Transcription
PDF
orbit # 19 September 2012 50 års jubilæum Tilbageblik • Tutorial on smart markets • Sustainable Course • Optimering for Transrail Sweden AB leder ORbit medlemsblad for Dansk Selskab for Operationsanalyse og Svenska Operationsanalysföreningen Leder Den 29. Maj 2012 modtog jeg en mail fra DORS formanden Tor Justesen, hvori and anmodede mig om at varetage posten som chefredaktør for ORbit. Jeg er meget beæret over den tillid bestyrelsen herved viste mig, og tog men glæde imod udfordringen. Redaktion: Ansv. Sanne Wøhlk (sw) Tor Fog Justesen (tfj) Jesper Larsen, DORS (jla) Tomas Gustafsson, SOAF (tg) ORbit er et fantastisk blad. Det bringer populærvidenskabelige artikler om OR fra dan danske forskningsfront og fra erhvervslivet og bringer nyheder fra det store udland. Den tidligere redaktion har gjort et kæmpe arbejde med at samle materiale og få udgivet bladet. Det skal lyde en stor tak til Jesper Larsen, og i de seneste år, Natalia Rezanova, for deres store indsats for ORbit. DORS DTU Management, bygn. 424 Danmarkt Tekniske Universitet DK-2800 Kgs. Lyngby Telefon: +45 4525 3385 Fax: +45 4588 2673 E-mail: orbit@dorsnet.dk Næste deadline: 1. Marts 2013 Hvad er så min vision med ORbit? ORbit skal fortsat være et medie for formidling af OR relateret stof i et letfordøjeligt sprog. Det er mit håb at de der arbejder med OR i hverdagen, hvad enten det drejer sig om akademisk forskning eller gennem en mere praktisk tilgang i erhvervslivet, vil genfinde lysten til både at læse og bidrage til ORbit. Var det det? Nej. ORbit er et medlemsblad. Derfor er det af yderste vigtighed, at vi kan bruge bladet til at annoncere både foreningernes egne arrangementer og andre arrangementer, som er af generel interesse for foreningens medlemmer. For at sikre dette, er det målet at ORbit fremadrettet skal udkomme: fast midt i foråret og midt i efteråret. Så krydser jeg fingre for at skrivelysten bland medlemmerne er tilstrækkelig stor Tryk: Print Provider Aps til at vi alle kan få et lækkert blad at læse. Oplag: 370 ISSN 1601-8893 semplar bugner af spændende artikler. Oli B.G. Madsen fortøæller om sin introduktin til operationsanalyse Det første blad er færdigt. ORbits klassiske røde design er udskiftet med et grønt, og dette jubilæumseki 1964 og John F. Raffensperger giver en introduktion til smart markets. I bladet findes også to DORSpris artikler og meget meget mere. God læselyst! Forside: colourbox.com Sanne Wøhlk Ansvarshavende redaktør Aktuelt om DORS Medlemsskab Kontingentsatser for 2012 Personlige medlemmer (incl. ph.d.-studerende): 270 kr./år Studerende: 60 kr./år Firmamedlemmer: 3200 kr./år Institutmedlemmer: 1800 kr./år 2 ORbit 19 Sekretariat DORS DTU Management Bygning 424 Danmarks Tekniske Universitet, 2800 Kgs. Lyngby e-mail: dors@dorsnet.dk Internet: www.dorsnet.dk indhold Bästa SOAF-medlemmar! Indhold Redaktøren har ordet 2 SOAF 2012 3 gått så känns det som att aktivitetsnivån i SOAF för närvarande är hög, och Tillykke fra DORS formanden 4 att väldigt mycket har hänt! Under våren har SOAF bland annat startat två nya Dantzigs besøg 1976 5 Those were the days 6 Beslutningsstøtte ved containerfragt 9 Hösten närmar sig så smått, och med den börjar aktiviteterna i SOAF komma igång igen efter sommaruppehållet. När jag tänker tillbaka på halvåret som har intressegrupper: Underhållsgruppen, som leds av Michael Patriksson, hade sitt första möte den 6 mars på Volvo Aero i Trollhättan, och hälso- och sjukvårdsgruppen (ledd av Marie Persson) träffades den 16:e januari på Karolinska Institutet i Stockholm. SOAF har också haft årsmöte den 13 mars i Karlskrona, då undertecknad valdes till ordförande efter Martin Joborn, som glädjande nog stannar kvar i styrelsen tills vidare. Glädjande var också att Ximena Karlsson på MTR valdes in som ny SOAF Exjobbspris 12 DORS prisen 13 A tutorial on smart markets 14 Om AOO 2012 20 A sustainable course? 22 Optimering for Transrail 24 SOAF har också under sommaren varit representerat vid EURO-konferensen i Vilnius. I dag samlas mycket EURO summer institute 26 stora datamängder in i närmast alla branscher och sektorer, och detta innebär stora möjligheter, men också Strategic balanced scorecard simulation 29 identifiering av mönster i datamängder, samt att rekommendera beslut utifrån dessa. Styrelsen kommer att Om optimal tildeling af KBUforløb 34 fortsätta diskutera denna trend under hösten. SOAF har också uppdaterat webbsidan under året, och vi High school planning 38 adjungerad styrelsemedlem. På årsmötet föreslogs det också att vi ska fortsätta fokusera på intressegrupper, OR-utbildning samt eventuellt öka vårt internationella arbete genom EURO och IFORS. Vinnare av exjobbspriset 2011 är Ferran Mach med examensarbetet »Optimization analysis of the number and location of holding control stops - A simulation-based evaluation of line number 1, Stockholm”. Den 9 maj anordnade SOAF, tillsammans med SICS och Trafikverket, en järnvägskonferens på SICS i Kista. Arrangemanget var mycket uppskattat av deltagarna och kommer få en efterföljare under hösten! utmaningar, för operationsanalysen. Då jag i sommar också kunnat besöka AAAI, en av de stora konferenserna inom AI-området, så är det tydligt att det också där finns ett stort intresse för ”analytics”, d.v.s. kommer under hösten gå igenom och uppdatera informationsmaterialet på denna. Jag ser fram emot en aktiv höst med mycket nya och spännande aktiviteter! Markus Bohlin Ordförande SOAF Aktuellt om SOAF Företagsmedlemmar: • Blekinge Tekniska Högskola • Cambio Healthcare Systems AB • FOI • Green Cargo • Högskolan i Skövde • Industrial Optimizers • Jeppesen • Kungliga Tekniska Högskolan • Linköpings Universitet • Optimal Solutions AB • Preference • Riiplan • Scania • SICS • SJ • Systecon • Trafikverket • Transrail Sweden AB • Uppsala Universitet • Vattenfall • Vectura • Volvo Aero SOAF Medlemsavgifter 2012: • Individuella medlemmar (inkl. ORbit): 150 kr • Juniormedlem (exkl. ORbit): 75 kr • Akademiska institutioner (3 ORbit): 1500 kr • Företag med 1-5 intressenter (2 ORbit): 1500 kr • Företag med 6-10 intressenter (4 ORbit): 3000 kr • Företag med fler än 10 intressenter (6 ORbit): 4500 kr Betala in på postgiro: 19 94 48-2 (Svenska Operationsanalysföreningen) e-mail: sekreterare@soaf.se Internet: www.soaf.se ORbit 19 3 Hip hip hurra Dansk Selskab for Operationsanalyse blev stiftet 21. august 1962 og kan således i år fejre sit 50 års jubilæum. Ifølge vedtægterne er selskabets formål er at fremme den operationsanalytiske forskning og anvendelse af operationsanalytiske metoder i Danmark samt at formidle kontakten med tilsvarende foreninger og organisationer, ved i videst mulige omfang at etablere forbindelse med andre landes operationsanalytiske forskere, organisationer og sammenslutninger, og ved at foranstalte medlemmernes deltagelse i møder, kongresser, seminarer og lignende om operationsanalytiske spørgsmål. For at alle disse gode hensigter skal kunne føres ud i livet er der behov for hænder. Selskabet er drevet udelukkende ved frivillig arbejdskraft, og foreningens har kun kunnet overleve i alle disse år, takket være utallige personers lyst og overskud til at bruge utallige timer og aftener på at arrangere seminarer, workshops, virksomhedsbesøg, indkræve kontingent, opdatere medlemsdatabase, opsætte og tilrette ORbit, osv. Der skal således lyde en stor TAK til alle tidligere bestyrelser og øvrige personer der alle har arbejdet aktivt for selskabet, hvad enten det har drejet sig om at hjælpe til med det praktiske i forbindelse med et arrangement, eller det har drejet sig om en omlægning af klubbens medlemsdatabase og -håndtering. DORS er til for sine medlemmer, men omvendt ville DORS ikke eksistere, hvis ikke det netop var for medlemmerne; jeres støtte af foreningen er uvurderlig! Uden at jeg kan sige hvordan fremtiden bliver, så vil jeg love, at både den nuværende bestyrelse og de kommende bestyrelser vil gør alt hvad de kan for at sikre, at DORS forbliver kilden til et godt netværk for operationsanalytikere. Med disse ord vil jeg med stolthed ønske DORS et kæmpe stort TILLYKKE med de 50 år. Og så vil jeg glæde mig til de næste mange år, som forhåbentlig vil byde på endnu flere spændende OR-relaterede oplevelser! Tor Fog Justesen Formand for DORS DORS’ firma- og institutmedlemmer Firmamedlemmer Institutmedlemmer • Afdeling for Anvendt Matatematik og Statis- • Datalogisk Institut, Københavns Universitet • Institut for Virksomhedsledelse og tik, Københavns Universitet • Afdelingen for Operationsanalyse, Aarhus Universitet • Center for Research in the Foundations of Electronic Markets • CORAL, Handelshøjskolen, Aarhus Universitet Økonomi, SDU • Institut for Planlægning, Innovation og • Ange Optimization • A.P. Møller – Mærsk • DONG Energy • DSB Ledelse (DTU Management), Danmarks • DSB S-tog Tekniske Universitet • Jeppesen • Institut for Transport (DTU Transport), Danmarks Tekniske Universitet • Københavns Lufthavne • MOSEK • Novo Nordisk (CMC Clinical Supplies) • Rapidis • Transvision Hermes Traffic Intelligence 4 ORbit 19 Denne artikel af William Cauchi blev først publiceret i Politiken 8. September 1976. Artiklen er gentrykt her med tilladelse. Redaktionen takker Politiken for deres velvillighed. ORbit 19 5 artikel Af Oli B.G. Madsen Those were the days - erindringer fra min OR debut I anledning af DORS’s 50 års jubilæum har redaktionen bedt professor Oli B.G. Madsen fra DTU dele mine minder fra operationasnalysens spæde ungdom i Danmark. Oli fortæller: Efter studentereksamen begyndte jeg på elektroingeniørstudiet på DTU den 1. september 1961. Det foregik i DTU’s gamle lokaler på Sølvtorvet, men allerede i 1962 flyttede undervisningen til Lyngby, hvor vi sammen med årgang 1962 som de første tog de nye bygninger på den nuværende DTU campus i brug. Elektroingeniørstudiet valgte jeg nok primært, fordi det var et civilingeniørstudium, og fordi man lige havde omlagt hele studiet og havde lagt mere matematik ind i studieplanen. Endvidere var det nye studium det sværeste at komme ind på i 1961, og man skulle til Lyngby til en helt ny campus. Der var en masse pionerånd over det. at have bestået første del sommeren 1964 ud af, at jeg kunne ”specialisere” mig i anvendt matematik. Det forgik på den måde, at man kunne læse nogle ekstra fag mod at droppe ét elektrofag. Det var lige noget for mig, selvom det gav et ekstra pres på studiet. Blandt de ekstra fag var numerisk analyse, funktionalanalyse, Markoffprocesser, videregående matematisk statistik, videregående kompleks funktionsteori samt operationsanalyse fag. Mit første møde med operationsanalysen fandt sted foråret 1964 ved en elektronikforelæsning, hvor en af mine medstuderende sad og bladede i en bog. Jeg spurgte om, hvad han læste. Det viste sig at være Studieplanerne var dengang helt faste. »Det var min introduktion bogen »Introduction to Operations Man skulle som til operationsanalyse, og af svagstrømsingeni- det påvirkede ret drastisk Research« min fremtid.« Churchman, Ackoff ørstuderende tage og Arnoff. Jeg nogle bestemte fag i bestemte semestre, og eksaminerne bladede i bogen og fandt ud af, at det skulle bestås samlet. Studiet bestod af så meget spændende ud. Det var min en treårig første del opdelt i 3 årsprøver, introduktion til operationsanalyse, og det en etårig forprøve og en halvanden årig påvirkede ret drastisk min fremtid. slutprøve, i alt 5 ½ år. Hvis man ikke bestod, så skulle alle fag hørende til den Operationsanalyseundervisningen forgik på det i 1963 oprettede Institut for Matepågældende prøve tages om. matisk Statistik og Operationsanalyse (i Jeg fandt hurtigt ud af, at de elektrotek- 1967 opfandt min daværende kollega niske fag ikke kunne bringe mit blod i Flemming Rasmussen og jeg det kortere kog, men fysik og især matematik var navn IMSOR). Instituttet var udsprunget inspirerende. Heldigvis fandt jeg efter af Laboratoriet for Anvendt Matematik, 6 ORbit 19 som var ledet af den navnkundige professor Richard Petersen (1894-1969), i populær omtale kaldet lille p. IMSOR var ledet af professor Arne Jensen (1920-2008). Han var oprindelig aktuaruddannet i 1944 og var meget optaget af Erlangs køteoretiske arbejder; noget ret naturligt da Arne Jensen var knyttet til KTAS, Københavns Telefon Aktie Selskab. Han var tillige knyttet til Københavns Universitet (KU) i perioden 1946-1963 og blev i 1954 dr.phil. på en afhandling om stokastiske processer. Derudover var han tidligt opmærksom på operationsanalysens betydning efter et ophold i USA som Rockefeller stipendiat. Han underviste i 1950erne i lineær programmering (LP) på KU, og blev i 1962 lektor på DTU, hvor han året efter blev professor. Foruden på DTU var der også andre steder i Danmark, hvor man interesserede sig for OR. På Økonomisk Institut på KU underviste professor Sven Danø (1922-1998) i OR. Danø udgav bogen »Linear Programming in Industry – Theory and Applications« i 1960. Han var en af de få danskere, som George B. Dantzig kendte til. Jeg husker, at Dantzig fortalte mig om Danø’s cases fra en iscreme fabrik. På Århus Universitet underviste professor i driftsøkonomi Svend Fredens i lineær programmering, simulation, lagerteori og køteori. På Handelshøjskolen i København (HHK) artikel underviste Erik Johnsen (f. 1928) i OR. forudsætninger formuleres som et LP tid. Til sidst kom der en høj stabel papir Han havde opholdt sig på Princeton i problem, men med 4090 restriktioner og ud af printeren. Der var ingen, der rigtig 1955/56. Blev derefter knyttet til HHK 45056 variable. Da den mest effektive kendte til hvordan man anvendte LP/90, og blev professor der i 1969. Han var LP løser i Danmark på dette tidspunkt, så det måtte man selv finde ud af. tillige på det tidspunkt knyttet til IMSOR LP/90, kun kunne håndtere op til 1023 som ekstern underviser. Johnsen udgav restriktioner og én million koefficienter Det var en meget spændende periode, i 1962 bogen »Introduktion til Opera- forskellig fra nul, måtte der foretages en hvor mange emner var i sin vorden. tionsanalyse«. På den første danske aggregering af modellen. LP/90 kørte Dantzig og Ramser havde skrevet om ’The Truck Dispatching Problem’ i 1960. it-virksomhed Regne»IBM 7090 havde en på Danmarks dengang Dantzig og Wolfe havde præsenteret centralen stiftet i 1955 ordlængde på 36 bit største computer en og producent af de IBM 7090 mainframe, deres dekompositionsmetode i 1960, og et lager på 32 K. første danske compusom stod på DTU, og men den blev ikke rigtig brugt til noget Den kostede i 1960 tere DASK (1958) og som var en gave fra IBM bortset fra Gilmore og Gomory’s løsning som ny 2.898.000 GIER (1961) var der i 1965. IBM 7090 havde af ’The Cutting Stock Problem’ i 1961US$ svarende til også et blomstrende en ordlængde på 36 bit 1963. Land og Doig ’opfandt’ branchomkring 21-22 milliand-bound (BB) i 1960. BB blev anvendt OR-miljø. Der arbejoner danske kroner« og et lager på 32 K. Den dede man bl.a. med kostede i 1960 som ny på the travelling salesman problem anvendelsen af OR i produkti- 2.898.000 US$ svarende til omkring 21- (TSP) af Little, Murty, Sweeney og Karel onsplanlægning. Jeg arbejdede 1965- 22 millioner danske kroner (til sammen- i 1963, men var kun kendt af nogle få 1967 på Regnecentralen for at tjene til ligning var startlønnen i 1960 for en civil- i Danmark. Clarke og Wright’s Savings studierne og var meget betaget af den ingeniør omkring 1900 kr. om måneden algoritme var lige præsenteret i 1964 og inspirerende atmosfære, der var der. før skat). På dette tidspunkt fandtes der heltalsprogrammering var i sin spæde ikke noget modelleringssprog som f.eks. vorden. Gomory’s cutting planes fra Undervisningen i OR i 1964-1967 var GAMS eller OPL, så man hurtigt kunne 1950erne var kendt, men de fungerede i noget anderledes end i dag. Vi havde generere 1964 endnu ikke en »Dantzig og Wolfe havde præf.eks. to semestre med dynamisk pro- for computeren i praksis. grammering (med Peter Mark Pruzan læsbar model. senteret deres dekompositionsProblemet med som underviser). Derimod lærte vi om Jeg måtte selv metode i 1960, men den blev at løse større lineær programmering som en biting konstruere en ikke rigtig brugt til noget bortset fra...« LP problemer i faget investeringsplanlægning (med relativt generel fascinerede mig Inge Thygesen som underviser). Pruzan modelgenera(f. 1936) kom fra USA, hvor han var tor som en del af specialet. Program- så meget, at jeg valgte dette som emne uddannet på Harvard, Princeton og koden blev programmeret i FORTRAN for mit ph.d.-studium, som startede lige Case-Western Reserve University. IV, og program og grunddata blev efter, at jeg var blevet civilingeniør den Thygesen (f. 1935) var ligesom Arne fodret ind i computeren via hulkort. Da 1. februar 1967. Det hed dengang et Jensen aktuaruddannet og havde bl.a. beregningstiden (Blot for at finde opti- licentiatstudium. Emnet var dekomposiopholdt sig et år på Massachusetts mum eksklusive følsomhedsanalyser) tion og matematisk programmering. Institute of Technology i Boston, USA. Både Jensen, Pruzan og Thygesen var således velbevandrede i den nyeste udvikling inden for OR fra deres tid i USA. Arne Jensen selv underviste ikke meget. Mit speciale, som jeg arbejdede på apriloktober 1966, handlede om et kombineret produktionsplanlægnings- og transportproblem baseret på en virkelig problemstilling i et korn- og foderstofkompagni. Problemet kunne under visse var temmelig lang, kunne jeg kun køre programmet i weekenderne, hvor det var muligt at reservere computeren udelukkende til eget brug. Som eksempler på beregningstider kan nævnes 140 min for en 512x5632 LP model, 133 min for 512x3616 og 99 min for 318x1640. Man fodrede computeren med stabler af hulkort. Så stod den og læste den inverse basis frem og tilbage mellem to magnettapebåndstationer. En runde for hver iteration. Det var især det, der tog Under ph.d.-studiet deltog jeg i en række internationale konferencer, hvor der blev opbygget gode kontakter til internationalt kendte forskere. Eksempelvis deltog jeg sommeren 1969 i NATO Advanced Institute on Integer and Nonlinear Programming. Konferencen foregik på Île de Bendor, en lille ø, der ligger ud for Frankrigs middelhavskyst mellem Marseilles og Toulon. Det var en rigtig øjenåbner med deltagelse af mange af tidens store kanoner, f.eks. George Dantzig, ORbit 19 7 artikel Philip Wolfe, R. Fletcher, M.J.D. Powell, skulle her holde et foredrag om dekomMartin Beale, Richard Cottle, David position og var godt nervøs ved at have Gale, Ralph Gomory, Fred Glover, Egon Dantzig og Wolfe som tilhørere. Det gik Balas, G.W. Graves, Claude Berge, dog over al forventning. samt lovende yngre forskere som John Tomlin, Gautam Mitra og Hans Jürgen NATO’s research foundation var den Zimmerman. Jeg fik lært nogle af dem gang sponsor for mange videnskabelige møder, godt at kende »DORS, som jo var blevet stifsom ikke på de 12 dage, tet i 1962, var i denne periode nødvendigvis som konferenogså et aktivt forum for OR havde noget cen varede og interesserede.« med krig at fik samtidig en gøre. Forfin opdatering af uden ovennævnte møde på Île de state-of-the-art inden for området. Bendor, deltog jeg også i 1972 i et 12 Året efter deltog jeg i den internationale dages møde i Cambridge omhandlende konference ’Optimisation Methods’, som ’Decomposition of Large Scale Systems’ foregik på Hotel Marienlyst i Helsingør. og i 1974 i et 12 dages møde i Versailles Her var en del af ovennævnte personer om ’Combinatorial Optimisation’. Disse til stede foruden Arthur Geoffrion, Peter ret lange møder på mindre steder var Hammer, Michael Held, Ellis L. Johnson, meget værdifulde, da man virkelig fik tid Leon Lasdon, Allan Manne, William til at lære folk at kende. Orhard-Hays og Harvey Wagner. Jeg Arc Routing Workshop Siden da er der sket utrolig meget både med hensyn til undervisning, computere, modeller, algoritmer og anvendelser, en udvikling, der bestemt ikke er slut, men som accelererer mere og mere. Oli B.G. Madsen professor, dr.techn., er ansat ved Institut for Transport på DTU. DTU Management annoncerer følgende foredrag: CORAL, Aarhus university is responsible for organizing a workshop on arc routing. • Thursday 6/9 Jørgen Haahr “Heuristic Planning of Shared Backup Path Protection”. Venue: Hotel Scandic Copenhagen • Thursday 20/9 Margret Otterstedt “Statistics and OR (CART & SP) for New Mortgage Refinancing Strategies” Date: 22-24 May 2013 • Thursday 4/10 Joakim Juhl “An ethnography on mathe matical models - Producing science and technology” Organizing committee: • Ángel Corberan, Universidad de Valencia, Spain • Bruce Golden, University of Maryland, US • Geir Hasle, SINTEF, Norway • Richard Eglese, Lancaster University Management School, UK • Sanne Wøhlk, Aarhus University, Denmark More information will follow on Aarhus Universities webpage. 8 DORS, som jo var blevet stiftet i 1962, var i denne periode også et aktivt forum for OR interesserede. Der blev bl.a. hvert år arrangeret et meget fornøjeligt og inspirerende weekendmøde, hvor OR interesserede fra hele landet mødtes. Jeg husker møder i Holstebro, Svendborg og Nordborg, som var meget succesfulde. ORbit 19 • Thursday 1/11 Trine Krogh Boomsma “TBA” • Thursday 15/11 Michael Pascal Simonsen Nielsen “TBA” • Thursday 29/11 Thomas Stidsen “TBA” Line Blander Reinhardt “Liner shipping” • Thursday 6/12 Tor Justesen “Aircraft Stand Allocation with Asso ciated Resource Scheduling” • Thursday 20/12 Agnieszka Konicz “TBA” Jonas Christen sen, Karen Arntoft “Patient Admission Scheduling” Se DTU Management’s hjemmeside for detaljer. DORS pris Af Jakob Dirksen Beslutningsstøtte til håndtering af forsinkelser i containerfragt DORS prisen 2010/2011 går til Jakob Dirksen fra DTU management. Bedømmelses kommiteen skriver: »DORS Prisen 2010 - 2011 går således til et speciale, hvor Operationsanalyse kombineret med skarp, analytisk tankegang leder til værdifulde og praktisk anvendelige løsninger; en pointe, der bekræftes af, at projektets virksomhedspartner har ytret ønske om at gå videre med det arbejde som er blevet grundlagt af Jakob Dirksen.« Redaktionen sender et stort tillykke til Jakob og hans vejleder David Pisinger. Motivation for at håndtere forsinkelser Skibstransport af containere er den mest brugte og energieffektive metode til fragt af store mængder gods på tværs af kloden. Eksempelvis foregår en væsentlig del af verdens samlede transport via de utallige ruter fra fabrikkerne i Østasien til forbrugerne i Nordamerika og Europa. Den enkelte container håndteres typisk af et liner shipping firma. Firmaet Figur 1: Mærsk skib fyldt med gods på vej ud af en asiatisk havn. opererer et netværk af skibe, som sejler med regelmæssige afgange efter et fastlagt skema. Det er shippingfirmaet, der beslutter, hvordan den enkelte container transporteres fra oprindelsen til destinationen. For at få fyldte skibe og opnå economies-of-scale vælger liner shipping firmaer oftest et netværksdesign, som medfører, at den enkelte container skal skifte skib en eller flere gange. Et firma som Mærsk Line, der opererer mere end 600 containerskibe og hver dag flytter millioner af containere, oplever konstante forstyrrelser af deres globale transport netværk. Ifølge et studie oplever 70-80 % af alle containerskibe forsinkelser i minimum én havn igennem en rundtur. De typiske årsager er dårlige vejrforhold, køer i vigtige passager eller ekstraordinære ventetider i havne, men også pirateri, medarbejderstrejker og politisk ustabilitet kan påvirke sejladserne. De mange forsinkelser af sejladserne påvirker direkte pålideligheden, men medfører også store økonomiske tab for liner shipping firmaerne. En forsinkelse af et enkelt skib kan betyde, at flere tusinder containere bliver forsinkede og i værste fald misser forbindel- ORbit 19 9 DORS pris skulle besluttes, bedst fortsatte. hvordan skibet De to løsninger der blev overvejet, var at indhente forsinkelsen ved at øge hastigheden over Stillehavet eller ved at sejle udenom Yokohama. En øget fart ville betyde, at omkostningerne til brandstof steg voldsomt1, imens det at springe Yokohama over ville betyde, at en række containere fra en vigtig kunde blev forsinkede en fuld uge2. Beslutningen blev støttet af ad hoc udregninger i et regneark, men afgørelsen Figur 2: Ruten for stillehavskrydseren Mærsk Sarnia. blev i sidste ende truffet på baggrund af intuition opbygget ser med andre skibe. Ekstra omkostninger opstår ved dette, igennem mange års erfaring. idet containerne ikke følger, den optimale plan, men derimod bruger ekstra tid på land og måske optager pladsen på det Mærsk valgte at sejle til Yokohama, krydse Stillehavet med let næste skib fra andre containere. Kunderne oplever ofte også øget fart, og først rigtig indhente forsinkelsen på tilbageturen tab ved forsinkelser, og liner shipping firmaerne risikerer over Stillehavet. Beslutningen endte som et politisk komproderfor, at kunderne vælger en konkurrent ved næste fragt. Det mis, hvor der blev lagt vægt på dels at medtage containerne er derfor utrolig vigtigt for liner shipping firmaerne at håndtere fra den vigtige kunde men samtidig begrænse stigningen i brændstofudgifterne. Den valgte sejlads for Mærsk Sarnia forsinkelser bedst muligt. medførte desværre at en betydelig del af containerne missede forbindelser og derved blev forsinket en fuld uge. En konkret case fra Mærsk Line (1 af 2) Space [ports] På grund af en stor storm i Østasien blev stillehavskrydseren Mærsk Sarnia forsinket i alt 39 timer på Time Space network vej ud af Kwangyang (Sydkorea). Skibet var plansat Mother vessel Feeder vessel S2 til at stoppe i Yokohama Delayed vessel (Japan) og derfra fortsætte fuld af containere fra Asien Port1 til Mellemamerika (se figur 2). Ved ankomst til den store havn i Balboa Port2 (Panama) skulle størstedelen af containerne skifte Port3 til andre skibe, som ville transportere godset det sidste stykke til aftagerene S1 langs Amerikas østkyst. Forsinkelsen betød, at en 0 20 40 60 80 100 120 140 stor del af containerne ville Time [hours] misse deres forbindelser. Figur 3: Eksempel på graf for simpelt problem. Problemet dækker 3 skibe, som alle tillades at sejle med Der var derfor travlhed justeret hastighed. Det forsinkede skib tillades endvidere at justere rækkefølgen for havnekald og springe på Esplanaden, hvor det havn 2 over. 10 ORbit 19 DORS pris Matematisk model til beslutningsstøtte Videre arbejde Forsinkelserne i containerfragten har en klar parallel i luftfartsindustrien. Flyselskaber oplever konstant forsinkelser og er nødsaget til hurtigt at træffe beslutninger om, hvordan driften bedst muligt genoprettes. Matematisk modellering danner fundamentet for disse beslutninger, da avanceret software bygget på operationsanalyse straks kan give operatørerne overblik over et bredt udvalg af mulige håndteringer, samt hvilke konsekvenser og omkostninger hver enkelt vil medføre. Der forestår fortsat meget arbejde før Mærsk Line, og andre liner shipping firmaer, har adgang til et real-time beslutningssystem, som løbende kan håndtere deres forsinkelser. Beregninger viser dog tydeligt, at emnet har et stort potentiale, og at det med relativt simple modeller er muligt at finde stærke løsninger. Liner shipping systemet er så komplekst, at en tilstrækkelig grundig manuel vurdering af hver løsningsmulighed simpelthen ikke kan foretages. Grundlæggende bør udviklingen på området gå i to parallelle spor, hvor den ene er akademisk forskning i udbygning af den foreslåede model, og I projektet blev den grundlæggende model til håndtering af den anden er en praktisk implementering og yderligere test af forsinkelser i luftfartsindustrien tilpasset situationen i liner den foreslåede model. shipping3. Modellen er baseret på et time-space netværk, hvor hver knude svarer til et havnekald på et givet tidspunkt, Referencer og hver kant er en mulig sejlads i mellem to havne med en given fart. Startende med skibenes udgangsposition kan det • Disruption Management in Liner Shipping af Jakob Dirksen fulde løsningsrum udspændes (se figur 3). I grafen inkluderes de forskellige måder at håndtere en forsinkelse, herunder • The Vessel Schedule Recovery Problem (VSRP) - a MIP justere sejlfarten imellem havne, ændre sekvensen af havne, model for handling disruptions in liner shipping af Berit D. Brouer, Jakob Dirksen, David Pisinger, Christian E. M. Plum, der besøges og lade containernes forbindelse vente. og Bo Vaaben (ikke publiceret endnu) På baggrund af grafen defineres en heltals flow-model. Begrænsningerne sikrer, at skibene starter korrekt, at de gennemløber en lovlig sejlads, og at containere gennemfører en lovlig rejse. Størrelsen af problemer afgrænses ved kun at lade en delmængde skibe justere deres sejlads og ved at ignorere re-flowing af containere der ikke kommer frem. Målfunktionen bliver at minimere sejlomkostninger samt en strategisk straf for containere, der henholdsvis bliver forsinkede eller misser en forbindelse. Ved test af fire faktiske problemer fra Mærsk er observeret gode køretider og løsninger. Arbejdet ville ikke have været mulig uden støtte fra Mærsk Line (ML) og Danmarks Tekniske Universitet (DTU). Der skal således gå en stor tak til Daniel Bruun (ML), Mikkel M. Sigurd (ML), Steffen Conradsen (ML), Berit D. Brouer (DTU), David Pisinger (DTU), Christian E.M. Plum (DTU) og Bo Vaaben (DTU). Noter 1 Friktionen i vand er et tredje grads polynomium af hastigheden 2 På ruten over Stillehavet har Mærsk Line en ugentlig afgang 3 Luftfart og liner shipping har mange ligheder, men også En konkret case fra Mærsk Line (2 af 2) forskelligheder. Forskellighederne inkluderer, at containerskibe sejler i døgndrift, at farten kan justeres betydelig mere, at det Håndteringen af Mærsk Sarnias forsinkelse i Sydkorea kan næste aldrig er effektivt at bytte et forsinket skib ud med et andet og at gods i gennemsnit skifter skib mere end 2 gange. simpelt modelleres med den beskrevne metodik. Det samForskellene er med til at øge kompleksiteten lede problem, udspændt i grafen med løsningsrummet, har 7106 variable og 1706 begrænsninger. Målfunktionen for problemet er baseret på Mærsk Lines reelle og strategiske omkostninger. Heltals-problemet kan løses på dette virkelige Jakob Dirksen er civilingeniør fra data i CPLEX i løbet af sekunder. Den resulterende optimale DTU. Han har specialiseret sig i løsning er at sejle udenom Yokohama. På trods af en straf for operationsanalyse, men arbejder at ignorere de vigtige containere, er den samlede omkostninnu som managementkonsulent for gen for Mærsks faktiske håndtering er 24 % højere end for McKinsey&Company i København. denne løsning. Løsningen er efterfølgende blevet verificeret med Mærsk Line, som på baggrund af de tilgængelig informationer i udregningerne er enige i, at det ville have været bedre at springe Yokohama over. ORbit 19 11 nyhed Svenska Operationsanalysföreningen (SOAF) OA-föreningens Exjobbspris i Operationsanalys 2012 SOAF’s årliga exjobbspris i Operationsanalys instiftades 2010 för att uppmuntra studenter inom området och hjälpa till att sprida högkvalitativa uppsatser. För att kunna deltaga ställs två krav: 1. En lyckad tillämpning på ett praktiskt problem (hos ett företag, myndighet e.d.). Lyckad innebär att studien har gjort nytta, d.v.s. att företaget (eller motsv.) har fått ett beslutsunderlag av värde. 2. Att man har använt en vetenskapligt sund metod, utan krav på att den ska vara metodmässigt revolutionerande. Priset kommer i formen av ett diplom och en premie på 3000 kr per exjobb. Pristagarna förväntas vidare presentera sitt exjobb på ett SOAF-seminarium. För att delta i tävlingen ska exjobbet vara godkänt under perioden från 1 november 2011 till 1 november 2012. Exjobbet skall sändas i elektronisk form samt som en papperskopia. Det ska åtföljas av ett brev från handledaren eller examinatorn där det motiveras varför just detta exjobb ska få priset. Deadline för insändande av exjobb för 2012 års pris är 15 november. Kontakt: Michael Patriksson (ordf.) styrelseledamot SOAF P O Lindberg styrelseledamot SOAF mipat@chalmers.sepolin@kth.se 12 ORbit 19 nyhed Dansk operationsanalyseselskab (DORS) DORS pris 2012 DORS - Dansk Selskab for Operationsanalyse - beder hermed om indstillinger til Danmarks bedste speciale i operationsanalyse 2012. Et speciale indstilles af vejlederen, og vi skriver til dig, fordi det måske er dine studerende, der har skrevet det allerbedste projekt i perioden. Invitationen er åben, så send den endelig videre til de vejledere, vi måtte have glemt. Et speciale kan indstilles hvis: - Specialet er skrevet ved et dansk universitet og involverer operationsanalyse. - Specialet er på dansk eller engelsk. - Specialet er afleveret i 2012. - Specialet er forsvaret i 2012, eller skal forsvares i januar 2013. (I sidstnævnte tilfælde eftersendes specialkarakteren til president@dorsnet.dk inden udgang af januar.) Ved uddeling af DORS-prisen lægges vægten på analyse og løsning af praktiske problemer. Et speciale indstilles til DORS prisen ved at vejlederen senest 31. december 2012 sender en email til president@dorsnet.dk (Tor Justesen,formand for DORS) med følgende indhold: - Specialet. Vedhæftes som PDF. - Begrundelse for, at specialet bør vinde prisen. Max. 1 side. Skrives af vejlederen. Vedhæftes som PDF. - Karakteren for specialet (med undtagelse af specialer forsvaret i januar 2013, se ovenfor). - Email-adresser og telefonnumre på alle specialets forfattere og på vejlederen. DORS-prisen uddeles ved generalforsamlingen for DORS til april 2013. Prisen er på 5000 kroner til deling mellem specialets forfattere. Det er en forudsætning for udbetalingen, at der laves en kort artikel til ORbit om specialet. Skriv til bestyrelsen@dorsnet.dk hvis I har spørgsmål. ORbit 19 13 tutorial By John F. Raffensperger A tutorial on smart markets Over the past thirty years, governments and companies have implemented smart markets for a huge range of goods and services. This essay gives a brief tutorial in how they work. Introduction. First example: transportation markets from Chicago to Peoria on Thursday.« Then the giant carrier could solve an optimization problem to maximize its profit, and could post provisional results to let buyers change their bids. I used to work for the US Postal Service. They move par- Batch sales from a big seller is a one-sided auction. When cels and mail between hubs via trucks and airplanes. How cleared with an optimization model, it’s a smart market. should USPS purchase its transportation services? USPS could solve an optimization problem to minimize the cost of What if many companies sell transportation services, and transportation, with constraints to ensure that the transpor- many companies need to buy such services? We could open tation satisfied demand for material flow between hubs. The a small office with a web page which invites combinations of optimization model needs the cost data, so USPS has to ask bids, some from carriers and some from firms needing carrier the carrier companies for it. »How much would you charge services. The optimization model matches supply to demand, to move 10 truckloads from Chicago to Peoria this Thursday by truck type, route, and any other complication you can imagine. The solution to the optimization model would be a good afternoon?« way to move materials. What should be our objective? We We can think of this problem as an auction. USPS could set up should maximize the money we get from the buyers, minus a web page where carrier companies enter bids, »I will charge the money we have to pay to the sellers. That would maxi$500/truckload to ship from Chicago to Peoria…« Then USPS mize our profit. We would not accept a money-losing deal. would have the data to solve the optimization, and the results The solution which maximizes our profit would also maximize of the optimization would tell USPS which bids to accept. benefit to the region, assuming a competitive market (lots of USPS could even do a little better if they posted provisional buyers and sellers). This two-sided auction, with many buyers results, and let the carriers change their bids. They could do and many sellers, is a smart market, too. The optimization better still if they let the carriers put in multiple complex bids, model can find solutions that would be impossible if done such as »I will charge $500/truckload to ship from Chicago to manually, or if done only between pairs of people. Peoria. But I will charge only $750 for the round trip«. Allowing bidders flexibility in how they bid can let the optimization take This isn’t a mere thought experiment – people are already making money with the idea – see for example Moore (1991), advantage of the bidder’s economies of scope and scale. Brewer and Plott (2002), Ledyard et al. (2002), Andres FiglioSo batch procurement from a big buyer can be viewed as a zzi et al. (2003), Caplice and Sheffi (2003), Song and Regan one-sided reverse auction. When cleared with an optimization (2003), and Sheffi (2004). model, it’s a smart market. Simply sorting bids from lowest to highest wouldn’t solve the problem at all, any more than we Key characteristics could solve an integer program only by sorting the variables Definition by their objective coefficients. of a smart market. The problem could be turned around. A big carrier could be A smart market is an auction cleared by optimization. selling transportation to small companies. The big carrier could post a web page where the small companies would bid • The smart market is operated by a market manager, who to buy services, »I will pay you $480 to move one truckload clears the market with an optimization model. EBay.com and 14 ORbit 19 tutorial Qxl.dk don’t need optimization models A general formulation to clear their auctions, so those are not This formulation assumes that the smart markets by this definition. market has both buyers and sellers. • Trades are not between pairs of people, but rather to or from the market Each trader i can have multiple bids, manager. EBay.com and Qxl.dk match pairs of buyers and sellers, so those Indices: i traders, b bids. web sites are not smart markets by this definition either. Data: Advantages of a smart market. The smart market simplifies trading complex goods and services. Buyers and sellers know where to go to find each other, and are usually assured of competitive prices. The market manager can set and enforce rules on who is allowed to trade, so traders can be more confident that the trade will actually happen. So the market is orderly and transparent. When something goes wrong, rules are in place to resolve the problem (McCabe, Rassenti & Smith 1991). BuyPricei,b BuyStepi,b SellPricei,b SellStepi,b Initiali (A, d) modeling a piecewise linear demand function (the idea that one piece of cake is great, a second piece of cake is okay, and I don’t really need the third piece of cake). = bid price of trader i for step b. = additional quantity that trader i would buy at price BuyPricei,b. = offer price of trader i for step b. = additional quantity that trader i would sell at price SellPricei,b. = starting quantity for trader i. = general technology matrix. You can think of BuyPricei,b as the value per serving, and BuyStepi,b as the serving size. If the price is BuyPricei,1 = $1, I will buy up to BuyStepi,1 = 5 units. If the price is BuyPricei,2 = $0.76, I will buy an additional BuyStepi,2 = 3 units. If the price is BuyPricei,3 = $0.50, I will buy an additional BuyStepi,3 = 2 units. Model SM Smart markets are now possible due to 1. Maximize net benefit: ∑i∑b BuyPricei,bbuyqtyi,b – ∑i∑b SellPricei,bsellqtyi,b, the combination of optimization and the internet. Increased computation power subject to lets the market manager solve problems that before would have been impossible. 2. Calculate net trades: Initiali + ∑b buyqtyi,b – ∑b sellqtyi,b = finalqtyi, for all i. The internet lets traders bid easily. 3. Bids are piecewise linear: buyqtyi,b ≤ BuyStepi,b, for all i, b, Most of us can accept the idea of a big company using an auction to purchase services like transportation from other businesses. Some of us do not like the idea of using markets for services such as fresh water (which I’ll discuss below). As operations researchers, we specialize in finding good allocations of resources. Well-regulated honest markets allocate resources extremely well! Smart markets tend to be highly regulated, as they are centralized, and the market manager usually pays a lot of attention to the behaviour of participants. 4. Technology constraints: A∙finalqty ≤ d, 5. Non-negativity, integrality: buyqtyi,b ≥0, sellqtyi,b ≥ 0, possibly integral. 6. Avoid degeneracy: finalqtyi free, possibly integral. Why is this a maximization? Imagine if you were the market manager. Buyers pay you, and you pay sellers. To maximize your profit, you would want to take the high bids from the buyers, but pay out only the small bids to the sellers. For the transportation problem mentioned above, the (A, d) matrix corresponds to demand for transport across the transportation network, possibly with conservation of flow constraints, truck capacity constraints, and so on. The bid subscripts b could be from-to pairs of hubs rather than serving quantities. ORbit 19 15 tutorial Model SM is written as a net pool market, in which the model has the initial rights as an input, and calculates all the buying and selling. Surprisingly, perhaps, we can usually write a simpler formulation for model SM, in which we pretend that everyone is a buyer (a gross pool market). Then we just calculate trades based on the initial positions after we know the final allocation. We have to assume that participants are willing to trade sufficient quantities to allow feasibility. The gross pool market will tend to be mathematically feasible, but could have an unacceptably high cost in the optimal objective value, should buy bids be too low compared to sell bids. The difference between these two formulations is usually only algebraic, as the two market formulations are economically equivalent by the Coase theorem (that the final optimal allocation doesn’t usually depend on the initial rights). Pricing as the value of additional capacity. A combinatorial auction is a smart market in which goods are indivisible. Those markets must be cleared with integer programs. If model SM is an integer program, then we have the elementary problem that integer programs, like all nonconvex models, do not give good dual price information. We could use the price-as-bid approach. Alternatively, Rassenti, Smith and Bulfin (1982) found ranges of good prices by solving pseudo-dual models. O’Neill et al (2005) first solve the integer program, and then solve an auxiliary linear program to get good prices. Pricing in non-convexity will always be difficult, which helps keep operations researchers in business! An entire issue of Management Science (vol. 51, no. 3, March 2005) was devoted to this topic. See also Pekec and Rothkopf (2003). Initial rights Given the primal result to model SM, at what price should we charge or pay trader i? We have some options, depending on Model SM above has the parameter Initiali. To have a market, traders need to know who owns the right at the start of the the problem. auction. For a company buying transport services, of course Most obviously, we can charge them their price as bid. Trader i the carrier firms own the rights, and the buyer has to pay for offered to buy up to 5 units at $1/unit, and the optimal solution the service. That makes complete sense. You could also imais to give her 4 units, so we can reasonably charge her $4. In gine that the buyer pays the carrier for work to be done next this case, trader i will be nervous about bidding. She will be month, and then the buyer changes her mind and sells that tempted to bid a little lower than her true reservation price, contract to someone else. hoping to save some money, in which case she may not get as much as she really wants. She will also be tempted to sneak But initial ownership is not always clear. A few years ago, the around the other bidders, trying to find out what they would U.S. government tried to implement a trading system for takebid. This problem has been studied thoroughly in the auction off and landing slots at Kennedy Airport in New York. Implementation would have solved a lot of problems and made literature. everyone better off! But as far as I can tell, they failed because Many smart markets allocate divisible goods such as they could not get agreement on the initial rights. The airlines electricity and natural gas, and can be cleared with ordinary said, »We’ve been taking off and landing all this time, so those linear programming. If our smart market model SM is a linear rights are ours.« The Port Authority said, »We own the land, program, we can use the dual prices pi on constraint 2 to so we own the rights.« The Federal Aviation Administration charge or pay trader i the amount pi(∑b buyqtyi,b – ∑b sellqtyi,b). said, »We actually give permission to take off and land, so If trader i buys more than she sells then she pays; otherwise we own the rights.« What a mess! The problem is even more she gains. (We need finalqtyi to be free to avoid degeneracy, complicated when the quantity available is uncertain, as with to make sure pi is correct.) This marginal cost pricing pro- fresh water. vides many nice economic results due to the LP optimality conditions. For example, facing price pi, trader i will be satis- Financial trading fied with finalqtyi. Trader i is assured that she will be given a truly market price, which everyone faces. So she is more Most smart markets are spot markets, in which goods or serlikely to feel comfortable bidding her true reservation price. vices are traded and delivered immediately. Every seller is guaranteed to receive at least as much as was bid and possibly more. Every buyer is guaranteed to pay no A spot market could be cleared by simple pair-wise trading more than was offered, and possibly less. We also get useful (as for a grocery store). A spot market could be cleared by a resource prices from the technology constraints (A, d), such simple many-to-many auction (as for some water markets in 16 ORbit 19 tutorial Australia). A spot market could also be smart and multi-lateral whole area around Copenhagen. So this could be a set (as for a modern electricity market). packing problem, with the rows corresponding to regions: the sum of the accepted bids for Copenhagen must be less than A smart market could be run as a one-off for long-term rights, or equal to 1. such as radio spectrum. I don’t think this would be considered a spot market, simply because it isn’t active enough. By Furthermore, I might offer the government a premium to get contrast, modern smart markets for electricity are run as spot licenses in several big cities, and I might even want to put markets, with trades clearing every few minutes, and power in some complicated and/or bids like, “I’ll bid X kroner for generated and delivered immediately. Copenhagen and Aarhus, or Y kroner for Copenhagen and Odense.« This is easily done with integer programming. Much more interestingly, someone could observe a spot market operating for a while, and be fearful that the price may Electricity spike in the wrong direction. So this person could make a side deal, outside of the smart market, as insurance or hedging, High-voltage power, which goes across large regions, requires based on the spot price sometime in the future. Of course, a lot of coordination to ensure that generation matches anyone can make a deal like this based on any market. Such demand and that power flows do not exceed network line capacities. The security and reliability requirements are very deals are especially frequent in the electricity markets. high. This coordination can be done extremely well by linear A big factory may worry that the price of power might go high, programming. Before the smart market, this coordination so the factory manager could make a deal with a generator was done with linear programming, but the line operator, to “buy” power at a fixed price. “Factory F will pay generator generators, and distributors were usually part of a monopoly. G a price of $0.50/megawatt for 7 megawatts of power on 1 With a smart market, these could be different parties, thus Sep 2011.” Of course, the generator cannot really sell power creating improvements through competition. The first market directly to the factory, because G’s electrons scatter to all parts of this type was implemented in New Zealand in 1996 (Alvey of the power grid as soon as G generates them, and because et al 1998, Hogan et al 1996), and this design is now copied all the spot trade must go through the smart market. But on 1 Sep over the world. These markets clear every few minutes, with a 2011, factory F can demand 7 megawatts from the market lot of money changing hands each time. manager, and pay the going price, say, $0.60/megawatt. To resolve the deal, G now has to pay F $0.10/megawatt for The modern electricity market is an important example of a 7 megawatts. If in fact the spot price of power were only two-sided smart market. Generators are the sellers, offering $0.55/megawatt, then G gets to keep $0.05/megawatt for the to supply power at a range of prices. Wholesale power firms 7 megawatts. Consequently, G has an incentive to keep the (those that sell to homes) and big industrial firms are the spot price of power low, thus stabilizing prices. Meanwhile, buyers, who bid to buy power at a range of prices. To clear the the factory manager F got what she wanted – lower risk from market, the market manager solves a linear program in which the decision variables are how much power to accept from more reliable prices. each generator, the flow of power on each line, and how much More examples of smart markets power to provide to each distributor. Radio frequency auctions The spectrum auction is a one-sided smart market cleared by an integer program (McCabe et al 1991, Chakravorti et al 1995). Participants purchase radio spectrum licenses from government. These combinatorial auctions are cleared as bid, rather than at prices based on dual variables. The problem is combinatorial due to radio spectrum interference. If I get the license for frequency 980MHz in Copenhagen, I don’t want the government to give someone else the license for 980MHz in nearby Lyngby. I want the The flow-on-the-power-line variables appear in constraints which ensure balance of flow at each power line connection (node), like ∑node i flowi,j – ∑node k flowj,k = 0 for each node j. Picture one of those industrial-looking places with lots of transformers and high tension wires – that is probably a node in this model. The dual price pj on this constraint is the nodal price at j. If a generator were willing to put in another megawatt of power there, the market manager should pay the generator pj. If a wholesaler or factory were to take another megawatt of power there, the market manager should charge them pj. By clearing the market based on the dual prices, participants are charged on marginal values, rather than as bid. ORbit 19 17 tutorial Natural gas Schrage 1993). The system ensures that the class seats go to those students who most want them, while ensuring that Natural gas, transported over cross-country pipe networks, the number of students in each class stays within the room is sometimes managed with a smart market (McCabe, Ras- capacity. senti & Smith 1990), as in Australia. The system operator serves as the market manager. The market manager has to Smart markets are now being proposed for environmental match gas supply to demand, while ensuring that flows do not services, including water (Murphy et al. 2000, Raffensperger exceed pipe capacities. Gas suppliers offer to sell a range of et al. 2009). quantities at a range of prices. Distributors bid to buy a range of quantities at a range of prices. To clear the market, the market manager solves a linear program in which the decision variables are the gas to accept from each supplier, the flow of gas on each pipe segment, and how much gas to provide to each distributor. As with electricity markets, after solution, the primal variables prescribe the optimal flows, and the dual variables provide the market clearing prices. Conclusion Smart markets are a hot area in operations research. I’ve left out a lot of applications! Often, the models are not particularly complicated, nor are their solution. Rather, the difficult bits are the market rules, defining what is actually traded, and making sure that the prices give the right incentives to participants. The process of determining the initial rights can be politically charged, and sometimes causes the whole project to fail. Airplane take-off and landing slots When implemented, however, society can enjoy enormous The term smart market appears to have been first used gains from much better allocation of complex resources. by Rassenti, Smith, and Bulfin (1982), who proposed a combinatorial auction for airplane take-off and landing slots. Acknowledgement (Asking a jumbo jet pilot low on fuel how much he’s willing to pay to land probably wouldn’t work too well!) The idea is that Thanks to E. Grant Read who tutored me in smart markets. airlines would bid cj for a package, which means at a minimum a take-off at one airport and a landing at another airport. But References a package can be more complicated than just a take-off and I pinched some of this essay from the Wikipedia page on Smart landing pair. An airline would want to route its planes out of its Market, which I initially authored, http://en.wikipedia.org/wiki/ home hub and eventually back to its home hub. Constraints Smart_market. included capacity at each airport, and routing logic for each airline. • Alvey T., Goodwin D., Xingwang M., Streiffert D. and Sun D. (1998), A security-constrained bid-clearing system for the Is this a one-sided or two-sided auction? It would be one-sided NZ wholesale electricity market, IEEE Trans. Power Systems, if the government decided that it owned all the rights, like radio 13(2), 340-346. spectrum, and the airlines had to pay for every package. But • Figliozzi, Andres M., Mahmassani, H. S., and Jaillet, P. the airlines would think that was too risky, and would want to (2003). Framework for study of carrier strategies in auctionbuy contracts where they bought continued rights for a long based transportation marketplace, Transportation Research time, say 5 years, or permanently. It could then be two-sided, Record: Journal of the Transportation Research Board, 1854(because an airline could sell its right to another airline. See 1), 162-170. also Jaikumar (1980). • Brewer, P. J., and Plott, C. R. (2002). A decentralized, smart market solution to a class of back-haul transportation Heaps more. problems: Concept and experimental test beds. Interfaces, The Chilean government uses a smart market to choose 13-36. caterers for school meal programs (Epstein et al 2002). Their • Caplice, C., and Sheffi, Y. (2003). Optimization based market rules included strict requirements for participating, procurement for transportation services. Journal of Business Logistics, 24(2), 109-128. which raised the professionalism and quality of the bidders. • Chakravorti, B., W.W. Sharkey, Y. Spiegel and S. Wilkie The University of Chicago’s Booth School of Business uses (1995), Auctioning the Airwaves: The Contest for Broadband a smart market for course registration (Graves, Sankaran & PCS Spectrum, J. Econ. & Mgt Strategy, 4(2), 267-343. 18 ORbit 19 tutorial • Epstein, Rafael, Lysette Henriquez, Jaime Catalán, Gabriel Y. Weintraub, Cristián Martinez, A Combinatorial Auction Improves School Meals in Chile, Interfaces, 32(6), Nov-Dec 2002, pp. 1-14. • Graves, R.L., J. Sankaran, and L. Schrage (1993), An Auction Method for Course Registration, Interfaces, 23(5). • Groves, T. (1973), Incentives in Teams, Econometrica, pp. 617-631. • Hogan W.W, Read E.G and Ring B.J. (1996), Using Mathematical Programming for Electricity Spot Pricing, Int’l Trans. in Operations Research, 3, (3-4), 243-253. • Jackson, B.L. and J.M. Brown (1980), Using LP for Crude Oil Sales at Elk Hills: A Case Study, Interfaces, 10(3) June, pp. 65-70. • Jaikumar, R. (1980), Mathematical Programming Approaches to the Design of Auctions: A Study of the Auction of Landing Rights at Congested Airports, Economic Forum, 11, pp. 29-47. • Ledyard, J. O., Olson, M., Porter, D., Swanson, J. A., and Torma, D. P. (2002). The first use of a combined-value auction for transportation services, Interfaces, 4-12. • McCabe, Kevin, Stephen Rassenti, and Vernon Smith (1990), Auction Design for Composite Goods: The Natural Gas Industry, J. of Economic Behavior and Organization, Sep, 127-149. • McCabe, Kevin, Stephen Rassenti, and Vernon Smith (1991), Smart computer-assisted markets, Science, v254, 534-538. • Moore, E.W., J.M.Warmke, and L.R. Gorban (1991), The Indispensable Role of Management Science in Centralizing Freight Operations at Reynolds Metals Company, Interfaces, 21(1), Jan.-Feb., pp.107-129. • Murphy, J. J., Dinar, A., Howitt, R., Rassenti, S. J., and Smith, V. L. (2000). The Design of ‘Smart’ Water Market Institutions Using Laboratory Experiments, Env & Resource Economics, 17(4), 375-394. • O’Neill, R.P., P.M. Sotkiewicz, B.F. Hobbs, M.H. Rothkopf, W.R. Stewart (2005), Effective market-clearing prices in markets with non-convexities, European J of Operational Research, 164 269-285. • Pekec, Aleksandar and Michael H. Rothkopf (2003), Combinatorial Auction Design, Management Science, 49(11), Nov 2003, pp. 1485-1503. • Raffensperger, J. F., Milke, M. W., and Read, E. G. (2009). A deterministic smart market model for groundwater, Operations Research, 57(6), 1333-1346. • Rassenti, S.J., V.L. Smith, and R.L. Bulfin (1982), A Combinatorial Auction Mechanism for Airport time Slot Allocation, Bell Journal of Economics, 13(2), pp. 402-417. • Rothkopf, M.H., A. Pekec, and R.M. Harstad (1998), Computationally Manageable Combinational Auctions, Management Science, 44(8) Aug, pp. 1131-1147. • Sheffi, Y. (2004). Combinatorial auctions in the procurement of transportation services. Interfaces, 245-252. • Song, J., and Regan, A. (2003). Combinatorial auctions for transportation service procurement: The carrier perspective, Transportation Research Record: J of the Transportation Research Board, 1833(-1), 40-46. Dr. John F. Raffensperger is currently Senior Lecturer in Management Science, Dept. of Management, University of Canterbury, Christchurch, New Zealand. He obtained his PhD from the University of Chicago’s Graduate School of Business. This article was written while he was at Denmark Technical University on a IRSES/OptALI faculty exchange, funded by in part by the EU and the NZ Ministry of Research, Science and Technology. ORbit redaktionen efterlyser artikler og annonceringer til bladet. Hjælp med at gøre ORbit til et godt blad ved selv at bedrage med relevant materiale. Alt materiale sendes til editor@dorsnet.dk ORbit 19 19 nyhed Af Joachim Dahl Applications of Optimisation 2012 Det årlige DORS arrangement Applications of Optimisation blev i år afholdt den 30. maj på Axelborg i København. Arrangementet var det fjerde af sin art, hvor det første blev afviklet i 2008, og formålet med arrangementerne er primært at skabe kontakt mellem dankske operationsanalytikere gennem en temadag med foredrag fra både industrien og forskningsinstitutioner. Arrangementet i år var det hidtil største med 59 registrerede deltagere, hvilket overgik arrangørernes forventninger. Som et nyt tiltag var de faglige indlæg i år opdelt i to særskilte temaer; et tema omkring anvendelsen af optimering i den finansielle sektor, og et tema omkring anvendt operationsanalyse og logistik. Finansiel optimering investeringsfima. Hans præsentation gav et både spændende og humoristisk Finansiel optimering som disciplin er indblik i de praktiske værktøjer en mateområde, hvor der traditionelt anvendes matisk investeringsrådgiver bruger i sit både optimering, statistisk og operati- daglige virke. onsanalyse (og mere generelt anvendt matematik) i stort omfang, hvilket Anvendt operationsanalyse motiverede planlægningen af en praktisk orienteret foredragsrække, men Arrangement indeholdt også tre indlæg foredrag omkring både teori og praktisk om mere traditionel operationsanalyse. anvendelse. Wim Vandevelde fra Procter & Gamble Raphael Hauser fra Oxford universitet holdt et spændende foredag "Distriholdt et introducerende foredrag med bution Network Optimization" omkring titlen "Convex Optimisation in Finance den globale planlægning af fabrikatiand Quantitative Trading", der både onsbeliggenheder og forsyningsruter, introducerede grundlæggende begreber der foretages i Procter & Gamble med samt skitserede mere forskingsorien- 5 til 10 års intervaller. Denne optimering terede ideer. Fra et praktisk synspunkt foretages ved hjælp af firmaets egne var en af hans vigtigste pointer at den specialudviklede algoritmer, hvilket er grundlæggende teori bag Markowitz nødvendigt for at håndtere de store prooptimering (af aktieporteføljer) produ- blemdimensioner. cerer gode afkast i praksis under vise forbehold, hvilket ellers ofte anfægtes. Dernæst præsenterede Kourosh M. Rasmussen med tilknytning til både danmarks tekniske universitet (DTU) og firmaet FinE Analytics ApS et webbaseret produkt til portefølje optimering udviklet med øje for selvstændige private investorer. Produktet har forskellige risikoprofiler, og fremadrettet arbejder firmaet på at udvikle heuristikker til at detektere og forudsige generelle trends på aktiemarkedet, så investorerne kan konsolidere sine investeringer i nedgangsperioder. Figur 1: Raphael Hauser fra Oxford universitet forelæser om financiel optimering. 20 ORbit 19 Endelig afholdt Thomas Schmelzer et indlæg med titlen "Convex programming in quantitative hedgefund". Thomas Schmelzer har tidligere arbejdet for forskellige større engelske investerings- Figur 2: Jürgen Kohl fra ILOG Optimization, fonde, og har for nyligt stiftet et mindre IBM Software Group. nyhed Figur 3: Networking ved DORS arrangementet. Dernæst holdt Jürgen Kohl fra ILOG/ IBM et indlæg "getting the price right and other applications of business optimisation", hvor han diskuterede forskellige konsulentopgaver han har løst hos ILOG/IBM. Networking En vigtig del af arrangement er networking mellem deltagelerne; for flere deltagere er DORS arrangementet den eneste tilknytning til fagområdet og tidligere bekendte og kollegaer. Defor Afslutningsvist gav Rune Møller Jensen, vil vi fra arrangørernes side tilstræbe IT universitet et foredrag "Stowing the at der fremover afsættes mere tid til right containers on container vessels". networking. Det gav et spændende indblik i de problemstillinger og udfordringe besvarelser der er ved pakning af containerskibe. Han illustreredede hvordan en Fremtidige arrangementer optimal pakning af containerskibe er et vanskeligt problem, der har potentialle Applications of optimisation er måske vores forenings vigtigste tilbagevenfor enorme besparelser. dende begivenhed, og vi forventer at Overrækkelse af DORS afholde arrangement regelmæssigt hver prisen sommer. De umiddelbare tilbagemeldinger vi har modtaget fra deltagerne Som noget nyt blev vinderen DORS er at et opdelt tema med både klassisk prisen for bedste speciale indenfor operationsanalyse samt en introduktion operationsanalyse udnævnt ved arran- til et måske mindre kendt fagområde er gementet. Vinderen af prisen for bedste blevet vel modtaget. Til planlægningen speciale 2010-2011 var Jakob Dirksen, af fremtidige arrangementer modtager med specialet "Disruption Management DORS bestyrelsen meget gerne forslag in Liner Shipping". Læs mere om spe- til temaer eller foredragsholdere. cialet på side 9. AOO 2012 blev arrangeret af Joachim Dahl og Mikkel Sigurd. Joachim har en Ph.D. grad i signalbehandling fra Aalborg universitet. Han arbejder for MOSEK ApS med udvikling af algoritmer til konveks optimering. Mikkel har en Ph.D. grad i operationsanalyse fra danmarks tekniske universitet. Han er ansvarlig for operationsanalyse hos Mærsk Line A/S. Begge er medlem af DORS bestyrelsen. ORbit 19 21 undervisning By Marcel Turkensteen A sustainable course? STEP 1: WAREHOUSE LOCATION PROBLEM This note is about the experiences with an elective course that I am giving as part of the master program in Logistics & Supply Chain Management at Aarhus University, called Sustainable Supply Chain Management, or, to reduce the energy use in writing this article, SSCM. ASSUMING THAT: - EACH POTENTIAL SITE HAS THE SAME FIXED COSTS FOR LOCATING A FACILITY AT - THE FACILITIES BEING SITED DO NOT HAVE CAPACITIES ON THE DEMAND THAT THEY CAN SERVE, IT IS AN “UNCAPACITATED” - ONE KNOWS, A PRIORI, HOW MANY FACILITIES SHOULD BE OPENED. P-MEDIAN MODEL WITH NEIGHBOURHOOD SEARCH IMPROVEMENT CASE 1: ONE WAREHOUSE COVERING ALL DEMAND NODES THE C But hey, why do we worry about sustainability, about reducing CO2 emissions, and about saving polar bears? Global warming was a hot issue only a few years ago. Not anymore. After the economical devastations of the financial crisis and now the euro crisis, sustainability is something we cannot afford. Our planet has to be saved at some other point of time. This line of thinking misses a very important point. The word ’sustainable’ suggests a long term horizon. In recent management theory (for example Hart (1997) and more recently, Porter (2011)), the purpose of an organization is to add value to society in the long run; only then it continue to prosper. Value is not added with destructive practices, such as pollution. In this vision, sustainability and reduction of environmental impact is not a luxury. It should be a key component of an organization’s long term decision making. So what does this imply for logistics, or for supply chain management? An intuitive logistics approach would be to minimize the CO2 emissions from transportation or, a bit more advanced, include them in a model with multiple objectives, where there is some theoretical cost α to each unit emission. I think this approach is too simple and narrow. Firstly, the way of modeling suggests that reduction of the environmental impact is a sacrifice. A manager can reduce emissions, but thereby reduces profits as well. Unless of course, one motivates it from ‘marketing’: if we cut our emissions from transport by X%, then customers will buy our products. However, this works if your entire organization and your entire product can be considered green, not just the transportation. Secondly, it implies that transportation is the source of pollution and so transportation should be tackled. However, it may not be smart to view transportation in isolation from the other components of the logistics process such as purchasing, warehousing and waste management. One of many examples where reducing transport can thus deteriorate CO2 emissions is the following. It can very well be that the collecting of valua- 22 ORbit 19 CASE 2: FOUR WAREHOUSES COVER WAR FRED WAREHOUSE LOCATED IN: AARHUS TOTAL DEMAND-WEIGHTED DISTANCE: 803,770 TOTA TONNE KILOMETERS TONN AVERAGE DISTANCE: 149.6 KM AVER APPROX. CO2 EMISSIONS: 474.7 T APPR TOTAL DEMAND WEIGHTED DISTANCE AND THE CO2 EMISSIONS DECREASE BY 8 CO2 SAVINGS: 400 T STEP 2: WAREHOUSE ENERGY EFFICIENCY AND SUSTAINABLE DESIGN THE ENERGY CONSUMPTION OF A WAREHOUSE CONSISTS OF 3 MAIN SOURCES: SUSTAINING THE TARGETED TEMPERATURE, WAREHOUSE LIGHTING, MECHANICAL HANDLING EQUIPMENT. THE ENERGY CONSUMPTION THROUGH THESE THREE ACTIVITIES CAN BE LOWERED BY CAREFUL DESIGN AND HOUSEKEEPING MEASURES AND USING THE MOST EFFICIENT TECHNOLOGIES AND PRODUCTS. INCORPARATING GREEN ERENGY CAN B FOR THE WAREHOUSE ENERGY MIX: BIOMASS (WOOD CHIP O - SOLAR PHOTOVOLTAICS - RECOVERED PROCESS W REFRIGERATION PLANTS - RECOVERED KINETIC ENE AIR, GROUND OR WATER USING ALL THE NEW TECHNOLOGIES AND RENEWABLE ENERGY SOURCES ON SITE CAN LOWER CO2 EMISSIONS BY 39% TRADITIONAL, NON-SUSTAINABLE SOLUTIONS. HOWEVER THE MOST EFFICIENT SOLUTIONS CAN BE APPLIED ONLY TO BIG WAREHOUSES, THEREFORE THE CO2 EMISSIONS BURDEN W CASE(ASSUMING THAT IT HAS 60,000 SQ M) THAN IN THE FOUR, SMALLER WAREHOUSES CASE(10-15,000 SQ M EACH): 2,854 t 4,680 t 1% CO2 emissions reduction acuired through sustaianble, energy efficient warehouse design Ap kil dem STEP 3: TRADE-OFF BETWEEN LOCATION OF AND THE WAREHOUSING ENERGY EFF ble materials after disposal leads to significant reductions of CO2 emissions, since the materials do not have to be produced from scratch again. Another example is the first poster, by Jonas Rasmussen (from AU Herning), which presents the assignment of one of our students. The decision is how many warehouses to place. Adding more warehouses can reduce distances and hence emissions, but there are savings from having larger warehouses, both in environmental impacts and costs, as well. undervisning ” HEURISTIC RING THE DEMAND NODES LOCATED CLOSEST TO THE FACILITIES REHOUSES LOCATED IN: AARHUS, DERIKSHAVN, KOLDING, COPENHAGEN AL DEMAND-WEIGHTED DISTANCE: 124,470 NE KILOMETERS RAGE DISTANCE: 23.2 KM ROX. CO2 EMISSIONS: 73.5 T 85%. BE DONE THROUGH USING RENEWABLE SOURCES OR OTHER WASTE), WIND, SOLAR THERMAL, S, WASTE ENERGY, SUCH AS HEAT FROM S OR AIR COMPRESSORS, ERGY, R THERMAL-EXCHANGE UNITS. AND ENERGY USE BY 40% VERSUS WILL BE LESS IN THE ONE, BIG WAREHOUSE pprox. 30,898 tonne lometers reduction in mand-weighted distance acuired by location optimalization F WAREHOUSES FICIENCY Thirdly, the measurement of the environmental impact of a product is actually quite a challenge and should be performed properly before informed decisions can be taken. This is the field of Life Cycle Analysis (or Assessment, abbreviated to LCA). Here, one measures the environmental impact of a product from some starting point, ideally the extraction of raw materials, to some ending point, which can be the customer, the usage or the disposal. Many exam papers in SSCM contain basic LCA for some competing alternatives (e.g. stone paper versus wood-based paper, or electronic distribution of media files versus physical distribution). Finally, green or sustainable logistics usually means that the activities themselves are carried out in a green way. Alternatively, one could view green logistics as the design of logistics networks to enable activities that are good for society and the environment, such as the replacement of fossil fuels and the collection of waste. As another example, the second poster, by Stefan Maagaard Nielsen (from AU) discusses the problem of setting up battery stations for electric cars in Århus (after arguing how the use of these vehicles is environmentally better than regular cars). The course SSCM does not provide a standard, off-the-shelf, one-size-fits-all approach, but it provides a set of tools, some of them mathematical, some of them conceptual. The students work under supervision with their individually chosen projects. As the field of research is multi-disciplinary, it is very interesting to see what students from other fields, such as management, marketing, and innovation can contribute. This is challenging, but definitely rewarding. Marcel Turkensteen (the Netherlands, 1979) is a lecturer at CORAL (Center of Operations Research And Logistics) at the Aarhus University. His research interests include routing and network problems and in particular the influence of the environment on logistics decisions and vice versa. ORbit 19 23 artikel Af Martin Joborn Optimering för ökad punktlighet ocn minskad energiförbrukning Tågtrafikledningssystemet CATO (Computer Aided Train Operation) har nyligen inköpts av både LKAB och Arlanda Express, och installeras för närvarande hos båda företagen.Totalt görs 48 lokinstallationer. Tester har visat mycket lovande resultat: CATO förbättrar punktligheten, minskar energiförbrukningen med upp till 25% och ökar den totala effektiviteten. Kärnan i systemet är en optimeringsmodul, som beräknar optimal hastighet i varje ögonblick. optimering och GSM-R, järnvägens CATO-TRAIN beräknar kontinuerligt digitala kommunikationssystem, gjort den optimala hastighetsprofilen så att fullskaliga implementeringar möjliga. tåget når sin målpunkt i rätt tid. Den optimerade hastighetsprofilen skall CATO består av två delar, CATO-TCC alltid följa den givna tidtabellen, men - modulen på trafikledningscentralen tar samtidigt hänsyn till andra aspek- och CATO-TRAIN -modulen som ter, som att minimera energiförbrukfinns ombord varje lok. Dessa enheter ningen, minska slitage på fordon och kommunicerar via GSM-R digital radio. bana, lokprestanda, förarergonomi CATO-TCC är kopplat till Trafikverkets och passagerarkomfort. Den optimala tågledningssystem och får kontinuerligt hastighetsprofilen visas i förarens uppdaterad information om t.ex. tågdata CATO-gränssnitt och är rådgivande. och aktuell tidtabell. CATO-TCC tolkar Optimeringen sker i realtid och hastigCATO är utvecklat av järnvägskon- informationen och skickar instruktioner hetsprofilen uppdateras kontinuerligt så sult- och mjukvaruföretaget Transrail till tågen uttryckt som målpunkter, dvs de att råden till lokförare alltid är aktuella. Sweden AB i FoU-projekt, samfinan- positioner och hastigheter som skall nås Förargränssnittet är ergonomiskt och sierade av Trafikverket, LKAB och vid givna tidpunkter. Detta gör det möjligt utformat i samarbete med avdelningen Transrail. att köra tåg enligt det optimala operativa för människa-dator-interaktion vid Uppscenariot beaktande hela trafiksituatio- sala Universitet. HastighetsrekommenTransrail formulerade de konceptuella nen. Inte bara målpunkter, men också dationerna är enkla att följa – utbildning konturerna av CATO för många år den aktuella linjeprofilen med topografi, av förare har visat sig vara mycket lätt. sedan, redan innan den nödvändiga hastighetsbegränsningar och hastig- Kommunikationen med driftledningstekniken fanns till hands. Idag har hetsnedsättningar, hämtas till tåget. centralen ger trafikinformation i realtid utvecklingen av datorer, algoritmer för om situationen på en linje, snarare än bara den statiska tidtabellen. Detta gör att tågen kan köras i enlighet med den faktiska trafiksituationen och optimeringsberäkningarna baseras alltså på den operativa, uppdaterade, tidtabellen. Fjärrtågklarerarna på driftledningen får dessutom kontinuerlig feedback från CATO så att de vet att de planer som görs är möjliga och Figur 1: LKAB:s IORE-lok, nu med energioptimerande hastighetsförslag och samordnad möteshantering styrd från på väg att uppfyllas. driftledningscentralen. Foto: LKAB. 24 ORbit 19 artikel är en fråga om att alltid använda den för stunden tillgängliga körtiden på ett optimalt sätt, utan att riskera försening. Även i den fasta tidtabellen finns det ett visst tids-slack, dvs för att uppnå robusthet är körtider i tidtabellen lite långsammare än om tågen skulle kört på absolut kortast möjliga tid. Figur 2: Lokförarens gränssnitt till CATO en bland annat hastighetsförslag och information om aktuell tidtabell. CATO gör det möjligt för trafikledningen att kontrollera tågrörelserna vilket gör att både lokförare och fjärrtågklarerare kan lita på att tåget kommer fram till målpunkten i tid och med önskad hastighet. Onödiga inbromsningar och stopp kan undvikas. Den tillgängliga körtiden på en bansträcka kan ändras från dag till dag beroende på aktuell trafiksituation. Det gör att den optimala hastighetsprofilen också varierar mellan olika tåg och olika dagar. Den optimala hastighetsprofilen kan i själva verket vara mycket olik den hastighetsprofil som normalt väljs av föraren. Marknadsutsikterna för system som CATO är mycket goda. Det finns en ständig press på järnvägarna för att minska driftskostnaderna och energiåtgången, samtidigt som robustheten i järnvägsnätet måste förbättras. Ökad järnvägstrafik och behovet av att använda infrastrukturen effektivt i kombination med stigande energikostnader och miljömedvetenhet CATO minskar driftskostnaderna, kommer att driva efterfrågan på system förbättrar punktligheten och ökar tra- som CATO. fikkapaciteten i infrastrukturen. Möjligheten att hantera störningar i trafiken förbättras kraftigt. Lokföraren är alltid informerad om den aktuella trafikplanen och trafikledaren vet att tågen kommer Martin Joborn att köras enligt den gällande planen. Minskade driftskostnader är inte bara en har disputerat i fråga om minimerad energiförbrukning, optimeringslära utan också t.ex. förbättrad punktlighet, vid Linköpings minskat slitage på bromsar och bana, Universitet inom bättre utnyttjande av rullande materiel transportoptimeoch personal, etc. Dessa är alla stora ring. Han arbefördelar för järnvägssystemet i allmäntar på Transrail het, för operatörer, infrastrukturförvaltare Sweden AB som senior konsult och och kunder. Kostsamma investeringar i optimeringsexpert. Han har även infrastruktur kan undvikas eller minskas eget litet företag som utvecklar genom användning av CATO. CATO programvara för schemaläggning klarar en mycket hög grad av komplexiav sportevenemang. Martin är tet vad avser typ av dragfordon, rullmotmedlem i SOAF:s styrelse sedan stånd, linjeprofil, väderförhållanden etc. 2003 och var ordförande 2008vilka alla kan hanteras av systemets 2011. optimeringsalgoritmer. Storleken på energibesparingen som uppnås med CATO beror på ett antal faktorer, t.ex. den vertikala profilen på linjen, typ och vikt av tåget och tillgänglig körtid. Beräkningar och tester visar att CATO kan minska energiförbrukningen med så mycket som 20-25% även om tågen körs med en högre än normal medelhastighet. Optimeringen Figur 3: Arlanda Express med CATO är både punktligt och energioptimalt. Foto: Patric Johansson ORbit 19 25 artikel By Karina H. Kjeldson, Berit D. Brouer, and Christian E.M. Plum ESI 2012 EURO Summer Institute on Maritime Logistics June 3-15 2012, Bremen, Germany EURO organiserede i perioden 3. Juni – 15. juni, 2012 et såkaldt EURO Summer Institute (ESI) om Maritime Logistics i Bremen, Tyskland. EURO financierede deltagelsen og opholdet og DORS financierede transporten til og fra Bremen. Antallet af deltagere var begrænset til 17 personer, som skulle udvælges af EURO blandt alle indstillede kandidater fra de nationale OR-selskaber i EURO. DORS opstillede 3 kandidater (Karina Hjortshøj Kjeldsen, Berit Dangaard Brouer og Christian Edinger Munk Plum) og til stor glæde blev alle 3 kandidater fra DORS udvalgt! Virkelig flot, og noget DORS kan være stolt af, og der skal lyde et stort TILLYKKE til Karina, Berit og Christian. Læs om deres tur her. The summer institutes In October 2011 DORS nominated three applicants for participation in the EURO Summer Institute on Maritime Logistics (ESI2012). The applications were sent to EURO and the final selection of participants was made by a Scientific Committee on the basis of the submitted papers. From all over the world 23 early stage researchers were accepted for ESI2012 representing universities from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Switzerland, Turkey, Ukraine, The United Kingdom as well as Australia, Brazil, India, New Zealand and the United States. In January 2012 we were informed that all Danish applicants had been accepted. The series of EURO Summer and Winter Institutes (ESWIs) was launched in 1984 at the initiative of J.P. Brans. The idea is to gather a group of early stage researchers within a particular field of operations research, by arranging a two week conference for them to present and discuss their research with each other and a selected group of invited senior experts in the field. EJOR has a special issue for the ESWIs for the research papers presented at the institute. The 2012 Summer Institute focused on Maritime Logistics and was jointly organized by the Universities of Bremen and HalleWittenberg and was held in Bremen The EURO summer institute 2012 was from June 3rd till June 15th 2012. sponsored by EURO, the Gesellschaft 26 ORbit 19 for Operations Research (GOR) and the organizing universities. Participation and accommodation was free for all participants. Additionally, the travel costs were covered by DORS and we are very grateful to all sponsors for giving us the opportunity to participate in the ESI 2012. Two weeks on maritime logistics The Summer Institute started on Sunday the 3rd of June with a welcome reception at the Bremen youth hostel, which was the base camp of the ESI2012. The reception was an opportunity for the 23 participants to meet each other and the artikel On Monday afternoon a city tour of Bremen with native guide Prof. Dr. Christian Bierwirth was organized. We were introduced to the City Hall of Bremen and the history of the Hanseatic cities, which gave a good introduction to the strength of maritime trade in this city. Wednesday we visited the impressive semi-automatic container terminal Hamburg Altenwerder. The visit was guided by Prof. Stefan Voß, University of Hamburg, who has been involved in the design of the terminal, which makes extensive use of decision support and automation of the terminal handling operations. Afterwards, Prof. Stefan Voß gave a lecture on recent developments Figure 1: From the left: Prof. Dr. Stefan Voß (University of Hamburg), prof. Dr. Christian in seaport terminal management at the Bierwirth (Martin-Luther-Universität Halle-Wittenberg), Dr. Frank meisel (Martin LutherUniversity of Hamburg. The day ended Universität Halle-Wittenberg) and Prof. Kjetil Fagerholt (NTNU), at Bremenports. with an unforgettable, but rainy city tour two main organizers Prof. Dr. Christian rations. Six participants presented their of Hamburg. Bierwirth (Halle-Wittenberg) and Dr. work within the subject supplemented by Frank Meisel (Halle-Wittenberg). a lecture by Prof. Dr. Christian Bierwirth Thursday and Friday the focus was on on Seaside operations planning in conHinterland Transportation. Five particiThe scientific programme was based tainer terminals and a discussion round pants presented their research within at the Bremen University Guest House on seaside port operations moderated this field followed by a lecture and a and started Monday June 4th. During by Dr. Frank Meisel, who both have discussion round by Prof. Rommert the course each participant was given extensive experience within the area. 90 minutes for presenting a research paper followed by a group discussion with the aim of preparing the research paper for a publication. The scientific programme was divided into five overall subjects: Seaside port operations, Hinterland Tr a n s p o r t a t i o n , Yard Management, Maritime Ship Routing and Maritime Network Design. The first two days we focused on seaside port ope- Figure 2: The ESI2012 participants at Bremen city hall. ORbit 19 27 artikel Dekker, Erasmus University Rotterdam. The presentations took place at the Bremen University Campus. We were invited on a campus tour, which included a visit to the fascinating drop tower at the Center of Applied Space Technology and Microgravity. The campus tour made a final stop at a biergarten close to Campus. The first subject of the second week was yard management. There were five presentations by participants and a lecture by Prof. Iris Vis, University of Groningen, on Equipment selection and yard operations in container terminals. The session on yard management was concluded with a discussion round moderated by Prof. Iris Vis assigning us into groups to discuss new research directions within the field. On Tuesday Prof. Hans-Dietrich Haasis, University of Bremen gave a short presentation and introduced Prof. Mai Sha, Shanghai Maritime University, who talked about intermodal networks in China. Tuesday in the afternoon the session on Maritime Ship Routing and Scheduling was introduced with two participant presentations. Wednesday we visited the city of Bremerhaven. The morning was hosted by Bremen-ports and included a presentation of the company. The presentation helped clarify the differences between a port company and a terminal operator. The morning ended with a very interesting presentation on maritime ship scheduling and inventory routing given by Prof. Kjetil Fagerholt, Norwegian University of Science and Technology. After lunch at the National Maritime Museum we visited the automobile terminal Bremerhaven. The visit started with two presentations where the first gave a general presentation of the terminal and the second one focused on the terminal’s involvement in the wind mill industry in the Northern Sea, which was very impressive. After the presentations 28 ORbit 19 we took a tour of the automobile terminal itself and it is safe to say that several of the participants were dreaming of beautiful cars on their way back to Bremen. Thursday we continued the focus on maritime routing and inventory routing with two participant presentations and a discussion round moderated by Prof. Kjetil Fagerholt. The discussion round focused on best practice in scientific writing and publishing, of great value to all of us. The last day of the institute, Friday, focused on maritime network design and included three presentations by participants. The evening was set aside for the farewell barbecue, which was a great success. Thank you for a great event Before going to the ESI2012 we all felt that two weeks was a very long time to set aside for the summer school, but on the last day of the summer institute, when we were saying our goodbyes, it was obvious that we had made strong connections during our two weeks together. We had had the opportunity to discuss our research and life in the academic world with peer researchers and we had many laughs together. After the ESI2012 we are still in contact with some of the participants for personal and professional reasons. The ESI2012 was truly well organized with a great location, inspiring guest lectures, relevant excursions and great social events. We have gained insight into related research areas within maritime logistics and have larger insight into the maturity of the various research fields. We have also expanded our network within maritime operations research, which is very valuable in this relatively small research field. We would like to thank the organizers, sponsors, guest lecturers and participants of the ESI2012 for a great event. Karina Hjortshøj Kjeldsen holds a Ph.D. from Aarhus University. Karina previously worked at CORAL at Aarhus University. Her research interest is optimization in the liner shipping industry. Berit D. Brouer is a Ph.D. student at the Technical University of Denmark (DTU). The Ph.D. thesis concerns liner shipping network design and is part of the ENERPLAN project. Christian E.M. Plum is a Industrial Ph.D. student at the Technical University of Denmark (DTU) and Network Expert at Maersk Line - Network Strategy. The Ph.D. thesis concerns liner shipping network design. artikel By Steen Nielsen and Erland H. Nielsen Strategic Balanced Scorecard Simulation The purpose of this article is to show how a System Dynamics Modelling approach can be integrated into the Balanced Scorecard (BSC) for a case company with special focus on the handling of causality in a dynamic perspective. The case company’s BSC model includes five perspectives and a number of financial and non-financial measures. The overall idea of BSC is to make the strategy operational, as proposed by Kaplan and Norton (1992; 1996; 2007) and to use the strategy for simulation. Our results indicate that a company may gain great learning insight from such simulation studies. The whole article will be published in a coming issue of Journal of Business and Systems Research. Introduction Modelling is a principal tool for studying complex systems that may be used for prediction, for analysis or for prescription The Balanced Scorecard (BSC) emerged in the 1990s almost (Simon, 1990). In a BSC perspective predictions concern difat the same time as two other ideas, Economic Value Added ferent strategies, their related costs, other KPIs and perspec(EVA) and Activity-Based Costing (ABC). Implementation and tives, and finally the effect on the company’s profitability. utilization of these practices or models could get quite confusing, particularly since each is being passionately advocated To take full advantage of the link of measures and KPIs, meaas the solution for reducing expenses or improving organiza- sures and measurement should be integrated into a single tional performance. However, each can be implemented inde- management system called a Strategic Management System pendently, but organizations will derive the greatest benefit by as shown in figure 1. integrating several of them (Kaplan, 2006). Several surveys specifically investigate the tendency towards combining elements of different accounting practices have emerged during the last 10 years. Original, BSC translates the company’s mission and strategy into objectives and key performance measures. It recommends and offers horizontal and vertical views between financial and non-financial measures, between external and internal measures, between the short and the long term, and between hard and soft values. BSC should also implies a balance between lead and lagging indicators (Kaplan & Norton, 1996). Translating the Vision Clarifying the vision Gaining consensus Feedback and Learning Communication and Linking Communicating and education Setting goals Linking rewards to Performance measures Balanced Scorecard Articulating the shared vision Supplying strategic feedback Facilitating strategy review and learning Business Planning Setting targets Aligning strategic Initiatives Allocating resources Establishing milestones Our approach shows how different metrics and indicators can provide the basis for further development of BSC into a strateFigure 1: The strategic management system (Kaplan & Norton, gic quantitative model. 1996, 2007). ORbit 19 29 artikel when managers question their underlying assumptions and reflect on whether the theory under which they were operating remains consistent (Argyris and Schön, 1978). In contrast to Kaplan and Norton (1996) and Lynch and Cross (1991), the final choice for the company was to bring forward the education and training for the employees and the product innovation and development perspectives. The main outline and ideas of the BSC from the case company are shown in figure 2. The figure includes the classical perspectives and the design of a BSC, where each perspective is formed by a Figure 2: Perceived main relations within the balanced scorecard model. number of KPI’s. Figure 3 illustrates the Figure 1 puts focus on the strategic aspects of BSC. Innocompany’s design of the main informavation companies must use BSC as a strategic management tion flow and shows how these flows interact and that the system to manage their strategies in the long run (Kaplan and perspectives interact with each other e.g., by feedbacks. Norton, 1996). Specifically interesting for the system dynamics approach used in this paper is the feedback and the The vision of the company is a lean and learning strategy as double-loop learning process. Double-loop learning occurs described by Womack and Jones (2003). The closed loop Figure 3: The BSC converted into a SDM structure (SD-diagram). 30 ORbit 19 artikel causal reasoning described above fits directly into the system dynamics modelling tradition as it is used within VENSIM™, which by the way is the software used for this project. VENSIM™ has all the nice essential features for developing a complete system dynamics model, e.g., exploration, analysis and optimization of simulation models (Eberlein & Peterson, 1992). However, one of the basic problems is the problem of causality in general and in system dynamics specifically. in relation to this (Barlas, 1996). Below we have demonstrate two simulation scenarios by the use of system dynamics and the quantitative BSC model. Simulation scenario 1 The model is formulated as a monthly model over a five-year period, and the base-run is set for a company with a ’Production Lead Time’ of six months. This is quite a lengthy production time span and though the model is a ’pull’ based logistics The system dynamic model approach structure, the production lead time clearly disqualifies it from The separate parts above are linked to form a complete being lean at the outset. The outcome is shown in figure 4. dynamic model. The dynamic and integrated construct makes it possible to do simulation and strategic learning and to do From the ’Customer Perspective’ we see that ’Customer real-time research. Strategic learning consists of gathering Loyalty’ is constant over the entire period, and although the feedback, testing the hypotheses on which the strategy was variable ’Recommendations’ oscillates, its average value based and making the necessary adjustments. This is exactly does not decrease over time. what the scorecard should give managers ( Kaplan and Norton, 2007). If, for instance, a company’s employees have improved the performance in relation to some of the drivers (reduced lead times or increased capacity for example), then a failure to achieve the result that was to be expected based on the model (higher EVA for example) mostly likely signals that the model is not fully correct and adequately comprehensive yet. The complete BSC model in the SDM layout is shown in figure 3. From the ’Process & Supply perspective’/’Lean perspective’ we note that the company is facing a growing market. The ’Demand’ increases from an initial value of 2,000 to slightly above 5,000 at the year five. We further notice that all activity variables are increasing on average with moderate oscillations and no signs of alarm. However, a slight warning turns up when the ’Average Unit Throughput Cost’ is considered – it seems to show a non-decreasing path, which is not a good sign. However, it is important to keep focus on the purpose of the model and to continuously perform the necessary validation The ’Financial Perspective’, however, intensifies these worries even further. Though the ’Profit’ seems to increase over the five-year period, the EVA and RoCE measures seem to indicate that business deteriorates over the five-year period. Combined with the message given by ’Average Unit Throughput Cost’, the company is facing a difficult or even bad situation. Action is definitely required in order to improve the general business of the company. Figure 4: Output and KPIs from the cockpit model. ORbit 19 31 artikel shows a persistent positive economic tendency – in our scenario setup this amounts to approximately two years. Especially the drop in the RoCE measure after six months might be very worrying in order to maintain confidence in the decision to lower the ’Production Lead Time’. One could easily imagine the discussions that might arise between logistics people and controlling people in the company, especially if they do not have a full BSC ’cockpit’ at their disposal. Figure 5: Output and KPIs from the cockpit model. Simulation scenario 2 This scenario is characterized by a reduction of the ’Production Lead Time’ from six months to three months and an increase in the number of staff trainings from zero to five training days per month. Though the nature of the analysis has not – so far – been very general, some characteristically features do, however, become evident. The results are shown in figure 5. Conclusions We have used the BSC theory as the basic research frame for developing and testing a holistic model with illustrations from different lean scenarios on the financial perspective. A major issue of senior executives is ‘How do I make sure that the organization is executing our strategy?’ The research idea was also motivated by the growing pressure on companies to introduce more holistic decision models for decision-making Increasing the ’Number of Trainings’ clearly has a significant productivity effect as should be expected. From the ’Employees Perspective’ plot we note that the ’Staff’ curve is now lower than the ’Staff Capacity’ curve owing to the increase in productivity. However, it can also be noted that the general need for ’Staff Capacity’ has decreased in this scenario, the most probable reason being the decrease in the ’Production Lead Time’. It is a well-known fact that a decrease in the ’Production Lead Time’ has a very positive effect in pull systems as it increases the performance in all logistics aspects. However, with regard to the financial measures, this well-behaving aspect seems to tell a somewhat different story. ’Profit’ is not the best measure to tell us much about the general healthiness of the business. In our scenarios it increases simply because the market is increasing, whereas both the ’EVA’ and the ’RoCE’ measures did show definitely warning signals when the ’Production Lead Time’ is at its high value. Lowering the ’Production Lead Time’ significantly turns ’EVA’ into a positive financial signal, whereas the ’RoCE’ only after some time Figure 6: The simulation framework. 32 ORbit 19 artikel (Otley 1999; Kaplan and Norton, 2007). The following figure 6 puts emphasize on the strategic feedback learning process, where system dynamics simulation models play an important role. The company can, therefore, use the model in their active planning for determining when to change or revise the strategy. Design, forthcoming, in International Journal of Business and Systems Research. • Otley, D. (1999) ‘Performance Management: A Framework for Management Control Systems Research’, Management Accounting Research, Vol. 10 (4), pp. 363-382. • Simon, H. A. (1991) ‘Bounded Rationality and Organizational Learning’, Organization Science, Vol. 2 No. 1, pp. 125-134. As pointed out by Kaplan and Norton (1996, 2007), it is vital • Sterman, J. D. (2000) Business Dynamics. System Thinking that the company is able to evaluate different strategies on and Modelling for a Complex World, McGraw-Hill Higher Eduthe financial result before, during, and after they are executed. cation, Boston USA. Our model gives this opportunity to get what Kaplan and Norton (2007) call ‘strategic learning’. As pointed out by Sterman (2000) and Simon (1990), the use of SDM may be seen as a natural development for complex situations. Converting and testing more factual and complicated models are important. An advantage for such a model approach is that a company can make risk-free experiments by changing some parts of the model, a strategy or a variable. It may also be the basis for further discussion of the financial benefits for both a short and a long run perspective. References • Argyris, C. and Schön, D. A. (1978) ‘Organizational Learning: A Theory of Action Perspective’, Addison Wesley Company, USA. • Barlas, Y. (1996) ‘Formal Aspects of Model Validity and Validation in System Dynamics’, System Dynamics Review, Vol. 12, No. 3 Fall, pp. 183-210. • Eberlein, R. K., Peterson, D. W. (1992) ‘Understanding Models with Vensim’, European Journal of Operational Research, Vol. 59, 216-219. • Kaplan, R. S. (2006) ‘The Competitive Advance of Management Accounting’, Journal of Management Accounting Research, Vol. 18, pp. 127-135. • Kaplan, R. S. and Norton, D. P. (1992) The Balanced Scorecard – Measures that Drive Performance, Harvard Business Review, No. 1, pp. 71-79. • Kaplan, R. S. and Norton, D. P. (1996) The Balanced Scorecard – Translating Strategy into Action, Harvard Business School Press, Boston, USA. • Kaplan, R. S. and Norton, D. P. (2007) ‘Using the Balanced Scorecard as a Strategic Management System’, Harvard Business Review, July-August, pp. 150-161. • Lynch, R. and Cross, K. E. (1991) Measure Up! Yardstick for Continuous Improvement, Cambridge, Mass., Basil Blackwell. • Nielsen, S., and Nielsen, E.H. (2012). Transcribing the Balanced Scorecard into System Dynamics: From Idea to Erland Hejn Nielsen is currently Associate Professor at at Department of Economics and Business, Business and Social Science, Aarhus University, Denmark. He received his MSc (Econ/Math) degree from University of Aarhus, Denmark. He is currently a member of Cluster for Operations Research and Logistics (CORAL), situated at the Department of Economics and Business, Aarhus University, Denmark. Steen Nielsen is currently Associate Professor at Department of Economics and Business, Business and Social Science, Aarhus University, Denmark. He received his Master’s degree in Accounting from Aarhus School of Business, and his PhD in Cost & Management Accounting from the Stockholm School of Economics. He is currently a member of Cluster for Operations Research and Logistics (CORAL), situated at the Department of Economics and Business, Aarhus University, Denmark. ORbit 19 33 artikel Af Anders Skajaa og Gitte Øskov Skajaa Om optimal tildeling af KBU-forløb Vi viser i denne artikel hvorfor Sundhedsstyrelsens nuværende lodtrækningsmetode til fordeling af KBUforløb (tidligere kaldet turnus) er fundamentalt defekt og i matematisk forstand suboptimal. Ved hjælp af simple eksempler anskueliggøres problemet og vi foreslår som erstatning en optimal metode, som bygger på kendte idéer fra matematisk optimering. Vi demonstrerer, at en kandidat med denne optimale tildelingsmetode i gennemsnit kan forvente at blive tildelt et KBU-forløb der ligger to-tre gange højere på kandidatens prioriteringsliste. Endelig diskuteres hvordan denne metode kan implementeres i praksis og hvordan man kan opnå yderligere forbedringer med advancerede moderne matematiske metoder. Introduktion Efter færdiggørrelsen af kandidatgraden i medicin fra et af landets universiteter, skal de danske læger, som næste skridt i deres læge-uddannelse, gennemføre den såkaldte kliniske basisuddannelse (KBU), der i 2008 erstattede turnus-uddannelsen. Et KBU-forløb består af to halvårlige stillinger, begge i den samme region i landet. Uanset hvorfra den nye læge er uddannet, besættes disse stillinger alene ved lodtrækning. Denne proces forløber ved, at landets i alt N kandidater ved lodtrækning tildeles tal mellem 1 og N . Fra et givet tidspunkt har kandidaten med nummer 1 så ti minutter til frit at vælge blandt de N tilgængelige forløb over hele landet. Derefter vælger nummer 2 blandt de resterende N − 1 forløb osv. For tiden har vi ca. N = 400 . Denne seance er ofte til stor debat og frustration blandt medicinstuderende fordi der er stor forskel på populariteten af forløb. Variationen i popularitet skyldes dels den geografiske placering såvel som de stillinger det enkelte KBH-forløb indeholder. Tildelingsmetoden resulterer ofte i, at personer der bor, har læst, har venner og eventuelt familie i én region, bliver tvunget til en helt anden region af landet. Dette er naturligvis til stor skade for denne person og dennes familie og frygten for at dette sker, har gjort tildelingsmetoden upopulær. 34 ORbit 19 Men hvordan kan KBU-forløbene tildeles på en mere rimelig og hensigtsmæssig måde? I denne artikel vises hvorfor den nuværende procedure fra et matematisk synspunkt er ugunstig og beviseligt suboptimal. Desuden gives et forslag til hvordan man med allerede kendte matematiske metoder kan fordele KBU-forløbene så flere studerende bliver tilfredse - og lige så vigtigt: færre bliver utilfredse. Et illustrerende eksempel Lad os benævne de N nye kandidater som K1 , K 2 , , K N . Tilsvarende findes N KBU-forløb F1 , F2 , , FN . I det følgende illustrerende eksempel antager vi N = 4 . Vi skal altså fordele K1 , K 2 , K 3 og K 4 på de 4 forløb F1 , F2 , F3 og F4 . Hver kandidat prioriterer nogle forløb fremfor andre, og vi antager, at alle kandidaterne kan nedskrive en prioriteret liste med alle forløbene. For eksempel således: F1 F2 F3 F4 K1 1 4 2 3 K2 1 2 4 3 K3 2 1 4 3 K4 2 3 1 4 artikel Tabellen forstås sådan, at hver række viser en kandidats prio- Disse to sammensætninger er tydeligt bedre, hvilket kvaliteteriterede rækkefølge af forløbene. smålet Q også viser. Sundhedsstyrelsens procedure er at trække lod. Hver kandidat tildeles et nummer fra 1 til 4. Lad os sige at lodtrækningen faldt ud sådan at K 2 vælger først, efterfulgt at K1, K 4 og til sidst K 3. Hvis alle kandidater vælger dét tilgængelige forløb, der står højest i deres prioriteringsliste, vil K 2 først vælge F1 . Dernæst vælges F3 af K1, K 4 vælger F2 og til sidst er K 2 tvunget til at vælge F4. Således: Lad Qopt være den bedst mulige (eller optimale) værdi af Q for en given tabel. Den værdi af Q, der i gennemsnit opnås med lodtrækning kalder vi Q lod . Det er klart, at det er nemt at bestemme sådan en optimal sammensætning når N = 4. Vi kan bare betragte tabellen et øjeblik og bestemme den. Men prøv nu at gøre det samme i denne tabel: K1 K2 K3 K4 K5 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 1 5 7 3 4 6 8 9 10 2 8 9 2 5 3 10 1 7 6 4 8 4 4 10 1 9 5 8 6 7 2 2 3 6 4 5 5 9 4 8 1 2 3 7 1 4 8 1 2 2 10 7 1 9 8 7 5 8 3 3 9 3 7 2 10 9 1 3 7 6 10 1 5 9 3 6 8 K 6 2 10 5 K 7 10 K8 4 5 6 K 9 10 9 7 6 7 10 9 1 3 2 6 4 K10 4 5 2. Summen af tallene i en søjle kan fortolkes som et mål for den generelle popularitet af et forløb. Jo mindre sum, jo mere I tabellen ovenfor er skueligt problem. populært. N Vores problem har følgende egenskaber: 1. I hver række af tabellen optræder tallene 1, 2, 3, 4 præcis én gang hver. 6 8 blot lig 10 og det er allerede et uover- 3. En bestemt sammensætning af kandidater og forløb svarer Man vil opdage, at et valg foretaget tidligt for en bestemt i tabellen til at lave én cirkel i hver række sådan at der også kandidat har konsekvenser for senere kandidater og netop dette gør problemet kompliceret. For eksempel: En kandikun er én cirkel i hver søjle. dat, der egentlig er ligeglad om han får forløb F1, F2 eller F3 4. Gennemsnittet af prioriteterne for de realiserede parringer , vælger bare ét af dem, lad os sige F2. Den næste kandidat kan fortolkes som et mål for kvaliteten af den samlede sam- ville meget hellere have F2 end F1 og F3 , men er nu tvunget mensætning af kandidater og forløb. til at vælge F1 eller F3. Han vælger F . Den næste kandidat 1 ville allerhelst have F1 , men skal nu vælge F3. Altså bliver to Kvaliteten af en sammensætning ud af tre kandidater utilfredse, og dét på trods af, at alle kunne have været tilfredse. Vi kan definere et kvalitetsmål Q som summen af de udvalgte prioriteter divideret med N . For en bestemt sam- Dette eksempel blotlægger den helt fundamentale defekt ved mensætning er Q altså gennemsnittet af de realiserede lodtrækningsmetoden. I lodtrækningsmetoden gennemløbes prioriteringer. For vores specifikke lodtrækning har vi Q en tabel som dén ovenfor række for række (kandidat for kan= (1 + 2 + 3 + 3)/4 = 2.25 . Men se nu følgende to sam- didat). Men i hvert skridt bruges kun den information, som er mensætninger, lavet over samme tabel: indeholdt i dén ene række. Dette tildelingsproblem er imidlertid af en sådan karaktér, at det kun kan løses optimalt, hvis man i løsningsproceduren simultant bruger al den information, som tabellen indeholder. Den Matematiske Løsning Når N = 400 er det umuligt for mennesker at løse dette problem optimalt indenfor overskuelig tid. Men fra matematikken ORbit 19 35 artikel findes systematiske procedurer (algoritmer) til at bestemme en optimal sammensætning for en given tabel. Vi behøver ikke forstå detaljerne i, hvordan en sådan virker, men bare vide, at den bestemmer en optimal sammensætning. inkluderer ophold i intern medicin - vil fordelingen af populariteter af forløb være af en Hvis kandidaternes prioritering af forløbene er uniformt type som dén der fordelt, er det matematisk bevist1, at Q lod ≈ ln ( N ). Det er er vist i figur 1. også bevist, at 1.51 ≤ Q opt ≤ 2 . Altså: Hvis populariteten af forløbene var uniformt fordelt og man bruger Sundhedsty- Hvis vi genererelsens lodtrækningsmetode, kan man ca. forvente at få sin rer en fordeling sjette prioritet opfyldt (da ln (400) ≈ 6 ). Med den optimale som denne og Figure 1: Mest realitisk fordeling af sammensætning i stedet, kan hver kandidat ca. forvente at få derpå udfører populariteten af forløb. sin anden prioritet opfyldt. Selvom populariteten af alle forløb vores ekspebestemt ikke er lige stor, fortæller disse resultater noget om riment som beskrevet ovenfor finder vi ca. egenskaberne ved de to tildelingsmetoder - altså om hvor Q lod = 9.98 og Q opt = 4.23, og derfor nu R ≈ 0.42. Alså gode de er i forhold til hinanden. en markant bedre sammensætning ved brug af vores optimeringsalgoritme. Når populariteten af forløbene er fordelt mere skævt, kan vi opnå indsigt i hvor meget bedre den optimale tildeling er end Dette resultat kan belyses lidt bedre: Hvis man tæller antallet lodtrækningsmetoden ved at udføre numeriske eksperimenter af kandidater der får deres første prioritet opfyldt, antallet der i en computer. får deres anden prioritet opfyldt, deres tredje, deres fjerde og så videre, og derefter plotter disse antal med prioriteten ud Numeriske eksperimenter ad x -aksen, får man et billede som det, der er vist i figur 2. Denne figur er dannet ved at generere en fordelingstype som I dette afsnit undersøges via eksperimenter hvor meget bedre den realitiske i figur 1, udregne sammensætninger for begge sammensætningen af kandidater og forløb kunne blive, hvis metoder og så optælle som beskrevet ovenfor. Alt dette er man bestemt den optimale sammensætning ved at bruge gjort 1000 gange og figur 2 viser gennemsnitsfordelingen over en optimeringsalgoritme. For at udføre disse eksperimenter, disse 1000 forsøg. følger vi denne procedure: Vi ser tydeligt hvordan lodtrækningsmetoden er til ugunst for langt flere kandidater. Begge metoder har en klump sandsynlighedsmasse koncentreret til venstre. Men lodtrækningsmetodens klump er bredere – og den fortsætter langt ud i de kedelige numre. Man kan altså med den optimale metode i langt højere grad forhindre, at kandidater ufrivilligt bliver 2. Algoritmen bruges så til at finde den optimale sammensættvunget ud i forløb, de ikke ønsker og/eller er langt fra deres ning af kandidater og forløb. hjem. 1. For hver af de N = 400 kandidater genereres en tilfældig prioriteringsliste - dog sådan at populariteten af forløb er fordelt på en bestemt måde (se nedenfor). Vi danner altså en tabel som dem vist ovenfor. 3. Nu genereres tilfældigt 100 lodtrækninger og det bestemKan det så bruges i virkeligheden? mes hvilken sammensætning hver af disse giver. Hver kandidat vælger blot sit højest placerede forløb som stadig er Ja. Men det er åbenlyst, at metoden skal tilpasses virkelighetilgængeligt (som i virkeligheden). Vi beregner endelig det den en smule. Man kunne fx indvende følgende: gennemsnitlige Q for disse 100 tildelinger, resultatet kaldes Q lod. 1. Kan man virkelig få alle cand.med’ere til at prioritere alle 400 forløb? Principielt ja, men i praksis er det nok svært. Hel4. Endelig kan vi så udregne R = Q opt //Q lod. Hvis fx R = 0.50 digvis er det ikke nødvendigt. Der findes metoder, hvor alle var vores metode ca. dobbelt så god som lodtrækningsmeto- ikke behøver prioritere alle forløb, når bare alle forløb er på den. nogens prioriteringsliste. Men det er klart, at jo bedre og jo mere information man har (~ jo længere prioritetslisterne er), Da visse områder og forløb er specielt eftertragede blandt jo bedre bliver den optimale sammensætning. kandidaterne - særligt de store byer og specielt forløb der 36 ORbit 19 artikel udvælgelsen endnu bedre hvis man stiller kandidaterne spørgsmål, der afslører endnu mere information: Eksempel: Alle kandidater prioriterer de enkelte komponenter af et kbu -forløb såsom typen afdeling, speciale, område, startdato og gør dette uafgængigt af hinanden. Desuden vægtes disse faktorer. Man kan så bruge denne information i en slags interpolations-metode. Dette kan gøres på ret sofistikeret vis ved at løse det såkaldte Collaborative Filtering problem2. Det er med lignende metoder at store digitaliserede virksomheder (fx Amazon, Netflix, Facebook etc.) laver intelligente anbefalinger af produkter til forbrugere baseret på deres købe– og adfærdshistorie. Afsluttende bemærkninger Figure 2:Fordeling af realiserede prioriteter for de to metoder. Bemærk logaritmisk skala på den vertikale akse. 2. Er Q det bedste mål for kvaliteten af en bestemt sammensætning? Ikke nødvendigvis. Men man kan nemt bruge et andet kvalitetsmål ved fx at lade kandidaterne vægte deres prioriterede forløb med andre tal end 1,2, , N . Fx kunne man beslutte, at hver kandidat skulle fordele et antal »point« ud over forløbene – flere forløb måtte gerne tildeles samme antal point, men der skulle være en øvre grænse for hvor mange point et forløb kunne tildeles. 3. Bliver dette ikke meget tidskrævende for kandidaterne og Sundhedsstyrelsen? Under det nuværende lodtrækningssystem tager den samlede parring af kandidater og forløb ca. seks arbejdsdage to gange om året. For hver kandidat kulminerer det med ti minutter bag en computerskærm. Under det foreslåede system skal hver kandidat i løbet af en fast periode udarbejde en liste med prioriteter og evt svare på nogle spørgsmål. Vores gæt er, at kandidaterne er villige til at lægge denne smule arbejde, for derimod at få en meget højere sandsynlighed for at få et tilfredsstillende forløb. Hvis rigtig mange kandidater alle foretrækker meget få forløb, bliver det sværere at stille mange tilfreds – også selvom man bruger denne optimale metode. Men bemærk at det bliver ligeså meget sværere for lodtrækningsmetoden. Altså vokser både Q opt og Q lod . Det vigtige at forstå for den enkelte kandidat er, at man før lodtrækningen er kendt har større sandsynlighed for at få et forløb højt på sin liste ved den optimale metode end ved Sundhedsstyrelsens lodtrækningsmetode. Sandsynligheden for at ligge øverst i lodtrækningen er jo forsvindende lille. Dette er specielt tydeligt illustreret i figur 2. Den foreslåede metode fjerner selvfølgelig ikke upopulære KBU-forløb. I stedet gives de til de kandidater, der bedst accepterer dem. Hvis ingen accepterer dem, svarende til, at alle prioriterer dem nederst, bliver Q opt højst lig Q lod, men aldrig højere. Altså kan den foreslåede metode ikke levere en sammensætning af kandidater og forløb der er ringere end lodtrækningsmetoden, kun bedre. Og i reglen, meget bedre. Noter 1. Se fx Rainer E. Burkard, Mauro Dell’Amico, Silvano Martello: 4. Får man ikke bare en computer der sender folk ad pom- Assignment Problems. SIAM 2009. mern til? Husk nu: Det har man allerede! Forskellen er, at 2. Se fx http://en.wikipedia.org/wiki/Collaborative_filtering denne nye metode, imodsætning til den nuværende, udnytter langt mere af den tilgængelige information til at træffe en intelligent beslutning. Se specielt figur 2: Sandsynligheden for at blive tilfreds og specielt for ikke at blive utilfreds vokser Anders Skajaa er PhD-studerende i anvendt matematik markant. på Danmarks Tekniske Universitet. 5. Kan det egentlig ikke gøres endnu bedre? Jo, sagtens. Den i denne artikel skitserede metode er næsten den simpleste og mest naive tilgang til denne type problem. Man kan gøre Gitte Øskov Skajaa er nyuddannet læge fra Københavns Universitet. ORbit 19 37 DORS pris By Sune Binzer Metaheuristics for High School Planning DORS prisen for 2008/2009 gik til Sune Binzer og Sune Høj Kjeldsen fra DTU Management for deres speciale »Metaheuristics for High School Planning«. Redaktionen ønsker de to kandidater og deres vejleder Thomas Stidsen tillykke og er glade for her at kunne bringe et sammendrag af specialet. The planning jobs of a Danish high school are often many and complex; hiring teachers, planning parent-teacher consultations, choosing elective courses, scheduling the time table. Of these, timetabling has the largest complexity, requires the most resources and has a high impact on the quality of the school’s primary product – the classes. The focus of our master thesis was to use metaheuristics to solve two important parts of the timetabling - elective course planning and the assignment of classes into timeslots, i.e. the actual timetabling. The thesis was carried out in cooperation with the company Macom, which is the provider of the most popular high school administrative system, Lectio, and the produced algorithms were included in Lectio’s ’Class & subject’ module (DK: Time-fag modul). Why metaheuristics? When we started investigating the timetabling problem, a fellow computer science student said: Do not touch this subject, it is impossible to create software for timetabling that can take into account all special demands from tea- chers and principals – many have tried and many have failed. It did also turn out to be a challenge just to formulate an adequate model for Danish high school timetabling. We learned from interviews with Macom and high schools that the most popular planning tools on the market are GAS, which has a tool for assigning elective courses, and TPlan, which assists the timetabling. These software tools seemed to work using direct heuristics developed over many years in cooperation with the high schools. However, the most common method was still to do the elective course packing and the timetabling manually, spending several weeks during the summer period. There was definitely room for improvement. The focus of our project was practical and we were not interested in doing a completely theoretical study of timetabling of a general model that would have no use in practice. There were a few key factors to consider for practical appliance: • The high school administrators are already using the Lectio web administrative system, and would be able to experiment with this without making a major new purchase. 38 ORbit 19 DORS pris The packing of students into classes, and the production of the timetable are the problems best aided by automation, since the rest is very dependent on human evaluation. In theory the packing, teacher allocation and timetabling could be gathered into one model, but that would increase complexity • The high schools are competing finaneven further, and cially, and will be interested in results would not be practical. that can reduce their costs significantly even if it means neglecting a special The Packing Problem requirement from a teacher. The Packing Problem is to distribute students into a number of classes according to their course requests, maximizing the number of fulfilled course requests. These classes must be distributed into a number of blocks in such a way that any student may only attend one class in each block. These classes are subject The problem and its com- to a maximum and a minimum size in plexity regards to the number of students in the class. When distributing the classes into The time table is a result of a year-long blocks, there might also be a maximum chain of planning events: number of classes of certain courses Still we had to consider the special demands for our choice of solution method. The solution method should be able to adapt to model changes. It would also be an advantage if it could run without an expensive IP-solver. That is why we chose to investigate the use of metaheuristics. • Which elective courses to offer that a block can accommodate, due to room restrictions. This way the blocks can be viewed as finished chunks of a time plan for the Timetabling Problem. Thus, the classes of a block can be assigned one or more positions in the timetable without the concern of conflicts. We will not present our mathematical model here, as it has 8 types of constraints. See [HSP]. The following graph shows a simplified version of a sample problem instance: We have 5 courses, the vertices, and 7 student requests, the edges and wish to cut the graph into two blocks with a minimum number of edges in the cut. This graph captures the general idea of the packing problem. However, it is a simplified version and ignores the ability to have doublet classes of the same course, and that a student can have more than two requests. This graph problem is actually the Max 2-Cut problem, which is NP-hard [16]. As hinted in the simplified graph represen- • Which elective courses to establish given the student requests • How to pack the courses into blocks of classes • How to allocate teachers to classes • How to allocate classes in a timetable ORbit 19 39 DORS pris tation of the packing problem, it is pos- resource or room cannot be allocated to sible to polynomially reduce the the Max the same position. K-Cut problem to the Packing Problem • Order constraints. Some classes must and prove it is also NP-hard [HSP]. followed by another class, or have a Timetabling class in parallel. The following is a general definition of timetabling: The problem of allocating a set of events or tasks, each requiring a set of resources, in time and space, subject to a number of constraints. This definition captures the essence of timetabling, but of course there are numerous variants of the problem with additional constraints and types of objective functions. We have encountered several variants of timetabling in the literature. Most of them differ by the organization of the institutions; School, University, Hospital etc. For educational timetabling the most common problems are University Timetabling, Exam Timetabling and School Timetabling. The Danish high school timetabling is somewhat unique, lying somewhere between School and University Course Timetabling. In our model, we assume a given set of time slot positions, p, rooms, o, and classes, c, with predefined resources, r, which are a combination of teachers, t, and students, s. Although rooms, students and students could all be considered resources, they have different constraints and must be segregated. This gives an idea of the nature and complexity of the problem. Unfortuna• Class-spread constraints. Some clas- tely, the problem is even more complex ses must be on different days. as stated earlier, and we have to include the Order and Spread constraints and • Soft constraints \ Objective function: the many soft constraints, to have any chance of applying solutions to this pro• The cost of having class blem in practice. c in position p and room o. Students and teachers should not wait Solution methods between classes. • Allocation and exclusion constraints. Classes must be allocated into exactly A coloring of the graph can solve the one room and position. edge constraints, and in fact, in some research, graph coloring algorithms • Edge constraints. Classes that share a have been tweaked to solve timetabling ORbit 19 The Packing Problem • Teachers should work for a maximum number of days in the time table. In our thesis we briefly look at decomposition schemes and algorithms for • Teachers should work a maximum similar problems, such as the Max K-Cut number of classes each day. and The Chromatic Number of a graph. They do not solve the complete Packing • and more teacher related constraints. Problem, would be hard to tweak to change in requirements, and more difThe edge constraints are named such, ficult to apply in practice since it would because they may be represented as a require an IP-solver. However, the use of similar graph problem, given the classes these could be further researched. as the vertices, and the class resource conflicts as the edges. The following We have investigated two metaheufigure shows a sample graph in which ristics: GRASP (Greedy Randomized the class vertices are coloured such that Adaptive Search Procedure) and Tabu all vertices of the same colour may be in Search. the same position. We divide our constraints into the following groups: 40 constraints, e.g. to include room allocation. We are able to use the graph coloring problem to show that our timetabling problem is NP-hard [HSP]. The GRASP metaheuristic is likely to provide good solutions for this problem, since experiments showed that a greedy algorithm gave good initial results. The greedy construction of a solution: 1. Create elective course classes up to the maximum number of classes by greedily choosing the course subject that has the largest average class quotient. 2. Distribute student groups (students that have chosen same subjects) to classes minimizing conflicts between classes. DORS pris 3. Assign classes to blocks, selecting use some of the same techniques, such the largest class that does not create as the diversification strategies for Tabu any conflicts, or create a new block if Search. possible. We chose to design a Tabu Search and The randomized part of the algorithm Genetic Algorithm for our problem. A is achieved by selecting an element at Greedy algorithm was also implemented random from the list of candidates (aka for reference. Restricted Candidate List), respectively courses and classes in step 1 and 3. Of Our Genetic Algorithm represents a course the selection is biased towards solution chromosome as a (position, the better solutions, using a value based room)-gene with alleles (values) for scheme [3] for step 1 and a cardinality each class and we experimented with based scheme [3] for step 1. After the different selection, crossover and mutagreedy, randomized construction a local tion operators [1]. search method ensures local optimality of the solution. The Tabu Search searches the solution space by doing moves we call Student Choice Exchanges which is a combination of adding a student to a class - fulfilling a student request - and if this generates infeasibility moving a class to another block, possibly removing students from a class. A limited sized Tabu list of such moves is kept to avoid repeating or reversing moves. Both heuristics are of course more detailed than stated here, but this shows the general ideas. Timetabling The use of metaheuristics for timetabling have been investigated in other timetabling research, e.g. Simulated Annealing for School Timetabling [11], Tabu Search for Course and School timetabling [5] and Genetic Algorithms on School Timetabling [6], [7] and Course Timetabling [2]. Most of the articles report good results. We cannot directly use their work for our problem since their formulations are too different from our problem, but it suggests that those metaheuristics may provide good solutions. We can still function. A large number of moves are possible: adding, dropping and swapping classes to and from positions and rooms. We chose a combination of these, which we call ActivityMove, which would move all classes that had related Order constraints, i.e. had to be executed in some order, to another room or position. This move maintains feasibility for the relaxed problem and is able to reach any solution in the search space. The neighbourhood is large (and thus the running time high), but after introducing a room allocation heuristic as part of the move, it was possible to keep it reasonable. The Tabu in the search is to move the activity away from the new position. Also, to ensure proper movement in the search space, long-term memory was introduced; three diversification schemes are part of the algorithm, which will not be covered in detail here. Results The Packing Problem The GRASP and Tabu Search algorithms were implemented in C#. The implementations were unit tested and tuned to find the best parameter settings for respectively the size of the restricted For Tabu Search, candidate list and size of the tabu list a search space with only feasible Alloon real data sets from high schools cation and Exclusion constrains were extracted from the Lectio database. chosen, i.e. classes were allocated, but we had to relax the Edge and Order The performance was tested on another constraints, allowing resource overlaps. set of real data. The results are shown As it turns out, it is very difficult just to in the following table, where b is the find a feasible solution for the entire set of hard constraints, and thus we had to do the relaxation, including any violation of those constraints as a part of the objective ORbit 19 41 DORS pris number of blocks, μ the mean solution values and gap the An immediate observation from the results is that the only gap to a simple dual bound. The average running times were feasible timetable found is with Tabu Search for the Bornholm all within 70 seconds. data set. It is not necessarily a bad result that such few feasible solutions are found. The data was sampled from timetabMost schools do their Packing with four to five blocks, using les which contained hundreds of violations. We had to tweak the minimum number of classes, and produce solutions with the data so that the current timetables were feasible and thus a gap less than a few per mille to the dual bound. A solution at least one feasible timetable existed for the problem. This to a problem instance with b = 4 where all student requests does not mean that infeasibility should be tolerated, but that in are granted, is widely regarded as a very good result. From practice, a human scheduler has more liberty to relax some of the table above, such solutions are found for Høje Taastrup, the hard constraint. E.g. assuming that the 2 violations of hard Aabenraa and Langkær. For Stenløse and Birkerød for four constraints in the Allerød data were two room clashes, which blocks, the gap is about one percent which could very well be is effectively just one room clash. Then one of the classes that acceptable in practice. This gap is still small and could be due were allocated to that room could in practice probably use a to a gap from the true optimal solution value to the found dual room normally not be suited for that class, although the use bound, since it is not a tight bound for all instances. of that particular room would be considered ‘infeasible’ according to the problem definition. The number of blocks is important in connection with the Timetabling Problem. It can be directly translated into a To summarize, Tabu Search seems to provide viable timetabnumber of positions in the timetable. If fewer blocks are used, les for the given problems, and the other algorithms do not. then the probability of finding a feasible solution to the Timetabling Problem is increased. We will take a closer look at the values for two of the major soft constraints. The following table shows the average waiTimetabling ting hour per teacher, SWt, and student, SWs, for the real timetables, μup,, and for a sample Tabu Search solution, Tabu μ. The Tabu Search and Genetic Algorithm were implemented in C# and tested. The Tabu Search implementation was tuned to find the size of the tabu list and the activation start of the diversifications. The Genetic Algorithm was tuned to find a good setting of the many parameters of a genetic algorithm, including which operators performed best. The following table shows the mean, µ, the deviation, σ, the number of violations of the relaxed hard constraints, such as As an example, in the given timetable of Bornholm High student conflicts and day conflicts between classes, for the School, a teacher waits in average for 0.65 modules and a student waits in average 0.12 modules. For the same school, Greedy Algorithm, Tabu Search and Genetic Algorithm. Tabu Search produces a timetable with an average of 0.13 waiting modules for teachers and 0.28 waiting modules for students in average. We used a penalty of 10 for a student waiting modules and 1 for teacher. Clearly, these weights of these soft constraints would be different for both Bornholm It is no surprise that the best results were found for Bornholm. and Allerød, and it is likely to be different for every school. It has few classes and a low density, i.e. few conflicts bet- The point is that the results are not that far from the given ween classes compared to both Allerød and Birkerød. If we timetables and the setting of the weights can be adjusted for compare the results of the algorithms, Tabu Search clearly every school. outperforms both the Genetic and Greedy Algorithm. If we include the deviation of the results, Tabu Search is still better Conclusion in the worst cases. Only for Bornholm the results are even Our experiments showed that the solution methods impleclose. We never did expect the greedy algorithm to provide mented for the Packing Problem - Tabu Search and GRASP good results. - provided comparable results. For an average school, any of 42 ORbit 19 DORS pris these methods should produce useful results. For the most difficult problem instances the Tabu Search performed slightly better than the GRASP and the running time was generally better. For these reasons we recommend the Tabu Search algorithm. All the experiments were performed on real data, and for almost every data set an optimal solution was found, or a solution with a gap of less than 0.1 percent to the given bound was found. Their article [3] shows that in some real instances of the Packing Problem for Danish High Schools, their BnP algorithm found optimal solutions within an hour that improved solutions found by our Tabu Search heuristic. Any improvement could result in a large economical gain for the high schools. However, it also proved, that in most cases our heuristic found optimal solutions. Of course the BnP requires a MIP solver which Lection does not yet have. The solution methods implemented for the Timetabling Problem - Tabu Search and Genetic Algorithm - provided results which were quite far apart. The Tabu Search clearly outperformed the Genetic Algorithm in respect to both running time and solution value. Due to the popular research of genetic algorithms for timetabling, we had higher hopes for the GA, but it did not manage to provide reasonable results. Genetic algorithms are likely better suited for problems with an easier representation of a feasible solution. In a recent interview with S. Kristansen and M. Sørensen I learned that in recent years more and more Danish high schools started using the planning tools of the Lectio ‘Timefag’ module and most have been happy with the results. In March 2012 Simon and Mathias implemented new ALNS heuristics (Adaptive Large Neighbourhood Search) in Lectio for both packing and timetabling. The performance of the Tabu Search matched our expectations to a solution method for this problem. From the schedulers we have interviewed, we have learned that finding a feasible timetable is a long iterative process. The Tabu Search algorithm was able to find solutions that were either feasible or very close to being feasible for all the tested data sets. Although the tests were performed on real data, the data was not sufficiently well-formed to label it as completely realistic. Also, a theoretically optimal solution is not necessarily the best solution in practice. Thus, when using the solution methods as tools, a number of iterations of adjusting the problem and running the problem solver are inevitable. The best practical solutions are found this way. The running times of the implemented solutions should allow for a number of such iterations. References are numbered as in the reference list of the thesis where References applicable. [HSP]: Our thesis. S.P. Binzer and S.H. Kjeldsen, 2008, Metaheuristics for High School Planning. [1] E.K. Burke and G. Kendal, 2005, Search Methodologies, Springer [2] H. Fang, 1994, Genetic Algorithms in Timetabling and Scheduling. [3] L.F. Reis and E. Oliviera, A Language for Specifying Complete Timetabling Problems. [4] S. Kristiansen, M.Sørensen and T.R. Stidsen, Elective Course Planning, European Journal of Research. [5] G. Santos et al., An efficient Tabu Search Heuristic for the School Timetabling Problem. [6] G. Beligiannis et. al, 2006, Applying evolutionary computation to the school timetabling problem: The Greek Case, ScienceDirect. As expected, the use of the algorithms in the timetabling tools in Lectio required tweaking and was used primarily as a method to establish a starting solution and do local searchs in an iterative manner. [7] C. Fernandez and M. Santos, 2003, A Non-standard Genetic Algorithm Approach to Solve Constrained School Timetabling Problems. [11] P. Dige and C. Lund, 1991, Skemalægning ved simuleret udglødning, IMSOR. Futher Research Sune Binzer In 2010 DTU Management students Simon Kristiansen and Matias Sørensen researched the performance of exact solution methods on the Packing Problem [4], using Branchand-Price w. Dantzig-Wolfe decomposition. Following that, they started a PhD in conjunction with Macom to research both problems further, using both exact solution methods and meta-heuristics. er konsulent hos Logis A/S der specialiserer sig i optimering og software til logistik og indkøb. Logis leverer bl.a.planlægningsog disponeringssystemer til akut og planlagt ambulancekørsel i flere regioner i Danmark og udlandet. ORbit 19 43