10 - SUNJET II

Transcription

10 - SUNJET II
Advanced Batteries
for Future Aviation:
Problems, Progress and Perspectives
Dr. Andreas Sizmann, Dr. Holger Kuhn
Europe-Japan Symposium
„Electrical Technologies for the Aviation of the Future“,
Delegation of the EU to Japan, Tokyo, 26.-27. March 2015
Scene-setter presentation
Contents
Drivers of Change for
Advanced Battery Development
Battery Research and Innovation:
Technology Potentials and Gaps
Advanced Batteries in a
Hybrid Approach
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 2
Electric Aircraft Maiden Flights
© Flight International
Electraflyer-ULS
E-Spyder
Electric Lazair
Antares 23E
Long-ESA
C172 Skyhawk
eGenius
Electric Viva
Electric Cri-Cri I
Electra
MB-E1 on October 21, 1973
HK36 FCD
SkySpark
Waiex
Yuneec e430
Flight Design Hybrid Motor
AE-1 Silent
……
MB-E1
Antares 20E
Silent 2
Silent 2 Electro
Electraflyer
Antares DLR-H2
ENFICA-FC
Taurus
Electric Cri-Cri II
Alatus ME
Electra One
Taurus G4
FlyNano
AOS-71
Arcus E
DA36 E-Star
Evektor EPOS
E-Fan
Battery powered
Fuel cell-battery hybrid
Engine-battery hybrid
1972
1974
1976
……
Alle Rechte bei / All rights with Bauhaus Luftfahrt
List is not exhaustive
1996
1998
2000
2002
2004
2006
2008
2010
2012
2014
Europe-Japan Symposium, 26.03.2015
2016
Seite 3
Long-term Perspective for Renewable Energy
H2O
CO2
CO2
Inverse combustion
Heat
Pressure
Time
Oil
O2
CxHy
FT
O2
Combustion
Combustion
Heat
CO/H2
Heat
Motive
power
Motive
power
Renewable within
~80 Mio. years
H2O
PV/CSP
Water splitting
H2
Electric energy
O2
Electrochemical
conversion
Heat
Battery
Electric energy
Electric motor
Motive
power
Renewable
drop-in
fuel path
Renewable
non-drop-in
fuel path
Electric energy
Electric motor
Motive
power
All-electric motive
power path
Preserve the high „energetic value“ of harvested energy: go electric
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 4
Where is Potential for Efficiency Improvement?
Black Contours: Propulsion System Overall Efficiency (ηov) in cruise relative to Year 2000 Reference
ηov = ηinner × ηprop [-]
Propulsive Efficiency (ηprop ) [-]
0.95
?
0.9
0.85
Advanced Open Rotor
Intercooled Recuperated Turbofan
0.8
Advanced Turbofan
0.75
0.7
Conventional Turbofan
0.65
0.4
A. Seitz et al., AIAA 2013-3608
Alle Rechte bei / All rights with Bauhaus Luftfahrt
0.5
0.6
0.7
Thermal or Inner Efficiency ( ηinner ) [-]
0.8
* ACARE Strategic Reseach & Innovation Agenda (SRIA)
20% less energy need by propulsion & power in Y2020
30% less energy need by propulsion & power in Y2035
Europe-Japan Symposium, 26.03.2015
Seite 5
Where is Potential for Efficiency Improvement?
Seitz A, et al., Electrically Powered Aero-Propulsion (AIAA-2013-3608)
Black Contours: Propulsion System Overall Efficiency (ηov) in cruise relative to Year 2000 Reference
Adv. Open Rotor
50% Hybrid-Electric
Turbofan Study
Full-Electric
Fan Study
(Schmitz & Hornung, 2013)
(Seitz et. al., 2012)
Full-Electric
Open Rotor Study
(Seitz et. al., 2013)
IR Turbofan
State-of-the-Art
Technology
Reference
Technology
A. Seitz et al., AIAA 2013-3608
Alle Rechte bei / All rights with Bauhaus Luftfahrt
* 20% less energy need by propulsion & power in Y2020
** 30% less energy need by propulsion & power in Y2035
*** based on propulsion system contribution to Y2050 CO2 goals proposed by Isikveren et. al. (2012)
Europe-Japan Symposium, 26.03.2015
Seite 6
Electrical System: Power Demand
A.T. Isikveren et al., 61. Dt. Luft-und Raumfahrtkongress, Berlin, 2012, Doc-ID: 1368
power demand of propulsion system and subsystems
maximum required power at different flight phases
propulsion system = electric motor, motor controller, battery control unit
Power Demand of Subsystems
Power Demand of Propulsion System
1000.00
33.5 MW
30000
Power [kW]
950 kW
Thermal Management
900.00
Power demand [kW]
40000
20000
10000
800.00
700.00
x
660 kW
Lighting
500.00
ECS
400.00
Cockpit
300.00
Avionic
200.00
Instruments & Ice Protection
Cabin
0.00
Flight Phase
Flight Controls
600.00
100.00
0
Landing Gear
Flight Phase
red line: normal operation
blue line: abnormal ops = excl. non-essential customers
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 7
Electrical System: Energy Demand
A.T. Isikveren et al., 61. Dt. Luft-und Raumfahrtkongress, Berlin, 2012, Doc-ID: 1368
power and energy demand of propulsion
maximum required power at different flight phases
minimum required energy for propulsion system for 900 nm excl. alternate airport
Energy Demand of Propulsion System
Power Demand of Propulsion System
40000
50000
33.5 MW
45000
Energy [kWh]
30000
Power [kW]
47 MWh
40000
20000
10000
35000
30000
25000
20000
15000
10000
5000
0
0
Flight Phase
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Flight Phase
Europe-Japan Symposium, 26.03.2015
Seite 8
Ragone Envelope (Propulsion)
Hornung, Isikveren, Cole, Sizmann, ATIO 2013, Paper ID AIAA 2013-4302.
power and energy demand of propulsion
maximum required power at different flight phases
minimum required energy for propulsion system for 900 nm excl. alternate airport
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 9
Contents
Drivers of Change for
Advanced Battery Development
Battery Research and Innovation:
Technology Potentials and Gaps
Advanced Batteries in a
Hybrid Approach
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 10
Future Technology Potentials
Future Technology Radar1
Energy density - key metric?
Physical benchmark – the absolute limit? 2
Tomorrow’s concepts of aviation shaped by
future requirements and technology options
Method for early detection of
Key developments
Possible radical innovations for aviation
Objective, reproducible, quantitative
comparison by
Metrics
Physical benchmarking
Scaling performance
Discontinuity analysis
Disruptive potentials for novel products,
services or business models
Alle Rechte bei / All rights with Bauhaus Luftfahrt
[1] A. Sizmann, ‘Physical Science and Technological
Innovation’, BHL-Expert Symposium 02/2009, BHL Garching
[2] H. Kuhn, A. Sizmann, ‘Fundamental Prerequisites of
Electric Flying’, DLRK 2012, Berlin
Europe-Japan Symposium, 26.03.2015
Seite 11
Lithium Battery Electrode Materials Inventory
Inventory comprises relevant electrode characteristics such as equilibrium potential vs. Li/Li+,
molar mass, reversible range (and density) from original scientific publications.
→ to calculate specific capacity of the electrodes and the theoretical specific energy of a cell.
Electrochemical active materials are:
Negative Electrode
Positive Electrode
> Li metal (for primary and Li-air batteries)
> Li / CoO2
> Li / NiO2
> Li / C6 (for secondary batteries)
> Li / Mn2O4
> Li / TiO2
> Li3 / Li4Ti5O12
> Li / FePO4
> Li / LiFeSiO4
> Li4.4 / Si
> Li2 / FePO4F
> Li8.6 / WS2 (nano)
> Li4.4 / Ge
> Li2 / S
> Li0.6 / WS2 (macro)
> Li4.4 / Sn
> Li / TiS2
> Li / MnPO4
> Li4.4 / Si-TiSi2
> Li3 / NbSe3
> Li21.25 / Cu6S
> Li4.4 / Fe3O4-Fe-O
> Li / NiVO4
> Li2 / MnSiO4
> Li / SnO2
> Li / MoS2
> Li / Ni0.4MnO
> Li / NixMnxCo1-2xO2
> Li(2) / O2
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 12
Theoretical Specific Energy of Lithium Battery
Specific Energy of Battery in Wh/kg
H. Kuhn, A. Sizmann, 61. Dt. Luft-und Raumfahrtkongress, Berlin, 2012, Doc-ID: 281440
Potential Specific
Energies
at todays cell design
regarding current
collectors, electrolyte,
separator, housing
etc.
are between
300 to 1000 Wh/kg
Technology level of 2010, prismatic cell (coffee-bag)
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 13
Lithium-Sulfur Improvements – Outlook
Specific Energy of the Battery in Wh/kg
H. Kuhn, A. Sizmann, 61. Dt. Luft-und Raumfahrtkongress, Berlin, 2012, Doc-ID: 281440
Potential Specific
Energies
Fully lithiated sulfur
exhibits the highest
specific capacity of
known positive
electrode materials at
•
•
1166 mAh/g incl. Li
1671 mAh/g w/o Li
Technology level 2010, prismatic cell (coffee-bag)
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 14
Prospects of Battery Capacities
Specific Energy of the Battery in Wh/kg
At very low C-rates (<0.1)
H. Kuhn, A. Sizmann, 61. Dt. Luft-und Raumfahrtkongress, Berlin, 2012, Doc-ID: 281440
1000-1200 Wh/kg
Potential Specific
Energies
800-900 Wh/kg
SolidEnergy
•
•
•
•
3861 mAh/g metallic Li
300 mAh/g limit of Li-NMC
~3.4 V nominal voltage of
Li-NMC cell
~500 Wh/kg expected
practical capacity
Technology level 2010, prismatic cell (coffee-bag)
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 15
Rate-based Battery Capacities
H. Kuhn, 2012
New electrode materials enhance the
capacity of the battery
New electrode structure enhance the
rate capability of the battery
Nanoscale structures and coatings
structure
higher utilisation of active material
shorter diffusion length for Li ions
materials
coating-assisted ion mobility
[1] Data evaluated based on exp. results of C. Ban et al., Adv. Energy Mat. 1, pp. 58-62 (2011)
Especially important for calculating the necessary battery mass at selected operating
conditions:
≥ ρE , m ρP , m
ρE,m: specific energy
 E ρE , m
mBattery = 
if t
≤ ρE , m ρP , m
P
ρ
P ,m

Alle Rechte bei / All rights with Bauhaus Luftfahrt
ρP,m: specific power
Europe-Japan Symposium, 26.03.2015
Seite 16
Rate-based Battery Capacities
New electrode structure enhance the
rate capability of the battery
Nanoscale structures and coatings
higher utilisation of active material
shorter diffusion length for Li ions
coating-assisted ion mobility
H. Kuhn, 2013
4
40
50
30
20
15
10
Specific Power in W/kg
New electrode materials enhance the
capacity of the battery
10
10
10
5
3
10
5
2
2
1
10
10
2
1
50
0.5
LNMCO-C [1]
LFP-C [2]
LFP-C [3]
Panasonic NCR-18650A
Sony U18650ZT
100
0.2 0.2
0.1
0.1
250
200
150
Specific Exergy in Wh/kg
300
Data evaluated based on experimental results of
[1] Ban et al.,
Adv. Energy
1, pp. 58–62
(2011)
Especially
important
for Mater.
calculating
the necessary
battery mass at selected operating
[2] Yang et al., En.& Env. Sci. 6, pp. 1521-1528 (2013)
conditions:
[3] Kang & Ceder, Nature 458(7235), pp. 190-193 (2009)
≥ ρE , m ρP , m
ρE,m: specific energy
 E ρE , m
mBattery = 
if t
≤ ρE , m ρP , m
P
ρ
P ,m

Alle Rechte bei / All rights with Bauhaus Luftfahrt
ρP,m: specific power
Europe-Japan Symposium, 26.03.2015
Seite 17
Targets and Perspectives
Specific Power in W/kg
10
10
5
Kerosene-based turbo-engine
ηtotal of 0.35
Short term
4
50
4030
20
10
10
15
10
10
5
3
Performance targets
Mid term
Long term
5
2
2
1
10
0.5
2
0.20.2
0.1
10
0.1
1
2
1.0
10 102
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Business
jet, [1]
LNMCO-C
equivalent
JET-A-based
LFP-C
[2]
energy &power module
LFP-C [3]
Ref
1 NCR-18650A
6150
nm
nm
Ref430
2 U18650ZT
3
3.0 102
1.0
10 103
Specific Exergy in Wh/kg
3.0 103
Europe-Japan Symposium, 26.03.2015
Seite 18
Contents
Drivers of Change for
Advanced Battery Development
Battery Reseach and Innovation:
Technology Potentials and Gaps
Advanced Batteries in a
Hybrid Approach
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 19
Electric Flight Feasibility Assessment
Exergy (useable energy):
10.0
Relative Power Density
The energy density is insufficient as
feasibility assessment criterion
1.0
Ragone metrics:
0.1
Exergy and power densities are the key
indicators for electric aircraft feasibility
in the comparison of alternative power
sources
0.01
0.1
1.0
Relative Exergy Density
AlleRechte
Rechtebei
bei//All
Allrights
rightswith
withBauhaus
BauhausLuftfahrt
Luftfahrt
Alle
10.0
Hybridization:
The combination of specific advantages
of energy and power systems may be an
enabling energy system:
an entry-scenario for power batteries
Europe-Japan Symposium, 26.03.2015
Seite 9
Step-Profile Power Demand
H. Kuhn, A. Sizmann, 61. Dt. Luft-und Raumfahrtkongress, Berlin, 2012, Doc-ID: 281440
Power
P1
P2
t2
: Power Ratio
τ = t1 t
2
: Time Ratio
1
∆P = P1 – P2
t1
ψ = P2 P = P2 ∆P + P
Time
P2 = ψ ⋅ P1

(1 − ψ ) ⋅ τ ⋅ t 2
1
ψ
ψ ⋅ t2
m = P1  ∑
+∑
+∑
+∑
 i ρ
ρ e ,k ⋅ η k
j ρ p, j
k
l ρ e ,l ⋅ η l
p ,i

2
∆P = (1 − ψ ) ⋅ P1

 + F (P1 , t 2 ,ψ ,τ )


auxiliary systems such as tank, fuel infrastructure, power distribution, etc.
components governed by the energy demand in t < t2 providing P2
components governed by the energy demand in t < t1 providing ∆P
components depending on P2 such as primary power source
components depending on P1 such as el. motor, PMAD, etc.
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 21
Hybrid Electric Power System Architectures
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 22
Europe's Relative Technological Performance
Source: DG Research and Innovation
Data: OECD patent database and specific studies. Europe covers EU27, Iceland, Norway and
Switzerland; Asia covers Japan, China, South Korea, Singapore and Chinese Taipei.
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 23
Future Electric Hybrid Aircraft: Synergy
Source: DG Research and Innovation
Data: OECD patent database and specific studies. Europe covers EU27, Iceland, Norway and
Switzerland; Asia covers Japan, China, South Korea, Singapore and Chinese Taipei.
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 24
The Scene for Battery Research & Innovation
Drivers of Change Demanding
Advanced Battery Development
Enabling efficient renewable energy use for mobility
Battery Research and Innovation:
Technology Potentials and Gaps
Potential for short-range aircraft
Nanoscale technology may close the “gap”
Advanced Batteries in a
Hybrid Approach
Combine power with endurance
Batteries supply peak power demand
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 25
Contact
Dr. Andreas Sizmann,
Dr. Holger Kuhn
Bauhaus Luftfahrt e.V.
Willy-Messerschmitt-Str. 1
85521 Ottobrunn, Germany
Tel.: +49 (0) 89 307 48 49 – 38
Andreas.Sizmann@bauhaus-luftfahrt.com
http://www.bauhaus-luftfahrt.net
Alle Rechte bei / All rights with Bauhaus Luftfahrt
Europe-Japan Symposium, 26.03.2015
Seite 26

Similar documents

Quallion Spec Sheet 3 R1B - ARPA

Quallion Spec Sheet 3 R1B - ARPA Quallion LLC | 12744 San Fernando Road | Sylmar, CA 91342 | info@quallion.com

More information