHQW1RPRGLILHGVHWDHZHUHREVHUYHG
/HJ)LJ%&,QWHUFR[DOVFOHULWHQRWFOHDUO\REVHUYHG,QQHUFR[DOVSLQHZLWK
KHWHURJHQHRXVRUQDPHQWDWLRQEDVDOO\ZLWKORQJKDLUOLNHVHWDHGLVWDOO\ZLWKVSLQHOLNH
VHWDHODWHUDOHGJHRILQQHUFR[DOVSLQHZLWKWZRDSLFDOVSLQHOLNHVHWDHSUR[LPDOVXUIDFH
QDNHG/HQJWKZLGWKUDWLR(QS3 OHQJWKUDWLRLQQHURXWHUVSLQHVRI(QS3 OHQJWKUDWLRLQQHUVSLQHRI(QS3(QS3 OHQJWKUDWLRRXWHUVSLQHRI
(QS3(QS3 /DWHUDOVHWDRI(QS3LQVHUWHGDWRIWKHWRWDOOHQJWKRI
WKHVHJPHQW1RPRGLILHGVHWDHZHUHREVHUYHG
/HJ)LJ&$)UHHVHJPHQWVXEUHFWDQJXODUWLPHVORQJHUWKDQZLGH
EHDULQJRQHLQQHUVSLQHDQGWZRVHWDHPHGLDOVHWDORQJHUWKDQERWKWKHRXWHUVHWDDERXW
WLPHVDQGWKHLQQHUVSLQHDERXWWLPHV,QQHUVSLQHQRWLFHDEO\VOHQGHUWLPHVDV
ORQJDVVHJPHQW
5HPDUNV±(XF\FORSVOHSWDFDQWKXVLVDQRWKHUVSHFLHVGHVFULEHGE\.LHIHUWKDWKDV
EHHQUHFRUGHGIURP0H[LFR$GGLWLRQDO$PHULFDQUHFRUGVDUHIURP&RVWD5LFD9HQH]XHOD
DQG%UD]LO5RFKDDQG%RWHOKR*XWLpUUH]$JXLUUHDQG6XiUH]0RUDOHV
6XiUH]0RUDOHV(OtDV*XWLpUUH]HWDO0HUFDGR6DODV7KLVVSHFLHVLV
GLVWLQJXLVKHGIURPLWV$PHULFDQFRQJHQHUVE\WKHSRVVHVVLRQRIDYHU\VOHQGHUVSLQHRQWKH
IHPDOHILIWKOHJDQGXQPRGLILHGVHWDHRQ33WKHVHWDHDQGVSLQHVRI3DUHUHODWLYHO\
ORQJHUDQGQDUURZHUWKDQLQRWKHUVSHFLHV$QRWKHUFKDUDFWHULVWLFRI(OHSWDFDQWKXVLVWKH
SRVVHVVLRQRIDUHPDUNDEO\ORQJLQQHUPRVWFDXGDOVHWDLWLVWLPHVORQJHUWKDQ
RXWHUPRVWFDXGDOVHWDDQGDVORQJRUVOLJKWO\VKRUWHUWKDQOHQJWKRIFDXGDOUDPXV,Q
DGGLWLRQWKHEDVLSRGDOVHWDLVGLVWLQFWLYHLQWKLVVSHFLHVZKHQFRPSDUHGZLWKVRPHUHODWHG
VSHFLHVLWLVVKRUWUHDFKLQJWKHSUR[LPDOPDUJLQRI(QS3ZKHUHDVWKLVVHWDUHDFKHVDW
OHDVWWKHPHGLDOPDUJLQRI(QS3LQPRVWVSHFLHVRI$PHULFDQ(XF\FORSV$FKDUDFWHU
WKDWZHFRXOGQ¶WVHHRQWKHW\SHPDWHULDOZDVWKHRUQDPHQWDWLRQRIWKH3FR[DOSODWH
EHFDXVHDV.LHIHUVWDWHGRQKLVGUDZLQJV)LJ&WKHVWUXFWXUHZDVYHU\GLUW\%XWD
GLIIHUHQFHWKDWZHGLGQRWHLVWKDWGLIIHULQJIURPRWKHUVSHFLHVWKHSODWHZDVH[SDQGHG
KRUL]RQWDOO\FOHDUO\ZLGHUWKDQORQJ)URPWKHGUDZLQJVSUHVHQWHGE\&ROODGRHWDO
WKH&RVWDUULFDQVSHFLPHQVVHHPVWRDJUHHZLWKWKH.LHIHU¶VGHVFULSWLRQEXWVRPH
GLIIHUHQFHVFDQEHIRXQG7KHILIWKOHJSUHVHQWVDQRXWHUVHWDVOLJKWO\VKRUWHUWKDQWKH
PHGLDOVHWDDQGLQ.LHIHUVGHVFULSWLRQWKHRXWHUVHWDLVQRWLFHDEO\VKRUWHUWKDQWKHPHGLDO
VHWD$OVRWKHLQGLYLGXDOVIURP&RVWD5LFDKDYHVPDOOVHWDHRQ(QSRI3ZKHUHDVWKHVH
VHWDHDUHORQJDQGVOHQGHULQWKHW\SHPDWHULDODVUHPDUNHGDERYH7KHUHVWRIWKHUHFRUGV
IURP$PHULFDGLGQRWLQFOXGHGUDZLQJVWKDWDOORZHGXVWRPDNHFRPSDULVRQV
'LVFXVVLRQ
$PRQJWKHVSHFLHVDQGVXEVSHFLHVFXUUHQWO\NQRZQLQWKHJHQXV(XF\FORSV
DUHGLVWULEXWHGLQWKH$PHULFDVPRVWRIWKHUHFRUGVLQWKHFRQWLQHQWDUHIURPVXUYH\VLQWKH
(DVWHUQ8QLWHG6WDWHV0H[LFR$UJHQWLQDDQG%UD]LO5HLG6XiUH]0RUDOHV
%UXQRHWDO)ULVFKDQG7KUHONHOG$OHNVHHYHWDO*DYLULDDQG
$UDQJXUHQ(OtDV*XWLpUUH]HWDO6XiUH]0RUDOHVDQG:DOVK0HUFDGR
6DODV6XiUH]0RUDOHVHWDO'HORV5tRVHWDO0HUFDGR6DODVHWDO
'XHWRLWVGLYHUVLILFDWLRQLQGLIIHUHQWJHRJUDSKLFUHJLRQVDQGWKHWD[RQRPLFDO
SUREOHPVZLWKLQWKHJHQXVLWLVOLNHO\WKDWWKHIDXQDRI(XF\FORSVLQWKH$PHULFDVKDVEHHQ
XQGHUHVWLPDWHG2XUDQDO\VLVRIWKHUHFRUGVRIIRXURIWKHVSHFLHVUHFRUGHGLQWKH
$PHULFDVUHYHDOHGWKDWPDQ\SXEOLVKHGUHFRUGVRIWKHVHVSHFLHVDUHQRWDFWXDOO\DVVLJQDEOH
WRWKHVHVSHFLHVDQGVKRXOGEHFRPSDUHGDQGUHFKHFNHGXVLQJWKHVHXSJUDGHGGHVFULSWLYH
VWDQGDUGVLQRUGHUWRFODULI\WKHLUWD[RQRPLFDQGELRJHRJUDSKLFVWDWXV,QDGGLWLRQLIZH
FRQVLGHUWKDWDERXWRIWKHUHFRUGVLQWKHFRQWLQHQWKDYHEHHQDVVLJQHGWR
WD[RQRPLFDOO\FRPSOH[DQGZLGHO\GLVWULEXWHGWD[DVXFKDV(VHUUXODWXV(DJLOLVDQG(
VSHUDWXVZHFDQKDYHDJHQHUDOLGHDDERXWKRZXQGHUHVWLPDWHGLVWKHGLYHUVLW\RIWKHJHQXV
LQWKH$PHULFDV
$FNQRZOHGJPHQWV
:HJUDWHIXOO\DFNQRZOHGJHWKHVXSSRUWDQGFRQILGHQFHIURP'U+DQV:DOWHU
0LWWPDQQ6WDDWOLFKHV0XVHXP)U1DWXUNXQGH.DUOVUXKH*HUPDQ\LQDOORZLQJXVWR
H[DPLQHWKHW\SHPDWHULDORIWKHVSHFLHVLQFOXGHGLQWKHSUHVHQWZRUN+HDOVRJUDQWHG
SHUPLVVLRQWRLQFOXGHWKHXQSXEOLVKHGRULJLQDOGUDZLQJVE\).LHIHULQWKLVZRUN:HDOVR
DFNQRZOHGJHWKHKHOSWLPHDQGSDWLHQFHRI-|UJ3HUW]HODQG*HUDOG,VOHEHLQWUDQVODWLQJWKH
RULJLQDOGHVFULSWLRQVRIVSHFLHVIURP*HUPDQWR(QJOLVK7KLVZRUNLVSDUWRIWKHILUVW
DXWKRU¶V1)06'RFWRUDO7KHVLVGHYHORSHGDW(O&ROHJLRGHOD)URQWHUD6XU(&2685
7KLVFRQWULEXWLRQZDVVXSSRUWHGE\&21$&\7SURMHFW,QYHVWLJDFLyQ&LHQWtILFD
%iVLFD
5HIHUHQFHV
$OHNVHHY9(GXPRQWLVSQRYIURP&HQWUDO0RQJROLD+\GURELRORJLD
$OHNVHHY9(XF\FORSVDOEXIHUHQVLVVSQRY&\FORSRLGD&RSHSRGD&UXVWDFHD
IURP$OEXIHUDODNH9DOHQFLD6SDLQ3URFHHGLQJVRIWKH=RRORJLFDO,QVWLWXWH
5$6
$OHNVHHY9'HID\H'7D[RQRPLFGLIIHUHQWLDWLRQDQGZRUOGJHRJUDSKLFDO
GLVWULEXWLRQRIWKH(XF\FORSVVHUUXODWXVJURXS&RSHSRGD&\FORSLGDH
(XF\FORSLQDH,Q'HID\H'6XiUH]0RUDOHV(YRQ9DXSHO.OHLQ-&(GV
6WXGLHVRQIUHVKZDWHU&RSHSRGDDYROXPHLQKRQRXURI%HUQDUG'XVVDUW
.RQLQNOLMNH%ULOO19/HLGHQ
$OHNVHHY9'XPRQW+-3HQVDHUW-%DULEZHJXUH'9DQIOHWHUHQ-5$
UHGHVFULSWLRQRI(XF\FORSV)LVFKHU&UXVWDFHD&RSHSRGD&\FORSRLGD
DQGVRPHUHODWHGWD[DZLWKDSK\ORJHQ\RIWKH(VHUUXODWXVJURXS=RRORJLFD
6FULSWD
%UXQR0&5HLG-:3HUU\6$$OLVWDQGLGHQWLILFDWLRQNH\IRUWKHIUHVKZDWHUIUHH
OLYLQJFRSHSRGVRI)ORULGD86$-RXUQDORI&UXVWDFHDQ%LRORJ\
&ROODGR&'HID\H''XVVDUW%+)HUQDQGR&+7KHIUHVKZDWHUFRSHSRG
&UXVWDFHDRI&RVWD5LFDZLWKQRWHVRQVRPHVSHFLHV+\GURELRORJLD
&]DLND6&&UXVWDFHDQ]RRSODQFWRQRIVRXWKZHVWHUQ/DNH2QWDULRLQGXULQJWKH
,QWHUQDWLRQDO)LHOG<HDUIRUWKH*UHDW/DNHV3S,Q3URFWK&RQI*UHDW
/DNHV5HV,QWHUQDWLRQDO$VVRFLDWLRQ*UHDW/DNHV5HVHDUFK
&]DLND6&&UXVWDFHDQ]RRSODQNWRQRIVRXWKZHVWHUQ/DNH2QWDULRLQVSULQJDQG
DWWKH1LDJDUDDQG*HQHVVH5LYHUPRXWKDUHDVLQDQGVSULQJ-RXUQDO
*UHDW/DNHV5HVHDUFK
'HORV5tRV35LYHUD50RUURQH--&\FORSRLGV&UXVWDFHD&RSHSRGDUHSRUWHG
IURP&KLOHDQLQODQGZDWHUV%ROHWtQGH%LRGLYHUVLGDGGH&KLOH
'HO5tR0/9DOGLYLD95&RSpSRGRVGXOFHDFXtFRODVGHYLGDOLEUHHQHO3HU~
)DPLOLD&\FORSLGDH2UGHQ&\FORSRLGD%ROHWtQ/LPD
'XVVDUW%+6RPH&UXVWDFHD&RSHSRGDIURP9HQH]XHOD+\GURELRORJLD
'XVVDUW%+'HID\H':RUOG'LUHFWRU\RI&UXVWDFHD&RSHSRGDRI,QODQG:DWHUV,,
&\FORSLIRUPHV%DFNKX\V3XEOLVKHUV/HLGHQSS
'XVVDUW%+)HUQDQGR&+$UHYLHZRIWKHWD[RQRP\RIILYH2QWDULRJHQHUDRI
IUHVKZDWHUF\FORSRLG&RSHSRGD&UXVWDFHD&DQDGLDQ-RXUQDORI=RRORJ\
(LQVOH81RUGDPHULNDQLVFKH$UWHQGHU*DWWXQJHQ(XF\FORSVXQG$FDQWKRF\FORSV
&UXVWDFHD&RSHSRGDDXVDOWHQ3UREHQGHU6DPPOXQJ).LHIHU$QGULDV
(OtDV*XWLpUUH] 0 ,QIRUPH ILQDO GHO 3UR\HFWR 6 0LFURFUXVWiFHRV
]RRSODQFWyQLFRV \ OLWRUDOHV GHO 6XUHVWH GH 0p[LFR &RPLVLyQ 1DFLRQDO SDUD HO
&RQRFLPLHQWR\8VRGHOD%LRGLYHUVLGDG0p[LFRSS
(OtDV*XWLpUUH]06XiUH]0RUDOHV(*XWLpUUH]$JXLUUH0$6LOYD%ULDQR0*UDQDGRV
5DPtUH]-**DUILDV(VSHMR7&ODGRFHUD\&RSHSRGDGHODVDJXDV
FRQWLQHQWDOHVGH0p[LFR81$0)(6,&21$%,2(&2685&21$&<7
6(0$51$70H[LFR&LW\
)ULVFK ' 7KUHONHOG 67 )ORRGPHGLDWHG GLVSHUVDO YHUVXV KDWFKLQJ (DUO\
UHFRORQL]DWLRQ VWUDWHJLHV RI FRSHSRGV LQ IORRGSODLQ SRQGV )UHVKZDWHU %LRORJ\ *DYLULD6/RVFRSpSRGRV$UWKURSRGD&UXVWDFHDGHYLGDOLEUHGHODVDJXDV
FRQWLQHQWDOHVGH&RORPELD5HYLVWDGHOD$FDGHPLD&RORPELDQDGH&LHQFLDV
([DFWDV)tVLFDV\1DWXUDOHV
*DYLULD 6 $UDQJXUHQ 1 (VSHFLHV GH YLGD OLEUH GH OD VXEFODVH &RSHSRGD
$UWKURSRGD&UXVWDFHDHQDJXDVFRQWLQHQWDOHVGH&RORPELD%LRWD&RORPELDQD
*ULPDOGR2UWHJD ' (OtDV*XWLpUUH] 0 &DPDFKR/HPXV 0 &LURV3pUH] - $GGLWLRQV WR 0H[LFDQ IUHVKZDWHU FRSHSRGV ZLWK WKH GHVFULSWLRQ RI WKH IHPDOH
/HSWRGLDSWRPXVPH[LFDQXV0DUVK-RXUQDORI0DULQH6\VWHPV
*XWLpUUH]$JXLUUH0$&HUYDQWHV0DUWtQH]$'LYHUVLW\RIIUHVKZDWHUFRSHSRGV
0D[LOORSRGD&RSHSRGD&DODQRLGD&\FORSRLGDIURP&KLDSDV0H[LFRZLWKD
GHVFULSWLRQRI0DVWLJRGLDSWRPXVVXDUH]PRUDOHVLVSQRY-RXUQDORI1DWXUDO+LVWRU\
*XWLpUUH]$JXLUUH0$0HUFDGR6DODV1)&HUYDQWHV0DUWtQH]$LQSUHVV'HVFULSWLRQ
RI(XF\FORSVW]LVFDRVSQ(DQJHOLVSQDQGUDQJHH[WHQVLRQRI(IHVWLYXV
/LQGEHUJ&\FORSRLGD&\FORSLGDH(XF\FORSLQDHLQ&KLDSDV0H[LFR
=RR.H\V
*XWLpUUH]$JXLUUH0$6XiUH]0RUDOHV('LYHUVLW\DQGGLVWULEXWLRQRIIUHVKZDWHU
FRSHSRGV&UXVWDFHDLQVRXWKHDVWHUQ0H[LFR%LRGLYHUVLW\DQG&RQVHUYDWLRQ
+DUGLQJ-37KH3HUF\6ODGHQH[SHGLWLRQWR/DNH7LWLFDFDLQ&UXVWDFHD
&RSHSRGD7UDQVDFWLRQRIWKH/LQQHDQVRFLHW\RI/RQGRQ
,VKLGD7(XF\FORSVURVHXVDQHZ(XUDVLDQFRSHSRGDQGWKH(VHUUXODWXVVSHUDWXV
SUREOHPLQ-DSDQ-DSDQHVH-RXUQDORI/LPQRORJ\±
,VKLGD7(XF\FORSVERUHDOLVVSQRYIURP$ODVNDDQG(WVHVKLPHQVLVVSQRYIURP
7VXVKLPD ,VODQG -DSDQ &UXVWDFHD &RSHSRGD &\FORSRLGD %LRJHRJUDSK\ ,VKLGD7,OOXVWUDWHGIDXQDRIWKHIUHVKZDWHUF\FORSRLGFRSHSRGVRI-DSDQ%XOOHWLQRI
WKH%LRJHRJUDSK\6RFLHW\RI-DSDQ
,VKLGD7'HVFULSWLRQRI(XF\FORSVVHUUXODWXV)LVKHU&RSHSRGD
&\FORSRLGDIURP-DSDQZLWKUHIHUHQFHWRWKHGHJUHHRIGLIIHUHQFHIURP
VSHFLPHQVIURPWKHW\SHORFDOLW\%LRJHRJUDSK\
.DUD\WXJ6*HQHUD3DUDF\FORSV2FKULGDF\FORSVDQGNH\WRWKH(XF\FORSLQDH
*XLGHVWRWKHLGHQWLILFDWLRQRIWKHPDFURLQYHUWHEUDWHVRIWKHFRQWLQHQWDOZDWHUVRI
WKH:RUOG%DFNKX\V3XEOLVKHUV/HLGHQS
.DUD\WXJ6%R[VKDOO*$$QWHQQXOHVRIWKHPDOHRI3DUDF\FORSV&RSHSRGD
IXQFWLRQDOVLJQLILFDQFHDQGWKHLULPSRUWDQFHLQV\VWHPDWLF-RXUQDORI
&UXVWDFHDQ%LRORJ\
.LHIHU)(LQHQHXH6VVZDVVHU&RSHSRGHDXV6G$PHULND&\FORSVGHODFKDX[LQ
VS=RRORJLVFKHU$QQ]HLJHU
.LHIHU)%HLWUlJH]XU&RSHSRGHQNXQGH,96RQGHUDEGUXFNDXVGHP=RRORJLVFKHU
$Q]HLJHU
.LHIHU)=XU.HQQWQLVGHUIUHLOHEHQGHQ6ȕZDVVHUFRSHSRGHQLQVEHVRQGHUHGHU
&\FORSLGHQ1RUGDPHULNDV=RRORJLVFKH-DKUEFKHU
.LHIHU)1HXH5XGHUIVVNUHEVHYRQGHU,QVHOQ+DLWL=RRORJLVFKHU$Q]HLJHU
.LHIHU)0LWWHLOXQJHQYRQGHQ)RUVFKXQJVUHLVHQ3URI5DKPV0LWWHLOXQJ9,,,
&\FORSLGHQ=RRORJLVHKHU$Q]HLJHU
.LHIHU))UHLOHEHQGH5XGHUIXVVNUHEVH&UXVWDFHD&RSHSRGD&DODQRLGDXQG
&\FORSRLGD,Q)*HVVQHUDQG99DUHVFKLHG(UJHEQLVVHGHU'HXWVFKHQ
/LPQRORJLVFKHQ9HQH]XHOD([SHGLWLRQ
0HUFDGR6DODV1)'LYHUVLGDG\'LVWULEXFLyQGHORV&\FORSRLGD&RSHSRGDGHODV
]RQDVÈULGDVGHO&HQWUR1RUWHGH0p[LFR06F7KHVLV&KHWXPDO4XLQWDQD5RR
(O&ROHJLRGHOD)URQWHUD6XU
0HUFDGR6DODV1)3R]R&0RUURQH--6XiUH]0RUDOHV('LVWULEXWLRQSDWWHUQVRI
WKH$PHULFDQVSHFLHVRIWKHIUHVKZDWHUJHQXV(XF\FORSV&RSHSRGD
&\FORSRLGD-RXUQDORI&UXVWDFHDQ%LRORJ\
0HUFDGR6DODV1)6XiUH]0RUDOHV(0RUIRORJtDGLYHUVLGDG\GLVWULEXFLyQGHORV
&\FORSRLGD&RSHSRGDGH]RQDViULGDVGHOFHQWURQRUWHGH0p[LFR,,
(XF\FORSLQDH\DQiOLVLVELRJHRJUiILFR+LGURELROyJLFD
5HLG-:&KDYHGHLGHQWLILFDomRHOLVWDGHUHIHUrQFLDVELEOLRJUiILFDVSDUDDVHVSpFLHV
FRQWLQHQWDLV6XODPHULFDQDVGHYLGDOLYUHGD2UGHP&\FORSRLGD&UXVWDFHD
&RSHSRGD%ROHWLPGH=RRORJtD8QLYHUVLGDGHGH6mR3DXOR
5HLG-: &RSHSRGD&UXVWDFHDIURPIUHVKZDWHUVRIWKH)ORULGD(YHUJODGHV86$
ZLWKDGHVFULSWLRQRI(XF\FORSVFRQURZDHQVS7UDQVDFWLRQVRIWKH$PHULFDQ
0LFURVFRSLFDO6RFLHW\
5HLG-:0DUWHQ**7KHF\FORSRLGFRSHSRG&UXVWDFHDIDXQDRIQRQSODQNWRQLF
FRQWLQHQWDOKDELWDWVLQ/RXLVLDQDDQG0LVVLVVLSSL7XODQHVWXGLHVLQ=RRORJ\DQG
%RWDQ\
5REHUWVRQ$*DQQRQ-($QQRWDWHGFKHFNOLVWRIWKHIUHHOLYLQJFRSHSRGVRIWKH
*UHDWODNHV-RXUQDO*UHDW/DNHV5HVHDUFK
5RFKD&()%RWHOKR0-&0D[LOORSRGD&RSHSRGD&\FORSRLGD,Q<RXQJ36HG
&DWDORJXHRI&UXVWDFHDRI%UD]LO5LRGH-DQHLUR0XVHX1DFLRQDO6pULH
/LYURV1
5RGUtJXH]$OPDUi] *$ ,QIRUPH ILQDO GHO 3UR\HFWR 6 %LRGLYHUVLGDG GH ORV
FUXVWiFHRV GXOFHDFXtFRODV GHO FHQWUR GH 1XHYR /HyQ \ QRUHVWH GH 7DPDXOLSDV
&RPLVLyQ1DFLRQDOSDUDHO&RQRFLPLHQWR\8VRGHOD%LRGLYHUVLGDG0p[LFR')
0p[LFRSS
6XiUH]0RUDOHV($QHZVSHFLHVRI(XF\FORSV&ODXV&RSHSRGD&\FORSRLGDIURP
VRXWKHDVW0H[LFRZLWKDNH\IRUWKHLGHQWLILFDWLRQRIWKHVSHFLHVUHFRUGHGLQ
0H[LFR=RRWD[D
6XiUH]0RUDOHV(*XWLpUUH]$JXLUUH0$:DOVK(-)UHVKZDWHU&RSHSRGD
&UXVWDFHDIURP&KLKXDKXDQ'HVHUWZLWK&RPPHQWVRQ%LRJHRJUDSK\7KH
6RXWKZHVWHUQ1DWXUDOLVW
6XiUH]0RUDOHV(5HLG-:$QXSGDWHGOLVWRIWKHIUHHOLYLQJIUHVKZDWHUFRSHSRGV
&UXVWDFHDRI0H[LFR6RXWKZHVWHUQ1DWXUDOLVW
6XiUH]0RUDOHV(5HLG-:,OLIIH70)LHUV)&DWiORJRGHORV&RSpSRGRV
&UXVWDFHDFRQWLQHQWDOHVGHODSHQtQVXODGH<XFDWiQ0p[LFR(&2685
&21$%,20p[LFRS
6XiUH]0RUDOHV ( :DOVK ( 7ZR QHZ VSHFLHV RI (XF\FORSV &ODXV &RSHSRGD
&\FORSRLGD IURP WKH &KLKXDKXDQ 'HVHUW ZLWK D UHGHVFULSWLRQ RI ( SVHXGRHQVLIHU
'XVVDUW=RRWD[D
)LJXUHFDSWLRQV
)LJ (XF\FORSV GHODFKDX[L .LHIHU +RORW\SH IURP +XDURQ 3HU~ $ 8URVRPH
YHQWUDOYLHZ%&DXGDOUDPL&3
)LJ(XF\FORSVGHODFKDX[L.LHIHU+RORW\SHIURP+XDURQ3HU~$$QDOVRPLWH
GRUVDO YLHZ % &DXGDO UDPL & $QWHQQXOH VHJPHQWV ' 3UDHFR[D RI
0D[LOOD(3
)LJ(XF\FORSVGHODFKDX[L.LHIHU$OORW\SHIURP+XDURQ3HU~$8URVRPH%
(QS3
)LJ(XF\FORSVGHODFKDX[L.LHIHU$OORW\SHIURP+XDURQ3HU~$&3
)LJ (XF\FORSV GHODFKDX[L .LHIHU +RORW\SH IURP +XDURQ 3HU~ $ 8URVRPH
YHQWUDOYLHZ%&DXGDOUDPL&$QWHQQXOH'$QWHQQD(0DQGLEOH
)LJ(XF\FORSVGHODFKDX[L.LHIHU+RORW\SHIURP+XDURQ3HU~$3%3
&'3
)LJ (XF\FORSV GHODFKDX[L .LHIHU $OORW\SH IURP +XDURQ 3HU~$ 8URVRPH
YHQWUDOYLHZ%$QWHQQXOH
)LJ(XF\FORSVSULRQRSKRUXV.LHIHU+RORW\SH$'$OORW\SH(IURP1HZ+DYHQ
86$$&DXGDOUDPL%(QS3&'3(3
)LJ(XF\FORSVSULRQRSKRUXV.LHIHU)HPDOH$0DOH%&IURP6DQ%HUQDUGLQR
3DUDJXD\$*HQLWDOVRPLWH%3&3
)LJ(XF\FORSVSULRQRSKRUXV.LHIHU)HPDOH%&0DOH$IURP6DQ%HUQDUGLQR
3DUDJXD\$*HQLWDOVRPLWHDQG3%(QS3&$QDORSHUFXOXPDQGFDXGDO
UDPL
)LJ (XF\FORSV SULRQRSKRUXV .LHIHU )HPDOH IURP 6DQ %HUQDUGLQR 3DUDJXD\
$8URVRPHGRUVDOYLHZ%$QDOVRPLWHDQGFDXGDOUDPL&$QWHQQXOH'3
)LJ (XF\FORSV SULRQRSKRUXV .LHIHU )HPDOH IURP 6DQ %HUQDUGLQR 3DUDJXD\
$3%3&3'([S3
)LJ(XF\FORSVSULRQRSKRUXV.LHIHU0DOHIURP6DQ%HUQDUGLQR3DUDJXD\$
8URVRPHYHQWUDOYLHZ%$QWHQQXOH&3'3(3
)LJ(XF\FORSVERQGL.LHIHU+RORW\SHIURP7URX&DLPDQ+DLWL$3URVRPH
GRUVDO YLHZ % 3URVRPH YHQWUDO YLHZ & 8URVRPH YHQWUDO YLHZ '
&DXGDOVHWDHRI&5
)LJ(XF\FORSVERQGL.LHIHU+RORW\SH$%DQG$OORW\SH&IURP7URX&DLPDQ
+DLWL$,QWHUFR[DOVFOHULWHDQGFR[DOVSLQHV3%(QS3&3
)LJ(XF\FORSVERQGL.LHIHU+RORW\SHIURP7URX&DLPDQ+DLWL$8URVRPH
GRUVDOYLHZ%8URVRPHYHQWUDOYLHZ&$QWHQQXOH'0D[LOOXOH(0D[LOOD
)0D[LOOLSHG
)LJ(XF\FORSVERQGL.LHIHU+RORW\SHIURP7URX&DLPDQ+DLWL$3%3
&3'3(3FDXGDOVXUIDFH),QWHUFR[DOVFOHULWH3IURQWDOVXUIDFH
)LJ (XF\FORSV OHSWDFDQWKXV .LHIHU +RORW\SH IURP /DNH 2ULQRFR 9HQH]XHOD
$&DXGDOUDPL%(QS3&3
)LJ (XF\FORSV OHSWDFDQWKXV .LHIHU +RORW\SH IURP /DNH 2ULQRFR 9HQH]XHOD
$$QWHQQXOH%3&,QWHUFR[DOVFOHULWH3
)LJ (XF\FORSV OHSWDFDQWKXV .LHIHU +RORW\SH IURP /DNH 2ULQRFR 9HQH]XHOD
$8URVRPHYHQWUDOYLHZ%$QWHQQXOHVHJPHQWV&$QWHQQXOHVHJPHQWV
)LJ (XF\FORSV OHSWDFDQWKXV .LHIHU +RORW\SH IURP /DNH 2ULQRFR 9HQH]XHOD
$3%3&3
7DEOH6HWDWLRQIRUPXODRIVZLPPLQJOHJV33LQIHPDOHVDQGPDOHVRIWKHW\SH
VSHFLPHQVRIWKHIRXUVSHFLHVRI(XF\FORSVVWXGLHGVSLQHVLQ5RPDQQXPHUDOVVHWDHLQ
$UDELFQXPHUDOV±UHSUHVHQWVVWUXFWXUHVQRWREVHUYHGRQW\SHPDWHULDO
6SHFLHV
&R[D
%DVLV
([S
(QS
E. delachauxi
3
3
3
3
,
,,,,,
,,,9
,
,
,,
E. prionophorus
3
3
3
3
,
,,,,,
,,,9
,,,,,
,
,
,,
E. bondi
3
3
3
3
,
,,,,,
,,,9
,,,9
,,,,,
,
,
,
,,
E. leptacanthus
3
3
3
3
,
,,,,,
,,,9
,,,9
,
,
,
,,
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
Journal of Natural History
Fo
r
ee
rP
& "
#!
$
'
(
%
$
1
#
".
. /
".
#
(
$1
)
*+ &
.
) +#
.
# *+ &
# )+
#
,
#
)+
,
On
0
$
ew
vi
Re
!"
)"
$
)
2
)+
"
ly
URL: http://mc.manuscriptcentral.com/tnah
-
Page 1 of 35
Fo
r
ee
rP
ew
vi
Re
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
!" #$% &
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
!
"
#
$
%
$
&
&
' (&
'(
'
%
$
% ( )
+ ,-./+
)'
(
'*
&
'
'
%
%
)'
5&
#
6
+
$$
+
%
%
$
'*
' (&
+
%
$
$
%
'
#
#
#
'
$
ew
vi
Re
$
01
$
'
%
*
$
&
r
ee
rP
%
$
+ ,-./+
& &
& &
'
) (
)
&+& )'
#
(
'
,-234
$
$
#
$
Fo
6
6
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 2 of 35
URL: http://mc.manuscriptcentral.com/tnah
$
Page 3 of 35
!
&
%
$
<
&
'
&
%
0)
'
&
% 09 $ + ,-274+
&
9 $ + ,-:;
(
)
,-./ 6 A
,-.76 (
,--36 B &
' 9 $ + ,-:,+
28836
&
$
&
288;6 ( $
+ ,-;:+
+ ,.7,4+
+ ,-8,4 09 $
$
%
,-7/6 (
(
& 28,,4+
28,84 )
$
$
&+& )'
$
!
$
&
+
ly
&
%
"
&
$
D ,-23 5
1
%
$
,-./+
'
&
&
#
'*
,-..6
AC
"
"
)'
'0
,-:;6 <
& 288.6 (
' "
'*
#
,-.;6 ( $
'
9 $ + ,-:/
(
' <?$$
(
"
"+ ,../4+
On
0' "
' 0< @ %
')
' 0=
ew
vi
Re
'4
+ ,-./ +
%
0
'0
'
'
'
' 9 $ + ,-7;+
) &
+ ,-./4+
)
'(
' (&
+
9 $ +
&
+ 288-
r
ee
rP
%
1
9 $ + ,-73+
= % + ,-;2
'
>
''
'
+ ,-234
& &
+ ,-73
# $
$
) & ' 9 $ + ,-:;
,-73
"
28
$
,-23
'
&+& )'
,78
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
%
%
&
'$
$
&+& )'
'0
+ ,.;:4
+
'
'
%
URL: http://mc.manuscriptcentral.com/tnah
+
'+ %
'
$$
+)
+
Journal of Natural History
+1
+
E
,--.6 (
( $
4+ )
,-.7+ ,--,6 (
< " !
&
1
288.4+
5
&
$
F
$
9
(
+ ,-./
#
%
$
F
9 $ + ,-:; %
+ '$
D
(
'*
(
$
'(
'
!
6
&+& )'
!
'$
+
$
+ ,--.4 !
&
%
' 0B 5
&
%
$
)
'$
#
'
288-4
&+& )' $
%
*
%
,--.6
+
$
'*
$$
5
#
+
%
$
%
$
+ ,-./
%
)
$
'
'
+ ,-.;6 A
$
ly
+ ,-8-4 $
+%
&
$
%
I
' (&
= # "
%
0,-./ 4
% !
#
$
,--/6 B
'$
0,-.84 $
#
&
'
#
$
,-.76 B &
& ,-.-6
+
)
'
)'
F
On
0A
$
+
' (&
$$
+
' (&
#
$
'*
0 "
28,,4 (
#
)'
F
ew
vi
Re
%
F
$
$
0( $
$
#
r
ee
rP
%
&+& )'
4
H
+#
%
,-.76 ( AC
G
$
$
'
4 0A
)
0,-734
%
% +
0
& &
9 $
6
0< " !
$
+
,-.;6 A
288;4 D ,-73+
$
& &
F
0A
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 4 of 35
$
%
)
%
'
0(
$%
#
URL: http://mc.manuscriptcentral.com/tnah
$
Page 5 of 35
$
(
%
% $
%
%
$
$$
>
A
+
"
)'
0288-4
'*
)'
)'
$
'*
(
J
(
#
D
$ %
J
% (
'#
' (&
#
#
,888M #
$
%6
#
#
$
# DD H
&
#
+
$L
#
' "
+
+
%
&
&
6
"
$
$
6 +
0 46
!
' "
$
<
028,,4 '%% &
$
J=
ly
( $
$
& #
$ 1/$
$
%
%
#
#
+
&
9 $
4 ( #
6
'
"!&'
$
%
+#
&
On
0B
$
) +%
>
' (&
$
'
&
& #
$$
K
4
' "
%
#
ew
vi
Re
$
$
&+& )'
'*
!
$
%
$
!"#
9
$
#
$
$
0
#
>
r
ee
rP
#
$
+
%
#
1
%
$
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
0288;4
# 1, 1/+
+
6
+
6
%
0288;4
0
' "
4
&
( $
6 DDD H
URL: http://mc.manuscriptcentral.com/tnah
028,,4
0
4
Journal of Natural History
6 DF H
0
0
4
4
6FH
6 FD H
0
4
6 FDD
H
#
Fo
5
A $
N + ,.,7
"A $
N + ,.,7
( $' '
( $'
r
ee
rP
%$
% " 9 $ + ,-23
") ( $'
B
+ ,.-:
*
0
'
(
+
O $
K
+
J=
#
#
$
B
%
40
,'+ :
,2
'
#
::
01
0FDD4
(
0
:)4 <
P#
"
$ ; ,7
4 (
0
#
$
+
%
#
+ ,-.;6
Q . /6
5%
+ %
1
#
$
(
$
ly
"
+ ,-.;4+
,8 :8R $
+#
#
$
#
0
B
'
32::4
+
On
'
=
&
#
$
0
1
, :/
6
::
+,-.
, /4
'
, '&
,'4
*
ew
vi
Re
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 6 of 35
&
+ ,-236 (
8 27
URL: http://mc.manuscriptcentral.com/tnah
$
+ ,-.;6
$
Page 7 of 35
8 ;8
0DDD4 A
0DDD4 Q , ,7
$
0FD4P
0DD4
.8 .. R $
'
0
,)4 ,2
+
Q
'
,802 4+ ,,0: 4+ ,203 4
0
,
:034+
4+
02 S
4+
-S,80-4+
70;4+
,,034+
$
%
'
& %
$
-!.-"
!0
2'4
D
$
10
Q
;0:4
+ 28,,4
%
3
% #
&
#
,/0-
4+
,2
#
7
+
,7 0:4+
,/ 0%
$
)
P#
& %
:1/ Q , :6
#
# $
# $
2)4+
2 4 D
30,.
'
& %
<
,0;4+
$
4+
%
$
,3 0.46
:Q,2
%
$
,:03
#
,)4
0, + - + 3 4 )
( $
:+ 8 3
+
/
&
%
P
& #4 0
:
,20;4+
2)4 D
0
+
0
ly
00
# 0Q
On
$
/
4+
$
#
! % ,
/
#
ew
vi
Re
, 4
)
#
# 0' ' ' "
#
#
#
4 )
/028
.0;4+
,;034+
,.
r
ee
rP
$
20;4+
$
4 ,0. 4+ 20/ 4+ :02 4+ /0; 4+ 70: 4+ ;0, S, 4+ 302 4+ .0: 4+ -02 S, 4+
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
$
#
$
$
+
&
&
URL: http://mc.manuscriptcentral.com/tnah
# $
$
# $
Journal of Natural History
%
#
# (
@
$
#
0
#
#
%
#
+
2 4
$
:
: '
#
/
" 0
4 D
#
Fo
%
@
#
#
:1/Q , ,6
:1/
#
,'4 5
$
+ %
<
6
,, ,2
$
+ ,/
) &*& 'D
2/
'+
&
'
$
0< @ %
+
#
+ ,-8,4+
$
$
+#
'
$$$
' '
'
%
38R $
$
#
&
%
&
6%
6
+ 2888 '
'
#
#
ly
%
+
')
$
:
On
+ ,--3
'+
:1/P
$
+%
"
:1/Q 2 26
:1/Q 8 . <
$
D
/7
6
P#
:1/P
2', D
D
"
$
%
#
#
ew
vi
Re
0
/
$
%
:1/Q, :6
37R $
$
& % +
#
+
"
$
%
D
"
P
:
# D
% #
r
ee
rP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 8 of 35
+
+
URL: http://mc.manuscriptcentral.com/tnah
'
Page 9 of 35
D
!
+#
#
+
$
!
$$
$%
% #
0288;4
%
% #
"
&
$
( $
,3
%
%
%
#
0
0
#
8737:+
#
$
& &
% 1
(
$
+)
& &
9 8737/4 '
#
+A
$
& &
'
+#
9 8:,834+ <
$ +)
0
9 82.3-4+ AC
! % :
J
0,-.;4 D
D 9 $ J
0
+1
(
$
E
< " !
9 $
$$
&
#
$
#
$
0,-234
%
% (
D ! % :#
& & # $
$
$L
$
$
#
9 ,,,/-4+ !
9 ,,,7/4
%
!
$
%
! % 24
ly
"
%
,; 0
On
# #
#
'
,/
#
#
#
,/ #
'
#
&
#
#
&+& )' $
&
% ' "
9 $ J
$
#
)
%
% #
+# #
$ $
%
ew
vi
Re
+9
#
028,,4 D
,2
&
$
2%
#
(
"
$%
6
$
% #
,7
N
,
$
$
' "
# 3
#
'
r
ee
rP
#
$
$
D
+
#
$$
$
#
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
0
#
A
+
+
9 87372+
: /+
URL: http://mc.manuscriptcentral.com/tnah
&
9
&
Journal of Natural History
&
+
$$
$
+
P#
$
+ :4
$
P
$
$$
$
%
,:
r
ee
rP
9 8:,83
/'4
3 ,7
#
&
$
$
&
+
: + 4 D 9 $ J
#
$
$
$
'
%
+,/0
0
#
A
<
%
7 ;4
URL: http://mc.manuscriptcentral.com/tnah
#
$
%
$
ly
#
<
$
%
$
!
$
& &
$
$$
+
On
%
0
& &
4 5
7 :0
#
0,--,4 $
+
$
+
9 ,,,7/
% #
&
% A
0
$
%
,'+ : + (4
$ 1/+ #
%
+
$
0
& &
AC
+
ew
vi
Re
&
$
& &
$
&
#
$
+ 28,26
4
$
$
& &
%
0
$ 176
& &
)
%
#
$ 17 Q
/' 4 D
&
0
P#
$
$
08 . , 84
E
/(4
% #
0
& &
$
,4
Q 7 . . /+ 24
, 8 2 8+
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 10 of 35
Page 11 of 35
'
0
=
O$
T
.8,4 (
K
,2 '
+
1
,= %
$
;8R $
&
0
6
$
r
ee
rP
%
+
$
(
83
'
7 4 <
0
7(4 ,2
"
P#
$
+
0FD4
&
8;
'
$
.2R $
$
6
$
# ,0. 4+ 20/ 4+
:02 4+ /0; 4+ 70, 4+ ;0, S, 4+ 302 4+ .0: 4+ -0, 4+ ,802 4+ ,,02 4+ ,203 4 !#
0
+$
7 + 4 )
$
/0/4+ ;0.4+ ,30.46
##
02 S
#
4+
# 0' ' ' "
:
&
$
( $
#
$
ly
$
;2R
$
0DD4
+
%
Q
On
#
6
#
$
0DDD4 Q , , <
'
&
#
0DDD4 A
0FD4P
+
# $
ew
vi
Re
$
%
#
0
"
7)4+
#
+,2
#
+
(
Q,8
+
& #
+
+
$
/ 36
+)
7' '&
1
B
1
,-.2 % ) = (
J=
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
0, + . + 3 4 )
28,,4
$
$
,0:4+
30/4+ .034+ -S,8 0.4+ ,,0.4+ ,2034+
,:0,84+ ,70:4
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
#
)
%
'
& %
$
-!.-"
#
'
$
! % ,
!0
/
;'4 D
#
$$
#
$
+
#
&
)
00
:+ 8 3
$
#
(
@
$
#
%
"
$
$
#
#
$
;'4
#
#
$
#
&
#
#
$
# #
$
$%
&
&
# $ ,.
#
+
$
$
+
#
#
$
+
# $
$
$
; 4
#
P
+
ly
10
+
# $
On
$
P#
,#
ew
vi
Re
$
:Q 8 -
#
;)4 D
$
<
P
0
/
# $
# $
r
ee
rP
:1/Q , 26
@
#
$
%
#
%
+
/
$
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 12 of 35
$
"
%
,/
# $ ,/
+
%
#
#
# (
@
#
#
+
+
$
URL: http://mc.manuscriptcentral.com/tnah
$
%
$
Page 13 of 35
"0
/
;(+ 4 D
%
"
6
@
$
P
#D %
% #
D
$
#
+
#
$
P#
:1/P
:1/P
:1/Q , , <
$
$
:1/
$
,
%
#
+ #
6
2
,2
%
$
$
$
2
$
%
#
$
$
$
'$
$
&
%
0
=
! %
3 .4
O$
;;:4 (
J=
#
=
ly
+,/0
0
!
'
On
#
=
$
6
&+& )'+
2
6%
,;
2', !
'
#
ew
vi
Re
D
K
:1/Q , /6
4
7)4 5
0
#
:1/Q , 76
:1/Q , 26
r
ee
rP
0
% 3
"
$
0#
& % +
"
'S=+ )+ S(+ + B <
38R $
/
#
#
#
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
%
<
% @+F
7+ ,-.8 %
&
;;24+
U
(
1
+
+
'
URL: http://mc.manuscriptcentral.com/tnah
'
'
V+
*
'
O$
Journal of Natural History
&
0
29
$
+
5 = U 8/;:;4 (
, '&
5
%
+
$
& #
6
#
+,,
0
'
#
3'4 '
r
ee
rP
Q / :6
+
&
+
;: ;7 R $
$
0DDD4 A
3.R $
,2
+
#
(
0FD4
+8/ 8;
$
0DD4
$
0FD4P
0DDD4 Q , , , 2
ew
vi
Re
<
1
+
B
$
8: 8/
+
& )
%
&
'
P#
C+
,7+ 288;+
7.R $
&
<
1
Q8.
+
# $
<
%
Fo
'
%
'
$
$
6
#
,0. 4+ 20/ 4+ :02 4+
/0; 4+ 70: 4 ;0, S , 4+ 302 4+ .0: 4+ -02 S , 4+ ,802 4+ ,,02 4+ ,203 4
0
3)+
$
,70/46
4
)
02 S
# 0' ' ' "
$
3074+
-!.-"
'
>
%
:
( $
-S,80.4+
288-
28,,4
,,074+
;'4
$
,20-4+
$
/074+
,:0/4+
& %
$
#
! % ,
/
0, + - + 3 4 )
ly
)
&
.0/4+
,;0/4+ ,30.4 0
#
4+
On
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 14 of 35
!
URL: http://mc.manuscriptcentral.com/tnah
'
$
,70/4+
Page 15 of 35
=
0
3(4
#
%
$
0
:
0
#
1
)
:+ 8 ;
/Q , /6
% (
0
:4 =
>
288-
r
ee
rP
)
P#
$
:+ %
0
3 4
#
$
#
#
&
%
3 4
0
;)4
$
$
$
%
#
P#
+
#
:Q , 36
$
/
:4
$
#
# $
,/
1,
URL: http://mc.manuscriptcentral.com/tnah
0
#
3 4
ly
288-
#
$
,7
>
0
On
#
#
#
#
$
0
:4 1
7
#
:Q , ;
#
:+ 8 .
0
P#
#
0
+
$
+
%
#
$
$
%
ew
vi
Re
=
<
$
#
:Q , /6
0
1
%
;)4 D
#
$
<
P#
:
$$
@
/
#
0,-./4+ %
&
<
<
3(4
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
:4
Journal of Natural History
=
$
0
3 4
$
%
$
#
3 4 <
#
0%
#
P#
0
#
$
<
:4
$
"
0
3B D4 D
3B4+ $
$
%
288-
3 4
;(4
$
#
:Q 2 8+
,:
#D %
+
$
$
P
P
32R $
$
& %
$
%
0
+
#
,;
#
#
#
$
#
# $
+
3D4
& 4 <
#
3B4 D
#
$
$
#
%
:
#
6
+
#
#
$
# $
$
'S)S S= 0 #
:Q 2 86
P
:Q , 2+
P
$
#
ly
$
$
0
$
0
#
On
$
%
0%
#
#
%
,2
$
P#
% 7
%
#
ew
vi
Re
0
0
4
$
%
=
$
>
3 4
$
r
ee
rP
1
#
$
:Q 2 8+
:4 !#
%
0
#
#
%
#
$
/
#
+
+
0
$
#
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 16 of 35
S(
BW
:Q , 26
:Q , 8 <
$
URL: http://mc.manuscriptcentral.com/tnah
Page 17 of 35
1
0
#D
>
# +
+288-
#
% 3
%
#
<
:Q , 26
P
$
D
:Q 2 :6
P
:Q , 8 <
/
3'+ 4 D
P
:Q , 2+
:
P
3,R $
$
E
$
Fo
,
=
r
ee
rP
0
3'4
$
#
6
D
1
0
#
6%
#
4
7)4
2:
D
23
>
0288-4
$
$
$
$
%
$
,
%
% (
$7
!
&+& )'
0,-./ 4+
%
$
&
#
%
$
$
> $
!
$
0288-4
6
ly
4 $
#
+
$
% #
%
%
%
$
6
$$
$
$
+
$
,:
%
#
0
6%
On
0
#
2,
288-
,:
2', !
+,3
2;
>
,;
%
ew
vi
Re
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
#
:%
:
>
#
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
$$
A #D
%
#
"
#
"
6
#
+
# $
:
/+ #
A # D DDD $ 1: #
A #D $$
%
+
$
)'
$
#
$
!
&
%
&+& )'
5
"
,
2
% ' "
&
( $
'
%
) &
&
'
&
%
'*
$
$
028,,4
*
)
%
'
$
'
)
'
'
$
&
$
" %
#
$
'
%
+
'
&
&
'
&
' '4
%
$$
$
)'
'*
%
0
)'
'*
+
#
'
3 +#
!
'
ly
%
(
,--.4+ %
#
%
0
,-.76 A
On
#
&
&+& )' # ' &+& )' # & &+& )'4 $
&
)'
%
# #
%
0
$
#
"
ew
vi
Re
&
+#
$
$
%
1:
&+& )'+
% &
$
0 +& )'
+%
D
#
!
$
#
'*
r
ee
rP
##
%
"
'
$
+
A # D $ 1/ %
$
D$ #
$
#
D
$
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 18 of 35
4
@
8: 8/
URL: http://mc.manuscriptcentral.com/tnah
D
Page 19 of 35
+
$
$
&
(
&
$
#
$
>
$
%
#
&
$
%
$
$
( $
#
$
$
$
%
0
288-4 !
%
$$
28,,4
'
%
#
0' "
$
'
+%
$
+
$
$
'
&
%
$
'
$
%
&
& %
%
ew
vi
Re
5&
'
&+& )'
r
ee
rP
"
'*
%
288-6
$
288;6 ' "
)'
&
$$
+
&
$ 1/
&
3
Fo
#
$
%
#
%'1$" 2 "%!
$
"
K
#
+
J=
+1
*
L
"
+B
# "
$
@
,::/8/ D &
X
$
( (
9 $
>
$
+
+
&+& )'
* 0
5 EA4 !
C$
( $
+#
$
0
!
#
"( =
%
&
5 '
+#
+9
#
!
&
>
%
& &
$
ly
>
On
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
)
4(
%
288-
URL: http://mc.manuscriptcentral.com/tnah
!
#
%
Journal of Natural History
#"3"#"% "
' "
& F+ ( $
( 28,, !
%
$
$$
&+& )' '
4 D
( $
Fo
$
#
F+ <
' "
& F+ (
$
(
AC
=W+ 1
(+
+&
&
$)
W+ )
$
1+ A &
A+
9
W 0
(
(+ (
) ,-..
K
B
9
D
(+
( $
(+ F $
4
9
" @" )
)
K
$
W
U
'
C
)
A & =
&
%
(
+&
!
,3 '
F
9
(
C
(
)= ,-./
$
N
N
K
K
3,0,4 ., -,
,-22 ,
W 0
&
<
F
J' K N
% + 288.
4
9
K
)
K
$
" @" )
#
F+ <
+
ly
)= ,-./
2 ,8 28
On
$)
+5
(
4
$
28,, )
& FA ,-.-
:7 ,2: ,/3
0
, :<+ F
WA 288; '
4
WW 28,8
#
(+ F
%#
'
F
( AC
+
F
ew
vi
Re
( $
+
+ ,.7,4 0
$
( $
0
'
+ /, 32
&+& )' 0
+#
#
r
ee
rP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 20 of 35
&
%
1 Y
%
,,: 27 ;3
;: 3, .8
=
DF A & )
//0:4 277 2;7
URL: http://mc.manuscriptcentral.com/tnah
)
Page 21 of 35
(
)=+ ( $
( 288; >
$
(
(
) "
)=+
,-.;
1
$
1 %
N
A & =
E ,-.7 ' $
+
!
r
ee
rP
B &
,--/ <
"0
K
2883
0'
+
7: ;.
5
(+
C
B
'
/ )
)
'
K
&
#
%&
'0
0
%
%
,- :;,
%
%
%
)
%
<
+
#
1K
W ,--.
$
4 W
$
,7 :., :-8
%
<
& &
)
%
+
&
ly
=
4
%
4
'
( A )
0
+
+
$
= % =F ,-;2
&+& )'
On
B
#
4
&
4
K
+& )'
ew
vi
Re
+'
$
A & '
:.7
B &
2
$
+
0'
%
J'
/-0:4 2-- :8$
#
DD
+ ::/
$
4
9 $ + ,-73+
>
,-0: /4 2/, 2;2
W+
4
!
K
$
0
$D
+<
N
%
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
1 $
%
( =
B
:0/4 27- 23.
" < ,../ ' $
$
,2 '
A
B
=
URL: http://mc.manuscriptcentral.com/tnah
&
7 ,-,
.
Journal of Natural History
D
! ,--3
&+& )'
%
D
W
W <
&+& )' ) & * & '
0
4$
W
,-:;
9 $
,-73
)
'
%
A
$ Z" %
P
K
K
(
%
4
4
J'
!
N
' " & $L
)
9
W> ,-.7
&
$
U
W> ,--, !
K
]^
&
$ _
&
A
'
5
^ 1
$
$
+\
%%
C +E &
>
>
+
4
U
'
$
K
0
+
0
=
- ,3 ,/:
4$
+
ly
W> ,--2
!
$
'
)
0
On
4 )
X
ew
vi
Re
5 ,-23
#
FDDD
0
&
A
#
,,7 2/: 2/-
3: ;3 .8
A
'
3,0,,4 ,-: 222
[
A
' ')
1 $ A
288- ( &
1
'
2 2, 2.
r
ee
rP
9 ,-7/
U
#
2
&
U
%
+
7. :/-H:7.
! 2888
9 $
<
#
' '+
W
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 22 of 35
$
&
D
1
,8/0/4 3:; 3/,
0
$
4$
&+& )' &
$
#
3
! '
27/
URL: http://mc.manuscriptcentral.com/tnah
+E
,,, 22-
'+
Page 23 of 35
A
+)
W
,--.
$
<&
A
D `
$)
,--.
W
,2- ,;; 0 K
#
$
# & &+& )' 0
+
,--3
<E + '
$
$
4 W
&
,7 /27 /:,
$
0
+
$
4
&
r
ee
rP
1Y%
& >
A
1 0 4
;
Fo
)
A &
Y
:,0:4 22, 22;
288. ( &
0
9 +
%
%
$
&
4
)
W)
= ,-.8 B C
K
0
'
$
$
#
;.0/4 ,8-- ,,8;
4
ew
vi
Re
< = %
2.
34
,
'
'
%
'
6
01
,6 )
26
&+& )'
,-7; + W '
82.3-46
$
0
+ ,-234+
:6 (
$
=
32::4 $
%
+$
6
0
=
32::4 $
/
01
+ ,-234 ' + B D6
0
9 ,,,7/46 )
9 ,,,/-46 (
0
6(
+
&+& )'
'
:
6)
+ ,-234+
ly
2
01
&+& )'
On
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
&+& )'
& &
9 $ +
+
& #0
0
9 82.3-46
URL: http://mc.manuscriptcentral.com/tnah
9
Journal of Natural History
0
9 ,,,7/46
/0
/
01
70
9 8:,834+ )
70
7
9 ,,,7/46
+
0
70
'(
+
$
<
$
6
1
'*
% @+F
%
;0
9 82.3-46 (
9 8737/46 B
'*
% @+F
%
0
+
+$
6
+ ,-./+
$
0
,6 )
(
+&
6(
(
,6
=
'
+$
+
:6 (
$
/6
0
=
6)
:6 B
7
URL: http://mc.manuscriptcentral.com/tnah
;;:4
+
/6 =
=
;;:4 $
;6
,6 (
ly
/
+
%
0
6)
6
.8,4 $
26
26
+ ,-./+
+&
%
+ ,-./+
'
.8,4 $
6)
6
'
=
On
&+& )' )'
$
'
+)
+
6D
26
9 $ + ,-7;
& &
70
ew
vi
Re
&+& )' )'
<
+)
6(
3
&+& )'
9 8737246
9 8:,8346 =
9 8237:4
9 ,,,/-46
+ ,-./+
1
&+& )' ' (&
T
/0
/0
+ ,-234 ' (6
70
'(
+
+
.
9 82.3-46 W
r
ee
rP
T
9 8737:46 B
9 8737/4
&+& )' ' (&
;
/0
&+& )'
B '
E
0
9 ,,,/-46 D
Fo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 24 of 35
+
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
*
! % ,
60
Page 25 of 35
*
$
8
8
8
8
8
8
8
8
8
8
8
8
1,
12
1:
1/
1,
12
1:
1/
,
,
,
,
,
,
,
,
,
,
,
,
Fo
$ #
1,
12
1:
1/
A
,D
,8
,8
,8
,D
,8
,8
,8
,D
,8
,8
,8
5
1, 1/
' %
$
"
%
$
&
On
8 ,6 8 ,6, D /
8, 82 ,D/
6 6
8 ,6 8 26 , DD 2
8 ,+ 8 2+ , D /
8 ,6 8 26 , D /
8 ,+ 8 2+ , D /
8 ,+8 2+ , DD 2
8 ,6 8 ,6, D /
8, 82 ,D/
8 ,6 8 26 , D /
8 ,6 8 26 , DD 2
$
URL: http://mc.manuscriptcentral.com/tnah
D ,6 D ,6 DDD :
D ,6 D ,6 DF 7
D ,6 D ,6 DF 7
D ,6 D ,6 DDD 7
D ,+ D ,+ DDD 7
D ,6 D ,6 DF 7
D ,+ D ,+ DF 7
D ,+ D ,+ DDD 7
D ,6 D ,6 DDD 7
D ,6 D ,6 DF 7
D ,6 D ,6 DF 7
D ,6 D ,6 DDD 7
"
4 0H4
ee
rR
ev
iew
rP
+
Journal of Natural History
ly
$
$
&+& )'
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
%
'
5 = U 8/-/.
4
32::4
& &
0' " &
( $
28,,4
' (&
'
)'
'*
=
'
''
0' " &
( $
28,,4
'
')
0' " &
( $
28,,4
')
'
0' " &
+
288;4
0
0
DDD
DF
;
F
DM
;
:
-
/
.
7
7
+
$
;
1
3
3
6' %
.
7
%
3
1
:
1
3
3
3
a
2
.
a
7
:
/7
,/
/
7
;
,.
7.
:/
/7
3
/
a
;
:
:
7;
.
.
-
:
3
,8
.
7
7
3
3
-
/
;
,8
/
7
3
2
,:
;
%
a
7
-
27
:/
7.
:
/
/
:
/;
/7
/7
,7
7
& 6 1+
,/
,:
&+& )'
ly
/7
3
;.
,2
,2
$
On
:7
7;
7;
,,
-
6 a+
URL: http://mc.manuscriptcentral.com/tnah
/
7
;
;
,2
3
28
,:
,2
,;
-
3.
7.
-
+
ee
rR
ev
iew
.-
DDD
1
D DD
MFD
2
rP
FD
FDDD
,
028,,4 A
$
Fo
( $
&
$
# ' "
$
! % 2
Journal of Natural History
$
/
.
3
7
,;
,/
.
.
-
.
,8
,2
,8
,8
,:
,3
,;
Page 26 of 35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
0
,,,7/4 034 (
<
P#
FDDP<
FDDPDDD
FDPDF
<
P#
D
P
5
P
D
P
<
P#
P
PD
D
P
A
8:,834+ 0/4 <
! % :
Page 27 of 35
=
0
A
A
A
A
: 1/
: 1/
: 1/
: 1/
17
17
17
17
%
6
,
.8
$
2
37
8:
83
,2
2
,2
8,:
,:
,8
82/
$
+A
2
,7
,8
,7
,:
,,
,:
2
:
0.4 < " !
+)
0,4 1
+1
$ +)
/
7.
8:
8;
,8
2
,/
8,;
,:
8.
,8
,-
0
0,-.;4 0:4 E
7
3;
8 :8
83
,,
2,
,:
8,:
,/
,8
,8
2,
28
,8
,:
,;
3
./
8:
8;
, ,7
22
,,
8.
,:
,/
,8
8.
2/
9 8737:+
;
33
8:
8.
,8
ly
9 87372+
9 82.3-4+ 0;4 AC
On
URL: http://mc.manuscriptcentral.com/tnah
,8
,2
,8
27
,:
0
0,-234+ 024 (
ee
rR
ev
iew
& &
9 ,,,/-4+ 074 !
rP
32::4
Fo
+
$
Journal of Natural History
+
.
;7
8:
83
,8
,,7
,8
,/
,7
,8
,:
2,
9 8737/4
0
0
9
9
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
!
%
$!
$&
'
""
$
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 28 of 35
#
'
#
$
Page 29 of 35
Fo
r
ee
rP
ew
vi
Re
On
!
$!
"$ &
""
'
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
#
#
$%
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
'()"
$* ! +
')(" / 0
!
/ / !3
,
,
* ')("
!
- . ')(" / 0
!1
')("
$* !
,
* !
* ')(" / 0
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 30 of 35
" #
$%
&
,
')("
* !2
,
')(" /$ $ !
* ')("
!&
* ')(" / $
URL: http://mc.manuscriptcentral.com/tnah
Page 31 of 35
Fo
r
ee
rP
ew
vi
Re
On
&'(! )* )
+
# &'(!
)# #
,
# &'(! ) $ &'(! )# #
% .
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
/
! "
#$
# &'(!
#
&'(! )# #
URL: http://mc.manuscriptcentral.com/tnah
%
#
# &'(!
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
!
%
&
'
(
) *
+'
-
+
, - --
+!
" #
-
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 32 of 35
+
$
- --
%
+
!
- --
Page 33 of 35
Fo
r
ee
rP
ew
vi
Re
On
!
%
&
'
(
)
*'
+* !
,*
" #
*
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
$
-
%
!
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
' ( )
*
+
,
-
/-
-.
$- 0
'
-! " 1
-"
-2
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 34 of 35
! " ##$%
'
1
&
-
Page 35 of 35
Fo
r
ee
rP
ew
vi
Re
On
'
(
)
*+
,
!*
*
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
!!"#
-*
$
% &
Journal of Natural History
Fo
r
ee
rP
% !
"
&
#
#
'
#
0
"
!- .
!
"
(
)* %
( *"
(*
"
#
"
" )* %
+
"
(!
$$%
(*
+
#
,
(*
On
/
$
"
ew
vi
Re
!
!
(
!
(" 1
ly
URL: http://mc.manuscriptcentral.com/tnah
,
2
Page 1 of 33
Morphological variation of Eucyclops elegans (Herrick, 1884) (Copepoda,
Cyclopoida) in the Americas and comments on records of E. conrowae
Fo
Reid, 1992
r
ee
rP
ew
vi
Re
Nancy F. Mercado-Salas* and E. Suárez-Morales
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario Km. 5.5.
Chetumal, Quintana Roo 77014. México
*
Corresponding author: nmercado@ecosur.edu.mx
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
Based on the examination of material of different areas of the American continent, we
evaluate the morphological variations of Eucyclops elegans (Herrick, 1884) with emphasis
on characters used in the current taxonomy of the genus. Eucyclops elegans is clearly a
member of the serrulatus-group. Differences in both females and males of specimens from
Fo
North America and South America and the lack of records in southern Mexico and Central
America suggest that it is possible that this nominal species contains at least two taxa.
r
ee
rP
Characters like the ornamentation of the antennal basis and coxa of P4 are described for the
tropical species E. conrowae Reid, 1992. This species is clearly not a member of the
serrulatus-group and differences with respect to the type specimens indicate that records of
E. conrowae in Mexico do not correspond to this taxon and should be reassigned to other
species.
ew
vi
Re
Key words: serrulatus-group, Eucyclopinae, morphology, systematic, disjunctive
distributions
Introduction
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 2 of 33
As part of an early survey of the freshwater crustaceans of the state of Minnesota, Unites
States, C.L. Herrick described Eucyclops serrulatus var. elegans (Herrick, 1984), it was
originally assigned to the genus Cyclops. He distinguished the new variety from the strict
E. serrulatus (Fisher, 1851) by its greater size (body length= 1.34 mm), elongated
antennules reaching the base of third somite and a distinctly elongated caudal rami. He also
URL: http://mc.manuscriptcentral.com/tnah
Page 3 of 33
noted that the armature of the caudal rami as well as that of the four swimming legs are
identical in these two forms, thus leading him to consider these specimens a variety of E.
serrulatus, the type species of the genus. In addition, he stated that E. pectinifer (Cragin,
1883) has no distinctive characters and synonymized it to E. serrulatus.
Marsh (1912) followed Herrick´s opinion and considered E. elegans as an extreme
Fo
form of E. serrulatus but emphasized its resemblance with E. macruroides (Lilljeborg,
1901). Later on, E. elegans was redescribed and ranked as a distinct species by Kiefer
r
ee
rP
(1929) based on a single female from Mammut-höhle (Mammoth Cave National Park) in
Kentucky, U.S.A. Kiefer (1929) validated E. elegans based on the differences observed in
the antennular hyaline membrane in comparison with E. macruroides and also on other
characters that diverge from the typical E. serrulatus.
ew
vi
Re
More recently, Dussart and Defaye (2006) mentioned that several authors
synonymized E. elegans to E. speratus (Lilljeborg, 1901) but recognize that the European
E. speratus is not present in the Americas and that the American form should be known as
E. elegans. Currently, there are more than 100 American records of E. elegans (including
records as both E. speratus and E. solitarius= synonym of E. elegans) in the literature. The
On
northernmost record is from Saskatchewan, Canada (NMNH-102118, 2013) and the
southernmost one from the Argentinean Patagonia (Dussart and Frutos 1986). Additional
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
records are from U.S.A., Mexico, Cuba, Colombia, French Guiana and Brazil; most of
these are based on its particularly long caudal rami, one of the distinctive characters of E.
elegans (Kiefer 1929; Dussart and Frutos 1986; Elías-Gutiérrez et al. 2008; Mercado-Salas
2009). Additional taxonomically important characters such as the ornamentation of the
antennal basis and the swimming legs 1-4 have been frequently neglected (Reid 1985;
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
Dussart and Frutos 1986; Robertson and Gannon 1990; Dodson and Silva-Briano 1996;
Suárez-Morales and Reid 1998; Rodríguez-Almaráz 2002; Bruno et al. 2005; Frisch et al.
2005; Gaviria y Aranguren 2007; Elías-Gutiérrez-et al. 2008; Mercado-Salas 2009; NMNH
database 2013). This species has not been recorded in the southern regions of Mexico or in
Central America, where other species of Eucyclops (E. prionophorus Kiefer, 1931, E. bondi
Fo
Kiefer, 1934, and E. leptacanthus Kiefer, 1956) have been recorded (Mercado-Salas et al.
2012).
r
ee
rP
Eucyclops conrowae Reid, 1992 is another species described from material from the
United Sates (Everglades, Florida). It has been recorded only in U.S.A., Mexico and
Nicaragua. Reid (1992) found several similarities between E. conrowae and E. agilis (a
synonym of E. serrulatus), but distinguished E. conrowae by the presence of modified,
ew
vi
Re
sclerotized blunt setae on the distal articles of legs 3 and 4. A complementary description of
this species that includes microcharacters currently used in the taxonomy of Eucyclops
(Alekseev et al., 2006; Alekseev & Defaye, 2011) is required to allow complete, detailed
comparisons of the type material with specimens related to other records of this species.
During the development of a project aimed to determine and clarify the species
On
diversity of the genus Eucyclops in Mexico, specimens of E. elegans deposited in different
museums and institutional collections were examined. In this contribution we provide
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 4 of 33
comparative data on the morphological variation of American records of E. elegans from
different parts of the continent and revise its geographic distribution. In addition, we
present morphological comments and a comparative analysis of the records of E. conrowae
in Mexico.
URL: http://mc.manuscriptcentral.com/tnah
Page 5 of 33
Materials and methods
We examined specimens of Eucyclops elegans deposited at the Staatliches Museum für
Naturkunde, Karlsruhe (Germany), Muséum National d´Histoire Naturelle, Paris (France),
National Museum of Natural History Smithsonian Institution in Washington D. C. (U.S.A.),
and at El Colegio de la Frontera Sur (Mexico). The material analyzed includes the
Fo
specimen used by Kiefer (1929) in the redescription of this species from Mammut-Höhle,
Kentucky, U.S.A. We revised type specimens (holotype and paratypes) of E. conrowae
r
ee
rP
deposited in the National Museum of Natural History Smithsonian Institution in
Washington D. C. (U.S.A.) and compared them with Mexican material deposited in the
Zooplankton Collection at El Colegio de la Frontera Sur, Chetumal (Mexico). The
specimens were compared with the descriptions and illustrations by Herrick (1884), Kiefer
ew
vi
Re
(1929) and Dussart and Frutos (1986). Drawings were made at 100X for all the structures
available in the slides. The nomenclature and mapping of rows of spinules and setules on
the antennary basis and on the coxopodite and intercoxal plate of P4 follows Alekseev et al.
(2006) and Alekseev and Defaye (2011). Abbreviations used in the descriptive section are as
follows: P1-P4, first to fourth thoracic limbs; Exp, exopod; Enp, endopod; s, seta(e); ae,
On
aesthetasc; sp, spine; Bsp, basis; Fu, caudal ramus. Caudal setae are named as follows: II –
anterolateral (lateral) caudal seta; III – posterolateral (outermost) caudal seta; IV – outer
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
terminal (terminal median external) caudal seta; V – inner terminal (terminal median
internal) caudal seta; VI – terminal accessory (innermost)caudal seta; VII – dorsal seta.
Abbreviations of the locales compared in the text are Minnesota (MN), Argentina (AR),
Kentucky (KN), Rio Grande, Brazil (BR), and Central Mexico (MX).
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
Results
Order CYCLOPOIDA Rafinesque, 1815
Family CYCLOPIDAE Rafinesque, 1815
Subfamily EUCYCLOPINAE Kiefer, 1927
Genus Eucyclops Claus, 1893
Fo
Eucyclops elegans (Herrick, 1884)
(Figures 1–5)
r
ee
rP
Material examined
Staatliches Museum für Naturkunde, Karlsruhe: One
from Mammut-Höhle, Kentucky,
U.S.A. (SMNK-01144) coll. Prof. Jeannel. Muséum National d´Histoire Naturelle, Paris:
One
(MNHN-Cp7225) and one
(MNHN-Cp7226) from Argentina, coll. S. M. Frutos.
ew
vi
Re
National Museum of Natural History Smithsonian Institution, Washington D. C.: One
(USNM-251652) from Elbow Lake Creek, Becker County, Minnesota, U. S. A., coll. D.K.
Shiozawa, date of collection non available and one
(USNM-242280) from Río Cai, Río
Grande do Sul, Brazil, collected by P. T. C. Chaves at 24.04.1982. Zooplankton Collection
at El Colegio de la Frontera Sur, Chetumal: One
(ECO-CH-Z-04948) from Arroyo en
On
Sierra Fría, 21 Km al Norte de la Labor, Calvillo, Aguascalientes, Mexico, collected by M.
Silva-Briano, 18.02.1989.
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 6 of 33
Among the main meristic and morphometric values used for the determination of
species within the genus Eucyclops (Reid 1985; Morton 1990; Dussart and Defaye 2001;
Suárez-Morales 2004; Alekseev et al. 2006) only slight differences were found among the
populations examined but details of the ornamentation of the antennary basis are important
to mention. The main measurements are summarized in Table I.
URL: http://mc.manuscriptcentral.com/tnah
Page 7 of 33
Morphological remarks and comparisons of the female
The adult females from MN and MX (1.2-1.4 mm) are slightly longer than the AR
specimens (1.1mm). In addition, the Mexican organisms have the entire body ornamented
with small pits forming cuticular patterns (see Figure 1E) which were not observed in the
Fo
other groups of specimens. In all cases the prosome is expanded at first and second somites,
representing 52-54% of total body length. The prosomal fringes are finely serrated in dorsal
r
ee
rP
surface (observed in MX specimens). The shape of the seminal receptaculum was among
the main differences that we observed in the material examined. In specimens from KN,
MX and AR (Figure 1B, E), this structure has the typical shape of the serrulatus-group (see
Alekseev et al. 2006), but in figures presented by Dussart and Frutos (1986) of material
ew
vi
Re
from AR, the posterior lobe is expanded and rounded (see Figure 25 in Dussart and Frutos
1986). The anal operculum in MX specimens is rounded and slightly serrated while in AR
specimens and also in those depicted by Dussart and Frutos (1986) from Argentina, the anal
operculum is smooth but rounded. The length/width ratio of the caudal rami ranges between
6.7 and 8.0 times in all specimens examined. Remarkably, the dorsal seta (VII) is slightly
On
shorter in the North American specimens (KN, MN, MX) than in the South American (AR)
specimens, with a dorsal seta /caudal ramus length ratio = 0.4 in the former group and 0.5-
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
0.6 in the latter (Figure 1A-C, E). In addition, the dorsal seta (VII)/outermost caudal seta
(III) ratio is variable in all specimens, the figure being 0.6 in the MX, 0.8 in MN, 1.0 in
KN, and 1.1 in AR. This ratio was not determined in the BR specimens. The innermost
caudal seta (VI)/outermost caudal seta (III) ratio slightly differs among populations; in the
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
MX and MN specimens the value is 1.0-1.1, whereas it is 1.2-1.3 in the other populations
examined.
The antennules reach the posterior margin of the third prosomite in most specimens
groups, except for the MX material, in which antennules are slightly longer, reaching the
posterior margin of the fourth prosomite. The main differences we observed among the
Fo
different specimens examined are in the ornamentation pattern of the antennary basis. In
both MX and BR the frontal surface has the same pattern except for the MX specimens
r
ee
rP
having all spinule rows with more elements than in the BR (see Table II, Figure 2A, B). It
is important to emphasize that in both populations the spinules of groups N1 and N2 are
continuous, they lack a gap between them as in the typical serrulatus-group (Alekseev et al.
2006, Alekseev and Defaye 2011). The ornamentation pattern on the caudal surface also
ew
vi
Re
differs among populations; in the BR specimens we did not observe rows N7 and N14
which are present in the MX populations. Furthermore, the MX specimens have two extra
rows of spinules (arrowed in Figure 2A, D); on the caudal surface, one between rows N15
and N17 and one on the frontal surface between N13 and N14. We had access to only one
BR specimen so we could not confirm the presence or absence of these rows, but this
On
character should be reviewed in South American populations. If such differences are
consistent, they could represent a character strong enough to consider the BR specimens as
representative of a separate species.
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 8 of 33
The slight differences of the ornamentation, armature and proportions of the Enps
and Exps of the first three swimming legs are summarized in Table I and shown in Figures
2 and 3. The coxal spinules formula of the fourth swimming leg was available only from
MN (A-B-C+D-G-H), BR (A-C+D-E-G-H), and MX (A-C+D-E-F-G-H-J). The
URL: http://mc.manuscriptcentral.com/tnah
Page 9 of 33
ornamentation of the intercoxal sclerite of leg 4 was also examined in these populations. In
all specimens Row I of intercoxal sclerite bears long hair-like spinules, the exception is the
MX material which bears small, strong spinules (see Figure 4G, H). Row II and III are
present in both BR and MX specimens. Row II bears long, strong spinules and is divided
into three sections: two close to the outer margins and the latter are located on the middle
Fo
surface (arrowed Figure 4E) in the BR specimens while in MX this row is continuous and
armed with short but strong spinules (arrowed Figure 4G). The inner coxal spine has a
r
ee
rP
heterogeneous ornamentation in all specimens, the inner margin bears long hairs basally
and spinules distally; the outer edge has 2-4 distal spinules, and long hair-like elements
basally.
The third endopodal segment of the fourth swimming leg is remarkably longer in
ew
vi
Re
the North American specimens, its length/width ratio ranging between 3.2 and 3.5, while in
the South American forms this ratio is 2.4-2.7. The inner spine/length Enp3 P4, outer
spine/length Enp3 P4, inner/outer spines Enp3 P4 ratios and the insertion point of the
lateral caudal seta do not show differences among specimens (see Table I).
In the populations of E. elegans examined the medial seta of the fifth leg is always
On
the longest and the outer seta is shortest; the inner spine is long and strong, always longer
than the outer seta. In the North American specimens, the inner spine/length of segment P5
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
ratio (2.6-2.7) clearly differs from that in the South American populations (3.0-3.8).
It was possible to examine the males for the AR and MX specimens, figures of
males were only available in Dussart and Frutos (1986) from Argentina. We provide a
complementary description of the basic structures of male E. elegans of both populations
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
(AR, MX), values between brackets correspond to those available from Dussart and Frutos
(1986).
Morphological remarks and comparison of the males
The urosome is six-segmented, slightly elongated, the urosomal fringes are strongly
Fo
serrated in both populations examined. The caudal ramus is smooth along both inner and
outer margins, with strong spinules at insertion of lateral seta (both AR and MX). The
r
ee
rP
length/width ratio of caudal ramus = 6.1 in both populations (5). Dorsal seta (VII) of both
MX and AR = 0.5 (0.4) times as long as caudal ramus and 1.8 (1.4) times as long as
outermost caudal seta (III) in AR and 1.2 in MX, outermost caudal seta wider and blunt in
AR specimens (arrowed Figure 5B) . Innermost caudal seta (VI)/outermost caudal seta (III)
ew
vi
Re
ratio = 1.6 (1.6) in AR and 1.1 in MX. The lateral caudal seta (II) is inserted at 75% in AR
while it is at 71% (73%) of ramus length in MX. Armature of antennules as follows (s=
seta, ms=modified seta, ae= aesthetasc, sp= spine); in AR (Figure 5C-D) is 15-segmented:
1(5s+3m), 2(4s), 3(1s+1ms), 4(1s+2ms), 5(1ms), 6(1s), 7(0), 8(0), 9(2s), 10 (1sp),
11(cuticular protuberance arrowed Figure 5D), 11(0), 12(0), 13(0), 14 (1), 15(9). MX
On
(Figure 5I-J) with 15 segmented antennule but with some differences: 1(6s+3ms),
2(4s+1ms), 3(1+2ms), 4(1ms), 5(0), 6(2s), 7(3s), 8(0), 9(1s), 10(4s), 11(0), 12(0), 13(0),
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 10 of 33
14(1), 15(9s+1sp). The intercoxal sclerite of leg 4 shows Row I bearing long hair-spinules
in AR and with short spinules in MX (differences consistent with those found in females),
the spinule formula on the caudal surface only observed in MX: A-C+D-G-H (Figure 5L).
The inner coxal spine has a heterogeneous ornamentation: the inner margin has long, hair
like elements basally and spinules distally in both populations. The outer edge has two
URL: http://mc.manuscriptcentral.com/tnah
Page 11 of 33
spinules on its apical surface and naked proximally (arrowed Figure 5 L,F). Length/width
ratio Enp3= 2.6 in AR and 3.3 in MX, inner spine/ Enp3 P4 length ratio= 1.1 in AR and 1.2
in MX; outer spine/ Enp3 P4 length ratio= 0.8 in both populations; inner/outer spines Enp3
P4 ratio =1.4 in both populations. Modified setae present on Enp and Exp of AR specimen
(arrowed Figure 5F), but all setae in MX normal. The fifth leg (Figure 5 A, G) is
Fo
represented by a free subrectangular segment, 1.9 times longer than wide in AR and 1.8 in
MX; it bears one inner spine and two setae, the medial seta is longer than both the outer and
r
ee
rP
the inner spines in both populations. Proportion medial seta/outer seta is 2.4 in AR and 1.8
in MX; medial seta/inner spine is 1.7 in AR and 1.3 in MX. The sixth leg (Figure 5A, G) is
represented by a small, low plate adjacent to the lateral margin of the genital somite with
one strong but short inner spine and two unequal setae. In both populations the inner spine
ew
vi
Re
reaches the medial margin of the third urosomite, but differences in the relative size of setal
elements are noteworthy. In the AR specimens the inner spine is about 0.9 times longer
than the medial seta while in MX inner spine it is as long as the medial seta; in AR inner
spine is 0.7 times longer than the outer seta while in MX inner spine is 1.6 times longer
than outer seta. Small but strong spinules are present at the insertion of the inner spine.
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
Remarks
Eucyclops elegans is here assigned as a member of the serrulatus-group because it has the
diagnostic characters established by Alekseev and Defaye (2011) to distinguish the group:
1) longitudinal row of spinules along most of outer edge of each ramus and without hairlike setae or denticles on dorsal or ventral surface, 2) antennules 12-segmented, with
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
smooth membrane along 3 distal segments (in the material examined the hyaline membrane
was always finely but uniformly denticulated), 3) frontal side of antennary basipodite with
groups N1 and N2 (both with long hairs in E. elegans), 4) coxopodite of P4 with strong
inner spine (in E. elegans with heterogeneous ornamentation, gap present in all specimens
examined) and 5) fifth leg with wide and strong inner spine.
Fo
With the inclusion of E. elegans in the serrulatus-group we confirm that this species
is not a synonym of E. speratus, a species that is not a member of the serrulatus-group.
r
ee
rP
Reid and Marten (1995) stated that American records of E. speratus should be assigned to
E. elegans, but the evidence presented here support the notion that these records should be
considered separately as there are differences between populations. Also, we support Kiefer
(1929) and Dussart and Frutos (1986) assumption that E. elegans is not a variation of E.
ew
vi
Re
serrulatus because of the several important differences between these two species. On the
frontal surface of the antennary basis, rows N1 and N2 are continuous in E. elegans
whereas these rows are clearly separated in E. serrulatus. Both species share rows N3, N4,
N5, N15 and N17, but E. elegans bears an additional row between N15 and N17 that is not
present in E. serrulatus. The caudal surface of the antennary basis has some additional
On
differences between these two species: row N8 is absent in E. serrulatus and sometimes
N16 is absent too, but in E. elegans both rows are present. In this species one extra row of
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 12 of 33
spinules is present, between N13 and N14; these are absent in E. serrulatus. Slight
differences in the ornamentation of the antennary basis were observed among the
specimens groups of E. elegans; these differences should be evaluated in all American
populations in order to establish if they represent separate species or are intraspecific
variations. It is also important to emphasize that the male P6 of E. elegans of both
URL: http://mc.manuscriptcentral.com/tnah
Page 13 of 33
populations examined (AR and MX) are remarkably different from that of E. serrulatus, E.
speratus, E. neumani titicacae and most of the American species of the genus, bearing a
small but strong inner spine which barely reaches the medial margin of the third urosomite.
The proportions of setae and spine of P6 should be considered important in the separation
of the populations examined; this character alone could be useful to distinguish species,
Fo
together with the antennules ornamentations. These differences separate the South
American from the North American populations, so sampling the type locality of E.
r
ee
rP
solitarius (Herbst, 1959) (considered as a synonym of E. elegans) should be useful to
analyze the micro-patters studied herein and establish if in fact the North and South
America populations represent different species. The differences advanced herein suggest
that that they belong to different taxa, but are members of the serrulatus-group, whose
ew
vi
Re
diversity in the Americas appears to be underestimated.
Other American Eucyclops with long caudal rami include E. neumani s.str. and E.
neumani titicacae, both have a caudal ramus with spinules only in the area adjacent to the
lateral caudal seta (II). Among other characters, the former subspecies (E. neumani
neumani) differs from E. elegans, E. serrulatus and E. neumani titicacae in details of the
On
antennary ornamentation, with group N1 formed by spinules and not hair-like elements.
Eucyclops neumani titicacae also differs from E. elegans and E. serrulatus for its unique
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
ornamentation pattern of the intercoxal plate of P4 (see Fig. 13 Kiefer 1957; Fuentes and
Suárez-Morales in press).
Eucyclops conrowae Reid, 1992
(Figures 6–7)
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
Material examined
National Museum of Natural History Smithsonian Institution, Washington D. C.:
holotype (USNM- 251325) from Shark River Slough, Everglades National Park, Florida, U.
S. A., coll. R. Conrow, 1986. One
paratype (USNM-251327), same locality, date, and
collector. Zooplankton Collection at El Colegio de la Frontera Sur, Chetumal: One
Fo
(ECO-CH-Z-05294) from San José del Anteojo, Cuatro Ciénegas de Carranza, Mexico,
coll. E. Walsh, 08.07.2006 and one
(ECO-CH-Z-04829) from Creek closet o Túnel de
r
ee
rP
Potrerillos, Rincón de Romos, Aguascalientes, Mexico, coll. M. Silva-Briano, 17.10.1992.
We present a detailed description of the armature and ornamentation of the antennules,
antennae and the fourth swimming leg in order to provide an updated overview of the
ew
vi
Re
structures and microcharacters currently used in the taxonomy of Eucyclops. A comparison
with Mexican material is also provided.
Description of selected characters
Antennule (Figure 6B-C): 12-segmented, with finely denticulated membrane hyaline on
On
segments 10-12. Armature per segment as follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s),
6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(8s). Transversal row of strong
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 14 of 33
spinules on first segment. Spine on sixth segment remarkably short, not reaching medial
margin of seventh antennular segment.
Antenna (Figure 6D-E). Coxa (no seta), basis (2s+Exp), plus 3-segmented Enp (armature:
1s, 9s, 7s, respectively). Basis with following rows of spinules and number of elements on
frontal surface: N3(6), N4(5), N5(9), N6(4), N17(10), N15(3), additional row between N15
URL: http://mc.manuscriptcentral.com/tnah
Page 15 of 33
and N17. Spinules on caudal surface as: N7(4), N8(4), N9+N10(8), N11(4), N12(4),
N13(4).
Leg 4 (Figure 7E-F): Frontal surface of intercoxal sclerite with one transverse row of small
spinules on middle margin (arrowed Figure 7E), caudal surface with row I bearing strong
and small spinules with a small gap in the middle section, Row II with strong and small
Fo
spinules only on outer margins and Row III bearing strong and small spinules also, only on
outer margins. Frontal surface of coxa with row of small spinules at insertion of basipod.
r
ee
rP
Inner coxal spine with heterogeneous ornamentation; inner margin basally with long hairs
and proximally with strong spinules, outer edge with three strong spinules on distal surface,
naked basally. Caudal coxal surface with spinules formula: A-C+D-E-G-H.
Remarks
ew
vi
Re
In the original description of E. conrowae Reid (1992) advanced the shape of the seminal
receptacle as one of the main distinguishing characters of the species. In the holotype the
receptacle has the posterior expansion about twice as wide as the anterior expansion (Reid,
1992, figure 2c). Our observations of one of the paratypes revealed a seminal receptacle
On
with the typical shape of the serrulatus-group (Figure 6A). A unique character that
separates E. conrowae from other known American species is a remarkably long dorsal
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
seta, which is as long as the caudal ramus. In other American species with short caudal rami
like E. delachauxi Kiefer, 1926, E. prionophorus Kiefer, 1931, E. pseudoensifer Dussart,
1984, E. cuatrocienegas Suárez-Morales and Walsh, 2009, and E. chihuahuensis SuárezMorales and Walsh, 2009, the dorsal seta is always less than 0.6 times as long as the caudal
rami. Eucyclops bondi Kiefer, 1934 is yet another congener with a long dorsal seta but its
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
length does not exceed 0.8 times as long as the caudal ramus. The ornamentation of the
antennary basis of E. conrowae is completed herein; on the frontal surface we found rows
N3, N4, N5, N6, N15 and N17 in both the holotype and paratype specimens, but we also
found an extra row of spinules between rows N15 and N17. This additional row was
observed also in specimens of E. elegans from Mexico and it is present in E. angeli
Fo
Gutiérrez-Aguirre and Cervantes- Martínez (in press) from Chiapas, Mexico. This extra
row of spinules seems to be a character shared by species of Eucyclops from Mexico, as we
r
ee
rP
will report in more detail and with additional data in a forthcoming paper. It is important to
mention that rows N1 and N2 were absent in the holotype and paratype specimens of E.
conrowae, thus clearly showing that it is not assignable to the serrulatus-group (Alekseev
and Defaye 2011).
ew
vi
Re
The ornamentation of the coxal plates of the swimming legs, especially that of P4 is
among the characters that have been pointed out as informative in recent taxonomic works
on Eucyclops (Alekseev et al. 2006; Alekseev and Defaye, 2011; Gutiérrez-Aguirre et al. in
press) In E. conrowae the P4 coxal plate presents a unique spinulation pattern on its frontal
surface , with one continuous row of strong spinules along the middle margin, thus
On
differing from the Mexican specimens examined, in which this row is clearly divided into
two groups, one at each side of the sclerite. The pattern on the caudal surface has the
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 16 of 33
ornamentation usually found in Eucyclops, bearing rows I-III. Among the groups of
elements of the caudal coxal surface, row J is absent in E. conrowae.
The presence of modified setae of the swimming legs appears to be a frequent
character in some species of Eucyclops, but the highly modified setae on the third exopodal
segment of P4 of E. conrowae are unique, as mentioned by Reid (1992). In many
URL: http://mc.manuscriptcentral.com/tnah
Page 17 of 33
specimens from Mexico these setae are modified but none of them are heavily sclerotized
as in the type material of E. conrowae; thus, specimens assigned to E. conrowae should be
revised in order to confirm the presence of this species in the country.
Discussion
Fo
Among the 108 species and subspecies currently recognized as members of the genus
Eucyclops, 17 have been assigned to the serrulatus-group (Alekseev and Defaye 2011). Our
r
ee
rP
observations on E. elegans allowed us to include this species as a member of the E.
serrulatus species group. It should be emphasized that some consistent differences were
found to separate the South American and North American specimens. These differences
should be reviewed in order to establish if they represent the same or different taxa.
ew
vi
Re
Records of E. speratus in the Americas should be named as E. elegans as previously
established by Reid and Marten (1995). It is shown once more that the inclusion of
characters present in males such as the sixth leg and the ornamentation of the antennules
are helpful to define the limits of species of Eucyclops. Furthermore, E. conrowae is not
assignable to the serrulatus-group and previous records from Mexico and Nicaragua should
On
be reviewed in order to establish the distribution of this species, because at least in the
Mexican material examined we did not find specimens with the remarkably long dorsal seta
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
(VII) and the strongly sclerotized setae of the P4 exopod that are distinctive characteristics
of this species.
Acknowledgements
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
We gratefully acknowledge the support of Dr. Hans-Walter Mittmann, Staatliches Museum
Für Naturkunde, Karlsruhe, Dr. Danielle Defaye, Muséum National d´Histoire Naturelle,
Paris, Dr. Frank Ferrari and Dr. Chad Walter, National Museum of Natural History
Smithsonian Institution, Washington D. C., and Rosa María Hernández, El Colegio de la
Frontera Sur, Chetumal for loaning the material examined in this work. This work is part of
Fo
the first author’s (NFM-S) Doctoral Thesis developed at El Colegio de la Frontera Sur
(ECOSUR). This contribution was supported by CONACyT project 133404-Investigación
r
ee
rP
Científica Básica 2009.
References
Alekseev V, Defaye D. 2011. Taxonomic differentiation and world geographical
ew
vi
Re
distribution of the Eucyclops serrulatus group (Copepoda, Cyclopidae,
Eucyclopinae). In: Defaye D, Suárez-Morales E, von Vaupel Klein JC (Eds) Studies
on freshwater Copepoda: a volume in honour of Bernard Dussart. Koninklijke Brill
NV, Leiden, 41–72.
Alekseev V, Dumont HJ, Pensaert J, Baribwegure D, Vanfleteren JR. 2006. A redescription
On
of Eucyclops (Fischer, 1851) (Crustacea: Copepoda: Cyclopoida) and some related
taxa, with a phylogeny of the E. serrulatus-group. Zool Scr. 35: 123–147.
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 18 of 33
Bruno MC, Reid JW, Perry SA. 2005. A list and identification key for the freshwater, freeliving copepods of Florida (U.S.A.). J Crust Biol. 25: 384–400.
Dodson SI, Silva-Briano M. 1996. Crustacean zooplankton species richness and
associations
in
reservoirs
and
ponds
of Aguascalientes
Hydrobiologia 325: 163–172.
URL: http://mc.manuscriptcentral.com/tnah
State,
Mexico.
Page 19 of 33
Dussart BH, Defaye D. 2006. World Directory of Crustacea Copepoda of Inland Waters IICyclopiformes. Backhuys Publishers, Leiden-The Netherlands, 334 pp.
Dussart BH, Frutos SM. 1986. Sur quelques Copépodes d´Argentine 2. Copépodes du
Paraná Medio. Rev Hydrobiol Trop. 19(3-4): 241–262.
Elías-Gutiérrez M, Suárez-Morales E, Gutiérrez-Aguirre MA, Silva-Briano M, Granados-
Fo
Ramírez JG, Garfias-Espejo T. 2008. Cladocera y Copepoda de las aguas
continentales de México guía ilustrada. Universidad Nacional Autónoma de
r
ee
rP
México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, El
Colegio de la Frontera Sur, Consejo Nacional de Ciencia y Tecnología, Secretaría
de Medio Ambiente y Recursos Naturales, México DF-México, 322 pp.
Frisch D, Threlkeld ST. 2005. Flood-mediated dispersal versus hatching: Early
ew
vi
Re
recolonization strategies of copepods in floodplain ponds. Freshw Biol. 50: 323–
330.
Fuentes J, Suárez-Morales E. First record of the freshwater copepod Eucyclops titicacae
Kiefer, 1957, new rank (Copepoda, Cyclopoida) in Colombia. Biota Neotrop. (in
press).
On
Gaviria S, Aranguren N. 2007. Especies de vida libre de la subclase Copepoda
(Arthropoda, Crustacea) en aguas continentales de Colombia. Biota Colomb. 8: 53–
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
68.
Gutiérrez-Aguirre, MA, NF Mercado-Salas, A. Cervantes-Martínez. Description of
Eucyclops tziscao sp. n., E. angeli sp. n., and report on a new record of E. festivus
Lindberg, 1955 (Cyclopoida, Cyclopidae, Eucyclopinae) in Chiapas, Mexico.
Zookeys (in press).
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
Herbs HV. 1959. Brasilianische Süsswassercyclopoiden (Crustacea Copepoda). Gew Abw.
24:49–73.
Herrick CL. 1884. A final report on the Crustacea of Minnesota included in the orders
Cladocera and Copepoda. 12th Ann. Rep. Geol. Nat. Hist. Surv. Minn. 5: 191 pp.
Kiefer F. 1957. Freilebende Ruderfu krebse (Crustacea Copepoda) des Titicacasees. Ver.
Fo
Zool Staatssamml München. 4:125–150.
Kiefer, F. 1929. Beiträge zur Copepodenkunde (XII). Zool Anz. 80(10-12): 305-309.
r
ee
rP
Mercado-Salas NF 2009. Diversidad y Distribución de los Cyclopoida (Copepoda) de las
zonas Áridas del Centro-Norte de México. M.Sc. Thesis, Chetumal, Quintana Roo:
El Colegio de la Frontera Sur.
Mercado-Salas NF, Pozo C, Morrone JJ, Suárez-Morales E. 2012. Distribution patterns of
ew
vi
Re
the American species of the freshwater genus Eucyclops (Copepoda: Cyclopoida). J
Crust Biol. 32: 457–464.
Reid JW, Marten GG. 1995. The cyclopoid copepod (Crustacea) fauna of non-planktonic
continental habitats in Louisiana and Mississippi. Tul Stud Zool Bot. 30:39–45.
Reid JW. 1985. Chave de identificação e lista de referências bibliográficas para as espécies
On
continentais Sulamericanas de vida livre da Ordem Cyclopoida (Crustacea,
Copepoda). Bol Zool Univ São Paulo 9: 17–143.
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 20 of 33
Reid JW. 1992. Copepoda (Crustacea) from fresh waters of the Florida Everglades, U.S.A.,
with a description of Eucyclops conrowae n. sp. Trans Am Microsc Soc. 111: 229–
254.
Robertson A, Gannon JE. 1981. Annotated checklist of the free-living copepods of the
Great lakes. J Gr Lakes Res. 7(4): 382–393.
URL: http://mc.manuscriptcentral.com/tnah
Page 21 of 33
Rodríguez-Almaráz GA. 2000. Informe final del Proyecto S104: Biodiversidad de los
crustáceos dulceacuícolas del centro de Nuevo León y noreste de Tamaulipas.
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México DFMéxico, 33 pp.
Suárez-Morales E, Reid JW. 1998. An updated list of the free-living freshwater copepods
Fo
(Crustacea) of Mexico. Southwest Nat. 43: 256–265.
r
ee
rP
ew
vi
Re
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
URL: http://mc.manuscriptcentral.com/tnah
Journal of Natural History
Figure captions
Figure 1. Eucyclops elegans (Herrick, 1884) adult females. A. urosome, ventral KN; B.
urosome, ventral AR; C. caudal rami, MN; D. P5 MN; E. Urosome, ventral MX.
Figure 2. Eucyclops elegans (Herrick, 1884) adult females. A. antenna, caudal MX; B.
Fo
antenna, caudal BR; C. basipodite antenna, frontal BR; D. basipodite antenna,
r
ee
rP
frontal MX; E. P1 MX; F. intercoxal sclerite P1, frontal MX; G. P1 AR; H. P1 MN.
Figure 3. Eucyclops elegans (Herrick, 1884) adult females. A. P2 MN; B. P2 AR; C.
endopod P2 MX; D. exopod P2 MX; E. intercoxal sclerite P2, frontal MX; F.
intercoxal sclerite P2, caudal MX; G. Coxa P2 MX; H. exopod P3 MN; I. endopod
P3 MN; J. coxal MN; K. intercoxal sclerite P3, caudal AR; L. endopod P3 MX, M.
ew
vi
Re
exopod P3 MX; N. intercoxal sclerite P3, caudal MX; O. intercoxal sclerite P3,
frontal MX.
Figure 4. Eucyclops elegans (Herrick, 1884) P4 of adult females. A. MN; B. KN; C. AR;
D. Endopod AR; E. enp3 BR; F. Coxa BR; G. coxa and intercoxal sclerite, caudal
MX; H. coxa and intercoxal sclerite, frontal MX; I. endopod MX; J. exopod MX.
On
Figure 5. Eucyclops elegans (Herrick, 1884) adult males; A-F AR, G-L MX. A. P5 and P6.
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 22 of 33
B. caudal rami; C. antennules; D; antennules; E. antennules; F. P4. G. P5 and P6;
H. caudal ramus; I. antennules; J. antennules; K. Basis antenna, frontal. L. P4.
Figure 6. Eucyclops conrowae Reid, 1992, adult female paratype (USNM-251327). A.
urosome, ventral; B. antennules; C. antennules; D. antenna, frontal; E. basis
antenna, caudal; F. labrum. G. mandible; H. maxillule; I. maxilla.
URL: http://mc.manuscriptcentral.com/tnah
Page 23 of 33
Figure 7. Eucyclops conrowae Reid, 1992, adult female paratype (USNM-251327). A. P1;
B. P2; C. P3, frontal; D. intercoxal sclerite P3, caudal; E. P4, frontal; F. P4, caudal.
Fo
r
ee
rP
ew
vi
Re
On
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
URL: http://mc.manuscriptcentral.com/tnah
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 24 of 33
Kiefer
(1929)
Dussart
and
Frutos
(1986)
-
% of covering of spinules CR
VII/Length CR
VII/III setae CR
VI/IV setae CR
II seta inserted CR
Length/width Enp3 P1
Apical spine/length Enp3 P1
Length/width Enp3 P2
Apical spine/length Enp3 P2
Length/width Enp3 P3
-
-
-
-
-
81
1.3
1.2
0.5
73
7.7
-
-
-
-
-
79
1.3
1.1
0.5
70
6.8
1.10 mm
-
-
-
-
-
84
1.2
1.0
0.4
64
7.8
-
2.3
1.2
2.0
1.0
1.5
79
1.2
1.0
0.5
66
8.0
On
URL: http://mc.manuscriptcentral.com/tnah
-
-
-
2.3
1.0
2.0
1.1
1.6
ly
72
1.0
0.8
0.4
83
6.7
-
-
-
-
-
-
-
-
-
-
-
-
-
Mammut Argentina Minessota Río Cai,
Höhle
Brazil
(MNHN(USNMCp7225)
251652) (USNM(01144)
242280)
ee
rR
ev
iew
rP
Herrick
(1884)
Length/width CR
Fo
1.31 mm
Character
Average length (excluding caudal
setae)
literature.
2.5
0.7
2.3
0.9
1.5
70
1.1
0.6
0.4
60
8
1.24 mm
(ECOCH-Z04948)
Mexico
Table 1. Morphometric data of populations of E. elegans obtained from the examinations of specimens and from the available
Journal of Natural History
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 25 of 33
-
-
Length/width P5
Medial/outer setae P5
Medial seta/Inner spine P5
Inner spine/lenght P5
-
1.4
0.7
1.0
3.2
-
1.2
0.8
1.0
2.6
-
1.3
0.7
0.9
3.5
-
3.8
1.4
2.1
1.2
65
-
-
-
-
68
3
1.6
2.3
2.3
64
1.3
0.8
1.0
2.4
1.0
On
URL: http://mc.manuscriptcentral.com/tnah
2.6
1.4
1.6
1.7
69
ee
rR
ev
iew
rP
-
Lateral inserted
Inner/outer spines Enp3 P4
Outer spine/length Enp3 P4
Inner spine/length Enp3 P4
Fo
-
Length/width Enp3 P4
-
-
Apical spine/length Enp3 P3
Journal of Natural History
ly
2.6
1.7
2.4
1.2
65
1.2
0.8
1.0
3.2
1.0
-
-
-
-
70
1.3
0.8
1.0
2.7
-
2.6
1.4
1.7
1.9
62
1.3
0.7
0.9
3.5
0.8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
E. neumani
titicacae (Alekseev
and Defaye 2011)
E. conrowae (type
specimens)
3
5
NP
6
6
NP
-
-
-
IIIIV
VIX
III
I-II
XVI
6
7
7
-
7
8-9
9
2
6
12
13
1216
5
5
2
6
5
3
-
4-5
1-4
NP
6
NP
?
6
18
5-8
3-4
4-5
7
7
?
3
?
6
-
-
-
5
8
4
5-8
9
3
3
5-6
8
9
7
5
-
10
3
7
-
3-5
5-6
5-6
9
11
5
5
5
7
3
4
6
7
-
2
-
6
13
3
NP
5
ly
4-5
7
6-8
12
12
10
On
URL: http://mc.manuscriptcentral.com/tnah
5
6
20
7
9
7-8
8
4
5
ee
rR
ev
iew
9
rP
XI
2
VIVIII
1
Fo
Species
E. elegans
(USNM-242280)
Brazil
E. elegans
(ECO-CH-Z04948
Mexico)
E. serrulatus A
(Alekseev and
Defaye 2011)
E. serrulatus B
(Alekseev and
Defaye 2011)
E. speratus
(Alekseev et al.,
2006)
E. neumani s.str.
(NMHNCp7233)
NP
5
8
2-5
3-4
5-8
13
14
?
3
4
-
4-6
4-5
4-5
5
15
2
NP
8
7
5
-
-
14
16
?
9
8
1012
910
1013
16
17
9
Table 2. Comparison of the surface-ornamentation pattern of the antennal basis in some species of Eucyclops. Coding of the particular
element follows Alekseev and Defaye (2011); Roman numerals, hair-like elements; Arabic numerals, spinules; ?, structure not
observed; NP, structure absent.
Journal of Natural History
Page 26 of 33
Page 27 of 33
Fo
r
ee
rP
ew
vi
Re
On
%
&!" ' () &!"
*
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
!" #
&+
$"
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
% &
#$" ' &
!" * (
$"
(
!"
+
(
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 28 of 33
!" #
!"
)
#$"
(
Page 29 of 33
Fo
r
ee
rP
ew
vi
Re
On
! "#$ %
*
*
! "($
"#$ ,
*
*
"($ #
!
"#$ *
*
"($
"#$ .
*
*
"($ 0
!
!
*
URL: http://mc.manuscriptcentral.com/tnah
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
&$ '
! "($ )
"($ + ' *
! "($
&$ /
"( "
"(
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
( #&"
% ) #&" *
)
)
,
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 30 of 33
!" # $!" %
)
+"
+" -
)
+
URL: http://mc.manuscriptcentral.com/tnah
&" '
)
&"
+"
Page 31 of 33
Fo
r
ee
rP
ew
vi
Re
On
*
&
- (
" &
! " # $%
&'
.
# &
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
&
URL: http://mc.manuscriptcentral.com/tnah
&' (
+
)
,
Journal of Natural History
Fo
r
ee
rP
ew
vi
Re
On
)+
),
)
0
)1
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Page 32 of 33
!" # $ %& '
)
0
URL: http://mc.manuscriptcentral.com/tnah
.
(
)*
- )/
Page 33 of 33
Fo
r
ee
rP
ew
vi
Re
On
(+
,
'$
(
'-
ly
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Journal of Natural History
!" # $
(
'-
URL: http://mc.manuscriptcentral.com/tnah
% & ' ( ) ' ( * '$
CAPÍTULO IV.
REVISIÓN TAXONÓMICA DE LOS EUCYCLOPS DE MÉXICO Y EVALUACIÓN
DE NUEVOS CARACTERES MORFOLÓGICOS PARA SU IDENTIFICACIÓN
A peer-reviewed open-access journal
ZooKeys 351: 1–30 (2013)
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
doi: 10.3897/zookeys.351.5413
RESEARCH ARTICLE
www.zookeys.org
1
Launched to accelerate biodiversity research
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and
a new record of E. festivus Lindberg, 1955 (Cyclopoida,
Cyclopidae, Eucyclopinae) in Chiapas, Mexico
Martha Angélica Gutiérrez-Aguirre1,†, Nancy Fabiola Mercado-Salas2,‡,
Adrián Cervantes-Martínez1,§
1 Universidad de Quintana Roo (UQROO), Unidad Cozumel, Av. Andrés Quintana Roo s/n, 77600, Cozumel,
Quintana Roo México 2 El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario Km. 5.5.
Chetumal, Quintana Roo 77014. México
† http://zoobank.org/D483F129-B176-4144-A568-5A1A0B26F41F
‡ http://zoobank.org/313DE1B6-7560-48F3-ADCC-83AE389C3FBD
§ http://zoobank.org/270DEC5B-73CE-460E-80EC-D59DB1995054
Corresponding author: Martha A. Gutiérrez-Aguirre (margutierrez@uqroo.mx; marguta71@gmail.com)
Academic editor: Danielle Defaye | Received 26 April 2013 | Accepted 31 October 2013 | Published 15 November 2013
http://zoobank.org/D7E7117C-368A-423F-B6ED-1E4E35B6528C
Citation: Gutiérrez-Aguirre MA, Mercado-Salas NF, Cervantes-Martínez A (2013) Description of Eucyclops tziscao sp.
n., E. angeli sp. n., and a new record of E. festivus Lindberg, 1955 (Cyclopoida, Cyclopidae, Eucyclopinae) in Chiapas,
Mexico. ZooKeys 351: 1–30. doi: 10.3897/zookeys.351.5413
Abstract
Two new species of the freshwater cyclopoid genera Eucyclops are described, Eucyclops tziscao sp. n. and
E. angeli sp. n. Both species belong to the serrulatus-group defined by morphological features such as: the
presence of distal spinules or hair-like setae (groups N1 and N2) on frontal surface of antennal basis; the
fourth leg coxa with a strong inner spine that bears dense setules on inner side, yet proximally naked (large
gap) on outer side; and a 12-segmented antennule with smooth hyaline membrane on the three distalmost
segments. Eucyclops tziscao sp. n. is morphologically similar to E. bondi and E. conrowae but differs from
these species in having a unique combination of characters, including a caudal ramus 4.05±0.25 times as
long as wide, lateral seta of Enp3P4 modified as a strong, sclerotized blunt seta, coxal spine of fourth leg
with inner spinule-like setules distally, and sixth leg of males bearing a strong and long inner spine 2.3
times longer than median seta. Eucyclops angeli sp. n. can be distinguished by an unique combination of
morphological features: the short caudal ramus; the long spine on the sixth antennular segment of A1; the
presence of one additional group of spinules (N12’) on the caudal surface of A2; the presence of long setae
Copyright Martha A. Gutiérrez-Aguirre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
in females, or short spinules in males on the lateral margin of fourth prosomite; the strong ornamentation
of the intercoxal sclerite of P4, specially group I modified as long denticles; the distal modified setae of
Exp3P3 and Exp3P4 in females and males; and the short lateral seta of P5. Finally, we report on a new
record of E. festivus in México, and add data on morphology of the species.
Keywords
Copepoda, description, freshwater, free-living, Neotropical
Introduction
Eucyclops Claus, 1893 is the largest genera of the subfamily Eucyclopinae, currently comprising up to 108 species and subspecies distributed mainly in the tropics
(Dussart and Defaye 2006, Alekseev and Defaye 2011). Because of its high diversity,
this group is one of the taxonomically most challenging genera within the freshwater Copepoda, with several problematic taxa and with high intraspecific variation
in some species groups. Also, many Eucyclops species are poorly described, therefore
the taxonomic position of them remain uncertain (Collado et al. 1984, Reid 1985,
Ishida 1997, Suárez-Morales 2004, Mercado-Salas et al. 2012). Nonetheless significant attempts have been made to revise the most problematic species groups in the
genus: Ishida (1997, 2001, 2002, 2003) revised the “serrulatus-like” and “speratus-like
species” from Japan; while Alekseev et al. (2006) and Alekseev and Defaye (2011)
provided a world-scale overview of the taxonomy and zoogeography of the Eucyclops
serrulatus-group. These studies revealed the diagnostic significance of many previously neglected characters [e.g. ornamentation of the antennal basis and swimming
legs (the fourth leg in particular), or pore signature] which might be also useful in the
delineation of other taxa.
In the Americas there are more than 800 records of the genus, corresponding to 28
nominal species, most of which are distributed in the eastern of United States, México,
Argentina, and Brazil. Approximately 38% of these records have been assigned to the
problematic taxa Eucyclops serrulatus (Fischer, 1851) and Eucyclops agilis (Koch, 1838)
(Lindberg 1955, Collado et al. 1984, Reid 1985, Suárez-Morales 2004, Bruno et al.
2005, Frisch and Threlkeld 2005, Gaviria and Aranguren 2007, Elías-Gutiérrez et al.
2008, Suárez-Morales and Walsh 2009, De los Ríos et al. 2010).
In México 13 species have been recorded so far: E. agilis (synonym of E. serrulatus),
E. bondi Kiefer, 1934; E. chihuahuensis Suárez-Morales & Walsh, 2009; E. conrowae
Reid, 1992; E. cuatrocienegas Suárez-Morales & Walsh, 2009; E. elegans (Herrick, 1884),
E. festivus Lindberg, 1955; E. leptacanthus Kiefer, 1956; E. pectinifer (Cragin, 1883),
E. prionophorus Kiefer, 1931; E. pseudoensifer Dussart, 1984; E. serrulatus (probably
E. pectinifer) and E. torresphilipi Suárez-Morales, 2004 (Lindberg 1955, Zamudio-Valdéz
1991, Suárez-Morales and Reid 1998, Suárez-Morales 2004, Mercado-Salas 2009).
Grimaldo-Ortega et al. (1998), Elías-Gutiérrez (2000), Rodríguez-Almaraz (2000),
Suárez-Morales (2004), and Mercado-Salas (2009) have documented morphological
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
3
differences between the Mexican populations and the original descriptions of those
Eucyclops taxa, which indicated that a few undescribed species might have been hidden under the name of the “cosmopolitan” species. Also Suárez-Morales (2004) and
Suárez-Morales and Walsh (2009) mentioned that the species richness of Eucyclops in
Mexico could be underestimated.
In agreement with this assumption, we describe two new Eucyclops species and report the new record of a third one in Chiapas, México. Chiapas is one of the hydrologically richest regions in Mexico, with numerous and diverse aquatic environments such
as rivers, lakes, lagoons, reservoirs and a large coastline (Velázquez-Velázquez 2011).
Although in recent years substantial progress has been made in the knowledge about
the freshwater fauna in this region (mainly fishes), hardly anything is known about
other animal groups, such as the crustaceans for instance (Velázquez-Velázquez 2011).
The knowledge of the copepod fauna in Chiapas and the cyclopoids in particular,
is almost null; only eighteen species have been recorded (Suárez-Morales 2004, Gutiérrez-Aguirre et al. 2006, Elías-Gutiérrez et al. 2008, Gutiérrez-Aguirre and CervantesMartínez 2013). Thus the goal of this study is to contribute to the basic knowledge of
the freshwater Copepoda of this region.
Methods
The samples were collected from the limnetic zone of Laguna Tziscao, as well as from
the littoral of some ephemeral or permanent reservoirs in Chiapas (México) in 20002001. The collecting sites (1500 masl) are shown in Fig. 1. The samples were collected by standard plankton net of 0.05 mm mesh-size, performing near-shore and
limnetic plankton trawls. The biological specimens were fixed and preserved in 70%
ethanol, and then processed for identification following the techniques described by
Reid (2003). All adult Eucyclops in the samples were identified to species level.
The specimens were dissected with tungsten needles and the appendages were
mounted in glycerin for taxonomic analysis. The mouth parts, swimming legs, and
other taxonomically important structures were illustrated with the aid of a camera
lucida. Specimens were deposited in the Collection of Zooplankton of ECOSUR at
Chetumal, Mexico (ECO-CH-Z), in the Collection of Copepoda of the Muséum
National d’Histoire Naturelle (MNHN-IU) Paris, and in the Colección Nacional
de Crustáceos (CNCR) del Instituto de Biología, Universidad Nacional Autónoma
de México. Examination of the specimens has been performed following the current
methods used in the morphological investigations of Eucyclopinae (Alekseev 2000,
Alekseev et al. 2006).
Abbreviations used in the descriptions are as follows: A1, antennule; A2, antenna;
P1-P4, first to fourth swimming legs; P5, fifth leg; Exp, exopod; Enp, endopod; s,
seta(e); ae, aesthetasc; sp, spine; Bsp, basis; Fu, caudal ramus. The terminology used for
the armament of the antenna and swimming limbs is what was proposed by Alekseev
et al. (2006) and Alekseev and Defaye (2011).
4
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 1. Collecting sites at Chiapas, México. 1 San Cristóbal de las Casas 2 Pond 3 to Laguna Montebello
3 Laguna Tziscao.
Results
Order Cyclopoida Burmeister, 1834
Family Cyclopidae Dana, 1846
Subfamily Eucyclopinae Kiefer, 1927
Genus Eucyclops Claus, 1893
Eucyclops tziscao Mercado-Salas, sp. n.
http://zoobank.org/967E9152-65BF-4F59-9D91-ACFF91C7834B
http://species-id.net/wiki/Eucyclops_tziscao
Figs 2–4
Synonym. Eucyclops bondi: Gutiérrez-Aguirre and Cervantes-Martínez (2013), Table 1.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
5
Table 1. Comparative material: locality and data on slide labels.
Species
Slide reference number
SMNK 02079, female sp. n., Trou Caiman, Haiti. 16.02.1933
SMNK 02080, male, Typus, Trou Caiman, Haiti, 16.02.1933
Eucyclops bondi
SMNK 02393, female, Laguna Rincon, Haiti
SMNK 02394, female, Laguna Rincon, Haiti
USNM-251325, holotype, Id: Janet W. Reid; Collector: R. Conrow; Shark River
Slough, Everglades National Park, Florida, United States. 1986.
Eucyclops conrowae
USNM-251327, paratype; Id: Janet W. Reid; Collector: R. Conrow; Shark River
Slough, Everglades National Park, Florida, United States. 1986.
Material examined. Holotype: Adult ʇ specimen dissected, mounted in glycerin
sealed with Entellan (ECO-CH-Z-08970). Allotype: Adult ʈ, dissected, mounted
in glycerin sealed with Entellan (ECO-CH-Z-08971). Paratypes: Eight adult ʇʇ,
one adult ʈ and two copepodites undissected ethanol-preserved (90%) (ECO-CHZ-08972); three adult ʇʇ, undissected, ethanol-preserved (90%) (CNCR-27840).
The types were collected at 15.April.2000 by A. Cervantes-Martínez, M. A. GutiérrezAguirre and M. Elías-Gutiérrez.
Comparative material. To complement the morphological analysis, we also
examined the type specimens of E. bondi deposited in the Staatliches Museum für
Naturkunde Karlsruhe (SMNK) from Kiefer’s collection, and the type specimens of E.
conrowae deposited in the National Museum of Natural History Smithsonian Institution, in Washington D. C. (USNM) (Table 1).
Type locality. Laguna Tziscao, Chiapas, México (16°05'19"N; 91°40'10"W). At
sampling the maximum depth was 74.5 m, the water temperature 22°C, and the dissolved oxygen 6.6 mg L-1. The system is considered as one of the deepest, oligotrophic
lagoons in the southern Mexico, with karstic origin, located in Lagunas de Montebello
National Park which belongs to the Usumacinta biogeographic province.
Etymology. The species name is a noun in apposition that makes reference to the
Lagoon where the species was collected from. Tziscao (Tz´isk´a´aw) is a term composed by two words in the chuj local language (one of the Mayan languages), and it
refers to the stone bridge made by hand by the first settlers of the community.
Description. Female: Habitus as in Fig. 2A. 620 µm of total body length excluding caudal setae. Prosome expanded at first and second somite, representing 61% of
total body length symmetrical in dorsal view. Five-segmented urosome relatively elongated, urosomal fringes strongly serrated (Fig. 2B); posterior margin of anal somite
with one row of long spinules. Genital double-somite (Fig. 2C) symmetrical, carrying paired egg sacs. Lateral arms of seminal receptacle rounded on posterior margin.
Genital double-somite 1.3 times as long as wide. Anal somite with hair-setae in anal
opening, anal operculum serrated (Fig. 2D). Caudal ramus 4.0 times as long as width;
inner margin naked, strong spines on the lateral margin (serra) extending 40% of ramus length (Fig. 2D). Dorsal seta (VII) short: 0.65 times the length of caudal ramus,
and 1.1 times as long as outermost caudal seta (III). Ratio of innermost caudal seta
6
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 2. Eucyclops tziscao sp. n. A, C, D paratype B, E–L holotype from Laguna Tziscao, Chiapas.
A Habitus, dorsal B Urosome C Genital double-somite, ventral D Anal somite and caudal ramus, dorsal
E Antennule, segments 1–9 F Antennule, segments 10–12 G Antenna, caudal H Antenna, frontal I Mandible J Maxillule, caudal K Maxilla, frontal L Maxilliped, frontal. Scales bars: K = 20 µm; A, C, D, G, H,
I, J, L = 50 µm; B, E, F = 100 µm.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
7
(VI)/outermost caudal seta (III) is 1.2. Lateral caudal seta (II) inserted at 71% of caudal ramus. All the terminal caudal setae plumose.
Antennule (Figs 2E, F): 12-segmented, reaching from middle to distal margin of
third prosomite; last three segments with finely denticulate hyaline membrane at distal
margin. Armament per segment as follows (s= seta, ae= aesthetasc, sp= spine):1(8s),
2(4s), 3(2s), 4(6s), 5(4s), 6 (1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(8s).
Two rows of spines on first segment, first row with small spinules and second row
with stronger and longer spinules. Spine on sixth segment reaching middle of seventh
antennular segment.
Antenna (Figs 2G, H): Coxa (no seta), basis (2s + 1 seta representing Exp), plus
3-segmented Enp (first to third Enp with 1, 9 and 7 setae, respectively). Basis ornamented with: N1 (3-4 hair-setae), N2 (5 small spinules), N3, N4, N5, N15, and N17 on
frontal surface (Fig. 2H); and N8, N9+10, N11, and N12 on caudal surface (Fig. 2G).
First to third endopodites with dense rows of spinules along lateral margins; Enp1 with
an additional row of 5 spinules along medial margin below seta (arrowed in Fig. 2H).
Labrum: Distal margin toothed.
Mandible (Fig. 2I): With seven teeth on gnathobase. Innermost margin with one
spinulose seta. Row of 6 spinules in middle, below gnatobase. Palp with two long and
one short seta, group of spinules near to palp (arrowed in Fig. 2I).
Maxillule (Fig. 2J): Precoxal arthrite with naked surface, with three strong chitinized distal claws and one spiniform seta on caudal side. Palp unarmed, Enp with
three setae (two smooth setae subequal in size, and one plumose shorter seta), Exp with
three setae and Bsp with one plumose seta.
Maxilla (Fig. 2K): Praecoxa and coxa partially fused. Praecoxa with endite bearing
two setae and a transverse row of small spinules on frontal surface. Coxa naked, bearing
one biserially plumose seta. Distal coxal endite well developed, with two apical setae,
one strong and furnished with spinules and other one noticeably thicker and longer.
Claw-like basal endite with one row of spinules on inner margin, one chitinized armed
seta inserted in front of basal “claw” and one seta inserted at base of claw-like endite
on caudal surface. Endopod with a single segment bearing five setae.
Maxilliped (Fig. 2L): Syncoxa with three setae. Basis with two sub equal setae,
plus 8 long spinules on frontal surface. Two transverse rows of small spinules, each
with 6-8 elements arranged in semi-circular pattern on caudal surface. Endopod twosegmented: Enp1 with one long seta and one transverse row of 5 spinules on frontal
surface. Enp2 with three setae, the longest fused to Enp2 and biserially plumose on
the proximal half, the distal half ornamented with small spinules in caudal surface (arrowed in Fig. 2L).
Legs 1–4: Endopods and exopods of all swimming legs three-segmented. Armature
formula of swimming legs as in Table 2.
Leg 1 (Figs 3A, B): Intercoxal sclerite with one row of spinules arranged in a semicircle on each side of frontal surface (Fig. 3A); caudal surface with two transversal
rows of tiny spinules, distal margin with two rounded chitinized projections (Fig. 3B).
8
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 3. Eucyclops tziscao sp. n. Holotype from Laguna Tziscao, Chiapas. A P1, frontal B Intercoxal
sclerite of P1, caudal C P2, frontal D Intercoxal sclerite of P2, caudal E P3, frontal, Exp and Enp separated F Intercoxal sclerite of P3, caudal G P4, caudal H Intercoxal sclerite of P4, frontal I Coxal spine P4
J P5. Scales bars: I= 25µm, J= 50 µm; A–H = 100 µm.
Coxa with strong biserially plumose inner coxal seta. Coxa with one row of hair-setae
on outer margin and one transverse row of hair-setae next medial margin (arrowed in
Fig. 3A). Inner basal seta reaching middle of Enp3, 0.76 times as long as Enp.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
9
Leg 2 (Fig. 3C, D): Intercoxal sclerite with two groups of small spinules arranged
in semi-circle on each side of frontal surface (Fig. 3C), and one transverse row of spinules in middle on caudal surface (Fig. 3D). Distal margin of intercoxal sclerite with
two rounded chitinized projections. Coxa with strong biserially plumose inner coxal
seta. Coxa with one row of hair-setae along outer margin on frontal surface (arrowed
in Fig. 3C) small spines next insertion of Enp.
Leg 3 (Fig. 3E, F): Intercoxal sclerite with two groups of small spinules on frontal
surface (Fig. 3E) caudal surface of intercoxal sclerite with three rows of spinules: distal row bearing long hair-like spinules at each side (arrowed in Fig. 3F), middle and
proximal rows with tiny spinules. Distal margin with two slightly rounded projections.
Coxa bearing strong biserially plumose inner coxal seta, frontal surface with one row of
tiny spinules along outer (lateral) margin, and one transverse row of spinules on caudal
surface (arrowed in Fig. 3E). Modified setae on Enp3 and Exp3 (arrowed in Fig. 3E).
Tiny spinules at insertion of all setae of Enp and all spines of Exp.
Leg 4 (Figs 3G–I): Intercoxal sclerite with rows I, II, and III on caudal surface.
Row I with strong spinules on each side and a small gap. Row II with small spinules divided into three sections with small gaps between them. Row III divided
into three sections, the first section with 5 long spinules, the middle section with 6
small strong spinules, and the third section with 5 long spinules (Fig. 3G). Frontal
surface of intercoxal sclerite with two groups of tiny spinules arranged in semicircle on each side (Fig. 3H). Caudal surface of coxa with spinules groups A-C,
and E-F-H-J. Inner coxal spine (seta) with heteronomous setulation: proximally
with long hair-like setules, distally with spinule-like setules; outer edge of coxal
spine with three spinule-like setules distally, naked proximally (arrowed in Fig.
3I). Enp3P4 3.0 times as long as wide; inner spine 1.4 times as long as outer spine
and 1.1 times as long as segment; outer spine 0.70 times as long as segment. Lateral seta of Enp3P4 inserted at 66% of the total length of segment. Modified setae
on Enp3 and Exp3 (arrowed in Fig. 3G). All setae of exopod with tiny spinules at
insertion.
Leg 5 (Fig. 3J): One free segment subrectangular, 2.1 times longer than wide; bearing one inner spine and two setae; median seta about 1.3 times longer than outer seta
and 1.8 times longer than inner spine. Inner spine 1.7 times as long as segment.
Male: Habitus as in Fig. 4A; 509 µm of total body length excluding caudal setae.
Body more slender than in female. Prosome symmetrical in dorsal view, representing
65% of total body length. Urosome short, representing 35% of total body length. Anal
operculum slightly rounded and smooth. Caudal ramus 3.5 times longer than width;
medial margin naked, strong spinules at insertion of lateral caudal seta (II) and outermost terminal caudal seta (III). Dorsal seta (VII) short 0.35 times the length of caudal
ramus, and 0.75 times as long as outermost caudal seta (III). Ratio of innermost caudal
seta (VI)/outermost caudal seta (III) is 1.6. Lateral caudal seta (II) inserted at 70% of
caudal ramus. All the terminal caudal setae plumose.
Antennule: 16-segmented (Figs 4C, D), armament per segment as follows (s= seta,
ms= modified seta, ae= aesthetasc, sp= spine): 1(7s+2ms); 2(3s+1ms); 3(1s+2ms);
10
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 4. Eucyclops tziscao sp. n. A–B paratype C–G allotype from Laguna Tziscao, Chiapas. A Habitus, dorsal B P5, and P6 C Antennule, segments 1–14 D Antennule, segments 15–16 E Antenna, frontal
F Antenna, caudal G P4, caudal. Scales bars: B–G = 50 µm; A = 100 µm.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
11
Table 2. Eucyclops tziscao sp. n. Setation formula of the swimming legs in female, and male (spine in Roman numerals, seta in Arabic numerals).
P1
P2
P3
P4
Coxa
0-1
0-1
0-1
0-1
Basis
1-I
1-0
1-0
1-0
Exp
I-1; I-1; III-5
I-1: I-1; IV-5
I-1; I-1; IV-5
I-1; I-1; III-5
Enp
0-1; 0-2; 1-I-4
0-1; 0-2; 1-I-4
0-1; 0-2; 1-I-4
0-1; 0-2; 1-II-2
4(1s+1ms+1ae); 5(0); 6(2s); 7(1s); 8(1s); 9(0); 10(3s); 11(2s); 12(0); 13(0); 14(0);
15(3s); 16(8s).
Antenna (Fig. 4E, F): Coxa (no seta), basis (2s + 1 seta representing Exp) plus
3-segmented Enp (first to third Enp with 1, 8, and 7 setae respectively). Basis ornamented with: N1 (4 hair-setae), N2 (4 small spinules), N3, N4, N5, N15, and N17 on
frontal surface (Fig. 4E); and N9+10, and N12 on caudal surface (Fig. 4F).
Legs 1–4: Endopods and exopods of all swimming legs three-segmented (Table 2);
P1-P3 as described in females.
Leg 4 (Fig. 4G): Coxa, Bsp, and intercoxal sclerite as described in female, except
for the distal row of spinules of intercoxal sclerite, which consists of 9 spinules longer
and slender than in female (arrow of row I, in Fig. 4G). Enp3P4: 2.6 times as long as
width; inner spine 1.2 times as long as outer spine, and 1.2 times as long as segment.
No modified setae on fourth leg. Lateral seta of Enp3P4 inserted at 64.7% of segment
length, lateral seta reaching the middle of outer spine.
Leg 5 (Fig. 4B): One free segment subrectangular, 1.5 times longer than wide;
bearing one inner spine and two setae: outer seta subequal to median seta and 1.3
times longer than inner spine. Inner spine 1.8 times as long as segment.
Leg 6 (Fig. 4B): Represented by small, low plate near lateral margin of genital
somite with one strong and long inner spine and two unequal setae. Inner spine reaching the distal margin of fourth urosomite. Inner spine about 2.3 times longer than
median seta and about 1.6 longer than outer seta.
Eucyclops angeli Gutiérrez-Aguirre & Cervantes-Martínez, sp. n.
http://zoobank.org/A2A11871-BE4A-48AC-9777-3735A0FF3EEA
http://species-id.net/wiki/Eucyclops_angeli
Figs 5–9
Material examined. Holotype: Adult ʇ specimen dissected, mounted in glycerin
sealed with Entellan (ECO-CH-Z- 8967). Allotype: Adult ʈ, dissected, mounted in
glycerin sealed with Entellan (ECO-CH-Z-8968). Paratypes: Eight adult ʇʇ undissected ethanol-preserved (90%) (ECO-CH-Z-8969); five adult ʇʇ and one adult ʈ
undissected, ethanol preserved (90%) (MNHN-IU-2013-5970); four adult ʇʇ, un-
12
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 5. Eucyclops angeli sp. n. A–C paratype D–F holotype from grassland in San Cristóbal de las
Casas, Chiapas. A Habitus, dorsal B Second to fourth prosomites, dorsal C Third and fourth prosomites,
lateral D Urosome, ventral E Anal somite and one caudal ramus, dorsal F P5. Scale bars 50 µm.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
13
dissected, ethanol preserved (90%) (CNCR 27841). Samples from type locality collected at 13. January. 2001 by A. Cervantes-Martínez, M. A. Gutiérrez-Aguirre and
M. Elías-Gutiérrez.
Type locality. Grassland near ECOSUR in San Cristóbal de las Casas City (Chiapas, México) (16°43'43"N; 92°38'14"W). At sampling the maximum depth was 1.48
m, the water temperature 21.5°C, and the dissolved oxygen 8.1 mg l-1.
Etymology. This species is dedicated to Angel Cervantes Rivas, the first son of A C-M.
Description. Female: Habitus as in Fig 5A; 600 µm of total body length excluding caudal setae. Prosome expanded at first and second somite, representing 58% of
total body length, symmetrical in dorsal view (Figure 5A). Prosomal fringes serrated
dorsally (Figure 5B); fourth prosomite with long, lateral, hair-setae (Fig 5C). Fivesegmented urosome, relatively elongated; first urosomite with long spinules on lateral
margin; urosomal fringes strongly serrated (Fig. 5D). Posterior margin of anal somite
with large spinules on ventral and dorsal surfaces, except for the medialmost section.
Genital double-somite symmetrical, lateral arms of anterior part of seminal receptacle rounded; posterior part forming sinuous sac (Fig. 5D). Anal somite subequal in
length to preanal somite and around 60% of caudal ramus length; with hair-setae in
anal opening (Fig. 5D, E). Length/width ratio of caudal ramus 2.1; inner margin of
caudal ramus naked, strong spines on lateral margin (serra) extending 62% of ramus
length (Figure 5D). Dorsal seta (VII) relatively short, 0.83 times the length of caudal
ramus, and 1.1 times as long as outermost terminal caudal seta (III). Innermost caudal
seta (VI) 1.5 as long as outermost caudal seta (III). Lateral caudal seta (II) inserted at
71.6% of caudal ramus. Lateral seta (II) is 0.4–0.5 the length of outermost caudal seta
(III). All terminal caudal setae plumose. Relative lengths of terminal caudal setae from
outermost caudal seta to innermost caudal seta: 1.0: 3.9: 7.5: 1.2 (Fig. 5E).
Antennule (Fig. 6A): 12-segmented, tip reaching from middle to distal margin of second prosomite; smooth hyaline membrane on segments 10–12. The length ratio of segments 12/11 is 1.1. Armament per segment as follows (s= seta, ae= aesthetasc, sp= spine):
1(8s); 2(4s); 3(2s); 4(6s); 5(4s); 6(1s+1sp); 7(2s); 8(3s); 9(2s+1ae); 10(2s); 11(2s+1ae);
12(7s+1ae). Row of spinules on first segment: inner spinules shorter than outer spinules.
Long spine on sixth segment, reaching the distal third of seventh antennular segment.
Antenna (Fig. 6B, C): Coxa (no seta), basis (2 s + 1 s representing Exp), plus
3-segmented Enp (first to third endopodite with 1, 9 and 7 setae respectively). Basis
ornamented with: N1 (5 hair-setae), N2 (3 hair-setae), and N3, N4, N5, N17 (Fig.
6C) on frontal surface; and N7, N8, N10, N11, N12, N12’, N13, N15, and N16 on
caudal surface (Fig. 6B). First to third endopodal segments with dense rows of spinules
along lateral margin; Enp1 with additional row of 2 spinules on caudal surface (arrowed in Fig. 6B).
Labrum (Fig. 6D): Distal margin toothed. Ventral surface with long hair-setae.
Two rounded lateral protuberances bearing spinules.
Mandible (Fig. 6E): With nine teeth on gnathobase, the innermost bi-toothed. Innermost margin with one spinulose seta. Palp with two long and one short setae. Three
rows of tiny spinules next to palp.
14
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 6. Eucyclops angeli sp. n. Holotype from grassland in San Cristóbal de las Casas, Chiapas. A Antennule B Antenna, caudal C Antenna, frontal D Labrum E Mandible F Maxillule, palp separated
G Maxilla, proximal and distal endites of the coxa, separated H Maxilliped, frontal. Scale bar 50 µm.
Maxillule (Fig. 6F): Praecoxal arthrite with 3 chitinized claws and one spinulose
seta on caudal side. Inner margin with two biserially plumose setae and four spiniform
setae. Praecoxal surface naked. Palp naked, with Enp (3 long setae: one smooth, plus
two plumose), Exp (3 long setae), and Bsp (with one plumose seta) (Fig. 6F).
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
15
Table 3. Eucyclops angeli sp. n. Setation formula of the swimming legs in female, and male (spine in Roman numerals, seta in Arabic numerals).
P1
P2
P3
P4
Coxa
0-1
0-I
0-I
0-I
Basis
1-I
1-0
1-0
1-0
Exp
I-1; I-1; III-5
I-1: I-1; IV-5
I-1; I-1; IV-5
I-1; I-1; III-5
Enp
0-1; 0-2; 1-I-4
0-1; 0-2; 1-I-4
0-1; 0-2; 1-I-4
0-1; 0-2; 1-II-2
Maxilla (Fig. 6G): Praecoxa and coxa partially fused. Praecoxal endite with two
armed setae. Coxa naked and with two endites: proximal endite bearing one biserially
plumose seta, distal endite with one long, plumose seta plus one short smooth seta.
Claw-like basal endite with row of spinules on inner margin; one small seta inserted
on caudal surface, and one chitinized armed seta inserted in front of claw-like endite.
Endopod one-segmented bearing four smooth, long setae plus one plumose seta.
Maxilliped (Fig. 6H): Syncoxa with three setae bearing spiniform setules. Basis
with two subequal setae and 9 spinules frontally. Two rows of acute spinules, each
with 8 elements, arranged in semi-circular pattern on caudal surface. Endopod twosegmented: Enp1 with 4 basal spinules and one long seta fused to segment; Enp2 with
three setae, longest seta biserially plumose and fused to Enp2.
Legs 1–4: With three-segmented Exps and Enps; intercoxal sclerites ornamented
on frontal and caudal surfaces (Fig. 7). Armature formula of P1-P4 as in Table 3.
Leg 1 (Fig. 7A): Intercoxal sclerite armed with two arched rows of long spinules
frontally and one row of tiny spinules caudally (Fig. 7A). Frontal surface of coxa with
row of long spinules along lateral margin; long, feathered seta at mediodistal angle. Basis with one delicate outer seta, and one inner armed spine as long as Enp. Inner margin of Bsp hairy. Inner spine of Bsp with small basal spines, long setules proximally,
and spine-like setules distally (Fig. 7A). Setae of Enp and Exp of P1 are unmodified,
and regularly plumose in both edges (Fig 7A). Caudal surface of coxa with four groups
of spinules and one row of hair-like spinules near medial margin (Fig 7B).
Leg 2 (Figs 7C–E): Intercoxal sclerite with two rows of hair-setae on each of the
two rounded projections on frontal surface (Fig. 7C), and three groups of spinules on
caudal surface (Fig. 7E). Coxa with one row of long spinules along outer margin and
two groups of spinules on distal margin on frontal surface (Fig. 7C). Lateral margin
of coxa with two groups of long spinules, one group of short spinules, and one row of
hair-setae in medial position on caudal surface (Fig. 7D). Armed coxopodal spine at
mediodistal angle. Basis with one outer seta, inner margin hairy. All setae of Enp and
Exp of P2 not constricted, plumose in both edges (Fig 7C).
Leg 3 (Fig. 7F–I): All setae on Exp and Enp as described in P2, except for the two
distalmost setae of Exp3P3, which have very short setules along outer (constricted)
edge (Fig. 7F). Caudal surface of P3 coxa with one row of tiny spinules along outer
margin, one group of long spinules, one group of short spines, and one row of medial
hair-setae (Fig 7G). Caudal surface of intercoxal sclerite with three rows of hair- setae
16
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 7. Eucyclops angeli sp. n. Holotype from grassland in San Cristóbal de las Casas, Chiapas. A P1, frontal B Coxa of P1, caudal C P2, frontal, Exp separated D Coxa of P2, caudal E Intercoxal sclerite of P2, caudal
F Exp3P3 G Coxa of P3, caudal H Coxa, basis, and intercoxal sclerite of P3, frontal I Intercoxal sclerite P3,
caudal J P4, caudal; exopod and coxal spine separated K Intercoxal sclerite of P4, frontal. Scale bar 50 µm.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
17
(Fig. 7I). On frontal surface, the ornamentation of coxa, Bsp, and intercoxal sclerite of
P3, is similar to those in P2 (Fig 7H).
Leg 4 (Fig. 7J, K): Caudal surface of coxa with spinule ornamentation consisting of groups A–J. Coxal spine (inner seta) with heteronomous setulation: proximally
with long setules, distally with spine-like setules; outer edge of coxal spine with a gap
(Fig. 7J). Basis with delicate outer seta, and short hairs on inner margin. Three setae
of Exp3P4 with constricted outer edge, and with short setules. Enp3P4 1.8 times as
long as wide; inner spine 1.3 as long as outer spine and 1.3 as long as segment; outer
spine 0.93 as long as segment. Caudal surface of intercoxal sclerite of P4 armed with 7
long denticles in position I, and long hair-setae in position II and III (Fig. 7J). Frontal
surface of intercoxal sclerite of P4 with four rows of short spinules (Fig 7K).
Leg 5 (Fig. 5F): One free segment 1.4 times longer than wide; bearing one inner
spine and two setae. Outer seta shorter than inner spine, relative lengths from outer
seta to inner spine: 0.5: 1.6: 1 (Fig. 5F). Inner spine 2.0 times longer than segment.
Male: Habitus as in Fig. 8A; body length excluding caudal setae= 540–580 µm (n=
4) average body length= 552.9±15.56. Prosome symmetrical in dorsal view, representing 60–63% of total body length (Fig. 8A). Fourth prosomite with two spines, one
spine on ventral margin, and one spine on posterior margin (Fig 8B). Six-segmented
urosome, relatively elongated; first urosomite naked on lateral margin (Fig. 8C); posterior margin of anal somite with a continuous (dorsally and ventrally) row of spinules
(Fig. 8A, D). Anal region armed with two parallel rows of hair-setae; anal operculum
slightly rounded and smooth (Fig 8D). Caudal ramus 2.1±0.07 times longer than
width (n= 4); medial margin of caudal ramus naked, strong spines at insertion of lateral
caudal seta (Fig. 8D). Innermost caudal seta (VI) 1.0–1.14 times longer than caudal
ramus (n= 3). Relative lengths of terminal caudal setae from outermost (III) to innermost (VI): 1.0: 5.7–6.4: 10.8–12.0: 1.45–1.6. Lateral caudal seta (II) 0.64–0.83 the
length of outermost caudal seta (III) (Fig. 8D).
Antennule (Fig. 8E): 16-segmented, between segments 14–15 is the geniculation;
armament per segment as follows (s= seta, modified seta= ms, ae= aesthetasc, sp= spine):
1(6s+2ms+1ae); 2(3s+1ms); 3(1s+1ms); 4(1s+1ms+1ae); 5(2s+1ms); 6(1s+1ae); 7(1s);
8(2s); 9(2s); 10(2s); 11(1s); 12(1s); 13(3s); 14(0); 15(1s); 16(9s). Row of spinules on
first segment: inner spinules shorter than outer spines.
Antenna: As in female except for that the spinule groups N7, N13, and N16 are
absent on caudal surface of antennal Bsp (Fig. 8F). Basis ornamented with: N1 (4
hair setae), N2 (2 hair setae) and spinules in groups N3, N4, N5, and N17 on frontal
surface (Fig. 8G).
Labrum, mandible, maxillule, maxilla, and maxilliped as in female.
Legs 1–4: Exps and Enps three-segmented. Intercoxal sclerites armed as in Fig.
9A–C, F. Setation formula of swimming legs as in female (Table 3).
Leg 1 (Fig. 9A): Intercoxal sclerite armed with two rows of tiny spinules on caudal
surface. Ornamentation of Bsp, Enp, and Exp, as in female. Caudal surface of coxa
with three groups of spinules and one row of hair-setae.
18
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 8. Eucyclops angeli sp. n. A–B paratype C–F allotype from grassland in San Cristóbal de las
Casas, Chiapas. A Habitus, dorsal B Third, and fourth prosomites, lateral C First to fourth urosomites,
lateral D Anal somite and caudal ramus, dorsal E Antennule, last two segments separated F Antenna,
caudal G Antenna, frontal. Scale bars 50 µm.
Leg 2 (Fig. 9B): As in female, except for that intercoxal sclerite is naked on caudal
surface, yet with two arched rows of long spinules on frontal surface.
Leg 3 (Fig. 9C–E): Modified, intercoxal sclerite with rows of spinules caudally, and
rows of hair-setae frontally (Fig. 9C). Two distalmost setae of Exp3P3 and Enp3P3
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
19
Figure 9. Eucyclops angeli sp. n. Allotype from grassland in San Cristóbal de las Casas, Chiapas. A Coxa,
basis, and intercoxal sclerite of P1, caudal B Coxa, basis, and intercoxal sclerite of P2, caudal C Coxa,
basis, and intercoxal sclerite of P3, caudal D Enp3P3 E Exp3P3 F Coxa, basis, and intercoxal sclerite of
P4, caudal G Intercoxal sclerite of P4, frontal H Enp3P4 I Exp3P4 J Urosome, ventral. Scale bars 50 µm.
20
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
with constricted outer edges, and very short setules (Fig. 9D, E). Coxa and Bsp as
described in female (Fig. 9C).
Leg 4 (Fig. 9F–I): Coxa, basis, and intercoxal sclerite as in female; except for that
entire outer margin of coxal seta is naked (Fig. 9F, G). Enp3P4: 2.07–2.25 (n= 2)
times as long as wide; inner apical spine 1.24–1.31 (n= 2) as long as outer spine and
1.08–1.26 (n= 2) times as long as segment (Fig. 9H). Two distal setae of Exp3P4
modified: chitinized, both edges constricted, and bearing short setules on outer edge
(Fig. 9I).
Leg 5 (Fig. 9J): One free segment, 1.6 times longer than wide; and bearing three
elements of which outer seta is slightly longer than that in female (subequal in length
to inner spine) (Fig. 9J). Inner spine 1.8 times as long as segment.
Leg 6 (Fig. 9J): Represented by a small, low plate near lateral margin of genital
somite, armed with one inner spine, which is 1.7–1.87 times longer than outer seta,
and 1.2–1.6 times longer than median seta. Inner spine of sixth leg reaching the distal
margin of fourth urosomite.
Eucyclops festivus Lindberg, 1955
http://species-id.net/wiki/Eucyclops_festivus
Figs 10–11
Eucyclops festivus: Lindberg (1955), fig. 2a–d.
E. festivus: Suárez-Morales (2004), 617 p.
E. festivus: Mercado-Salas (2009), table 3, figs 138-139
Synonym: E. pectinifer, Gutiérrez-Aguirre and Cervantes-Martínez (2013), table 1.
Material examined. One adult ʇ specimen dissected, mounted in glycerin sealed with
Entellan. One adult ʈ, dissected, mounted in glycerin sealed with Entellan, and seven
adult males undissected, ethanol preserved (90%) with a drop of glycerin, deposited
in the senior author’s collection, at Universidad de Quintana Roo, Cozumel. Samples
collected at 14. April. 2000 by A. Cervantes-Martínez, M. A. Gutiérrez-Aguirre and
M. Elías-Gutiérrez in pond 3 to Laguna Montebello, Chiapas, México (16°06'42"N;
91°41'32"W). At sampling the maximum depth was 0.2 m; the water temperature
24°C and the dissolved oxygen 6.8 mg L-1.
Remarks. Eucyclops festivus has been recorded in North and Central Mexico
(Suárez-Morales and Reid 1998, Mercado-Salas 2009). This is the southernmost record of the species in the country. Specimens from Chiapas were assigned to E. festivus
because all the morphological characters, even the meristic features observed in the
specimens from Chiapas are similar to those in the original description: in females and
males the inner spine of fifth leg is 1.7–1.8 times longer than outermost seta, and the
median seta is 1.5 times longer than the inner spine (Fig. 10A, B, D). The Fu length/
width ratio is between 5–6 in the females, with spinules along the entire outer margin,
and naked along inner margin (Fig. 10B, C). Caudal rami parallel in the male (Fig.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
21
Figure 10. Eucyclops festivus Lindberg, 1955; from pond 3 to Laguna Montebello, Chiapas. A First urosomite, and genital double-somite, ventral B Urosome, ventral C Anal somite and caudal ramus, ventral
D Urosome, ventral E Anal somite and caudal ramus, ventral. Scale bars 50 µm. A–C female; D–E male.
22
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Figure 11. Eucyclops festivus Lindberg, 1955; from pond 3 to Laguna Montebello, Chiapas. A Antenna,
frontal B Antenna, caudal C Antenna, frontal D Antenna, caudal E Coxa, basis, and intercoxal sclerite of
P1, frontal F P4, caudal, Exp, and one inner seta separated G Coxa, basis, and intercoxal sclerite of P4,
caudal. Scale bars 50 µm. A, B, E, F female; C, D, G male.
10D, E). The length ratio of innermost caudal seta (VI)/outermost terminal caudal seta
(III) is 1.24±1.6 (Fig. 10C, E).
The antennal basis is adorned with the spinule groups N1, N2, N3, N4, N5, N6,
and N17 on the frontal surface; whereas the groups N7, N8, N10, N11, N12, N13,
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
23
N14, N15, and N16 are present on the caudal surface in female and male (Fig. 11A–
D). Distal margin of the intercoxal sclerites in P1-P4 bear fine hair-setae (Fig. 11E–G).
The length/width ratio of Enp3P4 is 2.2, the inner spine is 1.21 times longer than the
segment, and the inner margin of BspP4 is naked in female (Fig. 11F).
Based on the presence of the group N6 on the frontal surface of antennal basis, the
naked inner margin of BspP4, the long caudal rami, and the serrated hyaline membrane on the three distalmost segments of A1 in females, E. festivus is not included in
the serrulatus-group.
Discussion
The characters that allow us to include E. tziscao sp. n. and E. angeli sp. n. in the
serrulatus-group sensu Alekseev and Defaye (2011) are as follows: 1) seminal receptacle bilobed, and the lobes subequal in size; 2) caudal ramus 2.0–7.0 times as long as
wide, and with longitudinal row of spinules along most of the outer edge; 3) twelvesegmented antennule, with smooth hyaline membrane along distalmost segments; 4)
frontal surface of antennal basis with 2–6 long spinules in N1, and variable number of
spinules or strong denticles in the subdistal N2; 5) strong coxal spine of P4 with dense
setules on inner side, and a large gap in setulation on outer side; and 6) one-segmented
fifth leg with wide and strong, spine-like inner seta.
Following the identification key to the species of the serrulatus-group (Alekseev
and Defaye 2011), E. tziscao was identified as E. cf. bondi, but after having performed
a deeper analysis and compared our material to the types of E. bondi we concluded that
our specimens belong to an another, though closely related species. The main characteristics that both species share are: a) on frontal surface of antennal basis, group N2
is represented by small spinules, b) the distal segment of P4 endopod with short inner
distal seta, not reaching the end of outer apical spine and, c) caudal ramus with dorsal
seta (seta VII) longer than outermost terminal caudal seta (III).
The differences between E. tziscao sp. n. and E. bondi are slight also in other characters, such as the proportion of the caudal ramus (3.8–4.3 in E. tziscao sp. n., and
3.18–4.1 in E. bondi), the proportion of dorsal seta and caudal ramus length (0.63 in
E. tziscao sp. n., and 0.73–0.80 in E. bondi) and the proportion of dorsal seta and innermost caudal seta length (0.8 in E. tziscao sp. n., and 1.0 in E. bondi).
Comparison of the type specimens of E. bondi to E. tziscao sp. n. revealed clear
morphological separation of these taxa. One of the main distinguishing features between the two species is the length of the lateral seta on Enp3P4, which has already
been reported as an important character in another species of the serrulatus group as
in E. delachauxi (Kiefer, 1926). In E. bondi this seta exceeds the half length of the
outer apical spine and it is not modified, while in E. tziscao sp. n. this seta is shorter,
not reaching the half length of the outer apical spine, and it is modified as a strong,
sclerotized blunt seta (arrowed in Fig. 3G). All setae on Enp3P4 are modified (strong,
sclerotized and blunt) in E. tziscao sp. n., while in E. bondi they are not. In addition,
24
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
the most apical seta of Exp3P4 is modified in E. tziscao while all setae are normal in
E. bondi. All the setae on the swimming legs of E. tziscao sp. n. are shorter than in E.
bondi. Finally, the length/width ratio of Enp3P4 is 2.6–3.0 in E. tziscao sp. n. while it
is 2.4–2.6 in E. bondi.
The proportion of the inner apical spine and Enp3P4 segment length is slightly
different in the species; it is 1.06 in the new species while it is 1.25 in E. bondi. Another
useful character to differentiate taxa (as it has already been pointed out by Alekseev and
Defaye 2011) is the setulation gap on the coxal spine of P4. Both the original drawings
of Kiefer and the examination of the type material showed that in E. bondi the entire
outer margin of the coxal seta is naked, while in E. tziscao sp. n. the apical region of
the seta bears hair-like setules.
The use of male morphology in delineation of the species has been demonstrated
in some genera of Eucyclopinae (e.g. Paracyclops, see Karaytug 1999; Karaytug and
Boxshall 1999). One important feature that easily distinguishes E. tziscao sp. n. from
E. bondi is the P6 armature, which is completely different in these two species. Our
examinations showed that E. bondi has a unique sixth leg, in which the inner spine is
relatively short in comparison to the median and outer setae: the proportion of the inner spine and outer seta length is 0.71 in E. bondi, while it is 1.5 in E. tziscao sp. n. also
the proportion of inner spine and median seta length is about 1.07 in E. bondi, yet 2.5
in E. tziscao sp. n. In E. bondi the inner spine of sixth leg barely reaches the posterior
margin of genital somite, while in E. tziscao sp. n. the spine extends up to the posterior
margin of the fourth urosomite. All the records of E. bondi in the Americas should be
re-evaluated considering this unique character (the very short inner spine of the male
sixth leg) and also other morphological features, in order to clarify if they in fact belong
to the species. For instance on the drawings of a material identified as E. bondi from
Costa Rica (Collado et al. 1984) the sixth leg structure clearly does not correspond to
the state present in the type of the species (cf. fig. 14 in Collado et al. 1984).
The species Eucyclops pectinifer seems to be closely related to E. tziscao sp. n., general body shape and some proportion of swimming legs are shared between both species.
However the caudal ramus is shorter in Eucyclops tziscao sp. n. than in E. pectinifer, in
the new species is 3.8-4.3 times longer than wide while in E. pectinifer is 4.5–5.0. Proportion of dorsal seta/length of caudal ramus is slightly longer in E. tziscao (0.6) than
in E. pectinifer (0.4). Another difference between these two species is the shape of the
anal operculum, in E. pectinifer is smooth and rounded, as in most Eucyclops species,
while in E. tziscao sp. n. is rounded but strongly serrated (Fig. 2D). The ornamentation
on frontal surface of antennal basis is similar in both species, they share groups N1
armed with long hairs, N2 bearing small and strong spinules, N3, N4, N5, N15 and
N17; but the caudal surface of antennal basis is different: in E. pectinifer the groups of
spinules N7, N13, N14 and an additional group of spinules below group N12 (see fig.
17-7 in Alekseev et al. 2006) are absent in E. tziscao sp. n.
Proportion of segments and elements in Enp3P4 are similar between species,
length/width ratio of Enp3P4 is 3.2 in E. pectinifer while in E. tziscao sp. n. is 3.0;
proportion of inner/outer apical spines of Enp3P4 is similar, 1.3 in E. pectinifer and
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
25
1.4 in E. tziscao sp. n.; in both species the lateral seta of Enp3P4 does not reach the
half length of the outer apical spine, and it is modified as a strong, sclerotized blunt
seta. But clear differences can be observed among the species in the fourth leg: in the
intercoxal sclerite the row I in E. pectinifer bears fine, long hair-setae while in E. tziscao
sp. n. it is armed with strong, short spinules. On the other hand, modified setae on
swimming legs are present in both species but in E. pectinifer are present only in P4
while in E. tziscao sp. n. are present in P3 and P4.
In males, the antennular segments in E. pectinifer are 14 (Alekseev et al. 2006)
while in E. tziscao 16. Proportional length of elements in P5 is clearly different among
the species, in E. tziscao sp. n. outer and median setae are almost equal in size and
clearly longer than inner spine; while in E. pectinifer median seta is more than two
times longer than outer seta and inner spine, and the inner spine and outer seta are
subequal in length. Sixth leg of males of both species differs slightly, in E. tziscao sp.
n. the outer seta is two thirds the length of inner spine while in E. pectinifer this seta is
shorter, being the half of size of the inner spine.
Another species that resembles E. tziscao sp. n. by sharing the modified setae on
the third and fourth swimming legs and showing similar length and width proportion
of the caudal ramus is E. conrowae. However when we compared the type material of
E. conrowae deposited in Dr. Reid´s Collection (Smithsonian Institution) we found
many differences. First of all E. conrowae is not a member of the serrulatus-group: the
holotype and one paratype of E. conrowae do not have the groups N1 and N2 on the
antennal basis (Table 4) whereas in E. tizcao sp. n. both groups are present in all the
specimens here examined. Also, a group of spinules (J) is absent on the caudal surface
of P4 coxa in E. conrowae (Table 5). Last, the seminal receptacle is completely different in these species; the posterior lobe is about twice the width of the anterior lobe in
E. conrowae, whereas both lobes are approximately equal in size in the member taxa of
the serrulatus-group.
Eucyclops angeli sp. n. can be distinguished from all the other Eucyclops species by: the
short caudal rami; long spine on the sixth antennular segment; presence of an additional
group of spinules (N12’) on the caudal surface of antennal basis; presence of long hairsetae in females, and short spinules in males on the lateral margin of fourth prosomite;
rich surface ornamentation of P1-P4 intercoxal sclerites both on the frontal and caudal
surfaces, long denticles in group I on the intercoxal sclerite of P4; modified distal setae of
Exp3P3 and Exp3P4 in females and males; as well as the short outer seta of P5.
In the Americas there are some other species which have similarly short caudal
rami. Eucyclops breviramatus Loeffler, 1963 in Ecuador, l/w: 2.3–2.6 (Loeffler 1963);
and E. siolii Herbst, 1962 in Brazil and Venezuela, l/w: 2.18 (Herbst 1962). The
morphological characters of A1, A2, P4, P5, and the caudal ramus indicate that E.
angeli sp. n. belongs to the serrulatus-group as defined by Alekseev et al. (2006) and
Alekseev and Defaye (2011). Relying upon the information given in Loeffler’s description (1963) on the morphology of A1 (12-segmented), P5 (medial spine longer
than free segment), and caudal rami (with longitudinal row of spinules along most of
outer edge), E. breviramatus can be considered as member of the serrulatus-group too.
26
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Table 4. Comparison of the surface-ornamentation pattern of the antennal basis in some species of
Eucyclops. Coding of the particular element follows Alekseev and Defaye (2011); Roman numerals, hairs;
Arabic numerals, denticles; ?, structure not verified; NP, structure absent.
Species
E. tziscao sp. n.
E. angeli sp. n.
E. bondi (type
specimens)
E. conrowae
(type specimens)
E. serrulatus
(Alekseev and
Defaye 2011)
E. albuferensis
(Alekseev 2008)
E. dumonti
(Alekseev 2000)
1
2
III-IV 5
V
III
?
?
NP
NP
3
5
4
?
4
6
4
?
5
8
11
?
6
5
9
6 7
NP NP
NP 5
?
?
6
?
8
4
5
?
3
9 10 11 12 12’ 13 14 15 16
5
5 5 NP NP NP 4 NP
NP 6 6 6 2 11 NP 3 4
?
?
?
?
?
?
?
?
?
8
5
3
NP NP NP
3
NP
17
10
6
?
10
IV-IX I-IV 6–10 7–9 12–18 NP 3–5 5–8 NP NP 5–6 6–8 NP 0–4 3–8 4–7 0 10–13
VII
III
8
3
3
NP
8
NP
NP
NP
7
15
NP NP
5
NP 7
9
9
NP
7
10
6
7
18
5
NP 4
8 8–9 NP NP NP
3
4 10–12
Even though the microcharacters of the antennule, antenna, intercoxal sclerites, and
P1-P4 coxa are unknown in E. breviramatus (see Loeffler 1963), there are other characteristics that can differentiate E. breviramatus from E. angeli sp. n. for instance, the
length/width ratio of Enp3P4 (1.81–1.97 in E. angeli vs. 1.4–1.5 in E. breviramatus);
the short outer seta of P5 in E. angeli (outer seta subequal or slightly longer than inner spine in E. breviramatus); and the different length proportion of the caudal setae:
whereas the relative length of the terminal caudal setae from outermost to innermost
is 1.0: 2.98–3.55: 5.4–6.5: 1.06–1.16 in E. breviramatus, clearly the inner median
and inner outer setae are longer in E. angeli sp. n. because the relative length is: 1.0:
3.9–4.5: 7.5–9.6: 1.2–1.4.
Another American species with very short caudal rami is E. siolii, yet likely this species does not belong to the serrulatus-group. Eucyclops siolii has a very short inner spine
on the leg 5 (proportion of the spine and free segment length, 0.75), the coxal spine of
P4 bears hair-setules on the inner and outer margin, and the intercoxal sclerite of P4 is
only adorned with the spinule groups I and II on the caudal surface (see Herbst 1962).
Eucyclops conrowae shares the modified distal setae on the exo- and endopod of P3
and P4 with E. angeli, yet analysis of the holotype and paratype of the former species
revealed several differences on the antennal basis, the coxa, and intercoxal sclerite of
P4, which separate these two taxa. In E. conrowae the groups N1, N2, N13, N14, and
N16 are absent on the antennal basis (Table 4), the spiny group J is absent on the P4
coxa, and the P4 intercoxal sclerite bears only denticles (Table 5).
Recently Alekseev (2008) described E. albuferensis, from Valencia Spain, which is
similar to E. angeli sp. n. in the ornamentation of the caudal surface of P4 coxa, setulation of the P4 coxal spine, and ornamentation of the antennal basis. However unlike
E. angeli, E. albuferensis only has short hairs in the groups I, and II on P4 intercoxal
sclerite, whereas E. angeli has long denticles in group I, and long hairs in groups II, and
27
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
Table 5. Comparison of the surface-ornamentation pattern of the P4 coxa in some species of Eucyclops.
Coding of the particular elements follows Alekseev and Defaye (2011) (see fig. 2C in Alekseev and Defaye
2011). Y, present; N, absent; H, hairs; LH, long hairs; SH, short hairs; D, denticles.
Species
A
B
C+D
E
E. tziscao sp. n.
E. angeli sp. n.
E. bondi (type specimens)
E. conrowae (type specimens)
E. serrulatus (Alekseev and
Defaye 2011)
E. albuferensis (Alekseev 2008)
E. dumonti (Alekseev 2000)
Y
Y
Y
Y
Y
N
11 5–6
6 10–12 4
5
12
4
N
10
6
4–5 12–14 2–4
Y
Y
Y
N
N
N
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
13
2–3 10–12
Y
Y
Y
Y
Y Y
Y Y
5
2
F G H J
I
II
III
Y
D
D D
Y
LD
LH LH
Y
D
SH LH
N
D
D D
Y LH, SH SH LH
SH
SH
SH SH
SH SH
Gap Hair-like
on
setae on
coxal basipodite
spine
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
N
III. Also, E. albuferensis has longer caudal rami in the female (about 5 times as long as
wide), and it does not have modified setae-spines on Enp3P3 and Enp3P4. Last, in the
male of E. albuferensis the inner spine of the sixth leg, does not reach the distal margin
of the fourth urosomite, as it does in E. angeli sp. n.
Eucyclops dumonti Alekseev, 2000 is another species with short caudal rami (about
2.9 times as long as wide) (Alekseev 2000) which lives in a spring lake in Central Mongolia. Eucyclops dumonti differs from E. angeli sp. n. in the intercoxal sclerites of P1-P4,
which have much less surface structures in E. dumonti: P1-P4 intercoxal sclerites bears
more groups of long hairs in E. angeli. Moreover, the inner margin of P4 basis is naked
in the female of E. dumonti, yet it has short hair-like spinules in E. angeli. The spinule
groups N7 and N13 (caudal surface), and N1 and N2 (frontal surface) that are present
on the antennal basis in E. angeli sp. n., are absent in E. dumonti. Finally, in the male
of E. dumonti the tip of the medial spine of P6 reaches the distal margin of the third
urosomite, yet in E. angeli this spine is longer, reaching the fourth urosomite.
Eucyclops echinatus (Kiefer 1926) distributed in Africa (Angola, Democratic Republic of Congo, Ivory Coast, Kenya, and Madagascar) is another species with short
caudal rami (length/width, 2.22–2.26), but it differs from E. angeli sp. n. in the ornamentation of the dorsal and medial surface of the caudal rami (with short denticles
in E. echinatus) (Kiefer 1926), and the relative length of the outer seta of P5: in E.
echinatus the outer seta is 1.3 times longer than the inner spine, whereas in E. angeli
sp. n., this seta is 0.6–0.9 times the length of the inner spine.
Eucyclops festivus has so far been known from North and Central regions of Mexico, mainly from the littoral region of dams, and permanent or ephemeral ponds (Lindberg 1955, Mercado-Salas 2009). The southernmost confirmed record in Mexico is
that from Hidalgo State (Lindberg 1955, Suárez-Morales and Reid 1998), thus the
known distribution of this species in Mexico, including our present finding in Chiapas, extends from 21°N to 16°N.
28
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Conclusion
The two new species here described belong to the Eucyclops serrulatus-group. Due to
the complex taxonomy and uncertain status of most species in Eucyclops, a morphological revision should be performed in the Americas. The genus has been revised in some
regions of the world, but many American records still need verification. The use of
new morphological characters facilitated better delineation of Eucyclops species which
in turn resulted in better knowledge of the zoogeography of the genus – contrarily to
what was believed, most species have well defined restricted geographic distribution,
and they are not cosmopolitan.
With the description of the two new species, the number of Eucyclops taxa in
Mexico now reaches 15 species, however several records referring to the problematic
taxa should be revised. We strongly recommend to use males in the identification of
Eucyclops species, because they present highly informative characters. Male morphology could help to clarify the identity of some problematic species, as shown for E. bondi.
Acknowledgements
We gratefully acknowledge the support of Dr. Hans-Walter Mittmann, Staatliches Museum Für Naturkunde, Karlsruhe, by loaning us the type specimens of E. bondi from
Kiefer´s collection. Also, we acknowledge the help and advice of Dr. Frank Ferrari
and Dr. Chad Walter (National Museum of Natural History-Smithsonian Institution)
in the analysis of the type specimens of E. conrowae. This work is part of the second
author’s (NFM-S) Doctoral Thesis developed at El Colegio de la Frontera Sur (ECOSUR). This contribution was supported by CONACyT proyect133404-Investigación
Científica Básica 2009. Danielle Defaye (Editor) and two anonymous reviewers made
valuable comments and suggestions.
References
Alekseev V (2000) E. dumonti sp. nov. from Central Mongolia. Hydrobiologia 441: 63–71.
doi: 10.1023/A:1017592005551
Alekseev V (2008) Eucyclops albuferensis sp. nov. (Cylopoida: Copepoda: Crustacea) from Albufera lake, Valencia, Spain. Proceedings of the Zoological Institute RAS 312(1/2): 127–134.
Alekseev V, Defaye D (2011) Taxonomic differentiation and world geographical distribution
of the Eucyclops serrulatus group (Copepoda, Cyclopidae, Eucyclopinae). In: Defaye D,
Suárez-Morales E, von Vaupel Klein JC (Eds) Studies on freshwater Copepoda: a volume in honour of Bernard Dussart. Koninklijke Brill NV, Leiden, 41–72. doi: 10.1163/
ej.9789004181380.i-566.8
Alekseev V, Dumont HJ, Pensaert J, Baribwegure D, Vanfleteren JR (2006) A redescription of Eucyclops (Fischer, 1851) (Crustacea: Copepoda: Cyclopoida) and some related
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus...
29
taxa, with a phylogeny of the E. serrulatus-group. Zoologica Scripta 35: 123–147. doi:
10.1111/j.1463-6409.2006.00223.x
Bruno MC, Reid JW, Perry SA (2005) A list and identification key for the freshwater, freeliving copepods of Florida (U.S.A.). Journal of Crustacean Biology 25: 384–400. doi:
10.1651/C-2538
Collado C, Defaye D, Dussart BH, Fernando CH (1984) The freshwater copepod (Crustacea) of Costa Rica with notes on some species. Hydrobiologia 119: 89–99. doi: 10.1007/
BF00011948
De los Ríos P, Rivera R, Morrone JJ (2010) Cyclopoids (Crustacea:Copepoda) reported from
Chilean inland waters. Boletín de Biodiversidad de Chile 2: 10–20.
Dussart BH, Defaye D (2006) World Directory of Crustacea Copepoda of Inland Waters IICyclopiformes. Backhuys Publishers, Leiden-The Netherlands, 334 pp.
Elías-Gutiérrez M (2000) Informe final del Proyecto S050: Microcrustáceos zooplanctónicos
y litorales del Sureste de México. Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad, Chetumal-México, 53 pp.
Elías-Gutiérrez M, Suárez-Morales E, Gutiérrez-Aguirre MA, Silva-Briano M, GranadosRamírez JG, Garfias-Espejo T (2008) Cladocera y Copepoda de las aguas continentales de
México guía ilustrada. Universidad Nacional Autónoma de México, Comisión Nacional
para el Conocimiento y Uso de la Biodiversidad, El Colegio de la Frontera Sur, Consejo
Nacional de Ciencia y Tecnología, Secretaría de Medio Ambiente y Recursos Naturales,
México DF-México, 322 pp.
Frisch D, Threlkeld ST (2005) Flood-mediated dispersal versus hatching: Early recolonization strategies of copepods in floodplain ponds. Freshwater Biology 50: 323–330. doi:
10.1111/j.1365-2427.2004.01321.x
Gaviria S, Aranguren N (2007) Especies de vida libre de la subclase Copepoda (Arthropoda,
Crustacea) en aguas continentales de Colombia. Biota Colombiana 8: 53–68.
Grimaldo-Ortega D, Elías-Gutiérrez M, Camacho-Lemus M, Ciros-Pérez J (1998) Additions to
Mexican freshwater copepods with the description of the female Leptodiaptomus mexicanus
(Marsh). Journal of Marine Systems 15: 381–390. doi: 10.1016/S0924-7963(97)00069-9
Gutiérrez-Aguirre MA, Suárez-Morales E, Cervantes-Martínez A (2006) Distribución de las
especies de Mesocyclops (Copepoda: Cyclopoida) en el sureste mexicano y región norte de
Guatemala. Hidrobiológica 16: 259–265.
Gutiérrez-Aguirre MA, Cervantes-Martínez A (2013) Diversity of freshwater copepods (Maxillopoda: Copepoda: Calanoida, Cyclopoida) from Chiapas, Mexico with a description of
Mastigodiaptomus suarezmoralesi sp. nov. Journal of Natural History 47: 479–498. doi:
10.1080/00222933.2012.742587
Herbst HV (1962) Crustacea aus dem Amazonasgebiet, gesammelt von Prof. Dr. H. Sioli und
Dr. R. Braun. I. Litorale und substratgebundene Cyclopoida Gnathostoma (Copepoda).
Crustaceana 3: 259–278. doi: 10.1163/156854062X00508
Ishida T (1997) Eucyclops roseus, a new Eurasian copepod, and the E. serrulatus-speratus problem in Japan. Japanese Journal of Limnology 58: 349–358. doi: 10.3739/rikusui.58.349
Ishida T (2001) Eucyclops borealis sp. nov. from Alaska, and E. tseshimensis sp. nov. from Tsushima Island, Japan (Crustacea, Copepoda, Cyclopoida). Biogeography 3: 51–57.
30
Martha A. Gutiérrez-Aguirre et al. / ZooKeys 351: 1–30 (2013)
Ishida T (2002) Illustrated fauna of the freshwater cyclopoid copepods of Japan. Bulletin of the
Biogeography Society of Japan 57: 37–106.
Ishida T (2003) Description of Eucyclops serrulatus (Fisher, 1851) (Copepoda, Cyclopoida) from
Japan, with reference to the degree of difference from specimens from the type locality.
Biogeography 5: 1–7.
Karaytug S (1999) Genera Paracyclops, Ochridacyclops and key to the Eucyclopinae. Guide to
the Identification of the Microinvertebrates of the Continental Waters of the World, No.
14. Backhuys Publishers, Leiden-The Netherlands, 217 pp. doi: 10.2307/1549244
Karaytug S, Boxshall GA (1999) Antennules of the male of Paracyclops (Copepoda): functional
significance and their importance in systematic. Journal of Crustacean Biology 19: 371–379.
Kiefer F (1926) 4. Beiträge zur Copepodenkunde. (IV). Sonderabdruck aus dem Zoologischer
Anzeiger 49: 21–26.
Lindberg K (1955) Cyclopoïdes (Crustacés copepods) du Mexique. Arkiv för Zoologi 7: 459–489.
Loeffler H (1963) Zur Ostrakoden- und Copepodenfauna Ekuadors mit Beschreibung 6 neuer
Arten und 3 neuer Unterarten. Archiv für Hydrobiologie 59: 196–234.
Mercado-Salas NF (2009) Diversidad y Distribución de los Cyclopoida (Copepoda) de las zonas
Áridas del Centro-Norte de México. MSc thesis, Chetumal. El Colegio de la Frontera Sur,
Quintana Roo.
Mercado-Salas NF, Pozo C, Morrone JJ, Suárez-Morales E (2012) Distribition patterns of the
American species of the freshwater genus Eucyclops (Copepoda: Cyclopoida). Journal of
Crustacean Biology 32: 457–464. doi: 10.1163/193724012X626502
Reid JW (1985) Chave de identificação e lista de referências bibliográficas para as espécies
continentais Sulamericanas de vida livre da Ordem Cyclopoida (Crustacea, Copepoda).
Boletim de Zoología, Universidade de São Paulo 9: 17–143.
Reid JW (2003) A technique for observing copepods. In: Ueda H, Reid JW (Eds) Copepoda:
Cyclopoida, genera Mesocyclops and Thermocyclops. Backhuys Publishers, Leiden, 8.
Rodríguez-Almaraz GA (2000) Informe final del Proyecto S104: Biodiversidad de los crustáceos dulceacuícolas del centro de Nuevo León y noreste de Tamaulipas. Comisión Nacional
para el Conocimiento y Uso de la Biodiversidad, México DF-México, 33 pp.
Suárez-Morales E (2004) A new species of Eucyclops Claus (Copepoda: Cyclopoida) from
southeast Mexico with a key for the identification of the species recorded in Mexico.
Zootaxa 617: 1–18.
Suárez-Morales E, Reid JW (1998) An updated list of the free-living freshwater copepods
(Crustacea) of Mexico. Southwestern Naturalist 43: 256–265.
Suárez-Morales E, Walsh E (2009) Two new species of Eucyclops Claus (Copepoda: Cyclopoida) from
the Chihuahuan Desert with a redescription of E. pseudoensifer Dussart. Zootaxa 2206: 1–22.
Velázquez Velázquez E (2011) Informe final SNIB-CONABIO proyecto FM005: Inventario
de peces y crustáceos decápodos de la Reserva de la Biosfera Selva El Ocote y Presa Nezahualcóyotl (Malpaso), Chiapas México. Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez-México, 23 pp.
Zamudio-Valdéz JA (1991) Los copépodos de vida libre (Crustacea: Maxillopoda) del Valle
de Cuatro Ciénegas, Coahuila, México. BSc thesis, San Nicolás de los Garza. Universidad
Autónoma de Nuevo León, Nuevo León.
TAXONOMIC REVISION OF THE MEXICAN EUCYCLOPS, WITH
COMPLEMENTARY DESCRIPTIONS OF FOUR SPECIES AND DESCRIPTION OF
SIX NEW SPECIES (COPEPODA, CYCLOPOIDA, EUCYCLOPINAE), AND
COMMENTS ON BIOGEOGRAPHY
BY
NANCY F. MERCADO-SALAS*1, EDUARDO SUÁREZ-MORALES1 AND MARCELO
SILVA-BRIANO2
1
El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario Km. 5.5.
Chetumal, Quintana Roo 77014. México
2
*
Universidad Autónoma de Aguascalientes, Aguascalientes 20100, México.
corresponding author: nmercado@ecosur.edu.mx
ABSTRACT
The Mexican fauna of the freshwater copepod genus Eucyclops was revised in order to
confirm or correct previous records and clarify the taxonomical status of the species
dwelling in this country. Based on material deposited at different national and international
biological collections, we reviewed all records and compared with type material of
widespread species recorded in Mexico. Resulting from our taxonomical analysis, in this
contribution we recognize 17 species dwelling in Mexico. Complementary descriptions of
eight species emphasizing the newly introduced taxonomic characters are also presented
based on Mexican specimens. These species include E. elegans (Herrick, 1884), E.
prionophorus Kiefer, 1931, E. festivus Lindberg, 1955, E. leptacanthus Kiefer, 1956, E.
torresphilipi Suárez-Morales, 2004, E. chihuahuensis Suárez-Morales & Walsh, 2009, E.
cuatrocienegas Suárez-Morales & Walsh, 2009, and the recently described E. tziscao
Mercado-Salas, 2013 and E. angeli Gutiérrez-Aguirre & Cervantes-Martínez, 2013. The
use of upgraded descriptive standards involving new morphological characters allowed the
discovery of six new species that are described in this work (E. alekseevi n. sp., E. wixarica
n. sp. E. defayeae n. sp., E. mittmanni n. sp., E. estherae n. sp., and E. ishidai n.sp.). Most
of these species were previously recorded in Mexico under different names. The occurrence
of E. pectinifer, E. elegans, E. prionophorus and E. leptacanthus in Mexico is herein
confirmed. We propose the ornamentation patterns of the fourth swimming legs (i.e.
basipodite, coxal plates) as reliable additional characters to recognize closely related
species of Eucyclops. The importance of the antennal basis ornamentation in the taxonomy
of the genus is supported by our data. We evaluated the taxonomic value of the
morphometric and binary characters using statistical methods; results of this analysis
showed that morphometric characters alone overlap and thus have a limited value to
distinguish species of Eucyclops. We include comments on E. serrulatus s. str. in order to
provide a complete comparison frame among members of the serrulatus-species complex
but we did not find the strict form in the samples examined.
Key words: serrulatus-complex, antennal basipod, diversity, morphometrics
INTRODUCTION
Until recent years the systematics of the free-living Cyclopidae was based in a
limited number of morphological characters, some of which have been proved to be highly
variabile and related to environmental factors (Dahms & Fernando, 1997; Rocha, 1998,
Karaytug, 1999). Another problem that is common among species of the family Cyclopidae
is the notion of cosmopolitanism. According to Boxshall and Defaye (2008) the XIX
century species concepts were largely established and applied by European natural
historians who tended to record species from around the world under European names
assuming that these species are naturally cosmpolitan. The second half of the 20th century
brought revisionary studies with the exploration of new characters and an improved
taxonomic resolution; numerous species complexes were recognized among the freshwater
cyclopid copepods. The evaluation of more characters in the definition of species of
copepods in the last three decades has led to the clarification of its taxonomy (Karaytug,
1999; Boxshall & Halsey, 2004; Dussart & Defaye, 2006). Currently, the diversity of some
genera is being rediscovered and described: Paracyclops Karaytug, 1999; Mesocyclops
(Van Velde, 1984; Suárez-Morales & Gutiérrez-Aguirre, 2001; Ueda & Reid, 2003;
Holynska 2006), Acanthocyclops (Dodson, 1994; Mirabdullayeb & Defaye, 2002, 2004;
Dodson et al. 2003; Miracle et al. 2013).
Among the Cyclopidae the subfamily Eucyclopinae is the one with deeper
taxonomic problems. It contains approximately 185 species belonging to 10 genera; the
genus Eucyclops is the most diversified eucyclopine genus and it includes 108 nominal
species and subspecies (Dussart & Defaye, 2006, Alekseev & Defaye, 2011). Due to its
diversification, Eucyclops is probably the most taxonomically challenging group among the
freshwater Copepoda; it contains several problematic taxa and some species groups with a
high intraspecific variability.
The genus is divided into three subgenera: Eucyclops s. str. containing most of the
known species, Stygocyclops Plesa, 1971 with only one species known and Isocyclops
Kiefer, 1957 which includes two species endemic to Lake Tanganyika (Dussart & Defaye,
2001, 2006; Suárez-Morales, 2004, Mercado-Salas et al. 2012). Eucyclops has a very wide
geographic distribution in tropical, temperate, and cold latitudes of all continents and
inhabit all kind of aquatic habitats (Reid, 2001; Suárez-Morales, 2004). Some species like
Eucyclops elegans have been recorded in man-modified environments like reservoirs, water
pipes and water lenses in tires. Due to their capability to survive in all kind of environments
it has been proposed that some species of Eucyclops can be used as potential biological
control of mosquito larvae (Reid & Marten, 1995; Reid, 2001). Furthermore, some
Eucyclops (not identified at species level) can be intermediate hosts of nematode parasites
of fish, mammals and even humans. Some species of the parasitic Gnathostoma have been
observed in Eucyclops from Mexico, where more than 8,000 cases of human
gnastostomosis have been reported (Lamothe et al., 2001; García-Marquez, 2005).
The primary characters used in the current taxonomy of the genus were proposed
and implemented by Reid (1985), Morton (1990), Dussart and Defaye (2001), SuarezMorales (2004) and more recently by Alekseev et al. (2006) and Alekseev and Defaye
(2011). These characters include: 1) the presence and features of the fifth leg segment,
armed with one inner spine and two setae, 2) antennules 12-segmented in females and 16segmented in males, 3) the presence and coverage of spinules along the outer margin of
caudal rami, 4) the presence of hair-like setae in the outer margin of the fifth thoracic
somite, and 5) a spine formula of swimming legs being 3443. In many cases these
characters have been insufficient to distinguish species in the genus, a situation that has
favored a complex taxonomic history that includes many species or records that remain
under an uncertain status (Collado et al., 1984, Reid 1985, Ishida 1997, Suárez-Morales,
2004).
Ishida (1997, 2001, 2002, 2003), Alekseev et al. (2006), Alekseev (2008, 2010) and
Alekseev and Defaye (2011) pioneered the attempts to resolve the taxonomic problems in
the genus. Ishida´s worksfocused on the species complex "serrulatus-like species" and
"speratus-like species" from Japan. Alekseev and collaborators emphasized the study of the
“serrulatus-group”. These authors incorporated new characters such as the antennal
ornamentation patterns, the ornamentation of mouthparths, the patterns of body pores and
even the ornamentation of the coxal plates, the basipods and coxopods of the fourth
swimming leg.
In the Americas there are more than 800 records of the genus that have been
assigned to 31 nominal species. Approximately 300 of these records are related to
conflictive taxa (i.e. E. serrulatus, E. agilis, E. speratus). These records should be reviewed
and eventually reassigned to American forms or alternatively confirm the presence of
European species in this continent. Mexico is the country with more records of Eucyclops
(460) in the Americas, which currently involve 16 species: E. agilis (synonym of E.
serrulatus), E. bondi, E. breviramatus, E. chihuahuensis, E. conrowae, E. cuatrocienegas,
E. delachauxi, E. elegans, E. festivus, E. leptacanthus, E. pectinifer, E. prionophorus, E.
pseudoensifer, E. serrulatus (possibly E. pectinifer), E. speratus (E. elegans in the
Americas), and E. torresphilipi (Juday, 1915; Pearse & Wilson, 1938; Osorio-Tafall, 1943;
Comita, 1950; Lindberg, 1955; Suárez-Morales et al., 1985; Zamudio-Valdez, 1991;
Zannata-Juárez, 1995; Dodson & Silva-Briano, 1996; Grimaldo-Ortega et al., 1998;
Suárez-Morales & Reid, 1998; Gutiérrez-Aguirre, 1999; Álvarez-Silva & Gómez-Aguirre,
2000; Elías-Gutiérrez, 2000; Fiers et al., 2000; Rodríguez-Almaráz, 2000; Suárez-Morales,
2004; Elías-Gutiérrez et al., 2008; Jiménez-Trejo & Vásquez-Vargas, 2008; MercadoSalas, 2009; Suárez-Morales & Walsh, 2009). Based on the complexity of the genus and
the lack of revisionary efforts in Mexico, Suárez-Morales (2004), Suárez-Morales and
Walsh (2009) and Gutiérrez-Aguirre et al. (2013) argued that the Mexican diversity of the
genus could be underestimated. According with the observations from Grimaldo-Ortega et
al. (1998), Elías-Gutiérrez (2000), Rodríguez-Almaraz (2000), Suárez-Morales (2004),
Suárez-Morales and Walsh (2009), Mercado-Salas (2009), and Gutiérrez-Aguirre et al.
(2013), the morphology of the Mexican specimens shows some variations with respect to
original descriptions and records. These variations suggest that there undescribed species
have been recorded over time under the names of “common”, “widespread” or
“cosmopolitan” species. This highlights the importance of performing a complete
morphological study of the species and records from Mexican water bodies including
reexamination and redescription of type material and revision of voucher specimens of
Mexican records deposited in national or local collections. This process is expected to
allow a re-evaluation of the variability among Mexican populations by using new
characters that could aid to achieve an accurate morphological delimitation of the Mexican
species. The goal of this suervey is to provide the bases of a new taxonomical approach to
identify species of Eucyclops. This will contribute to 1) solve the taxonomy and diversity of
the genus in Mexico, 2) assess and clarify the real distributional patterns of the species and;
3) mark a lead in the future taxonomical study of the genus in the Americas.
METHODS
We examined type specimens deposited in different collections: Staatliches Museum für
Naturkunde, Karlsruhe (E. delachauxi, E. prionophorus, E. bondi, E. leptachantus and
specimens of E. elegans); Muséum National d´Histoire Naturelle, Paris (E. pseudoensifer),
National Museum of Natural History Smithsonian Institution in Washington D. C. (E.
conrowae and specimens of E. elegans), and at El Colegio de la Frontera Sur (E.
torresphilipi, E. cuatrocienegas, E. chihuahuensis, E. tziscao, E. angeli). The redescriptions
of species and additional comparative comments of specimens from the first three
collections can be consulted in: Mercado-Salas and Suárez-Morales (in press. a-c).
Taxonomic and morphologic remarks of the Mexican type specimens deposited at El
Colegio de la Frontera Sur are included in this work. A thorough search was performed to
locate the collections where Mexican material is deposited, the two main collections where
Mexican specimens are deposited are: 1) National Museum of Natural History Smithsonian
Institution that holds records from the states of Quintana Roo and Nuevo León and 2) El
Colegio de la Frontera Sur, which holds the most important collection of Eucyclops (and
cyclopoids in general) of Mexico including records from 10 states: Aguascalientes,
Chihuahua, Chiapas, Coahuila, Durango, San Luis Potosí, State of Mexico, Tabasco,
Quintana Roo and Zacatecas. Only from these two collections we reviewed more than 300
specimens. Additional biological samples from Baja California, Baja California Sur,
Oaxaca, Coahuila and Sinaloa deposited at the Centro de Investigaciones del Noreste
(CIBNOR) and samples from the states of Queretaro, Veracruz and Oaxaca held at the
FES-Iztacala Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, were
also examined for Eucyclops aiming to expand the geographic coverage of this survey.
All specimens from ECOSUR, CIBNOR and UNAM were dissected and
appendages mounted in glycerin for taxonomic analysis. For each slide/specimen examined a
sheet with morphometric measurements was filled in to have a close record of the
morphological variation of each species. The appendage and body morphology, measurements
and micropatterns analyzed in each specimen follows Einsle (1985), Karaytug (1998),
Alekseev et al. (2006) and Alekseev and Defaye (2011), all with slight modifications (see
Figs. XXXX).
The following morphological characters (with abbreviations) were examined and
evaluated in most of the studied material:
In females:
1. Antennule (A1): number of segments and elements present on each segment, size of
spine on sixth segment and structure of hyaline membrane on distal three segments;
2. Antenna (A2): spinulation micropatterns on frontal and caudal sides of basipodite (Fig.
XX, modified from Alekseev et al. (2006) and Alekseev and Defaye (2011));
micropatterns on Enp1 (Fig. XXX), number of setae on Enp 1-3;
3. Swimming legs 1-4 (P1-P4): spine formula of distal segments of exopodites (Exp). For
P1, size of basipodal spine and relative lengths of distal segment of Enp and apical
spine (Fig. XX); for Enp3 P4, relative length, width and size of apical spines, insertion
of lateral seta, and ornamentation of coxal spine (Fig. XX); for P1-P4, micropatterns
on caudal side of coxopodite, micropatterns on frontal and caudal surfaces of
intercoxal sclerites, and number of modified setae in Enp and Exp (see figs. XXX);
4. Leg 5 (P5): relative length of inner spine, segment and two setae;
5. Genital double somite (GDS): shape of seminal receptacle;
6. Anal somite: shape of anal operculum;
7. Caudal rami: length/width ratio; percentage of spinules coverage of outer margin and
size of spinules; length ratio of caudal setae. Caudal setae labeled as follows: II –
anterolateral (lateral) caudal seta; III – posterolateral (outermost) caudal seta; IV –
outer terminal (terminal median external) caudal seta; V – inner terminal (terminal
median internal) caudal seta; VI – terminal accessory (innermost) caudal seta; VII –
dorsal seta, nomenclature follows Huys and Boxshall (1991), Dussart and Defaye
(1995) and Alekseev and Defaye (2011).
In males:
1. Antennule (A1): number of segments and elements present on each segment, following
Karaytug and Boxshall (1999);
2. Antenna (A2): micropatterns on frontal and caudal sides of basipodite, as in females
(Fig. XX modified from Alekseev et al. 2006 and Alekseev and Defaye, 2011);
3. Fourth leg (P4): for Enp3, relative length, width and size of apical spines and relative
percentage of lateral seta insertion and ornamentation of coxal spine; micropatterns of
caudal side of coxopodite, micropatterns of frontal and caudal sides of intercoxal
sclerites and number of modified seta in Enp and Exp (as in females);
4. Legs 5 and 6 (P5, P6): relative length of inner spine, segment and setae of both legs
and relative length of spine of P6 relative to urosomites;
5. Caudal rami: length/width ratio; percentage of outer margin cover with spinules and
size of spinules; length ratio of the caudal setae. Caudal setae nomenclature as in
female.
Drawings of dissected specimens were prepared using a Olympus-BX53 microscope
equipped with a camera lucida at a magnification of 1000 X. Type specimens were deposited
in the collection of Zooplankton held at El Colegio de la Frontera Sur (ECOSUR), Chetumal,
Mexico (ECO-CH-Z).
For those species of which several specimens were available, one or two individuals
were prepared for SEM examination. This analysis was performed with a JEOL LV-5900
microscope at facilities of the Universidad Autónoma de Aguascalientes, Mexico. The SEM
processing included dehydration in progressively higher ethanol concentrations (60, 70, 80,
96, 100%), drying, and gold coating following standard methods.
In order to provide a general evaluation of the characters measured as a tool to separate
the species examined in this survey, we used different statistical methods. These included
boxplot graphics for morphometrical characters, correlation between morphometric values,
and a cluster analysis (Euclidean distances-similitude). These were performed with the aid of
the R-Development Core Team (2008) sofware. The matrix data used in these analyses
included 113 characters (morphometric and binaries) (Appendix 1). Characters were codified
asfollows:
1.
2.
3.
4.
5.
6.
7.
8.
9.
TB (total body length): value in millimeters.
SR (seminal receptacle): 0-serrulatus-complex; 1-with sinuous sac.
AO (anal operculum): 0-rounded and smooth; 1-rounded and serrate.
L/WCR (lenght/width caudal ramus): value.
VII/CR (dorsal seta VII/lenght of caudal ramus): value.
VII/III (dorsal seta VII/outermost caudal seta III): value.
VI/III (innermost caudal seta VI/outermost caudal seta III): value.
INII (insertion of lateral seta II): value.
A1S6 (length of spine on sixth segment of antennule): 0-not reaching medial margin
of seventh segment; 1-reaching or exceeding medial margin of seventh segment.
10. N1(row N1-antenna): 0-hairs;1hairs-spinules.
11. N2 (row N2-antenna): 0-absent; 1-present.
12. N2-O (row N2-antenna ornamentation): 0-hairs; 1-spinules.
13. N3 (row N3-antenna): 0-absent; 1-present.
14. N4 (row N4-antenna): 0-absent; 1-present.
15. N5 (row N5-antenna): 0-absent; 1-present.
16. N6 (row N6-antenna): 0-absent; 1-present.
17. N7 (row N7-antenna): 0-absent; 1-present.
18. N8 (row N8-antenna): 0-absent; 1-present.
19. N9-10 (row-N9-10 antenna): 0-fussed; 1-separated.
20. N9 (row N9-antenna): 0-absent; 1-present.
21. N10 (row N10-antenna): 0-absent; 1-present.
22. N11 (row N11-antenna): 0-absent; 1-present.
23. N12 (row N12-antenna): 0-absent; 1-present.
24. N13 (row N13-antenna): 0-absent; 1-present.
25. N14 (row N14-antenna): 0-absent; 1-present.
26. N15 (row N15-antenna): 0-absent; 1-present.
27. N16 (row N16-antenna): 0-absent; 1-present.
28. N17 (row N17-antenna): 0-absent; 1-present.
29. N18 (row N18-antenna): 0-absent; 1-present.
30. N19 (row N19-antenna): 0-absent; 1-present.
31. N20 (row N20-antenna): 0-absent; 1-present.
32. N21 (row N21-antenna): 0-absent; 1-present.
33. N22 (row N22-antenna): 0-absent; 1-present.
34. B1 (row B1-Enp1 antenna): 0-absent; 1-present.
35. B2 (row B2-Enp1 antenna): 0-absent; 1-present.
36. B3 (row B3-Enp1 antenna): 0-absent; 1-present
37. P1F (row I frontal surface of intercoxal sclerite P1): 0-absent; 1-present.
38. P1F-O (row I frontal surface of intercoxal sclerite P1-ornamentation): 0-hairs; 1hair-spinules; 2-spinules.
39. P1CRI (row I caudal surface of intercoxal sclerite P1): 0-absent; 1-present.
40. P1CRI-O (row I caudal surface of intercoxal sclerite P1-ornamentation): 0-hairs; 1spinules.
41. P1CRII (row III caudal surface of intercoxal sclerite P1): 0-absent; 1-present.
42. P1CRII-O (row II caudal surface of intercoxal sclerite P1): 0-hairs; 1-hair-spinules;
2-spinules.
43. P1A (row A coxa P1): 0-absent; 1-present.
44. P1B (row B coxa P1-ornamentation): 0-hair-spinules; 1-spinules.
45. P1BN (row B coxa P1-number): 0-1 row; 1-more than 1 row.
46. P1C (row C coxa P1): 0-absent; 1-present.
47. P1B/E (length basipodal spine/total length of Enp): value.
48. P1L/W (length/width Enp3 P1): value.
49. P1S/E (length apical spine/length Enp3 P1): value.
50. P2F (row I frontal surface of intercoxal sclerite P2): 0-absent; 1-present.
51. P2F-O (row I frontal surface of intercoxal sclerite P2-ornamentation): 0-hairs; 1hair-spinules; 2-spinules.
52. P2CRI (row I caudal surface of intercoxal sclerite P2): 0-absent; 1-present.
53. P2CRI-O (row I caudal surface of intercoxal sclerite P2-ornamentation): 0-hairs; 1spinules.
54. P2CRII (row III caudal surface of intercoxal sclerite P2): 0-absent; 1-present.
55. P2CRII-O (row II caudal surface of intercoxal sclerite P2-ornamentation): 0-hairs;
1-spinules.
56. P2A (row A coxa P2): 0-absent; 1-present.
57. P2B (row B coxa P2): 0-absent; 1-present.
58. P2B-O (row B coxa P2-ornamentation): 0-absent; 1-present.
59. P2C (row C coxa P2): 0-absent; 1-present.
60. P2C-O (row C coxa P2-ornamentation): 0-hair-spinules; 1-spinules.
61. P2CN (row C coxa P2-number): 0-1 row; 1-more than 1 row.
62. P2D (row D coxa P2): 0-absent; 1-present.
63. P2D-O (row D coxa P2-ornamentation): 0-hairs; 1-spinules.
64. P2L/W (length/width Enp3 P1): value.
65. P2S/L (length apical spine/length Enp3 P1): value.
66. P3F (row I frontal surface of intercoxal sclerite P3): 0-absent; 1-present.
67. P3F-O (row I frontal surface of intercoxal sclerite P3-ornamentation): 0-hairs; 1hair-spinules; 2-spinules.
68. P3CRI (row I caudal surface of intercoxal sclerite P3): 0-absent; 1-present.
69. P3CRI-C (row I caudal surface of intercoxal sclerite P3-shape): 0-continuous; 1with gap in the middle section.
70. P3CRI-O (row II caudal surface of intercoxal sclerite P3-ornamentation): 0-hairs; 1spinules, 2-spinules)
71. P3CRII (row II caudal surface of intercoxal sclerite P3): 0-absent; 1-present.
72. P3CRII-C (row II caudal surface of intercoxal sclerite P3-shape): 0-continuous; 1with gap in the middle section.
73. P3CRII-O (row II frontal surface of intercoxal sclerite P3-ornamentation): 0-hairs;
1-hair-spinules; 2-spinules.
74. P3CRIII (row III caudal surface of intercoxal sclerite P3): 0-absent; 1-present.
75. P3CRIII-C (row III caudal surface of intercoxal sclerite P3-shape): 0-continuous; 1with gap in the middle section.
76. P3CRIII-O (row III frontal surface of intercoxal sclerite P3-ornamentation): 0-hairs;
1-hair-spinules; 2-spinules.
77. P3L/W (length/width Enp3 P3): value.
78. P3S/L (length apical spine/length Enp3 P3): value.
79. P4F (row I frontal surface of intercoxal sclerite P4): 0-absent; 1-present.
80. P4F-O (row I frontal surface of intercoxal sclerite P4-ornamentation): 0-hairs; 1hair-spinules; 2-spinules.
81. P4CRI (row I caudal surface of intercoxal sclerite P4): 0-absent; 1-present.
82. P4CRI-O (row I caudal surface of intercoxal sclerite P4-ornamentation): 0-hairs; 1spinules.
83. P4CRI-S (row I caudal surface of intercoxal sclerite P4-size): 0-short spinules; 1long spinules.
84. P4CRI-C (row I caudal surface of intercoxal sclerite P4-shape): 0-continuous; 1with gap in the middle section.
85. P4CRII (row II caudal surface of intercoxal sclerite P4): 0-absent; 1-present.
86. P4CRII-C (row II caudal surface of intercoxal sclerite P4-shape): 0-continuous; 1with gap in the middle section.
87. P4CRII-L (row II caudal surface of intercoxal sclerite P4-position): 0-outer
margins; 1-along sclerite.
88. P4CRII-O (row II frontal surface of intercoxal sclerite P4-ornamentation): 0-hairs;
1-hair-spinules; 2-spinules.
89. P4CRIII (row III caudal surface of intercoxal sclerite P4): 0-absent; 1-present.
90. P4CRIII-C (row III caudal surface of intercoxal sclerite P4-shape): 0-continuous; 1with gap at middle section.
91. P4CRIII-L (row III caudal surface of intercoxal sclerite P4-position): 0-outer
margins; 1-along sclerite.
92. P4CRIII-0 (row III frontal surface of intercoxal sclerite P4-ornamentation): 0-hairs;
1-hair-spinules; 2-spinules.
93. P4A (row A coxa P4): 0-absent; 1-present.
94. P4B (row B coxa P4): 0-absent; 1-present.
95. P4C+D (row C+D coxa P4): 0-absent; 1-present.
96. P4E (row E coxa P4): 0-absent; 1-present.
97. P4F (row F coxa P4): 0-absent; 1-present.
98. P4G (row G coxa P4): 0-absent; 1-present.
99. P4H (row H coxa P4): 0-absent; 1-present.
100.
P4J (row J coxa P4): 0-absent; 1-present.
101.
P4J-O (row J coxa P4-shape): 0-in group; 1-divided in rows.
102.
P4L/W (length/width Enp3 P4): value.
103.
P4I/L (length inner spine/length Enp3P4): value.
104.
P4O/L (length outer spine/length Enp3P4): value.
105.
P4I/O (length inner spine/length outer spine P4): value.
106.
P4L (insertion of lateral seta): value
107.
P2MS (modified setae P2): 0-absent; 1-present.
108.
P3MS (modified setae P3): 0-absent; 1-present.
109.
P4MS (modified setae P4): 0-absent; 1-present.
110.
P5L/W (length/width seg P5): value.
111.
P5M/O (lenght medial seta/lenght outer seta P5): value.
112.
P5M/S (lenght medial seta/inner spine P5): value.
113.
P5S/L (lenght inner spine/lenght seg P5): value.
RESULTS
Order CYCLOPOIDA Rafinesque, 1815
Family CYCLOPIDAE Rafinesque, 1815
Subfamily EUCYCLOPINAE Kiefer, 1927
Genus Eucyclops Claus, 1893
Eucyclops elegans (Herrick, 1884)
Distribution:
Material examined:
Description: material 9c
Female: Habitus as in Figure XX. Average length excluding caudal setae= 1061 µm. All
body (caudal rami included) ornamented with small pits (see Fig. XX). Prosome expanded
at first and second somite, representing 58% of total body length, symmetrical in dorsal
view. Prosomal fringes finely serrate in dorsal view (Fig. XX). Urosome 5-segmented,
slightly elongated; first urosomite with long setules on lateral margin; urosomal fringes
strongly serrate; posterior margin of anal somite with row of spinules. Genital double
somite symmetrical (Fig. XX), representing 10% of total body length; proximal half of
genital somite expanded laterally. Seminal receptacle with rounded lateral arms on
posterior margin, typical of the serrulatus- complex. Anal somite as long as preanal somite.
Anal operculum slightly rounded, weakly serrate (Fig. XX). Length/width of caudal rami =
7.0; inner margin of caudal ramusnaked; outer margin with strong spinules covering 60% of
its length. . Dorsal seta (VII) 0.4 times as long as caudal ramus and 0.7 times as long as
outermost caudal seta (III). Length ratio of innermost caudal seta (VI)/outermost caudal
seta (III) = 1.2. Lateral caudal seta (II) inserted at 70% of ramus. All terminal setae
plumose.
Antennule (Fig. XX): 12-segmented, tip reaching posterior margin of fourth prosomite.
Finely denticulated hyaline hyaline membraneon segments 10-12 (Fig. XX), antennules
ornamented with pits (arrowed in Fig. XX). Armament per segment as follows: 1(8s), 2(4s),
3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(8s). Two
transverse rows of spinules on first segment, first one with minute spinules, second row
with stronger, longer spinules. Spine on sixth segment not reaching medial margin of
seventh segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s
respectively). Basis with rows of spinules on frontal surface: N1+N2(XVI), N3(9), N4(8),
N5(5), N15(5), N17(16), N18(5) and on caudal surface: N7(7), N8(5), N9+10(7), N11(9),
N12(12), N13(6), N16(14), 22(14). Caudal surface of Enp1 with B2(6) and B3(8).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing spinules in
semicircular pattern on each side, caudal surface with row I continuous bearing 14 minute
spinules (Fig. XX). Row II continuous, armed with 23 minute spinules (Fig. XX). Inner
coxal seta biserially setulated, caudal coxal surface with spinule formula = A-B-C. Inner
basal seta (basipodal spine) reaching middle margin of Enp3, 0.7 times as long as Enp.
Length/width ratio of Enp3 = 1.6, apical spine of Enp3 being 1.3 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I with hairs arranged in
circular pattern; caudal surface with rows I and II continuous, row I with 16 minute
spinules and row II with minute spinules (Fig. XX). Distal margin of intercoxal sclerite
with two rounded chitinized projections. Inner coxal seta biserially setulated, caudal coxal
surface with spinule formula A-B-C-D. Length/width ratio of Enp3 = 2.1, apical spine of
Enp3 being 1.1 times as long as Enp3. No modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite with row I formed by hair-like
elements arranged in circular pattern on each side (arrowed in Fig. XX); caudal surface
with row I bearing slender spinules, row II continuous, with 28 minute spinules and row III
with 21 strong spinules. Distal margin with two rounded chitinized projections. Coxa with
strong, biserially setulated inner coxal seta, ornamented basally with long hair-like
elements and distally with strong spinules along bothmargins. Caudal coxal surface with
spinules formula A-C. Small spinules along insertion of basipodite (frontal surface).
Length/width ratio of Enp= 2.6, apical spine of Enp3 being 1.1 times as long as Enp3. No
modified setae present.
Leg 4 (Fig. XX): Distal margin of sclerite with two rounded chitinized projections. Frontal
surface with row I bearing small, slender spinules arranged in circular pattern, caudal
surface of intercoxal sclerite with row I bearing strong small spinules, row II with small
spinules at middle section (arrowed Fig. XX) and row III with strong, slightly longer
spinules close to outer margins. Frontal surface of coxa with row of small spinules at
insertion of basipod. Inner coxal spine with heterogeneous ornamentation; inner margin
with proximal row oflong hairs,distal section with strong spinules. Outer margin with three
distal spinules and proximal hair-like elements, gap in middle margin (arrowed in Fig. XX).
Spinule formula of caudal surface of coxa: A-C+D-G-H-J. Length/width ratio Enp3 = 3.5,
length ratio inner spine of Enp3/length Enp3 = 0.9; length ratio outer spine of Enp3/length
Enp3 = 0.7; length ratio inner/outer spines Enp3 = 1.3. Lateral seta of Enp3 inserted at 62%
of segment. No modified setae in Enp and Exp.
Leg 5 (Fig. XX): free segment subrectangular, 1.9 times longer than wide, bearing strong
inner spine and two setae; medial seta 1.7 times longer than outer seta and 1.4 times longer
than inner spine. Inner spine 2.6 times longer than segment.
Male: Habitus as in Fig. XX. Length range excluding caudal setae XX--XX, slenderer than
female. Prosome symmetrical in dorsal view, representing XXX% of total body length.
Urosome 6-segmented, slightly elongated, urosomal fringes strongly serrate. Caudal ramus
smooth along both inner and outer margins, except for strong spinules at insertion of lateral
seta. Length/width ratio of caudal ramus = 6.1, dorsal seta (VII) 0.5 times as long as caudal
ramus and 1.2 times as long as outermost caudal seta (III). Innermost caudal seta
(VI)/outermost caudal seta (III) ratio = 1.1. Lateral caudal seta (II) inserted at 71% of ramus
length.
Antennule (Fig. XX): 15-segmented, armed as follows: 1(6s+3ms), 2(4s+1ms), 3(1+2ms),
4(1ms), 5(0), 6(2s), 7(3s), 8(0), 9(1s), 10(4s), 11(0), 12(0), 13(0), 14(1), 15(9s+1sp).
Antenna (Fig. XX): Basis with spinule groups on frontal surface: N1(VI), N2(V), N3(6),
N4(7), N5(11), N15(4), N17(11), N18(4) and on caudal surface: N7(4), N8(4), N9+10(5),
N11(4), N12(10).
Legs 1-4: Enp and Exp of all swimming legs three-segmented, armed as in females.
Leg 5 (Fig. XX): free segment subrectangular, 1.8 times longer than wide, bearing inner
spine and two setae; medial seta longer than outer seta (about 1.8 times) and inner spine
(1.3 times).
Leg 6 (Fig. XX): Represented by small, low plate adjacent to lateral margin of genital
somite armed with strong inner spine and two unequal setae. Inner spine reaching medial
margin of third urosomite, as long as medial seta and 1.6 times longer than outer seta.
Small, strong spinules present at insertion of inner spine.
Remarks: Eucyclops elegans was recently assigned as a member of the serrulatus-group by
Mercado-Salas and Suárez-Morales (in press c) following the diagnostic characters
established by Alekseev and Defaye (2011) to distinguish species of this group. The
inclusion of E. elegans in the serrulatus-group precludes the idea of a synonymie with E.
speratus and supported Reid and Marten’s (1995) assumption that American records of E.
speratus should be assigned to E. elegans after an analysis. It is important to consider that
we have observed differences between specimens of E. elegans from North and South
America; these could refer to another species (see Mercado-Salas and Suárez-Morales, in
press c). We describe a new species closely related to E. elegans (see remarks of E.
mittmanni n. sp.) from Mexico that must be considered in the identification of material
related to E. elegans. Eucyclops elegans can be distinguished from E. serrulatus by the
ornamentation of the frontal surface of the antennary basis, it has group N18, N1 and N2
are fused and row 22 is present on the caudal surface. Both species share rows N3, N4, N5,
N15 and N17 on the frontal surface. The caudal surface of the antennary basis has some
additional differences between these two species: row N8 is absent in E. serrulatus and
sometimes N16 is absent too, but in E. elegans both rows are always present. The sixth leg
of males of E. elegans is remarkably different from that of E. serrulatus, E. speratus, E.
neumani titicacae, and from most of the American species of the genus, it bears a small but
strong inner spine which barely reaches the medial margin of the third urosomite, while in
the rest of the species this spine is clearly longer than both the medial and outer setae and
reaches at least the posterior margin of the third urosomite. Furthermore, the proportions of
the P6 setae and spine should be considered important in separating the populations
examined; together with the antennule ornamentations, this character was useful to
distinguish species.
Other American Eucyclops with long caudal rami are E. neumani s.str. and E.
neumani titicacae, both differing from E. elegans because the caudal ramus only bears
spinules in the area adjacent to the lateral caudal seta (II). Among other characters, the
former subspecies (E. neumani s. str.) differs from E. elegans, E. serrulatus and E. neumani
titicacae in details of the antennary ornamentation, with group N1 formed by spinules and
not hair-like elements. Eucyclops neumani titicacae also differs from E. elegans and E.
serrulatus for its unique ornamentation pattern of the intercoxal plate of P4 (see Fig. 13
Kiefer 1957; Fuentes and Suárez-Morales, in press).
Eucyclops prionophorus Kiefer, 1931
Distribution: 4806 (Eco-ch-z-04806)
Material examined:
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 688µm.
Prosome widest at first and second somites, prosome representing 58% of total body length,
symmetrical in dorsal view. Prosomal fringes finely serrate in dorsal view (Fig. XX).
Urosome 5-segmented, slightly elongated; first urosomite with long setules on lateral
margin (Fig. XX); urosomal fringes strongly serrate; posterior margin of anal somite with
row of spinules. Genital double somite symmetrical (Fig. XX), representing 11.3% of total
body length; proximal half of genital somite expanded laterally. Seminal receptacle with
rounded lateral arms, posterior margin with sinuous sac (Fig. XX). Anal somite as long as
preanal somite. Anal operculum slightly rounded, smooth (Fig. XX). Length/width of
caudal rami = 3.9; inner margin of caudal ramusnaked; outer margin with strong spinules
covering 55% of its length. Dorsal seta (VII) 0.5 times as long as caudal ramus, and 0.9
times as long as outermost caudal seta (III). Ratio of innermost caudal seta (VI)/outermost
caudal seta (III) = 1.1. Lateral caudal seta (II) inserted at 74% of caudal ramus. All terminal
setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching posterior margin of fourth prosomite.
Finely denticulated hyaline hyaline membraneon segments 10-12 (Fig. XX), antennules
ornamented with pits (arrowed in Fig. XX). Armament per segment as follows: 1(8s), 2(4s),
3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(8s). Two
transversetransverse rows of spinules on first segment, first row with strong spinules of
different sizes and the adjacent second row with minute spinules. Spine on sixth segment
not reaching medial margin of seventh segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(IV), N2(4), N3(5),
N4(12), N5(6), N15(4), N17(5), N18(5) and on caudal surface: N7(13), N8(5), N9+10(6),
N11(7), N12(6), N14(4), N16(7), N22(11). Frontal surface of Enp1 with B1(9) and caudal
surface with B2(8) (arrowed in Fig. XX).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row of hair-like elements
arranged in a semicircular pattern on each side, caudal surface with row I bearing 10 minute
spinules and row II with 24 minute spinules (arrowed in Fig. XX). Inner coxal seta
biserially setulated, caudal coxal surface with spinule formula = A-B-C. Inner basal seta
(basipodal spine) reaching middle margin of Enp3, 0.8 times as long as Enp. Length/width
ratio Enp3 = 1.6, apical spine of Enp3 as long as Enp3 (1.0).
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing hair-like spinules
arranged in a circular pattern; caudal surface with rows I and II close to each other,
forming a group in a position where group II is usually found, with minute spinules (Fig.
XX). Distal margin of intercoxal sclerite with two rounded chitinized projections. Inner
coxal seta biserially setulated, caudal coxal surface with spinule formula A-B-C-D.
Length/width ratio of Enp3 = 2.4, apical spine of Enp3 1.2 times as long as Enp3. No
modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite ornamented with hair-like spinules
arranged in circular pattern on each side (arrowed in Fig. XX); caudal surface with row I
bearing long hair-like elements (small gap in the middle, arrowed in Fig. XX), row II
continuous, bearing 25 strong spinules, those near outer margins longer than medial ones.
Row III continuous, with 15 strong spinules, spinules on outer margins longer than medial
ones. Distal margin with two rounded chitinized projections. Coxa with strong, biserially
setulated inner coxal seta ornamented with long hairs proximally and with strong spinules
distally along both margins. Caudal coxal surface with spinule formula = A-B-C. Small
spinules along insertion of basipodite (frontal surface). Length/width ratio of Enp = 2.4,
apical spine of Enp3 as long as Enp3. Modified setae present in both Exp and Enp (arrowed
in Fig. XX).
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing small spinules arranged in
circular pattern (Fig. XX), caudal surface of intercoxal sclerite with row I bearing long,
strong spinules, row II with long slender spinules near outer margins and row III with long,
slender spinules (arrowed in Fig. XX). Frontal surface of coxa with row of small spinules at
insertion of basipod. Inner coxal spine with heterogeneous ornamentation; proximal inner
margin with long hairs and distal section with strong spinules. Outer margin with one distal
spinule and proximal section with hairs, gap in middle margin (arrowed in Fig. XX).
Spinule formula on the caudal surface of coxa: A-B-C+D-E-F-H-J. Length/width ratio
Enp3 = 2.6, length ratio inner spine of Enp3/ Enp3 = 1.1; length ratio outer spine of
Enp3/length Enp3 = 0.8; length ratio inner/outer spines Enp3 = 1.4. Lateral seta of Enp3
inserted at 66% of segment. Modified setae in Enp and Exp (arrowed in Fig. XX).
Leg 5 (Fig. XX): free segment subrectangular, 1.5 times longer than wide, bearing one
strong inner spine and two setae; medial seta 1.4 times longer than outer seta and 1.6 times
longer than inner spine. Inner spine 1.9 times longer than segment.
Male: Not found.
Remarks: In Kiefer’s (1931) original description, the ornamentation of outer margin of
caudal rami, with spinules increasing in size distally and the remarkably strong spine of the
fifth leg were advanced as the main characteristics of this species. Both characters were
found in the Mexican specimens identified as E. prionophorus. This species was studied by
Einsle (1992) based on type material and additional records deposited at Kiefer´s collection
and recently also by Mercado-Salas and Suárez-Morales (in press a). This species differs
from its congeners by the possession of a dorsal caudal seta shorther than both the
innermost and outermost caudal setae, a basipodal seta of P1 reaching the middle margin of
Enp3, and the modified setae of exopodites of P3 and P4, which are heavily chitinized and
distally blunt. This species differs from E. bondi and E. conrowae by its possession of a
relatively smaller caudal dorsal seta and in the ornamentation of fourth coxal plate, in
which row I is represented by long and strong spinules, whereas it is formed by small and
stronger spinules in the other two species. There are additional differences in rows I and II;
in the former two species these rows are always continuous, with short and strong spinules,
but in in E. prionophorus both rows were present only adjacent to the outer margins and are
represented by long hair-like spinules. As stated by Alekseev and Defaye (2011), E.
prionophorus belongs to the serrulatus-group, an idea which were are able to support with
the additional data onthe antennal basis In addition, we observed that in some of the
Mexican specimens the seminal receptacle differs from that found in specimens from
Kiefer´s collection but also from those depicted by Einsle (1992) and Mercado-Salas and
Suárez-Morales (in press. a). These specimens have a typical seminal receptacle of the
serrulatus-group, but in some Mexican specimens the posterior margin has a sinuous sac
(Fig. XX). Another difference between the Mexican E. prionophorus and the type material
was the length/width proportion of Enp3 of all swimming legs, which is slightly longer in
the Mexican material. Eucyclops prionophorus can be easily distinguished from E.
serrulatus by the possession of small spinules on row N2 on the frontal surface of the
antennal basis and also by the presence of rows N18 (frontal surface), N10, N16 and N22
(caudal surface), absent in E. serrulatus. It differs from E.pectinifer by the absence of N6
and the presence of N22 (absent in E. pectinifer); both species share the absence of N13
and the presence of row N1. Spinules of row N12 have the same size in E. prionophorus
while some spinules are clearly longer than the others in E. pectinifer. The ornamentation
patterns of thecaudal surface of the intercoxal sclerites of E. prionophorus
differ from
those of both E. pectinifer and E. serrulatus. In the first leg, rows I and II of E.
prionophorus bear minute spinules whereas row I is absent and row II bears long hairspinules in the other two species. In the second leg of E. prionophorus rows I and II has
minute spinules and both are closer to each other than in other related species (see Fig.
XX). In E. serrulatus and E. pectinifer row I is absent and row II is, as in P1, formed by
long spinules. The caudal surface of the intercoxal sclerite of P3 has some additional
differences among these three species. In E. pectinifer row I bears long hairs and a gap at
middle margin, row II and III are continuous and armed with long hair-spinules, in E.
serrulatus row I bears long hair spinules and a gap in the middle margin as well, row II is
continuous, with small spinules, row III bears long, strong spinules only in the outer
margins (gap in middle section) and in E. prionophorus row I bears long hairs with a small
gap at middle margin, row II is continuous and bears strong spinules, those adjacent to the
outer margins are longer than those in the middle, and row III is continuous, with strong
spinules; the spinules on the outer margins are longer. The fourth leg sclerite
ornamentation differs among these species, in E. pectinifer and E. serrulatus row I bears
remarkably long spinules while in E. prionophorus these spinules are long but shorther than
in the other species, rows II and III fits well in the variation pattern described by Alekseev
et al. (2006) and Alekseev and Defaye (2011) for E. serrulatus and E. pectinifer. In E.
prionophorus row F is present in the coxal surface, like in E. pectinifer, but this row is
absent in E. serrulatus.
Eucyclops festivus Lindberg, 1955
Distribution: 298c
Material examined:
Description:
Female: Habitus as in Fig. XX. Average body length excluding caudal setae = 866 µm.
Body surface (including caudal rami) ornamented with small pits. Prosome widest at first
and second somites, prosome symmetrical in dorsal view, representing 59% of total body
length (Fig. XX). Prosomal fringes serrate dorsally (Fig. XX). Urosome 5- segmented,
slightly elongated; first urosomite with long setules on lateral margin. Urosomal fringes
strongly serrate; posterior margin of anal somite with row of strong spinules. Genital
double somite symmetrical (Fig. XX), representing 10.8% of total body length; proximal
half of genital somite slightly expanded laterally. Seminal receptacle with rounded lateral
arms on posterior margin, typical of the serrulatus-complex. Anal somite as long as preanal
somite. Length/width of caudal rami = 4.6; inner margin of caudal ramus smooth; outer
margin with strong spinules covering 61% of its length. Dorsal seta (VII) 0.5 times as long
as caudal ramus and 0.6 times as long as outermost caudal seta (III). Ratio of innermost
caudal seta (VI)/outermost caudal seta (III) = 1.0. Lateral caudal seta (II) inserted at 74% of
caudal ramus. All terminal caudal setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching second prosomite , smooth, slender
hyaline membraneon segments 10-12, antennules ornamented with pits (arrowed in Fig.
XX). Armament per segment as follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s),
8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(7s+1ae). Transverse rows of spinules on first segment
not observed. Spine on sixth segment reaching midlength of seventh antennular segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(V), N2(3), N3(5), N4(5),
N5(8), N6(10), N15(4), N17 (12), N18(3) and on caudal surface: N7(4), N8(5), N9+10(8),
N11(4), N12(6), N13(5), N14(8), N16(5), N22(10). Caudal surface of first Enp with B2 (5).
Leg 1 (Fig. XX): Frontal surface of intercoxal sclerite with row I armed with hair-like
elements arranged in semicircular pattern, caudal surface with rows I and II bearing minute
spinules. Inner coxal seta biserially setulated, caudal coxal surface with spinule formula =
A+B+C. Inner basal seta (basipodal spine) reaching middle margin of Enp3, 0.8 times as
long as Enp. Length/width ratio Enp3 = 1.4, apical spine of Enp3 being 1.2 times as long as
Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing hair-like elements
arranged in a circular pattern; caudal surface with row I discontinuous, bearing 7-9 small
spinules on each side, row II continuous with 24-30 small spinules. Distal margin of
intercoxal sclerite with two rounded chitinized projections. Inner coxal seta biserially
setulated, caudal coxal surface with spinules formula A+B+C+D. Length/width ratio of
Enp3 = 2, apical spine of Enp3 1.2 times as long as Enp3. Not modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite armed with group of long hairs on
each side (arrowed in Fig. XX); caudal surface with row I bearing long hairs and with a
small gap in the middle, row II continuous bearing 30-32 small spinules and; row III
continuous bearing 32-37 spinules. Distal margin with two rounded chitinized projections.
Coxa with strong, biserially setulated inner coxal seta, basally with long hairs and distally
with strong spinules along both margins. Caudal coxal surface with spinule formula =
A+B+C. Small spinules at insertion of basipodite (frontal surface). Length/width ratio of
Enp3= 1.9, apical spine of Enp3 as long as segment (Enp3). No modified setae present.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing long slender spinules arranged in
a semicircular pattern on both sides of surface. Caudal surface of intercoxal sclerite with
row I with 7 strong spinules on each side and with a small gap in the middle margin, row II
continuous, with strong spinules, outer margins bearing more spinules than medial margin
and row III divided into three sections, two on outer margins with strong and long spinules
and medial margin with 3-4 long spinules (arrowed in Fig. XX). Frontal surface of coxa
with row of small spinules at insertion of basipod. Inner coxal spine with heterogeneous
ornamentation; inner margin with long hairs on proximal section and strong spinules
distally; outer edge with one distal spinule and proximal hair-like elements, gap in the
middle margin (arrowed in Fig. XX). Length/width ratio Enp3 = 2.5, length ratio inner
spine of Enp3/length Enp3 = 1.2; length ratio outer spine of Enp3/length Enp3 = 0.9;
proportion inner/outer spines Enp3 = 1.3. Lateral seta of Enp3 inserted at 68% of segment.
No modified setae in Enp and Exp.
Leg 5 (Fig. XX): free segment subrectangular, 2.1 times longer than wide, bearing one
strong inner spine and two setae; medial seta 1.8 times longer than outer seta and 1.6 times
longer than inner spine. Inner spine two times longer than segment.
Male: Not found
Remarks: As mentioned by Gutiérrez-Aguirre et al. (2013), E. festivus has been recorded in
north and central Mexico and recently also from a pond in the state of Chiapas in southeast
Mexico. This species appears to be related with E. estherae n. sp. and E. wixarica n. sp.,
both described herein. Differences among these species are presented in the remarks
sections of E. wixarica n. sp. and E. estherae n. sp.
Eucyclops leptacanthus Kiefer, 1956
Distribution: 481c
Material examined:
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 792µm.
Prosome widest at first and second somite, representing 63% of total body length, prosome
symmetrical in dorsal view. Prosomal fringes finely serrate in dorsal view (Fig. XX).
Urosome 5-segmented, slightly elongated; first urosomite with long setules on lateral
margin; urosomal fringes strongly serrate, urosomites ornamented with pits (see Fig. XX);
posterior margin of anal somite with row of spinules. Genital double somite symmetrical
(Fig. XX), representing 11% of total body length; proximal half of genital somite expanded
laterally. Seminal receptacle with rounded lateral arms on posterior margin, typical of the
serrulatus- complex. Anal somite as long as preanal somite. Anal operculum slightly
rounded, serrate (Fig. XX). Length/width of caudal rami = 3.7; inner margin of caudal
ramussmooth; outer margin with strong spinules covering 60% of its length. Dorsal seta
(VII) 0.7 times as long as caudal ramus and 1.0 times as long as outermost caudal seta (III).
Ratio of innermost caudal seta (VI)/outermost caudal seta (III) = 1.3. Lateral caudal seta
(II) inserted at 71% of caudal ramus. Terminal setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching posterior margin of third prosomite.
Finely denticulated hyaline membrane on segments 10-12 (Fig. XX), antennules
ornamented with pits (arrowed in Fig. XX). Armament per segment as follows: 1(8s), 2(4s),
3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(8s). Two
transverse rows of spinules on first segment, first row with long strong spinules and
adjacent second row with minute spinules. Spine on sixth segment reaching midlength of
seventh segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(5), N2(3), N3(3), N4(8),
N5(5), N15(4), N17(5), N18(3) and on caudal surface: N7(4), N8(4), N9+10(6), N11(5),
N12(6), N13(3) N14(4), N22(6). Caudal surface of Enp1 with B2(6) and B3(3).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing hair-like spinules
arranged in semicircular pattern; caudal surface with row II continuous, bearing 21 minute
but strong spinules, row I absent (Fig. XX). Inner coxal seta biserially setulated, caudal
coxal surface with spinule formula = A-B-C. Inner basal seta (basipodal spine) reaching
middle margin of Enp3, 0.8 times as long as Enp. Length/width ratio Enp3 = 1.6, apical
spine of Enp3 being 1.1 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing long hair-like
elements arranged in circular pattern; caudal surface with row II continuous, with 20
minute spinules, row I absent (Fig. XX). Distal margin of intercoxal sclerite with two
rounded chitinized projections. Inner coxal seta biserially setulated, caudal coxal surface
with spinule formula = A-B-C-D. Length/width ratio of Enp3= 2.1, apical spine of Enp3
being 1.4 times as long as Enp3. No modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite armed with hair-spinules arranged in
circle on each side (arrowed Fig. XX); caudal surface with row I bearing hair-like elements,
row II divided in two groups, each one with 8 minute spinules (gap in middle, arrowed in
Fig. XX); row III continuous, with 18 strong spinules, spinules adjacent to outer margins
being longer. Distal margin with two rounded chitinized projections. Coxa with strong,
biserially setulated inner coxal seta, with long hair-like elementss on proximal section and
with strong spinules distally. Caudal coxal surface with spinules formula = A-B-C, group B
with two rows (see Fig. XX). Small spinules along insertion of basipodite (frontal surface).
Length/width ratio of Enp = 2.3, apical spine of Enp3 being 1.3 times as long as Enp3.
Modified setae present in both, Enp and Exp.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing small, strong spinules arranged in
semicircular pattern. Caudal surface of intercoxal sclerite with row I bearing strong small
spinules, row II with strong spinules adjacent to outer margins (arrowed in Fig. XX) and
row III with strong, long hair-likespinules adjacent to outer margins. Frontal surface of
coxa with row of small spinules at insertion of basipod. Inner coxal spine with
heterogeneous ornamentation; proximal inner margin with long hairs; distal section with
strong spinules, outer margin with three distal spinules and with hairs on proximal section,
gap in middle margin (arrowed in Fig. XX). Spinule formula on the caudal surface = A-BC+D-E-F-G-J. Length/width ratio Enp3 = 2.7, length ratio inner spine of Enp3/length Enp3
= 1.1; length ratio outer spine of Enp3/length Enp3 = 0.9; proportion inner/outer spines
Enp3 = 1.2. Lateral seta of Enp3 inserted at 61% of segment. Modified setae in Enp and
Exp (arrowed in Fig. XX).
Leg 5 (Fig. XX): free segment subrectangular, 1.9 times longer than wide, bearing one
slender inner spine and two setae; medial seta 1.7 times longer than outer seta and 2.3 times
longer than inner spine. Inner spine 1.7 times longer than segment.
Male: Not found.
Remarks: Herein we assign E. leptacanthus as a member of the serrulatus-group. A
distinguishing character of this species is the presence of long hair-like spinules on N1,
where this row posses long hairs in all the other members of the group. We identified our
specimens from Mexico as E. leptacanthus because it has the main morphologic and
morphometric characters found in the holotype from Kiefer’s collection. This species is
characterized by a long innermost caudal seta (VI) which is 1.3 times longer than outermost
caudal seta (III), long setae in the four swimming legs and a slender P5 spine. Among its
congeners, E. leptacanthus can be easily distinguished from E. bondi by the possession of a
shorter dorsal seta and a completely different ornamentation of the P4 intercoxal sclerite .
Eucyclops leptacanthus resembles E. prionophorus, E. serrulatus, and E. pectinifer but
presents significant differences with respect to these species. In E. leptacanthus row N1 of
the antennal basipod has long hair-spinules while in E. prionophorus, E. serrulatus and E.
pectinifer this row bears long hair-like elements. In addition, N6 is absent in E.
leptacanthus as it is in E. prionophorus and E. serrulatus but it is present in E. pectinifer.
The caudal surface of the antennal basipod of E. leptacanthus shares with both E.
prionophorus and E. pectinifer the presence of row N18, but differs from both species by
the unique presence of N13. The caudal surface of the coxal sclerite of the four swimming
legs differs among these species as well, in P1 E. leptacanthus shares with E. serrulatus
and E. pectinifer the absence of row I but differs from both species in its possession of a
row II with minute spinules which has long hairs in the other species and in E.
prionophorus row I is always present. In P2, E. leptacanthus shares the absence of row I
with E. serrulatus and E. pectinifer but differs in having row II with minute spinules vs.
long spinules in the other two. Also, E. prionophorus differs by possessing a row I armed
with minute spinules. The caudal surface of the P3 intercoxal sclerite is similar in the three
species, but row II of E. leptacanthus is discontinuous vs. a continuous pattern in E.
prionophorus, E. serrulatus, and E. pectinifer. The ornamentation pattern of the caudal
surface of the P4 sclerite is similar in all species; in E. leptacanthus it has small but strong
spinules on row I, whereas this row posses long spinules in the other species.
Eucyclops torresphilipi Suárez-Morales, 2004
Distribution: Ejido El Aguila, Cacahoatán, near Tapachula, Chiapas, Mexico (15°05´33´´N;
92°10´46´´W).
Material examined:
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 680 µm.
Prosome widest at first and second somites, representing 66% of total body length,
symmetrical in dorsal view. Prosomal fringes finely serrate in dorsal view (Fig. XX). Five
segmented urosome, slightly elongated; first urosomite with long setules on lateral margin;
urosomal fringes strongly serrate; posterior margin of anal somite with row of spinules.
Genital double somite symmetrical (Fig. XX), representing 16.5% of total body length;
proximal half of genital somite expanded laterally. Seminal receptacle with rounded, lateral
arms on posterior margin, typical of the serrulatus-complex but posterior lobe slightly
expanded. Anal somite as long as preanal somite. Anal operculum slightly rounded and
smooth, with a small gap in the middle margin (Fig. XX). Length/width of caudal rami =
4.1; inner margin of caudal ramus smooth; strong spinules covering 47% of lateral margin.
Dorsal seta (VII) 0.7 times as long as caudal ramus, and 1.0 times as long as outermost
caudal seta (III). Ratio of innermost caudal seta (VI)/outermost caudal seta (III) = 1.6.
Lateral caudal seta (II) inserted at 77% of total length of caudal ramus. All terminal setae
plumose.
Antennule (Fig. XX): 12 segmented, tip reaching middle margin of second prosomite.
Finely denticulated hyaline membrane on segment 10-12 (Fig. XX), antennules ornamented
with pits (arrowed in Fig. XX). Armament per segment as follows: 1(8s), 2(4s), 3(2s),
4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(7s+1ae). One transverse
row of spinules on fisrt segment. Spine on sixth segment not reaching medial margin of
seventh antennular segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(V), N2(2), N3(3), N4(9),
N5(6), N6(3), N15(3), N17(6), N18(3).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row hair-spinules arranged in
semicircular patternon each side, caudal surface with row II bearing spinules, row I absent.
Inner coxal seta biserially setulated, caudal coxal surface with spinule formula = A-B-C.
Inner basal seta (basipodal spine) not reaching midlength of Enp3, 0.6 times as long as Enp.
Length/width ratio Enp3 = 1.5, apical spine of Enp3 being 1.2 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing hairs arranged in
semicircular pattern; caudal surface lacking row I, row II continuous, with 21 strong
spinules. Distal margin of intercoxal sclerite with two rounded chitinized projections. Inner
coxal seta biserially setulated, caudal coxal surface with spinule formula = A-B-C-D.
Length/width ratio of Enp3 = 2.0, apical spine of Enp3 1.2 times as long as Enp3. No
modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite with hairs-spinules arranged in
circular pattern on each side (arrowed in Fig. XX); caudal surface with row I bearing long
hairs (gap at middle section), row II with 24 strong spinules, divided into two sections
arranged in semicircular pattern; row III continuous, with 19 strong spinules. Distal margin
with two rounded chitinized projections. Coxa with strong biserially setulated inner coxal
seta, proximal section with long hairs; distal section with strong spinules long both
margins. Caudal coxal surface with spinule formula = A-B-C. Small spinules along
insertion of basipodite (frontal surface). Length/width ratio of Enp = 2.3, apical spine of
Enp3 being 1.0 times as long as Enp3. No modified setae present.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing small hair-spinules arranged in a
semicircular pattern, caudal surface with row I bearing long, strong spinules, row II with
spinules close to outer margins of sclerite; row III with strong and slightly longer spinules
close to outer margins. Frontal surface of coxa with row of small spinules at insertion of
basipod. Inner coxal spine with heterogeneous ornamentation; proximal inner margin with
long hairs; distal margin with strong spinules; outer margin with one distal spinule ,
proximal section with setules, gap in middle margin (arrowed in Fig. XX). Spinule formula
on caudal surface = C+D-G-H-J. Length/width ratio Enp3 = 2.1, length ratio inner spine of
Enp3/length Enp3 = 1.2; length ratio outer spine of Enp3/length Enp3= 0.8; length ratio
inner/outer spines Enp3 = 1.5. Lateral seta of Enp3 inserted at 70% of segment. No
modified setae in Enp and Exp.
Leg 5 (Fig. XX): free segment subrectangular, 1.6 times longer than wide; bearing one
strong inner spine and two setae; medial seta 1.6 times longer than outer seta and 1.6 times
longer than inner spine. Inner spine 2.0 times longer than segment.
Male: Habitus as in Fig. XX. Length range excluding caudal setae = 652µm. Body
slenderer than female. Prosome symmetrical in dorsal view, representing 67% of total body
length. Urosome 6-segmented, slightly elongated, urosomal fringes strongly serrate. Caudal
ramus smooth along both inner and outer margins, with strong spinules at insertion of
lateral seta.
Antennule (Fig. XX): 15–segmented, armed as follows:: 1(6s+3ms), 2(4s+1ms), 3(1+2ms),
4(1ms), 5(0), 6(2s), 7(3s), 8(0), 9(1s), 10(4s), 11(0), 12(0), 13(0), 14(1), 15(9s+1sp).
Antenna (Fig. XX): Basis ornamented on frontal surface : N1(VI), N2(V), N3(6), N4(7),
N5(11), N15(4), N17(11), N18(4) and on caudal surface: N7(4), N8(4), N9+10(5), N11(4),
N12(10).
Legs 1-4: End and Exp of all swimming legs three-segmented and armed as in female.
Leg 5 (Fig. XX): free segment subrectangular, 1.7 times longer than wide, bearing one
inner spine and two setae; medial seta longer than outer seta (about 1.6 times) and inner
spine (1.5 times). Inner spine 1.5 times longer than segment.
Remarks: As stated by Suárez-Morales (2004), E. torresphilipi resembles the South
American species E. leptacantus and E. delachauxi because they share a particularly
slender inner spine in P5 and a relatively short caudal ramus. The morphometric values
obtained from our analysis of E. leptacanthus and E. torresphilipi revealed that there are no
significative differences between these species, but the ornamentation of the swimming legs
and the antennae provide useful characters to distinguish them. In the P1 coxa of E.
torresphilipi row C bears long hair-spinules whereas this row has small but strong spinules
in E. leptacanthus.In the P2 coxa small differences were found, row D of E. torresphilipi
bears long hair spinules but in E. leptacanthus this row has strong and long spinules which
are also fewer than in E. torresphilipi. In P3 differences in the caudal surface of the
intercoxal sclerite are remarkable; in E. leptacanthus row I bears long hairs while in E.
torresphilipi this row is armed with long hair-spinules. In both species row II is divided in
two sections each one close to outer margin, but in E. leptacanthus it has small but strong
spinules and in E. torresphilipi this row covers all the medial surface of the intercoxal
sclerite and bears strong and slightly longer spinules. In both species row III has long
spinules along the sclerite.
Eucyclops prionophorus is another species that seems to be closely related to E.
torresphilipi but can be easily distinguished because of its possession of row I on the caudal
surface of P1 and P2 intercoxal sclerites; this row is absent in E. torresphilipi. One of the
main characteristics of E. torresphilipi is the coxal ornamentation of the fouth swimming
leg which is remarkably reduced when compared with that known in other congeners like
E. delachauxi, E. leptacanthus, E. prionophorus, E. pectinifer and E. bondi. In E.
torresphilipi row A is not present as it is in all the other mentioned species, but also E.
torresphilipi presents a unique pattern in row J which is divided into three rows bearing
minute spinules (arrowed in Fig. XX). This pattern is similar to that present in E.
albuferensis from Spain (Alekseev, 2008), with the difference that in E. albuferensis the
groups of spinules are not clearly separated as they are in E. torresphilipi. Another
distinctive feature of E. torresphilipi is the shape of its anal operculum, in the Mexican
Eucyclops we found two general types: 1) rounded and smooth and 2) rounded and serrate
(E. elegans, E. tziscao and E. defaye n. sp.); E. torresphilipi is the only species whose anal
operculum is smooth and rounded but it has a small gap in its middle section (arrowed in
Fig. XX). This character is known only in E. neumani s.str., a South American species and
otherwise clearly different to E. torresphilipi because of the ornamentation of the caudal
rami, the length/width of the caudal ramus, and the body size , among other characters.
Eucyclops delachauxi and E. torresphilipi share a short caudal ramus and a
particularly long lateral seta in Enp3 P4 as compared to other species of Eucyclops. In these
two species this seta reaches or exceeds the apical margin of the outer spine, while in the
rest of the species the seta does not reache beyond the midlength of the outer spine. A
character that separates these species is the ornamentation of the outer margin of the caudal
ramus; in E. torresphilipi (as in most of species of the genus) spinules cover ¾ of the total
length or the ramus while in E. delachauxi the serra is reduced, it covers only 20-30% of
the outer margin.
Eucyclops chihuahuensis Suárez-Morales and Walsh, 2009
Distribution: Presa Chihuahua, Chihuahua, Mexico (28°34.540 N; 106°09.932 W).
Material examined:
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 640µm.
Prosome expanded at first and second somite, representing 59% of total body length,
symmetrical in dorsal view. Urosome 5-segmented, slightly elongated; first urosomite with
long setules on lateral margin. Urosomal urosomal fringes strongly serrate; posterior
margin of anal somite with row of spinules. Genital double somite symmetrical (Fig. XX),
representing 11% of total body length; anterior half of genital somite expanded laterally.
Seminal receptacle with rounded lateral arms on posterior margin, typical of the serrulatuscomplex. Anal somite subequal in length to preanal somite. Anal operculum smooth,
rounded. Length/width of caudal rami = 4.5; inner margin of caudal ramus naked; outer
margin with strong spinules covering 63% of its length. Dorsal seta (VII) 0.4 times as long
as caudal ramus and 0.8 times as long as outermost caudal seta (III). Ratio of innermost
caudal seta (VI)/outermost caudal seta (III) = 1.3. Lateral caudal seta (II) inserted at 76% of
caudal ramus. All terminal setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching midlength of third prosomite. Finely
denticulated hyaline membrane on segments 10-12. Armament per segment as follows:
1(8s), 2(4s), 3(2s), 4(6s), 5(2s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(2s+1ae),
12(7s+1ae). Two transverse rows of spinules on fisrt segment, first row with strong
spinules and adjacent secondrow with minute spinules. Spine on sixth segment reaching
midlength of seventh segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(5), N2(5), N3(6), N4(5),
N5(7), N15(4), N17(8), N18(4); on caudal surface: N7(4), N8(6), N9(7), N10(3), N11(7),
N12(10), N13(13) N14(6), N20(10), N22(15). Caudal surface of Enp1 with B2(8).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing long spinules
arranged in semicircular pattern on each side, caudal surface with row II bearing long hairspinules, row I absent. Inner coxal seta biserially setulated, caudal coxal surface with
spinule formula = A-B-C. Inner basal seta (basipodal spine) not reaching midlength of
Enp3, 0.6 times as long as Enp. Length/width ratio Enp3 = 1.5, apical spine of Enp3 being
1.1 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I armed with hairs arranged
in circular pattern; caudal surface with rows I and II continuous, both bearing long hairspinules (Fig. XX). Distal margin of intercoxal sclerite with two rounded chitinized
projections. Inner coxal seta biserially setulated, caudal coxal surface with spinuleformula
= A-B-C-D. Length/width ratio of Enp3 = 1.9, apical spine of Enp3 1.3 times as long as
Enp3. No modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite armed with hairs arranged in circular
pattern on each side (arrowed Fig. XX); caudal surface with row I bearing long hairs (gap
at middle section), row II continuous, bearing long hairs; row III continuous, with long
hairs. Distal margin with two rounded chitinized projections. Coxa with strong biserially
setulated inner coxal seta, proximal section with long hairs; distal section with strong
spinules along bothmargins. Caudal coxal surface with spinule formula = A-B-C. Small
spinules along insertion of basipodite (frontal surface). Length/width ratio of Enp = 2.0,
apical spine of Enp3 being 1.2 times as long as Enp3. No modified setae present.
Leg 4 (Fig. XX): Distal margin with two rounded chitinized projections. Frontal surface of
intercoxal sclerite with row I bearing long hairs arranged in semicircular pattern, caudal
surface of intercoxal sclerite with row I bearing long hairs, row II with long hair-spinules
on outer margins and row III with long hair-spinules on outer margins. Frontal surface of
coxa with row of small spinules at insertion of basipod. Inner coxal spine with
heterogeneous ornamentation; inner margin with long setules proximally and with strong
spinules distally, outer margin with setules along proximal section and distally naked
(arrowed in Fig. XX). Spinule formula on caudal surface = A-B-C+D-E-F-G-J.
Length/width ratio Enp3 = 2.5, length ratio inner spine of Enp3/length Enp3 = 1.1; length
ratio outer spine of Enp3/length Enp3 = 0.9; length ratio inner/outer spines Enp3 = 1.3.
Lateral seta of Enp3 inserted at 68% of segment. No modified setae in Enp and Exp.
Leg 5 (Fig. XX): free segment subrectangular, 1.5 times longer than wide, bearing one
strong inner spine and two setae; medial seta 2.8 times longer than outer seta and 2.0 times
longer than inner spine. Inner spine 2.2 times longer than segment.
Male: Unknown.
Remarks: When this species was described (Suárez-Morales & Walsh, 2009), it was related
and compared with E. pseudoensifer, however, even when the general shape and main
proportions are similar to E. pseudoensifer, our analysis reveal that they belong to different
groups. Eucyclops pseudoensifer was redescribed by Suárez-Morales and Walsh (2009) and
new morphological data were added by Mercado-Salas and Suárez-Morales (in press.,b),
mainly in reference to the ornamentation patterns of the swimming legs and antennal basis.
Eucyclops pseudoensifer is not a member of the serrulatus-group because of the lack of N1
and N2 in the antennal basis while both rows N1 and N2 are present in E. chihuahuensis,
the formerbearing long hair-spinules and N2 with small but strong spinules. This character
places this species in the serrulatus-group. It appears to be more closely related to E.
pectinifer and E. serrulatus than to the South American congeners E. pseudoensifer and E.
leptacanthus. This species can be easily separated from E. serrulatus and E. pectinifer by
the presence of a more complex ornamentation pattern in both the caudal and frontal
surfaces of the antennal basis. Eucyclops serrulatus lacks rows N8, N9, N13, N18 and N22
which are present in E. chihuahuensis, and E. pectinifer lacks rows N13, N20 and N22
which are present in E. chihuahuensis. The three above mentioned species share a caudal
surface of P1 coxal sclerite with row I absent and row II bearing long hair-spinules but
differ in the intercoxal ornamentation of P2. In E. pectinifer and E. serrulatus row I on
caudal surface is absent while in E. chihuahuensis is present and has long hair-spinules, the
three species share a row II bearing long hair-spinules. Eucyclops chihuahuensis also
differs from E. serrulatus and E. pectinifer in the ornamentation of the P3 intercoxal
sclerite. In the first species all rows are armed with long hairs while in the other two species
these rows bear hair-spinules and strong spinules. The P4 intercoxal sclerite also differs
among these three species: in E. serrulatus and E. pectinifer row I has long and strong
spinules whereas E. chihuahuensis has long hairs. The coxal surface of E. chihuahuensis
can be distinguished from that of E. serrulatus by the presence of row F, and from both E.
serrulatus and E. pectinifer by the absence of row H. Based on the comparative analysis of
these characters; we presume that records of E. pseudoensifer in Mexico could be
assignable to E. chihuahuensis.
Eucyclops cuatrocienegas Suárez-Morales and Walsh, 2009
(Figs. XX)
Distribution: Poza Tortugas, Cuatro Ciénegas, Coahuila, México (26° 55.887´N; 102°
07.482´W.
Material examined:
Description:
Female: Habitus as in Fig. XX. Average length excluding caudal setae = 818 µm. Body
elongate, prosome slightly expanded at first and second somites, representing 63% of total
body length, symmetrical in dorsal view. Urosome 5- segmented (Fig XX), slightly
elongated, representing 37% of body length, urosomal fringes strongly serrate, posterior
margin of anal somite with row of strong spinules. Genital somite (Fig. XX) symmetrical,
representing 13.9% of total body length; proximal half of genital somite expanded laterally.
Seminal receptacle with rounded lateral arms on posterior margin. Anal somite subequal in
length to preanal somite. Length/width ratio of caudal rami = 3.7; inner margin of caudal
ramus naked, outer margin with strong spines covering 65% of its length. Dorsal seta (VII)
relatively short: 0.4 times the length of caudal ramus, and 1.1 times as long as outermost
caudal seta (III). Ratio of innermost caudal seta (VI)/ outermost caudal seta (III) = 1.3.
Lateral caudal seta (II) inserted at 68% of total length of caudal ramus. All terminal setae
plumose.
Antennule (Fig. XX): 12-segmented, tip reaching distal margin of cephalothorax, smooth
slender hyaline membrane on segments 10-12. Armament per segment as follows: 1(8s),
2(4s), 3(2s), 4(6s), 5(4s), 6(1s + 1sp), 7(2s), 8(3s), 9(2s + 1ae), 10(2s), 11(3s), 12(7s + 1ae).
Two rows of spinules on first segment, basal row bearing minute spinules, second row with
longer and stronger spinules than those in basal row. Spine on sixth segment reaching
midlength of seventh antennular segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s + Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(VII), N2 (5), N3(9),
N4(5), N5(13), N17(8), N18(5); on caudal surface: N7(7), N8(7), N9+10 (7), N11(8),
N12(8), N13(4), N14(4), N15(4). Caudal surface of Enp1 with B1(7).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing strong spinules
arrenged in semicircular pattern on each side; caudal surface smooth, distal margin with
two rounded chitinized projections. Inner coxal seta biserially setulated, caudal coxal
surface with spinule formula = A-B-C. Inner basal seta (basipodal spine) reaching middle
margin of Enp3, 0.8 times as long as Enp. Length/width radio of Enp3 = 1.4, apical spine of
Enp3 being 1.1 times as long as Enp3.
Leg 2 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing small, strong
spinules arrenged in a semicircular pattern on each side; caudal surface with row II
continuous, with 16 minute spinules, distal margin with two rounded chitinized projections.
Inner coxal seta biserially setulated, caudal coxal surface with spinule formula = A-B-C-D.
Small spinules along insertion of basipodite. Length/width ratio of Enp 3 = 2.0, apical spine
of Enp3 being 1.2 times as long as Enp3. Modified seta present in Enp and Exp.
Leg 3 (Fig. XX): frontal surface of intercoxal with row I bearing spinules arranged in
semi-circular pattern on each side, proximal spinules longer than the others; caudal surface
with row I bearing 13 minute spinules (small gap in the middle), row II continuous, bearing
18 minute spinules; row III with 14 strong, long spinules, with gap in the middle (7
spinules on each side, see Fig. XX). Distal margin with two rounded projections. Coxa with
strong biserially setulated coxal seta, both margins with long setules along proximal section
and strong spinules along distal section. Caudal coxal surface with spinule formula = A-BC. Small spinules along insertion of basipodite (frontal surface). Length/width ratio of
Enp3 = 2.2, apical spine of Enp3 being 1.1 times as long as Enp 3. Modified seta in Enp
and Exp (arrowed in Fig. XX).
Leg 4 (Fig. XX): Distal margin with two rounded chitinized projections. Fontal surface of
intercoxal sclerite with row I bearing minute spinules in semi-circular pattern on each side;
caudal surface of intercoxal sclerite with row I bearing 9 strong but small spinules on each
side, with small gap, row II continuous, bearing 22 spinules, outer spinules slightly longer
than innerones; row III with 7 spinules on each side, with wide gap (Fig. XX). Frontal
surface of coxa with row of small spinules at insertion of basipod. Inner coxal spine with
heterogeneous ornamentation; proximal inner margin with long hairs, distal margin with
spinules; outer margin with two distal spinules, proximal section with three hairs, gap in
middle margin (arrowed in Fig. XX). Caudal coxal surface with spinule formula = A-BC+D-E-F-H-J. Length/width ratio Enp3 P4 = 2.5; length ratio inner spine of Enp3P4/length
Enp3 P4 = 1.3; length ratio outer spine of Enp3P4/length Enp3 P4 = 0.9; proportion
inner/outer spine Enp3 = 1.4. Lateral seta of Enp3 inserted at 61% of segment. Modified
setae in Enp and Exp (arrowed in Fig. XX).
Leg 5 (Fig. XX): free segment subrectangular, 2.2 times longer than wide, bearing one
inner spine and two setae; medial and outer setae equal in length. Setae 2.1 times longer
than inner spine. Inner spine 1.3 times as long as segment.
Remarks: Eucyclops cuatrocienegas was recognized as a new species by Suárez-Morales
and Walsh (2009) based in the peculiarity of its fifth leg, which diverging from mots of its
congeners, has a remarkably short inner spine and an outer seta as long as the medial seta.
Eucyclops siolii Herbst, 1962 resembles E. cuatrocienegas because of the general shape
and armature of the fifth leg, but in E. siolii the outer seta is clearly shorter than the medial
seta and it has also a shorter caudal ramus (2.5 times longer than wide) than that of E.
cuatrocienegas (3.7-3.9). It is noteworthy to consider that E. siloii has been recorded only
from the Brazilian Amazon. Among the species known from Mexico, only E. pectinifer has
a fifth leg resembling that of E. cuatrocienegas. These species can be easily distinguished
by the length of the outer and medial setae of the fifth leg; in E. cuatrocienegas these seta
are equally long while in E. pectinifer the medial seta is always longer than the outer seta
(about 1.3 times). These two species also share a relatively weak ornamentation of the
antennal basis caudal surface when compared with species like E. prionophorus, E.
leptacanthus and E. chihuahuensis, bearing rows N20 and N22. Eucyclops cuatrocienegas
differs from E. pectinifer by the presence of N13, the absence of N6, N16, and the fusion of
N9+N10. Many differences were found in the caudal surfaces of intercoxal sclerites of both
species, E. cuatrocienegas is the only species distributed in Mexico with a caudal surface of
P1 completely naked, while in the rest of the species row II is always present and row I is
present only in E. elegans, E. prionophorus, E. tziscao, E. festivus, E. mittmanni n.sp. and
E. wixarica n. sp. The ornamentation of the caudal surface of the P2 intercoxal sclerite
differs between E. cuatrocienegas and E. pectinifer, in the former species this row bears
minute spinules (as in E. leptacanthus) while in E. pectinifer the row has long hair spinules.
Another distinctive character of E. cuatrocienegas is the ornamentation of the caudal
surface of the P3 sclerite; most of the species distributed in Mexico have long hairs or hair
spinules in row I, but in E. cuatrocienegas this row bears small but strong spinules, a
character shared only with E. mittmanni n. sp. and E. defaye n. sp., both of which differ
from E. cuatrocienegas in the ornamentation of the antennal basis, with row N2 (frontal)
bearing long hairs as in E. serrulatus, but in E. cuatrocienegas this row has short spinules
as in E. pectinifer.
Eucyclops tziscao Mercado-Salas 2013
(Figs. see Gutiérrez-Aguirre et al. (2013)
Eucyclops bondi: Gutiérrez-Aguirre and Cervantes-Martínez, 2013 Material examined:
Distribution: Laguna Tziscao, Chiapas, Mexico (16°05’19” N; 91°40’10” W).
Description
Female: Habitus as in Fig. XX. Average length excluding caudal setae = 620 µm. Prosome
expanded at first and second somite, representing 61% of total body length, symmetrical in
dorsal view. Five segmented urosome relatively elongated, urosomal fringes strongly
serrate (Fig. XX); posterior margin of anal somite with row of long spinules. Genital
double-somite symmetrical (Fig.XX), carrying paired egg sacs and representing the XX of
total body lenth. Seminal receptacle with rounded, lateral arms on posterior margin typical
of the serrulatus-complex. Anal somite with hair-seta in anal opening, anal operculum
serrate (Fig. XX). Length/width of caudal ramus = 4.0; inner margin of caudal ramus
naked; outer margin with strong spinules covering 40% of its length. Dorsal seta (VII)
short: 0.65 times the length of caudal ramus, and 1.1 times as long as outermost caudal seta
(III). Ratio of innermost caudal seta (VI)/outermost caudal seta (III) = 1.2. Lateral caudal
seta (II) inserted at 71% of caudal ramus. All the terminal caudal setae plumose.
Antennule (Figs. XX): 12-segmented, tip reaching from middle to distal margin of third
prosomite. Finely denticulated hyaline membrane on segments 10-12. Armament per
segment as follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6 (1s+1sp), 7(2s), 8(3s), 9(2s+1ae),
10(2s), 11(3s), 12(8s). Two transverse rows of spinules on first segment, first row with
strong long spinules, second row with minute spinules. Spine on sixth segment reaching
midlength of seventh segment.
Antenna (Figs. XX): Coxa (unarmed), basis (2s +Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1 (IV), N2 (5), N3(5),
N4(6), N5(12), N15(4), N17(10); on caudal surface: N8(4), N9+10(5), N11(5), N12(5).
Caudal surface of Enp 1 with B3(4).
Leg 1 (Figs. 3A, B): frontal surface of intercoxal sclerite with row I bearing spinules
arranged in semicircular pattern on each side; caudal surface with row I bearing 17 minute
spinules and row II with 14 minute spinules, distal margin with two rounded chitinized
projections (Fig. XB). Inner coxal seta biserially setulated, caudal coxal surface with
spinule formula = A-B-C. Inner basal seta (basipodal spine) reaching middle margin of
Enp3, 0.8 times as long as Enp. Length/width ratio Enp3 = 1.0, apical spine of Enp3
being1.4 times as long as Enp3.
Leg 2 (Figs. C, D): Fontal surface of intercoxal sclerite with row I bearing minute spinules
arranged in semicircular pattern; caudal surface with row II continuous, with 20 minute
spinules. Distal margin of intercoxal sclerite with two rounded chitinized projections. Inner
coxal seta biserially setulated, caudal coxal surface with spinule formula = A-B-C-D.
Length/width ratio of Enp3= 1.9, apical spine of Enp3 1.0 times as long as Enp3. No
modified seta present.
Leg 3 (Figs. XE, F): Fontal surface of intercoxal sclerite with row I armed with minute
spinules arranged in semi-circle on each side; caudal surface with row I bearing long hairlike spinules (small gap in middle section), rows II and III continuous, with minute
spinules. Distal margin with two low, rounded projections. Coxa with strong, biserially
setulated inner coxal seta, basally with long hairs and distally with strong spinules along
both margins. Caudal coxal surface with spinule formula = A-B-C. Small spinules at
insertion of basipodite (frontal surface). Length/width ratio of Enp = 2.2, apical spine of
Enp3 being 1.2 times as long as Enp3. Modified setae present in both Enp and Exp.
Leg 4 (Figs. XG-I): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of intercoxal sclerite with row I bearing minute spinules
arranged in semicircular pattern; caudal surface of sclerite with row I bearing strong
spinules on each side and small gap, row II with small spinules divided into three sections,
with small gap between them and row III divided into three sections, first section with 5
long spinules, middle section with 6 small, strong spinules, and third section with 5 long
spinules. Inner coxal spine with heteronomous setulation: proximally with long hair-like
setules, distally with spinule-like setules; outer edge of coxal spine with three spinule-like
setules distally, naked proximally (arrowed in Fig. 3I). Caudal surface of coxa with spinule
groups A-C+D-E-F-H-J. Length/width ratio Enp3 = 3.0; length ratio inner spine/ length
Enp3 = 0.70; length ratio outer spine Enp3/length Enp3 = 1.0; proportion inner/outer spines
Enp3 = 1.4. Lateral seta of Enp3 inserted at 66% of segment. Modified setae on Enp3 and
Exp3
Leg 5 (Fig. XJ): free segment subrectangular, 2.1 times longer than wide,
bearing one inner spine and two setae; medial seta about 1.3 times longer than outer seta
and 1.8 times longer than inner spine. Inner spine 1.7 times as long as segment.
Male: Habitus as in Fig. 4A. Body length excluding caudal setae = 509 µm. Body more
slender than in female. Prosome symmetrical in dorsal view, representing 65% of total
body length. Urosome relatively short, representing 35% of total body length. Anal
operculum slightly rounded, smooth. Caudal ramus 3.5 times longer than wide; medial
margin naked, strong spinules at insertion of lateral caudal seta (II) and outermost terminal
caudal seta (III). Dorsal seta (VII) short, 0.35 times as long as caudal ramus, and 0.75 times
as long as outermost caudal seta (III). Ratio of innermost caudal seta (VI)/outermost caudal
seta (III) = 1.6. Lateral caudal seta (II) inserted at 70% of caudal ramus. All terminal caudal
setae plumose.
Antennule: 16-segmented (Figs. XC, D), armament per segment as follows: 1(7s+2ms);
2(3s+1ms); 3(1s+2ms); 4(1s+1ms+1ae); 5(0); 6(2s); 7(1s); 8(1s); 9(0); 10(3s); 11(2s);
12(0); 13(0); 14(0); 15(3s); 16(8s).
Antenna (Fig. 4E, F): Coxa (unarmed), basis (2s + 1 seta representing Exp) plus 3segmented Enp (first to third Enp with 1, 8, and 7 setae, respectively). Basis ornamented
with: N1 (4 hair-setae), N2 (4 small spinules), N3, N4, N5, N15, and N17 on frontal surface
(Fig. 4E); and N9+N10, and N12 on caudal surface (Fig. 4F).
Legs 1-4: Endopods and exopods of all swimming legs three-segmented (Table 2); P1-P3
armed as in females.
Leg 4 (Fig. 4G): Coxa, Bsp, and intercoxal sclerite as in female, except for distal row of
spinules of intercoxal sclerite, which has 9 spinules, all longer and slender than in female
(arrow of row I, in Fig. 4G). Enp3P4 being 2.6 times as long as width; inner spines 1.2
times as long as outer spine, and 1.2 times as long as segment. No modified setae on fourth
leg. Lateral seta of Enp3P4 inserted at 64.7% of segment length, lateral seta reaching
midlength of outer spine.
Leg 5 (Fig. 4B): free segment subrectangular, 1.5 times longer than wide,
bearing one inner spine and two setae: outer seta about 1.3 times longer than medial seta
and 1.3 times longer than inner spine. Inner spine 1.8 times as long as segment.
Leg 6 (Fig. 4B): Represented by small, low plate near lateral margin of genital somite with
one strong and long inner spine and two unequal setae. Inner spine reaching distal margin
of fourth urosomite. Inner spine about 2.3 times longer than median seta and about 1.6
longer than outer seta.
Remarks: This species, recently described by Gutiérrez-Aguirre et al. (2013), closely
resembles Eucyclops bondi. Morphometric values are similar but the lack of data on the
ornamentation of the antennal basis of E. bondi did not allow a complete comparison. Other
characters that are useful to separate these species include the length of the lateral seta on
Enp3P4, which in E. bondi exceeds half the length of the outer apical spine and is not
modified, while in E. tziscao the same seta is shorther, not reaching half the length of the
outer apical spine, and it is modified as a strong, heavily sclerotized blunt seta. The male
secondary characters have been deemed useful in the separation of species among
Eucyclopinae. Since its original description by Kiefer (1931) one of the main
characteristics of E. bondi (and constantly ignored in the identification of the species) is the
sixth leg of the male, which bears a very small inner spine, it does not reach the posterior
margin of the third urosomite and it is smaller than the outer seta and as long as the medial
seta. The opposite pattern is present in males of E. tziscao, in which the inner spine is 1.5
times longer than the outer seta and 2.5 longer than the medial seta.
Another species that resembles E. tziscao is E. pectinifer but strong differences
clearly separate these taxa. Among the differences advanced by Gutiérrez-Aguirre et al.
(2013) to distinguish these two species, the ornamentation of the anal operculum (smooth
in E. pectinifer, serrate in E. tzicao) is one of the strongest. . A serrate operculum is shared
also with E. elegans and E. defaye n. sp. The ornamentation of the antennal basis is simple
in both species, but differs mainly by the presence of N18 on the caudal surface and N7,
N13 and N14 on the frontal surface of E. pectinifer, these rows are absent in E. tziscao. The
ornamentation of the intercoxal sclerites also differs between these two species, E. tziscao
is the only species distributed in Mexico in which the P1 sclerite spinules of row I (frontal
surface) are remarkably small, while in the rest of the species these spinules (or in some
cases hairs) are always long elements. On the caudal surface of the same P1 sclerite, row I
bears minute spinules in E. tziscao but is absent in E. pectinifer. Row II is present in both
species but in E. pectinifer it bears long hairs and in E. tziscao it has small spinules. Row I
of the P4 intercoxal sclerite has some additional differences; in E. pectinifer this row bears
long spinules vs. strong and short spinules in E. tziscao.. Another species that resembing E.
tziscao by sharing modified setae on P3 and P4 and similar length/ width proportions of the
caudal ramus is E. conrowae. However, they are easy distinguished because E. conrowae is
not a member of the serrulatus-group, it lacks groups N1 and N2 on the frontal surface of
the antennal basis, whereas in E. tizcao both groups are present in all the specimens here
examined (Gutiérrez-Aguirre et al., 2013).
Eucyclops angeli Gutiérrez-Aguirre and Cervantes-Martínez, 2013
(Figs. see Gutiérrez-Aguirre et al. 2013)
Distribution: San Cristóbal de las Casas, Chiapas, Mexico (16°43’43” N; 92°-38’14” W).
Material examined:
Description
Female: Habitus as in Fig XXA. Average length excluding caudal setae = 600 µm.
Prosome widest at first and second somites, representing 58% of total body length,
symmetrical in dorsal view (Figure XA). Prosomal fringes serrate dorsally (Figure XB);
fourth prosomite with long, lateral, hair-like setae (Fig XC). Urosome 5-segmented,
relatively elongated; first urosomite with long spinules on lateral margin; urosomal fringes
strongly serrate. Posterior margin of anal somite with large spinules on ventral and dorsal
surfaces, except for the medial section. Genital double somite symmetrical, lateral arms of
proximal part of seminal receptacle rounded; distal section forming sinuous sac (Fig. XD).
Anal somite subequal in length to preanal somite, with hair-like setae adjacent to anal pore
(Fig. XD, E). Length/width of caudal ramus = 2.1; inner margin of caudal ramus naked,
strong spines covering 62% of lateral margin. Dorsal seta (VII) 0.8 times as long as caudal
ramus, and 1.1 times as long as outermost terminal caudal seta (III). Ratio of innermost
caudal seta (VI)/ outermost caudal seta (III) = 1.5. Lateral caudal seta (II) inserted at 71.6%
of caudal ramus. All terminal caudal seta plumose.
Antennule (Fig. XA): 12-segmented, tip reaching between middle and distal margin of
second prosomite. Smooth hyaline membrane on segments 10-12. Armament per segment
as follows: 1(8s); 2(4s); 3(2s); 4(6s); 5(4s); 6(1s+1sp); 7(2s); 8(3s); 9(2s+1ae); 10(2s);
11(2s+1ae); 12(7s+1ae). Row of spinules on first segment: inner spinules shorter than outer
spinules. Long spine on sixth segment, reaching distal 1/3 of seventh antennular segment.
Antenna (Fig. XB, C): Coxa (unarmed), basis (2 s + 1 s representing Exp), plus 3segmented Enp (1s, 9s, 7s, respectively). Basis with rows of spinules on frontal surface:
N1(4), N2(3), N3(4), N4(7), N5(11), N15(3), N17(6); on caudal surface: N7(5), N8(5),
N10(5), N11(6), N12(6), N13(11), N16(4), N18(2).
Leg 1 (Fig. XA): frontal surface of intercoxal sclerite with row I bearing long spinules
arranged in semicircular pattern, caudal surface with row II bearing 21 small, strong
spinules, row I absent. Inner coxal seta biserially setulated, caudal surface with spinule
formula = A-C. Inner basal seta (basipodal spine) reaching beyond apical margin of Enp3,
0.9 times as long as Enp. Length/width ratio Enp3 = 1.4, apical spine of Enp3 being 1.3
times as long as Enp3.
Leg 2 (Figs. XXC-E): Frontal surface of intercoxal sclerite with row I bearing long hairspinules arranged in circular pattern; caudal surface with row I divided in two groups of 10
minute spinules on each side; row II continuous, armed with 10 minute spinules. Distal
margin of intercoxal sclerite with two rounded chitinized projections. Inner coxal seta
biserially setulated, caudal coxal surface with spinule formula = A-B-C-D. Length/width
ratio Enp3 = 1.6, apical spine of Enp3 being 1.4 times as long as Enp3. No modified seta
observed.
Leg 3 (Fig. XXF-I): Frontal surface of intercoxal sclerite with row I bearing hair-spinules
arranged in circular pattern on each side (Fig. XX); caudal surface with row I bearing long
hairs (small gap in middle section), row II continuous, bearing long hair-spinules; row III
discontinuous, with long hair spinules (small gap in middle section). Distal margin with
two rounded chitinized projections. Coxa with strong, biserially setulated inner coxal seta,
basally with long hairs and distally with strong spinules along both margins. Caudal coxal
surface with spinule formula = A-B-C. Small spinules along insertion of basipodite (frontal
surface). Modified setae in both Enp and Exp.
Leg 4 (Fig. XXJ, K): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface with row I bearing long spinules arranged in circular pattern
(on each side), caudal surface of sclerite with row I bearing 7 long denticles (gap in middle
section), rows II and III with long hair-spinules on outer margins (Fig. XX). Frontal coxal
surface with row of small spinules at insertion of basipod. Inner coxal spine with
heterogeneous ornamentation; basally, inner margin with long hairs; distally, with strong
spinules. Outer distal margin naked, proximal section setulated (Fig. XX). Spinule formula
on caudal surface of coxa = A-B-C+D-E-F-G-H-J. Length/width ratio Enp3 = 1.8; length
ratio inner spine of Enp3/length Enp3 = 1.3; length ratio outer spine of Enp3/length Enp3 =
0.9; length ratio inner/outer spines Enp3 = 1.3. Lateral seta of Enp3 inserted at 68% of
segment. Modified setae present in both, Enp and Exp.
Leg 5 (Fig. XF): free segment 1.4 times longer than wide, bearing one inner spine and two
setae; medial seta 2.0 times longer than outer seta and 1.3 times longer than inner spine.
Inner spine 2.0 times longer than segment.
Male: Habitus as in Fig. XXA; body length excluding caudal setae = 540-580 µm (n= 4)
average body length= 552.9r15.56 µm. Prosome symmetrical in dorsal view, representing
60-63% of total body length (Fig. 8A). Urosome 6-segmented, relatively elongated; lateral
margin of first urosomite naked (Fig. 8C); posterior margin of anal somite with continuous
(dorsally and ventrally) row of spinules (Fig. 8A, D). Anal region armed with two parallel
rows of hair-like setae; anal operculum slightly rounded, smooth (Fig XD). Caudal ramus
2.3 times longer than wide; medial margin of caudal ramus naked, strong spines at insertion
of lateral caudal seta (Fig. XD). Dorsal seta (VII) 0.9 times as long as caudal ramus and 1.2
times as long as outermost caudal seta (III). Innermost caudal seta (VI)/outermost caudal
seta (III) ratio = 1.8. Lateral caudal seta (II) inserted at 75% of ramus length.
Antennule (Fig. XE): 16-segmented, armament per segment as follows: 1(6s+2ms+1ae);
2(3s+1ms); 3(1s+1ms); 4(1s+1ms+1ae); 5(2s+1ms); 6(1s+1ae); 7(1s); 8(2s);9(2s); 10(2s);
11(1s); 12(1s); 13(3s); 14(0s); 15(1s); 16(9s). Row of spinules on first segment, inner
spinules shorter than outer spines.
Antenna: As in female except for absence of groups N7, N13, and N16 on caudal surface of
antennal Bsp (Fig. XF). Basis ornamented with: N1 (IV), N2 (II) N3, N4, N5, and N17 on
frontal surface (Fig. XG)
Leg 5 (Fig. 9J): free segment 1.6 times longer than wide, bearing three elements; outer seta
slightly longer than in female (subequal in length to inner spine) (Fig. XJ). Inner spine 1.8
times as long as segment.
Leg 6 (Fig. XJ): Represented by small, low plate adjacent to lateral margin of genital
somite, armed with one inner spine, 1.87 times longer than median seta, and 0.6 times
longer than outer seta. Inner spine of sixth leg reaching distal margin of fourth urosomite.
Remarks: Eucyclops angeli is easily distinguishable from the other species of Eucyclops
distributed in Mexico because of its remarkably short caudal rami and the particular
ornamentation on the P4 coxa. There are other species in the Americas that share with E.
angeli a short caudal rami such as E. breviramatus and E. siolii, but these species are
restricted to South America. As mentioned by Gutiérrez-Aguirre et al. (2013), Löffler’s
description of E. breviramatus did not include the new, currently used characters but some
other characters are useful to distinguish them. The length/width ratio of Enp3P4 differs
between these species; in E. angeli the ratio range is 1.8-2.0 while in E. breviramatus the
segment is shorter (1.4-1.5). Another character that could be useful to separate these species
is the male sixth leg; in E. angeli the inner spine is almost twice as long as the medial and
outer setae, while in E. breviramatus the inner spine is clearly shorter, only 1.2 times longer
than both the outer and medial setae. Eucyclops angeli can be distinguished from E. siolii
by the shape and size of P5; in both species the medial seta is longer than the outer seta and
the inner spine but in E. siolii the inner spine is remarkably short, being as long as or
slightly shorther than the segment. Other species resembling E. angeli but from other
geographic regions are the recently described E. albuferensis from Spain (Alekseev, 2008),
E. dumonti Alekseev, 2000 distributed in Mongolia (and not belonging to the serrulatusgroup) (Alekseev, 2000; Alekseev & Defaye, 2011) and E. echinatus Kiefer, 1926 with a
distribution restricted to Africa (Angola, Democratic Republic of Congo, Ivory Coast,
Kenya, and Madagascar) (Dussart & Defaye, 2006).
Eucyclops alekseevi n. sp. Mercado-Salas and Suárez-Morales
Material examined: Holotype: Adult Ƃ specimen dissected, mounted in glycerin sealed
with Entellan (ECO-CH-Z-04640). Allotype: Adult ƃGLVVHFWHG, mounted in glycerin
sealed with Entellan (ECO-CH-Z-XXX). Paratypes: 5 adult ƂƂ, undissected, ethanolpreserved (90%) (ECO-CH-Z-XX). Samples from type locality collected March 1,1991 by
Marcelo Silva-Briano.
Type locality: Río Juchipila, Juchipila, Zacatecas, Mexico (21°24´37.59´´ N,
103°06´57.90´´W). 1250 masl.
Etymology: this species is warmly dedicated to Dr. Victor R. Alekseev for his valuable
contributions to the knowledge of the genus Eucyclops worldwide.
Distribution: Río Juchipila, Zacatecas
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 705µm.
Prosome widest at first and second somite, representing 55% of total body length,
symmetrical in dorsal view. Prosomal fringes finely serrate in dorsal view (Fig. XX).
Urosome 5- segmented, slightly elongated; first urosomite with long setules on lateral
margin; urosomal fringes strongly serrate; posterior margin of anal somite with row of
spinules. Genital double somite symmetrical (Fig. XX), representing 11% of total body
length; anterior half of genital somite expanded laterally. Seminal receptacle with rounded
lateral arms; posterior margin with sinuous sac (Fig. XX). Anal somite as long as preanal
somite. Anal operculum slightly rounded, smooth (Fig. XX). Length/width of caudal ramus
= 3.5; inner margin of caudal ramus naked; strong spinules covering 60% of lateral margin.
Dorsal seta (VII) 0.5 times as long as caudal ramus, 0.8 times as long as outermost caudal
seta (III). Ratio of innermost caudal seta (VI)/outermost caudal seta (III) = 1.3. Lateral
caudal seta (II) inserted at 73% of caudal ramus. All terminal setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching posterior margin of the fourth prosomite.
Finely denticulated hyaline membrane on segment 10-12 (Fig. XX). Armament per
segment as follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae),
10(2s), 11(3s), 12(8s). Two transverse rows of spinules on fisrt segment, the first with
strong spinules and the second below, with minute spinules. Spine on sixth segment not
reaching medial margin of seventh antennular segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s
respectively). Basis with rows of spinules on frontal surface: N1(V),N2(III), N3(6), N4(7),
N5(8), N6(4), N15(4), N17(7), N18(6); on caudal surface: N7(10), N8(6), N9+10(8),
N11(5), N12(7), 22(13); Caudal surface of Enp1 with B2(6).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row strong spinules arranged in
semicircular pattern on each side, caudal surface with row II continuous, bearing 22 minute
spinules (Fig. XX), row I absent. Inner coxal seta biserially setulated, caudal coxal surface
with spinule formula = A-B-C. Inner basal seta (basipodal spine) reaching beyond
midlength of Enp3, 0.9 times as long as Enp. Length/width ratio Enp3 = 1.5, apical spine of
Enp3 being 1.1 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing long hair-spinules
arranged in semicircular pattern; caudal surface with row II continuous, bearing 17 small
spinules, row I absent (Fig. XX). Distal margin of intercoxal sclerite with two rounded
chitinized projections. Inner coxal seta biserially setulated, caudal coxal surface with
spinule formula = A-B-C-D. Length/width ratio of Enp3= 2.0, apical spine of Enp3 1.4
times as long as Enp3. No modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite with small spinules arranged in
semicircular pattern on each side (arrowed in Fig. XX). Caudal surface with row I bearing
slender hair-spinules, row II continuous, with 28 strong spinules and row III continuous,
with 26 long, strong spinules. Distal margin with two rounded chitinized projections. Coxa
with strong, biserially setulated inner coxal seta, basally with long hairs and distally with
strong spinules along both margins. Caudal coxal surface with spinule formula = A-B-C.
Small spinules along insertion of basipodite (frontal surface). Length/width ratio of Enp=
2.1, apical spine of Enp3 1.2 times as long as Enp3. No modified setae present.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing small spinules arranged in
semicircular pattern, caudal surface with row I bearing long, strong spinules (gap in middle
margin), row II with strong spinules on each side of sclerite and row III with long, strong
spinules on outer margins (arrowed in Fig. XX). Frontal surface of coxa with row of small
spinules at insertion of basipod. Inner coxal spine with heterogeneous ornamentation;
proximal inner margin with long hairs, distal margin with strong spinules, outer margin
with three spinules on distal surface and proximally smooth (arrowed in Fig. XX). Spinule
formula on caudal surface = A-B-C+D-E-F-H-J. Length/width ratio Enp3 = 2.6, length ratio
inner spine of Enp3/length Enp3 = 1.2; length ratio outer spine of Enp3/length Enp3 = 0.9;
proportion inner/outer spines Enp3 = 1.4. Lateral seta of Enp3 inserted at 67% of segment.
Modified setae in Enp and Exp (arrowed in Fig.XX).
Leg 5 (Fig. XX): free segment subrectangular, 1.5 times longer than wide, bearing one
strong inner spine and two setae; medial seta 1.5 times longer than outer seta and 1.8 times
longer than inner spine. Inner spine 2.0 times longer than segment.
Remarks: Eucyclops alekseevi n. sp. belongs to the serrulatus-group because it has the
diagnostic characters established by Alekseev and Defaye (2011) to recognize members of
this group: 1) longitudinal row of spinules along most of the outer margin of caudal ramus
and without hair-like setae or denticles on dorsal or ventral surfaces, 2) antennules 12segmented, with smooth membrane along 3 distal segments, 3) frontal side of antennal
basipodite with groups N1 and N2 (both with long hairs or spinules), 4) coxopodite of P4
with strong inner spine and, 5) fifth leg with wide, strong inner spine. Eucyclops alekseevi
n. sp. resembles other American species such as E. pectinifer, E. prionophorus and E.
estherae n. sp. (the last two species share a sinuous sac on the posterior lobe of the seminal
receptacle). Eucyclops alekseevi can be distinguished from E. pectinifer because it has a
different length/width ratio of the caudal ramus (3.5 in the new species vs. 5.0 in E.
pectinifer). In addition, E. alekseevi n. sp. the outermost caudal seta (III) is 1.3 times longer
than the innermost caudal seta (VI) while both setae are equally long in E. pectinifer. More
differences are found in the caudal ornamentation of the of the antennal basis : in E.
pectinifer rows N9 and N10 are separated and they are fused in E. alekseevi n. sp.. Also,
rows N22 are present in the new species and are absent in E. pectinifer, which in turn has
rows N14 and N16, both absent in E. alekseevi n. sp. The frontal surface ornamentation of
P1 sclerite in E. pectinifer has row I with long hair-spinules while in the new species this
row bears small, strong spinules. Both species share the absence of row I on the caudal
surface of P1 but differ in the armature of row II, in E. pectinifer with long hair spinules
and in E. alekseevi n. sp. it has minute spinules along the medial margin. The same pattern
is found in P2, in E. pectinifer row I of the frontal surface has long hair spinules, row I of
caudal surface is absent and row II bears long hairs while in E. alekseevi n. sp. row I of
frontal surface bears small and strong spinules and row II bears minute spinules. The
ornamentation of the P3 intercoxal sclerite differs between these species, in the new species
row II of caudal surface is armed with spinules as well as row III, while in E. pectinifer
both rows are have long hair-spinules. The P4 sclerite differs between these species, in E.
alekseevi n. sp. the frontal surface has row I with minute spinules and in the caudal surface
rows II and III bear long spinules on the outer margins of sclerite. The pattern is different in
E. pectinifer; in the frontal surface row I bears long hairs-spinules and in the caudal surface
rows II and III bear spinules only along medial margin of sclerite. The proportion of
length/width of Enp3 P4 in E. pectinifer is about 3.4 times while this value is 2.6 in E.
alekseevi n. sp. Also, the inner spine/length of segment of P5 ratio is 1.1 in E. pectinifer
and 2.0 in E. alekseevi n. sp. The other species resembling E. alekseevi n. sp. is E.
prionophorus mainly by having the same length/width ratio of the caudal ramus and the
presence of a sinuous sac in posterior lobe of seminal receptacle. These species can be
separated by the ornamentation of the antennal basis; group N6 is absent in E.
prionophorus but present in the new species, and groups N14 and N16 are absent in E.
alekseevi n. sp. but present in E. prionophorus. Other differences include the presence of
row I on caudal surface of intercoxal sclerite of P1 and P2 in E. prionophorus while both
rows are absent in the new species. Discussion about diffences between E. alekseevi n. sp.
and E. estherae n. sp. are included in the remarks of the latter species.
Eucyclops wixarica n. sp. Mercado-Salas and Suárez-Morales 04633
(Figs. XXX)
Material examined: Holotype: Adult Ƃ specimen dissected, mounted in glycerin sealed
with Entellan (ECO-CH-Z-04633). Allotype: Adult ƃGLVVHFWHG, mounted in glycerin
sealed with Entellan (ECO-CH-Z-XXX). Paratypes: 10 adult ƂƂXQGLVVHFWHGHWKDQROpreserved (90%) (ECO-CH-Z-XX). Samples from type locality collected October 15, 2006
by Marcelo Silva-Briano and Nancy F. Mercado-Salas.
Type locality: San Francisco Pond, San Francisco, San Luis Potosí, Mexico (22°03´13.8´´
N; 99°50´50.3´´W).
Etymology: this species is warmly dedicated to one of the most important indigenous ethnic
groups from Mexico, the Wixaricas or Huicholes. One of their main ceremonial sites is in
the state of San Luis Potosí, where the type specimens were collected.
Distribution: Bordo San Francisco, San Luis Potosí, Mexico.
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 850 µm.
Prosome widest at first and second somite, representing 62% of total body length,
symmetrical in dorsal view. Prosomal fringes finely serrate in dorsal view (Fig. XX).
Urosome 5- segmented; first urosomite with long setules on lateral margin; urosomal
fringes strongly serrate; posterior margin of anal somite with row of spinules. Genital
double somite symmetrical (Fig. XX), representing 10% of total body length; anterior half
of genital somite expanded laterally. Seminal receptacle with rounded lateral arms on
posterior margin, typical of the serrulatus-complex. Anal somite as long as preanal somite.
Anal operculum slightly rounded, smooth (Fig. XX). Length/width of caudal ramus = 5.1;
inner margin of caudal ramus naked; strong spinules covering 61% of outer margin. Dorsal
seta (VII) 0.4 times as long as caudal ramus and 0.9 times as long as outermost caudal seta
(III). Ratio of innermost caudal seta (VI)/outermost caudal seta (III) = 0.9. Lateral caudal
seta (II) inserted at 77% of caudal ramus. All terminal setae plumose.
Antennule (Fig. XX): 12-segmented, reaching posterior margin of first prosomite. Strongly
denticulated hyaline membrane on segments 10-12 (Fig. XX). Armament per segment as
follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s),
11(2s+1ae), 12(8s). Two transverse rows of spinules on fisrt segment, first row with strong
spinules (outer spinules slightly smaller than medial one), adjacent second rowwith minute
spinules. Spine on sixth segment reaching midlength of seventh antennular segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(IV), N2(IV), N3(6),
N4(7), N5(6), N15(4), N17(14), N18(3); on caudal surface: N7(16), N8(5), N9(6), 10(3),
N11(9), N12(9), N13(12) N14(7), N16(11). Caudal surface of Enp1 with B2(5).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row strong spinules arranged in a
semicircular pattern on each side, caudal surface with row I continuous, bearing 18 short
hair spinules, row II continuous, with 17 short hair spinules. Inner coxal seta biserially
setulated, caudal coxal surface with spinule formula = A-B-C. Inner basal seta (basipodal
spine) not reaching midlength of Enp3, 0.6 times as long as Enp. Length/width ratio Enp3 =
1.6, apical spine of Enp3 being 1.1 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing hairs arranged in
circular pattern; caudal surface with row I divided in two groups bearing long hairs and
arranged in semicircular pattern on each side (Fig. XX) and close to posterior margin. Row
II continuous, with small hairs (Fig. XX). Distal margin of intercoxal sclerite with two
rounded chitinized projections. Inner coxal seta biserially setulated, caudal coxal surface
with spinule formula = A-B-C-D. Length/width ratio of Enp3 = 2.0, apical spine of Enp3
being 1.4 times as long as Enp3. No modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite with hairs arranged in circular pattern
on each side (arrowed in Fig. XX); caudal surface with row I bearing long hairs (gap in the
middle section), rows II and III continuous, bearing long hairs. Distal margin with two
rounded chitinized projections. Coxa with strong, biserially setulated inner coxal seta,
proximally with long hairs and distally with strong spinules along both margins. Caudal
coxal surface with spinule formula = A-B-C. Small spinules along insertion of basipodite
(frontal surface). Length/width ratio of Enp = 2.2, apical spine of Enp3 being 1.2 times as
long as Enp3. No modified setae present.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing long hairs arranged in circle,
caudal surface of intercoxal sclerite with row I bearing very long hairs, row II with long
hairs on outer margins ; row III with long hairs close to outer margins (arrowed in Fig.
XX). Frontal surface of coxa with row of small spinules at insertion of basipod. Inner coxal
spine with heterogeneous ornamentation; inner margin with long hairs on proximal section
and with strong spinules distally; outer margin with one distal spinule and setulated along
proximal section, gap in middle margin (arrowed in Fig. XX). Spinule formula on caudal
surface = A-B-C+D-E-F-H-J. Length/width ratio Enp3 =2.5, length ratio inner spine of
Enp3/length Enp3 = 1.3; length ratio outer spine of Enp3/length Enp3 = 0.9; length ratio
inner/outer spines Enp3 = 1.5. Lateral seta of Enp3 inserted at 65% of segment. No
modified setae in Enp and Exp.
Leg 5 (Fig. XX): free segment subrectangular, 1.4 times longer than wide, bearing one
strong inner spine and two setae; medial seta 2.4 times longer than outer seta and 1.5 times
longer than inner spine. Inner spine 2.6 times longer than segment.
Remarks: Eucyclops wixarica n. sp. can be easily distinguished from most of its congeners
distributed in the Americas by the presence of long hairs on the frontal surface of antennal
basipodite, this characteristic is shared with the American E. elegans, E. defaye n. sp., and
E. mittmanni n. sp. This character is also shared with some members of the serrulatusgroup like E. serrulatus s. str., E. romaniensis, E. albuferensis, E. miracleae, E. agiloides
roseus, E. pacificus and E. vandouwei all these species are distributed in Europe, Africa and
Asia (Ishida, 2000; Dussart & Defaye, 2006; Alekseev, 2008; 2010; Alekseev & Defaye,
2011). Eucyclops wixarica n. sp. differs from E. elegans and E. mittmanni n. sp. because of
the total body length, the two last species are –together with E. neumani s. str. and
E.titicacae- the largest Eucyclops in the Americas with a size of >1050µm while E.
wixarica n. sp. is clearly a smaller species (810 µm). Also, the new species can be
distinguished from those species by the length/width ratio of the caudal ramus; it is about
5.1 in the new species vs. more than 6.0 in both E. elegans and E. mittmanni n. sp. The
ornamentation of the antennal basis is more complex in E. elegans and E. mittmanni n. sp.
than in E. wixarica n. sp. In addition, the caudal surface of P3 and P4 coxal plates differ
among these species. In E. wixarica all rows of both P3 and P4 are long hairs, whereas
some rows with spinules are present in the other species. Eucyclops wixarica n. sp. seems
to be closely related with E. serrulatus because of the presence of long hairs on row N2 of
the antennal basis and the similar proportion length/width ratio of the caudal ramus (about
5.0 in both species) and also in most morphometric values. These species can be separated
by a combination of characters. Row N6 is absent in E. wixarica n. sp. and is present in E.
serrulatus. The new species shows a more complex ornamentation on the caudal surface of
the antennal basipod; it has rows N8, N10, N13, N16 and N18, all of them absent in E.
serrulatus. The ornamentation of thecaudal surface of P2 intercoxal sclerite shows some
additional differences: in E. wixarica n. sp. row I is present while it is absent in E.
serrulatus. Also, the P3 and P4 sclerites has rows with strong spinules in E. serrulatus, thus
differing from E. wirxarica n. sp., in whcih all rows bear long hairs. The P4 coxa of E.
wixarica n. sp. has row F which is absent in E. serrulatus.
Eucyclops defayeae n. sp. Mercado-Salas and Suárez-Morales
Material examined: Holotype: Adult Ƃ specimen dissected, mounted in glycerin sealed
with Entellan (ECO-CH-Z-05110). Allotype: Adult ƃGLVVHFWHG, mounted in glycerin
sealed with Entellan (ECO-CH-Z-05111). Paratypes: 5 adult ƂƂXQGLVVHFWHGHWKDQROpreserved (90%) (ECO-CH-Z-05112). Samples from type locality collected March 12,1992
by Marcelo Silva-Briano.
Type locality: Pond at Villa Juárez, Asientos, Aguascalientes, Mexico
Etymology: this species is warmly dedicated to Dr. Danielle Defaye (Museum National d’
Histoire Naturelle, Paris) for her many contributions to the knowledge of the taxonomy and
systematics of freshwater copepods, and also for all her help and advice during the
development of of this work.
Description:
Female: Habitus as in Figure XX. Average length excluding caudal setae = 800µm.
Prosome widest at first and second somites, representing 55% of total body length,
symmetrical in dorsal view. Prosomal fringes finely serrate in dorsal view (Fig. XX).
Urosome 5-segmented, slightly elongated; first urosomite with long setules on lateral
margin; urosomal fringes strongly serrate; posterior margin of anal somite with row of
spinules. Genital double somite symmetrical (Fig. XX), representing 12.5% of total body
length; anterior half of genital somite expanded laterally. Seminal receptacle with rounded
lateral arms on posterior margin, typical of the serrulatus- complex. Anal somite as long as
preanal somite. Anal operculum slightly rounded and serrate (Fig. XX). Length/width of
caudal rami = 4.6; inner margin of caudal ramus naked; strong spinules covering 53% of
lateral margin. Dorsal seta (VII) 0.5 times as long as caudal ramus and 0.9 times as long as
outermost caudal seta (III). Ratio of innermost caudal seta (VI)/outermost caudal seta (III)
= 1.2. Lateral caudal seta (II) inserted at 76% of caudal ramus. All terminal setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching posterior margin of second prosomite.
Finely denticulated hyaline membrane on segments 10-12 (Fig. XX). Armament per
segment as follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae),
10(2s), 11(3s), 12(8s). One transverse row of spinules on first segment. Spine on sixth
segment reaching midlength of seventh antennular segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with rows of spinules on frontal surface: N1(V), N2(VI), N3(7), N4(7),
N5(6), N6(7), N15(5), N17(8), N18(3); on caudal surface: N7(5), N8(6), N9+10(7),
N11(7), N12(7), N14(4), N16(14). Caudal surface of Enp1 with B1(5), B2(7) and B3(3).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite smooth (rows not observed), caudal
surface with row II continuous, bearing 21 strong but small spinules, row I absent. Inner
coxal seta biserially setulated, caudal coxal surface with spinule formula = A-B-C. Inner
basal seta (basipodal spine) long exceeding apical margin of Enp3, 1.1 times as long as
Enp. Length/width ratio Enp3 = 1.2, apical spine of Enp3 being 1.1 times as long as Enp3.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing strong spinules
arranged in semicircular pattern; caudal surface with rows I and II continuous, row I with
14 minute spinules and row II with 23 (Fig. XX). Distal margin of intercoxal sclerite with
two rounded chitinized projections. Inner coxal seta biserially setulated, caudal coxal
surface with spinule formula = A+B-C-D. Length/width ratio of Enp3 = 1.7, apical spine of
Enp3 being 1.1 times as long as Enp3. No modified setae present.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite with minute spinules arranged in
semicircular pattern on each side (arrowed in Fig. XX); caudal surface with row I bearing
small, strong spinules (gap in middle section), row II continuous, bearing small, slender
spinules; row III continuous, with strong, long spinules (spinules adjacent to outer margins
longer than those in middle section). Distal margin with two rounded chitinized projections.
Coxa with strong, biserially setulated inner coxal seta, basally with long hairs and distally
with strong spinules along bothmargins. Caudal coxal surface with spinule formula = A.
Small spinules along insertion of basipodite (frontal surface). Length/width ratio of Enp =
2.0, apical spine of Enp3 being 1.1 times as long as Enp3. Modified setae present in Exp
and Enp (arrowed in Fig. XX).
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface of sclerite with row I bearing minute spinules arranged in
semicircular pattern, caudal surface of sclerite with row I bearing long, strong spinules, row
II continuous, with small spinules; row III with strong, slightly longer spinules, small gap
in middle section (arrowed in Fig. XX). Frontal surface of coxa with row of small spinules
at insertion of basipod. Inner coxal spine with heterogeneous ornamentation; proximal inner
margin with long hairs, distal margin with strong spinules, outer margin with two distal
spinules, proximally setulated , gap in middle margin (arrowed in Fig. XX). Spinule
formula on caudal surface = A-B-C+D-E-F-H-J. Length/width ratio Enp3 = 2.4, length ratio
inner spine of Enp3/length Enp3= 1.2; length ratio outer spine of Enp3/length Enp3= 0.7;
length ratio inner/outer spines Enp3 = 1.8. Lateral seta of Enp3 inserted at 64% of segment.
Modified setae in Enp and Exp (arrowed in Fig. XX).
Leg 5 (Fig. XX): free segment subrectangular, 1.8 times longer than wide, bearing one
strong inner spine and two setae; medial seta 1.8 times longer than outer seta and 2.3 times
longer than inner spine. Inner spine 1.4 times longer than segment.
Remarks: As mentioned in the remarks section of other species, E. defaye n. sp. shares with
E. elegans and E. tziscao some characters like the rounded, serrate anal operculum , but
differs from E. elegans in the body length and the length/width ratio of the caudal ramus; in
the new species the ramus is 4.6 times longer than wide, vs. a ratio over 6.0 found in E.
elegans. The new speciescan be easily distinguished from E. tziscao by the ornamentarion
of the frontal surface of the antennal basis, row II bears long hairs in E. defayeae n.sp., but
in E. tziscao it has small, strong spinules.
Mexican records of E. bondi are now assignable to either E. tziscao or E. defayeae
n. sp. These three species share general morphometric values and the armature of the caudal
surface of intercoxal sclerite of P4. Both Mexican species can be easily distinguished from
E. bondi if males are available. In E. bondi the sixth leg differs from that of E. tziscao and
E. defayeae n. sp. in having a remarkably short inner spine and a medial seta as long or
slightly longer than the spine, and an outer seta longer than the inner spine. In both E.
tziscao and E. defayeae n. sp. the inner spine is always much longer than both the medial
and the outer setae. Eucyclops tziscao and E. defayeae n. sp. can be distinguished because
in the former species the frontal surface of the antennal basis row N2 bears short spinules
vs. long hairs in E. defayeae n. sp. Rows N6, N7, N14, N16 and N18 are present in E.
defayaee n. sp. but they are are absent in E. tziscao (Gutiérrez-Aguirre et al., 2013). The
ornamentation on the caudal surface of P1 and P2 intercoxal sclerites differs between these
species, in E. defayaee n. sp. row I of P1 is absent but it is present in E. tziscao and row I of
P2 is present in E. defayeae n. sp. but it is absent in E. tziscao. The presence of caudal
spinules on P3 row I is another distinctive character in E. defayeae n.sp. Among the species
distributed in Mexico it is shared only with E. cuatrocienegas and E. mittmanni n. sp.
The only other congener sharing the presence of long hairs in row N2 with E.
defayeae n. sp. is E. wixarica n. sp., but N6 is absent in E. wixarica n.sp., and rows N9 and
N10 are separated in E. wixarica n. sp. but fused in E. defayeae n. sp. Additional
differences between these two species include the ornamentation of the caudal surface of
P1 intercoxal sclerite, row I is present and bears minute spinules in E. wixarica n. sp. but it
is absent in E. defayeae n. sp. The length ratio basipodal spine/length of Enp of P1 is 0.6 in
E. wixarica n. sp. while in E. defayeae n. sp., the spine is remarkably long (about 1.1).
Also, modified setae were observed P3 and P4 of E. defayaee n. sp. while in E. wixarica n.
sp. all swimming setae are normal.
Eucyclops mittmanni n. sp. Mercado-Salas and Suárez-Morales 298d
Material examined: Holotype: Adult Ƃ specimen dissected, mounted in glycerin sealed
with Entellan (ECO-CH-Z-05110). Allotype: Adult ƃGLVVHFWHG, mounted in glycerin
sealed with Entellan (ECO-CH-Z-05111). Paratypes: 5 adult ƂƂXQGLVVHFWHGHWKDQROpreserved (90%) (ECO-CH-Z-05112). Samples from type locality collected February
18,1989 by Marcelo Silva-Briano.
Type locality: Creek at Sierra Fria 21 km to the North of Village La Labor, Calvillo,
Aguascalientes, Mexico (lat, long?).
Etymology: this species is warmly dedicated to Dr Hans-Walter Mittmann (Staatliches
Museum für Naturkunde Karlsruhe, Germany) who is in charge of the Kiefer´s collection.
Description:
Female: Habitus as in Fig. XX. Average length excluding caudal setae = 1216 µm. All
body (caudal ramus included) ornamented with small cuticular pits. Prosome widest at first
and second somites, representing 58% of total body length, symmetrical in dorsal view
(Figure XX). Prosomal fringes finely serrate dorsally. Urosome 5-segmented, elongated;
first urosomite with long setules on lateral margin; urosomal fringes strongly serrate;
posterior margin of anal somite with row of large spinules. Genital double somite
symmetrical (Fig. XX), representing 10% of total body length; anterior half of genital
somite slightly expanded laterally. Seminal receptacle with rounded lateral arms on
posterior margin, typical of the serrulatus-complex. Anal somite as long as preanal somite.
Length/ratio of caudal ramus = 7.5; inner margin of caudal ramus naked; strong spines
covering 69% of lateral margin. Dorsal seta (VII) 0.5 times as long as caudal ramus and 0.8
times as long as outermost caudal seta (III). Ratio of innermost caudal seta (VI)/outermost
caudal seta (III) = 0.8. Lateral caudal seta (II) inserted at 78% of caudal ramus. All terminal
setae plumose.
Antennule (Fig. XX): 12-segmented, tip reaching posterior margin of fourth prosomite,
finely denticulated hyaline membrane on segments 10-12. Armament per segment as
follows: 1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6(1s+ 1sp), 7(2s), 8(3s), 9(2s+ 1ae), 10(2s), 11(3s),
12(8s). One transverse row of spinules on first segment. Spine on sixth segment not
reaching medial margin of seventh segment.
Antenna (Fig XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp(1s, 9s, 7s,
respectively). Basis with row of spinules on frontal surface: N1(VI), N2(VI), N3(9), N4(8),
N5(9), N15(9), N17(15); on frontal surface: N7(5), N8(5) N9+N10(5), N11(7), N12(10),
N13(6), N14(7), N16(5), N19(5), N20(8), N21(5). Caudal surface of first Enp with B2(13)
and B3(5).
Leg 1 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing long spinules on
each side ; caudal surface with row I continuous, bearing 15 minute spinules, row II
continuous, with 20 minute spinules (arrowed in Fig. XX), distal margin with two rounded
chitinized projections. Inner coxal seta biserially setulated, caudal coxal surface with
spinule formula = A-B-C. Inner basal seta (basipodal spine) not reaching middle margin of
Enp3, 0.7 times as long as Enp. Length/width ratio Enp3 = 1.8, apical spine of Enp3 being
1.2 times as long as Enp3.
Leg 2 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing spinules arranged
in circular pattern on each side; caudal surface with row II continuous, with 20 minute
spinules, row I absent, distal margin with two rounded chitinized projections. Inner coxal
seta biserially setulated, caudal coxal surface with spinule formula = A-B-C-D. Small
spinules along insertion of basipodite (frontal surface). Length/width ratio of Enp3 = 2.7,
apical spine of Enp3 as long as segment (Enp3). No modified setae present.
Leg 3 (Fig. XX): frontal surface of intercoxal sclerite with row I armed with long spinules
arranged in a circle on each side, all spinules about the same length; caudal surface of
intercoxal sclerite with row I bearing 8-10 small spinules on each side (small gap in the
middle), row II continuous, with minute spinules (27-30); row III continuous, with 25-28
long spinules, spinules adjacent to outer margin longer than medial ones. Distal margin
with two rounded chitinized projections. Coxa with strong, biserially setulated coxal seta,
ornamented basally with long hairs and distally with strong spinules. Caudal coxal surface
with spinule formula = A-B-C. Small spinules along insertion of basipodite (frontal
surface). Length/width ratio of Enp3 = 2.7, apical spine of Enp3 as long as segment (Enp3).
No modified setae present.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface with row I bearing long hairs arranged in semicircular pattern;
caudal surface of intercoxal sclerite with row I bearing 10-11 strong long spinules on each
side with small gap between, row II discontinuous, with long hair spinules adjacent to outer
margins and 3 strong, long spinules in middle section (arrowed in Fig. XX). RowIII with
long hair-spinules in outer margins. Frontal surface of coxa with spinules at insertion of
basipod. Inner coxal spine with heterogeneous ornamentation; proximal inner margin with
long hairs, distally with spinules; outer margin with three spinules on distal surface and
basally with hairs, gap in middle margin (arrowed in Fig. XX). Caudal coxal surface with
spinule formula = A-B-C+D-E-F-H-J. Length/width ratio Enp3 P4 = 3.7, length ratio inner
spine of Enp3/length Enp3 = 1.0; length ratio outer spine of Enp3/length Enp 3= 0.8; length
ratio inner/outer spines Enp3 = 1.3. Lateral seta of Enp3 inserted at 62% of segment. No
modified setae in Enp and Exp.
Leg 5 (Fig. XX): free segment subrectangular, 1.6 times longer than wide, bearing one
inner spine and two setae; medial seta 1.6 times longer than outer seta and 1.1 times longer
than inner spine. Inner spine 2.7 times longer than segment.
Remarks: Eucyclops mittmanni n. sp. is closely related to E. elegans; it is possible that
some Mexican and North America records of the latter species are now assignable to E.
mittmanni n. sp. Most of the records of E. elegans (Suárez-Morales, 2004) have been based
upon the length of its caudal rami, which is remarkably longer than that of closely related
species like E. pectinifer and E. serrulatus. This apparently unique character might have
prevented further analysis of these specimens. In the recent redescription of E. elegans
(Mercado-Salas and Suárez-Morales, in press c) from material deposited in different
collections and including specimens from different geographic areas of the continent,
differences were found between North American (NA) and South American (SA)
populations of E. elegans and it is suggested that the NA and SA specimens could represent
two independent species. Eucyclops mittmanni n. sp. differs from both forms of E. elegans
by a combination of different characters, but as expected, it appears to be more closely
related to the NA form of E. elegans. Morphometrical values do not differ among these
species (see Table XX), but it is important to mention that E. elegans NA (body length
=1061µm) and E. elegans SA (1100 µm) are both slightly smaller than E. mittmanni n. sp.
(1216µm). The new species shares with the SA form an anal operculum rounded and
smooth while in the NA form it is rounded but serrate. Some of the main differences
observed between both the SA and NA forms of E. elegans and E. mittmanni n. sp. are
related to the ornamentation pattern of the antennal basis. In the three forms the frontal
surface has the same pattern except for E. elegans NA, which shows N18 and in E.
mittmanni n. sp. N1 and N2 are completely separated, thus contrasting with the fused
condition observed in the two forms of E. elegans. The ornamentation pattern on the caudal
surface also differs among both forms of E. elegans and E. mittmanni n. sp., in E. elegans
SA rows N7, N14, N22 are absent while in E. elegans NA and E. mittmanni n. sp. are
present. As many other Mexican congeners,E. elegans NA has row N18, a character that is
absent in E. mittmanni n.sp.; the new species is the only species among Mexican Eucyclops
ornamented with rows N19 and N20, and shares only with E. chihuahuensis the presence of
N20. The ornamentation of the P1 and P2 intercoxal sclerites are similar in the three forms
but we found some differences were observed in the P3 caudal surface. In E. elegans NA
row I bears long hair-spinules, a character shared with other Mexican species of Eucyclops,
but divergefrom both E. mittmanni n. sp and E. elegans SA in which row I has small strong
spinules, also present in E. defaye n. sp. and E. cuatrocienegas. In the new species row III
has remarkably long, strong spinules that are shorther in E. elegans NA. The ornamentation
of the caudal surface of the P4 coxa and intercoxal sclerite is another useful character to
separate the three forms: in E. mittmanni n. sp and E. elegans SA row II is divided into
three sections, two close to the outer margins and one bearing long spinules in the middle
section, whereas this row is continuous and bears small but strong spinules in E. elegans
NA. The coxal surface of P4 is more ornamented in the new species than in the two forms
of E. elegans, rows B, C and E are present in E. mittmanni n. sp. and are absent in E.
elegans, but E. elegans has row G that is absent in the new species.
Eucyclops estherae n. sp. Mercado-Salas and Suárez-Morales, 04636
Material examined: Holotype: Adult Ƃ specimen dissected, mounted in glycerin sealed
with Entellan (ECO-CH-Z-04636). Allotype: Adult ƃGLVVHFWHG, mounted in glycerin
sealed with Entellan (ECO-CH-Z-XXX). Paratypes: 12 adult ƂƂXQGLVVHFWHGHWKDQROpreserved (90%) (ECO-CH-Z-XX). Samples from type locality collected October 15,2006
by Marcelo Silva-Briano and Nancy F. Mercado-Salas.
Type locality: San Francisco Pond, San Francisco, San Luis Potosí, Mexico (22°03´13.8´´
N; 99°50´50.3´´W).
Etymology: this species is warmly dedicated to the late Mrs. Esther Ruiz Jiménez, the
beloved grandmother of the first author (NFM-S).
Distribution:
Description:
Female: Habitus as Fig. XX. Average length excluding caudal setae = 770µm. Prosome
widest at first and second somites, representing 57% of total body length, symmetrical in
dorsal view (Fig. XX). Prosomal fringes slightly serrate dorsally (Fig. XX). Urosome 5segmented, slightly elongated; first urosomite with long setules on lateral margin; urosomal
fringes strongly serrate. Genital double somite symmetrical (Fig. XX), representing 8% of
total body length; anterior half of somite expanded laterally. Seminal receptacle with
rounded lateral arms, posterior margin with sinuous sac (arrowed Fig. XX). Anal somite as
long as preanal somite. Length/ratio of caudal rami = 5.5; inner margin of caudal ramus
naked; strong spines covering 67% of lateral margin. Dorsal seta (VII) 0.5 times as long as
caudal ramusand as long as outer most caudal seta (III). Ratio of innermost caudal seta
(VI)/ outermost caudal seta (III) = 1.5. Lateral caudal seta (II) inserted at 80% of caudal
ramus. All terminal setae plumose.
Antennule (Fig. XX). 12-segmented, tip reaching distal? margin of third prosomite, finely
denticulated hyaline membrane on segments 10-12. Armament per segment as follows:
1(8s), 2(4s), 3(2s), 4(6s), 5(4s), 6(1s+ 1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(7s).
First segment with two rows of spinules, proximal row bearing minute spinules, second row
with stronger, slightly longer spinules. Spine on sixth segment not reaching medial margin
of seventh segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with row of spinules on frontal surface: N1(V), N2(4), N3(4), N4(5),
N5(6), N15(4), N17(11), N18(4); on frontal surface: N7(6), N8(6), N9+10(9), N11(6),
N12(7), N13(5), N14(5), N22(8). Caudal surface of first Enp with B1(7) and B2(6).
Leg 1 (Fig. XX): Intercoxal sclerite with row I bearing small hairs arranged in circular
pattern on each side of frontal surface; caudal row II armed with long hair-setules on
middle margin, medial setules slightly shorter (arrowed in Fig. XX), distal margin with two
rounded chitinized projections. Inner coxal seta biserially setulated, caudal coxal surface
with spinule formula = A-B-C. Inner basal seta (basipodal spine) not reaching middle
margin of Enp3, 0.6 times as long as Enp. Length/width ratio Enp3 = 1.5, apical spine of
Enp3 being 1.2 times as long as Enp3.
Leg 2 (Fig. XX): frontal surface of intercoxal sclerite with row I bearing hairs arrenged in
circular pattern on each side; caudal row II bearing 7-8 long hair-spinules on each side (gap
in middle margin), row I absent. Distal margin of sclerite with two rounded chitinized
projections. Inner coxal seta biserially setulated, caudal coxal surface with spinule formula
= A-B-C. Small spinules along insertion of basipode (frontal surface). Length /width ratio
of Enp3 = 2, apical spine of Enp3 being 1.4 times as long as segment (Enp3). No modified
setae present.
Leg 3 (Fig. XX): intercoxal sclerite with frontal row I bearing hairs arranged in circular
pattern (arrowed in Fig. XX) on each side; caudal surface with row I bearing 9 long hairs
on each side (small gap in the middle section); row II continuous, bearing long hairs (about
16); row III continuous, bearing slightly shorter hairs setules (about 18). Distal margin with
two rounded chitinized projections. Coxa with strong, biserially setulated coxal seta.
Caudal coxal surface with spinule formula = A-B-C. Small spinules along insertion of
basipodite (frontal surface). Length/width ratio of Enp3 = 2.1; apical spine of Enp3 being
1.2 times longer than Enp3. No modified seta present.
Leg 4 (Fig. XX): distal margin of intercoxal sclerite with two rounded chitinized
projections. Frontal surface with row I bearing hairs arranged in semicircular pattern on
each side (arrowed in Fig. XX); caudal surface of intercoxal sclerite with row I bearing
long hairs, about 13 on each side (small gap between them), row II bearing 7-9 hairs on
each side (adjacent to outer margins; arrowed in Fig. XX); row III bearing 3-7 hairs on each
side. Frontal surface of coxa with spinules at insertion of basipod. Inner coxal seta with
heterogeneous ornamentation; proximal inner margin with long hairs and distally with
strong spinules; outer margin basally with hairs and distally naked (arrowed in Fig. XX).
Caudal coxal surface with spinule formula = A-B-C+D-E-G-H-J. Length/width ratio Enp3
= 2.6, length ratio inner spine of Enp3/length Enp3 = 1.3; length ratio outer spine of
Enp3/length of Enp3 = 0.9; proportion inner/outer spine Enp3= 1.4. Lateral seta of Enp3
inserted at 65% of segment. No modified setae in Enp and Exp.
Leg 5 (fig. XX): free segment subrectangular, 1.5 times longer than wide, bearing one
strong inner spine and two setae; medial seta 3 times longer than outer seta and 1.4 times
longer than inner spine. Inner spine 2.5 times longer than segment.
Remarks: Eucyclops estherae n. sp. is closely related to both E. festivus and E. wixarica n.
sp. because they have similar morphometrical characters. The new species can be
distinguished by its possession of a unique combination of characters. It differs from these
two species by the presence of a sinuous lobe on posterior margin of seminal receptacle,
present also in E. alekseevi n. sp., E. angeli, and E. prionophorus. The new species differs
from E. festivus in details of the antennal basis ornamentation; in E. estherae n. sp. rows N6
and N16 are absent and both rows are present in E. festivus. In E. estherae n. sp. caudal row
I of P1 intercoxal sclerite is absent; this row is present in E. festivus ; also, row II bears long
hairs in the new species and in E. festivus it is formed by minute spinules (see Fig. XXX).
The P2 sclerite differs between these two species, in caudal surface of E. estherae n. sp.
row I is absent and is present in E. festivus , row II bears long hairs in the new species vs.
minute spinules in E. festivus (see Fig. XX). All caudal rows of intercoxal sclerite of P3
differ between these species. In E. estherae n.sp. all rows have long hairs whereas a
different pattern is present in E. festivus, it has hairs only in row I and rows II and III bear
strong spinules. The intercoxal sclerite of P4 shows differences in both surfaces; in the
frontal surface E. estherae n. sp. bears hairs arranged in a semicircle while in E. festivus
this row is armed with minute spinules. On the caudal surface all rows in E. estherae are
armed with long hairs, thus diverging from E. festivus, in which hese rows bear spinules.
The medial seta of P5 is remarkably long in the new species when compared with the outer
seta (3.0); other species with a long medial setae are E. chihuahuensis (2.8) and E. wixarica
n. sp. (2.4); the rest of the Mexican species show values ranging between 1.0 and 2.0.
Eucyclops ishidai n. sp. Mercado-Salas and Suárez-Morales
Distribution: 276b
Material examined: Holotype: Adult Ƃ specimen dissected, mounted in glycerin sealed
with Entellan (ECO-CH-Z-05050). Allotype: Adult ƃGLVVHFted, mounted in glycerin
sealed with Entellan (ECO-CH-Z-XXX). Paratypes: 7adult ƂƂXQGLVVHFWHG, ethanolpreserved (ECO-CH-Z-0XX). Samples from type locality collected February 18, 1989 by
Marcelo Silva-Briano.
Type locality: Creek at Sierra Fria, 21 km from La Labor, Calvillo, Aguascalientes,
Mexico.
Etymology: This species is dedicated to Dr. Teruo Ishida, who pioneered the exploration of
new morphological characters to distinguish closely related species of Eucyclops.
Description:
Female: Habitus as in Fig. XX. Average length excluding caudal setae = 788 µm. Body
surface (including caudal rami) ornamented with small pits. Prosome widest at first and
second somites, representing 62% of total body length, symmetrical in dorsal view (Fig.
XX). Prosomal fringes finely serrate in dorsal surface (Fig. XX). Five segmented urosome,
slightly elongated; first urosomite with long setules on lateral margin; urosomal fringes
serrate dorsally and ventrally; posterior margin of anal somite with row of strong spinules.
Genital double somite symmetrical (Fig. XX), representing 13.4% of total body length;
anterior half of genital somite slightly expanded. Seminal receptacle with rounded, slender
lateral arms on posterior margin, typical of the serrulatus-complex. Anal somite subequal
in length to preanal somite, anal operculum rounded (Fig. XX). Length/width of caudal
ramus = 4.1; inner margin of caudal rami naked; strong spinules covering 64% of lateral
margin. Dorsal seta (VII) 0.8 times as long as caudal ramus and 1.2 times as long as
outermost caudal seta (III). Length ratio of innermost caudal seta (VI)/outermost caudal
seta (III) = 1.5. Lateral caudal seta (II) inserted at 76% of caudal ramus. All terminal setae
plumose.
Antennule (Fig. XX): 12-segmented, tip barely reaching beyond posterior margin of first
prosomite; smooth, slender hyaline membrane on segments 10-12, antennules ornamented
with small pits (arrowed in Fig. XX). Armament per segment as follows: 1(8s), 2(4s), 3(2s),
4(6s), 5(3s), 6(1s+1sp), 7(2s), 8(3s), 9(2s+1ae), 10(2s), 11(3s), 12(7s), Transverse row of
strong spinules on first segment. Spine on sixth segment reaching medial margin of seventh
segment.
Antenna (Fig. XX): Coxa (unarmed), basis (2s+Exp), plus 3-segmented Enp (1s, 9s, 7s,
respectively). Basis with row of spinules on frontal surface: N1(V), N2(4), N3(6), N4(6),
N5(9), N15 (4), N17(10); on caudal surface: N7(5), N8(6), N9+10(8), N11(8), N12(8),
N13(4), N14(7), N16(6), N22(8). Caudal surface of first Enp with B2(7).
Mouthparts as in Fig. XX.
Leg 1 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing small spinules
arranged in semicircular pattern, caudal surface with rows I and II bearing minute spinules,
row I continuous; row III divided in three sections (arrowed in Fig. XX). Inner coxal seta
biserially setulated, caudal coxal surface with spinule formula = A+B+C. Row of minute
spinules along insertion of basipodite. Inner basal seta (basipodal spine) reaching middle
margin of Enp3, 0.7 times as long as Enp. Length/width ratio of Enp3 = 1.6, apical spine of
Enp3 being 0.7 times as long as Enp.
Leg 2 (Fig. XX): Frontal surface of intercoxal sclerite with row I bearing hairs arranged in
circular pattern; caudal row II continuous, bearing spinules. Distal margin of intercoxal
sclerite with two rounded chitinized projections, inner coxal seta biserially setulated, caudal
coxal surface with spinule formula = A+B+C+D. Length/width ratio of Enp3= 1.8, apical
spine of Enp3 1.2 times as long as Enp3. No modified setae observed.
Leg 3 (Fig. XX): Frontal surface of intercoxal sclerite with row I armed with hairs arranged
in circle on each side (arrowed Fig. XX); caudal surface with row I bearing 10-12 long and
very slender spinules on each side, small gap between it, row II continuous with strong
short spinules (17-19) and; row III continuous bearing 20-26 long but strong spinules.
Distal margin of sclerite with two rounded chitinized projections. Coxa with strong
biserially setulated inner coxal seta, basally with long hairs and distally with strong
spinules at both edges. Caudal coxal surface with spinule formula A+B+C. Small spinules
along insertion of basipodite (frontal surface). Length/width ratio of Enp 3= 2.1, apical
spine slightly shorter than Enp3 (about 0.9 times). No modified setae observed.
Leg 4 (Fig. XX): Distal margin of intercoxal sclerite with two low, rounded chitinized
projections. Frontal surface of sclerite with row I bearing hairs arranged in semicircular
pattern in both sides of surface. Caudal row I with 7 long and slender spinules on each side
and small gap in the middle, row II bearing very long spinules, divided into three sections:
two on outer margins and one medial (arrowed in Fig. XX); row III bearing long, slender
spinules, also divided in three sections, two on outer margins and one in medial margin.
Frontal surface of coxa with row of small spinules at insertion of basipod. Inner coxal spine
with heterogeneous ornamentation; proximal inner margin with long hairs and with strong
spinules distally, outer margin with one distal spinule basally setulated , gap in middle
margin (arrowed in Fig. XX). Caudal coxal surface with spinule formula = A-C+D-E-F-HJ. Length/width ratio of Enp3= 3.1, inner spine of Enp3 as long as Enp3 (1.0), length ratio
of outer spine of Enp3/length Enp3 = 0.7; length ratio inner/outer spines of Enp3 = 1.4.
Lateral seta of Enp3 inserted at 67% of segment. No modified seta observed.
Leg 5 (Fig. XX): free segment subrectangular, 1.1 times as long as wide, bearing one strong
inner spine and two setae, medial seta 1.7 times longer than outer seta and 1.6 times longer
than inner spine. Inner spine 2.3 times longer than segment.
MORPHOMETRICS AND BINARY CHARACTERS
In order to verify the taxonimic value of morphometric variables traditionally used in the
separation of the species (Lindberg, 1955; Reid, 1985; Suárez-Morales, 2004; Alekseev &
Defaye, 2011) we performed a statistical analysis using boxplots with the aid of the
statistical program R 3.0.2.(R Development Core Team, 2013). We included 22 variables
measured in the 17 species included herein.We observed (Fig. XX) the lack of significant
variation and a remarkable overlapping of data in the morphometric characters used in the
separation of species of the genus. The only characters that appear to have a consistent
variation among species and that could be deemed useful in the separation of species are
the length/width of the caudal ramus (2), the length/width ratio of P4 Enp3 (14) and the
spine and setae proportions of the fifth leg armature (19-22), but even in these characters,
variation is relatively weak.
The cluster analysis was performed using Euclidean distance in order to classify and verify
dissimilarities among species in relation of the shared characters (Fig. XX).It included all
characters(morphometric and binaries) examined . In Figure XX B the cluster shows the
results obtained using only morphometrical data.
DISCUSSION
After performing this upgraded taxonomic analysis of the Mexican fauna of
Eucyclops we establish that all the species distributed in Mexico belong to the serrulatusgroup, based on the diagnostic characters established by Alekseev and Defaye (2011).
Additional to these basic characters we found well-conserved patterns in the ornamentation
of the swimming legs that could be reliable to distinguish species; even in some other
eucyclopine genera and unlike the setae and spines of all structures have been ignored as
tracks of evolutionary patterns among eucyclopine copepods. In one of the few studies that
explore the taxonomic value of the ornamentation patterns of the swimming legs, Einsle
(1985) emphasized the uniformity of such pattern within species and the remarkable interspecific variations. Furthermore, Einsle (1985) stressed the importance of the presence of
rows rather than the number of elements in each each row, which often varies among
individuals. Our observations support these observations; also the type of elements in each
row is constant within species and varies among species. We consider the type of elements
the presence of hairs, hair-spinules and spinules. Based on our analysis, we can advance the
following micro-characters as the most stable and reliable in Eucyclops: 1) coxal formula
A-B-C on the caudal surface of P1; 2) frontal row I of the P1 intercoxal sclerite; 3) caudal
row II of intercoxal sclerite (P1), its position always at the same level of row C of coxa, and
the presence or absence of row I; 4) coxal formula A-B-C-D on caudal surface of P2; 5)
row I of frontal surface of P2 always close to round chitinized projections; 6) caudal row II
always present at same level of row D of coxal surface and, in some species additional row
I above row II; 7) coxal formula A-B-C on caudal surface of P3, 8) row I of frontal surface
of intercoxal sclerite of P3 close to round chitinized projections; 9) caudal surface of
intercoxal sclerite of P3 with three rows, the first (row I) close to proximal margin, the
second (row II) below the first and the third at the same level of row C of coxal surface;
10) caudal surface of coxa in P4 as described by Alekseev and Defaye (2011); 11) row I of
frontal surface of intercoxal sclerite P4; 12) caudal surface with pattern as described by
Alekseev and Defaye (2011) with rows I, II and III.
With the exception of caudal row I of intercoxal sclerite of P1 and P2, these
characters are always present in Eucyclops but the type of ornamentation elements vary
among species. Previous surveys on the ornamentation patterns of coxas and intercoxal
sclerites have been performed analyzing the fourth leg and in some genera first leg
(Karaytug, 1998). This is the first time that ornamentation patters of all swimming legs are
analyzed and compared. Based on the ornamentation of the fourth leg, Holynska (2000)
recognized different linages in Mesocyclops that were geographically consistent, she also
outlined the relevance of these patterns as signals of evolution in copepods. According to
Huys and Boxshall (1991), Karaytug and Boxshall (1999), and Holynska (2000) the
ornamentational patterns in the coxal plate of the fourth swimming leg could represent a
key character in the recognition between males and females of the same species, because
the male antennules and the female coxa are in contact during mating. The intraespecific
recognition takes place when these modified structures come into contact with each other.
Additional observations of the Mexican material revealed that when caudal row III of the
P4 intercoxal esclerite is armed with hairs (always long), the three caudal rows of P3 will
have hairs; also, when caudal row I of P4 bears spinules (small or long), at least two of the
three rows present at caudal surface of intercoxal sclerite of P3 will bear spinules as well.
The only species with long hairs in caudal row I of P4 are E. wixarica n. sp., E. defaye n.sp
and E. chihuahuensis. In the taxonomic literature of American species of Eucyclops, the
ornamentation elements of several species have been described as bearing long hair
spinules on this row but we consider that some of them refer to long hair spinules and that
should be analyzed in order to stablish if this pattern is constant among species. Most of the
species distributed in Mexico -with the exception of E. mittmanni n. sp. and E. tziscaopresent row N18 on frontal surface of antennal basis. This structure should be reviewed in
the rest of the American Eucyclops because this could be a character with the potential to
separate Neartic/Neotropical species from those with Palearctic origin (in E. serrulatus this
row is absent as it is in many European, African and Asian species) (Ishida, 1997, 2001,
2002, 2003; Alekseev et al. 2006; Alekseev, 2008, 2010; Alekseev & Defaye, 2011) Our
analysis of the ornamentation patterns of the antennal basis, allowed us to add rows of
spinules to the pattern proposed by Alekseev et al. (2006) and Alekseev and Defaye (2011).
Some of the Mexican specimens examined have additional rows that do not fit in the
previosuly described patterns and thus, were important to identify groups of species.
The use of morphometric values in the species delimitation of Eucyclops has been
proved to have a limited taxonomic value and has lead to subestimate the biodiversity of
the genus not only in Mexico but in the entire continent. Many species have been recorded
under names of presumedly “cosmopolitan” species such as E. elegans, E. pectinifer, E.
bondi and E. pseudoensifer. The examination of the ornamentational patterns present in the
four swimming legs and the antennal basis appears to be a more reliable group of data to
species delimitation in the continent. In addition, frequently ignored male characters like
the presence of modified setae on antennule and the shape of the sixth leg are deemed
useful when differences in females are subtle. An example of this situation is represented
by records of E. bondi, since its description (Kiefer , 1934) it has been recorded in Central
America, the Antilles and Mexico by several authors (Collado et al., 1984; Reid, 1992;
Suárez-Morales et al. 1996; Suárez-Morales & Reid, 1998; Grimaldo-Ortega et al., 1998;
Bruno et al. 2005; Dussart & Defaye, 2006; Gaviria & Aranguren, 2007; Elías-Gutiérrez et
al. 2008; Mercado-Salas, 2009; Suárez-Morales et al., 2010; Suárez-Morales & Walsh,
2009; Mercado-Salas et al. 2012; Mercado-Salas &Suárez-Morales 2012). However, based
on the analysis of the type material and the examination of the ornamentation patterns of
the antennal basis and swimming legs, we concluded that E. bondi is not distributed in
Mexico and records of this species should be assigned to E. tziscao, E. defaye n. sp. or E.
cuatrocienegas. Records from southern Mexico appear to be assignable to E. tziscao, those
from Central Mexico could correspond to E. defayeae n. sp., and the northern records are
assignable to E. cuatrocienegas. The type of environments where these species were
recorded differ and could represent an ecological niche separation among these species: E.
tziscao is found in permanent waterbodies surrounded by oak-pine forest, E. defayeae n. sp.
dwells in ephemeral ponds in semi-arid environments and E. cuatrocienegas is distributed
in arid environments in the Chihuahuan Desert.
According to Alekseev (pers. comm. NFM-S), Eucyclops serrulatus s. str. is present
in Mexico as a result of recent introductions by human activities, but we did not find the
strict form but two new, closely related species instead. Previous Mexican records under
the name of E. serrulatus are now correctly re-assigned. Eucyclops wixarica n. sp. and E.
alekseevi n. sp. are two of the species previously recorded as E. serrulatus, mainly because
of the possession of row N2 armed with long hairs. Other two species bearing long hairs in
frontal row N2 are E. elegans and E. mittmanni n. sp. but these were not assignable to E.
serrulatus s.str. because of their remarkably long caudal ramus. Both species are distributed
in the central-northern region of Mexico. Eucyclops solitarius was described by Herbst
(1962) from a waterbody in Brazil and then synonymized with E. elegans (Dussart &
Defaye, 2006) but in the light of the new, upgraded taxonomic standards set in the genus,
specimens from the type locality of E. solitarius should be revised to reveal if the south
American form of E. elegans is assignable to E. solitarius.
Historical records of E. pectinifer in Mexico were reassigned to 6 closely related
species that are distinguishable from each other: E. pectinifer, E. cuatrocienegas, E.
alekseevi n. sp., E. defaye n. sp., E. ishidai and E. prionophorus. We did not find a
consistent distributional pattern among these species, but the southernmost record of this
group in central Mexico suggests that these species have Neartic affinities.
Records of E. pseudoensifer in Mexican territory seems to be associated with E.
chihuahuensis, E. wixarica n. sp. and E. estherae n. sp., all with northern distributions and
thus having Neartic affinities. Geographic disjunction between populations of E.
pseudoensifer and E. chihuahuensis, E. wixarica n. sp. and E. estherae n. sp. confirm
different origins of these species, the first with Neotropical affinities (distributed in Central
and South America) and the last species with Neartic affinities (central-north of Mexico).
The species with Southern distributions were E. torresphilipi and E. angeli, both deemed
endemic to their type localities; E. torresphilipi was recently recorded from Lakes in the
state of Puebla (comm. Pers. Barrera-Moreno, 2012), but this record should be checked. If
this record is confirmed, the distribution of this species will be expanded to central Mexico.
It is noteworthy to mention that Eucyclops was absent from samples obtained in the Baja
Californian Peninsula, northeast Mexico.
We performed an analysis of variables using boxplots in order to graphically
analyze the variability of the characters examined. We emphasized the evaluation of
morphometrical characters traditionally used in the separation of species of the genus
Eucyclops. Most of the characters have weak variations and thus are not informative in
species delimitation; extreme values (arrowed in FIG. X) were obtained in some
morphometric characters like the total length of caudal ramus. The species that represent
these extreme values were E. mittmanni n. sp, E. elegans and E.angeli, the first two species
with a remarkably long caudal ramus and the third with very short caudal rami. Differences
between the cluster obtained using morphometric characters and that incorporating both
binary andmorphometric characters are important to highlight, but the groups obtained are
not consistent geographically. One of the explanations to this is the lack of material from
larger geographical areas in Mexico which may contain forms that could be used in
searching biotic components. It is also important to mention that all species (in both
clusters) appear as independient entities, suggesting that the new species described herein
are well supported and that it is possible to separate them from its congeners. The cluster
with all characters (morphometric and binary) provided a clearer separation among species,
thus supporting the idea that the use of ornamentational patterns is an important tool to
species delimitation in the genus.
It is also clear that the diversity of the genus in Mexico was underestimated;
previous to this survey, the number of species of Eucyclops in Mexico was 16 (including E.
agilis, E. serrulatus, E. speratus) however records of E. breviramatus, E. bondi, E.
conrowae, E. delachauxi, E. speratus and E. pseudoensifer were determined incorrectely
and thus these species are not distributed in the country. The addition of 8 new species and
confirmation of previous recorded species in Mexico resulted in 17 species dwelling in the
country. Future taxonomic works in areas of Mexico that are currently unknown or
subsampled are expected to reveal more undescribed species.
AKNOWLEDGEMENTS
This work is part of the first author’s (NFM-S) Doctoral Thesis developed at El
Colegio de la Frontera Sur (ECOSUR). This contribution was supported by CONACyT
project 133404-Investigación Científica Básica 2009. The support and comments of
members of the Thesis Committee, Drs. Martha A. Gutiérrez-Aguirre and David GonzálezSolís are deeply appreciated by the authors of this work. We gratefully acknowledge the
support by Araceli Adabache, Laboratorio de Ecología, Universidad de Aguascalientes, for
help and advice in the SEM processing and examination of the specimens. Also, we thank
M. Sc. Laura Fernández-Pérez for her kind help in the statistical analysis of the numerical
data presented. Cuahutemoc Ruíz Pineda helped in polishing the final edition of SEM
photographies. We gratefully acknowledge the key support of Dr. Hans-Walter Mittmann
(Staatliches Museum für Naturkunde, Karlsruhe), Dr. Danielle Defaye (Muséum National
d´Histoire Naturelle, Paris), Drs. Frank D. Ferrari and Chad Walter (National Museum of
Natural History Smithsonian Institution, Washington D. C.), Victor Alekseev (Russian
Academy of Sciences), and Rosa María Hernández (El Colegio de la Frontera Sur,
Chetumal) for loaning the material examined in this work. We also acknowledge the help,
time and patience of Jörg Pertzel and Gerald Islebe in translating the original descriptions
of species from German to English.
REFERENCES
Alekseev, V. 2008. Eucyclops albuferensis sp. nov. (Cylopoida: Copepoda: Crustacea)
from Albufera lake, Valencia, Spain. Proceedings of the Zoological Institute RAS.
312(1/2): 127-134.
Alekseev, V. 2010. Two new Eucyclops species (Cyclopiformes:Cyclopidae) from Spain.
Zoosystematica Rossica. 19(2): 171-178.
Alekseev, V. & Defaye D. 2011. Taxonomic differentiation and world geographical
distribution of the Eucyclops serrulatus group (Copepoda, Cyclopidae,
Eucyclopinae). In: Defaye D, Suárez-Morales E, von Vaupel Klein JC (Eds) Studies
on freshwater Copepoda: a volume in honour of Bernard Dussart. Koninklijke Brill
NV, Leiden, 41-72
Alekseev, V., Dumont H.J., Pensaert, J., Baribwegure D. & Vanfleteren J.R. 2006. A
redescription of Eucyclops serrulatus (Fischer,185) (Crustacea: Copepoda:
Cyclopoida) and some related taxa, with a phylogeny of the E. serrulatus-group.
Zoologica Scripta. 35(2):123-147.
Álvarez-Silva C. & Gómez-Aguirre, S. 2000. Listado de la fauna de Copépodos (Crustacea)
de las lagunas costeras de Veracruz, México. Hidrobiológica. 10(2):161-168.
Boxshall, G. A. & Defaye, D. 2008. Global diversity of copepods (Crustacea:Copepoda) in
freshwaters. Hydrobiologia. 595: 195-207.
Boxshall, G. A. & Halsey S. H. 2004. An Introduction to Copepod Diversity. The Ray
Society. Londres.
Bruno, M. C., Reid J. W. & Perry S. A. 2005. A list and identification key for the
freshwater, free-living copepods of Florida (U.S.A.) Journal of Crustacean Biology.
25(3): 384-400.
Collado, C., Defaye D., Dussart, B. H. & Fernando C. H. 1984. The freshwater Copepoda
(Crustacea) of Costa Rica with notes on some species. Hydrobiologia 119:89-99.
Comita, G. W. 1950. Studies on Mexican copepods. Transactions of the American
Microscopical Society. 70(4): 367-379.
Dahms, H. U. & Fernando, C. H. 1997. Redescription of Acanthocyclops brevispinosus
(Herrick, 1884) (Copepoda, Cyclopoida) from Ontario. Crustaceana. 70(2): 129144.
De los Ríos, P., Rivera, R. & Morrone, J.J. 2010. Cyclopoids (Crustacea:Copepoda)
reported from Chilean inland Waters. Boletín de Biodiversidad de Chile. 2:10-20.
Defaye, D. & Dussart, B. 1988. Compléments à la faune des Crustacés Copépodes des eaux
intérieures de Guyane Francaise. Revista de Hydrobiologia Tropical. 71 (1): 81-91.
Dodson, S.I., Grishanin, A.K., Gross, K. & Wyngaard G.A. 2003. Morphologycal analysis
of some cryptic species in the Acanthocyclops vernalis species complex from North
America. Hydrobiologia. 500:131-143.
Dodson, S.I. & Silva-Briano, M. 1996. Crustacean zooplankton species richness and
associations
in
reservoirs
and ponds
of Aguascalientes State,
Mexico.
Hydrobiologia. 325: 163-172.
Dussart, B. & Defaye, D. 2006. World Directory of Crustacea Copepoda of Inland Waters
II- Cyclopiformes. 1ª ed. Backhuys Publishers. The Netherlands.
Dussart, B. & Defaye, D. (1995). Introduction to the Copepoda. Guides to the identification
of the Microinvertebrates of the Continental Waters of the World, 7. 227p.
Dussart, B. H. & Defaye, D. 2001. Introduction to the Copepoda. En: Dumont, H.J.F.
(eds.), Guides to the Identification of the Microinvertebrates ofthe Continental
Waters of the World. SPB Academic Publishing, The Hague. 289 pp.
Dussart, B. H. & Frutos, S. M. 1986. Sur quelques Copépodes d´Argentine-Copépodes du
Paraná Medio. Revista Hidrobiología Tropical. 19(3-4): 241-262.
Dussart, B. H. 1984. Some Crustacea Copepoda from Venezuela. Hydrobiologia. 113: 2567.
Einsle, U. 1985. A further criterion for the identification of species in the genus Cyclops s.
str. (Copepoda, Cyclopoida). Crustaceana. 49(3): 299-309.
Einsle, U. 1992. Nordamerikanische Arten der Gattungen Eucyclops und Acanthocyclops
(Crustacea, Copepoda) aus alten Proben der Sammlung F. Kiefer. Andrias. 9: 195210.
Elías-Gutiérrez,
M.
2000.
Informe
final
del
Proyecto
S050:
Microcrustáceos
zooplanctónicos y litorales del Sureste de México. CONABIO. México. 53pp.
Elías-Gutiérrez, M., Suárez-Morales, E., Gutiérrez-Aguirre, M. A., Silva-Briano, M.,
Granados-Ramírez, J. G. & Garfias-Espejo, T. 2008. Cladocera y Copepoda de las
Aguas Continentales de México. UNAM-FESI-CONABIO-ECOSUR-CONACYTSEMARNAT. México.
Fiers, F., Ghenne, V. & E. Suárez-Morales, E. 2000. New species of continental Copepoda
(Crustacea, Cyclopoida) from the Yucatan Península. Stud. Neotrop. Fauna &
environ. 35 (3):209-251.
Fuentes J. &, Suárez-Morales, E. First record of the freshwater copepod Eucyclops titicacae
Kiefer, 1957, new rank (Copepoda, Cyclopoida) in Colombia. Biota Neotropica (in
press).
García-Márquez, L. J. 2005. Estudio de la Gnatostomiasis en el estado de Colima, México.
Tesis de Doctorado. Universidad de Colima, Facultad de Medicina Veterinaria y
Zootecnia. Tecomán, Colima.
Gaviria S. & N. Aranguren, N. 2007. Especies de vida libre de la subclase Copepoda
(Arthropoda, Crustacea) en aguas continentales de Colombia. Biota Colombiana.
8(1): 53-68.
Grimaldo-Ortega, D., Elías-Gutiérrez, M., Camacho-Lemus, M. & J. Ciros-Pérez, J. 1998.
Additions to Mexican freshwater copepods with the description of the female
Leptodiaptomus mexicanus (Marsh). Journal of Marine Systems. 15:381-390.
Gutiérrez-Aguirre, M. A. 1999. Diversidad y distribución de los copépodos dulceacuícolas
(Crustacea) del Sureste Mexicano. Tesis de Maestría. ECOSUR, Chetumal.
Gutiérrez-Aguirre, M. A., Mercado-Salas, N. F. & Cervantes-Martínez, A. 2013.
Description of Eucyclops tziscao sp. n., E. angeli sp. n., and new record of E.
festivus Lindberg, 1955 (Cyclopoida, Cyclopidae, Eucyclopinae) in Chiapas,
Mexico. Zookeys. 351: 1-30.
Herbst, H.V. 1962. Crustacea aus dem Amazonasgebiet, gesammelt von Professor Dr. H.
Sioli und Dr. R. Braun. Litorale und substratgebundene Cyclopoida Gnathostoma
(Copepoda). Crustaceana. 3(4): 259-278.
Holynska, M. 2000. Is the spinule pattern on the leg 4 coxopodite a tactile signal in the
specific mate recognition system of Mesocyclops (Copepoda, Cyclopidae)?.
Hydrobiologia. 417: 11-24.
Holynska, M. 2006. Phylogeny of Mesocyclops (Copepoda: Cyclopidae) inferred from
morphological characters. Zoological Journal of the Linnean Society. 147: 1–70
Huys, R. and &G. A. Boxshall, G. A. (1991). Copepod Evolution. The Ray Society.
London.462 p.
Ishida, T. 1997. Eucyclops roseus, a new Eurasian copepod, and the E. serrulatus-speratus
problem in Japan. Japanese Journal of Limnology. 58: 349–358.
Ishida, T. 2001. Eucyclops borealis sp. nov. from Alaska, and E. tseshimensis sp. nov. from
Tsushima Island, Japan (Crustacea, Copepoda, Cyclopoida). Biogeography. 3:5157.
Ishida, T. 2002.Illustrated fauna of the freshwater cyclopoid copepods of Japan. Bulletin of
the Biogeography Society of Japan. 57:37-106.
Ishida, T. 2003. Description of Eucyclops serrulatus (Fisher, 1851) (Copepoda,
Cyclopoida) from Japan, with reference to the degree of difference from specimens
from the ype locality. Biogeography. 5: 1-7.
Jiménez-Trejo, L. A. & Vásquez-Vargas, S. L.. 2008. Reserva de la Biósfera “Los Tuxtlas”,
patrimonio amenazado. Observatorio de la Economía Latinoamericana. 99.
Juday, C. 1915. Limnological studies on some lakes in Central America. Transactions of
the Wisconsin Academy of Sciences, Arts and Letters. 18:214-250.
Karaytug, S. & Boxshall, G. A. 1998. Partial revision of Paracyclops Claus, 1893 (Copepoda,
Cyclopoida, Cyclopidae) with descriptions of four new species. Bull. Nat. Hist. Mus.
Lond. (Zool). 64(2): 111-205.
Karaytug, S. & Boxshall, G.A. 1999. Antennules of the male of Paracyclops (Copepoda):
functional significance and their importance in systematics. Journal of the
Crustacean Biology. 19:371– 379.
Karaytug, S. 1999. Genera Paracyclops, Ochridacyclops and key to the Eucyclopinae.
Guides to the identification of the macroinvertebrates of the continental waters of
the World. Leiden: Backhuys Publishers. 217 p.
Kiefer, F. 1926. Über einige Süsswasser Cyclopiden aus Peru. Arch. Hydrobiol. 16(3): 494621.
Kiefer, F. 1929. Zur Kenntnis der freilebenden Copepoden Nordamerikas. Zoologischer
Anzeiger. 86:97-100.
Kiefer, F. 1931. Die Untergattung Tropocyclops
der Gattung Eucyclops (Copepoda,
Cyclopoida). Zeitschrift für wissenschaftliche Zoologie. 138(8):487-514.
Kiefer, F. 1934. Neue Ruderfüsskrebse von der Inseln Haiti. Zoologischer Anzeiger.
108:227-233.
Kiefer, F. 1956. Freilebende Ruderfusskrebse (Crustacea,Copepoda). Calanoida und
Cyclopoida. En F.Gessner, V. Vareschi (eds.) Ergebnisse der Deutschen
Limnologischen Venezuela-Expedition. 1952. 1: 233-268.
Kiefer, F. 1957. Freilebende Ruderfuȕkrebse (Crustacea Copepoda) des Titicacasees.
Lamothe-Argumedo, R., Alarcon-Oseguera, F. & Sánchez-Manzano R. M. 2001.
Gnatostomosis ocular. Un caso más registrado en México. Revista Mexicana de
Patología Clínica. 48(4): 219-222.
Lindberg, K. 1955. Cyclopoïdes (Crustacés copépodes) du Mexique. Arkiv för Zoology.
(23): 459–489.
Lindberg, K. 1954. Cyclopides /Crustacés Copépodes) de l´Amerique du Sud. Arkiv für
Zoologi. 71(11): 193-222.
Mercado-Salas, N. M. 2009. Diversidad y Distribución de los Cyclopoida (Copepoda) de
las zonas Áridas del Centro-Norte de México. Tesis de Maestría. ECOSUR,
Chetumal.
Mercado-Salas, N. F. & Suárez-Morales, E. On Kiefer’s American Eucyclops (Copepoda:
Eucyclopinae): E. delachauxi, E. prionophorus, E. bondi and E. leptacanthus,
redescriptions and comments on historical records. Zookeys (In press. a)
Mercado-Salas, N. F. & Suárez-Morales, E. Complementary description and taxonomical
comments of three South American species of Eucyclops (Copepoda, Cyclopidae):
E. subciliatus Dussart, E. neumani Pesta and E. pseudoensifer Dussart. Journal of
Natural History. (In press. b).
Mercado-Salas, N. F. & Suárez-Morales, E. Morphological variation of the freshwater
copepod Eucyclops elegans (Herrick, 1884) in the Americas and comments on
records of Eucyclops conrowae Reid, 1992 Journal of Natural History. (In press. c).
Mercado-Salas, N.F. & Suárez-Morales, E. 2012. Morfología, diversidad y distribución de
los Cyclopoida (Copepoda) de zonas áridas del centro-norte de México. II.
Eucyclopinae y análisis biogeográfico. Hidrobiológica 22(2): 99-124.
Mercado-Salas, N.F., Pozo, C., Morrone, J.J. &, Suárez-Morales, E. ( 2012). Distribution
patterns of the American species of the freshwater genus Eucyclops (Copepoda:
Cyclopoida). Journal of Crustacean Biology 32: 457-464.
Mirabdullayeb, I. M. & Defaye, D. 2002. On the Taxonomy of the Acanthocyclops
robustus species complex (Copepoda, Cyclopidae), I. Acanthocyclops robustus
(G.O. Sars, 1863) and A. trajani n. sp. Selevinia. 1-4:7-20.
Mirabdullayeb, I. M. & Defaye, D. 2004. On the taxonomy of the Acanthocyclops robustus
species complex (Copepoda, Cyclopidae), Acanthocyclops brevispinosus and A.
einslei sp. n. Vestn. Zool. Kiev. 38(5):27-37.
Miracle, M. R., Alekseev, V., Monchenko, V., Sentandreu, V. & Vicente E. 2013.
Molecular-genetic based contribution to the taxonomy of the Acanthocyclops
robustus group. Journal of Natural History. 47:863-888.
Morton, D. W. 1990. Revision of the Australian Cyclopidae (Copepoda:Cyclopoida). II.
Eucyclops Claus and Ectocyclops Brady. Australian Journal of Marine and
Freshwater Research. 41:657-675.
Osorio-Tafall, B. 1943. Observaciones sobre la fauna acuática de las cuevas de la región de
Valles (San Luis Potosí, México). Revista de la Sociedad Mexicana de Historia
Natural. 4: 43-71.
Pearse A. S. & Wilson, C. B. 1938. Copepoda from Yucatan Caves. Carnegie Institute of
Washington Publications. 491:153-154.
Reid, J. W. & Marten, G.G. 1995. The cyclopoid copepod (Crustacea) fauna of nonplanktonic continental habitats in Louisiana and Mississippi. Tulane Studies in
Zoology and Botany. 30:39-45.
Reid, J. W. 1985. Clave de identificación y lista de referencias bibliográficas para las
especies continentales sudamericanas de vida libre del Orden Cyclopoida
(Crustacea,Copepoda). Boletim de Zoologia. Universidade de Sao Paulo. 9:17-143.
Reid, J. W. 1992. Copepoda (Crustacea) from fresh waters of the Florida Everglades,
U.S.A., with a description of Eucyclops conrowae n. sp. T. Am. Microsc. Soc. 111:
229-254.
Reid, J. W. 2001. A human challenge: discovering and understanding continental copepod
habitats. Hydrobiologia. 453/454: 201-226.
Robertson, A. & Gannon, J. E. 1981. Annotated checklist of the free-living Copepods of
the Great Lakes. J. Great Lakes Res. 7(4): 382-393.
Rocha, C. F. 1998. New morphological Characters useful for the taxonomy of the genus
Microcyclops (Copepoda, Cyclopoida). Journal of Marine Systems.15:425-431.
Rodríguez-Almaráz, G. A. 2000. Informe final del Proyecto S104: Biodiversidad de los
crustáceos dulceacuícolas del centro de Nuevo León y noreste de Tamaulipas.
CONABIO. México. 33 pp.
Santos, L. U. 1997. Survey of cyclopoids (Crustacea, Copepoda) in Brazil and preliminary
screening on their potential as dengue vector predators. Revista de Saúde Pública
31(3): 221-226.
Suárez-Morales E., Segura, L. & Fernández, M. A. 1985. Diversidad y abundancia del
Plancton en la Laguna de Catemaco, Veracruz, durante un ciclo anual. Anales del
centro de Ciencias del Mar y Limnología. 13(3): 313-316.
Suárez-Morales, E. & Gutiérrez-Aguirre, M. A. 2001. Morfología y Taxonomía de los
Mesocyclops (CRUSTACEA: COPEPODA: CYCLOPOIDA) de México. 1ed.
ECOSUR-CONACYT. México.
Suárez-Morales, E. & Reid, J. W. 1998. An updated list of free-living freshwater copepods
(Crustacea) of México. The Southwestern Naturalist. 43(2): 256-265.
Suárez-Morales, E. & Walsh, E. 2009. Two new species of Eucyclops Claus (Copepoda:
Cyclopoida) from the Chihuahuan Desert with a redescription of E. pseudoensifer
Dussart. Zootaxa. 2206:1-22.
Suárez-Morales, E. 2004. A new species of Eucyclops Claus (Copepoda:Cyclopoida) from
Southeast Mexico with a key for the identification of the species recorded in
Mexico. Zootaxa. 617:1-18.
Suárez-Morales, E., Gutiérrez-Aguirre, M. A.,& Walsh, E. J. 2010. Freshwater Copepoda
(Crustacea) from Chihuahuan Desert with Comments on Biogeography. The
Southwestern Naturalist. 55(4): 525-531.
Suárez-Morales, E., Reid, J. W., Iliffe, T. M. & Fiers, F. 1996. Catálogo de los Copépodos
(Crustacea) continentales de la península de Yucatán, México. 1ª ed. ECOSURCONABIO. México.
Ueda, H. & Reid, J. W. 2003. COPEPODA:CYCLOPOIDA. Genera Mesocyclops and
Thermocyclops. 1a ed. Backhuys Publishers. The Netherlands.
Van Velde, I. 1984. Revision of the African species of the genus Mesocyclops Sars, 1914
(Copepoda:Cyclopidae). Hidrobiologia. 109: 3-66.
Zamudio-Valdéz, J.A. 1991. Los copépodos de vida libre (Crustacea: Maxillopoda) del
Valle de Cuatro Ciénegas, Coahuila, México. Tesis de Licenciatura. Facultad de
Ciencias Biológicas. Universidad Autónoma de Nuevo León, México.
Zannata-Juárez S. A. 1995. Composición, abundancia y distribución del Zooplancton del
Lago de Catemaco, Veracruz. Tesis Licenciatura. Universidad Autónoma
Metropolitana, Unidad Iztapalapa, División Hidriobiología.
CAPÍTULO V.
CONCLUSIONES
El presente estudio representa el primer análisis de las especies de
Eucyclops a nivel mundial en un área geográfica bien establecida que incluye
diferentes tipos de ambientes y que no se enfoca solamente en el estudio de un
complejo de especies, sino en la diversidad del género en todo el país. A través
del análisis de la distribución geográfica de las especies de Eucyclops en el
continente Americano usando el método panbiogeográfico, se identificaron
patrones espaciales bien establecidos para algunas especies (especialmente
aquellas con afinidad neotropical) y se confirmaron distribuciones disyuntas en
aquellas especies con problemáticas taxonómicas que deben ser estudiadas con
el objetivo de clarificar su estatus taxonómico y por ende sus patrones de
distribución geográfica.
Los patrones de distribución de los Eucyclops en América involucran dos
cenocrones
(orígenes):
uno
Holártico
y
otro
Paleotropical.
Los
trazos
generalizados obtenidos en el análisis de panbiogeografía proponen como eventos
clave en la dispersión de las especies de Eucyclops
en el continente a: la
existencia de ríos que funcionaron como barreras y/o corredores, la elevación de
los Andes, la presencia del sistema “Pebas lake/wetland” en el Sur del continente
(paleotropical) y en el norte (Holártico) a los cambios climáticos resultantes de la
elevación de las montañas en Norte América, México y Centro América, así como
a la presencia de barreras marinas en el Istmo de Tehuantepec y Panamá. Esta
división entre la fauna del Norte y el Sur del continente, se confirmó al realizar el
análisis morfológico detallado de algunas especies que se consideraban como
cosmopolitas en el continente.
Se realizaron redescripciones de las especies previamente registradas en
México con base en material tipo alojado en diversas colecciones a nivel mundial.
La comparación entre el material tipo y los organismos mexicanos nos permitió
confirmar la presencia de algunas especies en el país pero del mismo modo
registros de especies como E. bondi, E. delachauxi, E. pseudoensifer, E.
conrowae y E. breviramatus fueron re-asignados pues no correspondían a las
especies
previamente
mencionadas.
Cabe
destacar
la
importancia
del
mantenimiento y manejo de las colecciones biológicas depositadas en los museos
a nivel mundial, ya que el análisis del material tipo fue clave en la realización de
este estudio.
Como resultado de nuestro análisis taxonómico, en esta contribución
reconocemos 17 especies del género Eucyclops distribuidas en México. Se
incluyeron descripciones complementarias de ocho especies, destacando los
caracteres taxonómicos utilizados en la actualidad, basadas en el material tipo
pero además con base en especímenes mexicanos. Estas especies incluyen a E.
elegans, E. prionophorus, E. festivus, E. leptacanthus, E. torresphilipi, E.
chihuahuensis, E. cuatrociénegas, y los recientemente descritos E. tziscao y E.
angeli. El uso de caracteres morfológicos usados recientemente en la taxonomía
del grupo, así como el análisis de nuevos caracteres morfológicos permitió el
reconocimiento de 6 nuevas especies que se describen en el presente trabajo (E.
alekseevi n. p., E. wixarica n. sp., E. defayeae n. sp., E. mittmanni n. sp., E.
estherae n. sp., y E. ishidai n. sp.).
Se encontraron patrones de ornamentación conservados en las cuatro
patas natatorias que son propuestos como confiables en la distinción de especies
no solo dentro del género Eucyclops
sino en otros miembros de la familia
Eucyclopinae. Dichos caracteres a diferencia de las setas y espinas, han sido
ignorados como señales de patrones evolutivos en los Eucyclopinae y a diferencia
de los anteriores parecen no estar influenciados por factores medioambientales.
No existen estudios previos sobre los patrones de ornamentación de las coxas y
los escleritos intercoxales de los cuatro pares de patas natatorias en el
reconocimiento de especies de ciclopoides, solamente han sido estudiados para
algunos géneros (incluyendo los Eucyclops) las ornamentaciones del cuarto par de
patas, el análisis de dichas estructuras se reconoce como pionero en este trabajo.
Se ha comprobado que el uso de caracteres morfométricos en la
delimitación de especies de Eucyclops tiene un valor limitado lo que ha conllevado
a la subestimación de la diversidad del género no solo en México si no en todo el
continente. Muchas especies han sido registradas bajo nombres de formas
“cosmopolitas” como E. elegans, E. pectinifer, E. bondi y E. pseudoensifer. El
análisis de los patrones de ornamentaciones en los cuatro pares de patas
natatorias y de los basipoditos antenales da como resultado la obtención de
grupos de datos que parecen ser más confiables en la delimitación de especies en
el continente. Adicionalmente el uso de caracteres presentes en los machos como
la presencia de setas modificadas en las anténulas y la forma y tamaño de los
elementos presentes en el sexto par de patas ha resultado útil cuando las
diferencias en las hembras son sutiles.
Por último creemos que este trabajo aporta la información básica necesaria
para el reconocimiento de nuevas formas no solo en el país sino en todo el
continente y puede reconocerse como pionero en el estudio del género en dicha
región geográfica. El conocimiento del género en el país, solo comparable con el
de los Mesocyclops, permite el inicio en la experimentación para el uso potencial
del género en diversos campos como lo son el control biológico de plagas
(mosquitos/hongos), el uso de los Eucyclops como indicadores de perturbación o
de calidad de agua, así como el establecimiento de las especies con importancia
económica al ser hospederos intermediarios de parásitos de peces usados en
acuacultura, entre otros.
LITERATURA CITADA
Alekseev, V., H.J. Dumont, J. Pensaert, D. Baribwegure y J.R. Vanfleteren. 2006.
A redescription of Eucyclops serrulatus (Fischer,1851) (Crustacea:
Copepoda: Cyclopoida) and some related taxa, with a phylogeny of the E.
serrulatus-group. Zoologica Scripta 35(2):123-147.
Álvarez-Silva C. y S. Gómez-Aguirre. 2000. Listado de la fauna de Copépodos
(Crustacea) de las lagunas costeras de Veracruz, México. Hidrobiológica
10(2):161-168.
Barbiero, R. P., R. E. Little y M. I. Tuchman. 2001. Results fron U.S. EPA´s
Biological Open Water Surveillance Program of the Laurentian Great Lakes:
III. Crustacean Zooplankton. J. Great Lakes Res. 27(2): 167-184.
Baribwegure, D. y H.J. Dumont. 2003. The integumental pore signature of
Thermocyclops schmeili (Poppe & Mrázek, 1895); Thermocyclops dybowskii
(Landé, 1890); Thermocyclops hooki Löffler, 1968; Thermocyclops incises
Kiefer, 1932 and Thermocyclops inopinus (Kiefer, 1926). Hydrobiologia.
505. 15-30.
Boxshall, G. A. y D. Defaye. 2008. Global diversity of copepods
(Crustacea:Copepoda) in freshwaters. Hydrobiologia 595: 195-207.
Boxshall, G. A. y S. H. Halsey. 2004. An Introduction to Copepod Diversity. The
Ray Society. Londres.
Bruno, M. C., J. W. Reid y S. A. Perry. 2005. A list and identification key for the
freshwater, free-living copepods of Florida (U.S.A.) Journal of Crustacean
Biology 25(3): 384-400.
Carling K. J., I. M. Ater, M. R. Pellam, A. M. Bouchard y T. B. Mihuc. 2004. A guide
to the zooplankton of lake Champlain. Plattsburgh State University of New
York 1: 1-29.
Collado, C., D. Defaye, B. H. Dussart y C. H. Fernando. 1984. The freshwater
Copepoda (Crustacea) of Costa Rica with notes on some species.
Hydrobiologia 119:89-99.
Comita, G. W. 1950. Studies on Mexican copepods. Transactions of the American
Microscopical Society 70(4): 367-379.
Dahms H. U. y C. H. Fernando. 1997. Redescription of Acanthocyclops
brevispinosus (Herrick, 1884) (Copepoda, Cyclopoida) from Ontario.
Crustaceana 70(2): 129-144.
De los Ríos, P., R. Rivera y J.J. Morrone. 2010. Cyclopoids (Crustacea:Copepoda)
reported from Chilean inland Waters. Boletín de Biodiversidad de Chile
2:10-20.
Defaye D. y B. Dussart. 1988. Compléments à la faune des Crustacés Copépodes
des eaux intérieures de Guyane Francaise. Revista de Hydrobiologia
Tropical 71 (1): 81-91.
Dodson S. I. y M. Silva-Briano. 1996. Crustacean zooplankton richness and
associations in reservoirs and ponds of Aguascalientes State, Mexico.
Hydrobiologia 325:163-172.
Dodson, S. I. 1994. Morphological Analysis of Wisconsin (USA) Species of the
Acanthocyclops vernalis Group (Copepoda:Cyclopoida). Journal of
Crustacean Biology 14(1): 113-131.
Dodson, S. I., A. K. Grishanin, K. Gross y G. A. Wyngaard. 2003. Morphologycal
analysis of some cryptic species in the Acanthocyclops vernalis species
complex from North America. Hydrobiology 500:131-143.
Dussart, B. & D. Defaye. 2006. World Directory of Crustacea Copepoda of Inland
Waters II- Cyclopiformes. 1ª ed. Backhuys Publishers. The Netherlands.
Dussart, B. H. 1984. Some Crustacea Copepoda from Venezuela. Hydrobiologia
113: 25-67.
Dussart, B. H. y D. Defaye. 2001. Introduction to the Copepoda. En: Dumont,
H.J.F. (eds.), Guides to the Identification of the Microinvertebrates ofthe
Continental Waters of the World. SPB Academic Publishing, The Hague.
289 pp.
Dussart, B. H. y S. M. Frutos. 1986. Sur quelques Copépodes d´ArgentineCopépodes du Paraná Medio. Revista Hidrobiología Tropical. 19(3-4): 241262.
Elías-Gutiérrez, M. 2000. Informe final del Proyecto S050: Microcrustáceos
zooplanctónicos y litorales del Sureste de México. CONABIO. México. 53pp.
Elías-Gutiérrez, M., E. Suárez-Morales, M. A. Gutiérrez-Aguirre, M. Silva-Briano, J.
G. Granados-Ramírez y T. Garfias-Espejo. 2008. Cladocera y Copepoda de
las Aguas Continentales de México. UNAM-FESI-CONABIO-ECOSURCONACYT-SEMARNAT. México.
Fiers, F., V. Ghenne y E. Suárez-Morales. 2000. New species of continental
Copepoda (Crustacea, Cyclopoida) from the Yucatan Península. Stud.
Neotrop. Fauna & environ. 35 (3):209-251.
Fleminger, A. 1973. Pattern, number, variability and taxonomic significance of
integumental organs (sensillae and glandular pores) in the genus Eucalanus
(Copepoda, Calanoida). Fishery Bulletin 71: 965-1010.
Frey, D.G. 1986. The non-cosmopolitanism of chydorid Cladocera: implications for
biogeography and evolution. En: R. H. Gore y K. L. Heck (eds.). Crustacean
Biogeography. Crustacean Issues 4: 237-256.
Frisch, D. y S. T. Threlkeld. Flood-mediated dispersal versus hatching: early
recolonisation strategies of copepods in floodplain ponds. Freshwater
Biology 50:323-330.
García-Márquez, L. J. 2005. Estudio de la Gnatostomiasis en el estado de Colima,
México. Tesis de Doctorado. Universidad de Colima, Facultad de Medicina
Veterinaria y Zootecnia. Tecomán, Colima.
Gaviria S. y N. Aranguren. 2007. Especies de vida libre de la subclase Copepoda
(Arthropoda, Crustacea) en aguas continentales de Colombia. Biota
Colombiana 8(1): 53-68.
Grimaldo-Ortega, D., M. Elías-Gutiérrez, M. Camacho-Lemus y J. Ciros-Pérez.
1998. Additions to Mexican freshwater copepods with the description of the
female Leptodiaptomus mexicanus (Marsh). Journal of Marine Systems
15:381-390.
Gutiérrez-Aguirre, M. A. 1999. Diversidad y distribución de los copépodos
dulceacuícolas (Crustacea) del Sureste Mexicano. Tesis de Maestría.
ECOSUR, Chetumal.
Holynska, M., J. W. Reid y H. Ueda. 2003. Genus Mesocyclops Sars, 1914. En:
Holynkska, M., I.M. Mirabdullayev, J. W. Reid y H. Ueda: Copepoda:
Cyclopoida. Genera Mesocyclops and Thermocyclops. Ed. Ueda H. y J. W.
Reid. Guides to the identification of the Microinvertebrates of Continental
Waters of the World. Backhuys Publishers. Leiden: 12-213.
Holynska, M. 2006. Phylogeny of Mesocyclops (Copepoda: Cyclopidae) inferred
from morphological characters. Zoological Journal of the Linnean Society
147: 1–70
Ishida, T. 1997. Eucyclops roseus, a new Eurasian copepod, and the E. serrulatussperatus problem in Japan. Japanese Journal of Limnology 58: 349–358.
Ishida, T. 2001. Eucyclops borealis sp. nov. from Alaska, and E. tseshimensis sp.
nov. from Tsushima Island, Japan (Crustacea, Copepoda, Cyclopoida).
Biogeography 3:51-57.
Ishida, T. 2002.Illustrated fauna of the freshwater cyclopoid copepods of Japan.
Bulletin of the Biogeography Society of Japan 57:37-106.
Ishida, T. 2003. Description of Eucyclops serrulatus (Fisher, 1851) (Copepoda,
Cyclopoida) from Japan, with reference to the degree of difference from
specimens from the ype locality. Biogeography 5: 1-7.
Jiménez-Trejo, L. A. y S. L. Vásquez-Vargas. 2008. Reserva de la Biósfera “Los
Tuxtlas”, patrimonio amenazado. Observatorio de la Economía
Latinoamericana 99.
Juday, C. 1915. Limnological studies on some lakes in Central America.
Transactions of the Wisconsin Academy of Sciences, Arts and Letters
18:214-250.
Karaytug S. 1999. Genera Paracyclops, Ochridacyclops and key to the
Eucyclopinae. Guides to the identification of the macroinvertebrates of the
continental waters of the World. Leiden: Backhuys Publishers. 217 p.
Karaytug, S. y G.A. Boxshall 1999. Antennules of the male of Paracyclops
(Copepoda): functional significance and their importance in systematics.
Journal of the Crustacean Biology 19:371– 379.
Kiefer, F. 1926. Über einige Süsswasser Cyclopiden aus Peru. Arch. Hydrobiol.
16(3): 494-621.
Kiefer, F. 1929. Zur Kenntnis der freilebenden Copepoden Nordamerikas.
Zoologischer Anzeiger 86:97-100.
Kiefer, F. 1931. Die Untergattung Tropocyclops
der Gattung Eucyclops
(Copepoda, Cyclopoida). Zeitschrift für wissenschaftliche Zoologie
138(8):487-514.
Kiefer, F. 1934. Neue Ruderfüsskrebse von der Inseln Haiti. Zoologischer Anzeiger
108:227-233.
Kiefer, F. 1956. Freilebende Ruderfusskrebse (Crustacea,Copepoda). Calanoida
und Cyclopoida. En F.Gessner, V. Vareschi (eds.) Ergebnisse der
Deutschen Limnologischen Venezuela-Expedition 1952. 1: 233-268
Koomen, P. 1992. The integumental perforation pattern of the Euchirella
messinensis Female (Copepoda, Calanoida): correction, aditions,
intraespecific variation, and checklist of pores sites. Crustaceana 63:113159.
Lamothe-Argumedo, R., F. Alarcon-Oseguera y R. M. Sánchez-Manzano.
2001.Gnatostomosis ocular. Un caso más registrado en México. Revista
Mexicana de Patología Cínica 48(4): 219-222.
Lindberg, K. 1955. Cyclopoïdes (Crustacés copépodes) du Mexique. Arkiv för
Zoology (23): 459–489.
Malt, S. J. 1983. Polimorphism and pore signature patterns in the copepod genus
Oncaea (Cyclopoida). Journal of the Marine Biological Association of the
United Kingdom U.K. 63:449-466.
Marsh, C. D. 1893. On the Cyclopidae y Calanidae of Central Winsconsin. Trans.
Wisc. acad. sci. 9: 189-224.
Mauchline, J. 1977. The integumental sensilla and glands of pelagic Crustacea.
Journal of the Marine Biological Association of the United Kingdom U.K. 57:
973-994.
Mauchline, J. 1987.Taxonomic value of pore pattern in the tegument of calanoid
copepods (Crustacea).Journal of Zoology. London. 214:697-749.
Mauchline, J. y T. Nemoto. 1977. The occurrence of integumental organs in
copepodid stages of calanoid copepods. Bulletin of the Plankton Society of
Japan 24: 108-114.
Mercado-Salas, N. 2007. Distribución y taxonomía de los copépodos cyclopoideos
(Crustacea: Copepoda) de Aguascalientes, México. Trabajo Recepcional.
Biología. Universidad Autónoma de Aguascalientes.
Mercado-Salas, N. M. 2009. Diversidad y Distribución de los Cyclopoida
(Copepoda) de las zonas Áridas del Centro-Norte de México. Tesis de
Maestría. ECOSUR, Chetumal.
Mirabdullayeb, I. M. y D. Defaye. 2002. On the Taxonomy of the Acanthocyclops
robustus species complex (Copepoda, Cyclopidae), I. Acanthocyclops
robustus (G.O. Sars, 1863) and A. trajani n. sp. Selevinia 1-4:7-20.
Mirabdullayeb, I. M. y D. Defaye. 2004. On the taxonomy of the Acanthocyclops
robustus species complex (Copepoda, Cyclopidae), Acanthocyclops
brevispinosus and A. einslei sp. n. Vestn. Zool. Kiev. 38(5):27-37.
Morton,
D.
W.
1990.
Revision
of
the
Australian
Cyclopidae
(Copepoda:Cyclopoida). II. Eucyclops Claus and Ectocyclops Brady.
Australian Journal of Marine and Freshwater Research 41:657-675.
Ohtsuka, S. y C. Mitsuzumi. 1990. A new symmetrical near-bottom calanoid
copepod, Paramisophria platysoma , with observations of its integumental
organs, behavior and in-situ feeding habits. Bulletin of the Plankton Society
of Japan 36:87-101.
Osorio-Tafall, B. 1943. Observaciones sobre la fauna acuática de las cuevas de la
región de Valles (San Luis Potosí, México). Revista de la Sociedad
Mexicana de Historia Natural 4: 43-71.
Park J. S. y J. Mauchline. 1994. Evaluation of integumjental pore signatures of
species of calanoid copepods (Crustacea) for interpreting inter-species
relationships. Marine Biology 120:107-114.
Pearse A. S. y C. B. Wilson. 1938. Copepoda from Yucatan Caves. Carnegie
Institute of Washington Publications 491:153-154.
Reeves, W. K. 2000. Caecidotea caroliniensis (Isopoda:Asellidae): first record of a
stygobite from Soth Caronina. Journal of Cave and Karst Studies 62(1):1819.
Reid, J. W. 1985. Clave de identificación y lista de referencias bibliográficas para
las especies continentales sudamericanas de vida libre del Orden
Cyclopoida (Crustacea,Copepoda). Boletim deZoologia. Universidade de
Sao Paulo 9:17-143.
Reid, J. W. 1996. Checklist of the Copepoda (Crustacea) of the District of
Columbia. Bio-Blitz list. 10p.
Reid, J. W. 2001. A human challenge: discovering and understanding continental
copepod habitats. Hydrobiologia 453/454: 201-226.
Reid, J. W. y G.G. Marten. 1995. The cyclopoid copepod (Crustacea) fauna of nonplanktonic continental habitats in Louisiana and Mississippi. Tulane Studies
in Zoology and Botany 30:39-45.
Robertson, A. y J. E. Gannon. 1981. Annotated checklist of the free-living
Copepods of the Great Lakes. J. Great Lakes Res. 7(4): 382-393.
Rocha, C. F. 1994. New species of Metacyclops (Copepoda, Cyclopidae) from
Brazil, with remarks on M. campestris. Zoologica Scripta 23(2):133-146.
Rocha, C. F. 1998. New morphological Characters useful for the taxonomy of the
genus Microcyclops (Copepoda, Cyclopoida). Journal of Marine
Systems15:425-431.
Rodríguez-Almaráz, G. A. 2000. Informe final del Proyecto S104: Biodiversidad de
los crustáceos dulceacuícolas del centro de Nuevo León y noreste de
Tamaulipas. CONABIO. México. 33 pp.
Santos, L. U. 1997. Survey of cyclopoids (Crustacea, Copepoda) in Brazil and
preliminary screening on their potential as dengue vector predators. Revista
de Saúde Pública 31(3): 221-226.
Suárez-Morales E. y M. Elías-Gutiérrez. 2003. Estado actual del conocimiento de
los Copépodos de Aguas continentales de México. Cap. 8: 157-170. En:
Barreiro-Güemes M. T. M. E. Meave del Castillo, M. Signoret-Poillon y M. G.
Figueroa-Torres (Eds.) Planctología Mexicana, 300 pp. Sociedad Mexicana
de Planctología, A. C. México. 2003.
Suárez-Morales E., L. Segura y M. A. Fernández. 1985. Diversidad y abundancia
del Plancton en la Laguna de Catemaco, Veracruz, durante un ciclo anual.
Anales del centro de Ciencias del Mar y Limnología 13(3): 313-316.
Suárez-Morales,
E.
2004.
A
new species
of
Eucyclops
Claus
(Copepoda:Cyclopoida) from Southeast Mexico with a key for the
identification of the species recorded in Mexico. Zootaxa 617:1-18.
Suárez-Morales, E. y E. Walsh. 2009. Two new species of Eucyclops Claus
(Copepoda: Cyclopoida) from the Chihuahuan Desert with a redescription of
E. pseudoensifer Dussart. Zootaxa 2206:1-22.
Suárez-Morales, E. y J. W. Reid. 1998. An updated list of free-living freshwater
copepods (Crustacea) of México. The Southwestern Naturalist 43(2): 256265.
Suárez-Morales, E. y M. A. Gutiérrez-Aguirre. 2001. Morfología y Taxonomía de
los Mesocyclops (CRUSTACEA: COPEPODA: CYCLOPOIDA) de México.
1ed. ECOSUR-CONACYT. México.
Suárez-Morales, E., J. W. Reid, T. M. Iliffe y F. Fiers. 1996. Catálogo de los
Copépodos (Crustacea) continentales de la península de Yucatán, México.
1ª ed. ECOSUR- CONABIO. México.
Ueda, H. & J. W. Reid. 2003. COPEPODA:CYCLOPOIDA. Genera Mesocyclops
and Thermocyclops. 1a ed. Backhuys Publishers. The Netherlands.
Van Velde, I. 1984. Revision of the African species of the genus Mesocyclops
Sars, 1914 (Copepoda:Cyclopidae). Hidrobiologia 109: 3-66.
Zamudio-Valdéz, J.A., 1991: Los copépodos de vida libre (Crustacea: Maxillopoda)
del Valle de Cuatro Ciénegas, Coahuila, México. Tesis de Licenciatura.
Facultad de Ciencias Biológicas. Universidad Autónoma de Nuevo León,
México.
Zannata-Juárez S. A. 1995. Composición, abundancia y distribución del
Zooplancton del Lago de Catemaco, Veracruz. Tesis Licenciatura.
Universidad Autónoma Metropolitana, Unidad Iztapalapa, División
Hidriobiología.