Default Example 1
Transcription
Default Example 1
Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Default Example 1 C13 General column design by PROKON. (GenCol Ver W2.5.07 - 21 Sep 2011) Design code : ACI 318 - 2005 Input tables General design parameters: Code X/Radius or Bar dia. ( mm ) Y (mm ) Angle (?) + 500 500 -250 -250 -250 250 -250 -500 - 125 c 55 + -200 b 16 + -50 b 16 + 300 b 16 + 450 b 16 + -200 b 20 + -50 b 20 + 300 b 20 + 450 b 20 + -200 b 25 + -50 b 25 + 300 b 25 + 450 b 25 Date 125 50 50 50 50 250 250 250 250 450 450 450 450 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Design loads: Load case Ultimate limit state design loads Designation P (kN ) Mx top (kNm ) 1 DL 2400 234 2 DL+LL 3200 431 My top (kNm ) Mx bot (kNm ) My bot (kNm ) -341 24 -13 Code specific parameters: ?d - see Clause 10.11.1 0 % of moments that are as a result of sway - X direction 0 % of moments that are as a result of sway - Y direction 0 ds - see Clause 10.13.4.3 1 ACI 318 - 2005 Y General design parameters: Given: Lo = 7.000 m fc' = 30 MPa fy = 450 MPa Ac = 298972 mm? 500 X 250 X 500 Y 250 0 -250 0 Assumptions: (2) The specified design axial loads include the self-weight of the column. (3) The design axial loads are taken constant over the height of the column. Design approach: The column is designed using an iterative procedure: (1) An area of reinforcement is chosen. (2) The column design charts are constructed. (3) The corresponding slenderness moments are calculated. (4) The design axis and design ultimate moment are determined . (5) The design axial force and moment capacity is checked on the relevant design chart. (6) The safety factor is calculated for this load case. (7) The procedure is repeated for each load case. (8) The critical load case is identified as the case yielding the lowest safety factor about the design axis Through inspection: Load case 2 (DL+LL) is critical. Check column slenderness: End fixity and bracing for bending about the Design axis: At the top end: Condition 2 (partially fixed). At the bottom end: Condition 2 (partially fixed). The column is braced. Effective length factor ? = 0.85 kLu = ? . Lo Effective column height: Table 3.19 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Date Column slenderness about weakest axis: k Lu/r = = k Lu r 5.95 .14268 = 41.702 Minimum Moments for Design: Check for mininum eccentricity: Check that the eccentricity exceeds the minimum in the plane of bending: 10.12.3.2 eminx= 0.6 . 0.0254 + 0.03 . h = 0.6 ×0.0254 + 0.03 ×.75 = 0.0377 m 10.12.3.2 eminy= 0.6 . 0.0254 + 0.03 . b = 0.6 ×0.0254 + 0.03 ×.5 = 0.0302 m Mminx= eminx. N = .03024 ×3200 = 96.768 kNm Check if the column is slender: Load case 2 (DL+LL) is critical. kLu x/r = 41.7 > 34 - 12 ? M1/M2 = 34.6 10.12.2 10.12.2 Note that 34 - 12? M1/M2 is limited to a maximum value of 40.0 \ The column is slender. Check maximum slenderness limit: kLu /r = 41.7 < 100 \ Maximum Slenderness limit not exceeded. 10.11.5 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Date Initial moments: The column is bent in double curvature about the X-X axis: M1 = Smaller initial end moment = -24.0 kNm M2 = Larger initial end moment = 431.0 kNm The column is bent in double curvature about the Y-Y axis: M1 = Smaller initial end moment = -13.0 kNm M2 = Larger initial end moment = 341.0 kNm Moment Magnification: For bending about the weakest axis: The bending moments M1 and M2 about the X-X and Y-Y axes are transformed to moments about the weakest axis and summed to give resultant moments about the weakest axis. Moment magnification is now performed and the slenderness induced moments are transformed back to the X-X and Y-Y axes. Weakest axis lies at an angle of -180.00? to the X-X axis EsIs = Es. Ist = 210 ×123.46 = 25.93×103 kNm? Ec. Ig + Es. Ist 5 EI = 1 + ?d 25.924 ×6 086.7 + 210 ×123.46 5 = 1+0 = 57.48×103 kNm? Pc = = p2 . EI k Lu2 p2 ×57484 5.95 2 = 16.03×103 kN Pu = 3200.0 kN f = 0.650 Where no end moment or pin exists, the minimum moment emin? N = 96.8 kNm is used. Moments at Top of column: 10.12 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by M1b = cos(-180.00)*431.00 + sin(-180.00)*-341.00) = 96.77 M1s = cos(-180.00)*0.00 + sin(-180.00)*-0.00) = 0.000 Date Moments at Middle of column: Mb = cos(-180.00)*203.50 + sin(-180.00)*-164.00) = 96.77 Ms = cos(-180.00)*0.00 + sin(-180.00)*0.00) = 0.000 Moments at Bottom of column: M2b = cos(-180.00)*96.77 + sin(-180.00)*13.00) = 96.77 M2s = cos(-180.00)*-0.00 + sin(-180.00)*0.00) = 0.000 Cm = 0.6 - 0.4 . M1 M2 = 0.6 - 0.4 ×-24 431 = 0.6223 But 10.12.3.1 Cm > = 0.4 Cm is based on the assumption that the maximum moment occurs at mid height - see commentary on clause 10.12.3.1 ACI code. For checking top and bottom of the column, C m is taken as 1. db = = Cm Pu 10.75 . Pc 1 3200×103 10.75 ×1603×104 = 1.363 With the proviso that (10-9) db > = 1.0 1 db(top&bot)= 1= Pu 0.75 . Pc 1 3200×103 10.75 ×1603×104 = 1.363 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com With the proviso that Sheet Checked by Date (10-9) db > = 1.0 ds = 1.000 (10-9) Additional moment at Top of column: Madd = (db. Mb + ds. Ms) - (Mb + Ms) = (1.3628 ×431 + 1 ×0 ) - (431 + 0 ) = 156.367 kNm \ Maddx = Madd*cos(-180.00?) = -35.1 kNm \ Maddy = Madd*sin(-180.00?) = 0.0 kNm Additional moment at Middle of column: Madd = (db. Mb + ds. Ms) - (Mb + Ms) = (1.3628 ×- 167.12 + 1 ×0 ) - (- 167.12 + 0 ) = -60.6311 kNm \ Maddx = Madd*cos(-180.00?) = -35.1 kNm \ Maddy = Madd*sin(-180.00?) = 0.0 kNm Additional moment at Bottom of column: Madd = (db. Mb + ds. Ms) - (Mb + Ms) = (1.3628 ×96.768 + 1 ×0 ) - (96.768 + 0 ) = 35.107 kNm \ Maddx = Madd*cos(-180.00?) = -35.1 kNm \ Maddy = Madd*sin(-180.00?) = 0.0 kNm Design ultimate load and moment: Design axial load: Pu = 3200.0 kN Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date For bending about the X-X axis, the maximum design moment is the greatest of: (a) 10.12.3 Mtopx = Mtop + Madd = -24 + 35.112 = 11.112 kNm (b) Mbotx = Mbot - Madd = 431 - 35.112 = 395.888 kNm Moments about X-X axis( kNm) + Mxbot=24.0 kNm Initial Mx=466.1 kNm Mxmin=96.8 kNm Mxadd=-35.1 kNm Mxadd=-35.1 kNm Mxtop=431.0 kNm = Mxadd=-35.1 kNm Additional For bending about the Y-Y axis, the maximum design moment is the greatest of: (a) Mtopy = Mtop + Madd = 13 + 0 = 13.000 kNm (b) Mboty = Mbot - Madd = -341 - 0 = - 341.0000 kNm Design 10.12.3 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Moments about Y-Y axis( kNm) Date My=341.0 kNm Mymin=96.8 kNm Mytop=-341.0 kNm + = Mybot=-13.0 kNm Initial Additional Design Design of column section for ULS: The column is checked for applied moment about the design axis. Through inspection: the critical section lies at the top end of the column. The design axis for the critical load case 2 lies at an angle of 323.81? to the X-axis The safety factor for the critical load case 2 is 0.88 For bending about the design axis: Interaction Diagram Moment max = 546.6kNm @ 1228kN 5000 4500 4000 3500 3200 kN 3000 Axial load (kN) 2500 2000 1500 -500 -1000 -1500 Bending moment (kNm) Warning: The safety factor is < 1 Moment distribution along the height of the column for bending about the design axis: The final design moments were calculated as the vector sum of the X- and Y- moments of the critical load case. This also determined the design axis direction At the top, Mx = 577.5 kNm Near mid-height, Mx = 292.4 kNm At the bottom, Mx = 96.8 kNm 600 578 kNm 500 400 300 200 100 0.00 -100 -200 -300 -400 -500 500 -600 1000 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Stresses at the top end of the column for the critical load case 2 ACI 318 - 2005 D Y 500 323.8? X 250 X 500 250 Y 0 -250 0 D Summary of design calculations: Design table for critical load case: Moments and Reinforcement for LC Top 2:DL+LL Middle Bottom Madd-x (kNm) -35.1 -35.1 35.1 Madd-y (kNm) 0.0 0.0 -0.0 Mx (kNm) 466.1 213.9 59.1 My (kNm) -341.0 -199.4 -13.0 M' (kNm) 577.5 292.4 96.8 Design axis (?) 323.81 317.01 167.60 Safety factor 0.88 1.41 1.52 (mm?) 4024 4024 4024 1.33 % 1.33 % 2990 2990 Asc Percentage AsNom 1.33 % (mm?) 2990 Critical load case: LC 2 Design results for all load cases: Load case Axis N (kN ) Load case 1 DL X-X Y-Y 2400.0 M1 (kNm ) 0.0 0.0 M2 (kNm ) 234.0 0.0 Mi (kNm ) 140.4 0.0 Madd (kNm ) -18.1 0.0 Design Top M (kNm ) 252.1 0.0 M' (kNm ) Safety factor 252.1 1.630 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Load case Axis N (kN ) Load case 2 DL +LL X-X Y-Y 3200.0 Load case 2 (DL+LL) is critical. M1 (kNm ) -24.0 13.0 Checked by M2 (kNm ) Mi (kNm ) 431.0 -341.0 249.0 -199.4 Madd (kNm ) -35.1 0.0 Date Design Top M (kNm ) 466.1 341.0 M' (kNm ) Safety factor 577.5 0.885 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Default Example 2 C13 General column design by PROKON. (GenCol Ver W2.5.07 - 21 Sep 2011) Design code : BS8110 - 1997 Input tables General design parameters: Code X/Radius or Bar dia. ( mm ) Y (mm ) Angle (?) + 500 A 500 A 500 -90 +50 -90 -500 - 500 C 100 + 50 B 32 + 250 B 32 + 450 B 32 + 600 B 32 + 725 B 32 + 890 B 32 + 950 B 32 + 50 B 32 + 250 B 32 + 450 B 32 + 600 B 32 + 725 B 32 + 890 B 32 + 50 B 32 + 50 B 32 + 50 B 32 Date 550 50 50 50 50 110 275 500 1000 1000 1000 1000 940 775 525 275 775 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Design loads: Load case Ultimate limit state design loads Designation P (kN ) Mx top (kNm ) 1 DL 2400 234 2 DL+LL 3200 431 My top (kNm ) Mx bot (kNm ) -341 24 My bot (kNm ) BS8110 - 1997 -13 Y 1000 General design parameters: X 500 Y 1000 0 500 Assumptions: (1) The general conditions of clause 3.8.1 are applicable. (2) The specified design axial loads include the self-weight of the column. (3) The design axial loads are taken constant over the height of the column. X 0 Given: Lo = 10.000 m fcu = 30 MPa fy = 450 MPa Ac = 893945 mm? Design approach: The column is designed using the following procedure: (1) The column design charts are constructed. (2) The design axis and design ultimate moment are determined . (3) The design axial force and moment capacity is checked on the relevant design chart. (4) The procedure is repeated for each load case. (5) The critical load case is identified as the case yielding the lowest safety factor about the design axis Through inspection: Load case 2 (DL+LL) is critical. Check column slenderness: End fixity and bracing for bending about the Design axis: At the top end: Condition 2 (partially fixed). At the bottom end: Condition 2 (partially fixed). The column is braced. Effective length factor ? = 0.85 le = ? . Lo Effective column height: Column slenderness about weakest axis: max_sl= = le h 8.5 .94351 = 9.009 Table 3.19 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Date Where h is an equivalent column depth derived from the radius of gyration*square root of 12 Minimum Moments for Design: Check for mininum eccentricity: Check that the eccentricity exceeds the minimum in the plane of bending: Use emin = 20mm 3.8.2.4 Mmin = emin. N = .02 ×3200 = 64.000 kNm Check if the column is slender: le/h = 9.0 < 15 \ The column is short. 3.8.1.3 Initial moments: The column is bent in double curvature about the X-X axis: M1 = Smaller initial end moment = -24.0 kNm M2 = Larger initial end moment = 431.0 kNm The initial moment near mid-height of the column : 3.8.3.2 Mi = 0.4 . M1 + 0.6 . M2 = 0.4 ×-24 + 0.6 ×431 = 249.000 kNm Mi2 = 0.4 . M2 = 0.4 ×431 = 172.400 kNm \ Mi ? 0.4M2 = 249.0 kNm The column is bent in double curvature about the Y-Y axis: M1 = Smaller initial end moment = -13.0 kNm M2 = Larger initial end moment = 341.0 kNm The initial moment near mid-height of the column : Mi = 0.4 . M1 + 0.6 . M2 = 0.4 ×13 + 0.6 ×-341 = - 199.4000 kNm Mi2 = 0.4 . M2 = 0.4 ×-341 = - 136.4000 kNm 3.8.3.2 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date \ Mi ? 0.4M2 = -199.4 kNm Design ultimate load and moment: Design axial load: Pu = 3200.0 kN Moments about X-X axis( kNm) Mx=431.0 kNm Mxmin=64.0 kNm Mxtop=431.0 kNm + = Mxbot=24.0 kNm Initial Additional Design Moments about Y-Y axis( kNm) My=341.0 kNm Mymin=64.0 kNm Mytop=-341.0 kNm + = Mybot=-13.0 kNm Initial Additional Design Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Design of column section for ULS: The column is checked for applied moment about the design axis. Through inspection: the critical section lies at the top end of the column. The design axis for the critical load case 2 lies at an angle of 321.65? to the X-axis The safety factor for the critical load case 2 is 3.66 For bending about the design axis: Axial load (kN) Bending moment (kNm) Moment distribution along the height of the column for bending about the design axis: The final design moments were calculated as the vector sum of the X- and Y- moments of the critical load case. This also determined the design axis direction At the top, Mx = 549.6 kNm Near mid-height, Mx = 319.0 kNm At the bottom, Mx = 64.0 kNm 3000 2500 2000 1500 1000 0.00 -500 550 kNm 500 -1000 -2000 -3000 -4000 -1000 -1500 -2000 -2500 -3000 3200 kN Moment max = 2939 kNm @ 5216kN Interaction Diagram 16E3 15E3 14E3 13E3 12E3 11E3 10E3 9000 8000 7000 6000 5000 4000 3000 2000 1000 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Stresses at the top end of the column for the critical load case 2 BS8110 - 1997 Y D 1000 321.6? X X 500 0 500 1000 D 0 Y Summary of design calculations: Design table for critical load case: Moments and Reinforcement for LC Top 2:DL+LL Middle Bottom Madd-x (kNm) 0.0 0.0 -0.0 Madd-y (kNm) 0.0 0.0 -0.0 Mx (kNm) 431.0 249.0 24.0 My (kNm) -341.0 -199.4 -13.0 M' (kNm) 549.6 319.0 64.0 Design axis (?) 321.65 321.31 151.56 Safety factor 3.66 4.29 4.80 12868 12868 1.42 % 1.42 % 3576 3576 Asc (mm?) 12868 Percentage AsNom 1.42 % (mm?) 3576 Critical load case: LC 2 Design results for all load cases: Load case Axis N (kN ) Load case 1 DL X-X Y-Y 2400.0 M1 (kNm ) 0.0 0.0 M2 (kNm ) 234.0 0.0 Mi (kNm ) 140.4 0.0 Madd (kNm ) 0.0 0.0 Design Top M (kNm ) 234.0 0.0 M' (kNm ) Safety factor 234.0 5.748 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Load case Axis N (kN ) Load case 2 DL +LL X-X Y-Y 3200.0 Load case 2 (DL+LL) is critical. M1 (kNm ) -24.0 13.0 Checked by M2 (kNm ) Mi (kNm ) 431.0 -341.0 249.0 -199.4 Madd (kNm ) 0.0 0.0 Date Design Top M (kNm ) 431.0 341.0 M' (kNm ) Safety factor 549.6 3.662 Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Default Example 2 C13 General column design by PROKON. (GenCol Ver W2.5.07 - 21 Sep 2011) Design code : ACI 318 - 2005 Input tables General design parameters: Code X/Radius or Bar dia. ( mm ) Y (mm ) Angle (?) + 500 A 500 A 500 -90 +50 -90 -500 - 500 C 100 + 50 B 32 + 250 B 32 + 450 B 32 + 600 B 32 + 725 B 32 + 890 B 32 + 950 B 32 + 50 B 32 + 250 B 32 + 450 B 32 + 600 B 32 + 725 B 32 + 890 B 32 + 50 B 32 + 50 B 32 + 50 B 32 Date 550 50 50 50 50 110 275 500 1000 1000 1000 1000 940 775 525 275 775 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Design loads: Load case Ultimate limit state design loads Designation P (kN ) Mx top (kNm ) 1 DL 2400 234 2 DL+LL 3200 431 My top (kNm ) Mx bot (kNm ) My bot (kNm ) -341 24 -13 Code specific parameters: ?d - see Clause 10.11.1 0 % of moments that are as a result of sway - X direction 0 % of moments that are as a result of sway - Y direction 0 ds - see Clause 10.13.4.3 1 ACI 318 - 2005 Y 1000 General design parameters: Design approach: The column is designed using the following procedure: (1) The column design charts are constructed. (2) The design axis and design ultimate moment are determined . (3) The design axial force and moment capacity is checked on the relevant design chart. (4) The procedure is repeated for each load case. (5) The critical load case is identified as the case yielding the lowest safety factor about the design axis Through inspection: Load case 2 (DL+LL) is critical. Check column slenderness: End fixity and bracing for bending about the Design axis: At the top end: Condition 2 (partially fixed). At the bottom end: Condition 2 (partially fixed). The column is braced. Effective length factor ? = 0.85 kLu = ? . Lo Effective column height: X 500 Y 1000 0 500 Assumptions: (2) The specified design axial loads include the self-weight of the column. (3) The design axial loads are taken constant over the height of the column. X 0 Given: Lo = 10.000 m fc' = 30 MPa fy = 450 MPa Ac = 893945 mm? Job Number Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Sheet Checked by Date Column slenderness about weakest axis: k Lu/r = = k Lu r 8.5 .27237 = 31.208 Minimum Moments for Design: Check for mininum eccentricity: Check that the eccentricity exceeds the minimum in the plane of bending: 10.12.3.2 eminx= 0.6 . 0.0254 + 0.03 . h = 0.6 ×0.0254 + 0.03 ×1 = 0.0452 m 10.12.3.2 eminy= 0.6 . 0.0254 + 0.03 . b = 0.6 ×0.0254 + 0.03 ×1.05 = 0.0467 m Mminx= eminx. N = .04524 ×3200 = 144.768 kNm Check if the column is slender: Load case 2 (DL+LL) is critical. kLu x/r = 31.2 < 34 - 12 ? M1/M2 = 34.6 Note that 34 - 12? M1/M2 is limited to a maximum value of 40.0 \ The column is short. Initial moments: The column is bent in double curvature about the X-X axis: M1 = Smaller initial end moment = -24.0 kNm M2 = Larger initial end moment = 431.0 kNm 10.12.2 10.12.2 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date The column is bent in double curvature about the Y-Y axis: M1 = Smaller initial end moment = -13.0 kNm M2 = Larger initial end moment = 341.0 kNm Design ultimate load and moment: Design axial load: Pu = 3200.0 kN Moments about X-X axis( kNm) Mx=431.0 kNm Mxmin=144.8 kNm Mxtop=431.0 kNm + = Mxbot=24.0 kNm Initial Additional Design Moments about Y-Y axis( kNm) My=341.0 kNm Mymin=144.8 kNm Mytop=-341.0 kNm + = Mybot=-13.0 kNm Initial Additional Design Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Design of column section for ULS: The column is checked for applied moment about the design axis. Through inspection: the critical section lies at the top end of the column. The design axis for the critical load case 2 lies at an angle of 321.65? to the X-axis The safety factor for the critical load case 2 is 4.48 For bending about the design axis: Bending moment (kNm) Moment distribution along the height of the column for bending about the design axis: The final design moments were calculated as the vector sum of the X- and Y- moments of the critical load case. This also determined the design axis direction At the top, Mx = 549.6 kNm Near mid-height, Mx = 319.0 kNm At the bottom, Mx = 144.8 kNm 4000 3500 3000 2500 2000 1500 1000 0.00 -500 -1000 550 kNm 500 -1000 -2000 -3000 -4000 -5000 -1500 -2000 -2500 -3000 -3500 3200 kN Moment max = 3685 kNm @ 7532kN Interaction Diagram Axial load (kN) 16E3 15E3 14E3 13E3 12E3 11E3 10E3 9000 8000 7000 6000 5000 4000 3000 2000 1000 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Checked by Date Stresses at the top end of the column for the critical load case 2 ACI 318 - 2005 Y D 1000 321.6? X X 500 0 500 1000 D 0 Y Summary of design calculations: Design table for critical load case: Moments and Reinforcement for LC2:DL+LL Middle Bottom Madd-x (kNm) 0.0 Top 0.0 -0.0 Madd-y (kNm) 0.0 0.0 -0.0 Mx (kNm) 431.0 249.0 24.0 My (kNm) -341.0 -199.4 -13.0 M' (kNm) 549.6 319.0 144.8 Design axis (?) 321.65 321.31 151.56 Safety factor 4.48 4.59 4.59 12868 12868 1.42 % 1.42 % 8939 8939 Asc (mm?) 12868 Percentage AsNom 1.42 % (mm?) 8939 Critical load case: LC 2 Design results for all load cases: Load case Axis N (kN) Load case 1 DL X-X Y-Y 2400.0 M1 (kNm) M2 (kNm) Mi (kNm) Madd (kNm) Design 0.0 0.0 234.0 0.0 140.4 0.0 0.0 0.0 Top M (kNm) 234.0 0.0 M' (kNm) Safety factor 234.0 6.123 Job Number Sheet Job Title Software Consultants (Pty) Ltd Client Internet: http://www.prokon.com Calcs by E-Mail : mail@prokon.com Load case Axis N (kN) Load case 2 DL+LL X-X Y-Y 3200.0 Load case 2 (DL+LL) is critical. Checked by Date M1 (kNm) M2 (kNm) Mi (kNm) Madd (kNm) Design -24.0 13.0 431.0 -341.0 249.0 -199.4 0.0 0.0 Top M (kNm) 431.0 341.0 M' (kNm) Safety factor 549.6 4.476