2014 IGES Scientific Meeting Abstracts
Transcription
2014 IGES Scientific Meeting Abstracts
ABSTRACTSFROMTHE23RDANNUAL MEETINGOFTHEINTERNATIONALGENETIC EPIDEMIOLOGYSOCIETY Vienna,Austria 28‐30August2014 ISBN:978‐1‐940377‐01‐8 Abstractsfromthe23rdAnnualMeetingoftheInternational GeneticEpidemiologySociety,Vienna,Austria August28‐30,2014 ScientificProgramCommittee JustoLorenzoBermejo(Chair) UniversityHospitalHeidelberg Heidelberg,Germany (2013‐2015) CeliaGreenwood McGillUniversity Montreal,Canada (2012‐2014) JeanineHouwing‐Duistermaat LUMC Leiden,TheNetherlands (2012‐2014) AndrewDPaterson TheHospitalforSickChildrenResearchInstitute Toronto,Canada (2013‐2015) AndréScherag CSCC,UniversityHospitalJena Jena,Germany (2014‐2016) NathanTintle DordtCollege,SiouxCenter Iowa,USA (2014‐2016) FranceGagnon(President‐Elect) UniversityofToronto Toronto,Canada AlexanderFWilson(President) NIH/NHGRI Baltimore,MDUSA Dr.Wilsonisservinginhispersonalcapacity. ThisvolumewasformattedbyBarbaraPeil,ÖzgeKaradag,RosaGonzálezSilos,MariaKabischand CarineLegrand,PhDstudentsattheStatisticalGeneticsGroup,InstituteofMedicalBiometryand Informatics,UniversityofHeidelberg,Germany Mini‐Symposium M1 Applicationofgenomictestsinbreastcancermanagement M2 Riskpredictionmodelsusingfamilyandgenomicdata M3 Theimportanceofappropriatequalitycontrolin‐omicsstudiesasrequiredfor personalizedandstratifiedmedicine M4 Studydesignsforpredictivebiomarkers EducationalWorkshop E1 Pharmacogenomics:past,presentandfuture E2 Assessingthegeneticbasisofdrugresponse E3 Clinicalutilityinpharmacogenomics:gettingbeyondindividualvariants E4 Smokingbehaviorandlungcancerriskrelatedtonicotinicacetylcholinereceptorvariants andmetabolicvariants InvitedSpeakers I1 Enrichmentdesignsforthedevelopmentofpersonalizedmedicine I2 Causalassociationstructuresin‐omicsdata:howfarcanwegetwithstatisticalmodeling? I3 Therelevanceofepigenomicsforpersonalizedmedicine I4 Finemappingofcomplextraitlociwithcoalescentmethodsinlargecase‐controlstudies I5 Theinterfacehypothesisinexplaininghost‐bacterialinteractionsinthehumangut NeelandWilliamsAwardCandidates A1 Anovelmethodusingcrosspedigreesharedancestrytomaprarecausalvariantsinthe presenceoflocusheterogeneity A2 Survivalanalysiswithdelayedentryinselectedfamilieswithapplicationtohumanlongevity A3 Combiningfamily‐andpopulation‐basedimputationdataforassociationanalysisofrare andcommonvariantsinlargepedigrees A4 Mixedmodelingfortime‐to‐eventoutcomeswithlarge‐scalepopulationcohortsand genome‐widedata A5 Thecollapsedhaplotypepatternmethodforlinkageanalysisofnext‐generationsequencing data A6 Meta‐analysisapproachforhaplotypeassociationtests:ageneralframeworkforfamilyand unrelatedsamples ContributedPlatformPresentations C1 Identificationofbloodpressure(BP)relatedcandidategenesbypopulation‐based transcriptomeanalyseswithintheMetaXpressconsortium C2 Mixed‐modelanalysisofcommonvariationrevealspathwaysexplainingvarianceinAMD risk C3 Aphenome‐wideassociationstudyofnumerouslaboratoryphenotypesinAIDSclinical trialsgroup(ACTG)protocols C4 eMERGEphenome‐wideassociationstudy(PheWAS)identifiesclinicalassociationsand pleiotropyforfunctionalvariants C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 AnovelG‐BLUP‐likephenotypepredictorleveragingregionalgeneticsimilarityandits applicationsinpredictingdiseaseseverityanddrugresponse MitochondrialGWAanalysisinseveralcomplexdiseasesusingtheKORApopulation AdramaticresurgenceoftheGIGOsyndromeinthe21stcentury Largescalepredictionanddissectionofcomplextraits Geneticpredictorsoflongertelomeresarestronglyassociatedwithriskofmelanoma DetectionofcisandtranseQTLs/mQTLsinpurifiedprimaryimmunecells Whynext‐generationsequencingstudiesmayfail:challengesandsolutionsforgene identificationinthepresenceoffamiliallocusheterogeneity Variationinestimatesofkinshipobservedbetweenwhole‐genomeandexomesequence data Robustgenotypecallingfromverylowdepthwholegenomesequencingdata Insightsintothegeneticarchitectureofanthropometrictraitsusingwholegenomesequence data Standardimputationversusgeneralizationsofthebasiccoalescenttoestimategenotypes Improvementofgenotypeimputationaccuracythroughintegrationofsequencedatafroma subsetofthestudypopulation Learninggeneticarchitectureofcomplextraitsacrosspopulations Genome‐widegenotypeandsequence‐basedreconstructionofthe140,000yearhistoryof modernhumanancestry Modelcomparisonandselectionforcountdatawithexcesszerosinmicrobiomestudies Bayesianlatentvariablemodelsforhierarchicalclusteredtaxacountsinmicrobiomefamily studieswithrepeatedmeasures Aretrospectivelikelihoodapproachforefficientintegrationofmultipleomicsandnon‐ omicsfactorsincase–controlassociationstudiesofcomplexdiseases Inferenceforhigh‐dimensionalfeatureselectioningeneticstudies C22 Posters P1 Increasedpowerfordetectionofparent‐of‐origin(imprinting)effectsingenome‐wide associationstudiesusinghaplotypeestimation P2 EpidemiologicalProfileofCleftPalateintheStateofBahia‐Brazil P3 GeneralizedFunctionalLinearModelsforGene‐basedCase‐ControlAssociationStudies P4 Geneticanalysisofthechromosome15q25.1regionidentifiesIREB2variantsassociated withlungcancer P5 Anovelintegratedframeworkforlargescaleomicsassociationanalysis P6 InclusiveCompositeIntervalMappingandSkew‐NormalDistribution P7 Transmission‐basedTestsForGeneticAssociationUsingSibshipData P8 Identificationofrarecausalvariantsinsequence‐basedstudies P9 TargetedresequencingofGWASloci:insightintogeneticetiologyofcleftlipandpalate throughanalysisofrarevariantswithfocusonthe8q24region P10 AjointassociationmodelofeffectsofrareversuscommonvariantsonAge‐relatedMacular Degeneration(AMD)usingaBayesianhierarchicalgeneralizedlinearmodel P11 AssociationBetweenBloodPressureSusceptibilityLociandUrinaryElectrolytes P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 Asystematicevaluationofshorttandemrepeatsinlipidcandidategenes:ridingontheSNP‐ wave Linkagedisequilibriummappingofmultiplefunctionallociincase‐controlstudies Geneticvariantsintransporterandmetabolizinggenesandsurvivalincolorectalcancer patientstreatedwithoxaliplatincombinationchemotherapy Post‐Genome‐WideAssociationStudyUsingGeneralizedStructuredComponentAnalysis DetectingMaternal‐FetalGenotypeInteractionsAssociatedwithConotruncalHeartDefects: AHaplotype‐basedAnalysiswithPenalizedLogisticRegression Mutationsscreeningofexons7and13ofTMC1gene(DFNB7/11)inIranianautosomal recessivenon‐syndromichearingloss(NSHL)probandsusingmoleculartechniques ConotruncalHeartDefectsandCommonVariantsinMaternalandFetalGenesinFolate, HomocysteineandTranssulfurationPathways GeneticPredispositionofXRCC1inSchizophreniaPatientsofSouthIndianPopulation Astochasticsearchthroughsmokingimagesinmovies,geneticandpsycho‐socialfactors associatedwithsmokinginitiationinMexicanAmericanyouths AssociationbetweenApolipoproteinEgenotypeandcancersusceptibility:ameta‐analysis NovelapproachidentifiesSNPsinSLC2A10andKCNK9withevidenceforparent‐oforigin effectonbodymassindex InteractiveeffectbetweenDNAH9geneandearly‐lifetobaccosmokeexposureinbronchial hyper‐responsiveness DetectionofrarehighlypenetrantrecessivevariantsusingGWASdata CopyNumberVariation(CNV)detectioninwholeexomesequencingdataforMendelian disorders Combininggeneticandepigeneticinformationidentifiedimprinted4q35variantassociated withthecombinedasthma‐plus‐rhinitisphenotype Bayesianlatentvariablecollapsingmodelfordetectingrarevariantinteractioneffectintwin study RareVariantAssociationTestforNuclearFamilies Samplesizeandpowerdeterminationforassociationtestsincase‐parenttriostudies IntegrationofDNAsequencevariationandfunctionalgenomicsdatatoinfercausalvariants underlyingchemotherapeuticinducedcytotoxicityresponse LargeScalePredictionandDissectionofComplexTraits ImputationforSNPsusingsummarystatisticsandcorrelationbetweengenotypedata EvaluationofpopulationstratificationinalargebiobanklinkedtoElectronicHealthRecords Estimatinggeneticeffectsonsusceptibilityandinfectivityforinfectiousdiseases CombinedMethodstoExploreGeneticEtiologyofRelatedComplexDiseases Integrativeanalysisofsequencingandarraygenotypedatafordiscoveringdisease associationswithraremutations Amethodforfastcomputationoftheproportionofvariantsaffectingacomplexdiseaseand oftheadditivegeneticvarianceexplainedinGWASSNPstudies. Correctingforsampleoverlapincross‐traitanalysisofGWAS Epigenome‐wideassociationstudyofcentralizedadiposityin2,083AfricanAmericans:The AtherosclerosisRiskinCommunities(ARIC)Study P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63 P64 P65 P66 P67 Canlow‐frequencyvariantsberescuedingenome‐wideassociationstudiesusingsparse datamethods? Anovelkernel‐basedstatisticalapproachtotestingassociationinlongitudinalgenetic studieswithanapplicationofalcoholusedisorderinaveterancohort AGene‐EnvironmentInteractionBetweenCopyNumberBurdenandOzoneExposurein RelationtoRiskofAutism Choosingacase‐controlassociationteststatisticforlow‐countvariantsintheUKBiobank LungExomeVariantEvaluationStudy SNPcharacteristicspredictreplicationsuccessinassociationstudies Data‐DrivenWeightedEncoding:ANovelApproachtoBiallelicMarkerEncodingfor EpistaticModels AOne‐Degree‐of‐FreedomTestforSupra‐MultiplicativityofSNPEffects Fine‐mappingeGFRsusceptibilitylocithroughtrans‐ethnicmeta‐analysis Arelipidriskallelesidentifiedingenome‐wideassociationstudiesreadyfortranslationto clinicalstudies? Genome‐widemeta‐analysisofsmoking‐dependentgeneticeffectsonobesitytraits:the GIANT(GeneticInvestigationofANthropometricTraits)Consortium ABinomialRegressionModelforAssociationMappingofMultivariatePhenotypes HowtoincludechromosomeXinyourgenome‐wideassociationstudy Exomechipmeta‐analysistoidentifyrarecodingvariantsassociatedwithpulsepressure Genome‐widesearchforage‐andsex‐dependentgeneticeffectsforobesitytraits:Methods andresultsfromtheGIANTConsortium Meta‐analysisofgene‐setanalysesbasedongenomewideassociationstudies Meta‐analysisofcorrelatedtraitsusingsummarystatisticsfromGWAS StudyingtheEthnicDifferencesintheGeneticsofType2DiabetesusingthePopulation SpecificHumanPhenotypeNetworks HierarchicalBayesianModelintegratingsequencingandimputationuncertaintyusing MCMCmethodforrarevariantassociationdetection Sex‐specificassociationofMYLIPwithmortality‐optimizedhealthyagingindex Geneticdeterminantsofliverfunctionandtheirrelationshiptocardio‐metabolichealth VariableselectionmethodforcomplexgeneticeffectmodelsusingRandomForests Identificationofsharedgeneticaetiologybetweenepidemiologicallylinkeddisorderswith anapplicationtoobesityandosteoarthritis InvestigationofgeneticriskfactorsofverylowbirthweightinfantswithintheGerman NeonatalNetwork Artificialintelligenceanalysisofepistasisinagenome‐wideassociationstudyofglaucoma Mutationscausingcomplexdiseasemayundercertaincircumstancesbeprotectiveinan epidemiologicalsense Genome‐wideAssociationStudyIdentifiesSNPrs17180299andMultipleHaplotypeson CYP2B6,SPON1andGSG1LAssociatedwithPlasmaConcentrationsoftheMethadoneR‐and S‐enantiomerinHeroin‐dependentPatientsunderMethadoneMaintenanceTreatment Anonparametricregressionapproachtotheanalysisofgenomewideassociationstudies Geneticinsightsintoprimarybiliarycirrhosis–aninternationalcollaborativemeta‐analysis andreplicationstudy P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 P80 P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 P94 P95 P96 GenesAssociatedwithLungCancer,ChronicObstructivePulmonaryDisease,orBoth Ageneralapproachforcombiningdiverserarevariantassociationtestsprovidesimproved poweracrossawiderrangeofgeneticarchitecture AMethodologicalComparisonofEpistasisModelingofHighOrderGene‐GeneInteractions withApplicationtoGeneticProfilingofPAInfectionamongCysticFibrosisPatients eQTLandpathwayanalysisonexpressionprofilesofacattlecross Evidenceforpolygeniceffectsintwogenome‐wideassociationstudiesofbreastcancer usinggeneticallyenrichedcases DoBoundariesMatterforTiledRegression? METAINTER:meta‐analysistoolformultipleregressionmodels SuccessfulreplicationofGWAShitsformultiplesclerosisin10,000Germansusingthe exomearray SharedGeneticEffectsUnderlyingAgeatMenarche,AgeatNaturalMenopauseandBlood Pressure IdentificationofcombinedCommon‐andRare‐Geneticvariancesassociatedwithrenal functioninHanChinese Pathwayandgene‐geneinteractionanalysisrevealsnewcandidategenesformelanoma Leveragingevolutionarilyconserved,celltype‐specific,regulatoryregiondatatodetect novelSNP‐TFPIassociations Asoftwarepackageforgenome‐wideassociationstudieswithRandomSurvivalForests Identificationofnovelcommonandraregeneticvariantsassociatedwithrenalfunctionin HanChinese AGenome‐WideAssociationStudytoExploreGene‐environmentInteractionwithParental SmokingandtheRiskofChildhoodAcuteLymphocyticLeukemia Network‐basedanalysisofGWASdata:Doesthegene‐wiseassociationsignificance modelingmatters? Heritabilityestimatesandgeneticassociationfor60+complextraitsinayounghealthy siblingcohort Large‐scaleexomechipgenotypingrevealsnovelcodingvariationassociatedwith endometriosis DissectingtheObesityDiseaseLandscape:IdentifyingGene‐GeneInteractionsthatare HighlyAssociatedwithBodyMassIndex(BMI) InvestigationofParent‐of‐OrigineffectsinAutismSpectrumDisorders IntegrativeclusteringofmultiplegenomicdatausingNon‐negativeMatrixFactorization Toolsforrobustanalysisingenome‐wideassociationstudiesusingSTATA Developmentofathree‐waymixedmodellingapproachintegratinggeneticandclinical variablesinanalysisofearlytreatmentoutcomesinepilepsy. Meta‐analysisoflowfrequencyandrarecodingvariantsandpulmonaryfunction. UsingPolygeneScoresandGCTAtoIdentifyaSubsetofSNPsthatContributetoGeneticRisk ChallengingIssuesinGWASofHumanAgingandLongevity HeritabilityestimatesonHodgkinlymphoma:agenomicversuspopulationbasedapproach Areweabletoguidetreatmentchoicetoreduceantidepressant‐inducedsexualdysfunction inmalesusinggenome‐widedatafromrandomisedcontrolledtrials? Ageneralmethodfortestinggeneticassociationwithoneormoretraits P98 AGeneralizedSimilarityUtestforMultiple‐traitSequencingAssociationAnalyses P99 ModelingX‐chromosomedatainRandomForestGeneticAnalysis P100 EmpiricalBayesScanStatisticsforDetectingClustersofDiseaseRiskVariantsinGenetic Studies,withApplicationstoCNVsinAutism P101 Finemappingofchromosome5p15.33regionforlungcancersusceptibilitybasedona targeteddeepsequencingandcustomAxiomarray P102 Geneticvariantsininflammation‐relatedgenesandinteractionwithNSAIDuseoncolorectal cancerriskandprognosis P103 AssociationanalysisofexomechipdataofPolycysticOvarySyndromeinEstonianBiobank P104 Amodelforco‐segregationofcriptorchidismandtestiscancerinfamilies P105 Jointanalysisofsecondaryphenotypes:anapplicationinfamilystudies P106 Predictionofimprintedgenesbasedonthegenome‐widemethylationanalysis P107 AddictionandMentalHealthGenesformGenomicHotspotswithDrugableTargets. P108 Recurrentsharedrarevariantsin9genesdetectedbywholeexomesequencingofmultiplex oralcleftsfamilies P109 Evaluationofvariantcallingfromthousandsoflowpasswholegenomesequencing(WGS) datausingGATKhaplotypecaller P110 IntegrationoffMRIandSNPsindicatedpotentialbiomarkersforSchizophreniadiagnosis P111 EWAStoGxE:Arobuststrategyfordetectinggene‐environmentinteractionmodelsforage‐ relatedcataract P112 RNA‐seqanalysisoflungadenocarcinomarevealsdifferentialgeneexpressioninnonsmoker andsmokerpatients P113 UsingrandomforeststoidentifygeneticlinksbetweenAlzheimer’sdiseaseandtype2 diabetes P114 StudyoFHumanMGPpromotervariantsinCADpatients:FromExperimenttoprediction P115 Anovelfunctionaldataanalysisapproachtodetectinggenebylongitudinalenvironmental exposureinteraction P116 LeveragingFamilyStructurefortheAnalysisofRareVariantsinKnownCancerGenesfrom WESofAfricanAmericanHereditaryProstateCancer P117 Associationofbreastcancerrisklociwithsurvivalofbreastcancerpatients P118 Evidenceofgene‐environmentinteractionsinrelationtobreastcancerrisk,resultsfromthe BreastCancerAssociationConsortium P119 Integrationofpathwayandgene‐geneinteractionanalysesrevealbiologicallyrelevantgenes forBreslowthickness,amajorpredictorofmelanomaprognosis P120 JAG1polymorphismisassociatedwithincidentneoplasminasouthernChinesepopulation P121 Epigenome‐widemethylationarrayanalysisrevealsfewmethylationpatterndifferences betweenhyperplasticpolypsandsessileserratedadenomas/polyps P122 Theeffectofbileacidsequestrantsontheriskofcardiovascularevents:Ameta‐analysisand MendelianRandomizationanalysis P123 MendelianRandomisationstudyofthecausalinfluenceofkidneyfunctiononcoronaryheart disease P124 Sharedgeneticriskofmyocardialinfarctionandbloodlipidsusingempiricallyderived extendedpedigrees:resultsfromtheBusseltonHealthStudy P125 AnalysisofCase‐Base‐Controldesigns P126 PolymorphismsinHTR3A,CYP1A2,DRD4andCOMTandresponsetoclozapinein treatment‐resistantschizophrenia:agene‐geneinteractionanalysis P127 Jointmodelingoflongitudinalandtime‐to‐eventphenotypesingeneticassociationstudies: strengthsandlimitations P128 Perinataldepressionandomega‐3fattyacids:AMendelianrandomisationstudy P131 AGene‐EnvironmentInteractionBetweenCopyNumberBurdenandOzoneExposure ProvidesaHighRiskofAutism P132 GeneRegulatoryNetworkinferenceviaConditionalInferenceTreesandForests P133 Predictingthegeneticriskforcomplexdiseases:choosingthebestpolygenicriskscorefor typeIIdiabetes P134 Epigenome‐wideassociationwithsolublecelladhesionmoleculesamongmonozygotictwins P135 Genapha/dbASM:webbasedtoolstoinvestigateallele‐specificmethylation P136 Agene‐basedmethodforanalysisofIllumina450Kmethylationdata P137 Takeresearchtothenextlevelwithsecondarydataanalyses:Fine‐mappingthespecific languageimpairmentgene P138 DetectionofGene‐GeneInteractioninAffectedSibPairsAllowingforParent‐of‐Origin Effects P139 StudyDesignsforPredictiveBiomarkers P140 DoestheFTOgeneinteractwiththesocio‐economicstatusontheobesitydevelopment amongyoungEuropeanchildren?ResultsfromtheIDEFICSstudy P141 IdentificationofClustersinNetworkGraphsbyaCorrelation‐basedMarkovCluster Algorithm P142 DevelopnovelmixturemodeltoestimatethetimetoantidepressantOnsetofSSRIsandthe timingeffectsofkeycovariates P143 Definingrecombinationhotspotblocks:Justhowhotishot? P144 Complexgenealogies,simplegeometricstructures P145 Missingheritabilitypartiallyexplainedbysequentialenrollmentofstudyparticipants P146 RobustPrincipalComponentAnalysisAppliedtoPopulationGeneticsProcesses P147 Identifyingfoundersmostlikelytohaveintroduceddisease‐causingmutationswiththeR packageGenLib P148 RegionalIBDAnalysis(RIA):linkageanalysisinextendedpedigreesusinggenome‐wideSNP data P149 Polygenicriskpredictionmodelinginpedigreesimprovespower P150 Performanceoflinkageanalysisconductedwithwholeexomesequencingdata P151 Useofexomesequencingdatafortheanalysisofpopulationstructures,inbreeding,and familiallinkage P152 FastlinkageanalysiswithMODscoresusingalgebraiccalculation P153 Fetalexposuresandperinatalinfluencesontheprematureinfantmicrobiome P154 Combininggenotypewithallelicassociationasinputforiterativepruningprincipal componentanalysis(ipPCA)toresolvepopulationsubstructures P155 Spuriouscrypticrelatednesscanbeinducedbypopulationsubstructure,population admixtureandsequencingbatcheffects P156 Effectofpopulationstratificationonvalidityofacase‐onlystudytodetectgene‐ environmentinteractions P157 Anovelriskpredictionalgorithmwithapplicationtosmokingexperimentation P158 Trio‐BasedWholeGenomeSequenceAnalysisofaCousinPairwithRefractoryAnorexia Nervosa P159 Powerandsamplesizeformulasfordetectinggeneticassociationinlongitudinaldatausing generalizedestimatingequations P160 Ontheevaluationofpredictivebiomarkerswithdichotomousendpoints:acomparisonof thelinearandthelogisticprobabilitymodels P161 Atwostagerandomforestprobabilitymachineapproachforepigenome‐wideassociation studies P162 Statisticalapproachesforgene‐basedanalysis:AcomprehensivecomparisonusingMonte‐ CarloSimulations P163 ApolipoproteinEgenepolymorphismandleftventricularfailureinbeta‐thalassemia:A meta‐analysis P164 TheCooperativeHealthResearchinSouthTyrol(CHRIS)study IndexbyCategories IndexbyAuthors Mini‐Symposium Genomics‐basedPersonalizedMedicine M1 Applicationofgenomictestsinbreastcancermanagement MartinFilipits1 1MedicalUniversityofVienna,InstituteofCancerResearch,Vienna,Austria Breastcancerisaheterogeneousdiseaseattheclinical,biologicalandparticularlyatthemolecular level.Geneexpressionprofilinghasimprovedtheknowledgeonthecomplexmolecularbackground ofthisdiseaseandallowsamoreaccurateprognosticationandpatientstratificationfortherapy. Severalgenomictestshavebeendevelopedwiththeaimofimprovingprognosticinformation beyondthatprovidedbyclassicclinicopathologicparameters.Someofthesetestsarecurrently availableintheclinicandareusedtodetermineprognosisandmoreimportantlytoassistin determiningtheoptimaltreatmentinpatientswithhormonereceptor‐positivebreastcancer. Availabledatasuggestthatinformationgeneratedfromgenomictestshasresultedinachangein decisionmakinginapproximately25%‐30%ofcases.Theclinicalrelevanceofgenomictestsand theirabilitytodefineprognosisanddeterminetreatmentbenefitwillbediscussed. M2 Riskpredictionmodelsusingfamilyandgenomicdata JoanEBailey‐Wilson1 1ComputationalandStatisticalGenomicsBranch,NationalHumanGenomeResearchInstitute,National InstitutesofHealth,Baltimore,UnitedStatesofAmerica ComputationalandStatisticalGenomicsBranch,NationalHumanGenomeResearchInstitute, NationalInstitutesofHealth,Baltimore,UnitedStatesofAmerica}{Advancesinourabilitytomodel personalriskofdevelopingadiseasehaveacceleratedaslargeepidemiologicandgenomicstudies haveincreasedourunderstandingofdiseasecausation.Predictionofdiseaseriskcanbebasedon personalhistoryofenvironmentalexposures,familyhistoryofdiseaseandpersonalgenotypesat geneticsusceptibilityloci.Approachestopredictingriskofdiseasethatutilizefamilialandgenetic informationwillbediscussedforarangeofdifferentcausalmodelsfromsimpleMendelian disordersthatarecausedbyvariantsinasinglegenetodiseasescausedbycomplexactionsof multipleriskfactors.Theutilityofaddingfamilyhistoryandpersonalgenotypesintodiseaserisk modelswillbecovered.Accuratediseaseriskpredictioncanbeimportanttoindividualhealthsince itcanencourageindividualstohavemorefrequentscreeningprocedures,toundertake environmentalriskreduction,andtoundergopreventivemedicalproceduresandtreatments. M3 Theimportanceofappropriatequalitycontrolin‐omicsstudiesas requiredforpersonalizedandstratifiedmedicine BertramMüller‐Myhsok1,2,3 1MaxPlanckInstituteofPsychiatry,Munich,Germany 2MunichClusterforSystemsNeurology(SyNergy),Munich,Germany 3InstituteforTranslationalMedicine,UniversityofLiverpool,Liverpool,UnitedKingdom ComputationalandStatisticalGenomicsBranch,NationalHumanGenomeResearchInstitute, NationalInstitutesofHealth,Baltimore,UnitedStatesofAmerica}{Advancesinourabilitytomodel personalriskofdevelopingadiseasehaveacceleratedaslargeepidemiologicandgenomicstudies haveincreasedourunderstandingofdiseasecausation.Predictionofdiseaseriskcanbebasedon personalhistoryofenvironmentalexposures,familyhistoryofdiseaseandpersonalgenotypesat geneticsusceptibilityloci.Approachestopredictingriskofdiseasethatutilizefamilialandgenetic informationwillbediscussedforarangeofdifferentcausalmodelsfromsimpleMendelian disordersthatarecausedbyvariantsinasinglegenetodiseasescausedbycomplexactionsof multipleriskfactors.Theutilityofaddingfamilyhistoryandpersonalgenotypesintodiseaserisk modelswillbecovered.Accuratediseaseriskpredictioncanbeimportanttoindividualhealthsince itcanencourageindividualstohavemorefrequentscreeningprocedures,toundertake environmentalriskreduction,andtoundergopreventivemedicalproceduresandtreatments. M4 StudyDesignsforPredictiveBiomarkers AndreasZiegler1,2 1InstituteofMedicalBiometryandStatistics,UniversityofLübeck,UniversityMedicalCenterSchleswig‐ Holstein,CampusLübeck,Lübeck,Germany 2CenterforClinicalTrials,UniversityofLübeck,Lübeck,Germany Biomarkersareofincreasingimportanceforpersonalizedmedicine,includingdiagnosis,prognosis andtargetedtherapyofapatient.Examplesareprovidedforcurrentuseofbiomarkersin applications.Itisshownthattheiruseisextremelydiverse,anditvariesfrompharmacodynamicsto treatmentmonitoring.Theparticularfeaturesofbiomarkersarediscussed.Beforebiomarkersare usedinclinicalroutine,severalphasesofresearchneedtobesuccessfullypassed,andimportant aspectsofthesephasesareconsidered.Somebiomarkersareintendedtopredictthelikelyresponse ofapatienttoatreatmentintermsofefficacyand/orsafety,andthesebiomarkersaretermed predictivebiomarkersor,moregenerally,companiondiagnostictests.Usingexamplesfromthe literature,differentclinicaltrialdesignsareintroducedforthesebiomarkers,andtheirprosand consarediscussedindetail. EducationalWorkshop Pharmacogenomics:WhenDrugResponseGets Personal E1 Pharmacogenomics:Past,PresentandFuture BrookeFridley1 1UniversityofKansasMedicalCenter,USA Pharmacogeneticsisthestudyoftheroleofinheritanceinindividualgeneticvariationinresponse todrugs.Inthispost‐genomicera,pharmacogeneticshasevolvedintopharmacogenomics,thestudy oftheinfluenceofgeneticvariationacrosstheentiregenomeondrugײesponse.Pharmacogenomics hasbeenheraldedasoneofthefirstmajorclinicalapplicationsofthestrikingadvancesthathave occurredandcontinuetooccurinhumangenomicscience.Inthistalk,Iwillprovideanoverviewof pharmacogenomicsanddiscussthepast,presentandfutureofpharmacogenomicsinthe21st century. E2 Assessingthegeneticbasisofdrugresponse JohnWitte1 1UniversityofCalifornia,SanFrancisco,USA Bydefinitionpharmacogenomictraitshaveanunderlyinggeneticbasis.Nevertheless,accurately estimatingtheheritabilityofdrugresponseisimportantfordesigningstudiesandknowinghow muchgeneticvariationcanدrhasﺁeenexplained.Unlikemostquantitativeandqualitativetraits, however,responsetotreatmenthastwounique,complicatingfactors:itisagene‐druginteraction andtheoutcomeisoftenintermsoftime‐to‐event.HereIwillpresentandapplymethodsthat addressthesetwoaspectswhenestimatingthegeneticbasis(orheritability)ofpharmacogenomic traits. E3 ClinicalUtilityinPharmacogenomics:GettingBeyondIndividualVariants HaeKyungIm1 1UniversityofChicago,USA Studiesinpharmacogenomicshaveidentifiedmanyindividualvariantswithsufficientlylargeeffect sizestohaveclinicalutility,andmanyofthesearenowthesubjectofimplementationstudiesata varietyoflevels.Recentresearchoncommondiseasesandcomplextraitshave,however,raisedthe possibilitythatmixedmodelsallowingseparatelyforthecontributionofvariantswithlargereffect sizesandapolygenicbackgroundmayyieldimprovedprediction.Aswemedicalcentersroutinely movetohavinglarge‐scalegenomedataroutinelyavailableonpatients,asopposedtoone‐off genotypingfortheprescribingofspecificdrugs,theopportunitytobuildpredictorsofadverse eventsandefficacyusinglargescalegenomedataratherthanindividual(orsmallnumbersof) variantsbecomesarealpossibility.Usingrealexamplesfromlarge‐scalestudies,wewillcontrast predictionbasedonindividualorsmallnumbersofvariantswithpredictionsbasedonlarge‐scale information.WewillalsodiscusseffortstoimplementthesealternativeapproachesinEMRsettings. E4 Smokingbehaviorandlungcancerriskrelatedtonicotinicacetylcholine receptorvariantsandmetabolicvariants. ChristopherIAmos1 1GeiselSchoolofMedicine,USA InthispresentationIcontrastthediscoveryofgeneticvariantsthatinfluencesmokingbehavior includinginitiation,dailyconsumptionandcessation.Themostprominentassociationsarewiththe nicotinicacetylcholinereceptorgenefamilyonchromosome15q25.1.Thesegenesalongwith CYP2A6stronglyinfluencesmokingbehaviorandalsoaffectlungcancerrisk.Iwilldescribethe strikingimpactthatvariationinthesegenesappearstohaveontheefficacyofpharmacological interventionstoinfluencesmokingcessation.Finally,Iwilldescribestudiesoflungcancerriskand howthesegenesrelatetoit,alongwithafurtherdiscussionofthepotentialrelevanceofnovel associationsrecentlydiscoveredforsquamouslungcancerthatmayinfluencechemotherapeutic responses. InvitedSpeakers I1 Enrichmentdesignsforthedevelopmentofpersonalizedmedicine MartinPosch1 1ViennaMedicalUniversity,Austria Iftheresponsetotreatmentdependsongeneticbiomarkers,itisimportanttoidentify (sub)populationswherethetreatmenthasapositivebenefitriskbalance.Oneapproachtoidentify relevantsubpopulationsaresubgroupanalyseswherethetreatmenteffectisestimatedin biomarkerpositiveandbiomarkernegativegroups.Subgroupanalysisarechallengingbecause differenttypesofrisksareassociatedwithinferenceonsubgroups:Ontheonehand,ignoringa relevantsubpopulationonecouldmissatreatmentoptionduetoadilutionofthetreatmenteffectin thefullpopulation.Even,ifthedilutedtreatmenteffectcanbedemonstratedinanOverall population,itisnotethicaltotreatpatientsthatdonotbenefitfromthetreatmemt,iftheycanbe identifiedinadvance.Ontheotherhandselectingaspurioussub‐populationisnotwithoutrisk either:itmightincreasetherisktoapproveaninefficienttreatment(inflatingthetype1errorrate), ormaywronglyleadtorestrictinganefficienttreatmenttoatoonarrowfractionofapotential benefitingpopulation.Thelattercannotonlyleadtoreducedrevenuefromthedrug,butisalso unfavourablefromapublichealthperspective.Weinvestigatetheserisksfornon‐adaptivestudy designsthatallowforinferenceonsubgroupsusingmultipletestingproceduresaswellasadaptive designs,wheresubgroupsmaybeselectedinaninterimanalysis.Quantifyingtheriskswithutility functionsthecharacteristicsofsuchadaptiveandnon‐adaptivedesignsarecomparedforarangeof scenarios. I2 Causalassociationstructuresin‐omicsdata:howfarcanwegetwith statisticalmodeling? KristaFischer1 1TartuUniversity,Estonia Thistalkmainlyconcentratesonthesettingwhereassociationofonegenotypemarker(typically SNP)withtwocorrelatedphenotypesisstudied.Inso‐called"MendelianRandomization"studies themainparameterofinterestcorrespondstoacausaleffectofonephenotypictraitonanother trait,whereasageneticmarkerisusedasaninstrument.Despiteoftheincreasingnumberof publicationsusingthismethodologicalapproach,theunderlyingassumptionsareoftenoverlooked. Therefore,manyofthepublishedeffectestimatesmayactuallybebiasedandmisleading.Oneofthe mainuntestableassumptionsisthe"nopleiotropy"assumption‐thegenotypehasadirectcausal effectononephenotypeonly,whereastheeffectonthesecondphenotypeisfullymediatedbythe firstone. Whenthisisnotfulfilled,thegenotypeissaidtohaveapleiotropiceffectonbothphenotypes, whereasanotherclassofmodelsisbeendesignedtoestimatesucheffects.However,wewillshow thatmathematicallyonecannotdistinguishbetweenthetwomodels:themodelunderlyingthe MendelianRandomizationscenarioandthemodelforpleiotropiceffect.Wewilldiscusswhether somesensitivityanalysismethodsmayhelptodrawacorrectconclusionhere. Inaddition,wediscussanotherassumptionunderlyingtheMendelianRandomizationidea:the"no‐ treatment‐effectheterogeneity"assumption.Hereaparallelcanbedrawnwithrandomizedclinical trials,wherethisassumptioniscrucialtoallowforactivetreatmentonthecontrolarm.Usingalso simulationresults,theeffectofdeviationsfromthisassumptionisstudied. I3 Therelevanceofepigenomicsforpersonalizedmedicine ChristophBock1 1ResearchCenterforMolecularMedicineoftheAustrianAcademyofSciences,Austria Inmypresentation,Iwillsummarizetheroleofnextgenerationsequencingforpersonalized medicineandhighlighttherelevanceofbioinformaticandbiostatisticalmethodsforinterpreting thevastamountofgenome,epigenomeandtranscriptomedatathatarebeinggeneratedatCeMM andatmanygenomicsinstitutesworld‐wide.Thetalkwillalsodiscussourongoingworkwiththe EuropeanBLUEPRINTprojectconsortium(http://blueprint‐epigenome.eu/)aimedatestablishing comprehensiveepigenomemapsofhematopoieticcelltypesandvarioustypesofleukemiacells.I willconcludebyoutlininganintegratedcomputational/experimentalapproachtowardrational designofepigeneticcombinationtherapies(BockandLengauer2012NatureReviewsCancer), whichwepursueincollaborationbetweentheCeMMResearchCenterforMolecularMedicineand theMedicalUniversityofVienna. I4 Finemappingofcomplextraitlociwithcoalescentmethodsinlargecase‐ controlstudies ZiqianGeng1,PaulScheet1,SebastianZöllner1 1UniversityofMichigan,USA Case‐controlstudiesarewidelyusedtoidentifygenomicregionscontainingdiseasevariants. However,identifyingtheunderlyingriskvariantsforcomplexdiseasesischallengingduetothe complicatedgeneticdependencestructurecausedbylinkagedisequilibrium(LD).Bymodelingthe evolutionaryprocessofatargetregion,coalescent‐basedapproachesimprovethisidentificationby usingallavailablehaplotypeinformation.Suchmethodsestimatethegenealogyatallsitesinthe regionandthusmodeltheprobabilityofcarryingriskvariantsatalllocijointly.Fromthese probabilitiesweobtainBayesianconfidenceintervals(CIs)wheretrueriskvariantsaremostlikely tooccur.Additionally,thegenealogyateachpositionprovidesmoreinformationabouttheshared ancestryofneighboringsites.Indeed,suchcarefulmodelingofthesharedancestryofsequencesis alsobeneficialinhaplotypingandvariantcallinginregionsofinterests(ROI)wheretraditional hiddenMarkovapproachesstruggle.However,existingcoalescent‐basedmethodsare computationallyverychallengingandcanonlybeappliedtosamplesbelow200individuals.Here, weproposeanovelapproachtoovercomethisdifficulty,sothatitcanbeappliedtolarge‐scale studies.First,weinferasetofclustersfromthesampledhaplotypessothathaplotypeswithineach clusterareinheritedfromacommonancestor.Then,weapplycoalescent‐basedapproachesto approximatethegenealogyofancienthaplotypesatdifferentpositionsacrosstheROI.Doingso,the dimensionofexternalnodesincoalescentmodelsisreducedfromthetotalsamplesizetothe numberofclusters.Finally,weevaluatetheposition‐specificclustergenealogyandtheir descendants’phenotypedistribution,tointegrateoverallpositionsandestablishCIswhererisk variantsaremostlikelytooccur.Insimulationstudies,ourmethodcorrectlylocalizesshort segmentsaroundtrueriskpositionsforbothrare(1%)andcommon(5%)riskvariantsindatasets withthousandsofindividuals.Insummary,wehavedevelopedanovelapproachtoestimatethe genealogythroughoutsequencedregions.Infinemappingofcomplextraitloci,ourmethodis applicableforlarge‐scalecase‐controlstudiesusingsequencingdata. I5 Theinterfacehypothesisinexplaininghost‐bacterialinteractionsinthe humangut KnutRudi1 1NorwegianUniversityforLifeSciences,Norway Ourgutmicrobiotaistremendouslycomplex,outnumberingthehostcellsbyafactoroftenandthe numberofgenesbyafactorofonehundred.Thegutmicrobiotaservesthemainfunctionsof extractingenergyfromthefood,productionofvitaminsandother(essential)biomolecules,in additiontoprotectiontowardspathogens.However,despitemajoreffortswedostillnotknowthe basicmechanismsforhost‐bacterialinteractionsinthegut.Wehavethereforerecentlyproposed theinterfacehypothesis,advocatingtheimportanceofpositivehostselectionformutualisticgut bacteria.Iwillpresentdetailsaboutthehypothesis,andhowitissupportedfromthecurrent knowledgeaboutthehumangutmicrobiota. NeelandWilliamsAwardCandidates A1 Anovelmethodusingcrosspedigreesharedancestrytomaprarecausal variantsinthepresenceoflocusheterogeneity HaleyJAbel1,MichaelAProvince1 1DivisionofStatisticalGenomics,WashingonUniversitySchoolofMedicine,St.Louis,MO Currently,thereisgreatinterestintheuseoffamilystudiestoidentifyrarevariantsunderlying complexdisease.However,attemptsatfinemappingareconfoundedbylocusheterogeneity,which resultsinnoisyandpoorlylocalizedlinkagesignals,andanabundanceofrarevariants,which frequentlysegregatewithphenotypebychance.Asrarevariantssharedacrosspedigreesarelikely tobeofrecentorigin,wehavedevelopedanapproachleveragingidentity‐by‐descent(IBD) betweenpedigreefounderstobetterlocalizelinkagesignalsinthepresenceofheterogeneity.Our methodreliesonsegmentssharedidentically‐by‐state(IBS)acrosspedigrees:itoptimizesover pedigreemembersandcalculatesascorebasedonthesumofmaximalpairwisesharedlengthsat eachlocus.UseofunphasedIBSmakesitbothcomputationallyefficient,sothatpedigree‐based permutationtestsassessingsignificancearetractable,androbusttogenotypingandhaplotype phaseswitcherrors.Moreover,ourmethodprovidesacross‐familymetrictopermitlocalclustering offamiliesnearIBDregions:thisallowsstratificationbyrecentsharedancestry,and,insimulations, accuratelyrecoversancestralrelationships.Wehaveevaluatedtheperformanceofourmethodby coalescentsimulationoffounderindividuals,followedbygene‐droppingontopedigrees.Undera varietyofscenarios,withrarecausalvariants(MAF<0.01)andmodesteffectsizes(OR=5‐7),our approachachieves60‐80%power,andisabletodetectsharedancestralsegmentsharboringrare causalvariantswheremultipointlinkageandrare‐variantburdentestsfail. Categories: CoalescentTheory,Heterogeneity,Homogeneity,LinkageandAssociation A2 Survivalanalysiswithdelayedentryinselectedfamilieswithapplication tohumanlongevity. MarRodriguezGirondo1,JeanineHouwing‐Duistermaat1 1LUMC,TheNetherlands Althoughthereisevidencefromseveralstudiesthatlongevityaggregateswithinfamilies, identificationofgeneticfactorshasnotbeensuccessful.Reasonsforlackofprogressmightbethead hocdefinitionofbeingolderthanaspecificthreshold(e.g.olderthan90yearsofage).Asalternative wewillconsidersurvivalmodelsfortheanalysisoflongevityinfamilystudies.Challengesareto modeltheascertainmentofthefamilies,totakeintoaccountcorrelationbetweenfamilymembers andtodealwithdelayedentry.Methodsforsurvivalanalysiswithdelayedentryinsmallclusters areavailable(e.g.Rondeauetal,2012).Thesemethodsprovidebiasestimatesforlargerclusters (Jensenetal,2004),becausetheydonotadjustforascertainment.WeproposeaCoxmodelwitha frailtyandwithinverseprobabilityweightingtoaccountfortheselectionofthefamiliesandthe delayedentry.Theweightswillbebasedonthelatentfrailtiesinaproportionalhazardsmodel.Via simulationsweshowedthatourapproachperformsbetter(lessbias)thanexistingmethodsfor largefamilies(>8subjects)andlargefrailties(>0.5).ThisworkismotivatedbytheLeiden Longevitystudycomprising420familieswithatleasttwononagenariansiblings.Thesizeof sibshipswithmemberswhobecomeolderthan60yearsvariesfrom2to13siblings.Themaximum observedageis107yearsand13%ofthenonagenariansisstillalive.Weestimatedtheeffectof APOEE4alleleonsurvival.Theestimateofthevarianceofthefrailtywas0.082and0.230forthe standardapproachandourapproachrespectively.Theestimateoftheloghazardratiowas‐0.272 (s.e.0.113)and‐0.212(s.e.0.070)forthestandardandourapproachrespectively. Categories: Ascertainment,Association:Family‐based,Heritability A3 Combiningfamily‐andpopulation‐basedimputationdataforassociation analysisofrareandcommonvariantsinlargepedigrees MohamadSaad1,EllenMWijsman1 1DepartmentofBiostatistics,UniversityofWashington Inthelasttwodecades,complextraitshavebecomethemainfocusofgeneticstudies.The hypothesisthatbothrareandcommonvariantsareassociatedwithcomplextraitsisincreasingly beingdiscussed.Family‐basedassociationstudiesusingrelativelylargepedigreesaresuitablefor bothrareandcommonvariantidentification.Becauseofthehighcostofsequencingtechnologies, imputationmethodsareimportantforincreasingtheamountofinformationatlowcost.Arecent family‐basedimputationmethod,GIGI,isabletohandlelargepedigreesandaccuratelyimputerare variants,butdoeslesswellforcommonvariantswherepopulation‐basedmethods(e.g.;BEAGLE) performbetterandcanalsobeused.Weproposeaflexibleapproachtocombineimputationdata fromfamily‐andpopulation‐basedmethods.Weselect,foreverySNPandeverysubject,thesetof3 genotypeposteriorprobabilitiesfromthemethodwiththehighestvarianceoftheseprobabilities. WealsoextendtheassociationtestSKAT‐RC,originallyproposedfordatafromunrelatedsubjects, tofamilydatawithcontinuoustraitinordertomakeuseofsuchimputeddata.Wecallthis extension“famSKAT‐RC”.WecomparetheperformanceoffamSKAT‐RCandseveralotherexisting burdenandkernelassociationtests.Insimulatedpedigreesequencedata,ourresultsshowan increaseofimputationaccuracyfromthecombinedapproach.Also,thedatashowanincreaseof poweroftheassociationtestswiththisapproachovertheuseofeitherfamily‐orpopulation‐based imputationmethodsalone,inthecontextofrareandcommonvariantsinasinglegene.Moreover, ourresultsshowedbetterperformanceoffamSKAT‐RCcomparedtotheotherconsideredtests,in mostscenariosinvestigated. Categories: Association:Family‐based,MultipleMarkerDisequilibriumAnalysis,SequencingData A4 Mixedmodelingfortime‐to‐eventoutcomeswithlarge‐scalepopulation cohortsandgenome‐widedata ChristianBenner1,2,MattiPirinen1,EmmiTikkanen1,2,SamuliRipatti1,2,3 1InstituteforMolecularMedicineFinland(FIMM),UniversityofHelsinki,Helsinki,Finland 2HjeltInstitute,UniversityofHelsinki,Helsinki,Finland 3WellcomeTrustSangerInstitute,Hinxton,Cambridge,UK Recentdevelopmentonlinearmixedmodelshasprovidedacommonframeworkforheritability estimation,multi‐locusassociationtestingandgenomicpredictionofquantitativetraitsin populationcohortsofunrelatedindividuals.Thepossibilitytousepopulationcohortsratherthan familystructurescouldopenupnewavenuesalsofortime‐to‐eventoutcomesingenetic epidemiology.However,connectingtime‐to‐eventoutcomestobiggenomicsdatahassofarnot beencomputationallyfeasiblewithhithertoexistingsoftware.Weintroduceanovelsurvival analysismethodforheritabilityestimation,multi‐locusassociationtestingandgenomicrisk predictionthatscalestomillionsofgeneticmarkersandhealtheventsintensofthousandsof individuals.MotivationforourworkcomesfromalargeanduniquecollectionofFinnishpopulation cohortsforwhichwehavebothdetailedgenomicandcomprehensivehealthregistrydata.Our approachimplementsaveryflexiblepiecewiseconstanthazardmodelthatcontainsanindividual‐ specificGaussianrandomeffectwithanarbitrarycovariancestructure.Computationally,we transformtheproblemtoaPoissonmodel,whichweanalyzebyfittingahierarchicalgeneralized linearmodel.Wedemonstratetheruntimeefficiencyofourmethodandgiveanexampleof heritabilityestimationandmulti‐locusassociationtestingforcardiovasculardiseaserelatedevents usingupto16,000Finnishindividuals.Ourworkextendsthecomputationaltractabilityoflinear mixedmodelsfromquantitativetraitstotime‐to‐eventoutcomesandwillproveuseful,e.g.,for combininginformationacrossindividuals’genomesandtheirhospitalrecords. Categories: Association:Genome‐wide,CardiovascularDiseaseandHypertension,Heritability, MaximumLikelihoodMethods A5 Thecollapsedhaplotypepatternmethodforlinkageanalysisofnext‐ generationsequencingdata GaoTWang1,DiZhang1,BiaoLi1,HangDai1,SuzanneMLeal1 1BaylorCollegeofMedicine Traditionally,linkageanalysiswasusedtomapMendeliandiseases.Nextgenerationsequencing (NGS)makesitpossibletodirectlysequenceindividualswithMendeliandiseasesandidentify causalvariantsbyfiltering.LinkageanalysisofSNPdataaresometimesusedinconjunctionwith NGStoincreasethesuccessofidentifyingthecausalvariant.WiththereductionincostofNGS,DNA samplesfrommultiplefamiliescanbesequencedandlinkageanalysiscanbeperformeddirectly usingNGSdata.Inspiredby“burden”testsforcomplextraitrarevariantassociationstudies,we developedthecollapsedhaplotypepattern(CHP)methodtogeneratemarkersfromsequencedata forlinkageanalysis.TodemonstratethepoweroftheCHPmethodweanalyzedandperformed powercalculationsusingdatafromseveraldeafnessgenes.PoweranalysisshowedthattheCHP methodissubstantiallymorepowerfulthananalyzingindividualSNVs.Specificallyforanautosomal recessivemodelwithallelicheterogeneityandlocusheterogeneityof50%,itrequires12families fortheCHPmethodtoachieveapowerof90%fortheSLC26A4gene,whileanalyzingindividual SNVsrequires>50familiestoachievethesamepower.Unlikethecommonlypracticedfiltering approachesusedforNGSdata,theCHPmethodprovidesstatisticalevidenceoftheinvolvementofa geneinMendeliandiseaseetiology.Additionallybecauseitincorporatesinheritanceinformation andpenetrancemodelsitislesslikelythanfilteringtoexcludecausalvariantsinthepresentsof phenocopiesand/orreducedpenetrance.WerecommendtheuseoftheCHPmethodinparallelto filteringmethodstotakefulladvantageofthepowerofNGSinfamilies. Categories: LinkageAnalysis,SequencingData A6 Meta‐analysisapproachforhaplotypeassociationtests:ageneral frameworkforfamilyandunrelatedsamples ShuaiWang1,JingHZhao2,MarkOGoodarzi3,JoséeDupuis1 1DepartmentofBiostatistics,BostonUniversitySchoolofPublicHealth,Boston,MA 2MRCEpidemiologyUnit,UniversityofCambridge,InstituteofMetabolicScience,Addenbrooke'sHospital,Box 285HillsRoad,Cambridge,UnitedKingdom 3DivisionofEndocrinology,DiabetesandMetabolism,Cedars‐SinaiMedicalCenter,LosAngeles,CA Meta‐analysishasbeenwidelyusedtoimprovepowertodetectassociatedvariantsingenome‐wide associationstudies.Severalmeta‐analysismethodshavebeendevelopedandsuccessfullyappliedto combineassociationtestsofsinglevariantandgene‐basedtestsfrommultiplecohorts.However, meta‐analysisofhaplotypeassociationresultsremainsachallenge,becausedifferenthaplotypes maybeobservedacrosscohorts.Weproposeatwo‐stagemeta‐analysisapproachtocombine haplotypeanalysisresults.Ourapproachallowseachcohorttocontributeassociationresultsfrom uniquelyobservedhaplotypes,inadditiontohaplotypesobservedinmultiplecohorts.Inthefirst stage,eachcohortcomputestheexpectedhaplotypeeffectsinaregressionframework,selectingthe mostfrequenthaplotype,whichcanvaryacrosscohorts,asthereferencehaplotypeandincludinga randomfamilialeffecttoaccountforrelatedness,ifappropriate.Forthesecondstage,weproposea multivariategeneralizedleastsquaremeta‐analysisapproachtocombinehaplotypeeffectsfrom multiplecohorts.Associationtestsforeachhaplotypeandaglobaltestcanbeobtainedwithinour framework.AsimulationstudyshowsthatourapproachhasthecorrecttypeIerror.Wepresentan applicationtogenotypesfromIlluminaHumanExomeBeadchiparray,whereweassessthe associationbetweenhaplotypesformedbyrarevariantsinafastingglucose‐associatedlocus (G6PC2).Wethencombinedhaplotypeanalysisresultsfrom18CHARGE(CohortsforHeartand AgingResearchinGenomicEpidemiologyConsortium)cohorts.Theglobalhaplotypeassociation testishighlysignificant(p=1.1e‐17),andmoresignificantthananysingle‐variantandgene‐based tests. Categories: Association:Family‐based,Diabetes,HaplotypeAnalysis,QuantitativeTraitAnalysis ContributedPlatformPresentations C1 Identificationofbloodpressure(BP)relatedcandidategenesby population‐basedtranscriptomeanalyseswithintheMetaXpress Consortium ChristianMüller1,KatharinaSchramm2,ClaudiaSchurmann3,SoonilKwon4,ArneSchillert5, ChristianHerder6,GeorgHomuth3,SimoneWahl7,HaraldGrallert7,AndreasZiegler5 1GeneralandInterventionalCardiology,UniversityHeartCenterHamburg,Germany 2InstituteofHumanGenetics,HelmholtzCenterMunich,GermanResearchCenterforEnvironmentalHealth, Neuherberg,Germany 3InterfacultyInstituteforGeneticsandFunctionalGenomics,UniversityMedicineandErnst‐Moritz‐Arndt‐ UniversityGreifswald,Greifswald,Germany 4MedicalGeneticsInstitute,Cedars‐SinaiMedicalCenter,LosAngeles,USA 5InstituteofMedicalBiometryandStatistics,UniversityofLübeck,UniversityMedicalCenterSchleswig‐ Holstein,CampusLübeck,Lübeck,Germany 6InstituteforClinicalDiabetology,GermanDiabetesCenter,LeibnizCenterforDiabetesResearchatHeinrich HeineUniversityDüsseldorf,Germany 7ResearchUnitofMolecularEpidemiology,HelmholtzZentrumMünchen,GermanResearchCenterfor EnvironmentalHealth,Neuherberg,Germany Highbloodpressure(BP)isaglobalmajorriskfactorforcardiovasculardiseases.Weanalyzed associationsbetweenthetranscriptomeandBPtraitsinlargecohortsoftheMetaXpress Consortium.TranscriptomicdatafromtheIlluminaHumanHT‐12BeadChiparraywereavailablefor 4533individualsfromthethreeGermancohortsandoneUScohort.Expressionlevelswere measuredinmonocyte(n=2549,GutenbergHealthStudy(GHS))andwholebloodcell(n=1984 CooperativeHealthResearchintheRegionofAugsburg(KORAF4)andStudyofHealthin Pomerania(SHIP‐TREND),Multi‐EthnicStudyofAtherosclerosis(MESA)).Associationstosystolic BP(SBP),diastolicBP(DBP)andpulsepressure(PP)wereestimatedbylinearregressionwith adjustmentsforsex,age,bodymassindex(BMI),RNAstoragetime,amplificationlayoutandRNA integritynumberwithineachstudy.ApooledanalysiswasconductedwithinGHSandMESAusing theinversevariancemethod.Significantassociations(FDR≤0.05)wereselectedforreplicationin KORAF4andSHIP‐TREND.Geneswithconsistenteffectdirectionsandp≤0.05inbothinitialstudies wereselectedascandidates.Intotal,8uniquegeneswereconsistentlyassociatedwithsystolic bloodpressure(SBP),diastolicbloodpressure(DBP)orpulsepressure(PP)inbothdiscoveryand replicationsteps:CEBPA,CRIP1,F12,LMNA,MYADM,TIPARP,TPPP3andTSC22D3.Intotal,the candidategenesexplainedbetween4‐13%,4‐6%and2‐8%ofinter‐individualvarianceofSBP,DBP andPP,respectively.ThisisthefirststudyinvestigatingtheassociationsbetweenBPtraitsand wholetranscriptomesinmorethan4000individuals.Thecomprehensiveanalyseshighlighteight geneswhichareassociatedwithBP. Categories: Association:CandidateGenes,Association:Genome‐wide,CardiovascularDiseaseand Hypertension,GeneExpressionArrays,GeneExpressionPatterns C2 Mixed‐modelanalysisofcommonvariationrevealspathwaysexplaining varianceinAMDrisk JacobBHall1,MargaretAPericak‐Vance2,WilliamKScott2,JaclynLKovach2,StephenDSchwartz2, AnitaAgarwal3,MilamABrantley3,JonathanLHaines1,WilliamSBush1 1InstituteforComputationalBiology,CaseWesternReserveUniversity,Cleveland,OH 2JohnPHussmanInstituteforHumanGenomics,UniversityofMiamiMillerSchoolofMedicine,Miami,FL 3DepartmentofOphthalmologyandVisualSciences,VanderbiltUniversity,Nashville,TN Age‐relatedmaculardegeneration(AMD)istheleadingcauseofirreversibleblindnessintheelderly indevelopedcountriesandcanaffectmorethan10%ofindividualsoverage80.AMDhasalarge geneticcomponent,withheritabilityestimatedtobebetween45%&70%.Numerouslocihave beenidentifiedandimplicatevariousmolecularmechanismsandpathwaysinAMDpathogenesis. Eightpathways,includingangiogenesis,antioxidantactivity,apoptosis,complementactivation, inflammatoryresponse,nicotinemetabolism,oxidativephosphorylation,andthetricarboxylicacid cycle,wereselectedforourstudybasedonanextensiveliteraturereview.Whilethesepathways havebeenproposedinliterature,theoverallextentofthecontributiontoAMDheritabilityforeach pathwayisunknown.Inacase‐controldataset,weusedGenome‐wideComplexTraitAnalysis (GCTA)toestimatetheproportionofvarianceinAMDriskexplainedbyallSNPsineachpathway. SNPswithina50kbregionflankingeachgenewereassessed,aswellasmoredistant,putatively regulatorySNPs,basedondatafromtheENCODEproject.Wefoundthat19establishedAMDrisk SNPscontributedto13.3%ofthevariationinriskinourdataset,whiletheremaining659,181SNPs contributedto36.7%.Adjustingforthese19riskSNPs,thecomplementactivationand inflammatoryresponsepathwaysexplainedastatisticallysignificantproportionofadditional varianceinAMDrisk(9.8%and17.9%,respectively),withotherpathwaysshowingnosignificant effects(0.3%–4.4%).Ourresultsshowthatadditionalvariantsassociatedwithcomplement activationandinflammationgenescontributetoAMDrisk,andthatthesevariantsarelikelyin codingandnearbyregulatoryregions. Categories: Case‐ControlStudies,Heritability,MaximumLikelihoodMethods,MultilocusAnalysis, Pathways C3 APhenome‐WideAssociationStudyofNumerousLaboratoryPhenotypes inAIDSClinicalTrialsGroup(ACTG)Protocols AnuragVerma1,SarahAPendergrass2,EricSDaar3,RoyMGulick4,RichardHaubrich5,GregoryK Robbins6,DavidWHass7,MarylynDRitchie1 1ThePennsylvaniaStateUniversity,UniversityPark,Pennsylvaina,USA 2ThePennsylvaniaStateUniversity,UniversityPark,PA,USA 3DepartmentofMedicine,LosAngelesBiomedicalResearchInstitute,Harbor‐UCLAMedicalCenter,Torrance, California,USA 4WeillMedicalCollegeofCornellUniversityNewYork,NewYork,USA 5UniversityofCaliforniaSanDiego,SanDiego,California,USA 6DepartmentofMedicine,MassachusettsGeneralHospital,HarvardMedicalSchool,Boston,Massachusetts, USA 7VanderbiltUniversity,Nashville,Tennessee,USA Phenome‐WideAssociationStudies(PheWAS)havethepotentialtoefficientlydiscovernovel geneticassociationsacrossmultiplephenotypes.Prospectiveclinicaltrialsdataofferaunique opportunitytoapplyPheWAStopharmacogenomics.HerewedescribethefirstPheWAStoexplore associationsbetweengenotypicdataandclinicaltrialdata,bothpre‐treatmentandfollowing initiationofantiretroviraltherapy.A"pre‐treatment"PheWASconsidered27laboratoryvariables from2807subjectswhohadparticipatedin4ACTGprotocols(ACTG384,A5142,A5095and A5202),andanalyzed~5MimputedSNPs.Lowestp‐valueswereforpre‐treatmentbilirubin, neutrophilcounts,andHDLcholesterollevels.Theseandmultipleotherlaboratoryvariables matchedassociationsintheNHGRIGWASCatalog.An"on‐treatment"PheWASconsidereddatafrom 1181subjectsfromA5202.Weconsidered838phenotypesandsub‐phenotypesderivedfrom6 variables:CD4counts,HIVcontrol,fastingLDL,fastingtriglycerides,efavirenzpharmacokinetics (PK),andatazanavirPK.Weconsidered2,374annotateddrug‐relatedSNPsfromPharmGKB.Of23 associationswiththelowestp‐values(byphenotype),21(91%)werewithgeneswithmatching biologicalplausibility:LDLwithLPLandAPOE;triglycerideswithLPL;CD4countswithinnate immuneresponsegeneTNF,HIVcontrolwithadaptiveimmuneresponsegeneHLA‐DRQA1, efavirenzPKwithCYP2B6;atazanavirPKwithdrugtransportergeneABCC4.Thisanalysis highlightsthepotentialutilityofPheWAStoevaluateclinicaltrialsdatasetsforgeneticassociations. Categories: Association:CandidateGenes,Association:Genome‐wide,Association:UnrelatedCases‐ Controls,Bioinformatics,Case‐ControlStudies,Epigenetics,MultivariatePhenotypes,Population Genetics,PopulationStratification C4 eMERGEPhenome‐WideAssociationStudy(PheWAS)IdentifiesClinical AssociationsandPleiotropyforFunctionalVariants AnuragVerma1,ShefaliSVerma1,SarahAPendergrass1,DanaCCrawford2,DavidRCrosslin3, HelenaKuivaniemi4,WilliamSBush2,YukiBradford5,IftikharKullo6,SueBielinski6 1CenterforSystemsGenomics,DepartmentofBiochemistryandMolecularBiology,PennsylvaniaState University,UniversityPark,PA,USA 2CaseWesternUniversity,Cleveland,OH,USA 3DepartmentofMedicine,DivisionofMedicalGenetics,UniversityofWashington,Seattle,WA,USA 4GeisingerHealthSystem,Danville,PA,USA 5VanderbiltUniversity,Nashville,TN 6MayoClinic,Rochester,MN,USA Weperformedaphenome‐wideassociationstudy(PheWAS)exploringtheassociationbetween stop‐gainedgeneticvariantsandacomprehensivegroupofphenotypestoidentifynovel associationsandpotentialpleiotropy.Usingmultiplebioinformaticstoolsweselected38 functionallyrelevantstop‐gained/nullgeneticvariantswithinthegenotypicdataof37,972 unrelatedpatientsfromsevenstudysitesintheElectronicMedicalRecordsandGenomics (eMERGE)Network.Wecalculatedcomprehensiveassociationsbetweenthesevariantsandcase‐ controlstatusfor3,518ICD9diagnosiscodes(requiring≥3visitsperindividualtoidentifycase status,≥10casesubjectsperICD9code).Associationswereadjustedforage,sex,site,platformand thefirst3principalcomponents.Atotalof418associationspassedaliberalsignificancethreshold ofp<0.01.ThemostsignificantassociationwasbetweenGLG1rs9445and“chronicnon‐alcoholic liverdisease”(p=4.12x10‐5,β=2.60).Weidentifiedmanypotentiallypleiotropicassociationsatp< 0.01,35outof38SNPsdemonstratedassociationswithmorethanonephenotype,and17SNPs wereeachassociatedwith>10differentICD9codes.Forexample,wefoundassociationsforIL34 rs4985556with25diagnoses,suchas“lupuserythematosus”(p=5.94x10‐3,β=0.98)andforGBE1 rs2229519with33diagnoses,suchas“hypertension”(p=1.2x10‐3,β=0.067),“hyperlipidemia” (p=6.66x10‐3,β=0.058),and“ocularhypertension”(2.49x10‐3,β=0.21).Wewillseekreplicationof theseresults.Inconclusion,ourPheWASshowsstop‐gainedvariantsmayhaveimportant pleiotropiceffects,andthatPheWASareapowerfulstrategytominethefullpotentialoftheEMR forgenome‐phenomeassociations. Categories: Association:Genome‐wide,MultilocusAnalysis C5 AnovelG‐BLUP‐likephenotypepredictorleveragingregionalgenetic similarityanditsapplicationsinpredictingdiseaseseverityanddrug response QuanLong1,EliAStahl2,JunZhu1 1DepartmentofGeneticsandGenomicSciences,IcahnSchoolofMedicineatMountSinai 2DepartmentofPsychiatry,IcahnSchoolofMedicineatMountSinai Clinicalusesofphenotypepredictionsbasedongenotype(e.g.,PersonalizedMedicine)are emerging,empoweredbyhigh‐throughputtechnology.Itiswellknownthatdiseaseseverityand drugresponsediffersignificantlyacrosspopulationsorindividualpatientswithdifferentgenetic background.Predictingsuchphenotypesusingseeminglyunrelatedsamples,thenstratifying patientsbasedonthesepredictions,couldbecrucialforthedesignofclinictrails.Therearetwo majoractivebranchesofgenotype‐basedphenotypepredictionsbasedonwholegenome regression.Oneismodelselection,inwhichallgeneticmarkersaremodeled(usuallyinconjunction withBayesianorothervariableselectioncriteria),andwhichmaysufferfromoverfittingdueto astronomicalnumberofcombinationsofvariables/markers;theotherisG‐BLUPbasedonrandom effectsregression,fittingphenotypicvariancebykinshipmatrixofthesampleestimatedfrom genotypicsimilarity,whichmayruntheriskofunderfittingforcomplextraitsforwhich infinitesimalmodeldoesnothold.WedevelopedaG‐BLUPlikepredictorthatstrikesthebalanceon theabovetrade‐off.BasedonGWASsignalsorbiologicalaprioriknowledge,afewregionsare selectedandtheirphenotypiccontributionsestimatedbyG‐BLUP.Then,modelselectionisapplied tospecifyweightsforthedifferentregions.Usingsimulations,wedemonstratethatthepresent predictorsignificantlyimprovespredictionpoweringeneralandinvestigateconditionsunder whichitperformsbestornotcomparedwithpuremodelselectionorstandardG‐BLUP.Weapply thismodeltorealdataforvarioustraitsofmultiplediseases,focusingondiseaseseverityanddrug response. Categories: QuantitativeTraitAnalysis C6 MitochondrialGWAanalysisinseveralcomplexdiseasesusingtheKORA population AntoniaFlaquer1,Karl‐HeinzLadwig2,RebeccaEmeny2,MelanieWaldenberger3,HaraldGrallert3, StephanWeidinger4,ChristaMeisinger5,ThomasMeitinger6,AnnettePeters2,KonstantinStrauch7 1InstituteofMedicalInformatics,BiometryandEpidemiology,ChairofGeneticEpidemiology,Ludwig‐ Maximilians‐Universität,Munich,Germany. 2InstituteofEpidemiologyII,HelmholtzZentrumMünchen‐GermanResearchCenterforEnvironmental Health,Neuherberg,Germany 3ResearchUnitofMolecularEpidemiology,HelmholtzZentrumMünchen‐GermanResearchCenterfor EnvironmentalHealth,Neuherberg,Germany 4DepartmentofDermatology,AllergologyandVenerology,UniversityHospitalSchleswig‐Holstein,Campus Kiel,Kiel,Germany 5MyocardialInfarctionRegistry,Augsburg,Germany 6InstituteofHumanGenetics,HelmholtzZentrumMünchen‐GermanResearchCenterforEnvironmental Health,Neuherberg,Germany 7InstituteofMedicalInformatics,BiometryandEpidemiology,ChairofGeneticEpidemiology,Ludwig‐ Maximilians‐Universitüt,Munich,Germany MutationsofmitochondrialDNA(mtDNA)areunderagrowingscientificspotlight;scientistsbelieve thesemutationsplayacentralroleinmany,ifnotmost,humandiseases.ThesmallcircularmtDNA hasproventobeaPandora’sboxofpathogenicmutationsandrearrangements.Beingextremely sensitivetoenvironmentalthreats,mitochondriaproducehigh‐energymolecules–adenosine triphosphate(ATP).Mitochondriaalsogeneratereactiveoxygenspecies(ROS),whichparticipatein cellsignalingandcommunication,particularlybetweennuclearandmitochondrialgenes.Ourmain goalistoidentifymitochondrialsusceptibilitygenesforhumancomplexdiseases.Theclassical statisticaltechniquesusedtodatetoanalyzethenucleargenomearenotappropriatetodirectlybe appliedtothemitochondrialgenome.Someadjustmentsandnewmethodsneedtobedevelopedin thecontextofmappingmitochondrialpolymorphisms.Usingdifferentgenotypingplatformssuchas theAffymetrix6.0GeneChiparray,IlluminaMetaboChip200K,IlluminaHumanExomeBeadchip array,andAffymetrixAxiomchiparrayweperformedmitochondrialGWAanalysusintheKORA populationwithseveralphenotypes:BMI,cholesterol,post‐traumaticstressdisorder,thyroid diseases,anxiety,depression,andasthma,amongothers.Ourfindingshighlighttheimportantrole ofthemtDNAamongthefactorsthatcontributetotheriskofhumancomplexdiseasesandsuggest thatvariantsinthemitochondrialgenomemaybemoreimportantthanhaspreviouslybeen suspected. Categories: Association:Genome‐wide,Association:UnrelatedCases‐Controls,Case‐ControlStudies, Causation,PsychiatricDiseases,QuantitativeTraitAnalysis C7 AdramaticresurgenceoftheGIGOsyndromeinthe21stcentury FrançoiseClerget‐Darpoux1,EmmanuelleGénin2 1IHUimagine‐INSERMU781,Paris,France 2INSERMUMR1078,Brest,France Inthesearchofthegeneticfactorsunderlyingmultifactorialdiseases,thewayispavedbyepidemics ofGIGO(Garbage‐InGarbage‐Out)syndrome.Afirstoutbreaktookplaceinthelate1980’swhen geneticistsbuildingonthesuccessofmodel‐basedlinkageanalysisinmonogenicdiseasesstartedto usemonogenicmodelstostudymultifactorialdiseases.Asecondoutbreakisongoing,withgenome‐ wideassociationstudy(GWAS)heritabilityestimates.AlmostallGWASonmultifactorialdiseases quantifythecontributionoftheidentifiedgeneticvariantstodiseasesusceptibilitythrough heritabilityestimates.Theseestimatesarecomparedtotheonesobtainedfromfamilialdisease segregationinordertodeterminehowmuchoftheheritabilityismissingandtopromptthesearch forotherculpritssuchasrarevariants.Heritabilityestimatesareobtainedundertheadditive polygenicmodelassumingthatthegeneticsusceptibilityinmultifactorialdiseaseisonlyexplained byvariantswithmoderateandadditiveeffects.Thissimplisticmodelcannotberejectedbasedon theinformationprovidedbybi‐allelictag‐SNPs,notbecauseitisthetruemodel,butbecausethis informationisextremelypoorformodellingtheeffectofgeneticriskfactors.Severalexamplessuch asPTPN22inrheumatoidarthritisclearlyillustratethefactthatusingthetag‐SNPinformation alonemayleadtoahugeunderestimationoftherealeffectandtoanincorrectclassificationin termsofrisk.GWAShasproventobeanefficienttoolforsusceptibilitygenedetectionbutnotfor theirmodelling.Inthiswork,weshowhowheritabilityestimatescouldbebiasedwhenthedisease modelismisspecified. Categories: Association:Genome‐wide,Heritability,MultifactorialDiseases,PredictionModelling C8 LargeScalePredictionandDissectionofComplexTraits HaeKyungIm1,EricRGamazon1,KestonAquino‐Michaels1,NancyJCox1 1TheUniversityofChicago Highaccuracypredictionofdiseasesusceptibilityanddrugresponseisnecessarytomake personalizedorprecisionmedicineareality.Despiteinitialoptimismatthecompletionofthe humangenomesequence,accuratepredictivetestsformanycommonconditionsarestill unavailable.Thesmallportionofthetotalvariabilityexplainedbygenomewidesignificantgenes havedampenedtheenthusiasm.However,studiesofthetotalheritabilityexplainedbyfullsetof genotypedvariantsshowthatthereisampleroomforimprovement.Recentpowercalculations haveshowedthatinordertoachievepredictionRsquaresclosetoheritabilityestimates,wemay needmillionsofindividualsinourstudies.However,giventherateofincreaseinsamplesizesof large‐scalemeta‐analysisstudies(overaquarterMillionforBMI),wearenottoomanyyearsaway fromachievingthesenumbers.Also,advancesinelectronicmedicalrecordsandscalablecomputing systemsareallowingustogatherandhandlethesemassivesamplesizes.Totakefulladvantageof thegrowingamountofinformation,wearebuildingapubliclyavailablecatalogofprediction models‐‐predictDB‐‐thathostsadditivemodelsforarangeofphenotypessuchasinflammation markers,diseaserisk,lipidtraits,anthropomorphictraits,tonameafew.Furthermore,wehave builtpredictionmodelsforgeneexpressionlevelsinmultipletissuesaswellasmicroRNAs.In additiontoprediction,weusethesemodelstodissectthebiologyofcomplextraits.Forexample,we usethepredictionmodelsforgeneexpressiontofindgenesthataredifferentiallyexpressedinsilico betweencasesandcontrolsforarangeofdiseases.Thisisanovelgenebasedassociationtest, termedPrediXcan,whichdirectlyteststhehypothesisthatgeneticvariationaltersdiseaserisk throughtheregulationofgeneexpressionlevels.ApplicationtotheWellcomeTrustCaseControl Consortiumdatayieldedmanygenome‐widesignificanthits.Manyofthemareknowndiseasegenes butmanyarenovelandreplicationeffortsareunderway. Categories: Association:Genome‐wide,GeneExpressionPatterns,PredictionModelling C9 Geneticpredictorsoflongertelomeresarestronglyassociatedwithrisk ofmelanoma JenniferHBarrett1,DavidTBishop1,NicholasKHayward2,ChristopherIAmos3,PaulDPPharoah4, FlorenceDemenais5,MatthewHLaw2,MarkMIles1,TheGenoMELConsortium 1UniversityofLeeds,UK 2QIMRBerghoferMedicalResearchInstitute,Brisbane,Australia 3DartmouthCollege,Hanover,USA 4UniversityofCambridge,UK 5INSERM,Paris,France Telomeresprotectthesingle‐strandedchromosomeendsfromdamage.Telomeresshortenwithage andenvironmentalexposuressuchassmoking.Telomerelength(TL)hasbeenrelatedtoanumber ofage‐relateddiseases,usuallythroughcross‐sectionalstudiesfromwhichthedirectionofeffect cannotbeinferred.Incontrasttomostdiseases,modestevidencehasaccumulatedthatlongerTLis positivelyassociatedwiththenumberofmelanocyticneviandwiththeriskofafewcancers, includingmelanoma.AsmoreisdiscoveredaboutthegeneticbasisofTL,Mendelianrandomisation principlesmaybeinvokedtoelucidatethis.Arecentgenome‐wideassociationstudyofTLidentified 7genome‐widesignificantSNPs1.BasedontheseSNPsandtheirestimatedeffectsizesa“telomere score”wascreated,anditsrelationshipwithmelanomariskwasinvestigatedusing>11,000cases and13,000controls.Fourofthe7SNPsshowednominalevidenceofassociationwithmelanoma risk(p<0.05).Therewasstrongevidenceofanassociationbetweenthescoreandmelanomarisk (p<10‐8);theestimatedriskofmelanomatothosewithatelomerescoreinthehighestquartilewas almost30%higherthantothosewithascoreinthelowestquartile.Furtheranalysissuggeststhat whenthetelomerescoreusedhereisrefined,byusingadenserimputationpanelandbyincluding moreSNPs,thescoreislikelytobeanevenstrongerpredictorofmelanomarisk.Thegenetic associationsuggeststhat,ratherthanreversecausation,theassociationsobservedbetweenTLand cancerriskaredueeithertoadirectcausaleffectoflongertelomeresortothepleiotropiceffectofa numberofgenes. 1Coddetal,NatGenet2013;45:422‐427 Categories: Association:UnrelatedCases‐Controls,Cancer,MendelianRandomisation C10 DetectionofcisandtranseQTLs/mQTLsinpurifiedprimaryimmune cells SilvaKasela1,2,LiinaTserel3,TõnuEsko4,Harm‐JanWestra5,LudeFranke5,KristaFischer4,Andres Metspalu1,2,PärtPeterson3,LiliMilani4 1EstonianGenomeCenter,UniversityofTartu,Tartu,Estonia 2InstituteofMolecularandCellBiology,UniversityofTartu,Tartu,Estonia 3InstituteofGeneralandMolecularPathology,UniversityofTartu,Tartu,Estonia 4EstonianGenomeCenter,UniversityofTartu,Tartu,Estonia 5DepartmentofGenetics,UniversityMedicalCenterGroningen,UniversityofGroningen,Groningen,The Netherlands AdiverserepertoireofTcellsiscrucialforeffectivedefenseagainstinfectionwithpathogens throughoutlife.CD4+Tcellsarevitalelementsoftheadaptiveimmuneresponse,whichhavebeen associatedwiththepathogenesisofautoimmuneandinflammatorydiseases.CD8+Tcellsare criticallyinvolvedindefenseagainstinfectionsandcanalsocontributetotheinitiationand regulationofseveralorgan‐specificautoimmunediseases.Inordertoinvestigatethecell‐type specificeffectsofnearbySNPsongeneexpression(ciseQTLs)andDNAmethylation(cismQTLs), wepurifiedCD4+andCD8+cellsfromtheperipheralbloodofover600healthyindividuals.We determinedtheSNPgenotypes(700K),expressionlevelsof47,000transcriptsfrom300subjects andmethylationlevelsof450,000CpGsitesfromthe50youngestand50oldestsubjects.Intotal, wedetectedmoreciseQTLsandmQTLsinCD4+comparedtoCD8+cellswithalargeoverlap betweenthecellpopulations.Further,weselectedasetof9648SNPswhichhavebeenassociated withimmunesystemrelateddiseasesfromstudiesusingtheImmunoChipandSNPsfromthe reportsintheGWAScatalog.Despitetheseveralfoldsmallersamplesize,wewereabletoidentify recentlyreportedtrans‐actingexpressionmasterregulatorSNPsonchromosome12and16(Fairfax etal.2012,Westraetal.2013).Moreover,ourstudyrevealedthatsomeoftheeQTLsidentifiedin wholebloodoriginatefromCD4+cellsonly,andwealsoidentifieddownstreamregulatedgenesthat couldnotbedetectedinwholeblood.Forexample,wefoundthreeSNPsassociatedwithtype1 diabetes,Crohn’sdisease,andinflammatorybowel’sdiseasetoaffecttheexpressionoftheSTAT1 andIRF1genesintransinCD4+cells. Categories: EpigeneticData,Epigenetics,GeneExpressionPatterns,GenomicVariation,Quantitative TraitAnalysis C11 WhyNext‐GenerationSequencingStudiesMayFail:Challengesand SolutionsforGeneIdentificationinthePresenceofFamilialLocus Heterogeneity SuzanneMLeal1,RegieLynPSantos‐Cortez1,AtteeqURehman2,MeghanCDrummond2,Saima Riazuddin3,DeborahANickerson4,WasimAhmad5,SheikhRiazuddin6,ThomasBFriedman2,EllenS Wilch7 1CenterforStatisticalGenetics,DepartmentofMolecularandHumanGenetics,BaylorCollegeofMedicine, Houston,Texas77030,USA 2LaboratoryofMolecularGenetics,NationalInstituteonDeafnessandOtherCommunicationDisorders, NationalInstitutesofHealth,Rockville,Maryland20850,USA 3LaboratoryofMolecularGenetics,DivisionofPediatricOtolaryngologyHeadandNeckSurgery,Cincinnati ChildrensHospitalMedicalCenter,Cincinnati45229,Ohio,USA 4UniversityofWashingtonCenterforMendelianGenomics 5DepartmentofBiochemistry,FacultyofBiologicalSciences,Quaid‐i‐AzamUniversity,Islamabad45320, Pakistan 6NationalCenterofExcellenceinMolecularBiology,UniversityofthePunjab,Lahore54590,Pakistan 7DepartmentofMicrobiologyandMolecularGenetics,MichiganStateUniversity,EastLansing,Michigan 48824,USA Next‐generationsequencing(NGS)ofexomesandgenomeshasacceleratedtheidentificationof genesinvolvedinMendelianphenotypes.However,manyNGSstudiesfailtoidentifycausal variants.Animportantreasonforsuchfailuresisfamiliallocusheterogeneity,wherecausalvariants intwoormoregeneswithinasinglepedigreeunderlieMendeliantraitetiology.Asexamplesof intra‐andinter‐sibshipfamiliallocusheterogeneity,wepresent10consanguineousPakistani familiessegregatinghearingimpairment(HI)duetohomozygousmutationsintwodifferentHI genesandalargeEuropean‐AmericanpedigreeinwhichHIiscausedbypathogenicvariantsin threedifferentgenes.Wehaveidentified41additionalpedigreeswithsyndromicand nonsyndromicHIforwhichasingleknownHIgenehasbeenidentifiedbutonlysegregateswiththe phenotypeinasubsetofaffectedpedigreemembers.Weestimatethatlocusheterogeneityoccursin 15.3%(95%confidenceinterval11.9to19.9%)ofthefamiliesinourcollectionwherewehave identifiedatleastonevariantinapreviouslypublishedHIgenewhichonlysegregateswithHI phenotypeinasubsetofaffectedpedigreemembers.Wedemonstratenovelapproachestoapply linkageanalysisandhomozygositymappingwhichcanbeusedtodetectlocusheterogeneityusing eitherNGSorSNParraydata.Resultsfromtheanalysiscanalsobeusedtogroupsibshipsor individualsmostlikelytobesegregatingthesamecausalvariantsandtherebyaidingene identification.TheresultscanbeusedtoaidintheselectionofpedigreemembersforNGS.Itis demonstratedhowthesemethodscanincreasethesuccessrateofgeneidentificationforfamilies withlocusheterogeneity. Categories: Association:Family‐based,Heterogeneity,Homogeneity,LinkageAnalysis,SequencingData C12 Variationinestimatesofkinshipobservedbetweenwhole‐genomeand exomesequencedata ElizabethEBlue1 1UniversityofWashington Genotypicvariationmaybeusedtoestimaterelationshipsbetweenindividuals.Theserelationships areclearlyimportantwhenconfirmingpedigreestructureandtestingtheco‐segregationofa variantwithatrait.Itisalsoimportantwhentestingassociationofageneticvariantwith case/controlstatusinasetof“unrelated”subjects:ex.,thereasonwhyprincipalcomponentsare includedascovariatestominimizetheeffectsofpopulationstratification.Thepopularityofexome sequencingfordiseasegenediscoverysuggestsweneedtoknowwhetherthesedataprovide accurateestimatesofrelationshipsbetweensubjects.Theexomerepresents~1%ofthegenome, anddoesnotrepresentarandomsubsampleofgenomicvariation.Here,wecompareamethod‐of‐ momentsandtheKING‐robustestimatorofkinshipappliedtoSNPchipdata,wholeexome,and wholegenomesequencedataforfoursubjectswithknownpedigreerelationships.SNPchip‐based estimatesofkinshiparesimilartothepedigree‐basedexpectation,withtheKING‐robustestimates deviatingslightlymorethanthemethod‐of‐momentsestimates.However,theexome‐based estimatesaremuchmorevariable:overestimatingsomerelationshipsbyasmuchasathirdand underestimatingothersbynearlyaquarterofthepedigree‐basedexpectation.Weexplorethe effectsofallelefrequency,linkagedisequilibrium,andthenumberofmarkersonestimatesof kinshipdrawnfromwholegenomesequencedata.Theseresultssuggestwemustaccountforthe non‐randomdistributionofvariationintheexomewhenestimatingrelationshipsbetweensubjects. Categories: Ascertainment,GenomicVariation,LinkageandAssociation,PopulationStratification, SequencingData C13 Robustgenotypecallingfromverylowdepthwholegenomesequencing data ArthurLGilly1,JeremySchwartzentruber1,AngelaMatchan1,Aliki‐EleniFarmaki2,George Dedoussis2,PetrDanecek1,LorraineSoutham1,3,EleftheriaZeggini1 1WellcomeTrustGenomeCampus,Hinxton,CambridgeshireCB101SA,UK 2DepartmentofNutritionandDietetics,SchoolofHealthScienceandEducation,HarokopioUniversity,Athens, Greece 3WellcomeTrustCentreforHumanGenetics,OxfordOX37BN,UK Low‐depthwhole‐genomesequencing(WGS)hasbeenproposedasapowerfulapproachtocomplex traitassociationstudydesign,asitallowsforareducedper‐samplecostandhencegreatersample size.Howevervariantsandgenotypescalledatthesedepthstendtobelessreliablethanchip‐typed ones,androbustguidelinesforvariantfiltering,genotyperefinementandimputationhavenotbeen establishedyet.Inthisstudy,wefocuson995samplesfromaGreekisolatedpopulation(HELIC study),sequencedatverylowdepth(1x).WeusedGWASandexomechipdata(availableforall samples)andhigh‐depthexomesequencing(forasubsetofsamples)astruthsetsforperformance calculations.WefindthattheVariantQualityScoreRecalibrationtooltypicallyusedtofilterlow‐ confidencesitescanreactunpredictablytosmallchangesintheunderlyingmodel’sparametersfor lowdepthWGSdatacalling.Weshowthatthesepitfallscanbeavoidedwithacomprehensive explorationoftheparameterspace.Wedemonstratethatover80%oftruelow‐frequency (1%<MAF<5%)variantsarefound,comparedtoanaverage60%for0.1%<MAF<1%and40%for MAF<0.1%.WeperformextensivebenchmarkingoftheBEAGLE,IMPUTE2andMVNCallrefinement toolsandshowthatwiththehelpofthe1000Genomesreferencepanel,itispossibletoreacha >95%genotypeconcordanceanda>90%minoralleleconcordanceacrossthewholeMAFspectrum. Wereplicateknownassociationhits,therebyprovidingaproofofconceptforarobustprocessing pipelineforlow‐depthWGSvariantcalls. Categories: Association:Genome‐wide,Bioinformatics,DataMining,DataQuality,SequencingData C14 Insightsintothegeneticarchitectureofanthropometrictraitsusing wholegenomesequencedata IoannaTachmazidou1,GrahamRSRitchie1,2,JosineMin3,KlaudiaWalter1,JieHuang1,JohnPerry4, ThomasKeane1,ShaneMcCarthy1,YasinMemari1 1WellcomeTrustSangerInstitute,Hinxton,Cambridge,UK 2EuropeanMolecularBiologyLaboratory,EuropeanBioinformaticsInstitute,Cambridge,UnitedKingdom 3MRCIntegrativeEpidemiologyUnit,UniversityofBristol 4MRCEpidemiologyUnit,UniversityofCambridge Bodyweightandfatdistributionmeasuresareassociatedwithincreasedriskofcardiometabolic disease.AspartoftheUK10Kstudy,weinvestigatedthegeneticarchitectureof12anthropometric traitsin3,538individualswith~7xwholegenomesequence(WGS)datafromtheALSPACand TwinsUKcohorts.VariantsdiscoveredthroughWGS,alongwiththosefromthe1000Genomes Project,wereimputedintoadditionalindividualsfromtheALSPACandTwinsUKcohortswith GWASdata,increasingthetotalsamplesizeto11,178.Weinvestigatedassociationbetween anthropometrictraitsand~9millionvariantswithMAF≥0.01and~5millionvariantswithMAF 0.001‐0.01.Insilicoreplicationwassoughtin16externalcohortsforatotalsamplesizeof15,000‐ 40,000dependingontrait.Weobserveasignificantexcessofindependentpreviouslynotreported variantswithMAF>0.01andp<10‐5inUK10Kinallanthropometrictraits.Wefindsignificant enrichmentofvariantsassociatedwithBMIinUK10Kandestablishedmonogenicobesitygenes. Furtherreplicationisongoing,butinterimanalysesidentifyreplicatingsignals,forexample,variant chr5:105105444(EAF0.0084;UK10Kp=4.69x10‐5;replicationp=2.53x10‐4;overallp=5.53x10‐8, samplesize=27,687)isanovelsignalassociatedwithwaistcircumferenceadjustedforBMI.Waist tohipratioisassociatedwithvariantchr9:23016057(EAF0.003;UK10Kp=6.11x10‐5;replication p=2.92x10‐04;overallp=5.98x10‐8,samplesize=25,373).Thesereplicatingsignalsareatvariants withMAF<0.01,havemodesteffectsizesandarenotpresentinHapMap.Largersamplesizesare requiredfortheidentificationandreplicationoffurtherrarevariantassociationswith anthropometrictraits. Categories: Association:Genome‐wide,QuantitativeTraitAnalysis,SequencingData C15 StandardImputationversusGeneralizationsoftheBasicCoalescentto EstimateGenotypes MariaKabisch1,UteHamann1,JustoLorenzoBermejo2 1MolecularGeneticsofBreastCancer,GermanCancerResearchCenter(DKFZ),Heidelberg,Germany 2InstituteofMedicalBiometryandInformatics,UniversityofHeidelberg,Heidelberg,Germany Genotypesthathavenotbeendirectlymeasuredareoftenimputedinassociationstudiestoincrease statisticalpower,torefineassociationmapping,andtodetectgenotypingerrors.Mostoftenapplied imputationmethodsexploitthepresentlinkagedisequilibrium(LD)amonggeneticvariantstoinfer genotypes.ThiscausesastrongdependenceofimputationaccuracyonthesimilarityofLDpatterns inthestudypopulationandthereferencepanel.Alternatively,coalescenttheoryassumesthat haplotypesarerelatedthroughtheunderlyingpopulationgenealogy.Coalescent‐basedimputation relaxestheassumptionofidenticalLDpatternsandmaythusresultinanincreasedaccuracy.To examinethishypothesis,wefirstassessedtheimputationaccuracyunderthebasiccoalescent. Studyandreferencehaplotypesweresimulatedusing'msms'[1].Haplotypeswerepairedatrandom tomimicbiallelicvariants.Tenpercentofthevariantsinthestudywererandomlyselectedand assumedtobedirectlymeasured,therestwasmasked.'BATWING'wasusedtoestimateone thousandgenealogicaltrees,whichweresubsequentlysummarizedinaconsensusthreewith 'SumTree'[2,3].Expectedcoalescencetimeswereusedtoidentifyhaplotypetemplatesforgenotype imputation.Finally,maskedgenotypeswereimputedandcomparedwiththetruegenotypesto quantifytheaccuracyofimputation.Afterexamininggenotypeimputationunderthebasic coalescent,populationgrowthandpopulationstructurewereincorporated.Imputationaccuracies reachedbystandardmethods,e.g.IMPUTE2,willbecomparedwithcoalescent‐basedresultsatthe IGES2014conference. [1]Ewing,Hermisson(2010)MSMS:acoalescentsimulationprogramincludingrecombination, demographicstructureandselectionatasinglelocus.Bioinformatics,26:2064‐5. [2]Wilson,Weale,Balding(2003)InferencesfromDNAdata:populationhistories,evolutionary processesandforensicmatchprobabilities.JournaloftheRoyalStatisticalSociety,SeriesA,166: 155‐88. [3]Sukumaran,Holder(2010)DendroPy:APythonlibraryforphylogeneticcomputing. Bioinformatics26:1569‐1571. Categories: CoalescentTheory C16 Improvementofgenotypeimputationaccuracythroughintegrationof sequencedatafromasubsetofthestudypopulation BarbaraPeil1,MariaKabisch2,ChristineFischer3,UteHamann2,JustoLorenzoBermejo1 1InstituteofMedicalBiometryandInformatics,UniversityofHeidelberg,Heidelberg,Germany 2MolecularGeneticsofBreastCancer,GermanCancerResearchCenter(DFKZ),Heidelberg,Germany 3InstituteofHumanGenetics,UniversityHospitalHeidelberg,Heidelberg,Germany Unmeasuredgenotypesingeneticassociationstudiescanbeestimated(imputed)usingexternal datarepositories,forexampletheHapMap,ideallycomplementedwithsequencedatafromown studyindividuals.Severalstudieshaveevaluatedwhichindividualsaremosthelpfulforgenotype imputation.Initialeffortsfocusedonaselectionofreferenceindividualswhobestreflected recombinationpatternsinthestudypopulation.Morerecently,theadvantageofgeneticdiversityin thereferencepanelhasbeenrecognized.Wehavecompareddifferentstrategiestoselectstudy individualsforsequencinginordertomaximizeimputationaccuracy.Fivealternativestrategies wereexaminedinHapMapbasedsimulations.Thestrategy“none”incorporatednoadditional sequencetotheexternalreferencepanel.Thestrategy“random”incorporatedthesequencesofa randomsubsetof10%studyindividuals.Thestrategies“univariatedepth”,“bivariatedepth”and “trivariatedepth”reliedonagenomewideprincipalcomponentanalysisofthestudypopulation, followedbytheidentificationof10%ofstudyindividualswiththelargeststatisticaldepthbasedon thefirstone,firsttwoandfirstthreeprincipalcomponents.Asexpected,theinclusionofadditional sequencesfromtheownstudypopulationoutperformedimputationexclusivelyrelyingonexternal referencepanels.Theselectionofstudyindividualsbasedontheunivariatedepthwasthebest strategyinsimulationsmimickingEuropeanassociationstudies.Detailedresultsforadditional investigatedscenarioswillbeprovidedattheconference. Categories: Association:Genome‐wide,DataQuality,MissingData,SequencingData C17 LearningGeneticArchitectureofComplexTraitsAcrossPopulations MarcCoram1,SophieICandille1,HuaTang1 1StanfordUniversity Genome‐wideassociationstudies(GWAS)havesuccessfullyrevealedmanylocithatinfluence complextraitsanddiseasesusceptibilities.Anunansweredquestionis“towhatextentdoesthe geneticarchitectureunderlyingatraitoverlapbetweenhumanpopulations?”Weexplorethis questionusingbloodlipidconcentrationsasamodeltrait.Wedemonstratestrikingsimilaritiesin geneticarchitectureoflipidtraitsacrosshumanpopulations.Inparticular,wefoundthata disproportionatefractionoflipidvariationinAfricanAmericansandHispanicAmericanscanbe attributedtogenomiclociexhibitingstatisticalevidenceofassociationinEuropeans,eventhough theprecisegenesandvariantsremainunknown.Atthesametime,wefoundsubstantialallelic heterogeneitywithinsharedloci,characterizedbothbypopulation‐specificrarevariantsand variantssharedamongmultiplepopulationsthatoccuratdisparatefrequencies.Exploitingthis overlappinggeneticarchitecture,wedevelopapopulation‐sensitiveapproachthatsubstantially improvestheefficiencyofGWASinnon‐Europeanpopulations. Categories: Association:Genome‐wide,Association:UnrelatedCases‐Controls,PopulationStratification C18 Genome‐widegenotypeandsequence‐basedreconstructionofthe 140,000yearhistoryofmodernhumanancestry DanielShriner1,FasilTekola‐Ayele1,AdebowaleAdeyemo1,CharlesNRotimi1 1NationalHumanGenomeResearchInstitute Weinvestigatedancestryof3,528modernhumansfrom163ethno‐linguisticgroups.Weidentified 19ancestralcomponents,with94.4%ofindividualsshowingmixedancestry.Afterusingwhole genomesequencestocorrectforascertainmentbiasesingenome‐widegenotypedata,wedatedthe mostrecentcommonancestorto140,000yearsago.WedetectedanOut‐of‐Africamigration 100,000–87,000yearsago,leadingtopeoplesoftheAmericas,eastandnorthAsia,andOceania, followedbyanothermigration61,000–44,000yearsago,leadingtopeoplesoftheCaucasus,Europe, theMiddleEast,andsouthAsia.Wedatedeightdivergenceeventsto33,000–20,000yearsago, coincidentwiththeLastGlacialMaximum.Werefinedunderstandingoftheancestryofseveral ethno‐linguisticgroups,includingAfricanAmericans,Ethiopians,theKalash,LatinAmericans, Mozabites,Pygmies,andUygurs,aswellastheCEUsample.Ubiquityofmixedancestryemphasizes theimportanceofaccountingforancestryinhistory,forensics,andhealth. Categories: Ascertainment,PopulationGenetics C19 ModelComparisonandSelectionforCountDatawithExcessZerosin MicrobiomeStudies WeiXu1,2,AndrewDPaterson2,3,WilliamsTurpin4,KennethCroitoru4,LizhenXu3 1DepartmentofBiostatistics,PrincessMargaretHospital,Toronto,ON,Canada 2PrograminGeneticsandGenomeBiology,theHospitalforSickChildren,Toronto,ON,Canada 3DallaLanaSchoolofPublicHealth,UniversityofToronto,Toronto,ON,Canada 4DivisionofGastroenterology,ZaneCohenCentreforDigestiveDiseases,MountSinaiHospital,Toronto,ON, M5T3L9,Canada Inhumanmicrobiomestudies,itisoftenofinteresttoidentifyclinicalorgeneticfactorsthatare associatedwithdifferentbacterialtaxa.Themicrobiotasequencecountdataarecomplexwith featuressuchashighdimension,over‐dispersion,andoftenexcesszeros.Inaddition,thenumberof totalreadsvariesamongsubjects.Zeroinflatedorhurdlemodelsprovidepossibleanalytic approachesforthistypeofdataandthevariationintotalreadscanbeadjustedasoffsets.However, inpractice,onepartmodelswhichignorezeroinflationareoftenused.Todeterminethepatternof superiorityofusingzeroinflatedorhurdlemodelsoverthesimplifiedonepartmodels,wedesigned extensivesimulationstudiestocomparetheperformanceofdifferentstatisticalmethodsundera varietyofgeneratingscenarios.Thesescenariosinclude:differentlevelsofzeroinflation;presence ofdispersion;differentmagnitudeanddirectionsofthecovariateeffectonboththestructuralzero andcountcomponents.Theresultsshowthat,comparedtoone‐partmodels,thehurdleandzero inflatedmodelshavewellcontrolledtypeIerrors,higherpower,bettergoodnessoffitmeasures, andaremoreaccurateandefficientintheparameterestimation.Besidesthat,thehurdlemodels havesimilargoodnessoffitandparameterestimationforthecountcomponentastheir correspondingzeroinflatedmodels.However,theestimationandinterpretationfortheparameters forthezerocomponentscanbedifferent.Inaddition,wedevelopedacomprehensivemodel selectionandanalysisstrategytoanalyzethistypeofdata.Thisstrategywasimplementedinagut microbiomestudyof>400independentsubjects. Categories: MicrobiomeData,QuantitativeTraitAnalysis C20 BayesianLatentVariableModelsforHierarchicalClusteredTaxaCounts inMicrobiomeFamilyStudieswithRepeatedMeasures LizhenXu1,AndrewDPaterson1,2,WeiXu2,3 1DallaLanaSchoolofPublicHealth,UniversityofToronto,Toronto,Canada 2PrograminGeneticsandGenomeBiology,theHospitalforSickChildren,Toronto,ON,Canada 3DepartmentofBiostatistics,PrincessMargaretHospital,Toronto,ON,Canada Inmicrobiomestudies,taxacountdataareoftenover‐dispersedandincludeexcesszeros. Furthermore,differenttaxabelongingtothesametaxonomichierarchicalclusterareoften correlatedduetotheirsimilar16SrRNAsequences.Addedcharacteristicsofmicrobiomedataisthe repeatedmeasuresonrelatedfamilymembers.Jointmodelingofmultipletaxausingfamilydata withrepeatedmeasuresisdesirablebutnon‐trivialduetothecomplexcorrelationandmulti‐ dimensionaloutcomedata.Toovercomethesechallenges,weproposetousethelatentvariable (LV)methodology.TheLVapproachlinksthemultipletaxacountsbyintroducingalatentrandom variablethatrepresentstheunobservedtraitoftheircommontaxonomycluster.Thelatentvariable formulationalsoprovidesaflexiblewaytoallowforoutcomeswithdiscretecomponents,inour case,thenegativebinomialoutcomeswithorwithoutzeroinflation.LValsoprovidesaneffective waytodetectpleiotropicgenes,witheffectsonmultipletaxa.WebuildourLVinferenceina Bayesianframework.SamplingsfromtheposteriordistributionareobtainedusingMCMC algorithms.Theparameterexpansiontechniqueisusedtoimprovethemixingofchainsandthe Bayesiandevianceinformationcriteria(DIC)andBayesfactorsareusedformodelselection. Extensivesimulationsshowthatourmethodperformswellincapturingthecorrelationsamongthe multipletaxainducedbysharedhostgeneticfactors.Wethenillustrateourmethodwithagut microbiomestudyofleanandobesetwins. Categories: BayesianAnalysis,MarkovChainMonteCarloMethods,MicrobiomeData,Multivariate Phenotypes,QuantitativeTraitAnalysis C21 ARetrospectiveLikelihoodApproachforEfficientIntegrationofMultiple OmicsandNon‐OmicsFactorsinCase–ControlAssociationStudiesof ComplexDiseases BrunildaBalliu1,RoulaTsonaka1,StefanBoehringer1,JeanineHouwing‐Duistermaat1 1LeidenUniversityMedicalCenter,TheNetherlands Integrativeomics,thejointanalysisofoutcomeandmultipletypesofomicsdata,suchasgen‐omic, epigen‐omicandtranscript‐omicdata,offersapromisingalternativetogenome‐wideassociation studies,formorepowerfulandbiologicallyrelevantassociationstudies[1,2].Thesestudiesusually employthecase‐controldesign,andtheyoftenincludedataonadditionalnon‐omiccovariates,e.g. ageorgender,thatmaymodifytheunderlyingomicsriskofcasesorcontrols.Anunanswered questionishowtobestintegratemultipleomics,andpossiblynon‐omicsinformationtomaximize statisticalpowerinstudiesthatascertainindividualsonthebasisofphenotype.Mostpublications onintegrativeomicshavereliedonsomevariantoftheprospectivelogisticregressiontomodelthe associationbetweenoutcomeandriskfactors[2].However,whilesuchanapproachhasimproved powerinstudieswithrandomascertainment,relativetomethodsthatanalyzeeachdatasource separately,itoftenlosespowerundercase‐controlascertainment[3].Inthisarticle,weproposea novelstatisticalmethodforintegratingmultipleomics,andpossiblynon‐omicsfactors,incase‐ controlassociationstudies.Ourmethodisbasedonaretrospectivelikelihoodfunctionthatproperly reflectsthecase‐controlsampling,bymodelingthejointdistributionoftheomicsandnon‐omics factorsconditionalonthecase‐controlstatus.Whenpossible,weexplicitlyimposethe independenceassumptionbetweentheomicsandnon‐omicscovariates.Thenewmethodprovides accuratecontroloffalse‐positiverateswhilemaximizingstatisticalpower.Themethodisillustrated usingsimulatedandrealdataexamples. [1]HLi(2013),WIRE:SBM,5(6):677–686. [2]HuangYetal.(2014),Ann.Appl.Stat.,8(1):352‐376. [3]Zaitlenetal.(2012),PLoSGenet8(11):e1003032. Categories: Ascertainment,Case‐ControlStudies,DataIntegration,EpigeneticData,Epigenetics,Gene ExpressionArrays,MaximumLikelihoodMethods C22 Inferenceforhigh‐dimensionalfeatureselectioningeneticstudies ClausTEkstrøm1 1Biostatistics,UniversityofCopenhagen Featureselectionisanecessarystepinmanygeneticapplicationsbecausethebiotechnological platformsprovideacheapandfastmeansforproducinghigh‐dimensionaldata.Thisneedfor dimensionreductionisheightenedfurtherforexamplewhendatafromdifferentomicsare combinedintosimultaneousintegrateddataanalysisorwhenhigher‐levelinteractionsamongthe availablepredictorsareconsidered(whichisthecaseforgene‐geneorgene‐environment interactionsorinepigenetics).PenalizedregressionmodelssuchastheLassoortheelasticnethave provedusefulforvariableselectioninmanygeneticapplications‐especiallyforsituationswith high‐dimensionaldatawherethenumbersofpredictorsfarexceedsthenumberofobservations. Thesemethodsidentifyandrankvariablesofimportancebutdonotgenerallyprovideanyinference oftheselectedvariables.Thus,thevariablesselectedmightbethemost''important''butneednot besignificant.Weproposeasignificancetestforevaluatingthenumberofsignificantselection(s) foundbytheLasso.Thismethodrephrazesthenullhypothesisandusesarandomizationapproach whichensuresthattheerrorrateiscontrolledevenforsmallsamples.Theabilityofthealgorithm tocomputep‐valuesoftheexpectedmagnitudeisdemonstratedwithsimulateddataandthe algorithmisappliedtotwodataset:oneonprostatecancerandafullGWAS.Theproposedmethod isfoundtoprovideapowerfulwaytoevaluatethesetofselectionsfoundbypenalizedregression whenthenumberofpredictorsareseveralordersofmagnitudelargerthanthenumberof observations. Categories: Association:Family‐based,Association:Genome‐wide,Bioinformatics,Gene‐Environment Interaction,Gene‐GeneInteraction Posters P1 Increasedpowerfordetectionofparent‐of‐origin(imprinting)effectsin genome‐wideassociationstudiesusinghaplotypeestimation RichardHowey1,HeatherJCordell1 1NewcastleUniversity,UK Ingeneticstudies,parent‐of‐origin(imprinting)effectscanbeconsideredasthephenomenon wherebyanindividual’sphenotypedependsbothontheirowngenotypeandontheparentalorigin oftheconstituentalleles.Severalmethodshavebeenproposedtodetectsucheffectsinthecontext ofstudiesofcase/parenttrioswithsinglenucleotidepolymorphism(SNP)genotypedata.Formost case/parenttrios,thegenotypecombinationsaresuchthattheparent‐of‐originoftheallelesinthe childcanbedeterminedunambiguously,butthisisnottruewhenallthreeindividualsare heterogenousatasingleSNPunderstudy.Existingmethodsforthedetectionofparent‐of‐origin effectsinthecontextofgenome‐wideassociationstudies(GWAS)thuseitherperformsomesortof “averaging”overpossibleconfigurationsorelsediscardtheseambiguouscase/parenttrios.The powertodetectparent‐of‐origineffectswouldbeincreasedifthetrueparentaloriginofthealleles couldbedeterminedwithahigherdegreeofcertainty.WepresenthereanextensiontotheGWAS methodimplementedinthePREMIM/EMIMsoftwaretodetectparent‐of‐origineffectsusing externalestimatesofhaplotypesprovidedbytheprogramSHAPEIT2,therebyusingsurrounding SNPinformationtohelpbetterestimatetheparentaloriginofallelesatagiventestSNP.Weshow throughsimulationsthatourapproachhasincreasedpoweroverpreviousversionsofEMIMand achievespowerneartothatachievediftheparent‐of‐originofalleleswereknown. P2 EpidemiologicalProfileofCleftPalateintheStateofBahia‐Brazil MarcelaMQLLeiro1,RenataLLFdeLima1,LuziaPolianadosAnjosSilva1 1UniversityFederalofBahia,Brazil Cleftlipandpalate(FLPs)areasetofmalformationsofthefacerepresentingthemostcommon congenitalanomaliesofthehumanspecies.Braziliandataoncraniofacialanomaliesarestill consideredscarceandscattered,duetothedifficultyofreportingthesecasesinthepublichealth system.Giventhedifferentpopulation,environmental,social,lifestyleandissuesofracial miscegenationinBrazilcharacteristics,theprevalenceofthisanomalyseemstovaryineachstate ofthecountry.OBJECTIVE:TodescribetheepidemiologyofpatientswithCleftLipand/orPalate residentsoftheStateofBahia.Studyofquantitativetraitrunsthroughcross‐sectionalcaseseries withsamplegroupconsistedofchildrenaged0‐12years,whoarepartofaprogramofcarein Centrinho‐BA.RESULTS:Ofthe206patientstherewasaslightprevalenceoffemales(51%), andnon‐syndromiccases,95%.Ofthetotalsample,53%hadCLPandonly19%FL,and119 cases(58%)wereborninthestate.TheFLPwasmoreprevalentinpatientswithapositivefamily history,71cases(34.5%).RegardingtheetiologyofPLF9.3%(19cases)reportedhavingused alcoholduringpregnancy.Itwasnotedsocioeconomicsituationofvulnerabilityinpatientswith CLPwhere60%(124cases)hadanincomeof1‐3minimumwages.CONCLUSION:Itwas observedthroughthisstudy,ahigherincidenceofCLPinrelationtoFLassociatedwithahigher prevalenceinblacks,withthesocioeconomicvulnerabilityexposedpopulation. P3 GeneralizedFunctionalLinearModelsforGene‐basedCase‐Control AssociationStudies RuzongFan1,YifanWang1,JamesLMills1,ToniaCCarter2,IrynaLobach3,AlexanderFWilson4,Joan EBailey‐Wilson4,DanielEWeeks5,MomiaoXiong6 1NationalInstituteofChildHealthandHumanDevelopment,NationalInstitutesofHealth 2MarshfieldClinic 3UniversityofCalifornia,SanFrancisco 4NationalHumanGenomeResearchInstitute,NationalInstitutesofHealth 5UniversityofPittsburgh 6UniversityofTexas‐Houston Byusingfunctionaldataanalysistechniques,wedevelopedgeneralizedfunctionallinearmodelsfor testingassociationbetweenadichotomoustraitandmultiplegeneticvariantsinageneticregion whileadjustingforcovariates.Bothfixedandmixedeffectmodelsareproposedandcompared. ExtensivesimulationsshowthatRao'sefficientscoretestsoftheproposedfixedeffectmodelsare veryconservativesincetheygeneratelowtypeIerrors,andglobaltestsofthemixedeffectmodels areveryrobustsincetheygenerateaccuratetypeIerrors.Furthermore,wefoundthattheRao's efficientscoreteststatisticsoftheproposedfixedeffectmodelshavehigherpowerthanthe sequencekernelassociationtest(SKAT)anditsoptimalunifiedversion(SKAT‐O)inmostcases whenthecausalvariantsarebothrareandcommon.Whenthecausalvariantsareallrare(i.e., minorallelefrequencieslessthan0.03),theRao'sefficientscoreteststatisticsandtheglobalscore testshavesimilarorslightlylowerpowerthanSKATandSKAT‐O.Inpractice,itisnotknown whetherrarevariantsorcommonvariantsinagenearedisease‐related.Allwecanassumeisthata combinationofrareandcommonvariantsinfluencesdiseasesusceptibility.Thus,thesuperior performanceoftheproposedmodelswhenthecausalvariantsarebothrareandcommonshows thattheproposedmodelscanbeveryusefulindissectingcomplextraits.SNPdatarelatedtoneural tubedefectsandHirschsprung'sdiseaseareanalyzedbytheproposedmethodsandSKATand SKAT‐Oforarealapplicationandcomparison.Themethodscanbeusedineithergene‐disease genome‐wide/exome‐wideassociationstudiesorcandidategeneanalyses. Categories: Association:CandidateGenes,Association:Genome‐wide,Association:UnrelatedCases‐ Controls,Case‐ControlStudies,LinkageandAssociation,MultilocusAnalysis,MultipleMarker DisequilibriumAnalysis,SequencingData P4 Geneticanalysisofthechromosome15q25.1regionidentifiesIREB2 variantsassociatedwithlungcancer ChristopherIAmos1,IvanPGorlov1,JamesDMcKay2,LoïcLeMarchand3,YafangLi1,Gianluca Severi4,DavidCChristiani5,PaulBrennan2,JohnKField6,RayjeanJHung7 1DartmouthCollege 2InternationalAgencyforResearchonCancer 3UniversityofHawaii 4HumanGeneticsFoundation,Torino,ItalyandUniversityofMelbourne 5HarvardUniversitySchoolofPublicHealth 6UniversityofLiverpool 7UniversityofToronto Genome‐wideassociationstudiesoflungcanceridentifiedtheregionofchromosome15q25.1that includesanicotinicacetylcholinereceptorclusterasbeingthemoststronglyassociatedwithlung cancerrisk.Tocharacterizetheimpactthatspecificfunctionalvariantsinthisregionhaveuponrisk forlungcancerdevelopmentweperformedfinemappingselectingallcurrentlyknownSNPs influencinglungcancerriskalongwithcodingSNPsinthe200megabaseregionsurrounding CHRNA5,ageneknowntoinfluencesmokingbehaviorinthisregion.Markersusedinanalysis wereselectedbaseduponthefollowingcriteria:knownfunctionaleffectonactivity,validationin AfricanorEuropeanpopulations,positionacrosstheregion,predictedeffectonfunction,r‐square withothermarkerslessthan80%.Wefinemappedtheregionbygenotyping1395SNPsextending fromthegeneCRABP1toADAMTS7fromposition79103132toposition79103132usingacustom AffymetrixAxiomarrayin3063casesand2940controlsofEuropeanancestryfrom5studies:MSH‐ PMH,EPIC,MEC,LLPC,HPFS&NHS.Oddsratios(OR)adjustedforage,sex,thefirsttwoprincipal componentsandpopulationwereestimatedusinglogisticregression.Acrossthisregion,101SNPs metthemultipletestingcorrectedthreshold(p<3.5×10‐5).ThemostsignificantSNPslieinaregion ofIREB2withthemostsignificantlyassociatedvariantbeingrs17483686(OR=1.26,p=8.93x10‐ 12).ThepreviouslywellcharacterizedSNPinCHRNA5,rs16969968,whichcausesreduced signaling,yieldedalesssignificantassociation(OR=1.24,p=8x10‐10).Thesefindingssuggest IREB2,agenerelatedtoironmetabolism,playsaroleinlungcancerdevelopmentinadditionto nearbynicotinicreceptors. Categories: Association:CandidateGenes,Cancer,FineMapping,Gene‐EnvironmentInteraction P5 Anovelintegratedframeworkforlargescaleomicsassociationanalysis RamounaFouladi1,2,KyryloBessonov1,2,FrancoisVanLishout1,2,JasonHMoore3,KristelVanSteen1,2 1SystemsandModelingunit,MontefioreInstitute,UniversityofLiege,Liege,Belgium 2BioinformaticsandModeling,GIGA‐R,UniversityofLiege,Liege,Belgium 3DepartmentofGenetics,InstituteforQuantitativeBiomedicalsciences,GeiselSchoolofMedicineat Dartmouthcollege,Lebanon,US Genome‐wideassociationstudies(GWAstudies)havebeenverysuccessfulinidentifyingnumerous geneticlociassociatedwithawiderangeofcomplextraits.Thesediscoverieshaverevealednew pathwaysthatseemtoplayasignificantroleincommondiseases.Singleomicsstudies,suchas GWAs,onlyprovidelimitedinformationtodisease‐relatedbiologicalorfunctionalmechanisms.In anomics–diseasetraitassociationsetting,ideally,agenerictooliscreatedthatcandealwith differentgranularitiesofomicsinformation(i.e.,differentarchitecturesofcommonandrare variants,epigeneticmarkers,geneexpression).Here,anovelomicsassociationanalysistechniqueis proposedthatbuildsupontheModel‐BasedMultifactorDimensionalityReduction(MB‐MDR) framework.Atthebasisofthemethodliesadataorganizationstepthatinvolvesclusteringof individuals.InthefirstimplementationsofMB‐MDR,thesefeatureswereSNPs,andindividuals wereclusteredaccordingtotheirgenotypes.IngenomicMB‐MDR,anyfeature(continuousor categorical)canbeanalyzed,andfeaturesmappedtogenomic“regionsofinterest”(ROIs)are submittedtoaclusteringalgorithmtofindgroupsofsimilarindividualsonthebasisofselected ROIs.Whenappliedtoexome‐sequencingdata,wecanidentifyageneasaROI,andcantakeboth rareandcommonfeaturesmappedtotheseregionsasinputfeatures.Wethenproposetocluster individualsaccordingtotheirsimilaritiesbasedonrareandcommonvariants,afterwhichclassic MB‐MDRisapplied.Theperformanceofseveralfeatureselectionmethods,similaritymeasures,and clusteringalgorithmsingenomicMB‐MDRisinvestigatedusingsyntheticandreal‐lifeexome sequencingdata. Categories: Association:CandidateGenes,Bioinformatics,DataIntegration,Epigenetics P6 InclusiveCompositeIntervalMappingandSkew‐NormalDistribution ElisabeteFernandes1 1CEMAT‐CenterforComputacionalandStochasticMathematics,Portugal Thecompositeintervalmapping,CIM,(JansenandStam,1994;Zeng,1994)isthemostcommonly usedmethodforQTLmappingwithpopulationsderivedfrombiparentalcrosses.However,theCIM maynotcompletelyensureallitsadvantageousproperties.Themodifiedalgorithm,calledas inclusivecompositeintervalmapping,ICIM,(Wangetal.,2007)hasasimplerformthanthatusedin CIM,butafasterconvergencespeed.ICIMretainsalladvantagesofCIMoverIMandavoidsthe possibleincreaseofsamplingvarianceandthecomplicatedbackgroundmarkerselectionprocessin CIM.Thisapproachmakesuseoftheassumptionthatthequantitativephenotypefollowsanormal distribution(KruglyakandLander,1995).Manyphenotypesofinterest,however,followahighly skeweddistribution,andinthesecasesthefalsedetectionofamajorlocuseffectmayoccur (Morton,1984).Aninterestingalternativeistoconsideraskew‐normalmixturemodelinICIM,and theresultingmethodisheredenotedasskew‐normalICIM.Thismethod,whichissimilartoICIM, assumesthatthequantitativephenotypefollowsaskew‐normaldistributionforeachQTLgenotype. Themaximumlikelihoodestimatesofparametersoftheskew‐normaldistributionareobtainedby theexpectation‐maximization(EM)algorithm.Theproposedmodelisillustratedwithrealdata fromanintercrossexperimentthatshowsasignificantdeparturefromthenormalityassumption. Theperformanceoftheskew‐normalICIMisassessedviastochasticsimulation.Theresultsindicate thattheskew‐normalICIMhashigherpowerforQTLdetectionandbetterprecisionofQTLlocation ascomparedtoICIM. Categories: Association:CandidateGenes,Association:Genome‐wide,FineMapping,Maximum LikelihoodMethods,QuantitativeTraitAnalysis P7 Transmission‐basedTestsForGeneticAssociationUsingSibshipData HemantKulkarni1,SaurabhGhosh1 1IndianStatisticalInstitute,Kolkata TheclassicalTransmissionDisequilibriumTest(TDT)forbinarytraits(Spielmanetal.1993)isa family‐basedalternativetopopulationbasedcase‐controlstudiesandisprotectedagainst populationstratification,andhence,anassociationfindingcanbeattributedtothepresenceof linkage.TherehavealsobeensomeextensionsoftheclassicalTDTforquantitativetraits.However, thesetests,whicharebasedonthetriodesign(twoparentsandanoffspring)donotremainvalidas testsforassociationinthepresenceofsibshipdatasincethemarginaleffectoflinkagecanresultin transmissionbiasofalleles.Inourstudy,wehavemodifiedtheTDTtestprocedureforbothbinary aswellasquantitativetraitsbasedonsibshipdatausingapermutationbasedapproach.Weselect oneoffspringatrandomfromeachfamilyandcomputetheusualtrio‐basedteststatistic.Werepeat thisprocedureandconsidertwoteststatisticsbasedonthemeanandthemaximumvalueofthe trio‐basedteststatisticsobtainedoverdifferentreplications.Weobtaintheexactdistributionofthe teststatisticusingpermutations.Weperformextensivesimulationstoevaluatethepowersofthe proposedtestsunderawidespectrumofgeneticmodelsanddifferentdistributionsofa quantitativetrait.Wefindthattheteststatisticbasedonthemeanyieldsmorepowercomparedto thatbasedonthemaximum. Categories: Association:CandidateGenes P8 Identificationofrarecausalvariantsinsequence‐basedstudies MarinelaCapanu1,IulianaIonita‐Laza2 1MemorialSloanKetteringCancerCenter 2ColumbiaUniversity Pinpointingthesmallnumberofcausalvariantsamongtheabundantnaturallyoccurringgenetic variationisadifficultchallenge,butacrucialoneforunderstandingprecisemolecularmechanisms ofdiseaseandfollow‐upfunctionalstudies.Weproposeandinvestigatetwocomplementary statisticalapproachesforidentificationofrarecausalvariantsinsequencingstudies:abackward eliminationprocedurebasedongroupwiseassociationtests,andahierarchicalapproachthatcan integratesequencingdatawithdiversefunctionalandevolutionaryannotationsforindividual variants.Usingsimulations,weshowthatincorporationofmultiplebioinformaticpredictorsof deleteriousness,suchasPolyPhen‐2,SIFTandGERP++scores,canimprovethepowertodiscover trulycausalvariants.Asproofofprinciple,weapplytheproposedmethodstoVPS13B,agene mutatedintherareneurodevelopmentaldisordercalledCohensyndrome,andrecentlyreported withrecessivevariantsinautism.Weidentifyasmallsetofpromisingcandidatesforcausal variants,includingarare,homozygousprobably‐damagingvariantthatcouldcontributetoautism risk. Categories: Association:CandidateGenes,Case‐ControlStudies,GenomicVariation,SequencingData P9 TargetedresequencingofGWASloci:insightintogeneticetiologyofcleft lipandpalatethroughanalysisofrarevariantswithfocusonthe8q24 region MargaretATaub1,ElizabethJLeslie2,TheCleftSeqConsortium 1JohnsHopkinsUniversity 2UniversityofPittsburgh Non‐syndromiccleftlipwithorwithoutcleftpalate(CL/P)isacommonbirthdefectwithcomplex inheritance.Despiteconsiderableprogressinidentifyingrisklociinseveralgenome‐wide associationstudies(GWAS),identificationofthecausalvariantsateachlocusremainsachallenge. Tothisend,weselectedthirteenregionsfromearlierGWASandcandidategenestudies,totaling 6.3Mb,fortargetedcaptureanddeepsequencingin1521case‐parenttrioswithCL/Pfromseveral populations.Weperformedstatisticalanalysesoncommon,denovoandrarevariants.Here,we focusonthelatter,inparticularinthe8q24region.Whilemanyrarevarianttestsfocusoncoding variants,8q24,asagenedesert,requiresotherapproaches.Weperformedregulatory‐regionbased burdenteststoseeifrarevariantsinaparticularregulatoryelementwereover‐orunder‐ transmitted.Noresultsweresignificantaftermultipletestingcorrection.Weusedthelikelihood‐ ratiobasedScan‐Triomethodtofindwindowswithover‐orunder‐transmittedrarevariants, restrictingouranalysestovariantswithCADDscore>10andassessingsignificancebypermuting transmittedanduntransmittedhaplotypes.Thisanalysisrevealedapromisingclusterofvariants neartheGWAShitin8q24.Wealsodidhaplotype‐basedtestingwherehaplotypesweregroupedby allelecarriedatrs72728755,theSNPgivingmostsignificantsignalinthetransmission‐ disequilibriumtest(TDT).Wetestedfordifferencesinthepresenceofrarevariantsbetween deleteriousandprotectivehaplotypesbysearchingslidingwindowsforclustersofrarevariants seenonlyontransmittedhaplotypes.Significancewasevaluatedbypermutation.Grants:U01‐ HG005925;R01‐DE016148. Categories: Association:CandidateGenes,Association:Family‐based,HaplotypeAnalysis,Linkageand Association,SequencingData P10 Ajointassociationmodelofeffectsofrareversuscommonvariantson Age‐relatedMacularDegeneration(AMD)usingaBayesianhierarchical generalizedlinearmodel WilmarMIgl1,fortheInternationalAMDGenomicsConsortium(IAMDGC) 1DepartmentofGeneticEpidemiology,UniversityofRegensburg,Germany Purpose:AMDisacommoncauseofblindnessinolderpeoplewithastronggeneticcontribution fromcommonvariants(CVs).Recently,severalrarevariants(RVs,MAF<1%)werefound.Sofar thecontributionofRVsandCVshasnotbeenexaminedinacomprehensivejointmodel.Methods. TheIAMDGCdatacomprise33,976unrelatedEuropeans(16,144AdvancedAMDcases,17,832 controls).569,645variantsacrossthegenomeweregenotypedonacustom‐modified HumanCoreExomearraybyIllumina.Theanalysesfocuson18knownand17novellocifromsingle‐ variantanalyses.TheappliedBayesianhierarchicalgeneralizedlinearmodel(here:logistic,Yiand Zhi,2011)extendsthegeneralizedlinearmodelframeworkbyjointlyestimatingindividualvariant andgroupvariant(here:rarevs.common)effectsbasedongeneticriskscores.Weaklyinformative Bayesianpriors(HierarchicalCauchy)wereused.Allresultswereadjustedforancestryprincipal componentsandDNAsourceascovariatesandformultipletestingperlocus.Results.Theanalysis of225rareversus199commonvariants(total424,α=1E‐4)intheCFIlocus,showedindependent group‐leveleffectsofrare(OR=2.06,CI95%=[1.92;2.22],p=1.09E‐87)andcommon(OR=2.39, CI95%=[2.18,2.62],p=7.38E‐77)variants.Significantsinglevarianteffectswereonlyobservedfor theknownrarevariantrs141853578(G119R,OR=3.24,CI95%=[2.06;5.10],p=3.34E‐07)inthis jointmodel.Resultsforotherlociwillbepresented.Conclusions.Jointmodelingofgeneticeffects giveadditionalinsightsintothegeneticarchitectureofdiseasecomparedtoconventionalsingle‐ varianttests.ReferencesYi,N.,&Zhi,D.(2011).Bayesiananalysisofrarevariantsingenetic associationstudies.GeneticEpidemiology,35(1),57–69. Categories: Association:CandidateGenes,Association:UnrelatedCases‐Controls,BayesianAnalysis, Case‐ControlStudies P11 AssociationBetweenBloodPressureSusceptibilityLociandUrinary Electrolytes BamideleOTayo1,HollyKramer1,ColinAMcKenzie2,GuichanCao1,RamonDurazo‐Arvizu1,Amy Luke1,TerrenceForrester2,RichardSCooper1 1LoyolaUniversityChicago,Maywood,IL 2UniversityoftheWestIndies,Kingston,Jamaica BACKGROUND:Genome‐wideassociationstudieshaveledtoidentificationandvalidationofabout 40susceptibilitylociforbloodpressureandhypertensionespeciallyamongindividualsofEuropean ancestry.Eventhoughthesegeneticvariantscollectivelyexplainonlyasmallfractionofthe heritabilityforbloodpressurephenotypes,similarassociationswithbloodpressurephenotypes remaintobedemonstratedinindividualsofAfricanancestry.OBJECTIVE:Aspartofthestudyon geneticsofhypertensioninBlacks,wesoughttoidentifypossibleassociationsbetweenBP susceptibilitylociandurinarysodiumandpotassiumamongindividualsofAfricanorigin.METHOD: Weobtainedmeandailyurinarysodiumandpotassiumfromthree24‐hoursamplescollectedfrom 613adultJamaicansthatconsistedof140malesand473females.Thesubjectsweregenotyped usingtheIlluminaMetaboChipgenotypingarraythatcontainsselectedvariantsformetabolicand atherosclerotic/cardiovasculardiseasetraits.Inthepresentstudy,weanalyzedonlytheavailable qualitycontrolled25bloodpressuresusceptibilitylocipreviouslyreportedbyTheInternational ConsortiumforBloodPressure.Eachofthe25variantswastestedforassociationwithurinary sodiumandpotassiumunderanadditivegeneticmodeofinheritanceusingmultivariablelinear regressionmodelthatadjustedforage,sex,bodymassindexandage‐by‐sexinteractioncovariates. Tocontrolforpossiblepopulationstratificationfromadmixture,wealsoincludedthefirst10 principalcomponentsfromtheautosomalgenotypesinthemodel.RESULTS&CONCLUSION:Our findingsrevealassociation(p<0.004)betweenurinarypotassiumandvariantsintheTBX5‐TBX3 (rs10850411),ADM(rs7129220)andPLCE1(rs932764)loci.Thisstudyprovidespreliminarydata thatgeneticvariantsassociatedwithBPsusceptibilitymaybeassociatedwithurinarysodiumand potassiumexcretion;additionalstudiestoconfirmthesefindingsarerequired. Categories: Association:CandidateGenes,CardiovascularDiseaseandHypertension P12 Asystematicevaluationofshorttandemrepeatsinlipidcandidategenes: ridingontheSNP‐wave ClaudiaLamina1,MargotHaun1,StefanCoassin1,AnitaKloss‐Brandstätter1,ChristianGieger2, AnnettePeters3,KonstantinStrauch2,LyudmylaKedenko4,BernhardPaulweber4,Florian Kronenberg1 1DivisionofGeneticEpidemiology,DepartmentofMedicalGenetics,MolecularandClinicalPharmacology, InnsbruckMedicalUniversity,Innsbruck,Austria 2InstituteofGeneticEpidemiology,HelmholtzZentrumMünchen‐GermanResearchCenterforEnvironmental Health(GmbH),Neuherberg,Germany 3InstituteofEpidemiologyII,HelmholtzZentrumMünchen‐GermanResearchCenterforEnvironmental Health,Neuherberg,Germany 4FirstDepartmentofInternalMedicine,ParacelsusPrivateMedicalUniversitySalzburg,Austria Structuralgeneticvariantsasshorttandemrepeats(STRs)arenottargetedinSNP‐based associationstudiesandthus,theirpossibleassociationsignalsaremissed.Wesystematically searchedforSTRsingeneregionsknowntocontributetototalcholesterol,HDLcholesterol,LDL cholesterolandtriglyceridelevelsintwoindependentstudies(KORAF4,n=2553andSAPHIR, n=1648),resultingin16STRsthatwerefinallyevaluated.Inacombineddatasetofbothstudies,the sumofSTRalleleswasregressedoneachphenotype,adjustedforageandsex.Theassociation analyseswererepeatedfor1000GimputedSNPsina200kbregionsurroundingtherespectiveSTRs intheKORAF4Study.ThreeSTRsweresignificantlyassociatedwithtotalcholesterol(withinLDLR, theAPOA1/C3/A4/A5/BUD13generegionandABCG5/8),fivewithHDLcholesterol(3within CETP,oneinLPLandoneinAPOA1/C3/A4/A5/BUD13),threewithLDLcholesterol(LDLR, ABCG5/8andCETP)andtwowithtriglycerides(APOA1/C3/A4/A5/BUD13andLPL).Noneofthe investigatedSTRs,however,showedasignificantassociationafteradjustingfortheleadoradjacent SNPswithinthatgeneregion.TheevaluatedSTRswerefoundtobewelltaggedbytheleadSNP withintherespectivegeneregions.Therefore,theSTRsreflecttheassociationsignalsbasedon surroundingSNPs.Inconclusion,noneoftheSTRscontributedadditionallytotheSNP‐based associationsignalsidentifiedinGWASonlipidtraits. Categories: Association:CandidateGenes,QuantitativeTraitAnalysis P13 Linkagedisequilibriummappingofmultiplefunctionallociincase‐ controlstudies Yen‐FengChiu1,Li‐ChuChien1,Kung‐YeeLiang2,Lee‐MingChuang3 1NationalHealthResearchInstitutes,Taiwan,ROC 2NationalYangMingUniversity,Taiwan,ROC 3NationalTaiwanUniversityHospital,Taiwan,ROC Mostcomplexdiseasesaremultifactorial,involvingmultiplegeneticfactorsandtheirjointeffects. Forsuchdiseases,methodsaccountingformultiplelocimaybemorepowerfulthansingle‐locus analysesandmayofferimprovedprecisionofdisease‐locuslocalization.Weproposea semiparametricmultipointlinkagedisequilibrium(LD)mappingapproachtoestimate simultaneouslythediseaseloci,thegeneticeffectsofdiseaseloci,andthejointeffectsand interactionsoftwoadjacentloci,andtoconstructcorrespondingCIsfortheseparameters.This proposedmethodbuildsuponlargesampleproperties,whichisusefulforahigh‐densitygenome‐ wideassociationstudy(GWAS)withcommonvariants.ChromosomalregionscanbedividedbyLD blocksorgenestolocalizefunctionallociineachsubregion.Weapplytheproposedapproachtoa dataexampleofcase‐controlstudies.Resultsofthesimulationsanddataexamplesuggestthatthe developedmethodperformswellintermsofbias,variance,andcoverageprobabilityunder scenarioswithuptothreediseaseloci. Categories: Association:CandidateGenes,Association:Genome‐wide,Case‐ControlStudies,Gene‐Gene Interaction,PopulationGenetics P14 Geneticvariantsintransporterandmetabolizinggenesandsurvivalin colorectalcancerpatientstreatedwithoxaliplatincombination chemotherapy ElisabethJKap1,PetraSeibold1,YesildaBalavarca2,LinaJansen1,NataliaBecker1,Michael Hoffmeister1,CorneliaMUlrich2,BarbaraBurwinkel3,HermannBrenner1,JennyChang‐Claude1 1GermanCancerResearchCenter 2NationalCenterforTumorDiseases 3UniversityofHeidelberg Oxaliplatinhasbecomeoneofthemainchemotherapeuticagentsforthetreatmentofcolorectal cancer(CRC).Metabolicandtransporterenzymesareinvolvedintheclearanceofchemotherapeutic agents.Variantsingenesencodingtheseenzymesmaycausevariationinresponsetooxaliplatin andcouldthereforebepotentialpredictivemarkers.Thereforewecomprehensivelyassessed differentialeffectsof931geneticvariantsintransporterandmetabolizinggenesandoverall survival(OS)inCRCpatientswhoreceivedoxaliplatinchemotherapycomparedtopatientstreated withotherchemotherapeutics.Weincluded623CRCpatientsdiagnosedbetween01.01.2003and 31.12.2007andrecruitedinaGermanpopulation‐basedstudy(DACHS),whoreceivedadjuvant chemotherapy(201patientsreceivedoxaliplatin).SurvivalanalysiswasperformedusingaCox regressionmodel,adjustedforage,sex,UICCstage,cancersiteandBMI.Effectmodificationby oxaliplatintreatmentwasassessedusingamultiplicativeinteractionterm.Medianfollow‐uptimein patientsreceivingoxaliplatinwas4.9yearsafterwhich96patientsweredeceased.Rs11203943 (NAT1),rs7017402(NAT1)andrs4148872(TAP2)showeddifferentialassociationwithOS accordingtooxaliplatintreatment(Unadjustedp‐values<0.001),althoughresultswerenot significantafterFDRcorrection(FDRp<0.05).OurdatasuggestthatgeneticvariantsinNAT1and TAP2maybepredictivemarkersforoxaliplatintreatment.WeplantouseadditionalSNPs(imputed tothe1000genomereferencepanel)toidentifyfurtherpotentialpredictivemarkers. Categories: Association:CandidateGenes,Cancer P15 Post‐Genome‐WideAssociationStudyUsingGeneralizedStructured ComponentAnalysis HelaRomdhani1,AurélieLabbe1,HeungsunHwang1 1McGillUniversity Weareinterestedindevelopingastatisticalframeworkforthejointanalysisofmultiplecorrelated traitsandmultiplegenotypemeasuresfromcandidateregionsingeneticstudies.Weproposetouse structuralequationmodelingwithlatentvariablesfortheassociationstructurebetweenthe observedvariablesandsomecomponentsmediatingtherelationshipsbetweengenotypesand phenotypes.Themodelisconstructedonthebasisofpriorbiologicalknowledgeofbothclinicaland geneticpathways.WeusetheGeneralizedStructuredComponentAnalysis(GSCA)toestimatethe model'sparameters.TestproceduresfordifferentkindsofdirectedeffectsmeasuredbyGSCAhave beendevelopedandpowershavebeenassessedbysimulations.Finally,ananalysisoftheQCAHS surveydataisperformedusingthisnewapproach. Categories: Association:CandidateGenes,MultivariatePhenotypes,Pathways P16 DetectingMaternal‐FetalGenotypeInteractionsAssociatedwith ConotruncalHeartDefects:AHaplotype‐basedAnalysiswithPenalized LogisticRegression MarioACleves1,MingLi1,SteveWErickson1,CharlotteAHobbs1,JingyunLi1,XinyuTang1,ToddG Nick1,StewartLMacleod1 1UniversityofArkansasforMedicalSciences Non‐syndromiccongenitalheartdefects(CHDs)developduringembryogenesisasaresultofa complexinterplaybetweenenvironmentalexposures,geneticsandepigeneticcauses.Genetic factorsassociatedwithCHDsmaybeattributedtoeitherindependenteffectsofmaternalorfetal genes,ortheinter‐generationalinteractionsbetweenmaternalandfetalgenes.Detectinggene‐by‐ geneinteractionsunderlyingcomplexdiseasesisamajorchallengeingeneticresearch.Detecting maternal‐fetalgenotype(MFG)interactionsanddifferentiatingthemfromthematernal/fetalmain effectshaspresentedadditionalstatisticalchallengesduetocorrelationsbetweenmaternaland fetalgenomes.Traditionally,geneticvariantsaretestedseparatelyformaternal/fetalmaineffects andMFGinteractionsonasingle‐locusbasis.Weconductedahaplotype‐basedanalysiswitha penalizedlogisticregressionframeworktodissectthegeneticeffectassociatedwiththe developmentofnon‐syndromicconotruncalheartdefects(CTD).Ourmethodallowssimultaneous modelselectionandeffectestimation,providingaunifiedframeworktodifferentiatematernal/fetal maineffectfromtheMFGinteractioneffect.Inaddition,themethodisabletotestmultiplehighly linkedSNPssimultaneouslywithaconfigurationofhaplotypes,whichreducesthedata dimensionalityandtheburdenofmultipletesting.ByanalyzingadatasetfromtheNationalBirth DefectsPreventionStudy(NBDPS),weidentifiedsevengenes(GSTA1,SOD2,MTRR,AHCYL2,GCLC, GSTM3andRFC1)associatedwiththedevelopmentofCTDs.OurfindingssuggestthatMFG interactionsbetweenhaplotypesin3of7genes,GCLC,GSTM3andRFC1,areassociatedwithnon‐ syndromicconotruncalheartdefects. Categories: Association:CandidateGenes,Association:Family‐based,Association:UnrelatedCases‐ Controls,Gene‐GeneInteraction P17 Mutationsscreeningofexons7and13ofTMC1gene(DFNB7/11)in Iranianautosomalrecessivenon‐syndromichearingloss(NSHL) probandsusingmoleculartechniques PayamGhasemi‐Dehkordi1,NegarMoradipour1,FatemehHeibati2,ShahrbanuoParchami‐Barjui1, AhmadRashki3,MortezaHashemzadeh‐Chaleshtori1 1CellularandMolecularResearchCenter,ShahrekordUniversityofMedicalSciences,Shahrekord,Iran 2ClinicalBiochemistryResearchCenter,ShahrekordUniversityofMedicalSciences,Sharekord,Iran 3FacultyofVeterinaryMedicine,DepartmentofPhysiopathology,ZabolUniversity,Zabol,Iran Non‐syndromichearingloss(NSHL)isthemostcommonbirthdefectwhichoccurinapproximately 1/1000newborns.NSHLisaveryheterogeneoustraitandcouldbecausedduetobothgeneticand environmentalfactors.Mutationsoftransmembranechannel‐like1(TMC1)genecausenon‐ syndromicdeafnessinhumansandmice.Theaimofpresentstudywastoinvestigatethe associationofTMC1genemutationsoflocusDFNB7/11inexons7and13inacohortof100 patientswithhearinglossinIranusingpolymerasechainreaction‐singlestrandedconformation polymorphism(PCR‐SSCP),heteroduplexanalysis(HA),andDNAsequencing.Thebloodsamplesof hearinglosspatientswerecollectedfrom10provincesofIran.DNAwasextractedfromspecimens andmutationsofexons7and13ofTMC1genewereinvestigatedusingPCR‐SSCP.Inaddition,all sampleswerecheckedbyheteroduplexanalysis(HA)reactionandsuspectedspecimenswithshift bandsweresubjectedtoDNAsequencingforinvestigatethepresenceofanygenevariation.Inthis study,nomutationwasfoundinthesetwoexonsofTMC1gene.TheseresultsconcludedthatTMC1 genemutationshaveaverylowcontributioninpatientsandwerenotgreatclinicalimportancein theseprovincesofIran.However,morestudiesareneedtoinvestigatetherelationshipbetween otherpartsofthisgenewithhearinglossindifferentpopulationthroughthecountry.Moreresearch couldclarifytheroleofthisgeneanditsrelationwithdeafnessandprovideessentialinformation forthepreventionandmanagementofauditorydisordercausedbythisgeneinIranianpopulation. Keywords:TMC1gene,Hearingloss,PCR‐SSCP,Heteroduplexanalysis,Iran Categories: Association:CandidateGenes,GenomicVariation P18 ConotruncalHeartDefectsandCommonVariantsinMaternalandFetal GenesinFolate,HomocysteineandTranssulfurationPathways MarioACleves1,CharlotteAHobbs1,StewartLMacLeod1,StephenWErickson1,XinyuTang1,Ming LI1,JingyunLi1,NickTodd1,SadiaMalik1 1UniversityofArkansasforMedicalSciences Congenitalheartdefects(CHDs)arethemostprevalentstructuralbirthdefect,occurringin8to11 ofevery1,000livebirths.Conotruncalheartdefects(CTDs)compriseasubgroupofCHDsthatare malformationsofcardiacoutflowtractsandgreatarteries.Weinvestigatedtheassociationbetween CTDsandmaternalandfetalsinglenucleotidepolymorphisms(SNPs)in60genesinthefolate, homocysteineandtransulfurationpathways.Wealsoexaminedwhetherpericonceptionalmaternal folicacidsupplementationmodifiedtheseassociations.ParticipantswereenrolledintheNational BirthDefectsPreventionStudybetween1997and2007.DNAsamplesfrom616case‐parental triadsaffectedbyCTDsand1,645control‐parentaltriadsweregenotypedusingacustomIllumina® GoldenGateSNParray.Log‐linearhybridmodels,optimizingdatafromcaseandcontroltriads, wereusedtoidentifymaternalandfetalSNPsassociatedwithCTDs.Wakefield'sBayesianfalse‐ discoveryprobabilitymethod(BFDP)wasusedtoidentifyingnoteworthyassociations.Among921 SNPs,17maternaland17fetalSNPshadaBFDP<0.8.Tenofthe17maternalSNPsand2ofthe17 fetalSNPswerefoundwithintheglutamate‐cysteineligase,catalyticsubunit(GCLC)gene.Fetal SNPswiththelowestBFDPwerefoundwithinthethymidylatesynthetase(TYMS)gene. Additionally,thegeneticriskofCTDsfor19maternaland9fetalSNPswasfoundtobemodifiedby periconceptionalfolicaciduse.Theseresultssupportpreviousstudiessuggestingthatmaternaland fetalSNPswithinfolate,homocysteineandtranssulfurationpathwaysareassociatedwithCTDrisk. MaternaluseofsupplementscontainingfolicacidmaymodifytheimpactofSNPsonthedeveloping heart. Categories: Association:CandidateGenes,Association:Family‐based,Association:UnrelatedCases‐ Controls P19 GeneticPredispositionofXRCC1inSchizophreniaPatientsofSouth IndianPopulation SujithaSP1,LakshmananS2,HarshavaradhanS3,GunasekaranS1,AnilkumarG1 1SchoolofBiosciencesandTechnology,VITUniversity,Vellore632014TamilNadu,India 2GovernmentVelloreMedicalCollege,Vellore,TamilNadu,India 3SriNarayaniHospitalandResearchCentre,Vellore,TamilNadu,India Schizophreniaisadebilitatingneuropsychiatricdisorder.Severalofthepreviousstudiescarriedout toexploretheetiologyofthischronicdiseasesuggestforitsassociationwiththeSNPs(including thenon‐synonymousones)atvariousgeneloci;andtheseinvestigationsproducedvaryingresults dependingonethnicity.RoleofXRCC1asarepairgenehasbeenextensivelystudiedonawide varietyofcarcinomas.Wehavecompellingreasonstoconsiderthisasacandidategenethatcould influenceschizophrenia.However,barringafewinstances,theassociationstudiesonschizophrenia andtheSNPatXRCC1arequitemeager.Thepresentstudy,performedonatotalof523subjects including260casesand263controls,depictstheassociationofrs25487(Arg399Gln) polymorphismofXRCC1withschizophrenia.Theanalysisrevealedthestronggenotypic (‘AA’/Gln399Gln;p=0.006)andallelic(‘A’/Gln399;p=0.003,OR=1.448;95%CI=1.132to1.851) associationoftheSNPwithschizophrenia.Wearefurtherencouragedtoanalyzetheassociationof nicotine(ifany)withschizophrenia,inasmuchastheindividualswithschizophreniahaveshown highersusceptibilitytonicotineaddiction.Thisstudywasperformedintwocohortswith260case subjects(101nicotinesubstanceaddictsand159nicotinesubstancenaïvesubjects)and263 controlsubjects(with90subjectswithaddictionand173subjectswithoutaddiction).Thestudydid notshowanyassociationofnicotineaddictionwiththisnon‐synonymousmutation.Toconclude, thepresentstudyclearlydemonstratedtheassociationofGln399GlnwithschizophreniainTamil population,andhasruledouttheroleofnicotineinthepolymorphismasanepigeneticfactor influencingthedisease. Categories: Association:CandidateGenes,Epigenetics,PsychiatricDiseases P20 Astochasticsearchthroughsmokingimagesinmovies,geneticand psycho‐socialfactorsassociatedwithsmokinginitiationinMexican Americanyouths MichaelDSwartz1,MatthewDKoslovsky1,ElizabethAVandewater2,AnnaVWilkinson3 1UniversityofTexasSchoolofPublicHealth,DivisionofBiostatistics 2UniversityofTexasSchoolofPublicHealth,DivisionofHealthPromotionandBehavioralScience 3UniversityofTexasSchoolofPublicHealth,DivisionofEpidemiology,HumanGeneticsandEnvironmental Science Sincesmokingisoneofthestrongestriskfactorsforlungcancer,identifyingfactorsrelatedto smokinginitiationcanhaveahighimpactonreducinglungcancerrates.Ethnicdifferencesin initiationrateshavebeenobserved,andMexicanAmericanyouthshavebeenunderstudied.Recent independentstudieshaveidentifiedmultiplefactorsassociatedwithsmokinginitiationinMexican Americanyouths:exposuretosmokingimagesinmovies,genetic,andpsycho‐socialfactors.Here wesimultaneouslyinvestigateallthesefactorsandtheirpotentialinteractions.Usingaprospective cohortof1,328MexicanAmeicanyouths,weinvestigatedsinglenucleotidepolymorphisms(SNPs) fromtheopioidreceptoranddopaminepathways,psycho‐socialfactorsandexposuretosmoking relatedimagesinmovies.Wemeasuredpsycho‐socialfactorsusingpreviouslyvalidated questionnairesandexposuretosmokingimagesinmoviesusingtheBeachmethod.Weused stochasticsearchvariableselectionmethodologytojointlyassesstheseassociationswithsmoking initiationinMexicanAmericanyouths.Weusedpriorsthatbothimposedhierarchicalmodelsfor interactionsandcontrolledthefalsepositiverate.Ourpreliminaryfindingsidentifiedsmoking imagesinmovies,age,gender,positiveoutcomeexpectationsfromsmoking,risktakingtendencies, livingwithasmoker,peerinfluence,andservingdetentioninschool,andaSNPongeneSNAP25 andanotheronOPRM1relatedtosmokinginitiation.Wedidnotidentifyanyinteractions. Categories: Association:CandidateGenes,BayesianAnalysis,Gene‐EnvironmentInteraction,Markov ChainMonteCarloMethods P21 AssociationbetweenApolipoproteinEgenotypeandcancer susceptibility:ameta‐analysis AnandR1,PrakashSS1,VeeramanikandanR1,RichardKirubakaran2 1ChristianMedicalCollege,Vellore,India 2SouthAsianCochraneCenter,ChristianMedicalCollege,Vellore,Tamilnadu,India‐632002. ApolipoproteinE(ApoE),aproteinprimarilyinvolvedinlipoproteinmetabolismoccursin3 isoforms(E2,E3andE4).WhilestudiesevaluatingtheassociationbetweenApoEgenotypeand incidenceofmalignanciesareavailable,theresultsareinconsistent.Theobjectiveofthepresent studywastoanalyzetheassociationbetweenAPOEgenotypeandincidenceofcancerbyameta‐ analysis.Weconductedaliteraturesearchintheelectronicdatabasesforstudieswithinformation onAPOEpolymorphismsinmalignancies.Sixteenstudies(14case‐control/2cohort;77970controls and12010cases)wereincludedforthepresentmeta‐analysis.Pooledoddsratios(OR)with95% confidenceintervals(CI)werecalculatedassumingarandom‐effectmodelforallthegenotypesand alleles.Subgroupanalysesbasedonstudydesign,ethnicityofpopulations,andsiteofcancerand sourceofcontrolswereperformedasapost‐hocmeasure.Appropriateteststodetect heterogeneity,publicationbiasandsensitivityweredoneatallstages.Thepooledeffectmeasurefor thecomparisonsdidnotrevealanassociationinprimaryanalyses.Inthesubgroupanalyseswe observedasignificantnegativeassociationbetweenAPOE4+genotypesandoverallriskofcancerin thecohortstudysubgroup.TherewasalsoaweakpositiveassociationbetweenAPOE4+genotypes andbreastcancer.Weobservedamoderateinter‐studyheterogeneityforseveralofthe comparisons(I2<40%).Sensitivityanalysesdidnotaltertheoverallpooledeffectmeasureinthe majorcomparisons.Therewerenoevidencestosuggestapublicationbias.Overall,thepresent meta‐analysisdidnotshowanyassociationbetweenAPOEallelesorgenotypeswithincidenceof canceringeneral. Categories: Association:CandidateGenes,Cancer,Case‐ControlStudies P22 NovelapproachidentifiesSNPsinSLC2A10andKCNK9withevidencefor parent‐oforigineffectonbodymassindex CliveJHoggart1,GiuliaVenturini2,MassimoMangino3,FeliciaGomez4,GeorgeDavey‐Smith5, ValentinRousson6,JoelNHirschhorn7,CarloRivolta1,RuthJFLoos8,ZoltanKutalik6 1DepartmentofGenomicsofCommonDisease,ImperialCollegeLondon,LondonW12ONN,UK 2DepartmentofMedicalGenetics,UniversityofLausanne,Lausanne1005,Switzerland 3DepartmentofTwinResearch&GeneticEpidemiology,King'sCollegeLondon,LondonSE17EH,UK 4DepartmentofGenetics,DivisionofStatisticalGenomics,WashingtonUniversitySchoolofMedicineinSt. Louis,St.Louis63108,USA 5MRCIntegrativeEpidemiologyUnit,UniversityofBristol,BristolBS82BN,UK 6InstituteofSocialandPreventiveMedicine(IUMSP),CentreHospitalierUniversitaireVaudois(CHUV), Lausanne1010,Switzerland 7CenterforBasicandTranslationalObesityResearchandDivisionsofEndocrinologyandGenetics,Boston Children’sHospital,Boston2115,USA 8MRC‐EpidemiologyUnit,UniversityofCambridge,CambridgeCB20QQ,UK Thephenotypiceffectofsomesinglenucleotidepolymorphisms(SNPs)dependsontheirparental origin.Wepresentanovelapproachtodetectparent‐of‐origineffects(POE)ingenome‐wide genotypedataofunrelatedindividuals.Themethodexploitsincreasedphenotypicvarianceinthe heterozygousgenotypegrouprelativetothehomozygousgroups.Weappliedthemethodto >56,000unrelatedindividualstosearchforPOEsinfluencingbodymassindex(BMI).SixleadSNPs werecarriedforwardforreplicationinfivefamily‐basedstudies(of~4,000trios).TwoSNPs replicated:thepaternalrs2471083‐Callele(locatedneartheimprintedKCNK9gene)andthe paternalrs3091869‐Tallele(locatedneartheSLC2A10gene)increasedBMIequally(beta=0.11 (SD),P<0.0027)comparedtotherespectivematernalalleles.Real‐timePCRexperimentsof lymphoblastoidcelllinesfromtheCEPHfamiliesshowedthatexpressionofbothgeneswas dependentonparentaloriginoftheSNPsalleles(P<0.01).Ourschemeopensnewopportunitiesto exploitGWASdataofunrelatedindividualstoidentifyPOEsanddemonstratesthattheyplayan importantroleinadultobesity. Categories: Association:Family‐based,Association:Genome‐wide,Association:UnrelatedCases‐ Controls,Epigenetics,QuantitativeTraitAnalysis,TransmissionandImprinting P23 InteractiveeffectbetweenDNAH9geneandearly‐lifetobaccosmoke exposureinbronchialhyper‐responsiveness Marie‐HélèneDizier1,RachelNadif2,PatriciaMargaritte‐Jeannin1,SheilaJBarton3,ValérieGagné‐ Ouellet4,ChloéSarnowski1,MyriamBrossard1,NolwennLavielle1,JocelyneJust5,MarkLathrop6 1INSERM,U946,UniversitéParisDiderot,Paris,France 2INSERM,U1018,Villejuif,UniversitéParisSud,France 3FacultyofMedicine,UniversityofSouthampton,Southampton,UK 4UniversitéduQuébec,Chicoutimi,Canada 5Centredel’AsthmeetdesAllergies,INSERM,UMR_S1136,EquipeEPAR,France 6McGillUniversity,Montréal,Canada Wepreviouslyperformedagenome‐widelinkageanalysisofbronchialhyper‐responsiveness(BHR) testinginteractionwithearlylifeenvironmentaltobaccosmoke(ETS)exposureintheFrench EpidemiologicalstudyontheGeneticsandEnvironmentofAsthma(EGEA)Ourgoalwastoconduct fine‐scalemappingofthedetected17p11regionthatshowedlinkageinETSunexposedsiblings only,toidentifygeneticvariantsinteractingwithETSexposurethatinfluenceBHR.Analyseswere firstperformedinthe388FrenchEGEAasthmaticfamilies,usingfamily‐basedassociationtest (FBAT).TosearchforSNPxETSinteraction,weusedatwo‐stepstrategy:1)selectionofSNPs showingFBATassociationsignalswithBHR(P<0.01)inunexposedsiblings;2)FBAThomogeneity testbetweenexposedandunexposedsiblingsofselectedSNPs.ForSNPsshowingsignificant interaction,alog‐linearmodelingapproachfortestinginteraction,asproposedbyUmbachand Weinberg(2000),wasappliedforvalidation.Replicationanalyseswerethenconductedintwo independentasthmaticfamilysamples:253French‐Canadianfamilies(SLSJ)and341UKfamilies.In EGEAfamilies,17SNPsshowedassociationsignalswithBHRinunexposedsiblings.AsingleSNP showedsignificantinteractionwithETSexposureusingbothmethods(P≤10‐3).Thisresultwas replicatedintheSLSJfamiliesandmeta‐analysisofthetwosamplesprovidedastrongimprovement inthedetectionofinteraction(P=7.10‐5).TherewashowevernoreplicationintheUKfamilies. TheSNPshowingsignificantinteractiveeffectwithETSexposureinBHRisinapromisingcandidate gene,DNAH9,agenewellknowntobeassociatedwithPrimaryCiliaryDyskinesia.Funded:ANR‐ GWIS‐AM‐2011,RégionIdF Categories: Association:Family‐based,Gene‐EnvironmentInteraction,MultifactorialDiseases P24 DetectionofrarehighlypenetrantrecessivevariantsusingGWASdata StevenGazal1,MouradSahbatou2,Marie‐ClaudeBabron1,Jean‐CharlesLambert3,PhilippeAmouyel3, EmmanuelleGénin4,Anne‐LouiseLeutenegger1 1INSERMU946,Paris,France 2CEPH,Paris,France 3INSERMU744,Lille,France 4INSERMU1078,Brest,France Genome‐wideassociationstudies(GWAS)haveidentifiedseveralcommongeneticvariantsin multifactorialdiseases.However,takentogether,thesevariantsonlyexplainasmallpartofthe heritability.Differentcandidateshavebeensuggestedtoexplainthismissingheritability,and amongthemarevariantswithrecessiveeffectsthatcouldplayarolebuthavenotbeendetectedso far.Recessivevariantsareeasytodetectwhentheyarerare,fullypenetrant,andinvolvedinrare monogenicdiseases.Thestrategyofchoicetodetectthemishomozygositymapping(HM),a powerfulapproachthatconsistsinfocusingoninbredfamiliesandsearchingforaregionofthe genomeofsharedhomozygosityintheinbredcases.Withthehelpofgenome‐widegeneticdata,itis nowpossibletodetermineifanindividualisinbredbasedontheobservedgenomehomozygosity patterns.HMcanthenbeperformedwithoutanyknowledgeofthegenealogy.Thiscouldbeused notonlytodetectrarerecessivevariantsinvolvedinmonogenicdiseases,butalsotoidentify recessiveMendeliansubentitiesofmultifactorialdisease.Severalsoftwarehavebeendevelopedto studyinbreeding.However,noneofthemprovideanintegrativesolutiontoestimateinbreeding, identifyandvisualizerunsofhomozygositybydescentandperformHM.Wehaverecently developedtheFSuitepipelinetoopenupthepossibilitytoeasilydetectinbredcasesinGWAS dataset,andtofocusonthemtoperformHMallowingforheterogeneity.Wewillillustratethe possibilitiesofferedbyFSuiteonaFrenchGWASdatasetincluding1,886affectedindividualswith Alzheimer’sdisease.About5%ofthecaseswerefoundinbredandwereeligibleforHM,allowing thedetectionof3candidategenomicregions. Categories: Association:Family‐based,Association:Genome‐wide,Inbreeding,IsolatePopulations, MultifactorialDiseases P25 CopyNumberVariation(CNV)detectioninwholeexomesequencingdata forMendeliandisorders PengZhang1,HuaLing1,ElizabethPugh1,KurtHetrick1,DaneWitmer1,NaraSobreira2,DavidValle2, KimDoheny1 1CenterforInheritedDiseaseResearch,InstituteofGeneticMedicine,TheJohnsHopkinsSchoolofMedicine 2InstituteofGeneticMedicine,TheJohnsHopkinsSchoolofMedicine TheCentersforMendelianGenomics(CMG)projectusesnext‐generationsequencingand computationalapproachestodiscoverthegenesandvariantsthatunderlieMendelianconditions. WhileSNVsandINDELsexplainsomeMendelianconditions,manyremainunresolved.Weare interestedtoknowtowhatextentunrecognizedCNVswouldresolvesomeofthese.Comparedto wholegenomesequencing(WGS),whole‐exomesequencing(WES)isacost‐effectivealternativefor findingdiseasegenesharboringvariantswithrelativelylargeeffectsize.However,identifyingCNVs fromWEShasbeenachallengebecauseofthesparsenessofthetargetregionsandthenon‐uniform distributionofreadsacrossgenome.AspartoftheCMGproject,weappliedfourprevailingCNV callingmethods(XHMM,CoNIFER,ExomeDepth,andEXCAVATOR)on677WESsamples(including 41HapMapcontrols)tosearchforrareexonicCNVsthatmightbecausalforthediseaseofinterest. Inourpreliminaryanalysis,CoNIFER,ExomeDepth,XHMM,andEXCAVATORdetectedanaverageof 3.5,208,13.3,and58CNVs(forsizeslargerthan300bp)persample,respectively.Ourinitial analysesofthreeunsolvedconsanguineouspedigreeswiththesamephenotyperevealeda homozygoustwoexondeletion(~2.45kb)inaknowncausalgeneintwoofthefamilies.Wewill comparetheresultsbetweenmethods,examinetheimpactofcontrolsused,andreviewasubsetof findingsinIGV. Categories: Association:Family‐based,Association:Genome‐wide,Bioinformatics,Case‐ControlStudies, Causation,CopyNumberVariation,DataIntegration,DataMining,FineMapping,GenomicVariation, LinkageandAssociation,SequencingData P26 Combininggeneticandepigeneticinformationidentifiedimprinted4q35 variantassociatedwiththecombinedasthma‐plus‐rhinitisphenotype ChloéSarnowski1,CatherineLaprise2,MiriamMoffatt3,GiovanniMalerba4,AndréanneMorin2, QuentinVincent5,KlausRohde6,Marie‐HélèneDizier1,JorgeEsparza‐Gordillo6,Emmanuelle Bouzigon1 11)U946,INSERM,PARIS,France;2)UniversitéParisDiderot,SorbonneParisCité,InstitutUniversitaire d’Hématologie,France 23)UniversitéduQuábecàChicoutimi,Canada 34)NationalHeartLungInstitute,ImperialCollege,UK 45)SectionofBiologyandGenetics,DepartmentofLifeandReproductionSciences,UniversityofVerona,Italy 56)U1163,INSERM,PARIS,France 67)Max‐Delbrück‐CenterforMolecularMedicine(MDC),Berlin,Germany Wepreviouslydetectedalinkagesignalinthe4q35regionwiththecombinedasthma‐plus‐rhinitis phenotype(AST+AR)in615Europeanfamilieswhenaccountingformaternalimprinting(p=7x10‐ 5).Tofurtherinvestigatethisregion,wetestedtheassociationbetween1,300SNPs(spanning6 Mb)andAST+ARin162FrenchEGEAfamiliesascertainedthroughasthmausingtheParent‐of‐ Origin‐LikelihoodRatioTest.Replicationanalysiswasperformedin152asthmaticFrenchCanadian SLSJfamiliesfor18SNPsdetectedatp<0.005.Thetop‐replicatedSNP(rs10009104)lyingat1.6Mb fromthelinkagepeakwasdetectedunderabest‐fittingmaternalimprintingmodel(pmeta=4x10‐5) andaccountedformostofthelinkagesignal.Manycis‐regulatoryelementsaredescribedina50kb surroundingregionofthisSNP.UsingtheQuantitativeTransmissionDisequilibriumTest(QTDT), wetestedforassociationbetweenrs10009104and26DNAmethylationprobesofthatregion, measuredinwhitebloodcellsof159individuals(40SLSJfamilies),whileaccountingforparent‐of‐ origineffectandadjustingforAST+AR.Maternallyinheritedriskalleleofrs10009104was associatedwithincreasedmethylationofthetop‐rankedprobe(p<10‐5afterpermutations).This probeliesat529bpfromtheSNPandwithinregulatoryelementsthatincludeapredictedactive promoterinlungfibroblasts,DNaseIhypersensitiveclusters,andbindingsitesoftwotranscription factorsinvolvedininflammatoryresponseinitiation(RelAandNF‐κB).Thisstudyidentifieda maternallyimprintedSNPthataffectsAST+ARthroughanepigeneticmechanism.Funded:Conseil RégionalIledeFrance,ANRGWIS‐AM,EC‐FP6 Categories: Association:Family‐based,EpigeneticData,LinkageandAssociation,Multifactorial Diseases,TransmissionandImprinting P27 BAYESIANLATENTVARIABLECOLLAPSINGMODELFORDETECTING RAREVARIANTINTERACTIONEFFECTINTWINSTUDY LiangHe1,MikkoJSillanpää2,SamuliRipatti3,JannePitkäniemi4 1DepartmentofPublicHealth,HjeltInstitute,UniversityofHelsinki,Finland 2DepartmentofMathematicalSciences,UniversityofOulu,OuluFIN‐90014,Finland;DepartmentofBiology andBiocenterOulu,UniversityofOulu,OuluFIN‐90014,Finland 3InstituteforMolecularMedicineFinlandFIMM,UniversityofHelsinki,Finland;WellcomeTrustSanger Institute,UK 4FinnishCancerRegistry,InstituteforStatisticalandEpidemiologicalCancerResearch,Helsinki,Finland; DepartmentofPublicHealth,HjeltInstitute,UniversityofHelsinki,Finland Byanalysingmorenext‐generationsequencedatathanbefore,researchershaveaffirmedthatrare geneticvariantsarewidespreadamongpopulationsandlikelyplayanimportantroleincomplex phenotypes.Recently,ahandfulofstatisticalmodelshavebeendevelopedtoanalyserarevariant associationindifferentstudydesigns.However,duetothescarceoccurrenceofminorallelesin data,appropriatestatisticalmethodsfordetectingrarevariantinteractioneffectsarestilldifficultto develop.WeproposeahierarchicalBayesianlatentvariablecollapsingmethod(BLVCM),which circumventstheobstaclesbyparameterizingthesignalsofrarevariantswithlatentvariablesina Bayesianframeworkandisparameterisedfortwindata.TheBLVCMmanagestotacklenon‐ associatedvariants,allowbothprotectiveanddeleteriouseffects,captureSNP‐SNPsynergistic effect,provideestimatesforthegenelevelandindividualSNPcontributions,andcanbeappliedto bothindependentandvarioustwindesigns.WeassessthestatisticalpropertiesoftheBLVCMusing simulateddata,andfindthatitachievesbetterperformanceintermsofpowerforinteractioneffect detectioncomparedtotheGranvilandtheSKAT.Asproofofpracticalapplication,theBLVCMis thenappliedtoatwinstudyanalysisofmorethan20,000generegionstoidentifysignificantrare variantsassociatedwithlow‐densitylipoproteincholesterol(LDL‐C)level.Theresultsshowthat someofthefindingsareconsistentwithotherpreviousstudies,andsomenovelgeneregionswith significantSNP‐SNPsynergisticeffectsareidentified.Keywords:rarevariant;Bayesiancollapsing model;geneticassociation;LDL‐C;twinstudy Categories: Association:Family‐based,Association:Genome‐wide,BayesianAnalysis,Gene‐Gene Interaction,GenomicVariation,MarkovChainMonteCarloMethods,MultilocusAnalysis,Pathways, PopulationGenetics,QuantitativeTraitAnalysis,SequencingData P28 RareVariantAssociationTestforNuclearFamilies Zong‐XiaoHe1,NiklasKrumm2,GaoTWang1,BrianJO'Roak3,SimonsSimplexSequencing Consortium,EvanEEichler3,SuzanneMLeal3 1CenterforStatisticalGenetics,DepartmentofMolecularandHumanGenetics,BaylorCollegeofMedicine 2DepartmentofGenomeSciences,UniversityofWashington 3DepartmentofMolecularandMedicalGenetics,OregonHealthandScienceUniversity Population‐basedcomplextraitassociationstudiesofrarevariants(RVs)arevulnerabletospurious associationsduetopopulationstratification.AnalyzingtriodatausingtheRV‐transmission disequilibriumtest[RV‐TDT(Heetal.2014)]canavoidthisproblem.TheTDTanalysesonlyemploy informationonanaffectedoffspringandtheirparents.Whentherearesiblings,includingthemin analysiscanprovideadditionalassociationinformation.WeextendedtheRV‐TDTtoanalyzeall typesofindependentnuclearfamilies(NF)withatleastoneaffectedoffspring(RV‐NF).ForallRV‐ NFteststypeIerroriswellcontrolledevenwhenthereisahighlevelofpopulationstratificationor admixture.ThepoweroftheRV‐NFtestwasevaluatedusinganumberofdiseasemodelsand nuclearpedigreeconfigurations.TheRV‐NFisconsiderablymorepowerfulthantheRV‐TDTto detectassociations.FortheRV‐TDTandRV‐NFpowerwasevaluatedbygeneratingdatafora 1,500bpgeneforwhichthecausalRVshaveanoddsratioof2.Thepowertodetectandassociation is:0.49for1,000trios;0.58for1,000NFwithoneaffectedchildandanunaffectedchild;and0.65 for1,000NFwithtwoaffectedchildren.InordertoillustratetheapplicationoftheRV‐NFmethods, theexomedatafrom600autismspectrumdisorderNFwithoneaffectedchildandoneunaffected childwereanalyzed.RVassociationswithautismwerefoundforseveralgenes.Giventheproblem ofadequatelycontrollingforpopulationstratificationandadmixtureinRVassociationstudies,the capabilityofanalyzingalltypesofNFsandthegrowingnumberofNFstudieswithsequencedata, theRV‐NFmethodisextremelybeneficialtoelucidatetheinvolvementofRVsindiseaseetiology. Categories: Association:Family‐based,SequencingData P29 Samplesizeandpowerdeterminationforassociationtestsincase‐parent triostudies HolgerSchwender1,ChristophNeumann2,MargaretATaub3,SamuelGYounkin4,TerriHBeaty3, IngoRuczinski3 1HeinrichHeineUniversity 2TUDortmundUniversity 3JohnsHopkinsUniversity 4UniversityofWisconsin Transmission/disequilibriumtests(TDTs)arethemostpopularstatisticaltestsfordetectingsingle nucleotidepolymorphisms(SNPs)associatedwithdiseaseincase‐parenttriostudiesconsidering genotypedatafromchildrenaffectedbyadiseaseandfromtheirparents.Sinceseveraltypesof theseTDTshavebeendevised,e.g.,approachesbasedonallelesorongenotypes,itisofinterestto evaluatewhichoftheseTDTshavethehighestpowerinthedetectionofSNPsassociatedwith disease.SincetheteststatisticofthegenotypicTDT–whichisequivalenttoaWaldtestina conditionallogisticregressionmodel–hadtobecomputednumerically,comparisonsofotherTDTs withthegenotypicTDThavesofarbeenbasedonsimulationstudies.Recently,we,however,have derivedaclosed‐formsolutionforthegenotypicTDTsothatthisanalyticsolutioncanbeusedto deriveequationsforpowerandsamplesizecalculationforthegenotypicTDT.Inthispresentation, weshowhowtheseequationscanbederivedandcomparethepowerofthegenotypicTDTwiththe oneofthecorrespondingscoretestassumingthesameunderlyinggeneticmodeofinheritanceas wellastheallelicTDTbasedonamultiplicativemodeofinheritance. Categories: Association:Family‐based,Association:Genome‐wide,LinkageandAssociation,Maximum LikelihoodMethods,SampleSizeandPower P30 IntegrationofDNAsequencevariationandfunctionalgenomicsdatato infercausalvariantsunderlyingchemotherapeuticinducedcytotoxicity response RuowangLi1,DokyoonKim1,ScottMDudek1,MarylynDRitchie1 1CenterforSystemsGenomics,ThePennsylvaniaStateUniversity,StateCollege,PA Carboplatinisawidelyusedchemotherapeuticdrugforovarianandlungcancer.Despiteitsbroad usage,somepatientsexperienceseveresideeffectsincludingmyelosuppressionandmucositis. Understandingthedrug‐inducedcytotoxicitycouldpotentiallyleadtopersonalizedtreatment. However,findingthecausalgeneticvariantsthatinfluencethedrug’scytotoxicityhasbeen challenging.Toidentifyvariantsthatarekeyforcarboplatinresponse,weperformedananalysis thatjointlyanalyzedDNAsequencevariationandfunctionalgenomicsdatainCEUandYRIHapMap populations.CarboplatinresponsewasmeasuredontheCEUandYRIlmphoblastoidcelllinesin termsofIC50,concentrationrequiredtostop50%ofcellgrowth.Usingwholegenomesequencing datafromthe1000GenomesProjectandRNAsequencingdatafromtheGEUVADISproject,we identifiedcandidategeneticvariantsandgeneexpressionvariablesthatareassociatedwith carboplatinIC50.Touncoverpotentialinteractionsbetweencandidatevariantsandgene expressionfactors,weintegratedthecandidatesusinggrammaticalevolutionneuralnetwork implementedinATHENA.Theintegrationanalysisidentifieduniquesetsofgeneticvariantsand geneexpressionfactorsininteractionmodelsinbothCEUandYRIpopulationwithhighpredictive power(R2>60%).Toavoidselectionbias,wealsoidentifiedvariantsthatareinlinkage disequilibriumwiththecandidatevariants.Wethenprioritizedallthevariantsbasedonhundreds offunctionalgenomicannotationsfromtheENCODEproject,includinggenes,enhancers,and DNase‐Isites.Basedontheconsistencyandenrichmentoffunctionalannotations,wefound potentialcausalvariantsforcarboplatinresponse. Categories: Association:Genome‐wide,Cancer,Causation,DataIntegration,GenomicVariation P32 ImputationforSNPsusingsummarystatisticsandcorrelationbetween genotypedata SinaRüeger1,2,ZoltánKutalik1,2 1InstituteofSocialandPreventiveMedicine,UniversityHospitalandUniversityofLausanne,Lausanne 2SwitzerlandSwissInstituteofBioinformatics,Lausanne,Switzerland Genome‐wideassociationstudiesusemicroarraystomeasureSNPsthatareoftendesignedtotag manyuntypedvariants,whichcanbeimputedviathelinkagedisequilibrium(LD)between measuredanduntypedmarkers.Theimputationmethods,whilemakingmostoftheavailabledata, arecomputationallyveryexpensivewhenitcomestoimputing~30‐40Mvariantsofthe1000 Genomespanel.Theseimputedvariantsaresubsequentlysubjectedtoassociationwithvarious traits. Weproposeanapproachthatperformsimputationdirectlyontheassociationsummarystatistics (suchast‐statistics)oftypedSNPs.Thisallowsafastinferenceoftheassociationstrengthofnon‐ genotypedmarkersusingthatofthetaggingSNPs.Thisapproachbearssimilaritieswiththe pioneeringworkofPasaniucetal.(2013).Thenoveltyofourmethodliesintheoptimized regularizationofthepair‐wisemarkercorrelationmatrix,amodifiedconditionalexpectation.Italso allowsforassociationsderivedfromdifferentsamplesizes.Wereachedfurtherimprovementsby selectingthemostrelevantreferencehaplotypesetsinordertoimputesummarystatistics. Fortestingweusedthelipidassociationmeta‐analysessummarystatisticsfromWilleretal.(2013). UsingtheassociationstatisticsfromHapMapSNPsonly,weimputedtheeffectsizeofnon‐HapMap SNPsandcomparedtothe“true”effectsizeestimatesresultingfromgenotypeimputationand association.Theresultssuggestthatourteststatisticsagreecloser(r2=0.87)withthetruevalues thantheestimatesprovidedbypreviousmethods(r2=0.82). Suchfastandaccurateimputationmethodswillbecomeincreasinglyimportantasreferencepanels growinsizeandgenotypeimputationturnsouttobelessfeasible. PasaniucB,ZaitlenN,ShiH,BhatiaG,GusevA,PickrellJ,HirschhornJ,StrachanDP,PattersonN, PriceAL(2013)Fastandaccurateimputationofsummarystatisticsenhancesevidenceoffunctional enrichment.ArXiv:1309.3258v1[q‐bio.QM] WillerCJ,SchmidtEM,SenguptaS,PelosoGM,GustafssonS,KanoniS,GannaA,ChenJ,Buchkovich ML,etal.;Globallipidsgeneticsconsortium(2013)Discoveryandrefinementoflociassociatedwith lipidlevels.NatureGenetics45(11),1274‐1283. Categories: Association:Genome‐wide,LinkageandAssociation,MissingData P33 Evaluationofpopulationstratificationinalargebiobanklinkedto ElectronicHealthRecords MarizadeAndrade1,GerardThromp2,AmberBurt3,DanielSKim4,ShefaliSVerma3,AnastasiaM Lucas3,SebastianMArmasu1,JohnA.Heit1,GeoffreyMHayes5,HelenaKuivaniemi2 1MayoClinic,Rochester,MN,USA 2GeisingerHealthSystem,Danville,PA,USA 3PennsylvaniaStateUniversity,UniversityPark,PA,USA 4UniversityofWashington,Seattle,WA,USA 5NorthwesternUniversity,Chicago,IL,USA Forgenomicassociationstudies,combiningsamplesacrossmultiplestudiesinNetworksor“Big Science”isstandardpractice.Increasingthenumberofsubjectsallowsforpowerneededtoassess association.Controllingforgenomicancestryiscommon,butthereisaneedtostandardizethe approachwhencalculatingprincipalcomponents(PCs)acrosscohortssuchaseliminationofSNPs withlinkagedisequilibrium(LD)pruningatr=0.5andaMAF<0.03.Duetoheterogeneitybetween sites,adjustingforPCsonly,doesnotremovethesiteandplatformbias.Therefore,weproposean alternativeapproachofgeneratingPCsforourcohorttocontrolforsiteandplatformbiasin additiontoancestrydifference.OurapproachconsistsonderivingthePCsusingtheloadings calculatedfromreferencesamples,muchlikegeneratingPCsusingthefoundersoffamilies.We appliedourapproachusingtheelectronicMedicalRecordsandGenomics(eMERGE)Venous ThromboembolismAfricanancestrycohortthatconsistsoffouradultsitesandfourgenotyping platformsthathadpreviouslybeenanalysedcontrollingforsite,platformandancestry.Ourresults showedthatourapproachprovidedsimilarassociationresultswhilebothcontrollingforinflation(λ =1.01and1.02forstandardandloadings,respectively)withtheadvantagesofcontrollingforfewer covariates,thuslessdegreesoffreedom.Therefore,weexpectthisapproachwillserveasa“Best Practices”forsimilarprojects,andasareferenceforassessingandcontrollingforconfoundersin additiontoancestryingeneticassociationstudies. Categories: Association:Genome‐wide,PopulationStratification P34 Estimatinggeneticeffectsonsusceptibilityandinfectivityforinfectious diseases FloorBiemans1,PiterBijma2,MartCMDeJong3 1QuantitativeVeterinaryEpidemiologyGroup,WageningenUniversity;AnimalBreedingandGenomicsCentre, WageningenUniversity 2AnimalBreedingandGenomicsCentre,WageningenUniversity 3QuantitativeVeterinaryEpidemiologyGroup,WageningenUniversity Transmissionofinfectiousdiseasesisdeterminedbysusceptibilityandinfectivityoftheindividuals involved.Anindividual’sgenesforsusceptibilityaffectthediseasestatusoftheindividualitself,and thusrepresentadirectgeneticeffect.Anindividual’sgenesforinfectivity,ontheotherhand,affect thediseasestatusofotherindividuals,andthusrepresentaso‐calledindirectgeneticeffect(IGE). AnIGEisageneticeffectofanindividualonthephenotypeofanotherindividual.IGEshavebeen studiedextensivelyinevolutionarybiology,andcanhaveprofoundeffectsontherateanddirection ofevolutionbynaturalselection.Ingeneticstudiesoninfectiousdiseases,thecurrentfocusis largelyonsusceptibility,whereasgeneticsofinfectivitycanhavemajoreffectsondisease transmission.However,littleisknownaboutthegeneticbackgroundofinfectivity.Weshowhow geneticeffectsonsusceptibilityandinfectivitycanbeestimatedsimultaneouslyfromtime‐series dataondiseasestatusofindividuals.Anendemicdiseasewassimulated,andthediseasestatus (0/1)andgenotypeofindividualswererecordedatseveralpointsintime.Thesedatawere analysedusingageneralizedlinearmodel(GLM)withacomplementarylog‐loglinkfunction.The modelincludedtwogeneticterms:i)thegenotypeofthefocalindividual,representing susceptibility,andii)theaveragegenotypeofitsinfectedsocialpartners(contacts),representing infectivity.Firstresultsshowedthatestimatedgeneticeffectswerealmostunbiased.Thiswork, therefore,providesatoolforgenome‐wideassociationstudiesaimingtoidentifygenomicregions affectingsusceptibilityandinfectivityofindividualstoendemicdiseases. Categories: Association:Genome‐wide,GenomicVariation,HaplotypeAnalysis,PredictionModelling P35 CombinedMethodstoExploreGeneticEtiologyofRelatedComplex Diseases ShefaliSetiaVerma1,AnuragVerma1,AnastasiaLucas1,JimLinneman2,PeggyPeissig2,Murray Brilliant2,CatherineAMcCarty3,JonathanLHaines4,TamaraRVrabec5,GerardTromp5 1CenterforSystemsGenomics,DepartmentofBiochemistryandMolecularBiology,PennsylvaniaState University,UniversityPark,PA,USA 2MarshfieldClinic,Marshfield,WI,USA 3EssentiaRuralHealth,Duluth,MN,USA 4CaseWesternUniversity,Cleveland,OH,USA 5GeisingerHealthSystem,Danville,PA,USA Genome‐wideassociationstudies(GWAS)haveidentifiedseveralSNPsassociatedwitheither glaucomaorocularhypertension(OHT).However,thesesusceptibilitylociexplainasmallfraction ofthegeneticrisk.Gene‐geneinteraction(GxG)studiesareconsideredapotentialavenuetoidentify thismissingheritability.UsingadatasetfromtheeMERGE(electronicMedicalRecordsand Genomics)Network,whichincludedGWASdataimputedusingthe1000Genomes,wewereableto explorethegeneticetiologyoftwoveryrelatedcommoneye‐diseases:glaucomaandOHT.OHTis oneoftheleadingriskfactorforglaucoma,thusweexploredtherelationshipsbetweenthesetwo traitsatthemolecularlevel.Atotalof3,253(glaucoma)and3,154(OHT)unrelatedsamplesofages 40‐90wereextractedfromtheeMERGEstudybiorepositories.First,weperformedGWASandGxG studiesforeachtraitusingtheimputeddatasetandidentifiedseveralmaineffectsandGxGmodels thatmeetBonferronisignificance.Secondly,fromtheobtainedGWASwithmaineffectp<0.01,we alsoperformedapathway‐enrichmentanalysisusingKEGGdatabaseonbothofthesetraits combined.Interestingly,weobservedthatgenesinABCtransporterpathwayarefoundtobe associatedwithbothglaucomaandOHT.TheABCA4geneishighlyassociatedwithglaucomaand alsoshowssignificantinteractionwithGAD2geneinOHT(p=2.71x10‐11).Lastly,outof10 pathwayssharedbetweenthetwotraits,ABCtransportergenesarefoundtobehighlyassociated withboththetraits.Inconclusion,wewereabletoidentifynovelSNPassociationsandGxG interactionsforthesetraitsanddemonstratetherelationshipbetweenthesetwotraitsatthe molecularlevelwiththeguidanceofpathwayanalysis. Categories: Association:Genome‐wide,Association:UnrelatedCases‐Controls,Bioinformatics,Gene‐ GeneInteraction,Pathways P36 Integrativeanalysisofsequencingandarraygenotypedatafor discoveringdiseaseassociationswithraremutations YijuanHu1,YunLi2,PaulLAuer3,DanyuLin4 1DepartmentofBiostatisticsandBioinformatics,EmoryUniversity,USA 2DepartmentofBiostatistics,DepartmentofGenetics,UniversityofNorthCarolina,ChapelHill,USA 3JosephJ.ZilberSchoolofPublicHealth,UniversityofWisconsin,Milwaukee,USA 4DepartmentofBiostatistics,UniversityofNorthCarolina,ChapelHill,USA Inthelargecohortstypicallyusedforgenome‐wideassociationstudies(GWAS),itisprohibitively expensivetosequenceallcohortmembers.Acost‐effectivestrategyistosequencesubjectswith extremevaluesofquantitativetraitsorthosewithspecificdiseases.Byimputingthesequencing datafromtheGWASdataforthecohortmemberswhoarenotselectedforsequencing,onecan dramaticallyincreasethenumberofsubjectswithinformationonrarevariants.However,treating theimputedrarevariantsasobservedquantitiesindownstreamassociationanalysismayinflatethe typeIerror,especiallywhenthesequencedsubjectsarenotarandomsubsetofthewholecohort. Althoughtheproblemcanbealleviatedbyrestrictingtheanalysistovariantsthatareaccurately imputed,alargenumberofrarevariantswillbeexcludedasaresult.Inthisarticle,weprovidea validandefficientapproachtocombiningobservedandimputeddataonrarevariants.Weconsider allcommonlyusedgene‐levelassociationtests,includingtheburdentest,variablethreshold(VT) test,andsequence‐kernelassociationtest(SKAT),allofwhicharebasedonthescorestatisticfor assessingtheeffectsofindividualvariantsonthetraitofinterest.Weshowthatthescorestatistic basedontheobservedgenotypesforsequencedsubjectsandtheimputedgenotypesfornon‐ sequencedsubjectsisunbiased.Weconstructarobustvarianceestimatorthatreflectsthetrue variabilityofthescorestatisticregardlessofthesamplingschemeandimputationquality,suchthat thecorrespondingassociationtestsalwayshavecorrecttypeIerror.Wedemonstratethrough extensivesimulationstudiesthattheproposedtestsaresubstantiallymorepowerfulthantheuseof accuratelyimputedvariantsonlyandtheuseofsequencingdataalone.Weprovideanapplicationto theWomen'sHealthInitiative(WHI).Therelevantsoftwareisfreelyavailable. Categories: Association:Genome‐wide,DataIntegration P37 Amethodforfastcomputationoftheproportionofvariantsaffectinga complexdiseaseandoftheadditivegeneticvarianceexplainedinGWAS SNPstudies. LuigiPalla1,FrankDudbridge1 1DepartmentofNon‐communicableDiseaseEpidemiology,LondonSchoolofHygieneandTropicalMedicine RecentresearchhasaddressedtheestimationofvarianceexplainedbylargesetsofSNPsfroma genomewidepanel.AmethodbasedonpolygenicscoringwasproposedbyStahletal(NatGenet 2012)toestimatebothvarianceexplainedandnumberofSNPsaffectingthetrait,via computationallyintensiveBayesianmethodology.Weproposeafastanalyticmethodbasedonthe formulaforthenoncentralityparameteroftheassociationtestofapolygenicscorewiththetraitof interest(Dudbridge,PLoSGenet2013).Weshowhowmodelparameterscanbeestimatedfromthe resultsofmultiplepolygenicscoretestsbasedonSNPswithP‐valuesfallingindifferentintervals. Weestimatemodelparametersusingmaximumlikelihoodanduseaprofilelikelihoodapproach thatallowsrapidcomputationofreliableconfidenceintervals.Weillustrateourmethodonseveral examplesofcomplexdiseases.Wecomparevariouschoicesforconstructingpolygenicscores,based onnestedordisjointintervalsofp‐valuesandonweightedorunweightedSNPeffectsizes,in estimatingvarianceexplained(vg),fractionofgenesaffectingthetrait(nf)andcovariancebetween effectsintrainingandreplicationsamples.Wefindthatforestimationofvgandnfonly,the estimatesarenearlyunbiasedandconfidenceintervalsnarrow,withlessbiasfordisjointintervals. Whenestimatingall3parameterstheestimatespresentevensmallerbias,largerconfidence intervals,butincuralargerbiasforvginthecaseofnestedintervals.Overallwerecommenduseof thismethodbasedontheresultsderivedfromdisjointintervals. Categories: Association:Genome‐wide,Case‐ControlStudies,MaximumLikelihoodMethods, QuantitativeTraitAnalysis P38 Correctingforsampleoverlapincross‐traitanalysisofGWAS MarissaLeBlanc1,VerenaZuber2,ArnoldoFrigessi3,BettinaKulleAndreassen1 1Epi‐Gen,InstituteofClinicalMedicine,AkershusUniversityHospital,UniversityofOslo,Oslo,Norwayand OsloCentreforBiostatisticsandEpidemiology,DepartmentofBiostatistics,UniversityofOslo,Norway 2NORMENT,KGJebsenCentreforPsychosisResearch,InstituteofClinicalMedicine,UniversityofOslo,Oslo, Norway,DivisionofMentalHealthandAddiction,OsloUniversityHospital,Oslo,NorwayandProstateCancer ResearchGroup,CentreforMolecularMe 3OsloCentreforBiostatisticsandEpidemiology,DepartmentofBiostatistics,UniversityofOslo,Norwayand StatisticsforInnovation,NorwegianComputingCenter,Oslo,Norway Thereisagrowinginterestinintegratinggenomicdataoverdifferenttraits,atthesummary statisticslevel.Thisisofbiologicalinterestduetothepartiallysharedgeneticbasisofmanytraits, termedpleiotropy.Using,forexample,meta‐analysisoraconditionalfalsediscoveryrate(FDR) framework,pleiotropycanbeleveragedtoimprovedetectionofcommongeneticvariantsinvolved indisease.Thisrequiresonlysummarystatistics,notindividual‐leveldata.Summarystatistics fromgenome‐wideassociationstudies(GWAS)conductedbyglobalconsortiaarebecomingeasier toobtain,howevertheseGWASsummarystatisticsareoftennotindependentacrosstraitsdueto partiallyoverlappingsamples.Ouraimsaretwofold.First,weshowtheimpactofsampleoverlap oncross‐traitanalysisofGWAS,anddemonstratewithsimulationsthatitcaninducespurious correlationandanincreasedproportionoffalsepositivefindings.Second,weproposeacorrection thatremovesthespuriouseffectsduetosampleoverlap.Thiscorrectioninvolvesfirstestimating thecorrelationofthesummarystatisticsfromthetwostudies(forallpossiblecombinationsof quantitativeandbinaryoutcomes),andthensecond,correctingforthisspuriouscorrelationviathe Mahalanobistransformation.WepresentresultsfromsimulationstudiesandfromactualGWAS datathatshowthattheproposedcorrectionforsampleoverlapproperlycontrolsforfalsepositive findingswhilestillallowingforthedetectionoftruepleiotropicfindings. Categories: Association:Genome‐wide,DataIntegration P39 Epigenome‐wideassociationstudyofcentralizedadiposityin2,083 AfricanAmericans:TheAtherosclerosisRiskinCommunities(ARIC) Study LindsayFernández‐Rhodes1,YunLi1,MariaelisaGraff1,WeihuaGuan2,MeganLGrove3,QingDuan1, GuoshengZhang1,MyriamFornage3,JamesPankow2,EllenWDemearath2 1UniversityofNorthCarolinaatChapelHill,NorthCarolina,USA 2UniversityofMinnesota,Minnesota,USA 3UniversityofTexasHealthScienceCenteratHouston,Texas,USA CentralobesityisaleadingpredictorofcardiometabolicriskanditsprevalenceintheUnitedStates (US)hasmorethandoubledsincethe1980s,especiallyinUSminorities.Evidencesuggeststhat geneticfactorscontributetocentraladiposity,measuredaswaisttohipratioadjustedforbody massindex(WHRa).DNAmethylationpatterns,awell‐studiedformofepigeneticmodification,may alsoassociatewithWHRa.Thisstudyaimstoexaminethecross‐sectionalassociationbetween genome‐wideCpGsitemethylationandWHRainAfricanAmericans. TheInfiniumHumanMethylation450KBeadChipwasusedtomeasuremethylationinbisulphite‐ convertedperipheralbloodDNAfrom2,083AfricanAmericans(meanage56.6years)inthe AtherosclerosisRiskinCommunitiesstudy.Linearmixedeffectsmodelswereusedtotestfor associationbetweenmethylationbetavaluesandWHRaaccountingforrandomeffectsforbatchand fixedeffectsforage,sex,center,education,concurrentwhitebloodcellcount,householdincome, smoking,alcoholconsumption,physicalactivity,fiveleukocytecelltypeproportions,andprincipal componentsderivedfromgenome‐wideexonicgenotypedata. WeobservedonesignificantnegativeassociationwithWHRaatcg00574958(p=7x10‐12),which liesinthe5'UTRofCPT1A,agenepreviouslyimplicatedwithmetabolicrelatedtraits.Weaker associations(p<1x10‐6)werealsoobservedatseveralautosomalsitesrequiringfuture independentreplication. OurobservedCpGsiteassociationataknownmetaboliclocussuggeststhatepigeneticsignaturesof centraladipositymayaccountforsomeofthemissingheritabilityandinformourunderstandingof metabolicdysregulation. Categories: Association:Genome‐wide,CardiovascularDiseaseandHypertension,EpigeneticData, Epigenetics P40 Canlow‐frequencyvariantsberescuedingenome‐wideassociation studiesusingsparsedatamethods? Ji‐HyungShin1,ShelleyBBull1 1Lunenfeld‐TanenbaumResearchInstituteofMountSinaiHospital&DallaLanaSchoolofPublicHealth, UniversityofToronto Formanycomplextraits,geneticvariantsthatoccurwithlowfrequency(MAF<5%)arethoughtto beimportant.However,genome‐widescansofbinarytraitsusuallyexcludelowfrequencyvariants evenwhenthesamplesizeismoderate,becauseconventionallogisticregressioninferencecanfail duetolowcountsoftheobservedlow‐frequencyvariants.Alternatively,sparsedatamethodssuch asFirth’spenalizedlogisticregressionlikelihoodratiotestorasmall‐sample‐adjustedscoretest implementedinSKATcanprovidevalidresultsforasinglevariant.Weinvestigatetheperformance ofthestandardlogisticregressionandthesparsedatamethods,usinganalyticderivationsand finite‐samplesimulationsacrossvariousscenarios.Intheanalyticinvestigation,weexaminethe simplecaseofa2‐by‐2contingencytabletogaininsightintodifferencesamongthemethods.The analyticcalculationsshowhowtheteststatisticsdependontheobservednumbersofaffectedand unaffectedindividualswiththelow‐frequencyvariant,andonthediseaseprevalence.Inthe simulationstudy,weconsideranadditivelycodedgenotypeandaquantitativecovariate,andvary diseaseprevalence,minorallelefrequencyandcounts,andeffectsizeofthegeneticcovariateto examinearangeofsettings.Wefindthatnoonetestisuniformlybetterthantheothers.Overall, type1errorratesareclosesttothenominallevelforthepenalizedlikelihoodratiotestandthe small‐sample‐adjustedscoretest,whiletype1errorratesfortheothertestscanbegreatlyinflated ordeflated.Thepowerforthesmall‐sample‐adjustedscoretesttendstobeslightlyhigherthanthe penalizedlikelihoodratiotest,butthedifferencemaybeinsignificantinpractice. Categories: Association:Genome‐wide,MaximumLikelihoodMethods P41 Anovelkernel‐basedstatisticalapproachtotestingassociationin longitudinalgeneticstudieswithanapplicationofalcoholusedisorder inaveterancohort ZuohengWang1,ZhongWang1,JosephL.Goulet1,JohnH.Krystal1,AmyC.Justice1,KeXu1 1YaleUniversity Alcoholdependence(AD)isamajorpublichealthconcernintheUnitedStatesandcontributesto thepathogenesisofmanydiseases.TheriskforADismultifactorialincludingbothgeneticand environmentalfactors.Currently,theconfirmedassociationsaccountforasmallproportionof overallgeneticrisksforAD.Multiplemeasurementsinlongitudinalgeneticstudiesprovidearoute toreducenoiseandcorrespondinglyincreasethestrengthofsignalsingenome‐wideassociation studies(GWAS).Inthisstudy,wedevelopedapowerfulkernel‐basedstatisticalmethodfortesting thejointeffectofgenevariantswithageneregionondiseaseoutcomesmeasuredovermultiple timepoints.Weappliedthenewmethodtoalongitudinalstudyofveterancohort(N=960)with bothHIV‐infectedandHIV‐uninfectedpatientstounderstandthegeneticriskunderlyingAD.We foundaninterestinggenethatmayinvolvetheinteractionofHIVreplication,suggestiveofpotential genebyenvironmenteffectinalcoholuseandHIV.Wealsoconductedsimulationstudiestoaccess theperformanceofthenewstatisticalmethodsanddemonstratedapowergainbytakingadvantage ofrepeatedmeasurementsandaggregatinginformationacrossabiologicalregion.Thisstudynot onlycontributestothestatisticaltoolboxinthecurrentGWAS,butalsopotentiallyadvancesour understandingoftheetiologyofAD.Acknowledgment:TheauthorsthanktheVeteransAging CohortStudyandVANationalCenterforPTSDforgeneroussupport.ThestudyissupportedbyNIH grantR21AA022870. Categories: Association:Genome‐wide,MultipleMarkerDisequilibriumAnalysis,PsychiatricDiseases P42 AGene‐EnvironmentInteractionBetweenCopyNumberBurdenand OzoneExposureinRelationtoRiskofAutism DokyoonKim1,HeatherVolk2,SarahAPendergrass1,MollyAHall1,ShefaliSVerma1,Santhosh Girirajan1,IrvaHertz‐Picciotto3,MarylynDRitchie1,ScottBSelleck1 1DepartmentofBiochemistry&MolecularBiology,thePennsylvaniaStateUniversity,UniversityPark,PA 2DepartmentofPreventiveMedicine,KeckSchoolofMedicine,UniversityofSouthernCalifornia,LosAngeles, CA;DepartmentofPediatrics,Children’sHospitalLosAngeles,UniversityofSouthernCalifornia,Los Angeles,CA 3DepartmentofPublicHealthSciences,UniversityofCalifornia,Davis,Davis,CA Autismisaneurodevelopmentaldisordercharacterizedasacomplextraitwithahighdegreeof heritabilityaswellasadocumentedsusceptibilityfromenvironmentalfactors.Therelative contributionsofgeneticfactors,environmentalfactorsandtheirinteractionsastheyrelatetoriskof autismarepoorlyunderstood.Whilemostautismrelatedcopynumbervariations(CNV)identified todate,eachwithasubstantialrisk,arehighlypenetrantforthisdisorder,theyconstitutelargerare eventscontributingmodestlytotheoverallheritability.Genome‐wideanalysisofCNVshave demonstratedacontinuousriskofautismassociatedwiththegloballevelofcopynumberburden, measuredastotalbasepairsofduplicationordeletionacrossthegenome.Inaddition, environmentalexposuretoairpollutantshasbeenidentifiedasariskfactorfordeveloping autism.WehaveexaminedtherelativecontributionofCNV(measuredastotalbasepairsofcopy numberburden),exposuretoairpollution,andtheinteractionbetweenairpollutantlevelsand copynumberburdeninapopulationbasedcase‐controlstudy,ChildhoodAutismRisksfrom GeneticsandEnvironment(CHARGE).Asignificantandsizableinteractionwasidentifiedbetween duplicationburdenandozoneexposure(OR2.78,P<0.005),greaterthanthemaineffectforeither copynumberduplication(OR2.41,95%CI:1.36~4.82)orozonealone(OR1.19,95%CI: 0.75~1.89).Theoverallimplicationofourfindingisthatsignificantgene‐environmentinteractions associatedwithautismexistandcouldaccountforaconsiderablelevelofheritabilitynotdetected byevaluatingDNAvariationorenvironmentalone. Categories: Association:Genome‐wide,CopyNumberVariation,Gene‐EnvironmentInteraction P43 Choosingacase‐controlassociationteststatisticforlow‐countvariants intheUKBiobankLungExomeVariantEvaluationStudy NickShrine1,LouiseVWain1,IoannaNtalla1,JamesPCook1,AndrewPMorris2,EleftheriaZeggini3, JonathanMarchini4,DavidPStrachan5,IanPHall6,MartinDTobin1 1DepartmentofHealthSciences,UniversityofLeicester,Leicester,UnitedKingdom 2DepartmentofBiostatistics,UniversityofLiverpool,Liverpool,UnitedKingdom 3WellcomeTrustSangerInstitute,Hinxton,Cambridgeshire,UnitedKingdom 4DepartmentofStatistics,UniversityofOxford,Oxford,UnitedKingdom 5PopulationHealthResearchInstitute,StGeorge'sUniversityofLondon,London,UnitedKingdom 6DivisionofTherapeuticsandMolecularMedicine,UniversityofNottingham,Nottingham,UnitedKingdom TheUKBiobankLungExomeVariantEvaluation(UKBiLEVE)studyisanestedcase‐controlstudyto evaluategeneticsusceptibilitytochronicobstructivepulmonarydisease(COPD),geneticvariants associatedwithlungfunctionandgeneticresistancetotobaccosmoke.50KUKBiobankindividuals weresampledfromtheextremesandmiddleofthelungfunctiondistributioninsmokingandnon‐ smokingstrata.Inordertoidentifyrare,putativefunctionalgeneticvariants,genome‐wide genotypingwasundertakenusingacustomdesignedAffymetrixarraythatincluded130Krare missenseandlossoffunctionvariants,642Kvariantsselectedforoptimalimputationofcommon variationandimprovedimputationoflowfrequencyvariation(MAF1‐5%)and9000variants selectedforimprovedcoverageofknownandcandidaterespiratoryregions.Simulationshave shownthatlogisticregressionwiththeusualWaldteststatisticatlowminorallelecount(MAC)is highlyconservative.AlternativeteststatisticswithmorepoweratlowerMACscanbeanti‐ conservative,havingmarkedlydifferenttypeIerrorratesdependingontheMACandbalanceof casesandcontrols.Ofthe782KvariantspassingQCinUKBiLEVE,around57KhaveMAC<20with 11Ksingletons;phenotypiccomparisongroupshavecase‐controlratiosofeitherapproximately1:1 or1:2.Wecompareinflationofteststatistics,numberofassociatedlocidetectedandcomputational efficiencyofthescoreandFirthtestsforassociationtestingofrarevariantsinbalancedand unbalancedcase‐controlcomparisonsinUKBiLEVE.ThisresearchhasbeenconductedusingtheUK BiobankResource. Categories: Association:Genome‐wide,Association:UnrelatedCases‐Controls,Case‐ControlStudies, PopulationGenetics,SampleSizeandPower P44 SNPCHARACTERISTICSPREDICTREPLICATIONSUCCESSINASSOCIATION STUDIES IvanPGorlov1,JasonH.Moore1,OlgaYGorlova1,ChristipherIAmos,TheGeiselSchoolofMedicine, DartmouthCollege 1TheGeiselSchoolofMedicine,DartmouthCollege TheonlywaytodistinguishtruefromfalsediscoveriesderivedfromGenomeWideAssociation Studies(GWAS)isreplication.AnindependentreplicationofaSNP/diseaseassociationsuggests thattheassociationisreal.SelectingSNPsforreplicationstageisbasedonp‐valesfromthe discoverystage.Reproducibilityofthetopfindingfromdiscoveryphaseislowmakingidentification ofpredictorsofSNPreproducibilityisimportant.Weuseddisease‐associatedSNPsfrommorethan 2,000publishedGWASstodevelopamodelofSNPreproducibility.Reproducibilitywasdefinedasa proportionofsuccessfulreplicationsamongallreplicationattempts.Thestudyreporting SNP/diseaseassociationforthefirsttimewasconsideredtobediscoveryandallconsequentGWASs targetingthesamephenotypereplications.Wefoundthat‐Log(P),wherePisap‐valuefromthe discoverystudy,wasthestrongestpredictoroftheSNPreproducibility.Othersignificantpredictors includetypeoftheSNP(e.g.missensevsintronicSNPs),minorallelefrequencyandeQTLstatusof theSNP.FeaturesofthegeneslinkedtotheGWAS‐detectedSNPwerealsoassociatedwiththeSNP reproducibility.Basedonempiricallydefinedrules,wedevelopedasimplifiedreproducibilityscore (RS)modeltopredictSNPreproducibility.Both‐Log(P)andRSindependentlypredictedSNP reproducibilityinamultipleregressionanalysis.Weuseddatafrom2lungcancerGWASstudiesas wellasrecentlyreporteddisease‐associatedSNPstovalidatethemodel.MinusLog(P)outperforms RSwhenverytopSNPsareselected,whileRSworksbetterwithrelaxedselectioncriteria.In conclusion,wedevelopedanempiricalmodelforpredictionoftheSNPreproducibility.Themodel canbeusedforselectionSNPsforvalidationaswellasforSNPprioritizingtobecausal. Categories: Association:Genome‐wide,Bioinformatics,Cancer P45 Data‐DrivenWeightedEncoding:ANovelApproachtoBiallelicMarker EncodingforEpistaticModels JohnRWallace1,MollyAHall1,ShefaliSVerma1,KristelvanSteen2,ElenaSGusareva2,JasonH Moore3,BrendanJKeating4,CatherineAMcCarthy5,SarahAPendergrass1,MarylynDRitchie1 1CenterforSystemsGenomics,ThePennsylvaniaStateUniversity,StateCollege,PA 2DepartmentofElectricalEngineeringandComputerScience,UniversityofLiège,Liège,Belgium 3DepartmentofGenetics,GeiselSchoolofMedicineatDartmouthCollege,Lebanon,NH 4CenterforAppliedGenomics,TheChildren'sHospitalofPhiladelphia,Philadelphia,PA 5EssentiaInstituteofRuralHealth,Duluth,MN WithGenomeWideAssociationStudies(GWAS),biallelicmarkersaretypicallyencodedusingan additivemodel,assigningvaluesbythenumberofminoralleleseachindividualpossesses.In detectingmaineffects,thisencodinghasbeenshowntobeanadequatecompromise;however, choosingoneencodingmakesanassumptionaboutthebiologicalactionofeverymarkerinthe dataset,whichcanintroduceartifacts.Thisisparticularlyanissuewheninteractiontermsare added,astheseartifactscanleadtospuriousresults.Analternativeistheuseofcodominant encoding,whichmakesnoassumptionaboutthebiologicalactionofamarker,butthenumberof degreesoffreedomrequiredcandramaticallyreducethepowerandintroducecolinearity, particularlyforinteractionmodels. Toaddressthesechallenges,wehavedevelopedanovelandeffectiveapproachforencodingthatis entirelydatadrivenandrequiresnoassumptionsaboutthebiologicalactionofanyparticular marker,called“Data‐DrivenWeightedEncoding”(DaDWE)Usingtworeal‐worlddatasets:body‐ massindexdatafrom15,737individualsacrossfivedifferentdiversecohortsandage‐related cataractdatafrom3,377samples(2,192cases;1,185controls)fromtheMarshfieldClinic,weshow thatthechoiceofencodingcanhavealargeimpact.Foramodelwithonlymaineffects,weshow thatourmethodhasidenticalresultscomparedtocodominantencoding,andwheninteraction termsareintroduced,weshowDaDWEhasadistinctadvantageduetoreduceddegreesoffreedom. Further,usingsimulationdata,weshowthatDaDWEisrobusttomultipletypesofbiologicalactions underlyingpotentialpredictivemodels,andisanappropriatechoiceforepistaticmodeldiscovery. Categories: Association:Genome‐wide,Association:UnrelatedCases‐Controls,Case‐ControlStudies, EpigeneticData,Epigenetics,Gene‐GeneInteraction P46 AOne‐Degree‐of‐FreedomTestforSupra‐MultiplicativityofSNPEffects ChristineHerold1,VitaliaSchüller1,AlfredoRamirez2,TatsianaVaitsiakhovich3,TimBecker1 1GermanCenterforNeurodegenerativeDiseases(DZNE),Bonn,Germany 2DepartmentofPsychiatryandPsychotherapy,UniversityofBonn,Bonn,Germany;InstituteofHuman Genetics,UniversityofBonn,Bonn,Germany 3InstituteforMedicalBiometry,InformaticsandEpidemiology,UniversityofBonn,Bonn,Germany Deviationfrommultiplicativityofgeneticriskfactorsisbiologicallyplausibleandmightexplainwhy Genome‐wideassociationstudies(GWAS)sofarcouldunravelonlyaportionofdiseaseheritability. Still,evidenceforSNP‐SNPepistasishasrarelybeenreported,suggestingthat2‐SNPmodelsare overlysimplistic.Inthiscontext,itwasrecentlyproposedthatthegeneticarchitectureofcomplex diseasescouldfollowlimitingpathwaymodels.Thesemodelsaredefinedbyacriticalriskallele loadandimplymultiplehigh‐dimensionalinteractions.Here,wepresentacomputationallyefficient one‐degree‐of‐freedom"supra‐multiplicativity‐test"(SMT)forSNPsetsofsize2to500thatis designedtodetectriskalleleswhosejointeffectisfortifiedwhentheyoccurtogetherinthesame individual.ViaasimulationstudyweshowthatouroriginalSMTispowerfulinthepresenceof thresholdmodels,evenwhenonlyabout30–45%ofthemodelSNPsareavailable.Wecanalso demonstratethattheSMToutperformsstandardinteractionanalysisunderrecessivemodels involvingjustafewSNPs.Nevertheless,inasecondstepwetrytomodifytheindicatorfunctionto limitthemultipletestingissueandimprovepower.Inaddition,weapplyourtestto10consensus Alzheimer’sdisease(AD)susceptibilitySNPsthatwerepreviouslyidentifiedbyGWAS. Categories: Association:Genome‐wide,Gene‐GeneInteraction P47 Fine‐mappingeGFRsusceptibilitylocithroughtrans‐ethnicmeta‐ analysis AnubhaMahajan1,JeffreyHaessler2,NoraFranceschini3,AndrewMorris4 1WellcomeTrustCentreforHumanGenetics,UniversityofOxford,Oxford,UK 2PublicHealthSciencesDivision,FredHutchinsonCancerResearchCenter,Seattle,Washington,USA 3UniversityofNorthCarolina,ChapelHill,NC,USA 4WellcomeTrustCentreforHumanGenetics,UniversityofOxford,Oxford,UK;DepartmentofBiostatistics, UniversityofLiverpool,Liverpool,UK;EstonianGenomeCenter,UniversityofTartu,Tartu,Estonia Reducedestimatedglomerularfiltrationrate(eGFR),isusedtodefinechronickidneydisease(CKD). Weperformedtrans‐ethnicmeta‐analysistofine‐mapknowneGFRlocibyleveragingdifferencesin distributionoflinkagedisequilibriumbetweendiversepopulations.Weconsideredsixgenome‐ wideassociationstudies(GWAS)comprisingof23,568individualsofEuropean,AfricanAmerican, andHispanicancestry,eachsupplementedbyimputationuptothe1000GenomesProjectreference panel(March2012release).Withineachstudy,associationwitheGFR(MDRDequation)wastested underanadditivemodel.Wethencombinedassociationsummarystatisticsacrossstudieswith MANTRA,500kbupanddownoftheleadSNPatknowneGFRloci,andconstructed“crediblesets”of SNPsthatencompass99%oftheposteriorprobabilityofbeingcausal.Weresolvedfine‐mappingof potentialcausalvariantstolessthan20variantsatthreeloci:GCKR(3SNPs,144.5kb), UMOD/PDILT(4SNPs,39.3kb),andSHROOM3(19SNPs,74kb).AtGCKR,thecrediblesetcovers threeSNPsincludingGCKRP446L,whichispredictedtobethefunctionalvariantatthislocus. Variantsinthe99%crediblesetforSHROOM3,includeintronicvariantsinthegeneandoverlap regulatoryelementsfromENCODE,therebyhighlightingapotentialmechanismfortheactionofthis locusoneGFR.Thesefindingsprovideevidencethattrans‐ethnicGWAScanbeusedtofine‐map potentiallycausalvariantsatcomplextraitslocithatcanbetakenforwardforexperimental validationandcouldhelptofurtherourunderstandingofthebiologicalmechanismsunderlying disease. Categories: Association:Genome‐wide,FineMapping P48 Arelipidriskallelesidentifiedingenome‐wideassociationstudiesready fortranslationtoclinicalstudies? Alexander M Kulminski1, Irina Culminskaya1, Konstantin G Arbeev1, Liubov S Arbeeva1, Svetlana V Ukraintseva1, Eric Stallard1, Anatoli I Yashin1 1 Duke University Insightsintogeneticoriginofdiseasesandrelatedtraitscouldsubstantiallyimpactstrategiesfor improvinghumanhealth.Theresultsofgenome‐wideassociationstudies(GWAS)areoften positionedasdiscoveriesofunconditionalriskallelesofcomplexhealthtraits.Were‐analyzedthe associationsofSNPsdiscoveredascorrelatesoftotalcholesterol(TC)inalarge‐scaleGWASmeta‐ analysis.Wefocusedonthreegenerationsof9,167participantsoftheFraminghamHeartStudy (FHS)whichwasapartofthatmeta‐analysis.WeshowedthatnoneofSNPsavailableintheFHShas unconditionalriskallelesforTC.Instead,theeffectsoftheseSNPswereclusteredindifferentFHS generationsinsex‐specificorsex‐unspecificfashion.Sensitivityoftheeffectstogenerationsimplies theroleoftheenvironmentand/ortheage‐relatedprocesses.Astrikingresultwaspredominant clusteringofsignificantassociationswiththestrongesteffectsintheyoungest3rdGeneration cohort.Thisclusteringwasnotexplainedbythesamplesizeorprocedure‐therapeuticissues.The effectclusteringinspecificpopulationgroupsmaystronglyaffectsamplesizesneededtodetect genome‐widesignificance.Asanexample,theeffectsizeforrs1800562inthe3rdGenerationcohort requiredaslittleasabout13,000subjectstoachievegenomesignificancewhereasthatin comparablesampleoftheFHSoriginalandoffspringcohortsrequiredmorethan106subjects.The resultsonclusteringoftheeffectsoflipidriskallelesareinlinewithexperimentalevidenceat phenotypiclevelsfrompriorstudies.OurresultssuggestthatstandardGWASstrategiesneedtobe greatlyexpandedtoefficientlytranslategeneticdiscoveriesintoclinicalstudies. Categories: Association:Genome‐wide P49 Genome‐widemeta‐analysisofsmoking‐dependentgeneticeffectson obesitytraits:theGIANT(GeneticInvestigationofANthropometric Traits)Consortium AnneE Justice1, Thomas W Winkler2, Kristin L Young1, Jacek Czajkowski3, Nancy Heard‐Costa4,5, Mariaelisa Graff1, Xuan Deng6, Virginia Fisher6, Tuomas Kilpeläinen7, L Adrienne Cupples4,6 1 University of North Carolina at Chapel Hill, Department of Epidemiology, Chapel Hill, NC, USA Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany 3 Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA 4 NHLBI Framingham Heart Study, Framingham, MA , USA 5 Boston University, School of Medicine, Boston, MA, USA 6 Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, USA 7 The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark 2 Obesity and cigarette smoking (SMK) are important risk factors for cardiovascular disease. Yet, smokers often exhibit lower body mass index (BMI) and higher waist circumference (WC), and smoking cessation leads to weight gain. Genome‐wide association (GWA) studies have identified loci that are associated with risk of overall and central obesity; yet little is known about how SMK influences genetic susceptibility to obesity. This study aims to identify loci associated with obesity measured by BMI, WC adjusted for BMI (WCa), and waist to hip ratio adjusted for BMI (WHRa), and the influence of SMK on those genetic associations. We analyzed study specific association results from 88 studies including up to 210,153 subjects with GWA or Metabochip data. Each study employed two association models: 1) SNP effects adjusted for SMK (βadj), 2) SNP effects stratified by SMK. Study specific results were combined by inverse‐variance weighted fixed‐effects meta‐analyses. To detect SMK‐dependent genetic effects on obesity, the SMK‐stratified meta‐analysis results were used to calculate (i) the difference in SNP associations between current and non‐smokers (βdiff), and (ii) the joint estimates (βj) of the main effect and βdiff. We found genome‐wide significant (GWS) (p<5E‐8) evidence for non‐zero βdiff for two loci associated with WCa, three with WHRa and two with BMI. A total of 81 loci for WCa (14 are novel), 68 loci for BMI (10 are novel) and 50 loci for WHRa (nine are novel) reached GWS for βj and/or βadj. Our results highlight the importance of appropriately modeling genetic associations by considering known biological relationships between phenotypes and environment. Categories: Association: Genome‐wide, Cardiovascular Disease and Hypertension, Gene ‐ Environment Interaction P 50 ABinomialRegressionModelforAssociationMappingofMultivariate Phenotypes Saurabh Ghosh 1, Arunabha Majumdar1 1 INDIAN STATISTICAL INSTITUTE, KOLKATA, INDIA Most clinical end‐point traits are governed by a set of quantitative and qualitative precursors and hence, it may be a prudent strategy to analyze a multivariate phenotype vector comprising these precursor variables for association mapping of the end‐point trait. The major statistical challenge in the analyses of multivariate phenotypes lies in the modelling of the vector of phenotypes, particularly in the presence of both quantitative and binary precursors. Likelihood based approaches such as variance components as well as data reduction techniques such as principal components become infeasible or biologically difficult to interpret if some of the components of the phenotype vector are qualitative in nature. We propose a Binomial regression approach that models the likelihood of the number of minor alleles at a SNP conditional on the vector of multivariate phenotype using a logistic link function. This framework allows for the integration of quantitative as well as binary phenotypes and does not require any distributional assumptions on the phenotype vector. The test for association is based on all the regression coefficients corresponding to the constituent phenotypes. The method can be easily adopted for analyzing longitudinal data. We carry out extensive simulations under a wide spectrum of genetic models of a multivariate phenotype vector and show that the proposed test is more powerful compared to analyzing a reduced phenotype based on the first principal component of the constituent phenotypes as well as separate univariate analyses of the different phenotypes. We apply our method to analyze a multivariate phenotype comprising homocysteine levels, Vitamin B12 levels and folate levels in a study on coronary artery disease. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls, Multivariate Phenotypes, Quantitative Trait Analysis P 51 HowtoincludechromosomeXinyourgenome‐wideassociationstudy Christina Loley1, Inke R König1,2, Jeanette Erdmann2,3, Andreas Ziegler1,2,4 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig‐Holstein, Campus Lübeck, Lübeck, Germany 2 DZHK (German Centre for Cardiovascular Research), Lübeck, Germany 3 Institut für Integrative und Experimentelle Genomik, Universitätsklinikum Schleswig‐Holstein, Campus Lübeck, Lübeck, Germany 4 Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig‐Holstein, Campus Lübeck, Lübeck, Germany In current genome‐wide association studies (GWAS), the analysis is usually focused on autosomal variants only, and the sex chromosomes are often neglected. Recently, a number of technical hurdles have been described that add to a reluctance of including chromosome X in a GWAS, including complications in genotype calling, imputation, and selection of test statistics. To overcome this, we provide a "how to" guide for analyzing X chromosomal data within a standard GWAS. Following a general pipeline for GWAS, we highlight the steps in which the X chromosome requires specific attention, and we give tentative advice for each of these. Through this, we show that by selection of sensible algorithms and parameter settings, the inclusion of chromosome X in GWAS is manageable. Closing this gap is expected to further elucidate the genetic background of complex diseases, especially of those with sex‐ specific features. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls P 52 Exomechipmeta‐analysistoidentifyrarecodingvariantsassociated withpulsepressure James P Cook1, Evelin Mihailov2, Nicholas GD Masca3, Fotios Drenos4, Helen Warren5, Martin D Tobin1, Louise V Wain1, Patricia B Munroe5, ExomeBP Consortium 1 Department of Health Sciences, University of Leicester, Leicester, United Kingdom Estonian Genome Center, University of Tartu, Tartu, Estonia 3 Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, United Kingdom 4 Centre for Cardiovascular Genetics, University College London, London, United Kingdom 5 William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom 2 Pulse pressure (PP) is a measure of arterial stiffness (calculated as the difference between systolic and diastolic blood pressure (BP)) which is a strong risk factor for cardiovascular disease and stroke. Large European genome‐wide association studies have already identified multiple common variants associated with PP, however common variants do not explain all of the heritability of BP traits. It has been hypothesised that some of the remaining heritability is explained by rare variants. The exome chip was designed to act as an intermediate step between cost‐effective whole genome SNP arrays, which predominantly measure common variation, and exome re‐sequencing approaches, which measure rare coding variation. The array includes ~250,000 mainly low frequency exonic variants. The ExomeBP consortium has been formed to analyse the exome chip for four BP traits: SBP, DBP, PP and hypertension, and comprises ~83,000 individuals from 31 different studies.We report a large scale single variant meta‐analysis of PP, including >150,000 polymorphic SNPs with minor allele frequency <1%. Results demonstrate replication of known pulse pressure loci as well as identification of novel loci not previously associated with blood pressure. Gene‐based analyses are also being performed. I will describe the methodological challenges in undertaking single variant and gene‐based meta‐analyses of exome chip data, such as distinguishing between monomorphic and missing variants across studies, the effect of transforming the phenotype and the advantages of different gene based methods, and outline our plans to boost sample size to ~400,000 through collaboration with other consortia. Categories: Association: Genome‐wide, Cardiovascular Disease and Hypertension, Quantitative Trait Analysis P 53 Genome‐widesearchforage‐andsex‐dependentgeneticeffectsfor obesitytraits:MethodsandresultsfromtheGIANTConsortium Thomas W Winkler1, Mariaelisa Graff2, Anne Justice2, Llilda Barata3, Mary Feitosa3, Iris M Heid1, Ingrid Borecki3, Kari E North2, Zoltán Kutalik4, Ruth JF Loos5 1 Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA 3 Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA 4 Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland 5 The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 2 Obesity differs between men and women and changes over time. Previous genome‐wide association meta‐analyses (GWAMAs) revealed sexually dimorphic loci for waist‐hip ratio (WHR), but little is known whether genetic effects on obesity traits change with age. We thus conducted GWAMAs stratified by age (cut‐off at 50 years) and by sex, involving 110 studies (N>310,000) of European ancestry. Each study tested up to 2.8M HapMap imputed SNPs for association with BMI and WHR in four strata (men≤50, women≤50, men>50, women>50). Using the stratum‐specific estimates, we tested for age‐specific effects (G x AGE), sex‐specific effects (G x SEX), and for age‐specific effects that differ between men and women (G x AGE x SEX). Each of the three interaction tests was conducted with and without a‐priori filtering for the overall association. For BMI, our analysis yielded 15 loci with significant age‐difference, of which 11 showed a stronger effect in the younger group. For WHR, our analysis yielded 44 sexually dimorphic loci, of which 11 showed opposite effects and 28 showed an effect in women only. We did not identify any 3‐way G x AGE x SEX effects. Analytical power computations showed that our strategy (i) was well‐powered for any kind of 2‐way interaction (G x AGE, G x SEX) and for the most extreme 3‐way interaction (involving opposite effects across the four strata), but (ii) lacks power to find the most plausible 3‐way interactions (effects that are only present or only lacking in one of the four strata). Our results underscore the importance of age‐ and sex‐stratified analyses to further investigate the genetic underpinning for obesity traits and demonstrate that more refined methods will be needed to establish most plausible 3‐way interaction effects. Categories: Association: Genome‐wide, Gene ‐ Environment Interaction, Heterogeneity, Homogeneity, Sample Size and Power P 54 Meta‐analysisofgene‐setanalysesbasedongenomewideassociation studies Albert Rosenberger1, Heike Bickeböller1, Christopher I Amos2, Rayjean J Hung3, Paul Brennan4 1 Universitätsmedizin Göttingen, Germany Geisel School of Medicine, US 3 Lunenfeld‐Tanenbaum Research Institute, Canada 4 International Agency for Research on Cancer, Lyon, France 2 Gene‐set analysis (GSA) methods are used as complementing approaches to genome‐wide association studies (GWAS). The single marker association estimates of a predefined set of genes are either contrasted to those of all remaining genes or to a null non‐associated background. To pool p‐values of several GSAs, it is important to take into account the concordance in the observed patterns of single marker association estimates. We propose an enhanced version of Fisher’s inverse χ²‐method META‐ GSA, but weighting each study to account for imperfect correlation between patterns. We investigated the performance of META‐GSA by simulating 500 GWAS with 500 cases and 500 controls at 100 SNPs. Wilcoxon’s rank sum test was applied as GSA for each study. We could demonstrate that META‐GSA has greater power to discover truly associated genes sets compared to simply pooling the p‐values. Under the H0, i.e. if there is no difference in the true pattern between the gene set of interest and the set of remaining genes, the results of both approaches are found to be almost without correlation. Thus, we recommend not relying on p‐values alone when combining the results of independent GSAs. Applying META‐GSA to pool results of four case‐control GWAS of lung cancer risk (Central European Study and the Toronto/SLRI Study; German Lung Cancer Study and the MDACC Study) revealed the pathway GO0015291 (“transmembrane transporter activity”) as significantly enriched with associated genes (GSA‐ method: EASE, p=0.0315 corrected for multiple testing). Categories: Association: Genome‐wide, Cancer, Case‐Control Studies, Pathways P 55 Meta‐analysisofcorrelatedtraitsusingsummarystatisticsfromGWAS Xiaofeng Zhu1, Tao Feng1 1 Department of Epidemiology and Biostatistics, Case Western Reserve University Genome wide association study (GWAS) has identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple, even distinct traits.Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome‐wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, unrelated, continuous or binary traits, which may come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single trait analysis in the most of cases we studied. We also applied our method to a large genome‐wide association study and identified multiple variants which were missed by a single trait analysis. Our method also provides a way to study a pleotropic effect. Categories: Association: Genome‐wide, Multivariate Phenotypes P 56 StudyingtheEthnicDifferencesintheGeneticsofType2Diabetesusing thePopulationSpecificHumanPhenotypeNetworks Jingya Qiu1, Christian Darabos1, Jason H Moore1 1 Dartmouth College GWAS led to the discovery of 200+ SNPs at 150+ loci associated with type 2 diabetes mellitus (T2DM). It was also observed that East Asians develop T2DM at a higher rate, younger age, and lower BMI than their European ancestry counterparts. The reason behind this occurrence remains elusive. We constructed human phenotype subnetworks (HPSNs) based on ethnicity‐specific data to quantitatively analyze and visualize the disparities in genetic variants between different ethnic groups. Our identification of interethnic differences in the genetic variants associated with T2DM suggests the possibility of different pathways involved in the pathogenesis of T2DM amongst different populations. With comprehensive searches through the NHGRI GWAS catalog literature, we manually curated over 2,500 ethnicity‐specific SNPs associated with T2DM and 48 other related traits. The GWAS catalog usually reports the data combined over the initial and replication samples, across the different ancestries. Analysis of all‐inclusive data can be misleading, as not all variants are transferable across diverse populations. The extraction of ethnicity data allowed us to construct population‐specific HPSNs. We identified 99 SNPs highly significant to T2DM, most initially discovered in Europeans and replicated in East Asians, suggesting shared biological pathways. Of the 99 SNPs, however, 21 were specific to East Asian populations but impossible to replicate in other cohorts. Furthermore, many SNPs showed significant differences in studies of comparable size. For example rs2237892 in locus KCNQ1, a critical gene in insulin‐secreting INS‐1 cells, proved to be highly significant in East Asian population (p‐ Value=2.5E‐40) but not in Europeans (p=7.2E‐04). Categories: Association: Genome‐wide, Bioinformatics, Data Mining, Diabetes, Gene ‐ Gene Interaction, Pathways, Population Genetics, Prediction Modelling P 57 HierarchicalBayesianModelintegratingsequencingandimputation uncertaintyusingMCMCmethodforrarevariantassociationdetection Liang He1, Janne Pitkäniemi1,2, Mikko J Sillanpää3,4, Antti P Sarin5, Samuli Ripatti5,6 1 Department of Public Health, Hjelt Institute, University of Helsinki, Finland Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland 3 Department of Mathematical Sciences, University of Oulu, Oulu FIN‐90014, Finland 4 Department of Biology and Biocenter Oulu, University of Oulu, Oulu FIN‐90014, Finland 5 Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland 6 Wellcome Trust Sanger Institute, UK 2 Next generation sequencing has led to the studies of rare genetic variants, which are thought to explain the missing heritability for complex diseases. Most existing statistical methods for RV association detection do not account for the presence of sequencing errors and imputation uncertainty, which can largely affect the power and perturb the accuracy of association tests due to rare observations of minor alleles. Some proposed methods that assign different weights based on genotype quality leads to the reduction of observations, and thus statistical power. We develop a hierarchical Bayesian approach to powerfully estimate the association between rare variants and complex diseases and account for genotype uncertainty from both whole‐genome sequencing and imputation data using MCMC method. Our integrated framework, which combines the misclassification model with shrinkage‐based Bayesian variable selection, estimates the association and predicts the low‐quality genotype simultaneously by borrowing the strength from priors and the rest of high‐quality data, and allows for dealing with sequencing and imputation data simultaneously. Sequencing quality information or imputation uncertainty is incorporated into the integrated framework to achieve the optimal power. We test the proposed method on simulated data and demonstrate that it outperforms other existing methods under various scenarios. Then we apply our model to a Finnish low‐density lipid cholesterol study, which includes both whole‐genome deep sequencing and imputation genotypic data, and both well‐known and novel gene regions with RVs significantly related to low density lipoprotein cholesterol level are identified. Categories: Association: Genome‐wide, Bayesian Analysis, Genomic Variation, Markov Chain Monte Carlo Methods, Missing Data, Multilocus Analysis, Population Genetics, Quantitative Trait Analysis, Sequencing Data P 58 Sex‐specificassociationofMYLIPwithmortality‐optimizedhealthyaging index Mary F Feitosa1, Ryan L. Minster2, Mary K Wojczynski1, Jason L Sanders3, Amy M Matteini4, Richard Mayeux5, Nicole Schupf6, Thomas T Perls7, Kaare Christensen8, Anne B Newman3 1 Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO Department of Human Genetics, University of Pittsburgh, PA 3 Department of Epidemiology Graduate School of Public Health, University of Pittsburgh, PA 4 Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore, MD 5 Department of Neurology, Columbia University, New York, NY 6 Taub Institute, College of Physicians and Surgeons, Columbia University, New York, NY 7 Section of Geriatrics, Department of Medicine, Boston University, Boston School of Medicine and Boston Medical Center, MA 8 The Danish Aging Research Center, Epidemiology, University of Southern Denmark, and Department of Clinical Genetics and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark 2 Elevated low‐density lipoprotein (LDL) cholesterol is associated with increased risk of coronary artery disease, cognitive decline and dementia. Although these diseases predict mortality, knowledge of the relationship between dyslipidemia and its genetic contributors to mortality is limited. A mortality‐ optimized healthy aging index (HAI‐M) demonstrated accuracy to predict mortality. We hypothesized that SNPs from the GLGC Consortium (N=30) associated with LDL contribute to HAI‐M variability in 3,534 subjects from the Long Life Family Study. To create HAI, systolic blood pressure, pulmonary vital capacity, creatinine, fasting glucose, and modified‐mini‐mental‐status‐examination‐score, were scored as 0 (healthiest tertile), 1 (middle tertile), or 2 (unhealthiest tertile, and clinical cutoffs for glucose), and the sum produced an index ranging from 0 (healthiest) to 10 (unhealthiest). The HAI‐M was generated by applying regression coefficients from Cox proportional hazards models for death from the Cardiovascular Health Study to each component of the HAI. MYLIP‐rs3757354 (p=0.0001, beta=‐0.16±0.04) and APOH‐ rs1801689 (p=0.03, beta=0.23±0.10) were associated with HAI‐M in a stepwise regression model. Accounting for family structure using a mixed model, MYLIP‐rs3757354 was significantly associated with HAI‐M (p=0.001, beta=‐0.14±0.04). There were sex‐specific effects. MYLIP‐rs3757354 was significantly associated with HAI‐M in men (p=0.0003, beta=‐0.24±0.06), but not in women (p=0.23, beta=‐ 0.07±0.06). MYLIP (6p23‐p22) encodes the E3 ubiquitin ligase myosin regulatory light chain‐interacting protein and promotes degradation of the LDLR, a process that may be relevant to healthy aging. Categories: Association: Genome‐wide, Genomic Variation, Multiple Marker Disequilibrium Analysis P 59 Geneticdeterminantsofliverfunctionandtheirrelationshiptocardio‐ metabolichealth Niletthi De Silva1, Debbie Lawlor1, Thomas Gaunt1, Abigail Fraser1 1 University of Bristol Introduction: Genome‐wide association studies have identified several common variants robustly associated with liver function tests, primarily ALT, AST, ALP, GGT, Bilirubin and Albumin. These phenotypes have been used as markers of liver damage, and there is evidence from observational studies that these are related to future adverse cardiometabolic health. However, it is unclear to what extent these associations are causal or confounded (in particular by alcohol consumption and general greater adiposity). Aims: To examine the association of metabochip variants with ALP, ALT, AST, GGT, Bilirubin and Albumin to determine whether these replicate published genome‐wide association (GWAS) findings and to identify any new variants robustly associated with these traits. To use Mendelian randomization study to test whether ALT, AST, ALP, GGT, Bilirubin and Albumin (markers of liver damage) causally influence CHD, stroke, type 2 diabetes and related continuos outcomes ‐ fasting glucose, fasting insulin, LDL, HDL, triglycerides, total cholesterol, SBP and DBP. Methods: We carried out metabochip‐wide meta‐analyses of ALT, AST, ALP, GGT, Bilirubin and Albumin to identify any novel variants associated with these traits. We then tested multiple common variants robustly associated with ALT, AST, ALP GGT, Bilirubin and Albumin (3, 2, 11, 17, 5, 5 SNPs respectively) against incident and prevalent diabetes, CHD, stroke events, and the related continuous outcomes in 5437 individuals from four prospective cohorts under the UCLEB consortium. Results: We replicated several previously established loci robustly associated with ALT, AST, ALP, GGT, Bilirubin and Albumin. In addition we identified two novel loci associated with ALP and AST in the ABO and PNPLA3 locus respectively at p<5x10‐8 . We now aim to replicate these two novel loci in an independent data set from the discovery cohort. In multivarable analyses adjusted for several potential confounders (i.e: smoking status, social class, alcohol, BMI and waist circumference) we replicated several observational associations reported previously. Indviduals carrying greater number of ALT, AST, ALP, GGT, Bilirubin and Albumin raising allles had increased levels of ALT, AST, ALP, GGT, Bilirubin and Albumin (p<0.001). There was evidence from instrumental variables analyses that ALT, AST GGT and Albumin causally reduce the risk of stroke: OR per log10 increase in ALT, AST, GGT was 0.04 [95%CI: 0.01, 0.11), 0.00 [95%CI: 00, 0.03], 0.21 [95%CI:0.10, 0.44] respectively and OR per one mg/dl increase in albumin was 0.45 [95%CI:0.35,0.58]. Conclusion: Markers of liver damage in particualr ALT, AST GGT and Albumin may causally influence the risk of stroke. Categories: Association: Genome‐wide, Cardiovascular Disease and Hypertension, Causation, Mendelian Randomisation P 60 Variableselectionmethodforcomplexgeneticeffectmodelsusing RandomForests Emily R Holzinger1, Silke Szymczak1, James Malley2, Joan E Bailey‐Wilson1 1 Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health 2 Center for Information Technology, National Institutes of Health Standard analysis methods for genome wide association studies (GWAS) are not robust to complex disease models, such as interactions between variables with small main effects. These types of effects could, in part, contribute to the heritability of complex human traits. Machine learning methods that are capable of identifying interactions, such as Random Forests (RF), are an alternative analysis approach. One caveat to RF is that there is no clear way to distinguish between probable true hits and noise variables based on the importance metric calculated. To this end, we have developed a novel variable selection method for RF that has three components: 1. A permutation procedure to calculate the RF importance score. 2. Null variance estimation method to create more meaningful thresholds for variable selection. 3. Recurrency to address noise in the results due to randomness of the method. First, we simulated datasets with various genetic models, including different levels of main and interaction effects. Next, we assessed the Type I error and power of the RF method and compared it to regression based methods. We further tested the performance of the variable selection method using a biological GWAS dataset. Our simulated data findings indicate that optimizing the selection threshold can greatly reduce the number of false positives in the selected variables. However, the optimal threshold is highly dependent on the underlying simulated genetic model. The recurrency aspect of the method assists in selecting the appropriate threshold. Additionally, the power to identify main effects is comparable to linear regression analyses with the correct main effect terms explicitly modeled. In the biological dataset, our method identifies a similar set of SNPs as linear regression. Future directions will involve testing and comparing methods for modeling the selected variables in a more interpretable fashion. Categories: Association: Genome‐wide, Bioinformatics, Data Mining, Gene ‐ Gene Interaction, Machine Learning Tools P 61 Identificationofsharedgeneticaetiologybetweenepidemiologically linkeddisorderswithanapplicationtoobesityandosteoarthritis Jennifer L Asimit1, Kalliope Panoutsopoulou1, Eleanor Wheeler1, Sonja Berndt2, the GIANT consortium, the arcOGEN consortium, Andrew P Morris3,4, Inés Barroso1, Eleftheria Zeggini1 1 Wellcome Trust Sanger Institute National Cancer Institute, US National Institutes of Health 3 Wellcome Trust Centre for Human Genetics, University of Oxford 4 Department of Biostatistics, University of Liverpool 2 A common approach to a genetic overlap analysis of two traits involves comparing p‐values from the genome‐wide association study (GWAS) of each trait. However, p‐values do not account for differences in power, whereas Bayes’ factors do, and may be approximated using summary statistics. We use simulation studies to compare the power of frequentist and Bayesian approaches to overlap analyses, and to decide on thresholds for comparison between the two methods. It is empirically illustrated in single‐disease associations that BFs have a decreasing proportion of false positives (PFP) as study size increases. For a log10(BF) threshold Lq of 1.69 (R=type II error cost/type I error cost=2, p0 = Pr(no association at SNP)=0.99), the PFP decreases from 7.38×10‐4 (N=2,000 each cases/controls) to 3.37×10‐4 (N=20,000), while for p‐values the PFP fluctuates near the p‐value threshold a regardless of study size. In a preliminary overlap analysis of obesity (GIANT consortium) with OA (arcOGEN consortium), the number of signals is similar at comparable threshold levels between BFs and p‐values, though not always overlapping. For Lq=0.91 (R=type II error cost/type I error cost=12, p0=Pr(no association at variant)=0.99), there are 18 identified shared variants, and the comparable a levels of 0.003 and 0.004 result in 15 and 28 hits, respectively. The most notable difference is that the Bayesian list contains rs13107325 (in SLC39A8/ZIP8), a variant previously associated with obesity‐related phenotypes such as BMI and blood pressure, and animal studies have shown that the zinc‐ZIP8‐MTF1 axis regulates OA pathogenesis. We are pursuing replication of this finding. Categories: Association: Genome‐wide P 62 Investigationofgeneticriskfactorsofverylowbirthweightinfants withintheGermanNeonatalNetwork Michael Preuß 1,3, Andreas Ziegler1,2, Egbert Herting3, Wolfgang Göpel3 1 Institute of Medical Biometry and Statistics, University at Lübeck, University Hospital Schleswig‐Holstein ‐ Campus Lübeck, Germany; 2 Center for Clinical Trials, University at Lübeck, Lübeck, Germany 3 Department of Pediatrics, University at Lübeck, Lübeck, Germany Very Low Birth Weight (VLBW) infants have substantially increased mortality and morbidity rates, but the factors influencing long‐term development are not well understood. The German Neonatal Network (GNN) was founded in 2009 to identify genetic, clinical and social factors influencing etiology and long‐ term development of VLBW. Clinical information includes oxygen demand, administration of surfactant, catecholamine, steroid hormones and bronchopulmonary dysplasia (BPD), brain haemorrhage (IVH), sepsis and death among others. The cohort size is 20,000, and the recruitment includes more than one quarter of all German VLBW per year. DNA samples from more than 9000 VLBW as well as buccal swabs from mothers have been collected from a total of 54 participating German hospitals. Approximately 2600 VLBW from GNN were genotyped on the Axiom™ Genome‐Wide CEU 1 Array, and replication was performed in another 4400 GNN VLBW. Results of the initial genome‐wide association study revealed genome‐wide significance (p <5E‐08) for several traits. An interesting finding is for the use of surfactant during hospital stay with an association to LINGO2 (lead SNP rs4878404, initial p = 5E‐06, replication one‐ sided p = 2.3E‐03). These results demonstrate that GNN is a unique resource for genetic and pharmacogenetic studies in VLBW. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls P 63 Artificialintelligenceanalysisofepistasisinagenome‐wideassociation studyofglaucoma Jason H Moore1, Casey S Greene1, Doug Hill1 1 Dartmouth College The genetic basis of primary open‐angle glaucoma (POAG) is not yet understood but is likely the result of many interacting genetic variants that influence risk in the context of our local ecology. We introduce here the Exploratory Modeling for Extracting Relationships using Genetic and Evolutionary Navigation Techniques (EMERGENT) algorithm as an artificial intelligence approach to the genetic analysis of common human diseases. EMERGENT builds models of genetic variation from lists of mathematical functions using a form of genetic programming called computational evolution. A key feature of the system is the ability to utilize pre‐processed expert knowledge giving it the ability to explore model space much as a human would. We describe this system in detail and then apply it to the genetic analysis of POAG in the Glaucoma Gene Environment Initiative (GLAUGEN) study that included approximately 1272 cases and 1057 controls. A total of 657,366 single‐nucleotide polymorphisms (SNPs) from across the human genome were measured in these subjects. Analysis using the EMERGENT framework revealed a best model consisting of six SNPs that map to at least six different genes. Two of these genes have previously been associated with POAG in several studies. The others represent new hypotheses about the genetic basis of POAG. All of the SNPs are involved in non‐additive gene‐gene interactions. Further, the six genes are all directly or indirectly related through biological interactions to the vascular endothelial growth factor (VEGF) gene that is an actively investigated drug target for POAG. This study demonstrates the routine application of an artificial intelligence‐based system for the genetic analysis of complex human diseases. Categories: Association: Genome‐wide, Bioinformatics, Data Mining, Gene ‐ Gene Interaction, Machine Learning Tools P 64 Mutationscausingcomplexdiseasemayundercertaincircumstancesbe protectiveinanepidemiologicalsense Sabine Siegert1, Andreas Wolf2, David N Cooper3, Michael Krawczak2, Michael Nothnagel1 1 Cologne Center for Genomics, University of Cologne, Cologne, Germany Institute of Medical Informatics and Statistics, Christian‐Albrechts University, Kiel, Germany 3 Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom 2 Guided by the practice of classical epidemiology, research into the genetic basis of complex disease usually takes for granted the dictum that causative mutations are invariably over‐represented among affected as compared to unaffected individuals. However, employing various models of population history and penetrance, we show that this supposition is not true and that a mutation involved in the etiology of a complex disease can under certain circumstances be depleted rather than enriched in the affected portion of the population. Such mutations are ‘protective’ in an epidemiological sense and would often tend to be erroneously excluded from further studies. Our apparently paradoxical finding is due to the possibility of a negative correlation between complementary causative mutations that may arise as a consequence of the specifics of the population genealogy. This phenomenon also has the potential to hamper efforts to identify rare causative mutations through whole‐genome sequencing. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls P 65 Genome‐wideAssociationStudyIdentifiesSNPrs17180299andMultiple HaplotypesonCYP2B6,SPON1andGSG1LAssociatedwithPlasma ConcentrationsoftheMethadoneR‐andS‐enantiomerinHeroin‐ dependentPatientsunderMethadoneMaintenanceTreatment Hsin‐Chou Yang1,2,3, Shih‐Kai Chu1,2,4, Sheng‐Chang Wang5, Sheng‐Wen Liu5, Ing‐Kang Ho5, Hsiang‐Wei Kuo5, Yu‐Li Liu5,6 1 Institute of Statistical Science, Academia Sinica Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica 3 School of Public Health, National Defense Medical Center 4 Institute of Biomedical Informatics, National Yang‐Ming University 5 Center for the Neuropsychiatric Research, National Health Research Institutes 6 Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine 2 Although methadone metabolic pathway has been partially revealed there is still no report regarding genome‐wide association studies to characterize genetic mechanisms of the plasma concentrations of methadone R‐ and S‐enantiomer. We conducted the first genome‐wide association study to identify genes associated with the plasma concentrations of methadone R‐ and S‐enantiomer and their metabolites in a methadone maintenance cohort. We made a series of rigorous examinations in data quality control to remove poor samples and SNPs. We carried out genome‐wide single‐locus and haplotype‐based association tests for four quantitative traits, the plasma concentrations of methadone R‐ and S‐enantiomer and their metabolites, of 344 heroin‐dependent patients who were treated with methadone maintenance treatment in the Han Chinese population of Taiwan. We identified a significant SNP rs17180299 (p = 2.24×10‐8) which can explain 9.541% of the variation of the plasma concentration of methadone R‐enantiomer. We also identified 17 haplotypes on SPON1, GSG1L, and CYP450 genes associated with the plasma concentration of methadone S‐enantiomer. They can explain about one‐ fourth of variation of the plasma concentration of S‐methadone as a whole, where two significant haplotypes on CYP2B6 already explained 10.72% of the variation. In conclusion, we identified important SNP and haplotypes which contribute to genetic variation of plasma concentration.The results shed light on the genetic mechanism concerned with the metabolism of methadone maintenance treatment in heroin‐dependent patients. Moreover, the results are also potentially applicable to prediction of methadone dose and methadone‐related death. Categories: Association: Genome‐wide, Haplotype Analysis, Quantitative Trait Analysis P 66 Anonparametricregressionapproachtotheanalysisofgenomewide associationstudies Pianpool Kirdwichai1, M Fazil Baksh1 1 University of Reading Recently there has been a move towards development of regression inspired methods for analysis of genomewide association studies of complex diseases. This is because multiple testing methods, such as Bonferroni correction, tend to impose stringent significance thresholds and consequently, unless the study is very large, can reliably identify only those genomic regions with very strong association signals. However many complex diseases are suspected result from the cumulative action of many loci each having a small effect, there is a high probability the association signals in such studies will in fact be moderate and extremely strong signals will be very rare. Although methods with higher power than the Bonferroni correction have been proposed, these tend to produce more false positive findings. This challenging problem of methodology that is more efficient than existing approaches but with false positive findings comparable with Bonferroni is addressed in this talk. A novel method based on nonparametric regression, capable of reliably identifying candidate regions of disease‐gene association in GWAS is developed and evaluated. The method is model‐free and establishes significance thresholds that inherently account for the LD structure in the data through a tuning parameter and assigned weights. A theoretically supported, computationally efficient method for obtaining the optimal tuning parameter is proposed and evaluated. Results of extensive evaluations and comparisons with existing methods show that the proposed approach is not only powerful but also lead to substantial reduction in false positive findings. The method is illustrated using data from the Wellcome Trust Case Control Consortium study of Crohn's disease. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls P 67 Geneticinsightsintoprimarybiliarycirrhosis–aninternational collaborativemeta‐analysisandreplicationstudy Heather J Cordell1, George Mells2, Gideon M Hirschfield3, Canadian/US/Italian/UK PBC Consortia, Carl Anderson4, Mike Seldin5, Richard Sandford2, Katherine A Siminovitch6 1 Newcastle University University of Cambridge 3 University of Birmingham 4 Wellcome Trust Sanger Institute 5 UC Davis 6 University of Toronto 2 Previous genome‐wide association studies (GWAS) of primary biliary cirrhosis (PBC) have confirmed associations at the human leukocyte antigen (HLA)‐region and identified 27 non‐HLA susceptibility loci. We undertook genome‐wide imputation and meta‐analysis of discovery datasets from the North American, the Italian and the UK GWAS of PBC, with a combined, post‐QC sample size of 2745 cases and 9802 controls. Following meta‐analysis, index single nucleotide polymorphisms (SNPs) at selected loci with PGWMA<2×10‐5 were genotyped in a validation cohort consisting of 3716 cases and 4261 controls. To prioritise candidate variants and genes at confirmed risk loci, we used the ENCODE and the 1000Genomes datasets to identify SNPs within regulatory elements and non‐synonymous SNPs in LD with the index variant (r2>0.8). We identified seven previously unknown risk loci for PBC. Functional annotation of these loci revealed SNPs within regulatory elements that are predicted to affect expression of DGKQ (4p16), PAM (5q14) and IL21R (16p12), that are strongly‐correlated to the index variant. Other candidate genes include IL12B (5q31), which forms part of the IL‐12 signalling cascade, and CCL20 (2q36), which is involved in chemo‐attraction of lymphocytes and dendritic cells towards epithelia and is expressed by TH17 cells originating from Foxp3+ T cells. Pathway analysis identified several highly plausible gene sets associated with PBC, including the IL‐12 and JAK‐STAT signalling pathways, and implicated several other immune processes in the pathogenesis of PBC, including innate immune processes (e.g. IFN‐α,β signaling). Categories: Association: Genome‐wide P 68 GenesAssociatedwithLungCancer,ChronicObstructivePulmonary Disease,orBoth Jun She1,2, Bo Deng1,3, Jie Na1, Julie M Cunningham1, Zhifu Sun1, Jason A Wampfler1, Tanya M Petterson1, Paul D Scanlon1, Shuo Zhang1,4, Christine Wendt5 1 Mayo Clinic, MN, U.S.A. Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China 3 Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China 4 Tulane University, New Orleans, LA 5 University of Minnesota and Veterans Administration Medical Center, Minneapolis, MN, U.S.A. 2 Background Genetic contribution to lung cancer (LC) or chronic obstructive pulmonary disease (COPD) remains unclear; COPD is considered an important LC precursor independent of tobacco smoke exposure. Over 300 candidate genes have been associated with COPD and/or LC. We conducted a comprehensive validation study to tease apart these candidate genes using genome‐wide single nucleotide polymorphism based analysis (SNP‐GWA) in a Caucasian population. Methods We tested 4491 SNPs in 304 candidate genes after redundancy analysis of linkage disequilibrium. The SNP‐GWA data that tested the association of these genes with LC and/or COPD consisted of 2484 subjects including LC only (n=612), LC and COPD (573), COPD only (537), and controls (762). The biological roles were elucidated by transcript expression quantitative trait loci (eQTL), differential mRNA expression between tumor and normal lung, and pathway analyses, along with allele‐specific risks, assessed by odds ratio (OR) and 95% confidence interval (CI). Results We validated 11 SNPs of 8 candidate genes (G1‐G8): 4 for LC with COPD (G1‐G4), 4 for LC from COPD (G1,2,5,6), 2 for COPD only (G1,7) and 1 for LC only (G8). A SNP in G1 was inversely associated with COPD without LC (OR=0.47; 95% CI, 0.31‐0.72) or with LC (OR=0.40; 0.27‐0.60), supported by eQTL of SNP‐alleletypes with mRNA levels in germline tissues (P=0.02) and differential expression of G1 (P<10‐5). A SNP in G2 was inversely associated with LC that developed from COPD patients (OR=1.65; 1.17‐1.78), with significant difference of G2 transcript levels in tumor and normal lung tissues (P=0.01). Conclusion We found 2 genes to be strongly associated with the risk of COPD and/or LC, indicating potential targets to intervene COPD and LC. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls, Cancer, Genomic Variation, Multifactorial Diseases, Pathways, Quantitative Trait Analysis P 69 Ageneralapproachforcombiningdiverserarevariantassociationtests providesimprovedpoweracrossawiderrangeofgeneticarchitecture Nathan L Tintle1, Brian Greco2, Allison Hainline3, Jaron Arbet4, Kelsey Grinde5, Alejandra Benitez6 1 Dordt College University of Michigan 3 Vanderbilt University 4 Winona State University 5 St. Olaf College 6 Brown University 2 In the wake of the widespread availability of genome sequencing data made possible by way of next‐ generation technologies, a flood of gene‐based rare variant tests have been proposed. Most methods claim superior power against particular genetic architectures. However, an important practical issue remains for the applied researcher—namely, which test should be used for a particular association study which may consider multiple genes and/or multiple phenotypes. Recently, tests have been proposed which combine individual tests to minimize power loss while improving the robustness to a wide range of genetic architectures. In our analysis, we propose an expansion of these approaches, by providing a general method that works for combining an arbitrarily large number of any gene‐based rare variant test—a flexibility typically not available in other combined testing methods. We provide a theoretical framework for evaluating our combined test to provide direct insights into the relationship between test‐test correlation, test power and the combined test power relative to individual testing approaches and other combined testing approaches. We demonstrate that our flexible combined testing method can provide improved power and robustness against a wide range of genetic architectures. We further demonstrate the performance of our combined test on simulated genotypes, as well as on a dataset of real genotypes with simulated phenotypes. We support the increased use of flexible combined tests in practice to maximize robustness of rare‐variant testing strategies against a wide‐range of genetic architectures. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls, Case‐Control Studies, Genomic Variation P 70 AMethodologicalComparisonofEpistasisModelingofHighOrderGene‐ GeneInteractionswithApplicationtoGeneticProfilingofPAInfection amongCysticFibrosisPatients Wenjiang Fu1, Mengtian Shen1, Shunjie Guan1 1 Michigan State University Recent studies of epistasis have been focusing on high order gene‐gene interactions, including the classification and regression trees (CART)‐based methods, the Mann‐Whitney U‐statistic methods, Bayesian epistasis association mapping (BEAM), gene‐based gene‐gene interaction tests, and gene‐based Multifactor dimensionality reduction (MDR). These methods have been developed to identify gene‐gene interactions in GWA studies of complex diseases and have been demonstrated to identify potential high order interactions. However, comparison of these methods and their computational capacity has not been fully studied. In this paper, we will compare these methods and apply them to an exome sequencing study of cystic fibrosis (CF). Although CF is a recessive Mendelian disease with a mutation in the CFTR gene, the disease manifestation is complex with the potential dysfunction of a number of organs and high mortality rate in early ages. About 80% CF patients develop pseudomonas aeruginosa (PA) infection, which leads to failure of the lung, liver, pancreas, intestine or other organs, resulting in breathing difficulty, CF associated liver diseases, diabetes, male infertility, and other disorders, and ultimate death in early age. It has been recently reported that genes (eg. DCTN4) other than the CFTR may also be associated with the PA infection among CF patients. We apply a number of methods to identify high order gene‐gene interactions for genetic profiling of PA infection using exome sequencing data of a case‐control study. We compare these methods in terms of the power, the profiling robustness and accuracy. We conclude that PA infection among CF patients can be profiled using a small number of genes with high accuracy. Categories: Association: Genome‐wide, Association: Unrelated Cases‐Controls, Bioinformatics, Case‐ Control Studies, Gene ‐ Gene Interaction, Sequencing Data P 71 eQTLandpathwayanalysisonexpressionprofilesofacattlecross Markus O Scheinhardt1, Bodo Brand2, Daisy Zimmer3, Norbert Reinsch3, Manfred Schwerin1,4, Andreas Ziegler1,5 1 Institute of Medical Biometry and Statistics, University Lübeck, Germany Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany 3 Institute for Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany 4 Institute for Farm Animal Research and Technology, University Rostock, Germany 5 Center for Clinical Trials Lübeck, University Lübeck, Germany 2 In farm animal science, mapping of expression quantitative trait loci (eQTL) becomes increasingly important for studying molecular mechanisms of complex traits, such as milk production or carcass traits in cattle. We investigated 145 female animals from an F2 resource population derived from a cross between Charolais (beef cattle) and German Holstein (dairy cattle) founder breeds. SNP genotyping of 37204 SNP was accomplished using Illumina BovineSNP50 Beadchip, and gene expression profiles of 10069 adrenal cortex transcripts were obtained from Affymetrix GeneChip®Bovine v1 Array. The expression values were decorrelated by means of a sire‐dam model at which we adjusted for relatedness, age and season year of slaughtering. Residuals were used to perform the eQTL analysis. An adaptive location test was applied to adjust for varying degrees of skewness and tail length of the gene expression distributions. A total of 1048 eQTLs were identified which were associated with the expression of 641 adrenal cortex transcripts. Ingenuity pathway analysis of transcripts differentially expressed among genotypes highlighted molecular and cellular functions related to carbohydrate and lipid metabolism to be affected by eQTLs within the F2 cross population. Categories: Association: Genome‐wide, Gene Expression Arrays, Gene Expression Patterns, Pathways, Quantitative Trait Analysis P 72 Evidenceforpolygeniceffectsintwogenome‐wideassociationstudiesof breastcancerusinggeneticallyenrichedcases Olivia Leavy1, Luigi Palla1, Julian Peto1, Douglas Easton2, Frank Dudbridge1 1 London School of Hygiene and Tropical Medicine University of Cambridge 2 Over recent years genome‐wide association studies have proven to be successful in finding associations between genetic variants and phenotypes. However, much of the heritability remains to be explained for complex diseases. Polygenic scoring allows testing for substantive polygenic effects among the markers that are not individually significant in GWAS. This has been successfully applied to many complex diseases, but to date has not been demonstrated in breast cancer. We studied two datasets: the UK2 study and the British Breast Cancer Study (BBCS), both containing women who have at least two close relatives that have developed breast cancer. In the BBCS dataset most of the cases have bilateral breast cancer. The disease prevalence applicable to these studies therefore will be lower than the general prevalence for breast cancer. Methods given by Dudbridge (2013) can be used to estimate the genetic variance explained by the entire GWAS using information on training and replication datasets. The training and replication datasets were created by internally splitting each of the BBCS and UK2 datasets. Using different values of the prevalence for familial breast cancer, these being lower than the prevalence of breast cancer, we estimated the genetic variance explained to be between 11.5% and 47.3% for the BBCS and at least 35.5% for the UK2 study. Given the low heritability of breast cancer, these values are larger than typically seen in complex diseases and seem to reflect the stronger genetic effects present in familial cases. This is the first significant association of genome‐wide polygenic scores for breast cancer and confirms the value of using genetically enriched cases in GWAS. Categories: Association: Genome‐wide, Cancer P 73 DoBoundariesMatterforTiledRegression? Alexa JM Sorant1, Heejong Sung1, Tae‐Hwi Schwantes‐An1, Alexander F Wilson1 1 Computational and Statistical Genomics Branch, NHGRI, NIH Current methods of analyzing today's vast quantities of genetic data include regression‐based variable selection methods producing linear models incorporating the chosen predictors. One such method, Tiled Regression, begins by considering separately relatively small segments of the genome called tiles, using stepwise regression to choose a set of independent significant SNPs, if any, within each tile and then combining them for further selection at higher levels. A natural way to define tiles is to create boundaries around recombination hotspots, so that genetic variants likely to be highly correlated due to linkage disequilibrium are initially considered together. However, such grouping may not be critical to the ultimate selection of genetic components of a trait model. To study the effects of alternative boundary definitions, we used a simulated mini‐GWAS genome including 306,097 SNPs in 4000 unrelated individuals, with two kinds of phenotypes generated for each. For examination of type I error we generated 2000 non‐genetic traits based on a normal distribution. For examination of power, we generated 2000 traits from a simple additive model of genetic effects contributed by 7 independent SNPs with locus‐specific heritabilities ranging from .0005 to .0108. We analyzed each trait with TRAP (v. 1.3) using several different tile boundary schemes, including the usual hotspot‐based definition, combining sets of ten consecutive tiles into larger tiles, and a definition based on a fixed length in base pairs corresponding to the average size of the original tiles. With analyses of 400 replicates completed, we observed virtually no difference in either type I error or power resulting from the different tile boundary definitions. Categories: Association: Genome‐wide, Multilocus Analysis, Prediction Modelling, Quantitative Trait Analysis P 74 METAINTER:meta‐analysistoolformultipleregressionmodels Tatsiana Vaitsiakhovich1, Dmitriy Drichel2, Christine Herold2, Andre Lacour2, Tim Becker2 1 Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn German Center for Neurodegenerative Diseases (DZNE), Bonn 2 The need to summarize the results of related Genome‐wide association studies (GWAS) has encouraged rapid development of new meta‐analytic methods and tools. Application of the fixed or random effects models to single‐marker association tests is a standard practice. More complex methods involving multiple parameters have been used seldom in view of the absence of a respective meta‐analysis pipeline. Meta‐analysis based on combining p‐values can be applied to any association test. However, in order to be powerful, meta‐analysis methods for high‐dimensional models should incorporate additional information such as study‐specific properties of parameter estimates, their effect directions, standard errors and covariance structure. In this context, a method for the synthesis of linear regression slopes (MSRS) has been recently proposed in the educational sciences. We elaborate this method for multiple logistic regression models and introduce a software tool METAINTER, which implements MSRS for an arbitrary number of model parameters as well as three further meta‐analysis methods. METAINTER provides meta‐analysis p‐values and common parameter estimates of multiple regression models, and can be used to test the homogeneity of studies results. The software can directly be applied to analyze the results of single‐SNP tests, global haplotype tests, tests for and under gene‐gene or gene‐ environment interaction. Via simulations for two‐SNP models we have shown that MSRS has correct type I error and its power comes very close to that of the joint analysis of the entire sample. We support the results by a real data analysis of six GWAS of type 2 Diabetes. Categories: Association: Genome‐wide, Case‐Control Studies, Data Integration, Gene ‐ Gene Interaction P 75 SuccessfulreplicationofGWAShitsformultiplesclerosisin10,000 Germansusingtheexomearray Theresa Holste1, Dorothea Buck2, Antonios Bayas3, Thomas Bettecken4, Andrew Chan5, Sabine Fleischer6, Andre Franke7, Ralf Gold5, Christiane Grätz8, Christoph Heesen6, Karl‐Heinz Jöckel9, Bernd C Kieseier10, Tania Kümpfel11, Wolfgang Lieb12, Markus M Nöthen13, Friedemann Paul14, Vilmos Posevitz15, Martin Stangel16, Konstantin Strauch17,18, Björn Tackenberg19, Florian T Bergh20, Hayrettin Tumani21, Melanie Waldenberger22,23, Frank Weber24, Brigitte Wildemann25, Uwe Zettl26, Frauke Zipp8, Bertram Müller‐ Myhsok24, Heinz Wiendl15, Bernhard Hemmer2, Andreas Ziegler1,27 on behalf of the German Competence Network for Multiple Sclerosis (KKNMS) 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig‐Holstein, Campus Lübeck, Lübeck, Germany 2 Klinikum rechts der Isar, Department of Neurology, Technische Universität München, Munich, Germany 3 Department of Neurology, Klinikum Augsburg, Augsburg, Germany 4 Max Planck Institute of Psychiatry, Munich, Germany 5 Neuroimmunologisches Labor, St. Josef‐Hospital, Universitätsklinikum der Ruhr‐Universität Bochum, Bochum, Germany 6 Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg‐Eppendorf, Hamburg, Germany 7 Institut für Klinische Molekularbiologie, Christian‐Albrechts‐Universität zu Kiel, Germany 8 Klinik und Poliklinik für Neurologie, Universitätsmedizin der Johannes Gutenberg‐Universität Mainz, Mainz, Germany 9 Institut für Medizinische Informatik, Biometrie und Epidemiologie, Universitätsklinikum Essen, Essen, Germany 10 Neurologische Klinik, Heinrich‐Heine Universität, Düsseldorf, Germany 11 Institut für Klinische Neuroimmunologie, Ludwig‐Maximilians‐Universität München, München, Germany 12 Institut für Epidemiologie and Biobank popgen, Christian‐Albrechts‐Universität zu Kiel, Germany 13 Institut für Humangenetik, Universitätsklinikum Bonn, Bonn, Germany 14 NeuroCure Clinical Research Center, Charité ‐ Universitätsmedizin Berlin, Germany 15 Klinik für Allgemeine Neurologie, Universiätsklinikum Münster, Münster, Germany 16 Klinik für Neurologie, Medizinische Hochschule Hannover, Hannover, Germany 17 Institute of Genetic Epidemiology, Helmholtz Zentrum München – German, Research Center for Environmental Health, Neuherberg, Germany 18 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig‐Maximilians‐ Universität, Munich, Germany 19 Klinik für Neurologie, Philipps‐Universität Marburg, Marburg, Germany 20 Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Germany 21 Klinik und Poliklinik für Neurologie der Universität Ulm, Ulm, Germany 22 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München ‐ German Research Center for Environmental Health, Neuherberg, Germany 23 Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany 24 Max‐Planck‐Institut für Psychiatrie, München, Germany 25 Neurologische Klinik, Universität Heidelberg, Heidelberg, Germany 26 Klinik für Neurologie und Poliklinik, Universitätsklinikum Rostock, Universität Rostock, Rostock, Germany 27 Zentrum für Klinische Studien, Universität zu Lübeck, Lübeck, Germany Background: Several genome‐wide association studies (GWAS) were conducted in the past few years to identify genetic variants associated with multiple sclerosis (MS). The objective of this study was the replication of observed findings using the exome array. Methods: 4,476 German MS cases and 5,714 German controls were genotyped using Illumina’s HumanExome v1‐Chip. Genotype calling was performed with Illumina’s Genome StudioTM Genotyping Module, followed by zCall. Results: Replication was successful for 9 regions beside the HLA region that are listed in the Catalog of Published Genome‐ Wide Association Studies as associated with MS. Criteria for replication were SNPs with p<10‐5 that were either identical to reported SNPs or in linkage disequilibrium with r2 > 0.8 to reported SNPs or were located in the reported gene. Many SNPs in various HLA genes reached genome‐wide significance (p<5x10‐8). Collapsing methods for rare variants gave similar results. Overall, replication of reported findings was possible using the exome array. One association identified in this study was not reported before in any previous GWAS. Specifically, we found genome‐wide significance to the gene MMEL1 which was found to be associated with MS in a candidate gene study by Ban (2010 Genes Immun 11:660‐ 4) and SNPs in the vicinity (145 kb) to MMEL1 were identified by Sawcer (2011 Nature 476:214‐9). Conclusion: In this study, findings of previous GWAS could be replicated in a large German consortium using the exome array. This is especially important because the German population shows only low levels of population substructure and is therefore well suited for the investigation of complex diseases. Categories: Association: Genome‐wide P 76 SharedGeneticEffectsUnderlyingAgeatMenarche,AgeatNatural MenopauseandBloodPressure Erin K Wagner1, Jin Xia1, Yi‐Hsiang Hsu2, Chunyan He1 1 Indiana University Richard M. Fairbanks School of Public Health Harvard Medical School 2 Age at menarche (AM) and age at natural menopause (ANM) are both associated with the risk of cardiovascular disease and its risk factors including blood pressure (BP). BP is known to increase rapidly during puberty, and early menarche is associated with elevated BP in adolescent and adulthood. BP is also known to increase more steeply around age at menopause. Earlier menopause is associated with higher blood pressure, although it is still unclear whether menopause accelerates BP increase or increased BP leads to earlier menopause. The observed synchronization between reproductive aging and BP development raises questions about the possibility of common regulating mechanisms shared by these processes. Using data from genome‐wide association studies, we performed a bivariate meta‐ analysis of these traits to identify genes with pleiotropic effects for AM, ANM and BP. We identified 6 novel loci at or near ARNTL (11p15.2), FTO (16q12.2), DCAKD (17q21.31), ZNF652 (17q21.32), 14q32.2 and 20q13.32 (intergenic regions) were associated with AM and BP (P<5X10‐8). For the bivariate analysis for ANM and BP, we found multiple variants within 200kb region at the 6p21.33 locus were significantly associated with ANM and BP. This region harbors genes including PRRC2A, BAG6, DDAH2, VW7, and HSPA1B. Our results suggest shared genetic effects for AM, ANM and BP. The findings may help improve the understanding of the genetic architecture and molecular mechanisms underlying these traits. Categories: Association: Genome‐wide, Multivariate Phenotypes P 77 IdentificationofcombinedCommon‐andRare‐Geneticvariances associatedwithrenalfunctioninHanChinese Guanjie Chen1, Zhenjian Zhang2, Adebowale Adeyemo1, Yanxun Zhou2, Ayo Doumatey1, Guozheng Liu2, Amy Bentley1, Daniel Shriner1, Congqing Jiang2, Charles N Rotimi1 1 Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA 2 Suizhou Central hospital, Suizhou, Hubei, China The public health burden of Chronic Kidney Disease (CKD) is increasing in developing countries including China with an overall prevalence of 10.8% defined as eGFR less than 60 mL/min per 1∙73 m² or presence of albuminuria; thus, about 120 million Chinese have CKD. Both genetic and non‐genetic factors including economic status, area of residence, age, hypertension, diabetes and history of CVD contribute to the development of CKD. Here, we investigate the contribution of rare and common exonic variants to susceptibility to CKD by analyzing exome array data in 991 Han Chinese genotyped with the Affymetrix Axiom Exome Genotyping Arrays. A total of 64,397 SNPs that passed QC filters with minor allele count ≥ 5 within 17,266 gene sets were carried forward for analysis; 6,649 gene sets had common variants only (8802 SNPs), 8802 gene sets had both common and rare variants, and 1815 gene sets had only rare variants. Common variants analysis was implemented in PLINK assumed additive genetic model. The common and rare gene sets analysis was implemented in the Simultaneous Analyses of Common and Rare Variants in complex traits (SCARVAsnp) statistical package. Analyses were adjusted for age, sex, BMI, and hypertension status. We identified significant associations (pvalue<2.57×10‐6) in DIDO1, MOG, and GAB2, and suggestive significant association (pvalue<2.57x10‐5) in DNAH5, LAMC3, and TRAP1 with observed the lowest p value of 3.6×10‐10. We replicated seven of the sixteen and six of the ten genes reported to be associated with renal disease respectively in European and Chinese ancestry studies. These findings promise to provide novel insight into the genetic basis of CKD in Chinese and perhaps other human populations Categories: Association: Genome‐wide, Multilocus Analysis P 78 Pathwayandgene‐geneinteractionanalysisrevealsnewcandidategenes formelanoma Myriam Brossard1, Shenying Fang2, Amaury Vaysse1, Qingyi Wei3, Hamida Mohamdi1, Marie‐Françoise Avril4, Mark Lathrop5, Jeffrey E Lee2, Christopher I Amos6, Florence Demenais1 1 INSERM, UMR‐946, Paris, France; Université Paris Diderot, Paris, France MD Anderson Cancer Center, Houston, Texas, USA 3 Department of Medicine, Duke University School of Medicine, Durham, USA 4 Hôpital Cochin, Université Paris Descartes, Paris, France 5 Genome Quebec Innovation Centre, McGill University, Montreal, Canada 6 Geisel College of Medicine, Dartmouth College, New Hampshire, USA 2 GWAS have identified 17 loci associated with melanoma, but these loci account for a small part of melanoma risk. These GWAS used single‐SNP analysis which may be underpowered to detect SNPs with small effect and/or interacting with other SNPs. To identify new candidate genes for melanoma risk, we combined pathway analysis and tests of gene‐gene interactions within melanoma‐associated pathways. Pathway analysis was based on the gene‐set enrichment analysis (GSEA) approach, using the Gene Ontology (GO) database. GSEA was applied to single‐SNP statistics obtained from melanoma GWAS of the MELARISK study (3,976 subjects) and MDACC study (2,827 subjects). To identify GO categories enriched in association signals, the false discovery rate (FDR) was computed using 100,000 SNP permutations. We tested all SNP‐SNP interactions within the identified GOs using INTERSNP. One million Hapmap3‐imputed SNPs were assigned to 22,000 genes, which were assigned to 316 Level 4‐GO categories. We identified 5 GOs with FDR≤5% in the two studies: response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. A total of 110 genes were driving the enrichment signals in these GOs. Nine of these genes were found to occur frequently with melanoma‐related terms through PubMed mining, of which 5 are new candidates for melanoma risk (TP63, MAPK1, IL6, IL15, NDUFA2). Gene‐gene interaction analysis within each of the 5 identified GOs showed evidence for interaction for 4 SNP pairs (P≤10‐4 in MELARISK and replication at 5% in MDACC). Two of these pairs, CMTM7‐TNFSF4 (combined P=3x10‐7) and TERF1‐AFAP1L2 (combined P=2x10‐6), are biologically relevant. Funding: INCa_5982, LNCC, FRM Categories: Association: Genome‐wide, Cancer, Gene ‐ Gene Interaction, Multilocus Analysis, Pathways P 79 Leveragingevolutionarilyconserved,celltype‐specific,regulatoryregion datatodetectnovelSNP‐TFPIassociations Jessica Dennis1, Alejandra Medina‐Rivera2, Vinh Truong1, Lina Antounians2, Pierre Morange3, David Trégouët4, Michael Wilson2, France Gagnon1 1 Dalla Lana School of Public Health, University of Toronto, Canada Genetics & Genome Biology Program, SickKids Research Institute, Toronto, Canada 3 Faculty of Medicine, University of the Mediterranean, Marseille, France 4 Université Pierre et Marie Curie, Paris, France 2 Low plasma levels of tissue factor pathway inhibitor (TFPI), a key regulator of the extrinsic coagulation cascade, increase the risk of venous and arterial thrombosis. TFPI plasma levels are highly heritable, but the genetics underlying this heritability are poorly understood. Genetic variants in evolutionarily conserved, cell type‐specific gene regulatory regions are important to complex traits. Incorporating this information in genome‐wide association studies (GWAS) may increase power. We experimentally ascertained regulatory regions in human and rat aortic endothelial cells (EC; a primary source of TFPI) using ChIP‐seq for epigenetic histone modifications and transcription factors. We then conducted a GWAS of SNPs associated with TFPI in 253 individuals from 5 French‐Canadian families ascertained on venous thrombosis (VT), prioritizing SNPs in these regulatory regions via stratified false discovery rate (sFDR) control. We tested SNPs with sFDR <0.25 for replication in 1170 French VT patients and, in both study samples, tested the significance of our prioritization scheme by comparing the median t‐statistic of prioritized SNPs and SNPs selected from comparable random regions. None of the 39 SNPs associated with TFPI in the discovery sample replicated at an FDR <0.05. Although our prioritization scheme did not help identify TFPI‐associated SNPs, defining novel approaches sFDR approaches is of great interest. Since TFPI is up‐regulated in inflamed vascular EC, we will next prioritize SNPs in experimentally determined inflammation‐specific vascular EC genes and their regulatory regions. Categories: Association: Genome‐wide, Bioinformatics, Data Integration, Epigenetic Data, Epigenetics, Sequencing Data P 80 Asoftwarepackageforgenome‐wideassociationstudieswithRandom SurvivalForests Marvin N Wright1, Andreas Ziegler1,2 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig‐Holstein, Campus Lübeck, Germany 2 Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig‐Holstein, Campus Lübeck, Germany In recent years, Random Forests have been successfully used to analyze genome‐wide association studies (GWAS) with dichotomous and quantitative endpoints. For censored survival endpoints software is available, namely Random Survival Forests and Conditional Inference Forests. However, due to computational burdens and memory issues, these tools are not capable of handling high‐dimensional data on GWAS scale. Consequently, we are not aware of any study applying one of them to genome‐wide data. We therefore introduce the new software package Random Jungle 3, which embeds the functionality of Random Survival Forests into the computationally efficient framework of Random Jungle. Compared to the original implementation, the runtime is reduced considerably, making the analysis of GWAS data possible. We validate the new software in extensive simulation studies. Finally, we apply it to a real dataset to assess the importance of involved single nucleotide polymorphisms (SNPs). Categories: Association: Genome‐wide, Bioinformatics, Data Mining, Machine Learning Tools P 81 Identificationofnovelcommonandraregeneticvariantsassociatedwith renalfunctioninHanChinese Guanjie CHEN1, Zhenjian Zhang2, Adebowale Adeyemo1, Yanxun Zhou2, Ayo Doumatey1, Jie ZHOU1, Amy Bentley1, Daniel Shriner1, Charles Rotimi1 1 Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA 2 Suizhou Central hospital, Suizhou, Hubei, China The public health burden of CKD is increasing in developing countries including China with an overall prevalence of 10.8% defined as eGFR less than 60 mL/min per 1∙73 m² or presence of albuminuria; thus, about 120 million Chinese have CKD. Both genetic and non‐genetic factors including economic status, area of residence, age, hypertension, diabetes and history of CVD contribute to the development of CKD. Here, we investigate the contribution of rare and common exonic variants to susceptibility to CKD by analyzing exome array data in 991 Han Chinese genotyped with the Affymetrix Axiom Exome Genotyping Arrays. A total of 64,397 SNPs that passed QC filters with minor allele count ≥ 5 within 17,266 gene sets were carried forward for analysis; 6,649 gene sets had common variants only, 8802 gene sets had both common and rare variants, and 1815 gene sets had only rare variants. Common variants analysis was implemented in PLINK assumed additive genetic model. The common and rare gene sets analysis was implemented in the Simultaneous Analyses of Common and Rare Variants in complex traits (SCARVAsnp) statistical package. Analyses were adjusted for age, sex, BMI, and hypertension status. We identified significant associations (pvalue<2.57×10‐6) in DIDO1, MOG, and GAB2, and suggestive significant association (pvalue<2.57x10‐5) in DNAH5, LAMC3, and TRAP1 with observed lowest p value of 3.6 ×10‐ 10. We replicated seven of the sixteen and six of the ten genes reported to be associated with renal disease respectively in European and Chinese ancestry studies. These findings promise to provide novel insight into the genetic basis of CKD in Chinese and perhaps other human populations. Categories: Association: Genome‐wide, Multilocus Analysis P 82 AGenome‐WideAssociationStudytoExploreGene‐environment InteractionwithParentalSmokingandtheRiskofChildhoodAcute LymphocyticLeukemia Jessica L Barrington‐Trimis1 1 University of Southern California, Keck School of Medicine, Department of Preventive Medicine Genetic susceptibility to parental smoking around pregnancy and risk of childhood acute lymphocytic leukemia (ALL) has not been fully explored. In this analysis, we used novel methods to scan the genome for gene‐parental smoking interactions. Participants were Hispanic cases and controls participating in the California Childhood Leukemia Study. Cases (N=380) were <15 years of age at diagnosis, and controls (N=454) were matched to cases on date of birth, gender, and maternal race. Genome‐wide genotyping was conducted using DNA from archival dried blood spot samples using the Illumina Human OmniExpress v.1 platform. Data were evaluated for the presence of multiplicative gene‐parental smoking interaction using statistically efficient two‐step scanning methods. We sought to replicate our most significant SNPs in two case‐only studies of childhood ALL in France (ESCALE, n=441), and Australia (AUS‐ALL, n=285). We identified two SNPs for replication for maternal smoking prior to and during pregnancy. One SNP was statistically significant in the AUS‐ALL replication, with the strongest results for maternal smoking during pregnancy, restricting to B‐cell progenitor ALL (summary interaction OR [CCLS/AUS‐ALL] = 4.40; 95% CI: 2.53, 7.64). Genotyping data for this SNP was not available in the ESCALE study. A second SNP was suggestive of a potential interaction in the AUS‐ALL replication (P=0.078, B‐cell ALL), but not in the ESCALE study where the interaction OR was in the opposite direction. Results indicate potential novel susceptibility loci for maternal smoking during pregnancy and risk of B‐cell ALL. Additional studies should be conducted to confirm these results in larger study populations of similar ethnic background. Categories: Association: Genome‐wide, Cancer, Case‐Control Studies, Gene ‐ Environment Interaction P 83 Network‐basedanalysisofGWASdata:Doesthegene‐wiseassociation significancemodelingmatters? Julie HAMON1, Yannick ALLANORE2, Maria MARTINEZ1 1 INSERM UMR1043, Hôpital Purpan, Toulouse INSERM 1016, Hôpital Cochin, Paris 2 Integrating prior biological knowledge into Genome‐Wide Association data may unravel sets of genes having collectively or in interaction a role on the disease. Several network‐based approaches have been proposed depending on the type of known information that is used to combine the genes such as protein‐protein interaction (PPI) network or gene functions pathways. These studies rely on the association of each gene with the disease, i.e., on an individual Gene‐Wise P‐value (GWP) which can be derived under different alternatives. Here, we aim to compare such different strategies in our Systemic Sclerosis GWAS data. We built a two‐stage network study by randomly splitting our GWAS data into a scan and a replication dataset. In the scan dataset we performed a PPI network‐based approach using a dense module search strategy with different GWP values: for instance using the smallest single‐SNP P‐value either unadjusted (Min) or Bonferroni‐adjusted (Bonf) or using the Fisher’s method to combine all single‐SNP P values.The results were compared according to the length (number of genes) of the enriched sub‐modules and the characteristics of their genes. The top (5 and 10%) most enriched modules were tested for enrichment analysis in the replication dataset. We finally mapped the genes from the replicated sub‐networks to KEGG pathways. Overall, we found low consistency across the results from the different strategies: different sets of genes are selected but also different KEGG pathways are identified. Categories: Association: Genome‐wide, Gene ‐ Gene Interaction, Pathways P 84 Heritabilityestimatesandgeneticassociationfor60+complextraitsina younghealthysiblingcohort Jun Z Li1, Qianyi Ma1, Ayse B Ozel1, Karl C Desch2, David Ginsburg3 1 Department of Human Genetics, University of Michigan, Ann Arbor Department of Pediatrics and Communicable Disease, University of Michigan, Ann Arbor 3 Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan, Ann Arbor 2 As genotyping becomes more efficient, sample recruitment and phenotyping remain a major limiting factor. In a GWAS of bleeding and blood clotting traits we sought to increase the utility of the cohort by collecting > 60 self‐reported complex traits through web‐based questionnaires. The cohort of 1,191 healthy young subjects consists of 509 sibships, 80% Europeans, and age of 14‐35 yrs. The traits include 16 quantitative traits (e.g., weight, height, age of menarche, hematological measures RBC, HCT, MCV, MCH, MCHC, RDW, WBC, HGB, PLT, MPV), 21 ordinal traits (e.g., Smoking, BleedingTendency, SkinTags, Acne, TanningTendency, SkinColor, Freckles, DentalCaries, VisionCorrection, EatingSweets, EatingSaltyfood, Athleticability, Aphthousulcers), and 27 nominal traits (e.g., Immunization, ToothExtraction, EyeColor, HairColor, Hairline, EarLobeCreased, EarLobeAttachment, Dimples, Dyslexia, Migraines, Stuttering, Allergies, Flatfeet, Handedness, PhoticSneeze, BrainFreeze, InterlockingFingers, etc.). We used the known relatedness to estimate heritability using Merlin‐regress and found that >1/2 of the traits have H^2 > 40%. Since the samples have been genotyped over ~800K SNPs in the original GWAS we used SNP data to calculate the actual genetic relatedness, and estimated the variance explained by all the genotyped SNPs using GCTA. With all subjects, pedigree‐based estimates were similar to SNP‐based estimates; but the latter were often reduced when we select one subject from each sibship to analyze the unrelated subsets. For many traits we identified common variants of significant association. This study demonstrates the feasibility of simultaneous analysis of dozens of traits via web‐ based profiling. Categories: Association: Genome‐wide, Heritability, Multivariate Phenotypes, Quantitative Trait Analysis P 85 Large‐scaleexomechipgenotypingrevealsnovelcodingvariation associatedwithendometriosis Andrew P Morris1, Reedik Mägi2, Nilufer Rahmioglu3, Anubha Mahajan3, Neil Robertson3, Marie Peters4, Merli Saare4, Andres Salumets4, Krina T Zondervan3 1 Department of Biostatistics, University of Liverpool, Liverpool, UK Estonian Genome Centre, University of Tartu, Tartu, Estonia 3 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK 4 Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia 2 Genome‐wide association studies have identified nine loci harbouring common variants implicated in endometriosis, which together explain only ~3% of the heritability of the condition. To investigate the contribution of coding variation to endometriosis pathogenesis, we undertook genotyping with the Illumina Exome Chip of two studies of European ancestry: (i) 910 cases from the Oxford Endometriosis Gene study and 13,334 population controls from the UK Exome Chip Consortium; and (ii) 326 cases and 711 population controls from the Estonian Biobank. Within each study, we evaluated the association of endometriosis with: (i) individual coding variants; and (ii) burden/over‐dispersion of loss of function (all frequencies) and rare non‐synonymous (minor allele frequency [MAF] less than 1%) variants within genes using SKAT‐O. Association summary statistics were combined across studies by meta‐analysis. We conducted pathway analysis on the basis of single variant meta‐analysis summary statistics using MAGENTA. No individual coding variants achieved exome‐wide significant evidence of association (p<5x10‐7, Bonferroni correction for 100,000 variants). The strongest signals include missense variants in TAF1L (D141N, p=1.5x10‐5, MAF=0.077%) and BMP3 (Y67N, p=3.2x10‐5, MAF=2.7%). We observed exome‐wide significant evidence of association (p<2.5x10‐6, Bonferroni correction for 20,000 genes) with burden/over‐dispersion of loss of function variants in C16orf89 (p=1.1x10‐6) and rare non‐ synonymous changes in NECAB3 (p=1.7x10‐7), ZNF485 (p=1.1x10‐6), and RSAD2 (p=2.1x10‐6). MAGENTA analyses highlighted potential involvement of cell adhesion/structure, immune function and cancer‐related pathways in endometriosis. Categories: Association: Genome‐wide, Case‐Control Studies P 86 DissectingtheObesityDiseaseLandscape:IdentifyingGene‐Gene InteractionsthatareHighlyAssociatedwithBodyMassIndex(BMI) Rishika De1, Shefali Setia Verma2, Sarah Pendergrass2, Fotios Drenos3, Michael Holmes4, Folkert Asselbergs5, Brendan Keating4, Marylyn Ritchie2, Diane Gilbert‐Diamond1 1 Dartmouth College Pennsylvania State University 3 University College London 4 University of Pennsylvania 5 University Medical Center Utrecht 2 Though obesity is estimated to have a heritability of 40‐70%, less than 2% of its variation is explained by the BMI‐associated loci that have been identified so far. Hence, interactions between genes, i.e. epistasis, may explain a larger portion of the heritability of BMI. We analyzed genetic information from 18,686 individuals across 5 cohorts – ARIC, CARDIA, FHS, CHS, MESA – to identify interactions between SNPs (Single Nucleotide Polymorphisms). Participants were genotyped using a targeted approach via the gene‐centric IBC array (ITMAT‐Broad‐CARe). SNPs were filtered using two parallel approaches – one based on the strength of their main effects of association, and the other a knowledge‐based approach called Biofilter that identifies biologically plausible SNP‐SNP models. Filtered SNPs were analyzed using QMDR (Quantitative Multifactor Dimensionality Reduction) to detect SNP‐SNP interactions that are highly associated with BMI. QMDR is a nonparametric, genetic model‐free method that detects non‐ linear interactions in the context of a quantitative trait. We identified 6 novel interactions with a Bonferroni corrected p‐value of association < 0.05. These interactions also replicated previously identified BMI‐associated independent signals ‐ rs12617233 in FLJ30838, rs997295 in MAP2K5, and rs1799998 in CYP11B2. Our results highlighted interactions between genes involved in mitochondrial dysfunction (POLG2), aldosterone synthase functioning (CYP11B2), cell proliferation (MAP2K5), insulin resistance (IGF1R, CAV3), vascular development (MAP2K5, EZR), cell adhesion (EZR) and apoptosis (EZR). This study highlights a novel approach to discovering gene‐gene interactions within the obesity disease landscape. Categories: Association: Genome‐wide, Bioinformatics, Gene ‐ Gene Interaction, Genomic Variation, Quantitative Trait Analysis P87 InvestigationofParent‐of‐OrigineffectsinAutismSpectrumDisorders SiobhanConnolly1,ElizabethAHeron1 1TrinityCollegeDublin Thedetectionofparent‐of‐origineffectsaimstoidentifywhetherornotthefunctionalityofalleles, andinturnassociatedphenotypictraits,dependsontheparentaloriginofthealleles.Genome‐Wide AssociationStudies(GWAS)havehadlimitedsuccessinexplainingtheheritabilityofmanycomplex disordersandtraitsbutsuccessfulidentificationofparent‐of‐origineffectsusingtrio(mother, father,offspring)GWASmayhelpshedlightonthismissingheritability.AutismSpectrumDisorders (ASDs)areconsideredtobeheritableneurodevelopmentaldisordersandanumberoftrioGWAS datasetsexistforexaminingthisheritability.Here,wehaveinvestigatedparent‐of‐origineffectsin largetrioGWASdatasetsthathavepreviouslybeenanalysedforparent‐of‐origineffectsusing statisticalapproachesthatdidnothavethecapacitytodetectepigeneticeffectssuchasmaternal‐ offspringgeneticeffectsandallassumptionsoftheapproachesmaynothavebeensatisfied.Here theapproachofEstimationofMaternal,ImprintingandInteractionEffectsUsingMultinomial Modelling(EMIM)isusedtoidentifySNPsassociatedwithASDthroughaparent‐of‐origin mechanismwhichhasthepotentialtoaidinunderstandingmorefullythegeneticunderpinningsof ASD. Categories: Association:Genome‐wide,PsychiatricDiseases,TransmissionandImprinting P88 IntegrativeclusteringofmultiplegenomicdatausingNon‐negative MatrixFactorization PrabhakarChalise1,BrookeLFridley1 1UniversityofKansasMedicalCenter,KansasCity,KSUSA Weproposeanovelapproachforintegrativeclusteringofmultiplegenomicdatasetstoclassifythe diseasesubtypes.ThemethodusesNon‐negativeMatrixFactorization(NMF)techniqueby extendingtheexistingmethodforsingledatainordertoutilizethestrengthsacrossmultipledata types.Thisanalysisapproachwasappliedtothecancergenomeatlas(TCGA)studiesonovarian cancerinvolving499subjectsthathavebothgeneexpression(90797probes)andmethylation (27338probes)assaysontumorsamplesavailable.Togetclinicallymeaningfulclusters,top500 mostassociatedprobesfromeachdatasetwereselectedbyfittingcoxproportionalhazardsmodel withtimetorecurrence(TTR)ofthediseaseasendpointforeachprobeadjustingforageand cancerstage.Theintegrativemethodresultedinthreeoptimumclustersofsamples.Thephenotypic differencesofTTRamongtheseclusterswereassessedbyKaplanMeierplotfollowedbylogrank test(p=1.0×10‐11).Further,eachexpressionandCpGprobewasassessedacrossthethreeclusters usinganalysisofvariancefollowedbymultipletestingadjustments(BenzaminiandHochberg). Amongothersignificantprobes,thegenesTXNDC9(p=7.23×10‐35)andCRBN(p=8.44×10‐32)and theCpGprobesneargenesPLOD2(p=1.91×10‐4)andKRTAP11‐1(p=3.24×10‐4)werefoundtobe mostsignificantlydifferentacrosstheclusters.Furtherstudiesareneededtodeterminethe functionalrelevanceofthesegenesintheovariancanceretiology. Categories: Association:Genome‐wide,Cancer,DataIntegration P89 Toolsforrobustanalysisingenome‐wideassociationstudiesusing STATA NikiDimou1,PantelisBagos1 1UniversityofThessaly Withinthecontextofgeneticassociationstudies(GAS)andgenome‐wideassociationstudies (GWAS)thereisavarietyofstatisticaltechniquesinordertoconducttheanalysisbutacommon problemisthelackofknowledgeconcerningthemodelofinheritance.Severalapproacheshave beenproposedforderivingrobustproceduresthatwilldetectthetrueunderlyingmodelof inheritanceand,atthesametimeperformtheanalysismaximizingthepowerandpreservingthe nominaltypeIerrorrate.Theprimarygoalofthisworkistoimplementasmanyaspossiblerobust methodswithinthestatisticalpackageSTATAandsubsequentlytomakethesoftwareavailableto thescientificcommunity.RobustmethodsbasedontheMAXstatistic,theMERTstatistic,theMIN2, aswellastheGMSandtheGMEprocedureswereimplementedinSTATAandimmediatecommands wereconstructed.Themaindifficultyinimplementingtheabove‐mentionedmethodsisthefactthat theyarecomputationallyintensivesince(withtheexceptionofMERT)theasymptoticpropertiesof theestimatorscannotbederivedanalyticallyandothermethodsareneeded.ConcerningMAX,GMS andGME,weusedaseveralfastMonteCarlosimulationmethodsinordertocalculateaccuratep‐ values,whereasforMIN2,wereliedonnumericalintegration.Thisisthefirstcompleteeffortto implementproceduresforrobustanalysisandselectionoftheappropriategeneticmodelinGASor GWASusingSTATA.Sincethereareonlyafewavailablesoftwareimplementationsoftherobust methodsformeta‐analysisofGASorGWASourfuturegoalistoextendoursoftwareinthecontext ofmeta‐analysisusingSTATA.Thesoftwareisavailableathttp://www.compgen.org/tools/robust‐ meta‐analysis. Categories: Association:Genome‐wide P90 Developmentofathree‐waymixedmodellingapproachintegrating geneticandclinicalvariablesinanalysisofearlytreatmentoutcomesin epilepsy. BenFrancis1,AndreaJorgensen1,AndrewMorris1,AnthonyMarson1,MichaelJohnson2,Graeme Sills1,EpiPGXconsortium 1UniversityofLiverpool 2ImperialCollegeLondon Remissionfromseizures(12monthsofseizurefreedom)isindicativeoftherapeuticresponsetoan antiepilepticdrug(AED)whentreatingepilepsypatients.Clinicalfactorsincludinggenderand epilepsytypehavebeenattributedtotheremissionoutcomeandpotentialpharmacogeneticfactors arenowbeinginvestigated. Atotalof964patientsfromtheStandardandNewAntiepilepticDrug(SANAD)study,arandomised trialthatcomparedtreatmentswithvariousAEDsinpatientswithnewlydiagnosedepilepsy,were genotypedtoinvestigategeneticbiomarkersfortimetoremission,aswellasotherlongitudinal phenotypes,includingtimetoAEDwithdrawalandtimetofirstseizure.Analysiswasinitially undertakenusingatraditionalonecomponentsurvivalmodelfortimetoremission,however,no genome‐widesignificantSNPswerefound. Thismethodmaylackpowerasthepopulationisconsideredhomogeneous.Thepresenceofthree sub‐populationsfortimetoremissionisapparent;thosewhoexperienceremissionimmediately, thosewhoexperienceremissioneventuallyandthosewhodonotexperienceremissionatanypoint duringfollow‐up.Toconsiderthesesub‐populations,athreecomponentmodelisrequiredfor survivalanalysis.Mixturemodellingwithacurefractionwasselectedastheoptimalmethodology toderiveathreecomponentmodel. Thefurtheradaptedmethodologyproposedinthisabstractwillbeappliedtoalargerpopulationof patientswithnewly‐diagnosedepilepsythatisnowavailableviatheEpiPGXconsortium (www.epipgx.eu),andwhichincludestheSANADcohortaswellasothercohortsofpatientsbeing collectedworldwidetoinvestigategeneticbiomarkersofepilepsy. Categories: Association:Genome‐wide,MultivariatePhenotypes,PopulationStratification,Prediction Modelling,PsychiatricDiseases P91 Meta‐analysisoflowfrequencyandrarecodingvariantsandpulmonary function. VictoriaEJackson1,LouiseVWain1,IanSayers2,IanPHall3,MartinDTobin1,SpiroMetaConsortium 1DepartmentofHealthSciences,UniversityofLeicester,Leicester,UnitedKingdom 2DivisionofRespiratoryMedicine,UniversityofNottingham,Nottingham,UnitedKingdom 3DivisionofTherapeuticsandMolecularMedicine,UniversityofNottingham,Nottingham,UnitedKingdom Pulmonaryfunctionmeasuresareanimportantpredictorofmortalityandmorbidityandareused inthediagnosisofanumberofdiseases,includingchronicobstructivepulmonarydisease(COPD).A numberoflarge‐scalegenome‐wideassociationstudies(GWAS)havesuccessfullyidentifiedsingle nucleotidepolymorphisms(SNPs)influencingpulmonaryfunctionin26regions;howevertheseso faridentifiedregionsonlyaccountforasmallproportionoftheestimatedheritability.One hypothesisisthattheso‐called“missingheritability”mightbefoundinrarevariantswithlarge effects.Agenotypingarrayhasrecentlybeendevelopedasacost‐effectivewaytoinvestigatethe effectsofrarevariantsinlargesamplesizes.Thevariantsincludedinthearraydesignwereselected astheywereobservednumeroustimesinthesequencedexomesorgenomesofaset12,000 individualsfrom16samplecollectionsandarepredominantlylowfrequencyandrareexonicSNPs. Wecarriedoutameta‐analysisofexomearraydataandthreepulmonaryfunctionmeasures(FEV1, forcedvitalcapacity(FVC)andtheratioofFEV1toFVC(FEV1/FVC))inover30,000individualsof Europeanancestry,from12studies,whohadbeengenotypedusingtheIlluminaHumanExome beadchip.Wehaveutilisedsinglevariantassociationanalysismethods,traditionallyemployedin GWAS,alongwithgene‐basedmethods,whichforthejointeffectofseveralvariantsinagene;the lattermethodisconsideredamorepowerfulapproachtoidentifyrarevariantsassociatedwitha trait.Wepresentemergingfindingsfromtheseanalyses. Categories: Association:Genome‐wide,QuantitativeTraitAnalysis P92 UsingPolygeneScoresandGCTAtoIdentifyaSubsetofSNPsthat ContributetoGeneticRisk ElizabethAHeron1,AlisonKMerikangas1,RicardoSegurado2 1DepartmentofPsychiatry&NeuropsychiatricGeneticsResearchGroup,TrinityCollegeDublin,Dublin2, Ireland 2CentreforSupportandTraininginAnalysisandResearch,UniversityCollegeDublin,Dublin4,Ireland Polygenescores1areameansofsummarisingthecombinedeffectofagroupofmarkers,inthis casesinglenucleotidepolymorphisms(SNPs),thatasindividualmarkersperhapsdonotreach statisticalsignificanceinagenome‐wideassociationstudy(GWAS),butinaggregateareassociated withcasestatus.Thepolygenicscoringmethodoffersameansbywhichareducedsetofmarkers canbeidentifiedthatoffergoodpredictionforaparticulartraitandcanperhapsnarrowthefocusof theassociatedgeneticriskfactors.Genome‐wideComplexTraitAnalysis(GCTA)2isamethodby whichtheproportionofphenotypicvariancethatisexplainedbySNPscanbeestimated.Thus,a givensetofSNPscanbecomparedwithanothersetofSNPstodeterminewhichsetexplainsmore ofthegeneticcomponentofthevariabilityinthephenotype.Theaimofthispaperistocombine thesetwomethodologiestoidentifyasubsetofSNPsthatbothcontributesignificantlytothegenetic componentofthephenotypicvariancebutthatalsooffergoodpredictionforaphenotypictraitof interest.AnumberofGWASdatasetstogetherwithsimulateddatawillbeusedtoexplorethis approachwhichoffersthepotentialtoaidinthedifficulttaskofidentifyingriskvariantsfor complexdisorders.1.PurcellSM,WrayNR,StoneJL,VisscherPM,O’DonovanMC,SullivanPF,etal. Commonpolygenicvariationcontributestoriskofschizophreniaandbipolardisorder.Nature 2009;460:748–52.2.YangJ,LeeSH,GoddardMEandVisscherPM.GCTA:atoolforGenome‐wide ComplexTraitAnalysis.AmJHumGenet.2011Jan88(1):76‐82. Categories: Association:Genome‐wide,Association:UnrelatedCases‐Controls,Case‐ControlStudies, Causation P93 ChallengingIssuesinGWASofHumanAgingandLongevity AnatoliyIYashin1,DeqingWu1,KonstantinArbeev1,AlexanderKulminski1,LiubovSArbeeva1, SvetlanaVUkraintseva1 1DukeUniversity AnatoliyI.Yashin,DeqingWu,KonstantinG.Arbeev,LiubovS.Arbeeva,AlexanderM.Kulminski, SvetlanaV.UkraintsevaDuringlastdecadesubstantialprogressingeneticanalysesofcomplextraits hasbeenobserved.Encouragedbythisprogressthegenomewideassociationstudies(GWAS)of humanagingandlongevityhavebeenperformed.Theresultsofthesestudiesweremuchless impressive,however.StrongassociationsofgeneticvariantslinkedtoAPOE,FOXO3Aandtoseveral othergeneswithhumanlifespanobservedinanumberofstudieswereaccompaniedbymany associationsthathavenotreachedthelevelofgenomewidestatisticalsignificance.Mostresearch findingssufferedfromthelackofreplicationinstudiesofindependentpopulations.Inthispaperwe investigatereasonsthatmightberesponsibleforslowprogressingeneticanalysesofdataonaging andlongevitytraits.Weshowedthatonesuchreasondealswiththefactthatbio‐demographic aspectsofagingandlongevitytraitshavebeenignored.Thegeneticstructureofstudypopulation getsmodifiedasaresultofmortalityselectionprocesswhichtakesplaceinanygenetically heterogeneouspopulationswhensomegenesinfluencemortalityrisk.Suchmodificationaffectsthe resultsofassociationstudies.Wediscussbenefitsofusingbio‐demographicconceptsandmodelsin GWASofhumanagingandlongevity.Usingsimulateddata,andthentheFraminghamHeartStudy dataweshowhowestimatesofgeneticassociationswithlifespancanbeimproved.Otherreasons includingmultifactorialnatureofagingandlongevitytraits,highgeneticheterogeneityofthese traits,pleiotropiceffectsofgeneticvariantsonmortalityrisksatdifferentageintervalsare discussed. Categories: Association:Genome‐wide P94 HeritabilityestimatesonHodgkinlymphoma:agenomicversus populationbasedapproach HaukeThomsen1,MiguelInaciodaSilvaFilho1,AstaFörsti1,MichaelFuchs2,ElkePoggevon Strandmann2,PerHofmann3,StefanHerms3,JanSundquist4,AndreasEngert2,KariHemminki1 1GermanCancerResearchCenter(DKFZ),DivisionofMolecularGeneticEpidemiology,Heidelberg,69120, Germany 2DepartmentofInternalMedicineI,UniversityHospitalofCologne,Cologne,50924,Germany 3InstituteofHumanGeneticsandDepartmentofGenomics,UniversityofBonn,53127,Germany 4StanfordPreventionResearchCenter,StanfordUniversitySchoolofMedicine,Stanford,94305,USA. Genome‐wideassociationstudies(GWAS)haveidentifiedseveralsingle‐nucleotidepolymorphisms influencingtheriskofHodgkinlymphoma(HL)anddemonstratedtheassociationofcommon geneticvariationforthistypeofcancer.Suchevidenceforinheritedgeneticriskisalsoprovidedby thefamilyhistoryandveryhighconcordancebetweenmonozygotictwins.However,littleisknown aboutthegeneticandenvironmentalcontributions.Acommonmeasurefordescribingthe phenotypicvariationduetogeneticsistheheritability.UsingGWASdataon906HLcasesby consideringalltypedSNPssimultaneously,wehavecalculatedthatthecommonvarianceexplained bySNPsaccountsformorethan35%ofthetotalvariationontheliabilityscaleinHL(95% confidenceinterval6–62%).Thesefindingsaresupportedbysimilarheritabilityestimatesofabout 0.40(95%confidenceinterval0.17‐0.58)basedonSwedishpopulationdata.Ourestimatessupport theunderlyingpolygenicbasisforsusceptibilitytoHL,andshowthatheritabilitybasedonthe populationdataissomehowlargerthanforthegenomicdataduetothepossibilityofsomemissing heritabilityintheGWASdata.BesidesthatthereisstillmajorevidenceformultiplelocicausingHL onchromosomesotherthanchromosome6,whichneedtobedetected.Duetolimitedfindingsin priorGWASitseemstobeworthtocheckformorelocicausingsusceptibilitytoHL Categories: Association:Genome‐wide,Cancer,Case‐ControlStudies,Heritability,PopulationGenetics P95 Areweabletoguidetreatmentchoicetoreduceantidepressant‐induced sexualdysfunctioninmalesusinggenome‐widedatafromrandomised controlledtrials? AndrewACrawford1,SarahLewis1,KarenHodgson2,PeterMcGuffin2,DavidNutt3,TimJPeters4, PhilipCowen5,MichaelCO'Donovan6,NicolaWiles1,GlynLewis7 1SchoolofSocialandCommunityMedicine,UniversityofBristol,Bristol 2MRCSocial,GeneticandDevelopmentalPsychiatryCentre,InstituteofPsychiatry,King'sCollegeLondon 3DepartmentofNeuropsychopharmacology,ImperialCollege,London 4SchoolofClinicalSciences,UniversityofBristol,Bristol 5DepartmentofPsychiatry,UniversityofOxford,WarnefordHospital,Oxford 6MRCCentreforNeuropsychiatricGeneticsandGenomics,SchoolofMedicine,CardiffUniversity,Cardiff 7DivisionofPsychiatry,UniversityCollegeLondon,London Antidepressantsareeffectiveatreducingdepressivesymptomsbutarealsofrequentlyassociated withincreasedsexualdysfunction.Treatmentemergentsexualdysfunctionisdrugspecific (selectiveserotoninreuptakeinhibitor(SSRI)ornoradrenalinereuptakeinhibitor(NARI))andmay begeneticallydetermined.Identifyinggeneticmarkersabletoguidetreatmentchoicewouldbe clinicallyimportant.TheGENPODstudyrandomlyallocated601depressedindividualsto citalopram(SSRI)orreboxetine(NARI).Analysiswasrestrictedtowhite,Europeanmenwithdata onsexualdysfunction(n=105).Genome‐widedatawereanalysedusinglogisticregressioninan additivegeneticmodel,withaninteractiontermbetweengenotypeanddrug.Replicationanalysis useddatafromtheGENDEPstudy(n=202).Quantile‐quantileplotssuggestthatpopulation stratificationwasgenerallywellcontrolled(lambda=1).Noassociationreachedagenome‐wide levelofsignificance.GeneticvariantsnearthePTPRD(P=0.0001)andPCDH9(P=5.29x10‐5)genes providedthestrongestevidenceofanassociationhowever,therewasnoevidenceinourreplication cohort(P>0.1).Thelackofbiologicalplausibilityinouridentifiedgenescombinedwithalackof evidenceinourreplicationstudyleadustoconcludethatlargertrialsarerequiredbefore pharmacogeneticsmaybeabletoguideclinicalpracticeinthisarea.Theutilisationofdatafroma randomisedcontrolledtrialandtheinclusionofaninteractionterminourregressionmodel allowedustoidentifygeneticvariantswhoseassociationwithsexualdysfunctiondifferedby antidepressant,whichareclinicallyimportant,butalsoincreasedourchancesofobtainingspurious associations. Categories: Association:Genome‐wide P96 AGENERALMETHODFORTESTINGGENETICASSOCIATIONWITHONEOR MORETRAITS ZenyFeng1,WilliamWLWong2 1DepartmentofMathematicsandStatistics,UniversityofGuelph 2LeslieDanFacultyofPharmacy,UniversityofToronto Geneticassociationstudyisanessentialstepforfindinggeneticfactorsthatareassociatedwitha complextrait.Manymethodshavebeenproposedforanalysingdatacollectedfromdifferentstudy designs.Inthistalk,wewillpresentaverygeneralmethodthatbasedonthequasi‐likelihood scoringapproachforanalysingdatacollectedfromabroadrangeofstudydesigns.Theproposed methodcanalsobeusedtosimultaneouslytestonmultipletraits.Simulationstudiesandrealdata analysiswillbeincludedtoshowtheperformanceoftheproposedmethod. Categories: Association:Genome‐wide,MultivariatePhenotypes P98 AGeneralizedSimilarityUtestforMultiple‐traitSequencingAssociation Analyses ChangshuaiWei1,QingLu1 1DepartmentofEpidemiologyandBiostatistics,MichiganStateUniversity Sequencing‐basedstudiesareemergingasamajortoolforgeneticassociationresearchoncomplex diseases.Thesestudiesposeagreatchallengetotraditionalstatisticalmethods(e.g.,singlevariant analysis)duetothehigh‐dimensionalityofthedataandthelowfrequencyofthegeneticvariants.A jointtesthasbeenshowntobemoresuitableforsequencingstudies;jointlytestingmultiple variantsincreasesthepowerandreducesthedimensionality.Meanwhile,thereisagrowingneed forstatisticalmethodsthataredistribution‐freeandthatcanhandlemultiplephenotypes.Inthis paper,weproposeageneralizedsimilarityUtest,referredtoasGSU.GSUfirstsummarizesthe geneticinformationandmultipletraitsintoageneticsimilarityandatraitsimilarity,andthen combinesthetwosimilaritiesintheframeworkofaweightedUstatistic.Wederivedtheasymptotic distributionofGSUunderanullhypothesis,soastoefficientlycalculatethesignificancelevel.We alsostudiedtheasymptoticbehaviorofGSUunderalternatives,andprovidedsamplesizeand powercalculationsforthestudydesign.ToevaluatetheperformanceofGSU,weconducted extensivesimulationstudiesandcomparedthemwiththeexistingmethods.Throughsimulation,we foundthatGSUhadanadvantageoverexistingmethodsintermsofpowercomparisonsandits robustnesstotraitdistribution.Moreover,GSUiscomputationallymoreefficientthanexisting methods.Finally,weappliedGSUtosequencingdatafromtheDallasHeartStudy,identifying4 genesjointlyassociatedwith5metabolic‐relatedtraits. Categories: Association:UnrelatedCases‐Controls,Case‐ControlStudies,MultilocusAnalysis, MultivariatePhenotypes,SequencingData P99 ModelingX‐chromosomedatainRandomForestGeneticAnalysis JoannaMBiernacka1,GregoryJenkins1,StaceyJWinham1 1MayoClinic TheXchromosomeisroutinelyexcludedfromgenome‐wideassociationstudies.RandomForests (RF)havebeenproposedforgeneticanalysisinvolvingmanyvariants.Weillustratethatfortraits associatedwithsex,RFanalysisyieldsbiasedresultsforXchromosomeSNPs,andproposethree extensionsofRFtomodelXSNPs,basedon(1)theprincipleofXchromosomeinactivation(XCI),(2) stratificationbysex,and(3)incorporationofsexasavariableinRF.Wecomparetheperformance oftheseapproachestotraditionalRFusingsimulationsandanalysisofdatafromtheStudyof Addiction:GenesandEnvironment(SAGE).ComparisonoftheSAGEdataresultsforautosomalvs.X SNPsshowsthattraditionalRFranksXSNPstoohigh,whereasthethreenewapproachesranktheX SNPssimilartoautosomalSNPs.ToevaluatethealternativeapproachestoincorporatingX‐SNPdata inRF,weinvestigatevariableimportance(VI)measuresforautosomalandXSNPsinsimulateddata withandwithoutXSNPeffects.Weperformsimulationsundervaryingdegreesofsex‐trait association,case/controlratios,andpatternsoflinkagedisequilibrium.Allmethodscorrectly estimateVIifsexisnotassociatedwiththetrait,butwhensexisassociatedwiththetrait, traditionalRFleadstoinflatedVIfortheXchromosome.IncorporatingsexinRFdoesnotproperly correctthisbias,whereasthemethodsbasedonXCIandstratifiedRFdonotinflatetheVIofXSNPs. Thus,weconcludethatifsexisnotassociatedwiththetraitinthesample,regularRFmaybeused toanalyzeXSNPdata.Otherwise,eitherstratificationoftheforestorextensionbasedonXCIshould beusedtoavoidoverestimationofXSNPimportance.Futureinvestigationwillcomparethepower ofthesetwomethods. Categories: Association:UnrelatedCases‐Controls,Case‐ControlStudies,DataMining,Machine LearningTools P100 EmpiricalBayesScanStatisticsforDetectingClustersofDiseaseRisk VariantsinGeneticStudies,withApplicationstoCNVsinAutism IulianaIonita‐Laza1,KennethMcCallum1 1ColumbiaUniversity Recentdevelopmentsofhigh‐throughputsequencingtechnologiesofferanunprecedenteddetailed viewofthegeneticvariationinvarioushumanpopulations,andpromisetoleadtosignificant progressinunderstandingthegeneticbasisofcomplexdiseases.Despitethistremendousadvance indatageneration,itremainsverychallengingtoanalyzeandinterpretthesedataduetotheir sparseandhigh‐dimensionalnature.HereweproposeseveralempiricalBayesscanstatisticsto identifygenomicregionssignificantlyenrichedwithrarediseaseriskvariants.Weshowthatthe empiricalBayesmethodologycanbemorepowerfulthanexistingmethodsespeciallysointhe presenceofmanynon‐diseaseriskvariants,andinsituationswhenthereisamixtureofriskand protectivevariants.Furthermore,theempiricalBayesapproachhasgreaterflexibilityto accommodatecovariatessuchasfunctionalpredictionscoresandadditionalbiomarkers.Weapply theproposedmethodstoawholeexome‐sequencingstudyonautismspectrumdisordersand identifyseveralnewgenesthatresideincopynumbervariableregionsassociatedwithautism.In particular,genesSYNGAP1andRNF135arebothstrongcandidategenesforautismandhavebeen identifiedbytheproposedmethods. Categories: Association:UnrelatedCases‐Controls,SequencingData P101 Finemappingofchromosome5p15.33regionforlungcancer susceptibilitybasedonatargeteddeepsequencingandcustomAxiom array LindaKachuri1,ChristopherIAmos2,LoicLeMarchand3,ShelleyTworoger4,GeoffreyLiu5,JamesD McKay6,PaulBrennan6,JohnKField7,JohnRMcLaughlin8,YafangLi2,RobertEDenroche9,PhilipC Zuzarte9,JohnMcPherson9,RayjeanJHung1 1Lunenfeld‐TanenbaumResearchInstituteofMountSinaiHospital,Toronto,ON,Canada 2GeiselSchoolofMedicine,DartmouthCollege,Lebanon,NH,USA 3UniversityofHawaii,Honolulu,HI,USAShelley 4HarvardSchoolofPublicHealth,Boston,MA,USA 5OntarioCancerInstitute,PrincessMargaretCancerCenter,Toronto,ON,Canada 6InternationalAgencyforResearchonCancer,Lyon,France 7InstituteofTranslationalMedicine,UniversityofLiverpool,Liverpool,UK 8PublicHealthOntario,Toronto,ON,Canada 9GenomeTechnologies,OntarioInstituteforCancerResearch,Toronto,ON,Canada Background:Genome‐wideassociationstudieshaveconsistentlylinkedsinglenucleotide polymorphisms(SNPs)inch5p15.33withincreasedlungcancerrisk.Thisregioncontainstwo knowncancersusceptibilitygenes:telomerasereversetranscriptase(TERT)andcleftlipandpalate transmembrane1‐like(CLPTM1L),however,thecausalmechanismsunderlyingtheseriskvariants havenotbeenfullyelucidated.Methods:Wecarriedoutafinemappingof5p15.33firstbydeep sequencing288lungcancercase‐controlpairs,andsubsequentlygenotyping4608SNPs(1125de novovariants:953SNPs,172indelsnotpreviouslydescribed)usingacustomAffymetrixAxiom arrayin3063casesand2940controlsofEuropeanancestryfrom5studies:MSH‐PMH,EPIC,MEC, LLPC,HPFS&NHS.Oddsratios(OR)adjustedforage,sexandcigarettepack‐yearswereestimated usinglogisticregression.Sequencekernelassociationtests(SKAT)wereusedtolocalizetheeffects ofrarevariants.Results:17SNPsmetthemultipletestingcorrectedthreshold(p<4.1×10‐4).Of these,twonewlyidentifiedvariantswerestronglyassociatedwithlungcancerriskafter conditioningontheeffectsofknownriskvariants:ch5:1253720(OR:0.25,p=6.6×10‐6)locatedin theTERTexon,andch5:1384599(OR:0.03,p=3.1×10‐4)downstreamofCLPTM1L.13ofthe17 significantSNPswerelocatedinCLPTM1L.TheSKATanalysispointstoriskvariantswithinthe TERTexon(p=8.8×10‐4),downstreamofCPTM1L(p=1.5×10‐4)andmicroRNA4457(p=4.7×10‐4). Conclusions:Inthisstudyweidentifiedseveralnovelvariantsthatwereindependentlyand significantlyassociatedwithlungcancerrisk.Ourfindingsrefinedtheassociationbetweenthe TERT/CLPTM1Lregionandlungcancerrisk. Categories: Association:UnrelatedCases‐Controls,Cancer,FineMapping,SequencingData P102 Geneticvariantsininflammation‐relatedgenesandinteractionwith NSAIDuseoncolorectalcancerriskandprognosis YesildaBalavarca1,NinaHabermann1,DominiqueScherer1,KatharinaBuck1,PetraSeibold2,Katja Butterbach3,BarbaraBurwinkel4,KatrinPfuetze4,MichaelHoffmeister3,ElisabethKap2 1DivisionofPreventiveOncology,NationalCenterforTumorDiseases(NCT/DKFZ),Heidelberg,Germany 2DivisionofCancerEpidemiology,UnitofGeneticEpidemiology,GermanCancerResearchCenter(DKFZ), Heidelberg,Germany 3DivisionofClinicalEpidemiologyandAgingResearch,GermanCancerResearchCenter(DKFZ),Heidelberg, Germany 4MolecularEpidemiology,GermanCancerResearchCenter(DKFZ),Heidelberg,Germany Inflammationhasbeenshowntocontributetocolorectalcarcinogenesis.Non‐steroidalanti‐ inflammatorydrugs(NSAIDs)areassociatedwithreducedinflammation.Thus,westudied associationofinflammation‐relatedgenesandtheirinteractionwithNSAIDuseregardingcolorectal cancer(CRC)riskandsurvival.Weanalyzed15genes(169SNPs)of1756CRCpatientsand1781 controlsenrolledinacase‐controlstudywithfollow‐upofpatients(DACHS).CRCriskwasassessed bymultivariableunconditionallogisticregressionandoverallsurvivalbymultivariableCox regressionmodels.Pvaluesfornon‐candidateSNPswereadjustedformultipletesting(padj.)CRP (rs1205,p=0.04;rs1800947,p=0.02)andPTGS1(rs10513402,padj.=0.01)variantswere associatedwithincreasedCRCrisk.SubjectswiththevariantalleleinCRP(rs1800947,p=0.004) andinPTGIS(rs477627,p=0.04),respectively,showedlowerCRCriskwiththeuseofNSAIDs.After 5‐yearsfollowup,variantsinPTGS1wereassociatedwithpooreroverallsurvival(rs1330344,p adj.=0.02andrs3119773,padj.=0.04).NSAIDusewasassociatedwithimprovedoverallsurvivalof patientswiththevariantalleleinCCL2(rs3760396,p.adj=0.01)andwithdecreasedoverallsurvival ofpatientswiththevariantalleleinIL23R(rs12041056,p=0.008).InpatientswithdiseasestageI‐ III,thosewithvariantsinIL18(rs1293344,padj.=0.01)andinIL23R(rs10889665,padj.=0.02) showedimprovedoverallsurvival.Weshowedthatgeneticvariationsininflammation‐related genesandtheirinteractionswithNSAIDsareassociatedwithCRCriskandsurvival.This informationmayaidintailoringpreventionstrategiestosubjectswhowillbenefitmostfromNSAID use. Categories: Association:UnrelatedCases‐Controls,Cancer,Gene‐EnvironmentInteraction, MultifactorialDiseases P103 AssociationanalysisofexomechipdataofPolycysticOvarySyndromein EstonianBiobank ReedikMägi1,AndrewPMorris2,TKaraderi3,TriinTriinLaisk‐Podar4,TriinTammiste4,Andres Metspalu1,AndresSalumets4,CeciliaMLindgren5 1EstonianGenomeCenter,UniversityofTartu,Tartu,Estonia 2DepartmentofBiostatistics,UniversityofLiverpool,Liverpool,UK 3WellcomeTrustCentreforHumanGenetics,UniversityofOxford,Oxford,UK 4DepartmentofObstetricsandGynaecology,UniversityofTartu,Tartu,Estonia 5BroadInstituteoftheMassachusettsInstituteofTechnologyandHarvardUniversity,Cambridge,MA,USA Polycysticovarysyndrome(PCOS)isacommonmultifactorialdiseaseaffectingupto10%of womenofreproductiveage.Toinvestigatethecontributionofpotentiallycausalcodingvariantsto PCOS,wehavegenotyped167casesand711populationcontrols(363females)fromtheEstonian BiobankwiththeIlluminaexomearray.Weconductedsinglevariantandburdentestsofassociation usingSKAT‐Owithingenesfor(i)lossoffunction(LOF)and(ii)rarenon‐synonomous(NS)variants withminorallelefrequency(MAF)<1%).Theassociationanalyseswereadjustedforfirsttwo principalcomponentstoaccountforthepopulationstratification.Intheautosomalanalysis,both maleandfemalesampleswereusedinthecontrolgroupbutintheXchromosomeanalysis,only femalesampleswereused.Altogether55,345polymorphicvariantsweresuccessfullytestedin singlevariantanalysis.Itrevealedonemissensevariantwhichwasshowingexome‐wideevidence ofassociation(p<5x10‐7,Bonferronicorrectionfor100,000variants):exm233350inthenebulin codingNEBgene(p=4.9x10‐9,MAF=0.05%).MutationsinNEBhavepreviouslybeenassociated withmyopathyandmusclestructure.Noneoftheassociationswerestatisticallysignificantinthe gene‐basedtestsaftermultipletestingcorrectionfor20,000genes.Thestrongestassociationscame fromaggregatingnon‐synonymousrarevariantswithinPOLK(p=4.3x10‐5)andPELI3(7.3x10‐5) gene,whichareDNAreplicationandimmuneresponserelatedgenes.Ourstudysuggeststhatrare variantscancontributetothegeneticcomponentofPCOS,butcannotexplainpreviouslyreported associationsignalsinestablishedGWASloci. Categories: Association:UnrelatedCases‐Controls,Case‐ControlStudies P104 AMODELFORCO‐SEGREGATIONOFCRYPTORCHIDISMANDTESTIS CANCERINFAMILIES DuncanCThomas1,VictoriaKCortessis1 1UniversityofSouthernCalifornia Testiculargermcelltumors(TGCT)andcryptorchidism(CO)arehighlyfamilial,butlociidentified bygenome‐wideassociationstudiesexplainonly15‐22%ofTGCTheritability.Tounderstand segregationofthetraitsanddependencyofTGCTonCO,wedevelopedanovelstatisticalmodel incorporatingmajorgenes,polygenes,andnongeneticfrailtiesaccountingfordependencebetween testes,foreachtraitandthetransitionfromCOtoTCGT.From17,844TCGTcasesintheCalifornia CancerRegistry,weobtainedinformedconsentandpersonalandfamilyhistoryfrom5,702(17,844 familymembers),andextendedpedigreesfor697ofthosecasesreportingbilateralTGCT,CO,or familyhistoryofeithertrait(23,143members).Adjustingforthiscomplexascertainment,wefound strongevidenceforpolygeniceffectsforCOandTCGTandamajorgenemodifyingtheeffectofCO onTCGTrisk.Genotypesfor9TGCTriskvariantsin1,639membersof527familieswereusedinan extendedmodelincorporatingmultiplegenesassumedtobeinLDwiththeSNPsandtosegregate withoutrecombination.ThisrevealedsignificantassociationsofCOwithTERTandCENPE,baseline TGCTriskwithKITLGandUCK2,andsuggestiveevidencethatTERTmodifiestheeffectofCOon TGCT.Thesesupportageneticbasisforfamilialaggregationofbothtraitsanddependencybetween traits.Themodelcanaddressotherprecursors(e.g.polypsforcolorectalcancer,mammographic densityforbreastcancer). Categories: Ascertainment,Association:CandidateGenes,Association:Family‐based,BayesianAnalysis, Cancer,FamilialAggregationandSegregationAnalysis,LinkageandAssociation,MarkovChainMonte CarloMethods P105 Jointanalysisofsecondaryphenotypes:anapplicationinfamilystudies RenaudRTissier1,RoulaSTsonaka1,JeanineJHouwing‐Duistermaat1 1LUMC,TheNetherlands Acase‐controldesignistypicallyusedinordertotestassociationsbetweenthecase‐controlstatus (primaryphenotype)andgeneticvariants.Inadditiontothisprimaryphenotypesecondarytraits areavailableandassociationsarestudiedbetweenthegeneticvariantsandthesesecondarytraits. However,whenanalyzingthesephenotypesthecase‐controldesignhastobetakenintoaccount especiallywhenthemarkertestedisassociatedwiththeprimaryphenotypesorwhenthereis correlationbetweentheprimaryandsecondaryphenotype.Methodsareavailableforsecondary phenotypeanalysisincase‐controlstudies.Thesemethodsarenotdirectlyapplicabletomore complexdesigns,suchasmultiplecasesfamilystudies.Hereapropersecondaryanalysisis complicatedbythebiasedsamplingdesign,thewithinfamiliescorrelationsandthemixedtypeof outcomes:binaryprimaryphenotypeandcontinuoussecondaryphenotypes.Weproposeabias correctionapproachforsecondaryphenotypeanalysisinfamilystudieswhichallowsinvestigation ofgeneticeffectsacrossmultiplesecondarytraits.Weadopttheretrospectivelikelihoodmethodto correctforascertainmentofthefamiliesanduseacorrelatedprobitmodeltomodeljointlythe mixedtypeprimaryandsecondaryphenotypes.Theestimatesoftheparameterscanbepooledwith resultsfromstudiescomprisingrandomlyselectedsubjectsbystandardmetaanalysistools.We studiedtheperformanceviasimulationsandestimatedtheeffectsofseveralSNPsonatriglyceride availableintheLeidenLongevityStudy,acasefamily‐controlstudy.Weconcludethattheuseofan ad‐hocwillleadtobiasespeciallyincasetheSNPisassociatedwiththeprimaryphenotype Categories: Ascertainment,Association:CandidateGenes,Association:Family‐based,Association: UnrelatedCases‐Controls P106 Predictionofimprintedgenesbasedonthegenome‐widemethylation analysis NataliaTšernikova1,NeemeTõnisson2,KaieLokk2,AndresSalumets3,AndresMetspalu1,Reedik Mägi4 1DepartmentofBiotechnology,InstituteofMolecularandCellBiology,UniversityofTartu,Tartu,Estoniaand EstonianGenomeCenter,UniversityofTartu,Tartu,Estonia 2DepartmentofBiotechnology,InstituteofMolecularandCellBiology,UniversityofTartu,Tartu,Estonia 3CompetenceCentreonReproductiveMedicineandBiology,Tartu,Estonia;DepartmentofObstetricsand Gynecology,UniversityofTartu,Tartu,EstoniaandInstituteofBiomedicine,UniversityofTartu,Tartu, Estonia 4EstonianGenomeCenter,UniversityofTartu,Tartu,Estonia; Genomicimprintingisanepigeneticgene‐markingphenomenonthatisestablishedingermline.Our hypothesisisthatimprintedgenescanbepredictedbythemethylationlevel.Weexpectsemi‐ methylationinimprintedgenes.InordertoprovethishypothesisweanalysedtheDNAmethylation inwell‐knownimprintedgenesacrossthetissuepanelfromthesameindividuals.17tissuesfrom4 individualswerecollectedduringautopsy.DNAmethylationanalysisofthetotal72tissuesamples wasperformedwiththeIlluminaInfiniumHumanMethylation450BeadChip.WeusedLevene’stest forcomparisonofknownimprintedgeneswiththerestofthegenescapturedby450Kmethylation array.Asaresult,allimprintedgenes(n=92)demonstratedlessvariabilityinthemethylationlevel (p<0.01)acrossalltissues.WealsovisualizedCpGpatternsofknownimprintedgenesacrossall tissues.EachCpGwasannotatedtoitsexactlocationinthegenomeinexon,genebodyorUTR region.VisualizedCpGpatternsalsoconfirmedtissue‐specificnatureofimprintedgenes.For example,gallbladdershowsmediummethylationofKCNQ1DNgene,whileinisciaticnervetheCpG sitesarenotmethylated.Usingthismappingmethod,wenarroweddownthelistofpotential candidategenesto3000.Wefoundthatsomegenesmeetthecriteriaforcandidateimprintedgenes inallsomatictissues,whileothergenesmeetthosecriteriaonlyinsomeofthetissues.Asthenext stepweareusingtheRNAseqdatatofurthernarrowdownthelistofcandidategenes.Ourmethod canberegardedasatooltoidentifythetissuespecificityofthealreadyestablishedimprintedgenes aswellastodiscovernewimprintedgenesacrossthewholehumangenome. Categories: Bioinformatics,EpigeneticData,Epigenetics P107 AddictionandMentalHealthGenesformGenomicHotspotswith DrugableTargets. LatifaFJackson1,AydinTozeren1 1DrexelUniversity Dopamine,alcoholandopiateaddictionarewellcharacterizedco‐morbiditieswithdepression, bipolarandschizophreniadisorders.Whileeachofthesedisordersareknowntohaveastrong geneticbasis,thereislittlesystematicinformationthataddressesthegeneticintersectionsofthese co‐morbiddisorders.Wecanharnesscuratedgenesetsderivedfromsinglegeneandgenomewide associationstudiestoidentifythegenomicregionsdisproportionatelyparticipatinginaddictionand mentalhealthdisorders.Opiate,dopamineandalcoholaddictiondisordergenesetsandmental healthgenesets(schizophrenia,depressionandbipolardisorder)obtainedfromNationalCenterfor BiotechnologyInformationGene,werecombined,thenprojectedontothegenome,andtheregions ofinterestwereannotatedwithgeneontologycategoriesandcellularpathways.functional annotationsamongtheresultingaddictionandmentalhealthgenomichotspotregionsforma bioinformaticsportraitofthegeneticintersectionslikelytocontributetoobservedco‐morbidities. Weidentifyeightgenomichotspots,withanoverabundanceofaddictionandmentalhealthgenes (p<0.005).Hotspotgenesandtheirco‐locatedcandidatecounterpartsareinvolvedinsignificant coreneurologicalfunctions(p=0.05):neurologicaltransmission,responsestoorganicsubstances andcell‐cellsignaling.Wefurtherannotatedallhotspotgenesfortheirassociateddrugbindingsites toidentifywhetherthesebindingsiteswerecandidatesfortherapeuticintervention.Wefound16 drugbindingsites,whichsortedintofourthematicclasses:anillicitdrugbindingsite,fourmental healthdrugsites,threeimmuneresponsesites,andfivecancerbindingsiteswithstrongaddiction ormentalhealthcounter‐indications.Ouranalysesdemonstratetheutilityofconsideringahotspot approachinidentifyinggenomicregionscontributingtotheintersectionofaddictionandmental healthandprovidegenecandidatesforpotentialdrugtargets.Keywords:Bioinformatics,Addiction, Schizophrenia,BipolarDisorder,Depression,Genome,Alcohol,CausalInference,CandidateGenes Categories: Bioinformatics,Gene‐GeneInteraction,GenomicVariation P108 Recurrentsharedrarevariantsin9genesdetectedbywholeexome sequencingofmultiplexoralcleftsfamilies JoanEBailey‐Wilson1,EmilyRHolzinger1,QingLi1,MargaretMParker2,JacquelineBHetmanski2, MaryLMarazita3,LLeighField4,AjitRay5,ElisabethMangold6,MarkusMNöthen6 1ComputationalandStatisticalGenomicsBranch,NationalHumanGenomeResearchInstitute,National InstitutesofHealth,Baltimore,MD,USA 2DepartmentofEpidemiology,BloombergSchoolofPublicHealth,JohnsHopkinsUniversity,Baltimore,MD, USA 3CenterforCraniofacialandDentalGenetics,DepartmentofOralBiology,UniversityofPittsburgh,Pittsburgh, PAUSA 4Emeritus,UniversityofBritishColumbia,Vancouver,BCCanada 5Emeritus,UniversityofToronto,Toronto,Ontario,Canada 6InstituteofHumanGenetics,UniversityofBonn,Bonn,Germany Non‐syndromiccleftlipwith/withoutcleftpalate(CL/P)isacomplextrait.Genome‐wide associationstudies(GWAS)haveidentifiedseveralgeneticriskfactorsforCL/Pandrecentlywe identifiedanovel,potentiallydamagingvariantinCDH1inoneIndianmultiplexCL/Pfamily.Here, weusedwholeexomesequence(WES)dataon2or3related(2oormoredistant)affected individualsperfamilytoidentifygenescontainingsharedrarevariants(RV).Fifty‐fivefamiliesof Indian(12),Filipino(11),German(19),Syrian(10),European‐American(1)andAsian(2)descent containing114individuals,4duplicatecontrolsand2unrelatedCEPHHAPMAPcontrolswere sequencedontheIlluminaHi‐Seq2500andprocessedthroughGATK.Ingenuity‘VariantAnalysis’ wasusedtoidentifyRVssharedunderarecessivemodelbyallsequencedaffectedindividualsina family.Geneswheresuchsharingwasobservedinthesamegeneinatleast2separatemultiplex families(differentRVsperfamily)wereconsideredpotentiallyrelatedtoCL/P.Afterfilteringbased onvariantqualityandfrequency(MAF<0.05),weidentified9genesexhibitingrecessiveRVsharing inallaffectedindividualsinatleasttwofamilies:ARHGEF12,CCT4,HSD3B7,MAN1B1,RREB1, SNRPC,STARD9,ZDHHC11,andZNF835.TheseRVsarenotpresentineitherofthesequenced HapMapcontrols.Follow‐upwillincludeSangersequencingandgenotypingoftheseRVsinother affectedandunaffectedindividualsinthesesamefamiliestodetermineiftheRVssegregatewith disease. Categories: Bioinformatics,DataMining,GenomicVariation,SequencingData P109 Evaluationofvariantcallingfromthousandsoflowpasswholegenome sequencing(WGS)datausingGATKhaplotypecaller HuaLing1,KurtHetrick1,PengZhang1,ElizabethPugh1,JaneRomm1,KimberlyDoheny1 1CenterforInheritedDiseasesResearch(CIDR),JohnsHopkinsUniversity LowpassWGS(~2‐8x)onlargenumbersofsampleshasbecomeanattractivestrategyingenetic studiesofcomplextraits.Giventhesameamountofsequenceyield,itmayprovidemorepowerin detectingdiseaseassociatedvariantsthandeepsequencing(30x)asmallernumberofsamples.It canalsobeusedtobuildareferencepanelforimputingadditionalsamplestofurtherboostpower. RecentadvancesinGATKenableustodojointvariantcallingandanalysisonmultipleWESsamples usingHaplotypeCaller(HC)thatwascomputationallyprohibitive.HCisdesirableoverUnified Genotyper(UG)notonlybecauseofitshigheraccuracyinvariantcalling(especiallyforINDELs),but itoffersgreaterflexibilitybyallowingforaddinginmoresamplesatalaterstagewithoutre‐ processingthecohort.Toevaluatethefeasibilityandperformanceofcallingthousandsoflowpass WGSsamplesundercurrenthardwareandsoftwaresupports,weused2,535lowpassWGBAMfiles fromthe1KGPforchr11.WegeneratedgenomicVCFfilesforeachindividualsamplewithHC,and createdjointcallsusingGenotypeGVCFsfollowedbyvariantfilteringwithVQSR.Themeancoverage persamplerangedfrom2.8to38(medianof6.67),with70%sampleshavemeancoveragebelow 8x.Morethan96%and85%baseshavedepthgreaterthan2Xand4X,respectively.ForNA12878 (meancoverageof4.91),lowpassWGSmade~75%ofSNVsonchr11thatarecalledby GenomeInABottle(v2.18).Bycomparingthistoarraydataand30xWGSgeneratedonsitefora subsetofsamplesandreviewedusingIGV,wecancharacterizesensitivityandconcordanceat differentlevelsofMAFandsequencingdepthforbothSNVsandINDELs. Categories: Bioinformatics,DataQuality,GenomicVariation,SequencingData P110 IntegrationoffMRIandSNPsindicatedpotentialbiomarkersfor Schizophreniadiagnosis HongbaoCao1,Yu‐PingWang2,VinceCalhoun3,YinYaoShugart1 1NationalInstituteofHealth 2TulaneUniversity 3UniversityofNewMexico Integrativeanalysisofmultipledatatypescantakeadvantageoftheircomplementaryinformation andthereforemayprovidegreaterpowertoidentifypotentialbiomarkers.However,duetothe diversityofthedatamodality,dataintegrationischallenging.Hereweaddressthedataintegration problembydevelopingageneralizedsparsemodel(GSM)usingweightingfactorstointegrate multi‐modalitydataforbiomarkerselection.Toprovethefeasibility,weappliedtheGSMmodeltoa jointanalysisoftwotypesofschizophreniadatasets:759075SNPsand153594functionalmagnetic resonanceimaging(fMRI)voxelsin208subjects(92cases/116controls).Tosolvethissmall‐ sample‐large‐variableproblem,wedevelopedanovelsparserepresentationbasedvariable selection(SRVS)algorithm,aimingtoidentifybiomarkersassociatedwithschizophrenia.To validatetheeffectivenessoftheselectedvariables,weperformedmultivariateclassification followedbyaten‐foldcrossvalidation.ResultsshowedthatourproposedSRVSmethodcanbeused toidentifynovelbiomarkersandofferstrongercapabilityindistinguishingschizophreniapatients fromhealthycontrols.Moreover,betterclassificationratioswereachievedusingbiomarkersfrom bothtypesofdata,suggestingtheimportanceofintegrativeanalysis.Especially,withnormbased penalty,ourSRVSmethodgeneratedhighestclassificationaccuracyindiscriminatingschizophrenia patientsfromhealthycontrols.Thissuggeststhatnormmaybethebestchoiceaspenalizationterm fortheproposedSRVSmethod.Furtherbiologicalexperimentalworkisneededtovalidatethe biomarkersidentifiedinthepaper. Categories: Bioinformatics,Case‐ControlStudies,DataIntegration P111 EWAStoGxE:Arobuststrategyfordetectinggene‐environment interactionmodelsforage‐relatedcataract MollyAHall1,JohnRWallace1,SarahAPendergrass1,RichardBerg2,TerrieKitchner2,PeggyPeissig2, MurrayBrilliant2,CatherineAMcCarty3,MarylynDRitchie1 1CenterforSystemsGenomics,ThePennsylvaniaStateUniversity,UniversityPark,PA 2MarshfieldClinic,MarshfieldWI 3EssentiaRuralHealth,Duluth,MN Gene‐environmentinteractions(GxE)areessentialtoelucidatingthenatureofcomplextraits,but computationaldemandsandmultipletestingmakeuncoveringtheseinteractionsdifficult.We addressthisusinganenvironmentwideassociationstudy(EWAS)toidentifyputative environmentalfactorsinahigh‐throughputmannerfollowedbyatestforGxEwithgenome‐wide SNPsforassociationwithcataract.WeperformedadietaryEWASbyevaluating57dietary exposuresfromaDietaryHistoryQuestionnaireusinglogisticregression,adjustedforage,sex,and type2diabetes(T2D)in2,629samples(932controls,1,697cases)ofEuropeandescentfromthe MarshfieldClinicPersonalizedMedicineResearchProject,partoftheElectronicMedicalRecords& Genomics(eMERGE)Network.Sevendietarymeasureswerepredictiveofcataract(p‐value<0.05); amonounsaturatedomega‐9fattyacid,erucicacid(FA22:1)(p=5.5×10‐4)passedourBonferroni correctedp‐valuethreshold.WethentestedFA22:1forGxEusing498,829SNPsinasubsetof samplesforwhomgeneticdatawasavailable(831controls,1,511cases)usinglogisticregression adjustedforage,sex,andT2Dstatus.TwentySNP‐FA22:1modelsweresignificant(p<1.0×10‐4). ThemostsignificantGxEmodelwasFA22:1andrs726712,anintronicSNPinLPP(p=2.9×10‐5). Theerucicacid‐cataractassociationisnovel;althoughtwopolyunsaturatedfattyacidshavebeen foundincataractoushumanlenses.LPPencodesaproteininvolvedincell‐celladhesion,aprocess withmultiplepublishedassociationswithcataract.ThesefindingsindicatetheroleofGxEin susceptibilitytocataractanddemonstratetheutilityofEWASforinvestigatingtheGxEinterplayof complexdiseases. Categories: Bioinformatics,Case‐ControlStudies,Gene‐EnvironmentInteraction P112 RNA‐seqanalysisoflungadenocarcinomarevealsdifferentialgene expressioninnonsmokerandsmokerpatients YafangLi1,XiangjunXiao1,ChristopherIAmos1 1Dartmouthcollege Lungadenocarcinomaisacomplexdiseasethatcausedbybothgeneticandenvironmentaleffect. TheRNA‐seqtechnologyprovidesusapowerfultoolfortranscriptomeanalysisoflungcancer.In thisstudy,weusedRBioconductoredgeRtoanalyzeRNA‐seqfrompairednormalandtumortissue in34nonsmokerand40smokerpatientswithlungadenocarcinoma(GEO:GSE40419).Wedivided thesamplesintopilotandreplicationstudyforeachgroup,andthereishighconsistencebetween theresultsfromreplicationandpilotstudies.Thegenedifferentialexpressionanalysisidentified 179genesthatshoweddifferentialexpressiononlyintumorsfromnonsmokerpatients;780genes thataredifferentiallyexpressedinbothsmokerandnonsmokertumortissueversusnormaltissue; and1869genesthatexclusivelyvariedintumortissuefromsmokerpatientsversusnormaltissue. 77%and59%oftheidentifiedgenesaredownregulatedinnonsmokerandsmokergroups, respectively.Amongthecommongenes,thegenestendtohavealargerlogFCchangeinsmoker patientsthannonsmokerpatients.Thesmokerandnonsmokerpatientspecificgeneswithlarge logFCarealsoidentifiedinouranalysis.Ourstudyprovidesasystematicanalysisofwholegenome genedifferentialexpression.Itprovidestargetgenesforsubsequentbiologicalstudiestodecipher theaberrationsthatarepresentinlungadenocarcinoma. Categories: Bioinformatics,Cancer,Case‐ControlStudies,GeneExpressionPatterns,SequencingData P113 UsingrandomforeststoidentifygeneticlinksbetweenAlzheimer’s diseaseandtype2diabetes BurcuFDarst1,ChenYao2,RebeccaLKoscik3,BarbaraBBendlin4,BrucePHermann3,AsenathLa Rue3,SterlingCJohnson5,MarkASager3,CorinneDEngelman1 1DepartmentofPopulationHealthSciences,UniversityofWisconsinSchoolofMedicineandPublicHealth, Madison,WI,USA 2DepartmentofDairyScience,UniversityofWisconsin,Madison,WI,USA 3Alzheimer'sDiseasesResearchCenter,UniversityofWisconsinSchoolofMedicineandPublicHealth, Madison,WI,USA;WisconsinAlzheimer'sInstitute,UniversityofWisconsinSchoolofMedicineandPublic Health,Madison,WI,USA 4Alzheimer'sDiseasesResearchCenter,UniversityofWisconsinSchoolofMedicineandPublicHealth, Madison,WI,USA;GeriatricResearchEducationandClinicalCenter,Wm.S.MiddletonMemorialVAHospital, Madison,WI,USA 5Alzheimer'sDiseasesResearchCenter,UniversityofWisconsinSchoolofMedicineandPublicHealth, Madison,WI,USA;WisconsinAlzheimer'sInstitute,UniversityofWisconsinSchoolofMedicineandPublic Health,Madison,WI,USA;GeriatricResearchE Increasingevidencesuggeststhattype2diabetes(T2D)isariskfactorforAlzheimer’sdisease(AD), butthegeneticmechanismlinkingtheseconditionsisunknown.Usingrandomforests(RF),we investigatedwhetherinteractionsbetweensinglenucleotidepolymorphisms(SNPs)inapathway linkedtobothADandT2D,andriskfactorsforT2Dinfluencecognitioninacohortofmiddle‐aged adultsenrichedforaparentalhistoryofAD.Weanalyzedasampleof836participantsfromthe WisconsinRegistryforAlzheimer’sPreventionwithdataonpredictorsofT2D,30SNPsinthe SORL1andSORCS1genes,and4cognitivefactors.ThesevariableswereinputintoRF,amachine‐ learningalgorithmthatcalculatesimportancescoresbasedonthevarianceexplainedbyeach variableinamodelwhileallowingforinteractions.BecauseRFdoesnotspecificallyidentify interactingvariables,weusedanovelapproachthatidentifiesinteractionsbydetermininghow oftenapairofvariablesdescendstogetherinaRF.Rs7907690inSORCS1,andrs2282649and rs1010159inSORL1,appearedinthetop25descendantpairsforall4cognitivefactors,frequently pairedwithwaist‐hipratio,HOMA‐IR(ameasureofinsulinresistance),age,andphysicalactivity. Manyoftheinteractionsidentifiedwithdescendantpairsconsistedofdiscordantlyrankedpairs, withonevariablehavingahighimportancescoreandtheotherhavingalowimportancescore. TheseresultssuggestthatinteractionsbetweenSNPsassociatedwithADandT2Dandriskfactors forT2DmaycontributetotherelationshipbetweenADandT2Dandthatthedescendantpair methodcapturesinteractionsthatthestandardRFmethoddoesnot. Categories: Bioinformatics,Diabetes,Gene‐EnvironmentInteraction,MachineLearningTools, PsychiatricDiseases P114 StudyoFHumanMGPpromotervariantsinCADpatients:From Experimenttoprediction BitaSadatHosseini1,AbazarRoustazadeh2,MohammadNajafi3 1BiochemistryDepartment,IranUniversityofMedicalSciences,Tehran,Iran 2JahromUniversityofMedicalSciences,Jahrom,Iran 3BiochemistryDepartment,CellularandMolecularResearchCenter,IranUniversityofMedicalSciences, Tehran,Iran Background:MatrixGlaprotein(MGP)isknownasacalciumscavengerwithinsub‐endothelial spaceofvesselsandissuggestedtoreducetheriskofcoronaryarterydiseases.Inthisstudy,we comparedtheMGPpromoterhighminorallelefrequency(MAF)variantsandthechangesonthe predictedtranscriptionfactorelementsinpatientswithcoronaryarterydisease.Methods:TheMGP promotergenotypesandhaplotypesweredetectedbyARMS‐RFLPPCRtechniques.TheJaspar profiles(similarity>80)wereusedforscoringthepolymorphicvariantswithinthetranscription factorelements.Results:TheMGPpolymorphichaplotypesandgenotypeshadnotsignificant differencesbetweencontrolandpatientgroups(P=0.4andP=0.1respectively).Furthermore,the resultsshowedthatthegenotypeandhaplotypedistributionsoftheMGPpromoterhigh‐MAF polymorphisms,asconfirmedinthepredictionstudiesarenotsignificantlyassociatedwiththe coronaryarterydisease.Discussion:Thepredictionandpopulationresultsshowedthattheallele changeswithintheelementshavenotsignificantlyrelatedtothetranscriptionfactorscoresand stenosisofcoronaryarteries. Categories: Bioinformatics,CardiovascularDiseaseandHypertension,HaplotypeAnalysis P115 Anovelfunctionaldataanalysisapproachtodetectinggeneby longitudinalenvironmentalexposureinteraction PengWei1 1UniversityofTexasSchoolofPublicHealth Mostcomplexdiseasesarelikelytheconsequenceofthejointactionsofgeneticandenvironmental factors.Identificationofgene‐environment(GxE)interactionsnotonlycontributestoabetter understandingofthediseasemechanisms,butalsoimprovesdiseaseriskpredictionandtargeted intervention.Incontrasttothelargenumberofgeneticsusceptibilitylocidiscoveredbygenome‐ wideassociationstudies,therehavebeenveryfewsuccessesinidentifyingGxEinteractionswhich maybepartlyduetolimitedstatisticalpowerandinaccuratelymeasuredexposures.Whileexisting statisticalmethodsonlyconsiderinteractionsbetweengenesandstaticenvironmentalexposures, manyenvironmentalfactors,suchasairpollutionanddiet,changeovertime,andcannotbe accuratelycapturedatonemeasurementtimepoint.Thereisadearthofstatisticalmethodsfor detectinggenebytime‐varyingenvironmentalexposureinteractions.Hereweproposeapowerful functionallogisticregression(FLR)approachtomodelthetime‐varyingeffectoflongitudinal environmentalexposureanditsinteractionwithgeneticfactorsondiseaserisk.Capitalizingonthe powerfulfunctionaldataanalysisframework,ourproposedFLRmodeliscapableofaccommodating longitudinalexposuresmeasuredatirregulartimepointsandcontaminatedbymeasurement errors.WeusesimulationstoshowthattheproposedmethodcancontroltheTypeIerrorandis morepowerfulthanalternativeadhocmethods.Wedemonstratetheutilityofthisnewmethod usingdatafromacase‐controlstudyofpancreaticcancertoidentifythewindowsofvulnerabilityof lifetimebodymassindexontheriskofpancreaticcanceraswellasgeneswhichmaymodifythis association. Categories: Cancer,Gene‐EnvironmentInteraction P116 LeveragingFamilyStructurefortheAnalysisofRareVariantsinKnown CancerGenesfromWESofAfricanAmericanHereditaryProstateCancer CherylDCropp1,ShannonKMcDonnell2,SumitMiddha2,DanielleKaryadi3,StephenNThibodeau4, JanetStanford5,KathleenACooney6,JoanEBailey‐Wilson1,JohnDCarpten7,fortheInternational ConsortiumofProstateCancerGenetics 1ComputationalandStatisticalGenomicsResearchBranch,NationalHumanGenomeResearch Institute/NationalInstitutesofHealth,Baltimore,MD 2DepartmantofHealthScienceResearch,MayoClinic,Rochester,MN 3CancerGeneticsBranch,NationalHumanGenomeResearchInstitute/NationalInstitutesofHealth,Bethesda, MD 4DepartmantofLaboratoryMedicineandPathology,MayoClinic,Rochester,MN 5PublicHealthSciencesDivision,EpidemiologyProgram,FredHutchinsonCancerResearchCenter,Seattle, WA 6UniversityofMichiganComprehensiveCancerCenter,AnnArbor,MI 7IntegratedCancerGenomicsDivision,TranslationalGenomicsResearchInstitute(TGen),Phoenix,AZ “LeveragingFamilyStructurefortheAnalysisofRareVariantsinKnownCancerGenesfromWESof AfricanAmericanHereditaryProstateCancer”Prostatecancer(PRCA)isthesecondleadingcauseof cancerdeathinNorthAmericanmenanditdisproportionatelyaffectsAfricanAmerican(AA)men, whohavehigherincidenceandmortalityratescomparedtomenwithoutknownAfricanancestry. DisentanglingtheenvironmentalandgeneticfactorsinAAwithhereditaryPRCAremainselusive. TheAfricanAmericanHereditaryProstateCancerStudy(AAHPC)wasdevelopedtofurtherexplore theroleofgeneticsinthecausationofhereditaryPRCAinAA.AAHPCisinpartnershipwiththe InternationalConsortiumforProstateCancerGenetics(ICPCG)toconductcollaborativestudiesin PRCAgeneticsinmultiplexfamilies.AspartofanICPCGsequencingstudyof539affected individualsfrom366PRCApedigrees,weperformedwholeexomesequencingon16AAHPC affectedmenfrom12pedigrees.Post‐variantcallingqualitycontrolwasimplementedusingGolden HelixSVS8softwarewithfilterssetforremovalofvariantswithReadDepth<10,QualityScore< 20,QualityScore:ReadDepthRatio<0.5,CallRate<0.75.Variantswereadditionallyfilteredby minorallelefrequency(MAF)basedontheNHLBIESP650051‐V2exomesvariantfrequenciesfor AApopulationusingaMAFthresholdof1%.AfterQC,174,047variantsremainedforfurther analysis.Intheseanalyses,wefocusedon13knowncancercausinggenes.TwoAAHPCfamilieshad >1affectedmemberssequenced(3perfamily).Underadominantmodel,Family1shared14 variantsinthesegenesamongallaffectedswhileFamily2shared17variantsamongallaffected men.Additionalstudiesareunderwaytodetermineifpredicteddamagingvariantsinthesegenes aresharedinotherICPCGAAfamiliestohelpunravelthegeneticheterogeneityofhereditaryPRCA inAA. Categories: Cancer,DataMining,GenomicVariation,SequencingData P117 Associationofbreastcancerrisklociwithsurvivalofbreastcancer patients MyrtoBarrdahl1,FedericoCanzian2,SaraLindström3,IreneShui3,RudolfKaaks1,DanieleCampa1 1DivisionofCancerEpidemiology,GermanCancerResearchCenter(DKFZ),Heidelberg,Germany 2GenomicEpidemiologyGroup.GermanCancerResearchCenter(DKFZ),Heidelberg,Germany 3DepartmentofEpidemiology,HarvardSchoolofPublicHealth,BostonMA,USA Thesurvivalofbreastcancerpatientsislargelyinfluencedbytumorcharacteristics,suchasTNM stage,tumorgradeandhormonereceptorstatus.However,thereisgrowingevidencethatinherited geneticvariationmightinfluencethediseaseprognosisandresponsetotreatment.Severallinesof evidencesuggestthatpolymorphismsinfluencingbreastcancerriskmightalsobeassociatedwith breastcancersurvival.Withtheaimoffurtherexploringthispossibility,weselected35 polymorphismsassociatedwithbreastcancerriskandinvestigatedtheirroleinthediseaseover‐all survival.Westudied10,255breastcancerpatientsfromtheNationalCancerInstituteBreastand ProstateCancerCohortConsortium(BPC3)ofwhich1,379hadfatalbreastcancer.Wealso conductedameta‐analysisofalmost35,000patientsand5,000deaths,combiningresultsfromthe currentstudyandfromtheBreastCancerAssociationConsortium(BCAC).InBPC3weobserveda significantassociationbetweentheCalleleofLSP1‐rs3817198andreduceddeathhazard(HRper‐ allele=0.70;95%CI:0.58‐0.85;Ptrend=2.84×10‐4).Thisassociationwassupportedbythe observationthattheCalleleofthisSNPincreasestheexpressionofthetumorsuppressorcyclin‐ dependentkinaseinhibitor1C(CDKN1C).Themeta‐analysisshowedasignificantassociation betweenTNRC9‐rs3803662andanincreaseddeathhazard(HRMETA=1.21;95%CI:1.09‐1.35; P=2.47×10‐4comparinghomozygotesfortheminorallelevs.homozygotesforthemajorallele).In conclusion,weshowthatthereislittleoverlapbetweenSNPsassociatedwithbreastcancerriskand SNPsassociatedwithbreastcancerprognosis,withthepossibleexceptionsofLSP1‐rs3817198and TNRC9‐rs3803662. Categories: Cancer P118 Evidenceofgene‐environmentinteractionsinrelationtobreastcancer risk,resultsfromtheBreastCancerAssociationConsortium MyrtoBarrdahl1,AnjaRudolph1,NickOrr2,PaulPharoah3,PerHall4,MontserratGarcia‐Closas5, MarjankaSchmidt6,RogerMilne7,DougEaston8,JennyChang‐Claude1 1DivisionofCancerEpidemiology,GermanCancerResearchCenter(DKFZ),Heidelberg,Germany 2BreakthroughBreastCancerResearchCentre,InstituteofCancerResearch,London,UK 3CentreforCancerGeneticEpidemiology,DepartmentofPublicHealthandPrimaryCare,Universityof Cambridge,Cambridge,UK 4MedicalEpidemiologyandBiostatistics,KarolinskaInstitutet,Stockholm,Sweden 5SectionsofEpidemiologyandGenetics,InstituteofCancerResearchandBreakthroughBreastCancer ResearchCentre,London,UK 6DivisionofMolecularPathologyandDivisionofPsychosocialResearchandEpidemiology,Netherlands CancerInstitute,Amsterdam,TheNetherlands 7GeneticandMolecularEpidemiologyGroup,HumanCancerGeneticsProgramme,SpanishNationalCancer ResearchCentre(CNIO),Madrid,Spain 8DivisionofCancerEpidemiologyandGenetics,NationalCancerInstitute,NIH,Bethesda,Maryland,USA Severalnewsusceptibilityallelesforbreastcancer(BC)riskhavebeenidentifiedbytheBreast CancerAssociationConsortium(BCAC)throughimputationofgeneticdatato1000Genomesand fine‐mappingofknownsusceptibilityloci.Weinvestigatedwhethertheidentifiedsinglenucleotide polymorphism(SNP)associationsaremodifiedbyestablishedBCriskfactors.Weassessed multiplicativeinteractionbetween12BCriskfactorsand74SNPs,ofwhich54wereimputed(from 17knownregions)and29genotyped(in22regions).Weuseddatafromupto25,539invasiveBC casesand29,664controlsfrom21studiesinBCAC.Theriskfactorswere:ageatmenarche,parity, numberoffull‐termpregnancies(FTP),ageatfirstFTP,breastfeeding,BMI,height,oral contraceptiveuse,currentpostmenopausalhormoneuse(estrogenandestrogen‐progesterone), currentsmokingandcumulativelifetimealcoholintake.InteractionsbetweenSNPsandBCrisk factorswereevaluatedusinglikelihood‐ratioteststocomparelogisticregressionmodelswithand withoutinteractionterms.Allmodelswereadjustedforstudy,ageandancestryinformative principalcomponents.WefoundasuggestiveinteractionbetweenaSNPinthe9q31regionand currentsmoking(Pinteract=5.3×10‐5),whichwassignificantafterBonferronicorrectionofthe significancethreshold(P<5.6×10‐5).Inparticular,theG‐allelewasinverselyassociatedwithBCrisk amongsmokers(ORper‐allele:0.68,95%CI:0.57‐0.81,P=1.7×10‐5)butnotamongnon‐smokers (ORper‐allele:0.95,95%CI:0.89‐1.03,P=0.2).Inconclusion,thefindingsofourstudyprovide indicationsthattheassociationbetweencommongeneticvariantsandBCriskmayvaryacrossthe levelsoftheBCriskfactors. Categories: Cancer,Gene‐EnvironmentInteraction P119 Integrationofpathwayandgene‐geneinteractionanalysesreveal biologicallyrelevantgenesforBreslowthickness,amajorpredictorof melanomaprognosis AmauryVaysse1,ShenyingFang2,MyriamBrossard1,WeiVChen2,HamidaMohamdi1,EveMaubec1, Marie‐FrançoiseAvril3,ChristopherIAmos4,JeffreyELee5,FlorenceDemenais1 1INSERMU946,Paris,France;UniversitéParisDiderot,Paris,France; 2MDAndersonCancerCenter(MDACC),Houston,Texas,USA; 3HôpitalCochin,UniversitéParisDescartes,Paris,France 4GeiselCollegeofMedicine,DartmouthCollege,NewHampshire,USA 5MDAndersonCancerCenter(MDACC),Houston,Texas,USA Breslowthickness(BT),ameasureofinvasionofmelanomaintheskin,isamajorpredictorof melanomasurvival.Todate,thegeneticfactorsunderlyingBTarelargelyunknown.Weconducteda GWASofBTintheFrenchMELARISKstudy(966cases)andtheUSMDACCstudy(1546cases).We firstperformedsingle‐SNPanalysisthatwasfollowedbymulti‐markeranalysistocharacterize pathwaysandgene‐geneinteractionsassociatedwithBT.Pathwayanalysiswasbasedonthegene setenrichmentanalysis(GSEA)method,usingtheGeneOntology(GO)database.Allgenepairs withineachofthemelanoma‐associatedGOsweretestedforinteractionusingalinearregression model.SingleSNPanalysisofHapmap3‐imputedSNPsinMELARISKshowedevidenceforfiveloci thatreachedP<10‐5butnoneoftheseassociationswasreplicatedinMDACC,suggestingthe existenceofmanyvariantswithsmalleffect.IntheGSEAanalysis,onemillionimputedSNPswere assignedto22,000genes,whichwereassignedto316Level4‐GOcategories.ThreeGOcategories werefoundtobeenrichedingenesassociatedwithBT(FDR≤0.05inbothstudies):hormone activity,cytokineactivityandmyeloidcelldifferentiation.Atotalof61genesweredrivingthese pathways.Interestingly,expressionoffourofthesegenes(CXCL12,TNFSF10,VEGFA,CDC42)was reportedtobeassociatedwithmelanomaprogressionintumors.Cross‐geneSNP‐SNPinteraction analysiswithineachofthethreeidentifiedGOsshowedevidenceforinteractionforthreeSNPpairs (P≤10‐4inMELARISKandreplicationatP≤0.05inMDACC).Oneofthesegenepairs(SCINxCDC42, combinedP=2x10‐6)hasbiologicalrelevancesinceSCINandCDC42proteinsareinvolvedinthe actindynamicswithoppositeroles.Funding:INCa_5982 Categories: Cancer,Gene‐GeneInteraction,MultilocusAnalysis,Pathways,QuantitativeTraitAnalysis P120 JAG1polymorphismisassociatedwithincidentneoplasminasouthern Chinesepopulation Chor‐WingSing1,VivianWai‐YanLui1,Pak‐ChungSham1,KathrynChoon‐BengTan1,AnnieWai‐ CheeKung1,IanChi‐KeiWong1,BernardMan‐YungCheung1,JohnnyChun‐YinChan1,Ching‐Lung Cheung1 1TheUniversityofHongKong Aim:Jagged1(JAG1)isaligandofnotchreceptorsthatregulatescelldivision,differentiation,and survival.Over‐expressionofJAG1hasbeenlinkedtoincreasedriskofcancer.Wepreviouslyshowed thatrs2273061ofJAG1wasassociatedwithbonemineraldensity(BMD)usinggenome‐wide association,andtheSNPwasassociatedwithJAG1expressioninboneandbloodcells.We hypothesizedthatthisSNPhasassociationwithneoplasm.Methods:TheSNPrs2273061ofJAG1 wasgenotypedintwoindependentcohortswithouthistoryofneoplasmatbaseline.Thecohorts werefollowed(median10.8years)fordevelopmentofneoplasmusingelectronicmedicaldatabase oftheHongKongHospitalAuthority.AscertainmentofneoplasmwasbasedonICD9code140‐239. Coxproportionalhazardsregressionmodelsadjustedforage,sex,BMI,andlumbarspineBMDZ‐ scorewereusedforassociationanalysis.AUCwasusedtotestpredictiveaccuracyofthemodels. Result:Inthefirstcohort(n=731;80incidents;7620person‐year),minorallele(G)ofrs2273061 wassignificantlyassociatedwithneoplasm(HR=0.68;95%CI:0.47‐0.98).Theresultwasvalidated (HR=0.81;95%CI:0.66‐0.99)inreplicationcohort(n=1,885;241incidents;19966person‐year). Meta‐analysisshowedamoresignificantassociation(HR=0.78;95%CI:0.65‐0.93;p=0.005).AUCfor basicclinicalmodel(age+sex+BMI)inpredictingneoplasmwas0.618(95%CI:0.588‐0.648).The additionofrs2273061genotypetothebasicmodelincreasedAUCto0.635(95%CI:0.605‐0.665), andtheincrementwasstatisticallysignificant.Conclusion:JAG1polymorphismhasassociationwith incidentneoplasmHowever,furtherstudyisrequiredtoevaluateanyfunctionaleffectsof rs2273061ontumorformation. Categories: Cancer P121 Epigenome‐widemethylationarrayanalysisrevealsfewmethylation patterndifferencesbetweenhyperplasticpolypsandsessileserrated adenomas/polyps JingLi1,AngelineSAndrew1,AmitabhSrivastava2,JasonHMoore1 1InstituteforQuantitativeBiomedicalSciences,DartmouthCollege 2BrighamandWomen'sHospital Thecolorectal‘serratedpolyps’ariseviaaneoplasticpathwayandwerehistoricallynotconsidered withmalignantpotential.Majorsubtypesofserratedcolorectalpolyps,hyperplasticpolyps(HPs) andsessileserratedadenomas/polyps(SSA/Ps),areclassifiedbasedonmorphologicaldistinctions. RecentstudieshaveidentifiedSSA/Pasahigh‐risksubtypeofserratedcolorectalpolypsthatcan developintocolorectalcancer.OurgoalwastodeterminewhetherHPsandSSA/Pshavedistinct underlyingDNAmethylationsignatures.Toevaluatethesubtype‐specificDNAmethylationstatus, DNAsfrom35HPsand42SSA/PswereextractedandIlluminaInfiniumHumanMethylation450 BeadChiparrayswereusedtoprofilethemethylationstatusfor>485,000CpGloci.Principal componentanalysisrevealedthatthetopprincipalcomponents,whichaccountforthelargest amountofvariabilityofmethylationstatus,arenotsignificantlyassociatedwithsubtype(p=0.414). Also,linearmixed‐effectsmodelsshowedthatthemethylationpatternisnotsignificantlydifferent betweensubtypes,aftercontrollingforage,gender,polypsize,anatomicsideandbatch.Wealso comparedSSA/PsandHPsusingtheprobesthatmaptotheCIMPpanellociandfoundno statisticallysignificantdifferencesinmethylationstatusbymorphology.Comparingthenormalvs. serratedcolorectalpolypsrevealed18probeswithsignificantlydifferentmethylationlevelsbelow theBonferronithreshold(p=<1.06e‐7).Ourresultssuggeststhatdysregulatedmethylationis prevalent,involvinganumberofnon‐CIMPCpGsandlikelyoccursearlyinserratedneoplasia.The datadonotsupportthehypothesisthatSSA/PsandHPsariseviadifferentepigeneticpathways. Categories: Cancer,EpigeneticData,Epigenetics P122 Theeffectofbileacidsequestrantsontheriskofcardiovascularevents: Ameta‐analysisandMendelianRandomizationanalysis GuillaumePare1,StephanieRoss1,MatthewD'Mello1,SoniaSAnand1,JohnEikelboom1,AlexanderFR Stewart2,NileshJSamani3,RobertRoberts2 1McMasterUniversity 2UniversityofOttawa 3UniversityofLeicester Statinsareusedtolowerlowdensitylipoproteincholesterol(LDL‐C)buttheymaybepoorly toleratedorineffective.Bileacidsequestrants(BAS)acttoreducetheintestinalabsorptionof cholesterolbutprevioustrialswereunderpoweredtodemonstrateaneffectonclinicaloutcomes. Weconductedasystematicreviewandmeta‐analysisofrandomizedcontrolledtrials(RCTs)to assesstheeffectoftwoapprovedBAS,cholestyramineandcolesevelam,onplasmalipidlevels.We thenappliedtheprinciplesofMendelianRandomizationtoestimatetheeffectofBASonreducing theriskofcoronaryarterydisease(CAD)byquantifyingtheeffectofrs4299376(ABCG5/ABCG8), whichaffectstheintestinalcholesterolabsorptionpathwaytargetedbyBAS,onbothLDL‐Cand CAD.NineteenRCTswithatotalof7,021studyparticipantsmettheinclusioncriteria. Cholestyramine24g/dwasassociatedwitha23.5mg/dLreductioninLDL‐C(95%CI:‐26.8,‐20.2; N=3,806)andatrendtowardsreducedriskofCAD(OR:0.81,95%CI:0.70‐1.02;P=0.07;N=3,806) whilecolesevelam3.75g/dwasassociatedwitha22.7mg/dLreductioninLDL‐C(95%CI:‐28.3,‐ 17.2;N=759).Basedonthegeneticassociationofrs4299376witha2.75mg/dLdecreaseinLDL‐C anda5%decreaseinriskofCADoutcomes,weestimatedthatcholestyraminemaybeassociated withanORforCADof0.63(95%CI:0.52‐0.77;P=6.3x10‐6;N=123,223)andcolesevelamwithan ORof0.64(95%CI:0.52‐0.79,P:4.3x10‐5).Theseestimateswerenotstatisticallydifferentfrom previouslyreportedtrendsfromBASclinicaltrials(P>0.05).ThecholesterolloweringeffectofBAS canthusbeexpectedtotranslateintoaclinicallyrelevantreductionintheriskofCAD. Categories: CardiovascularDiseaseandHypertension,MendelianRandomisation P123 MendelianRandomisationstudyofthecausalinfluenceofkidney functiononcoronaryheartdisease PimphenCharoen1,UCLEBConsortium,Juan‐PabloCasas1,DorotheaNitsch1,FrankDudbridge1 1DeptNon‐communicableDiseaseEpidemiology,LondonSchoolofHygieneandTropicalMedicine,London, UK Kidneyfunctionisknowntocorrelatewithcoronaryheartdisease(CHD).Howeveritisnotyetclear whetherkidneyfunctionreflectsacausalpathwaybecausethisobservedassociationcoulddueto otherconfoundingfactors,suchasBMIandbloodpressure.ThereforeweappliedMendelian Randomisation(MR)whichallowsdisentanglingofcauseandeffectinthepresenceofpotential confounding,todeterminewhetherkidneyfunctionhascausalroletoCHD.Toourknowledge,this isthefirstMRstudytoinvestigatethecausalinfluenceofkidneyfunctiononCHD.Thelevelof kidneyfunctionwasmeasuredbyanestimatedglomerularfiltrationrate(eGFR).Toenhancethe statisticalpowerbyincreasingthesamplesizeupto200K,thesummarystatisticsofassociations betweengeneticvariantsandCHDfromourUCL‐LSHTM‐Edinburgh‐Bristol(UCLEB)Consortium werecombinedwiththeCARDIoGRAMplusC4DConsortiumwhichisavailablepublicly.Eighteen SNPspreviouslyreportedtobeassociatedwitheGFRwerethenestablishedasinstrumentswhere theircausaleffectscanbecombinedusingthemethodproposedbyBurgessetal.2013aswellasa moregeneralmodelwhichallowsflexiblescalingonanestimatedcausaleffect.Weobservedno significantevidenceofcausalinfluenceofeGFRonCHD.Thismaybeduetothelimitedexplanatory powerofourgeneticinstrument,despiteourlargesamplesize,butalsoimpliesthattheassociation observedbetweenkidneyfunctionandCHDcouldduetoconfoundingfactorsorreversecausation. Categories: CardiovascularDiseaseandHypertension,Causation,MendelianRandomisation P124 Sharedgeneticriskofmyocardialinfarctionandbloodlipidsusing empiricallyderivedextendedpedigrees:resultsfromtheBusselton HealthStudy GemmaCadby1,PhillipEMelton1,JennieHui2,JohnBeilby3,ArthurWMusk4,AlanLJames5,Joseph Hung6,JohnBlangero7,EricKMoses1 1CentreforGeneticOriginsofHealthandDisease,UniversityofWesternAustralia 2BusseltonPopulationMedicalResearchInstituteInc 3PathWestLaboratoryMedicineWA 4DepartmentofRespiratoryMedicine,SirCharlesGairdnerHospital 5DepartmentofPulmonaryPhysiologyandSleepMedicine,SirCharlesGairdnerHospital 6SchoolofMedicineandPharmacology,UniversityofWesternAustralia 7TexasBiomedicalResearchInstitute Quantitativeendophenotypesrelatedtocomplexdiseasesprovideincreasedpowerforgene localisationandidentificationcomparedwithdichotomousdiseasestatus.Inthisstudy,we employedempiricallyderivedidenticalbydescent(IBD)measurestoestimatetheheritabilitiesand geneticcorrelationsbetweenbloodlipidendophenotypes(HDL‐C,LDL‐Candtriglycerides)and myocardialinfarction(MI)in4671individualswhoattendedthe1994/95BusseltonHealthStudy (BHS).IBDestimateswerederivedfromgenome‐wideassociationdatausingLDAKsoftware.MI eventswereidentifiedfromhospitalmorbidityanddeathregistrydataobtainedfromtheWestern AustralianHealthDepartmentDataLinkageUnit.Heritabilityandgeneticcorrelationbetweentraits werecalculatedafteradjustingforsignificantcovariates(e.g.age,sex,lipidmedication,smoking status).Approximately75%ofthe4671individualswererelatedtoatleastoneotherBHS participant(uptoandincludingthirddegreerelatives).Between1970and2011,331individuals hadatleastoneMIevent.HeritabilityofHDL‐C,LDL‐Candtriglycerideswere0.54,0.48,and0.34, respectively(allP<0.001).HDL‐Candtriglyceridesbothshowedasignificantsharedgenetic correlationwithMIof‐0.43(P=0.01)and0.46(P=0.03),respectively.HDL‐C,LDL‐Cand triglycerideswerehighlyheritableintheBHSandsimilartoearlierreportedestimates, demonstratingtheviabilityofusingempiricallyderivedIBDs.HDL‐Candtriglyceridesbothshowed geneticcorrelationwithMI,suggestingthesearevaluableendophenotypesforCVD‐riskgene discovery. Categories: CardiovascularDiseaseandHypertension,Heritability P125 AnalysisofCase‐Base‐Controldesigns NajlaSElhezzani1,WicherPBergsma2,MikeWeal3 1King'scollegeLondonandKingSauduniversity 2TheLondonschoolofeconomics 3King'scollegeLondon Case‐controlstudiescompareindividualswithatraitofinterest(cases)withotherswhodon'thave it(controls).However,Inmanygeneticsassociationstudiesthecontrolgroupistakenasasample fromthepopulationwhereindividualshaveunknowntraitstatus(bases).Thisapproachappeared tobesuccessfulwhenthetraitisrare.However,iftheprevalenceishighthenusingthebasesasa setofcontrolswillleadtounreliableresultsaspoweriscompromisedinthiscase.Accordingly,we proposedthecase‐base‐controldesignwhichallowsthethreesampletypestobeusedinasingle analysis.Totestwethergenotypefrequenciesdifferbetweencasesandcontrolstakingintoaccount thebases,wederivedthescoretest.ThetestreducestoCochran‐ArmitagetestwhentheCBC reducestotheCC.Thescorestatisticsshowsagoodadherencetotheasymptoticdistribution.We investigatedthemaximumlikelihoodestimatesoftheunderlyingparametersanalyticallyand numericallyusingexpectation‐maximizationalgorithm.WederivedtheWald’sandlikelihoodratio tests.Wefoundthatusingmoderatesamplesizes,LRTwasslightlymorepowerfulthanothers, Howeverforlargesamplesthepowerofalltestsnotonlybecomessimilarbutalsoindependentof theprevalence.Finally,wecomparedtheCBCdesignwiththeusualcase‐controldesign.Wefound thatonlyiftheprevalenceiswell‐specifiedandtheproportionofcasesinthebasesisdifferentfrom thatintheexperiment(casesandcontrols),thentheCBCwouldprovidemorepowercomparedto theCC.Lookingatthecaseofhavingalargesetofbases,wefoundthatifprevalenceiswellspecified then,theoptimaldesignwillbegainedbyusingonlycasesifprevalenceislowandonlycontrolsifit ishigh. Categories: Case‐ControlStudies,MaximumLikelihoodMethods,PopulationGenetics,Prediction Modelling,SampleSizeandPower P126 PolymorphismsinHTR3A,CYP1A2,DRD4andCOMTandresponseto clozapineintreatment‐resistantschizophrenia:agene‐geneinteraction analysis RVeeraManikandan1,AntoPRajkumar2,LakshmikirupaSundaresan1,ChithraC1,AnjuKuruvilla1, AlokSrivastava1,PoonkuzhaliBalasubramanian1,KuruthukulangaraSJacob1,MollyJacob1 1ChristianMedicalCollege,Vellore,India 2AarhusUniversity,Aarhus Variableresponsestoclozapineinpatientswithschizophreniaarecomplexandpoorlyunderstood phenomena.Thefindingsofpharmacogeneticstudiesontheuseofthisdrugarepoorlyreplicated. Effectsofindividualpolymorphismshaverarelyprovedexplanatory.Onepossibleexplanationmay bemulti‐factorialinvolvementofgeneticandenvironmentalinfluences.Theaimofthisstudyisto evaluatetheroleofpossiblesecondandthirdordergeneticinteractions(epistasis)between polymorphismsinCYP1A2(*1F,*1D,*1E,*1C),HTR3A(rs1062613andrs2276302),DRD4(120‐bp duplication)andCOMT(Val158Met)genesoverclinicalresponse,serumlevelsandadverseeffects ofclozapineinpatientswithtreatment‐resistantschizophrenia(TRS).Themodel‐based multidimensionalityreduction(MB‐MDR)methodhasrecentlybeenshowntobesuperiorto traditionalparametricregressionmethodsindetectinghigherordergene‐geneinteractions.We usedthisapproachinasampleof93patientswithTRStoexploretheepistaticeffectsofthe polymorphismsofinterestonclinicalphenotypesofclozapine.TheMB‐MDRanalysisshoweda significantinteractionbetweenVal158Met,CYP1A2*1Dandrs1062613polymorphismsandclinical responsetoclozapine(p=0.002).Inaddition,multiplesignificantsecondandthirdorder interactionswereobservedwithregardtotheadverseeffectsofclozapine(p<0.05).Allthereported interactionswerefoundtobesignificantafter1000permutations.Theobservedmultiplesignificant interactionsemphasizestheimportanceofepistaticanalysisinpharmacogeneticstudiesof clozapine.Suchanapproachmaybeusefulinpredictingapatient’sresponsetoclozapinetherapy. Categories: Case‐ControlStudies,Gene‐GeneInteraction,GenomicVariation,MultifactorialDiseases, MultilocusAnalysis,MultivariatePhenotypes,PopulationGenetics,PsychiatricDiseases,Quantitative TraitAnalysis P127 Jointmodelingoflongitudinalandtime‐to‐eventphenotypesingenetic associationstudies:strengthsandlimitations OsvaldoEspin‐Garcia1,2,ZhijianChen2,AndrewDPaterson3,ShelleyBBull1,2 1DallaLanaSchoolofPublicHealth,UniversityofToronto 2Lunenfeld‐TanenbaumResearchInstituteofMountSinaiHospital 3TheHospitalforSickChildren;DallaLanaSchoolofPublicHealth,UniversityofToronto Genome‐wideassociationstudydesignsthatevaluatemultipleendpointsinobservationalsettings arebecomingmorecommon.Whileoftentimesexaminationofsingleoutcomesissufficientforthe purposesofthestudy,therearecaseswherejointanalysisisinformativeinthesimultaneous evaluationofgeneticassociationwithmultipleendpoints.Inparticular,thestudyoftime‐to‐event andlongitudinaldataarisesnaturallyincohortstudies,buttheuseofjointanalysishasremained ratherunexploredingeneticassociation.Themotivationforjointanalysiscomestolightunder differentscenarios.TheobjectivemaybetodistinguishwhetheraSNPhasadirectassociationwith atime‐to‐eventphenotype,and/oranindirectassociationthroughanintermediatequantitative trait(QT).Thiscanbethoughtofasaformofcausalinference:iftheSNPassociationwithtime‐to‐ eventisnegligiblewhentheQTiswellmodelledinthesurvivalanalysis,thenitcannothaveadirect causaleffectontimetoevent.Alternatively,geneticassociationwithaQTmaybeofprimary interest,butaclinicaleventcausesinformativecensoringofthetrait.Inthiswork,wefocusonthe jointmodelproposedbyWulfsohnandTsiatis(1997)andwidelyusedinclinicalstudiesofCD4+ countsandtimetoAIDS.Wediscussestimationandcausalinterpretationofgeneticassociation parametersinthejointmodel,examinestatisticalpropertiessuchasefficiencyandbiasoftheeffect estimatescomparedtotheirsingle‐outcome‐analysiscounterpart,andquantifypotential improvementinpowertodetectgeneticassociation.Inaddition,wereviewsoftware implementationandcomputationalfeasibilityinthecontextofgenome‐wideanalysis. Categories: Causation,MaximumLikelihoodMethods,MultivariatePhenotypes,QuantitativeTrait Analysis P128 Perinataldepressionandomega‐3fattyacids:AMendelian randomisationstudy HannahSallis1,2,ColinSteer3,LaviniaPaternoster1,GeorgeDaveySmith1,JonathanEvans2 1MRCIntegrativeEpidemiologyUnit,SchoolofSocialandCommunityMedicine,UniversityofBristol,UK 2CentreforAcademicMentalHealth,SchoolofSocialandCommunityMedicineUniversityofBristol,UK 3CentreforChildandAdolescentHealth,SchoolofSocialandCommunityMedicine,UniversityofBristol,UK IntroductionTherehavebeennumerousstudiesinvestigatingtheassociationbetweenomega‐3 fattyacids(FAs)anddepression,withmixedfindings.Weproposeanapproachwhichislargelyfree fromissuessuchasconfoundingorreversecausalitytoinvestigatethisrelationshipusing observationaldatafromapregnancycohort.MethodsTheAvonLongitudinalStudyofParentsand Children(ALSPAC)cohortcollectedinformationonFAlevelsfromantenatalbloodsamplesand depressivesymptomsatseveraltimepointsduringpregnancyandthepostnatalperiod. ConventionalepidemiologicalanalyseswereusedinadditiontoaMendelianrandomisation(MR) approachtoinvestigatetheassociationbetweenlevelsoftwoomega‐3FAs(docosahexaenoicacid (DHA)andeicosapentaenoicacid(EPA))andperinatalonsetdepression,antenataldepressionand postnataldepression.WeconstructedaweightedalleleriskscoreusingindependentSNPs identifiedasassociated(p<5x10‐6)inarecentgenome‐wideassociationstudyofomega‐3FAsby theCHARGEconsortium.ResultsandDiscussionWeakevidenceofapositiveassociationwithboth EPA(n=2377;OR=1.07;95%CI:0.99‐1.15)andDHA(n=2378;OR=1.08;95%CI:0.98‐1.19)with perinatalonsetdepressionwasfoundusingamultivariablelogisticregressionadjustingforsocial classandmaternalage.However,thestrengthofassociationwasfoundtoattenuatewhenusingan MRanalysistoinvestigateDHA.Inconclusion,wefoundweakevidenceofapositiveassociation betweenomega‐3FAsandperinatalonsetdepression.However,withoutconfirmationfromtheMR analysis,weareunabletodrawconclusionsregardingcausality. Categories: Causation,MendelianRandomisation,PsychiatricDiseases P131 AGene‐EnvironmentInteractionBetweenCopyNumberBurdenand OzoneExposureProvidesaHighRiskofAutism DokyoonKim1,HeatherVolk2,SarahPendergrass1,MollyAHall1,ShefaliSVerma1,Santhosh Girirajan1,IrvaHertz‐Picciotto3,MarylynRitchie1*,ScottSelleck1 1DepartmentofBiochemistry&MolecularBiology,thePennsylvaniaStateUniversity,UniversityPark,PA 2DepartmentofPreventiveMedicine,KeckSchoolofMedicine,UniversityofSouthernCalifornia,LosAngeles, CA;DepartmentofPediatrics,Children’sHospitalLosAngeles,UniversityofSouthernCalifornia,LosAngeles,CA 3DepartmentofPublicHealthSciences,UniversityofCalifornia,Davis,Davis,CA Autismisadisorderofneuraldevelopmentasacomplexgenetictraitwithahighdegreeof heritabilityaswellasadocumentedsusceptibilityfromenvironmentalfactors.Therelative contributionsofgeneticfactors,environmentalfactorsandtheinteractionsbetweenthemtoarisk ofautismarepoorlyunderstood.Whilemostautismrelatedcopynumbervariations(CNV) identifiedtodate,eachwithasubstantialrisk,arehighlypenetrantforthisdisorder,theyconstitute rareeventscontributingmodestlytotheoverallheritability.Genome‐wideanalysisofCNVhas demonstratedacontinuousriskofautismassociatedwiththelevelofcopynumberburden, measuredastotalbasepairsofduplicationordeletion.Inaddition,environmentalexposuretoair pollutantshasbeenidentifiedasariskfactorfordevelopingautism,includingparticulatepollutants andnitrogendioxide.WehaveexaminedtherelativecontributionofCNV(measuredastotalbase pairsofcopynumberburden),exposuretoairpollution,andtheinteractionbetweenairpollutant levelsandcopynumberburdeninapopulationbasedcase‐controlstudy,ChildhoodAutismRisks fromGeneticsandEnvironment(CHARGE).Asignificantandsizableinteractionwasfoundbetween duplicationburdenandozoneexposure(OR2.78,P<0.005),greaterthanthemaineffectforeither copynumberduplication(OR2.41,95%CI:1.36~4.82)orozonealone(OR1.19,95%CI: 0.75~1.89).Theoverallimplicationofourfindingsisthatsignificantgene‐environmentinteraction associatedwithautismexistsandcouldaccountforaconsiderablelevelofheritabilitynotdetected byevaluatingDNAvariationalone. Categories: CopyNumberVariation,Gene‐EnvironmentInteraction P132 GeneRegulatoryNetworkinferenceviaConditionalInferenceTreesand Forests KyryloBessonov1,FrancescoGadaleta1,KristelVanSteen1 1UniversityofLiege Treesareclassicaldatastructuresallowingeffectivelyclassifyingandpredictingresponses.Dueto versatilityandhighperformanceinclassificationandprediction,thereexistplentyoftree‐based methodsincludingpopularConditionalInferenceTree(CIT)andForests(CIF),RandomForests (RF),RandomizedTrees(RT),randomizedC4.5,etc.Inthisworkweassessedtheperformanceof CITandCIFmethodsincorrectgeneregulatorynetwork(GRN)predictionfromexpressiondataby usingreferencegoldenstandardbuiltfromrealtranscriptionalregulatorynetworkofE.coli.The syntheticmicroarrayexpressiondatawasobtainedfromDREAM4challenge.Theperformanceof eachnetworkinferencemethodwasassessedviaAreaUnderReceiverOperatingCharacteristic (AUROC)andAreaUnderPrecisionRecall(AUPR)metrics.OurpreliminaryresultsshowthatCIT andCIFsuccessfullypredictdirectedGRNsatacceptableperformanceratesalthoughnotoptimal (thebestAUROCat0.68andAUPRat0.13forCIFandthebestAUROCat0.58andAUPRat0.18for CIT).Surprisinglybyusingthecurrentaggregationschemeoffeatureimportancethatprefers featureswiththehighestnumberofobservations,asingleCITwasabetterperformercomparedto CIFsinall5networks.Nevertheless,theCIFsshowedanoverall10%improvementinAUROC.A singleCIThas24%andCIFshave27%loweroverallperformancecomparedtothebestperformer ofDREAM4ChallengebasedoncumulativeareasofPRandROCcurves.Weplantotestother featureimportanceaggregationtechniquesinasingletreeandintreeensemblesinorderto outperformthetopDREAM4algorithms.Inadditiontheeffectsofexpressiondatastandardization tounitvariancewillbepresented.Infuture,thedevelopedCIFframeworkwillbeusedtoperform dataintegrationanalysisofmulti‐omicsdatasets. Categories: DataIntegration,Gene‐GeneInteraction,GeneExpressionArrays,GeneExpression Patterns P133 PREDICTINGTHEGENETICRISKFORCOMPLEXDISEASES:CHOOSING THEBESTPOLYGENICRISKSCOREFORTYPEIIDIABETES KristiLäll1,2,KristaFischer1,ReedikMägi1,TõnuEsko1 1EstonianGenomeCenter,UniversityofTartu 2InstituteofMathematicalStatistics,UniversityofTartu Weassessthepracticalvalueoftheresultsfromlarge‐scalegenome‐wideassociationstudies (GWAS)inpersonalisedriskpredictionforType2Diabetes(T2D).Alargenumberofassociated variants(SNPs)acrossthegenomehasbeenidentified,eachhavingarelativelyweakeffectonthe T2Drisk.Thismotivatestheuseofpolygenicriskscores,definedasweightedsumsofriskallele frequencies.Wediscussdifferentoptionsofconstructingsuchscoresinpracticeandstudytheir advantagesanddisadvantages.Themainselectioncriterionforamarkertobeincludedinthescore, isitssignificance(p‐value)intheGWASmeta‐analysis,whereastheestimatedlogisticregression coefficientsareusedasweights.Mostoften,onlythegenome‐widesignificantmarkers(p<5*10‐8) areusedinsuchscoresatthemoment.Somestudies,however,proposeincludingalargernumber ofindependentSNPs,settingthep‐valuethresholdintherange0.1..0.5orincludingallavailable markers.DifferentversionsofpolygenicriskscoresforTypeIIDiabetes(T2D)willbeconstructed forthecohortoftheEstonianBiobank.Wewillshowthatincreasingthenumberofmarkersinthe polygenicriskscoreforT2Dimprovesthepredictiveabilityuntilacertainp‐valuethreshold.In addition,asignificantinteractioneffectbetweentheoptimalpolygenicriskscoreandBodyMass Index(BMI)ontheprevalenceofT2Disdetected.BasedonROC‐andreclassificationanalysiswe concludethatmostadequateriskpredictionshouldaccountforage,BMIandpolygenicriskscore, whereasthepredictiveabilityofthepolygenicriskscorediffersacrossdifferentBMIcategories. Categories: Diabetes P134 Epigenome‐wideassociationwithsolublecelladhesionmoleculesamong monozygotictwins YanVSun1,JackGoldberg2,DeanJones3,ViolaLVaccarino1 1EmoryUniversityRollinsSchoolofPublicHealth,Atlanta,GA,USA 2UniversityofWashingtonSchoolofPublicHealth,Seattle,WA,USA 3EmoryUniversitySchoolofMedicine,Atlanta,GA,USA Inflammationplaysacriticalroleinthepathogenesisofcardiovasculardisease.Epigenetic mechanisms,includingDNAmethylation(DNAm),havebeenshowntobecriticalintheregulation ofinflammatorygenes,andcanbeinfluencedbyinflammation.Thesolubleformofcelladhesion molecules,includingvascularadhesionmolecule1(sVCAM1),intercellularadhesionmolecule1 (sICAM1),andP‐selectin(sP‐selectin),areestablishedbiomarkersforinflammationandendothelial function,andhavebeenlinkedtocardiovascularevents. Toidentifyepigeneticmarkersassociatedwithinflammationandendothelialfunction,we conductedamethylome‐wideassociationstudyofperipheralbloodcellsfrom140monozygotic (MZ)middle‐agedmaletwinsfromtheEmoryTwinStudy.Usingtworandomlyselectedsubsets consistingofunrelatedsubjects,weidentifiedandreplicated69and23DNAmsitessignificantly associatedwithsVCAM1,andsICAM1respectively,adjustedformultipletesting,butnoneforsP‐ selectin.All23sICAM1‐associatedDNAmsiteswerealsoassociatedwithsVCAM1,includingsiteson genesANKRD11,KDM2B,CAPS,CUX1,andHLA‐DPA1.TwooftheseDNAmsites,locatedonUNC5D andTMEM125,werealsosignificantcomparingMZtwinswhowerephenotypicallydiscordantfor bothsICAM1(P=1.79×10‐7,2.78×10‐6)andsVCAM1(P=1.70×10‐9,1.71×10‐7).Theseresults suggestthatsVCAM1andsICAM1,butnotsP‐selectin,maysharecommonpathophysiologyin inflammationandendothelialfunctionviaanepigeneticmechanism.Inaddition,theepigenetic associationwithinflammationcanbedrivenbyunsharedenvironmentalexposures. Categories: EpigeneticData,Epigenetics P135 Genapha/dbASM:webbasedtoolstoinvestigateallele‐specific methylation GeorgeEllis1,BiLingChen1,KevinUshey1,DeniseDaley1 1UniversityofBritishColumbia Asinterestinstudyingallele‐specificmethylation(ASM)andit'sassociationwithcommoncomplex diseasesgrows,thereisaneedforaresourcethatstoresandcatalogsSNPsandregionsthat demonstrateallelespecificmethylation,analogoustoNCBI'sdbSNP.Additionally,asASMisa regulatorymechanismthatmaybeassociatedwithhitsfromgenome‐wideassociationstudies (GWAS),researchersneedasuiteoftoolstohelpthemevaluatetherelationshipbetweenGWAShits andASM.Tofacilitatetheseinvestigations,wehavecreatedanewwebresourcecalleddbASM, hostedontheGenaphawebserver(www.genapha.ca).TheaimofdbASMistwofold:1.Curatefrom theliteratureapublicly‐accessibledatabaseofknownsitesofASM.2.Provideresearcherswitha web‐basedplatformoftoolsforexploringASManddeterminingregionsofinterest.Wewillpresent thedbASMresourceincludingdetailsontheunderlyingdatabaseconstructionanddatasets,in additiontothewebtoolsandexampleworkflows.Thewebtoolsthatarecurrentlyavailableare: GWASCatalogSNPSearch,ASMSNPSearch,SNPCounter,MethylationPlotsGeneration,and SequenceViewer.GWASCatalogSNPSearchallowsbrowsingthroughNHGRI'sCatalogofPublished Genome‐WideAssociationStudiesbyphenotypeandfilteringGWASSNP'sbasedontheirrelationto suspectedsitesofASM.Forexample,rs11742570isassociatedwithinflammatoryboweldisease (p=2.0E‐82)anddemonstratesASM.ASMSNPSearchsupportsfindingSNP'sbasedon:ASMstatus orinterrogability;locationcomparedtogenes,achromosomalregion,orotherSNP's;andfiltering bypopulationminorallelefrequenciesandsamplesize.SNPCounterusesasynchronousJavaScript callstothedatabasetoprovidereal‐timecountsoftypesofSNP'sinuser‐selectedregionsof chromosome.MethylationPlotsGenerationisacalculatesSNPcorrelationstratifyingbygenotype withCpGsitemethlyationpatterns,similartoepigenomewideassociationstudies(butwithout diseasestatus),usingCEPHHapMapsamplesandgenotypesandmethylationassaysonthesesame samplescompletedontheIllumina27Karray.SequenceViewerdisplaysSNP'sinthehuman referencegenome(basedcurrentlyonGRCh37.p10anddbSNPbuild137)withannotationsshowing ASMSNP'sandregionsofinterrogabilityviaMSREcutsitesforenzymes:HpyCH4IV,AciI,HhaI,and HpaI.Thesetoolsareallfreelyavailableforuseat:http://genapha.icapture.ubc.ca/asm/. Categories: Epigenetics P136 Agene‐basedmethodforanalysisofIllumina450Kmethylationdata CeliaMTGreenwood1,2,KathleenKleinOros1AureliaLabbe3,StephanBusche4,JohnLambourne4, ChristianAPineau5,6,SashaBernatsky5,6,InesColmegna5,6,AntonioCiampi3,TomiPastinen7,Marie Hudson1,5 1LadyDavisInstituteforMedicalResearch,JewishGeneralHospital 2McGillUniversity,Montreal,QC,Canada 3DepartmentofEpidemiology,BiostatisticsandOccupationalHealth,McGillUniversity 4McGillUniversityandGenomeQuebecInnovationCentre,McGillUniversity 5DepartmentofMedicine,McGillUniversity,Montreal,QC,Canada 6ResearchInstituteoftheMcGillUniversityHealthCentre 7DepartmentofHumanGenetics,McGillUniversity TheepigeneticeffectsofDNAmethylationplayacriticalroleinregulatinggeneexpressionin humanhealthanddisease.TheIllumina450Kmethylationarrayallowsthequantificationof methylationlevelsatover480,000CpGsitesthroughoutthegenome.Thelargenumberofprobes andtheinherentcorrelationstructureamongnearbyprobesmakeitworthconsideringmultiple‐ probeanalyses.Hereweproposearegion‐basedmethodtoincreasepowerindetectingpatternsof differentialmethylation,andwecomparetounivariateanalysesinasampleofpatientswith systemicautoimmunerheumaticdiseasesSARDS).Aspartofanongoingprogramofresearchon epigeneticsignaturesofSARDS,werecruitedthefollowingsubjects:seropositiverheumatoid arthritis(n=12);systemicsclerosis(n=17);andsystemiclupuserythematosus(n=12).Illumina 450Kmethylationdatawasobtainedoncell‐sortedCD4+TlymphocytesandCD14+monocytes fromallpatientsatbaseline.Similarcellsubsetswereretestedinagroupofpatientsthatreceived Methotrexatetreatment.Thedatawastransformedusingtwoalternativemethods,alogit transformationandabetaquantiletransformationtostabilizevariances.Weperformedprobeby probeunivariatetestsusingbeta‐distributionregressions.Forthegenebasedtests,wefitsparse principalcomponentmodelsusingallprobeswithin5kbofgeneboundaries.Wethentestedfor associationbetweenthefirstfewPCsandcelltype/diseasestatus.Gene‐basedanalysismayhave increasedpowertodetectsubtlechangesinmethylationpatternsacrossgenomicregions.Thisset ofdataprovidesauniqueopportunitytostudydiseasealterationsinmethylationdataun‐ confoundedbycelltypedifferences. Categories: Epigenetics,MultivariatePhenotypes P137 Takeresearchtothenextlevelwithsecondarydataanalyses:Fine‐ mappingthespecificlanguageimpairmentgene WilliamCLStewart1,ChristopherWBartlett1 1TheResearchInstituteatNationwideChildren'sHospital MappingthegenemutationsresponsibleformostsimpleMendeliandisorderswasamajorstep forwardinthefieldsofHuman&MedicalGenetics.However,asincredibleasthemathematicaland statisticaltoolsthatfacilitatedthisachievementwere,amorepowerfulcollectionofmethodsis neededtomapthemajorgenesthatinfluencecommon,complexdisease.Tothisend,wedeveloped whatmaybethemostpowerful,integratedsuiteofstatisticalgeneticssoftwaretodate.Oursuiteis designedspecificallyforthesecondaryanalysesofexistinggeneticdata,althoughtheanalysisof newlyacquireddataiseasilyperformed.Themethodswithinoursuiteare(1)optimizedforparallel computing;(2)rootedinstatisticaltheorywithsubstantialgainsforlargesamples;(3)canintegrate linkage,case‐control,andfamily‐basedassociationwithgeneexpressiondata;and,(4)interrogate bothcopynumberandsinglenucleotidevariants.Theresultinghigh‐speed,mathematically rigorous,andsynergisticcapabilitiesofoursuitearelikelytodefinethenext‐generationofmethods development.Asaproofofprinciple,weappliedtwoprogramsinoursuite:EAGLETandPOPFAM tothesecondaryanalysisoffourlargefamiliessegregatingaspecificlanguageimpairmentgeneon chromosome13.WefoundthatEAGLETreducedthesizeofthecandidateregionby5megabases, andthatPOPFAM—whichincorporatesinformationfrommatchedcontrolsandreferencessamples, increasedourabilitytodetectassociatedvariantsbeneaththelinkagepeak.Overall,thisshould significantlyaidre‐sequencingeffortsaswecloseinonthecausalalleles. Categories: FineMapping,LinkageAnalysis,LinkageandAssociation,MarkovChainMonteCarlo Methods,MaximumLikelihoodMethods,MultilocusAnalysis P138 DetectionofGene‐GeneInteractioninAffectedSibPairsAllowingfor Parent‐of‐OriginEffects Chih‐ChiehWu1,SanjayShete2 1NationalChengKungUniversity 2MDAndersonCancerCenter Genome‐wideassociationstudieshavediscoveredseveralhundredgeneticvariantsassociatedwith commondiseases,whichinmostsituationsexplainasmallfractionoftheheritability.Gene‐gene interactionscanplayanimportantroleindiseasesusceptibilityandmayaccountforsomeofthe missingsusceptibility.Parent‐of‐origineffectsrefertothedifferentialexpressionsofagene betweentwoparentalchromosomesandhavebeenincreasinglyobservedinmammals.The developmentofstatisticalmethodsisimportantandneededthatarecapableofcapturingjoint actionsofindividualgeneticcomponentsunderlyingthediseasesusceptibilityandallowforparent‐ of‐origineffects.Here,weextendedourpreviousallele‐sharingmethodandpresented3 mathematicaltwo‐locusmodelsincorporatingparent‐of‐origineffects:additive,multiplicative,and generalmodels.Ourmethodsaremodel‐freebasedonallelicidentity‐by‐descentsharingbyaffected sibpairs.Weproposetheuseoftwo‐locusscoremethodtoassessthegene‐geneinteractioneffects usingaffectedsibpairsinthepresenceofparent‐of‐origineffects. Categories: Gene‐GeneInteraction P139 StudyDesignsforPredictiveBiomarkers AndreasZiegler1 1UniversityofLübeck,InstituteofMedicalBiometryandStatistics Biomarkersareofincreasingimportanceforpersonalizedmedicine,includingdiagnosis,prognosis andtargetedtherapyofapatient.Examplesareprovidedforcurrentuseofbiomarkersin applications.Itisshownthattheiruseisextremelydiverse,anditvariesfrompharmacodynamicsto treatmentmonitoring.Theparticularfeaturesofbiomarkersarediscussed.Beforebiomarkersare usedinclinicalroutine,severalphasesofresearchneedtobesuccessfullypassed,andimportant aspectsofthesephasesareconsidered.Somebiomarkersareintendedtopredictthelikelyresponse ofapatienttoatreatmentintermsofefficacyand/orsafety,andthesebiomarkersaretermed predictivebiomarkersor,moregenerally,companiondiagnostictests.Usingexamplesfromthe literature,differentclinicaltrialdesignsareintroducedforthesebiomarkers,andtheirprosand consarediscussedindetail. Categories: Gene‐EnvironmentInteraction,GeneticDataforClinicalTrialDesign P140 DoestheFTOgeneinteractwiththesocio‐economicstatusontheobesity developmentamongyoungEuropeanchildren?ResultsfromtheIDEFICS study RonjaForaita1,FraukeGünther1,WenckeGwozdz2,LuciaAReisch2,PaolaRusso3,FabioLauria3, AlfonsoSiani3,ToomasVeidebaum4,MichaelTornaritis5,IrisPigeot1,onbehalfoftheIDEFICS consortium 1LeibnizInstituteforPreventionResearchandEpidemiology‐BIPS,Bremen,Germany 2CopenhagenBusinessSchool,DepartmentofInterculturalCommunicationandManagement,Frederiksberg, Denmark 3NationalResearchCouncil,InstituteofFoodScience,EpidemiologyandPopulationGenetics,Avellino,Italy 4NationalInstituteforHealthDevelopment,DepartmentofChronicDiseases,Tallinn,Estonia 5ResearchandEducationInstituteofChildHealth,Strovolos,Cyprus Varioustwinstudiesrevealedthattheinfluenceofgeneticfactorsonpsychologicaldiseasesor behaviorismoreexpressedinsocio‐economicallyadvantagedenvironments.Otherstudies predominantlyshowaninverserelationbetweensocio‐economicstatus(SES)andchildhood obesityinwesterndevelopedcountries.TheaimofthisstudyistoinvestigatewhethertheFTOgene interactswiththesocio‐economicstatus(SES)onchildhoodobesityinasubsampleoftheIDEFICS cohort(N=4406).Astructuralequationmodel(SEM)isappliedwiththelatentconstructsobesity, dietaryhabits,physicalactivityandfitnesshabits,andparentalSEStoestimatethemaineffectsof thelatterthreevariablesandaFTOpolymorphismonobesity.Further,amultiplegroupSEMisused toexplorewhetheraninteractioneffectbetweenthesinglenucleotidepolymorphismrs9939609 withintheFTOgeneandSESexists.Overallmodelfitwasinconsistent(RMSEA=0.05;CFI=0.79). SignificantmaineffectsareshownforSES(standardizedβs=‐0.057),theFTOhomozygousrisk genotypeAA(βs=0.177)andphysicalactivityandfitnesshabits(βs=‐0.113).Theexplainedvariance ofobesityisabout9%.ThemultiplegroupSEMshowsthatSESandFTOinteractintheireffecton childhoodobesity(Δχ2=7.3,df=2,p=0.03)insofaraschildrencarryingtheprotectiveTTgenotype aremoresusceptibletoafavorablesocialenvironment. Categories: Gene‐EnvironmentInteraction P141 IdentificationofClustersinNetworkGraphsbyaCorrelation‐based MarkovClusterAlgorithm MartinLJäger1,RonjaForaita1 1LeibnizInstituteforPreventionResearchandEpidemiology‐BIPS,Bremen,Germany Acommongoalingeneexpressionanalysisistoidentifygroupsofgeneswithcorrelating expressionlevels.TheMarkovClusterAlgorithm(MCL)1isamethodtoidentifysuchclustersin undirectednetworkgraphs.Itconvertsthegraph’sadjacencymatrixintoaprobabilitymatrixwhich isthenexpandedandinflateduntilitconverges.Clusterscanbededucedfromtheresulting equilibriumstatematrix.However,theMCLconsidersassociationsbetweengenesonlyina dichotomousmanner.Hence,ourobjectiveistoexaminewhethertheMCLbasedonthepartial correlationidentifiesmorereasonableclusters.Asimulationstudyconsistingofthreedifferently sizedgeneexpressionnetworksandsixtypesofclustersiscarriedout.Thesetypesofclustersdiffer insize,numberofclustersexisting,underlyingdistributionandstructure.Eachclustertypeis modelledinageneexpressionnetworkconsistingof100observationsand100,500and1000 genes,respectively.Weconduct1000replicationsforeachcombinationofclustertypeandnetwork size.Theperformanceofthepartialcorrelation‐basedMCLiscomparedtotheadjacency‐basedMCL aswellastok‐meansclusteringandPART(PartitioningAlgorithmbasedonRecursive Thresholding)2whichareappliedusingthegapstatistic3.TheadjustedRandindex4isusedto assesstheextenttowhichclustersmatchthetrueclustersandtocomparethealgorithmsamong eachother.References:[1]VanDongen.PhDthesis,2000,UniversityofUtrecht.[2]Nilsenetal.Stat ApplGenetMolecBiol,2013,12(5):637‐652[3]Tibshiranietal.JRStatSocB,2001,63(2):411‐ 423[4]Hubert&Arabie.JClassif,1985,2(1):193‐218 Categories: GeneExpressionPatterns P142 Developnovelmixturemodeltoestimatethetimetoantidepressant OnsetofSSRIsandthetimingeffectsofkeycovariates YinYao1,MengYuanXu1,WeiGuo1 1NationalInstitutesofMentalHealth Longitudinaldatasetsondrugonset—whichhaveonlyrecentlybecomeavailableforresearch— requiremultiple‐pointmeasurements.Wesoughttodevelopastatisticalmodelcapableofanalyzing longitudinaldatawithtippingpoints—specifically,thepointintimewhenatherapeuticdrugbegins totakeeffect.Wehavetermedthisnovelmethodthe‘mixturemodel’.Totakeunderlyingdriving factorsintoaccount,wealsotestedtheassociation(s)betweentimeofonsetandpotential underlyingfactors.Thenewmixturemodelproposednotonlymodelsadrugonsetbutalsotestsits associationswithinfluentialvariablessuchasgender,age,anddiseasesubtype.Inordertoestimate timeofonset,dataweredividedintothreestages:1)drugnaïvestate;2)drugonset;and3) identifiabledrugeffects.Inadditiontoestimatingwhenonsetoccurs,ourproposedstatisticalmodel takesintoaccountanyassociationswithpotentiallyinfluentialfactors.Weconductedfour simulationstudiestotestthefeasibilityofournewmethod,andalsoappliedittoreal‐worlddata fromtheSTAR*Dstudy.Themixturemodelidentifiedtheeffectofthesedifferentvariablesontime toonsetofdrugeffects.Whilethelimitedsamplesizemakesitdifficulttogeneralizeany conclusionsfromthisstudy,severalclinicallyrelevantobservationsemerged.Ourresultsindicated thatfornon‐anxiousandyoungerpatients,theeffectsofcitalopramwereapparentearlier—bythe sixthweek;incontrast,forthoseindividualsclassifiedashavinganxietyatbaseline,drugeffectsdid notappearuntiltheeighthweekoftreatment. Categories: GeneticDataforClinicalTrialDesign,PredictionModelling P143 Definingrecombinationhotspotblocks:Justhowhotishot? Tae‐HwiSchwantes‐An1,HeejongSung1,AlexaJMSorant1,JeremyASabourin1,CristinaMJustice1, AlexanderFWilson1 1NationalHumanGenomeResearchInstitute/NationalInstitutesofHealth Inthepastdecade,thenumberofavailablegeneticmarkersusedingeneticstudiesofhuman diseasehasgrownexponentially.Fromdozensofmicrosatellitesforlinkagestudiestomillionsof markersinGWASchipsandinwholegenome/exomenext‐generationsequencingincurrent family/associationstudies,theincreasingdensityofmarkershasbeeninstrumentalforthefine‐ mappingofthehumangenome.However,theincreaseinmarkerdensityhasmadeitincreasingly difficulttoadjustformultipletestsbecauseofcorrelationsbetweenmarkerscausedbylinkageand gameticdisequilibrium(LD,GD).Definingandidentifyingtheindependentregionsofthegenome canprovideanalternativeassessmentofthenumberof“independent”testsfornextgeneration sequencing.Onemethodthatcanbeusedtoidentifyregionsof“independent”regionsinthe genomeisbyidentifyingblocksofthegenomethatareflankedbyrecombinationhotspots. Recombinationhotspotsaredefinedasregionsofthegenomethatshowanincreasedrateof recombinationthanexpectedatrandom1cM/Mb(1centimorganpermegabase).Theseblockscan beusedtoidentifyblocksofthegenomethataremostlyindependentfromoneanother.Toidentify theseindependentblocks(regionsdividedbyrecombinationhotspots),thegenomeisclassified intohotspots(regionsaboveapredefinedrecombinationthreshold)andcoldspots(regionsbelow athreshold)usingrecombinationrates(cM/Mb);countsandaveragesizeofthehot/coldspot blockscanbedetermined.Increasingthethreshold(5%,10%,15%,and20%)increasesthe averagesizeofthecoldspotsanddecreasesthenumberofhotspots,howevertheaveragesizeof hotspotsdoesnotappeartochange. Categories: GenomicVariation P144 Complexgenealogies,simplegeometricstructures MarcJeanpierre1 1Université.Descartes Ancientvariationsalwayshavealongandcomplicatedhistory.Ashaplotypedecayisessentially stochastic,simplegeometricstructuresthatcanbedescribedunambiguouslyinmathematicalterms canprovidethealgebraicframeworkforanalysingtheforcesshapingthegenealogyofasingle allele,oraclusterofvariants.Consideringthesimplestexample,athree‐branchbifurcatingtree, therearetwopossiblewaysofaddingabranchtoanexistingpairofbranches.Thesetwo independentandcomplementarypathsofconstructionarerepresentedbytwoalternative equations.Thepossibleconstructionpathsthereforereflectthehierarchicalorganizationofthe tree.Star‐likegenealogiesarebyfartheeasiesttoanalyze,asthismodelbypassesallthedifficulties oftranslatingasetofmosaichaplotypesintoaspecificgenealogy.Innon‐stargenealogies,thereare alwaysseveralpossiblewaystobreakdownacomplexgenealogyinsubtrees.Thedifferent constructionpathsrepresentingalternativesequenceofeventsthatmaybeobservednaturally makesuseofparametersasbranchlengthsthatcanberepresentedgraphically.Subtreesare conditionallyindependentfromupstreamnodesandequationsrepresentingspecificsequencesof eventsmaybeconstructedfrombottomtotop.Theshapeofthetreeneededtodecipherthehistory ofmutationancestryisamathematicalabstraction.Thedefinitionofhaplotypeblocksasphysical entities,withclearborders,asforobjectsinthephysicalworld,resultsinanapparent simplification,butisnotreallyhelpfulbecauseunnecessaryreductionofcomplexitypreventsthe derivationofmeaningfulpatterns. Categories: HaplotypeAnalysis,MultipleMarkerDisequilibriumAnalysis P145 Missingheritabilitypartiallyexplainedbysequentialenrollmentofstudy participants DamiaNoce1,MartinGögele1,ChristineSchwienbacher1,AlessandroDeGrandi1,YuriD'Elia1,PeterP Pramstaller1,CristianPattaro1 1CenterforBiomedicine,EuropeanAcademyofBolzano/Bozen(EURAC)(affiliatedInstituteoftheUniversity ofLübeck),Bolzano,Italy Inpedigree‐basedstudiestherecruitmentstrategycouldplayanimportantroletoexplainpartof themissingheritability.Arecruitmentcarriedonoveralongtimeperiodmightpairupwith seasonalorday‐specificconditions,suchasambienttemperature,sampletransportconditionsand laboratorysamplehandling,introducingsamplestratificationsimilartothesibship(SS)effect.To quantifytheimpactofsuchissues,weanalyzed54bloodparametersfromthefirst2948 participantsoftheCooperativeHealthResearchinSouthTyrol(CHRIS)study,enrolledfromAug 2011untilJul2013andconnectedthroughanextendedpedigree.Tomaximizeparticipationof completefamiliesweenrolledpreferentiallycloserelativeswithinthesameday(up10perday). Geneticheritability(h2)wasestimatedbyfittingsex‐andage‐adjustedvariancecomponents models.Weadditionallyincludedsharedenvironmentaleffectsdefinedasdayofparticipation (DoP),dailytemperature(DT)andSS.Weobservedah2reductionfor49,28and39traitswhen accountingforDoP,DTandSS,respectively.WhenincludingtheDoP,theh2reductionwas>10% for11traitsand>40%forsodium,chlorine,calciumandmeancorpuscularhemoglobin concentration.TheSSeffectinduced>10%h2reductionfor10traitsand>40%onlyforcortisol. Despitebeingassociatedwithsometraits,DTdidnotalterh2estimatessubstantially.Thedayof participation,asaproxyforissuesthatmayhappenduringtheenrollmentormeasurementphase, canbeanimportantstratificationfactor,whichmayinducestrongerheritabilityoverestimation thanthesibshipeffect.Whenappropriate,itshouldbeusedtocomplementthesibshipeffectto preventpopulationstratification. Categories: Heritability P146 RobustPrincipalComponentAnalysisAppliedtoPopulationGenetics Processes CarineLegrand1,JustoLorenzoBermejo1 1InstituteofMedicalBiometryandInformatics,UniversityofHeidelberg,Heidelberg,Germany Ithasbeenshownthatprincipalgeneticcomponentsreflectevolutionaryprocessesandthegenetic parametersofapopulation.Forexample,McVeanprovidedagenealogicalinterpretationof principalcomponentanalysis(PCA)[1].WehaveexaminedtheabilityofseveralrobustPCA methodstomirrorpopulationchangesinheterozygosityandadmixture.Evolutionaryprocesses weresimulatedusingsimuPOPandownscripts[2].Wefirstexaminedgeneticdriftinasingle population(CEUhaplotypesfromHapMap)consideringgrowth,recombinationandselection.We alsosimulatedgeneflowinSouthAmericaafterthearrivalofindividualswithEuropeanandAfrican ancestries,allowingforafastpopulationgrowthinthelastcentury.CEUandYRIsamplesfromthe 1000GenomesProjectrepresentedEuropeanandAfricancomponents.PCAresultsmotivatedthe useofMXL(Mexican)insteadofCLM(Colombian)genotypesassurrogatesofnativeSouth Americanancestry.Heterozygosityandadmixturewerequantifiedintheevolvingpopulations,and theirrelationshipwiththeprincipalgeneticcomponentsestimatedbystandardPCA,sphericalPCA, andminimumcovariancedeterminantmethodswasexamined.Resultsfromthegeneticdrift scenariorevealedastrongercorrelationbetweenheterozygosityandtherobustprincipalgenetic components.ThesimulationofSouthAmericanadmixturealsorevealedapotentialadvantageof robustPCA.Resultsfromongoingsensitivityanalyseswillbepresentedattheconference. [1]McVeanG(2009)AGenealogicalInterpretationofPrincipalComponentsAnalysis.PLoSGenet 5(10):e1000686. [2]PengB,KimmelM(2005)simuPOP:aforward‐timepopulationgeneticssimulation environment.Bioinformatics,21(18):3686‐7. Categories: Heterogeneity,Homogeneity,PopulationGenetics,PopulationStratification P147 Identifyingfoundersmostlikelytohaveintroduceddisease‐causing mutationswiththeRpackageGenLib ClaudiaMoreau1*,Jean‐FrançoisLefebvre1*,HéloïseGauvin1,2,MichèleJomphe3,ChristophPreuss1, GregorAndelfinger1,4,DamianLabuda1,4,HélèneVézina3,Marie‐HélèneRoy‐Gagnon1,5 *Theseautherscontributedequallytothiswork 1CHUSainte‐JustineResearchCenter,Montreal,Quebec,Canada 2DepartmentofSocialandPreventiveMedicine,UniversitédeMontréal,Montreal,Quebec,Canada 3BALSACProject,UniversitéduQuébecàChicoutimi,Chicoutimi,Quebec,Canada 4DepartmentofPediatrics,FacultyofMedicine,UniversitédeMontréal,Montreal,Quebec,Canada 5DepartmentofEpidemiologyandCommunityMedicine,UniversityofOttawa,Ottawa,Ontario,Canada Founderpopulations,suchastheFrenchCanadian(FC)populationofQuebec,Canada,playan importantroleinthestudyofgeneticdiseases.Theiradvantagesoftenincludeaccesstodetailed genealogicalrecords.Onceevidenceforadisease‐causingmutationhasbeenfound,genealogical datacanbeusedtoidentifythefoundersmostlikelytohaveintroducedthemutationinthe population.Largegenealogicaldatarequirespecializedanalyticalmethodsandsoftware.We presenttheRpackageGenLibforgenealogicalanalysis.GenLibcancomputerelevantsummary measuresdescribinggenealogiesandrelatedness,includingkinshipandinbreedingcoefficients.It alsoperformsgene‐droppingsimulations.Inthisstudy,weextendedtheGenLibgene‐dropping simulationfunctiontotakeintoaccountthelengthofthesegmentpassedIBDthroughgenerations andafitnessparameterforhomozygotes.Thisextensionallowsamorepreciseestimationthrough simulationsoftheprobabilitythatthesharedsegmentdescendedfromaspecificfounder.We illustratetheuseofGenLibwithgenealogicaldatafrom11patientswiththerecentlyidentified autosomalrecessivesyndromeofChronicAtrialandIntestinalDysrhythmia(CAID).Average kinshipandinbreedingcoefficientsofthesepatientswere0.002and0.004,respectively.Wefound thatonefoundingcouplehadaprobabilityover80timeslargerthanthatofanyotherfoundersto haveintroducedthemutationintheFCpopulation.ThiscoupleimmigratedtoQuebecCityfrom Francearound1621.Theseresultsprovideinformationonexpectedfrequenciesofthediseasein thepopulationandonthediffusionpatternofthemutationontheQuebecterritory. Categories: Inbreeding,IsolatePopulations,PopulationGenetics P148 RegionalIBDAnalysis(RIA):linkageanalysisinextendedpedigrees usinggenome‐wideSNPdata JakrisEu‐ahsunthornwattana1,2,HeatherJCordell1 1InstituteofGeneticMedicine,NewcastleUniversity,InternationalCentreforLife,CentralParkway,Newcastle uponTyne,NE13BZ,UK 2DivisionofMedicalGenetics,DepartmentofInternalMedicine,FacultyofMedicineRamathibodiHospital, MahidolUniversity,RamaVIRd,Ratchathevi,Bangkok10400,Thailand Exactcalculationsfortraditionallinkageanalysisarecomputationallyimpracticalinlarge,extended pedigrees.Althoughsimulation‐basedmethodscanbeused,theyarenotexactandstillrequire significantcomputationalwork.Forthesecircumstances,weproposeRegionalIBDAnalysis(RIA),a non‐parametriclinkagemethodbasedoncomparisonoflocallyandgloballyestimatedidentityby descent(IBD)sharinginaffectedrelativepairs.Inthismethod,genome‐wideSNPdataareusedto calculatethe“global”expectedIBDsharingprobabilitiesspecifictoeachaffectedrelativepair, againstwhicha"local"setofIBDsharingprobabilities,estimatedusingSNPdatawithinawindowof pre‐specifiedwidth,canbecompared.TheseIBDsharingprobabilitiescanbeestimatedusinga varietyofprograms/methods:weusedPLINKandKINGinthisstudy.TheglobalandlocalIBD sharingprobabilitiescanbeusedtoconstructanon‐parametricmaximumlikelihoodstatistic (MLS)‐liketestoflinkageineachwindow.Weillustratetheuseofourmethodtodetectlinkage signalsinrealnuclear‐familydataandinsimulateddatabasedonlargeextendedpedigrees.This methodshouldbeusefulinstudiesinvolvinglargeextendedfamilies,withanadditionaladvantage ofnothavingtorelyonanypriorknowledgeaboutfamilialrelatedness. Categories: LinkageAnalysis P149 Polygenicriskpredictionmodelinginpedigreesimprovespower JefferyStaples1,ChadDHuff2,JenniferEBelow3 1TheUniversityofWashington 2TheUniversityofTexasMDAndersonCancerCenter 3TheUniversityofTexasHealthScienceCenter Asanalysesofsequencedatainlargepopulationbasedcohortsstruggletoachievesufficientpower todetectevenlargesignalsfromveryrarevariation,thefamily‐basedlinkageapproachhascome backintovogue.Inthecontextofcomplexdiseasetraitshowever,abilitytodetecttruesignalis impededbymodifyingenvironmentalandgeneticfactorsthatinfluenceratesofpenetranceand phenocopies.Classically,knownmodifiersofdiseaserisk,e.g.age,havebeenmodeledinliability classes.TheeraofGWAShastaughtusagreatdealaboutcommonunderlyinggeneticeffectson complextraits.Thesepolygeniceffectsimpactriskofdiseaseandcanactasmodifyingfactorsto rarevariationsegregatinginpedigrees.Weshowthatmodelingtheseeffectsimprovestheabilityto bothdetecttruelinkagesignalsoflargeeffectrarevariantsfromthegenomeandcorrectlyidentify unlinkedmarkers.Insimulationsofgenotypesfora1000differentpedigrees(meansize25,36% missingsamples)wemodeledphenotypesbymodifyingtheprobabilityofdiseasegivenalarge effectdominantriskallele,A,usingasimulatedaggregatepolygenicriskscore(pgrs)calculated from100differentcommonvariants:P(d|aa)=pgrs,P(d|Aa,AA)=pgrs+0.9.WecomparedLOD scoresatthecausalvariantandanunlinkedvariantwhenmodelingthepgrsinanindividual‐ specificliabilityclasstoscoresderivedfromasinglesharedliabilityclass.Powertodetectthe casualvariantincreasedin>60%ofoursimulations,overallaveraging>10%increaseandmean LODgainof>0.25.IncorporatingpolygenicriskpredictionslightlyloweredLODatunlinked markers.Accuratemodelingofestablishedpolygenicriskfactorsimprovespowerestimatesin linkagestudies. Categories: LinkageAnalysis,LinkageandAssociation P150 Performanceoflinkageanalysisconductedwithwholeexome sequencingdata SimonGosset1,EdgardVerdura2,FrançoiseBergametti2,StephanieGuey2,ElisabethTournier‐ Lasserve2,StevenGazal3 1INSERMU1137,IAME,UniversitéParisDiderot,Paris,France 2INSERMU1161,UniversitéParisDiderot,Paris,France 3AssistancePubliquedesHopitauxdeParis(APHP),Paris,France IdentificationofcausalvariantsinMendeliandisorderwasusuallydonebycombininglinkage analysis(LA)onlargefamiliesandpositionalcloning.Theprogressofthehigh‐throughput sequencingledteamstoperformdirectlywholeexomesequencing(WES)fortheidentificationof thesevariants,particularlyforsinglesmallfamiliesthatcanbeanalysedbyasimplefilteranalysis. However,itisessentialtominimizethenumberofcandidatevariantsbeforestartingstudieson theirfunctionalconsequences.Toreducethenumberofvariantsthataresequencingerrors,not coveredinoneindividual,orwithoutallelicfrequencyinreferencedatabase,andtofacilitatethe studyofrecessivediseaseswithallelicheterogeneity,anadditionalLAcanbeperformed.Many studieshavethuscombinedtheirWESfilteringwithaLAonmicrosatellitesorSNPchips,which uniformlycoverthegenome.PerformaLAoncommonpolymorphismspresentinWESdata appearsasanattractivestrategytoreducethecostoftheanalyses.However,ithasbeenrarely done,duetothenon‐uniformexoncoverageofthegenome,andtothelackofknowledgeofLA poweronthiskindofdata.OurgoalwastostudytheperformanceofLAconductedwithexome genotypes.Toachievethis,weperformedasimulationstudyof2families(onewithadominant disease,onewitharecessivedisease)andcomparedLAresultsonWESgenotypesanddatafrom SNPchips.OurresultsshowthataLAconductedonWESgenotypesexcludesaccuratelyahigh proportionofthegenome.Inaddition,itsfalsepositiveandfalsenegativeevidenceoflinkagearein thesamerangethattheonesofLAconductedonSNPchips.Finally,anapplicationonrealdatawill illustratethebenefitsofthisstrategy. Categories: LinkageAnalysis,SequencingData P151 Useofexomesequencingdatafortheanalysisofpopulationstructures, inbreeding,andfamiliallinkage VincentPedergnana1,2,AzizBelkadi1,AvinashAvinash3,QuentinVincent1,YuvalItan4,Bertrand Boisson4,Jean‐LaurentCasanova1,5,LaurentAbel1,5 1LaboratoryofHumanGeneticsofInfectiousDiseases,NeckerBranch,INSERMU1163,UniversityParis Descartes,ImagineInstitute,Paris,France 2WellcomeTrustCentreforHumanGenetics,Oxford,UnitedKingdom 3NewYorkGenomeCenter,NewYork,NY,USA 4St.GilesLaboratoryofHumanGeneticsofInfectiousDiseases,RockefellerBranch,theRockefellerUniversity, NewYork,NY,USA 5St.GilesLaboratoryofHumanGeneticsofInfectiousDiseases,RockefellerBranch,theRockefellerUniversity Numerousmethodshavebeenproposedtoanalyzewholeexomesequencing(WES)datainorderto discoverpotentialcausalvariantsinMendeliandisordersandinmorecomplextraits.These methodscouldbenefitfromadditionalinformationsuchaslinkagestudiesinthestudyofMendelian diseases.PopulationstratificationcouldalsobeanissueintheanalysisofWESdatawhenfocusing oncomplextraits.Bothlinkageandpopulationstructureanalysesareclassicallyconductedthrough genome‐wide(GW)SNParrays.Here,wecomparedtheinformationyieldedbyWESdatatothat providedbySNParraydataintermsofanalysesusuallyperformedbySNParraydatasuchas principalcomponentanalyses(PCA),linkagestudies,andhomozygosityrateestimation.We analyzed123subjectsoriginatingfromsixworldregions,includingNorthAfricaandMiddleEast whichareregionspoorlycoveredbypublicdatabaseandpresentingahighconsanguinityrate.A numberofqualitycontrol(QC)filtersweretestedandappliedtotheWESdata.Comparedtoresults obtainedwithSNParraydata,wefoundthatWESdataprovidedaccuratepredictionofpopulation substructureandledtohighlyreliableestimationofhomozygosityrates(correlation>0.94withthe estimationsprovidedbySNParray).Linkageanalysesshowedthatthelinkageinformationprovided byWESdatawasonaverage53%lowerthantheoneprovidedbySNParrayattheGWlevel,but 58%higherinthecodingregions.Inconclusion,WESdatacouldbeusedafterappropriateQCfilters toperformPCAanalysisandadjustforpopulationsubstructure,toestimatehomozygosityrates, andtoperformlinkageanalysesatleastincodingregions. Categories: LinkageAnalysis,PopulationGenetics,SequencingData P152 FastlinkageanalysiswithMODscoresusingalgebraiccalculation MarkusBrugger1,2,KonstantinStrauch1,2 1InstituteofMedicalInformatics,BiometryandEpidemiology,ChairofGeneticEpidemiology,Ludwig‐ Maximilians‐Universität,Munich,Germany 2InstituteofGeneticEpidemiology,HelmholtzZentrumMünchen,GermanResearchCenterfor EnvironmentalHealth,Neuherberg,Germany ObjectiveThemodeofinheritanceisoftenunknownforcomplexdiseases.Inthecontextof parametriclinkageanalysis,thisimpliesthataMOD‐scoreanalysis,inwhichtheLODscoreis maximizedwithrespecttothetrait‐modelparameters,canbemorepowerful.Becausethe calculationofthedisease‐locuslikelihoodforeverytestedsetoftrait‐modelparametersisthemost time‐consumingstepinaMOD‐scoreanalysis,weaimedtooptimizethispartofthecalculationto speed‐uplinkageanalysisusingtheGENEHUNTER‐MODSCOREsoftwarepackage.MethodsOurnew algorithmisbasedonminimizingtheeffectivenumberofinheritancevectorsbycollapsingthem intoclasses.Tothisend,thedisease‐locus‐likelihoodcontributionofeachinheritancevectoris representedandstoredinitsalgebraicformasasymbolicsumofproductsofpenetrancesand disease‐allelefrequencies.Simulationsofdatasetswereusedtoassessthespeed‐upofournew algorithm.ResultsFocusingonMOD‐scoreanalysisofsingledatasets,wewereabletoobtainspeed‐ upsrangingfrom1.94foraffected‐sibpairsto11.52foraffected‐sibsextetscomparedtothe originalGENEHUNTER‐MODSCOREversion.Whenincludingsimulationstocalculateempiricalp values,thespeed‐uprangedfrom1.69to10.36.Speed‐upwasgenerallyhigherforlargerpedigrees. ConclusionsComputationtimesforMOD‐scoreanalysisincludingp‐valuecalculationhavebeen prohibitivelyhighsofar.Withournewalgebraicalgorithm,theevaluationofmanytestedsetsof trait‐modelparametersduringthemaximizationinaMOD‐scoreanalysisisnowfeasiblewithina reasonableamountoftime,evenwhenempiricalpvaluesarecalculated. Categories: LinkageAnalysis P153 Fetalexposuresandperinatalinfluencesontheprematureinfant microbiome DianaAChernikova1,DevinCKoestler2,AnneGHoen3,MollyLHousman4,PatriciaLHibberd5,Jason HMoore6,HilaryGMorrison7,MitchellLSogin7,MuhammadZUl‐Abideen8,JulietteCMadan9 1DepartmentofGenetics,GeiselSchoolofMedicineatDartmouth 2DepartmentofBiostatistics,UniversityofKansasMedicalCenter 3DepartmentofCommunityandFamilyMedicine,GeiselSchoolofMedicineatDartmouth 4DepartmentofMicrobiologyandImmunology,GeiselSchoolofMedicineatDartmouth 5DepartmentofPediatrics,MassachusettsGeneralHospital 6InstituteforQuantitativeBiomedicalSciences,GeiselSchoolofMedicineatDartmouth 7JosephineBayPaulCenter,MarineBiologicalLaboratory 8GeiselSchoolofMedicineatDartmouth 9DepartmentofPediatrics,Dartmouth‐HitchcockMedicalCenter Theimpactofmaternalcomplicationsontheprematureinfantmicrobiomeisstilllargely unexplored.Toinvestigatetheeffectsofthesecomplicationsonthegutmicrobiome,wecollected serialstoolsamplesobtainedweeklyfromextremelyprematureinfantsenrolledinaprospective longitudinalstudyfrombirththroughhospitaldischarge,andthensequencedtheV4V6regionof bacterial16SrRNAgenes.Perinatalmaternalcomplicationsevaluatedincludedprolongedpreterm prematureruptureofmembranes(PPPROM),chorioamnionitis,deliverymode,andperipartum antibiotics.Subjectswithprenatalexposuretoanon‐sterileintrauterineenvironment(PPPROMand chorioamnionitis)werefoundtohaverelativelyhigherabundanceofknownpathogenicbacteria acrossalltimepointscomparedtosubjectswithoutthoseexposures,irrespectiveofexposureto postnatalantibiotics.ComparedwiththosedeliveredbyCesareansection,vaginallydelivered subjectswerefoundtohaveasignificantlylowermicrobialdiversityacrossalltimepoints,with lowerabundanceofmanybacterialgenera,mostlyinthefamilyEnterobacteriaceae.Hierarchical clusteringanalysisshowedthatsamplesassociatedwithanon‐sterileuterineenvironment clusteredtogetherandhadanenrichmentofpathogens;furthermore,thecluster’saverage microbialdiversityscorethatwassignificantlylowerthanthatofaclusterofsampleswithoutthe exposure,whichinsteadhadanenrichmentofimportantgutcommensals.Ourresultsdemonstrate thatexposuretoprenatalpathogensimpactsthedevelopmentoftheprematuregutmicrobiome, andhighlightsopportunitiestointerveneviabreastmilkfeedings,alteredantibioticregimens,or probiotics. Categories: MicrobiomeData P154 Combininggenotypewithallelicassociationasinputforiterative pruningprincipalcomponentanalysis(ipPCA)toresolvepopulation substructures KridsadakornChaichoompu1,2,RamounaFouladi1,2,PongsakornWangkumhang3,AlisaWilantho3, WanwisaChareanchim3,SissadesTongsima3,AnavajSakuntabhai4,KristelVanSteen1,2 1SystemsandModelingUnit,MontefioreInstitute,UniversityofLiege,Belgium 2BioinformaticsandModeling,GIGA‐R,UniversityofLiege,Belgium 3BiostatisticsandinformaticsLaboratory,GenomeInstitute,NationalCenterforGeneticEngineeringand Biotechnology,Thailand 4FunctionalGeneticsofInfectiousDiseasesUnit,InstitutPasteur,France SingleNucleotidePolymorphisms(SNPs)arecommonlyusedtocapturevariationsbetween populationsandoftengenome‐wideSNPdataareprunedbasedonlinkagedisequilibrium(LD) patterns.Notably,haplotypecompositionandthepatternofLDbetweenmarkersmayvarybetween largerpopulationsbutmayalsoplayarolewithinmoreconfinedgeographicregions.Indeed, knowledgeabouthaplotypesinunrelatedindividualscanrevealusefulinformationaboutgenetic ancestry.Here,weuseiterativepruningprincipalcomponentanalysis(ipPCA)[Intarapanich2009] toidentifyandcharacterizesubpopulationsinanunsupervisedwayusingarichsetofgenetic markerssinceusingreducedsetsofgeneticmarkersforthesepurposescanbecomechallenging, especiallywhensimilargeographicregionsareinvolvedorwhenspuriouspatternsarelikelyto exist.Asinputdata,eitherprunedgenome‐wideSNPdataareusedormultilocushaplotype informationderivedfromthegenome‐wideSNPpanel.Theseapproachesareappliedtoreal‐life datafrom4028Vietnameseindividuals[Khor2012].PreliminaryresultsindicatethatipPCAapplied toprunedSNPdataoripPCAthatexplicitlyusesmultilocusinformation(haplotypes)give complementaryinformationaboutpopulationsubstructureforgeographicallyconfinedpopulations. Bothmethodsaddressdifferentaspectsofpopulationstructure.Inconclusion,weproposeto combineanLD‐basedhaplotypeencodingschemewiththeipPCAmachinerytoretrievefine populationsubstructures.Despitethecomplexitiesthatareassociatedwithhaplotypeinference, addedvaluecanbeobtainedwhentheLDstructurebetweenSNPsisexploitedinthesearchfor relevantpopulationstrata. Categories: PopulationGenetics,PopulationStratification P155 Spuriouscrypticrelatednesscanbeinducedbypopulationsubstructure, populationadmixtureandsequencingbatcheffects DiZhang1,ShuweiLi1,GaoTWang1,SuzanneMLeal1 1CenterforStatisticalGenetics,BaylorCollegeofMedicine Itisimportanttoidentifycrypticallyrelatedindividualsinpopulation‐basedassociationstudies, sinceinclusionofrelatedindividualscanincreasetypeI&IIerrors.Toresolvethisproblemmixed modelshavebeenproposed,buttheycanbecomputationallyintensiveandtypeI&IIerrorscanbe inflated.Anotheroptionistoremoverelatedindividualsfromanalysis.Dataqualitycontrolshould includeidentificationofcrypticallyrelatedindividuals.Cautionshouldbeused,sincepopulation substructure/admixtureandsequencedatabatcheffectscancausedetectionofspurious relatedness.Inordertoinvestigatetheproblemweevaluatedtherelatednessof1,092samplesin 1000Genomesand2,300African‐AmericansubjectsfromtheNHLBI‐ExomeSequencingprojectvia twopublishedmethodsforkinshipinference:(i)thePLINKalgorithmwhichisbasedonidentical‐ by‐descentstatisticundertheassumptionofhomogeneouspopulation,and(ii)theKING‐robust algorithmwhichusesanestimateofthegenome‐wideaverageheterozygosityacrossindividualsto computeanestimatorofkinshipcoefficient.Weidentifiedspuriousrelatednessduetopopulation substructure/admixtureandbatcheffectswithbothmethods,buttheproblemwasmoreseverefor PLINK.Anexcessof3rddegreerelativeswasobservedduepopulationadmixture/substructureand batcheffects.Thekinshipcoefficientsalsovarieddependingonhowtheanalysiswasperformedand individualswerereclassified,e.gfrom1stdegreeto2nddegreerelatives.Inadditiontopresenting theresultsoftheseanalysesandshowingtheseverityofthebiasesinthekinshipcoefficients,we alsodemonstratestrategiestoavoidthedetectionofspuriousrelatedness. Categories: PopulationGenetics,PopulationStratification,SequencingData P156 Effectofpopulationstratificationonvalidityofacase‐onlystudyto detectgene‐environmentinteractions PankajYadav1,SandraFreitag‐Wolf1,WolfgangLieb2,MichaelKrawczak1 1InstituteforMedicalInformaticandStatistic,Christian‐AlbrechtsUniversity,Kiel,Germany 2InstituteofEpidemiology,Christian‐AlbrechtsUniversity,Kiel,Germany Gene‐environment(G×E)interactionstudiesareassumedtopartiallyfillthegapbetweenthe estimatedheritabilityofcommonhumandiseasesandthegeneticcomponenthithertoexplainedby disease‐associatedvariants.Thecase‐only(CO)studyhasbeenproposedasavalidapproachwith increasedstatisticalefficiencyovercase‐controlandcohortstudiesindetectingG×Einteractions. However,hiddenstratificationinthestudypopulationcanseverelycompromiseaCOstudy.Noneof thepriorliteratureexplicitlyaddressedtheeffectofstratificationonaCOstudy.Wetherefore systematicallyassessedthroughsimulationstheeffectofpopulationstratification(PS)onthe validityofaCOapproachinG×Einteractionsstudies.Oursimulationsshowthat,whenstudysample isdividedbybothgeneticandexposurefactors,aCOstudyprovidesaninflatedtypeIerrorrate. Further,oursimulationsshowthattransmissiondisequilibriumtest(TDT)isrobustagainstgenetic and/orexposurestratificationindetectingG×Einteractions. Categories: PopulationStratification P157 Anovelriskpredictionalgorithmwithapplicationtosmoking experimentation RajeshTalluri1,AnnaWilkinson2,MargaretSpitz3,SanjayShete1 1TheUniversityofTexas,M.D.AndersonCancerCenter University of Texas School of Public Health 2 3BaylorCollegeofMedicine Riskpredictionmodelsarebeingdevelopedtopredicttheriskofavarietyofcancers,and cardiovasculardiseases.However,standardapproachesdonotaccountforthevariabilityassociated withthecohortbeingarandomsamplefromthepopulation.Wedevelopedanovelriskprediction approachcalledResampling‐basedModelSelectionandAggregationtocomputeabsoluterisk.Our approachaccountedforvariabilityinthesampledcohortbyresamplingthedataandaggregating theparameterestimatesfortheresampleddatasets.Wethenusedaresampling‐basedmodel selectionalgorithmtoselectthepredictorstoincludeinthefinalmultivariableriskmodel.This approachguardsagainstover‐fittingthemodelandreducesthevarianceofthemodelparameters. Theperformanceoftheriskpredictionmodelwasevaluatedusingtheareaunderthereceiver operatingcharacteristiccurve(AUC).Usingtheriskpredictionmodel,wecomputedtheabsolute riskofsmokingexperimentationinMexicanAmericanyouth.Thedataincludedgeneticandnon‐ geneticfactorsthatwerecollectedatbaseline.TheproposedriskpredictionmodelhadanAUCof 0.719(95%confidenceinterval,0.637to0.801)forpredictingabsoluteriskforsmoking experimentationwithin1year. Categories: PredictionModelling P158 Trio‐BasedWholeGenomeSequenceAnalysisofaCousinPairwith RefractoryAnorexiaNervosa PBettyShih1,AshleyVanZeeland2,AndrewBergen3,TristanCarland4,VikasBansal1,Pierre Magistretti5,WadeBerrettini6,WalterKaye1,NicholasSchork7 1UniversityofCalifornia,SanDiego,LaJolla,CA 2CypherGenomics,LaJolla,CA 3SRI,PaloAlto,CA 4TheScrippsResearchInstitute,LaJolla,CA 5ÉcolePolytechniqueFédéraledeLausanne,Lausanne,Switzerland 6UniversityofPennsylvania,Philadelphia,PA 7J.CraigVenterInstitute,LaJolla,CA AnorexiaNervosa(AN)hasanonsetduringadolescenceandischaracterizedbyemaciation,fearof gainingweightdespitebeingunderweight,andhasthehighestmortalityrateofallpsychiatric illnesses.Despitetheserioushealthandpsychosocialconsequencesofthisillness,veryfew treatmentsareeffectiveatreversingthecoresymptomsofAN.ANishighlyheritableandshowa homogeneousclinicalpresentationofpersistentfoodrefusalandhighanxietytraits.However,AN etiologyisbelievedtobeheterogeneousasnomajorsusceptibilitygenehasbeenconsistently replicatedinmultiplepopulations.ANsymptomsandpersonalitytraitstendtobepresentin unaffectedfamilymembersofthepatients,suggestingthatcertainsharedgeneticfactorswithin eachfamilymaycontributetouniquephenotyperiskoftheaffected.Togaininsightsintotherole “privatevariants”mayplayinANandtomaximizegeneticinformationfromfamilymembersofAN, hereweleveragedafamily‐basedstudydesigncombinedwithwholegenomesequencingtosearch forgeneticvariantsthatmayinfluenceANriskinanaffectedcousinpairtogetherwiththeirparents. Bycapitalizingonthehomogeneityofthediseasepresentationamongthetwocousins,whoboth haveadiagnosisofrefractoryAN,wereportmethodsbywhichweinterrogatedshared chromosomalsegmentstransmittedtothemfromtheircommongrandparentsthatcarriedlikely AN‐relatedfunctionalvariantsinthisfamily. Categories: PsychiatricDiseases,SequencingData P159 Powerandsamplesizeformulasfordetectinggeneticassociationin longitudinaldatausinggeneralizedestimatingequations GhislainRocheleau1,LoïcYengo2,PhilippeFroguel2 1.UniversitéLille2,Lille,France 2CNRS8199‐InstituteofBiology,PasteurInstitute,Lille,France Currently,mostgeneticstudiesonlyexploitcross‐sectionaldatatodetectnovelassociations betweenaSNPandaquantitativetrait,evenifrepeatedlymeasuredoutcomesareavailablefor analysis.Insteadoffocusingonsomebaselineorsingletimepointmeasurement,itmightbe desirabletoidentifySNPsassociatedwiththattraitovertime.Onepossibleapproachtomodel correlatedmeasuresovertimeisthegeneralizedestimatingequations(GEE),especiallyifinterest liesindetectingthemeandifferencesofthetraitasafunctionofthegenotypes.Unlikelinearmixed models,GEEmodelsdonotrequirethejointdistributiontobefullyspecified,onlythemeanandthe variancemustconformtolinearmodelspecifications,alongwithanappropriatewithin‐cluster correlationmatrix.However,inpoweranalysis,thiswithin‐clustercorrelationmatrixisoften unknownandisusuallymodelledasafunctionoftime.Commonchoicesforthismatrixinclude compoundsymmetry,autoregressive(AR)ormovingaverage(MA)structures.Usingasymptotic theoryoftheWaldteststatistic,wederiveclosed‐formformulasforpowerandsamplesize estimationunderanautoregressivemovingaverageARMA(1,1)covariancematrix.Interestingly, theARMA(1,1)covariancematrixisequivalenttoanAR(1)covariancematrixplusindependent measurementerror.Weapplyourformulastosimulatedgenotypeandphenotypedata,andtoreal datacomingfromtheFrenchcohortD.E.S.I.R.(DonnéesÉpidémiologiquessurleSyndrome d’Insulino‐Résistance). Categories: QuantitativeTraitAnalysis,SampleSizeandPower P160 Ontheevaluationofpredictivebiomarkerswithdichotomousendpoints: acomparisonofthelinearandthelogisticprobabilitymodels NicoleHeßler1,AndreasZiegler1,2 1InstitutfürMedizinischeBiometrieundStatistik,UniversittzuLübeck,UniversitätsklinikumSchleswig‐ Holstein,CampusLübeck,Lübeck,Germany 2ZentrumfürKlinischeStudien,UniversitätzuLübeck,Lübeck,Germany Thestandardstatisticalapproachforanalyzingdichotomousendpointsisthelogisticregression modelwhichhasmajorstatisticaladvantages.However,someresearcherspreferthelinear probabilitymodeloverthelogisticmodelinrandomizedtrialsforevaluatingpredictivebiomarkers. Themainreasonseemstobetheinterpretationofeffectestimatesasabsoluteriskreductionswhich canbedirectlyrelatedtothenumberneededtotreat.Inthefirstpartofourpresentation,we provideacomprehensivecomparisonofthetwodifferentmodelsfortheinvestigationoftreatment andbiomarkereffects.Usingthelogisticregressionmodel,Kraftetal.(2007,HumHered)showed thatthecombined2degreesoffreedom(2df)gene,gene‐environmentinteractiontestshouldbethe testofchoicefortestinggeneticeffects.Inthebiomarkertreatmentsettingagenecorrespondsto thetreatmentandenvironmenttobiomarker.UsingthisanalogyweextendthestudyofKraftetal. inthesecondpartofourpresentation.Wecompareseveralteststatisticsincludingthe2df combinationtestusingthelinearprobabilitymodel.Theprosandconsofthecombinedtestare discussedindetail.Wedemonstratesubstantialpowerlossofthecombinationtestincomparison witheitherthetestfortreatmentorthetestfortreatment‐biomarkerinteractioninmanyscenarios. Althoughthecombinationtesthasreasonablepowerinallsituationsconsidered,itspowerloss comparedtoaspecialized1dftestcanbelarge.Therefore,thecombinedtestcannotbe recommendedasthestandardapproachinstudiesoftreatment‐biomarkerinteraction. P161 Atwostagerandomforestprobabilitymachineapproachforepigenome‐ wideassociationstudies FraukeCDegenhardt1,AndreFranke1,SilkeSzymczak1 1InstituteofClinicalMolecularBiology,Christian‐Albrechts‐UniversityofKiel,Kiel,Germany DNAmethylationasthebeststudiedmechanismofepigeneticmodificationofthegenomeplaysan importantroleingeneexpression,embryonicdevelopmentanddiseasecontrol.Nowadays,next generationsequencingtechnologiescangeneratemethylationdataforseveralmillionsofCpGsites throughoutthegenomethatmightbespatiallycorrelated.Identifyingsinglesitesorgenomic regionsthatenableclassificationofindividuals,e.g.ascasesorcontrolsischallenging.Weproposea two‐steprandomforestprobabilitymachine(RFPM)approachtoselectimportantregionsandsites withintheseregions.First,aRFPMistrainedonsitesineachregionseparately.Theestimated probabilitybasedonthisregion(syntheticfeature)isthenusedasinputforagenome‐wideRFPM andimportantregionsandsiteswithintheseregionsareidentifiedusingappropriatevariable importancemeasures.WeevaluateourapproachbasedonmethylationdatasetsfromGene ExpressionOmnibus(GEO)andTheCancerGenomeAtlas(TCGA)andcompareittoamoretime consumingapproachusingallsitesorsummarizedmethylationratiosperregion. P162 Statisticalapproachesforgene‐basedanalysis:Acomprehensive comparisonusingMonte‐CarloSimulations CarmenDering1,InkeRKönig1,AndreasZiegler1 1InstitutfürMedizinischeBiometrieundStatistik,UnversitätzuLübeck Inrecentyearsseveralstudiesdetectedassociationsbetweengroupsofrarevariantsandcommon diseases.Thesefindingsresultedinthedevelopmentofthe”rarevariant‐commondisease”(RVCD) hypothesis,statingthatmultiplerarevariantstogethermaybecausalforacommondisease. Therefore,manystatisticaltests,thecollapsingmethods,weredevelopedwhicharethetopicofthis work.Wecomparedfifteenstatisticalapproachesinagene‐basedanalysisofsimulatedcase‐control dataoftheGeneticAnalysisWorkshop(GAW)17invariouscollapsingscenariosand200replicates. Scenariosdifferedinminorallelefrequency(MAF)thresholdandfunctionalityofcorresponding collapsedrarevariants.Almostalloftheinvestigatedapproachesshowedanincreasedtype‐I‐error. Furthermore,noneofthestatisticaltestswasabletodetecttrueassociationsoverasubstantial proportionofreplicatesinthesimulateddata.Irrespectiveofthestatistictestused,collapsing methodsseemtobegenerallyuselessinsmallcase‐controlstudies.Recentworkindicatesthatlarge samplesizesandasubstantialproportionofcausingrarevariantsinthegene‐basedanalysiscan yieldgreaterpower.However,manyoftheinvestigatedapproachesusepermutationwhichmeans highcomputationalcost,especiallywhenapplyingagenome‐widesignificancelevel.Overcoming theissueoflowpowerinsmallcase‐controlstudiesisachallengingtaskforthenearfuture. P163 ApolipoproteinEgenepolymorphismandleftventricularfailureinbeta‐ thalassemia:Ameta‐analysis NikiDimou1,KaterinaPantavou1,PantelisBagos1 1UniversityofThessaly Thebeta‐thalassemiasyndromesareaheterogeneousgroupofgeneticdisorderscharacterizedby reducedorabsentexpressionofthebeta‐globingene.Despiteappropriatetransfusionandchelation therapyandlowferritinlevels,patientsstilldeveloporganfailure,heartfailurebeingthemain causeofdeath.ApoEactsasascavengeroffreeradicals;ironchelationisprobablyanother mechanismofitsantioxidantactivity.Thisstudywasperformedtodeterminewhetherthe decreasedantioxidantactivityoftheapolipoproteinE(APOE)4allelecouldrepresentageneticrisk factorforthedevelopmentofleftventricularfailure(LVF)inbeta‐thalassemiahomozygotesundera multivariatemeta‐analysisapproach.Weincluded4studieswith613thalassemicpatientsand664 controls.Accordingtotheechocardiographicfindings,patientsweredividedintothreegroups:i) asymptoticpatients;ii)patientswithevidenceofLVdilatation;andiii)patientswithclinicaland echocardiographicfindingsofLVfailure.Thisclassificationschemewiththeexistenceofmultiple groupsaswellasmultiplealleles,createdamultivariateresponseandsubsequently,theneedto resorttomultivariatemethodsofmeta‐analysis.Wecameupwithoverallsignificantresults contrastingE4andE3vs.E2alleleforeachgroup(Waldtest=17.14;p‐value=0.009).Multivariate methodssuggestasignificantroleplayedbytheE4allelewhencontrastingE4allelevs.others(OR =2.49,95%CI:1.28,4.86andOR=3.43,95%CI:1.84,6.41forgroupIIandIIIrespectively,Wald test=16.80;p‐value<0.001).Meta‐regressionanalysisfailedtoprovideevidencethattherisk conferredbyE4alleleisassociatedwithclinicalorhaematologicalparameters. P164 TheCooperativeHealthResearchinSouthTyrol(CHRIS)study CristianPattaro1,MartinGögele1,DeborahMascalzoni1,AlessandroDeGrandi1,Christine Schwienbacher1,FabiolaDelGrecoM1,RobertoMelotti1,MaurizioFFacheris2,PeterPPramstaller1 1CenterforBiomedicine,EuropeanAcademyofBolzano(EURAC)(affiliatedInstituteoftheUniversityof Lübeck),Bolzano,Italy 2TheMichaelJ.FoxFoundationforParkinson'sResearch,NewYork,NewYork,USA TheCooperativeHealthResearchinSouthTyrol(CHRIS,www.christudy.it)isapopulation‐based studytoinvestigatethegeneticetiologyofcardiovascular,metabolicandneurologicaldiseases, startedin2011intheVenostavalley(Italy).Thepopulationischaracterizedbylong‐termsocial stabilitywithoutmajorimmigrationevents,familiesallconnectedbyfewverylargepedigrees,and homogeneousenvironmentalconditions.Throughacommunity‐basedcommunicationstrategy followedbypersonalinvitation,all28,000residentadultsarebeingcontacted.Weexpectmorethan 10,000tobevoluntarilyenrolled.Eighteenself‐andinterviewer‐administeredinternationally validatedquestionnairesreconstructtheirmedicalhistory.Electronicinstrumentalrecordings assessfatintake,cardiacfunction,andtremor.Toenhancepowerofgene‐environmentinteraction analyses,life‐styleexposures(nutrientintake,physicalactivity,lifecoursesmoking)areassessed quantitatively.Urineandbloodarecollectedtomeasure19and54parameters,respectively,andfor biobanking(cryo‐preservedurine,DNA,wholeandfractionedblood).Allparticipantswillbe genotypedonadenseSNParray.Asubsetwillundergowhole‐genomesequencingtoidentifyrare variantsenrichedinthispopulation.InvolvedintheP3G,BBMRI,andBioSHaREinitiatives,the CHRISstudyandbiobankconstituteavaluableresourceforscientistswillingtoinvestigategenetic factorsinhibitingadisease‐freeandhealthyaging. IndexbyCategories(NeelandWilliamsAwardCandidates,Contributed PlatformPresentationsandPosters) Ascertainment A2,C12,C18,C21,P104,P105 Association:CandidateGenes C1,C3,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P 15,P16,P17,P18,P19,P20,P21,P104,P105 Association:Family‐based A2,A3,A6,C11,C22,P9,P16,P18,P22,P23,P24,P25,P26,P 27,P28,P29,P104,P105 Association:Genome‐wide A2,A4,C1,C3,C4,C6,C7,C8,C13,C14,C16,C17,C22,P3,P 6,P13,P22,P24,P25,P27,P29,P30,P31,P32,P33,P34,P35, P36,P37,P38,P39,P40,P41,P42,P43,P44,P45,P46,P47,P 48,P49,P50,P51,P52,P53,P54,P55,P56,P57,P58,P59,P 60,P61,P62,P63,P64,P65,P66,P67,P68,P69,P70,P71,P 72,P73,P74,P75,P76,P77,P78,P79,P80,P81,P82,P83,P 84,P85,P86,P87,P88,P89,P90,P91,P92,P93,P94,P95,P 96 Association:UnrelatedCases‐Controls C3,C6,C9,C17,P3,P10,P16,P18,P22,P35,P43,P45,P50,P 51,P62,P64,P66,P68,P69,P70,P92,P98,P99,P100,P101,P 102,P103,P105 BayesianAnalysis C20,P10,P20,P27,P57,P104 Bioinformatics C3,C13,C22,P5,P25,P35,P44,P56,P60,P63,P70,P79,P 80,P86,P106,P107,P108,P109,P110,P111,P112,P113,P 114 Cancer C9,P4,P14,P21,P30,P44,P54,P68,P72,P78,P82,P88,P 94,P101,P102,P104,P112,P115,P116,P117,P118,P119,P 120,P121 CardiovascularDiseaseand Hypertension A2,A4,C1,P11,P39,P49,P52,P59,P114,P122,P123,P124 Case‐ControlStudies C2,C3,C6,C21,P3,P8,P10,P13,P21,P25,P37,P43,P45,P 54,P69,P70,P74,P82,P85,P92,P94,P98,P99,P103,P110,P 111,P112,P125,P126 Causation C6,P25,P30,P 59,P92,P123,P127,P128 CoalescentTheory A1,C15 CopyNumberVariation P25,P42,P131 DataIntegration C21,P5,P25,P30,P36,P38,P74,P79,P88,P110,P132 DataMining C13,P25,P56,P60,P63,P80,P99,P108,P116 DataQuality C13,C16,P109 Diabetes A6,P56,P113,P133 EpigeneticData C10,C21,P26,P39,P45,P79,P106,P121,P134 Epigenetics C3,C10,C21,P5,P19,P22,P39,P45,P79,P106,P121,P134, P135,P136 FamilialAggregationandSegregation Analysis P104 FineMapping P4,P6,P25,P47,P101,P137 Gene‐EnvironmentInteraction C22,P4,P20,P23,P42,P49,P53,P82,P102,P111,P113,P 115,P118,P131,P139,P140 Gene‐GeneInteraction C22, P13,P16,P27,P35,P45,P46,P56,P60,P63,P70,P74,P 78,P83,P86,P107,P119,P126,P132,P138 GeneExpressionArrays C1,C21,P71,P132 GeneExpressionPatterns C1,C8,C10,P31,P71,P112,P132,P141 GeneticDataforClinicalTrialDesign P139,P142 GenomicVariation C10,C12,P8,P17,P25,P27,P30,P34,P57,P58,P68,P69,P 86,P107,P108,P109,P116,P126,P143 HaplotypeAnalysis A6,P9,P34,P65,P114,P144 Heritability A2,A4,C 2,C7,P84,P94,P124,P145 Heterogeneity A1,C11,P53,P146 Homogeneity A1,C11,P53,P146 Inbreeding P24,P147 IsolatePopulations P24,P147 LinkageAnalysis A5,C11,P137,P148,P149,P150,P151,P152 LinkageandAssociation A1,C12,P3,P9,P25,P26,P29,P32,P104,P137,P149 MachineLearningTools P60,P63,P80,P99,P113 MarkovChainMonteCarloMethods C20,P20,P27,P57,P104,P137 MaximumLikelihoodMethods A4,C2,C21,P6,P29,P37,P40,P125,P127,P137 MendelianRandomisation C9,P59,P122,P123,P128 MicrobiomeData C19,C20,P153 MissingData C16,P32,P57 MultifactorialDiseases C7,P23,P24,P26,P68,P102,P126 MultilocusAnalysis C2,C4,P3,P27,P57,P73,P77,P78,P81,P98,P119,P126,P 137 MultipleMarkerDisequilibrium Analysis A3,P3,P41,P58,P144 MultivariatePhenotypes C3,C20,P15,P50,P55,P76,P84,P90,P96,P98,P126,P127, P136 Pathways C2,P15,P27,P35,P54,P56,P68,P71,P78,P83,P119 PopulationGenetics C3,C18,P13,P27,P43,P56,P57,P94,P125,P126,P146,P 147,P151,P154,P155 PopulationStratification C3,C12,C17,P33,P90,P146,P154,P155,P156 PredictionModelling C7,C8,P31,P34,P56,P73,P90,P125,P142,P157 PsychiatricDiseases C6,P19,P41,P87,P90,P113,P126,P128,P158 QuantitativeTraitAnalysis A2,A6,C5,C6,C10,C14,C19,C20,P6,P12,P22,P27,P37,P 50,P52,P57,P65,P68,P71,P73,P84,P86,P91,P119,P126,P 127,P159 SampleSizeandPower P29,P43,P53,P125,P159 SequencingData A2,A3,A5,C11,C12,C13,C14,C16,P3,P8,P9,P25,P27,P 28,P57,P70,P79,P98,P100,P101,P108,P109,P112,P116,P 150,P151,P155,P158 TransmissionandImprinting P22,P26,P87 IndexbyAuthors Abel,HaleyJ Abel,Laurent Adeyemo,Adebowale Agarwal,Anita Ahmad,Wasim Allanore,Yannick Amos,ChristopherI Amouyel,Philippe Anand,SoniaS Andelfinger,Gregor A1 P151 C18,P77,P81 C2 C11 P83 E4,C9,P4,P44,P54, P78,P101,P119,P 112 P24 P122 P147 Anderson,Carl Andreassen,BettinaK Andrew,AngelineS Antounians,Lina Aquino‐Michaels,Keston Arbeev,KonstantinG Arbeeva,LiubovS Arbet,Jaron P67 P38 P121 P79 C8 P48,P93 P48,P93 P69 Armasu,SebastianM Asimit,JenniferL Asselbergs,Folkert Auer,PaulL Avinash,Avinash Avril,Marie‐Françoise B,Poonkuzhali Babron,Marie‐Claude P33 P61 P86 P36 P151 P78,P119 P126 P24 Bagos,Pantelis Bailey‐Wilson,JoanE P89,P163 M2,P3,P60,P108,P 116 P66 P14,P102 C21 P158 P53 Baksh,MFazil Balavarca,Yesilda Balliu,Brunilda Bansal,Vikas Barata,Llilda Barrdahl,Myrto Barrett,JenniferH Barrington‐Trimis,Jessica L Barroso,Inés Bartlett,ChristopherW P117,P118 C9 P82 P61 P137 Barton,SheilaJ Bayas,Antonios Beaty,TerriH Becker,Natalia Becker,Tim Beilby,John Belkadi,Aziz Below,JenniferE P23 P75 P29 P14 P46,P74 P124 P151 P149 Bendlin,BarbaraB Benitez,Alejandra Benner,Christian Bentley,Amy Berg,Richard Bergametti,Françoise Bergen,Andrew Bergh,FlorianT P113 P69 A4 P77,P81 P111 P150 P158 P75 Bergsma,WicherP Bernatsky,Sasha Berndt,Sonja Berrettini,Wade Bessonov,Kyrylo Bettecken,Thomas Bickeböller,Heike Bielinski,Sue P125 P136 P61 P158 P5,P132 P75 P54 C4 Biemans,Floor Biernacka,JoannaM Bijma,Piter Bishop,DavidT Blangero,John Blue,Elizabeth Bock,Christoph Boehringer,Stefan P34 P99 P34 C9 P124 C12 I3 C21 Boisson,Bertrand Borecki,Ingrid Bouzigon,Emmanuelle Bradford,Yuki Brand,Bodo Brantley,MilamA Brennan,Paul Brenner,Hermann P151 P53 P26 C4 P71 C2 P4,P54,P101 P14 Brilliant,Murray Brossard,Myriam Brugger,Markus P35,P111 P23,P78,P119 P152 Chuang,Lee‐Ming P13 Ciampi,Antonio P136 Clerget‐Darpoux,Françoise C7 Buck,Dorothea Buck,Katharina Bull,Shelley Burt,Amber Burwinkel,Barbara Bush,WilliamS Butterbach,Katja C,Chithra P75 P102 P40,P127 P33 P14,P102 C2,C4 P102 P126 Cleves,MarioA Coassin,Stefan Colmegna,Ines Connolly,Siobhan Cook,JamesP Cooney,KathleenA Cooper,DavidN Cooper,RichardS P16,P18 P12 P136 P87 P43,P52 P116 P64 P11 Cadby,Gemma Calhoun,Vince Campa,Daniele Candille,SophieI Canzian,Federico Cao,Guichan Cao,Hongbao Capanu,Marinela P124 P110 P117 C17 P117 P11 P110 P8 Coram,Marc Cordell,HeatherJ Cortessis,VictoriaK Cowen,Philip Cox,NancyJ Crawford,AndrewA Crawford,DanaC Croitoru,Kenneth C17 P1,P67,P148 P104 P95 C8 P95 C4 C19 Carland,Tristan Carpten,JohnD Carter,ToniaC Casanova,Jean‐Laurent Casas,Juan‐Pablo Chaichoompu, Kridsadakorn Chalise,Prabhakar P158 P116 P3 P151 P123 P154 P116 C4 P48 P68 P49 P49 P94 Chan,Andrew Chan,JohnnyChun‐Yin Chang‐Claude,Jenny Chareanchim,Wanwisa Charoen,Pimphen Chen,BiLing Chen,Guanjie Chen,WeiV P75 P120 P14,P118 P154 P123 P135 P77,P81 P119 Cropp,CherylD Crosslin,DavidR Culminskaya,Irina Cunningham,JulieM Cupples,L.Adrienne Czajkowski,Jacek daSilvaFilho,Miguel Inacio Daar,EricS Dai,Hang Daley,Denise Danecek,Petr Darabos,Christian Darst,BurcuF Davey‐Smith,George deAndrade,Mariza Chen,Zhijian Chernikova,DianaA Cheung,BernardMan‐ Yung Cheung,Ching‐Lung Chien,Li‐Chu Chiu,Yen‐Feng Christensen,Kaare P127 P153 P120 Christiani,DavidC Chu,Shih‐Kai P4 P65 deGrandi,Alessandro deJong,MartMC deLima,RenataLLF deSilva,Niletthi De,Rishika Dedoussis,George Degenhardt,FraukeC D'Elia,Yuri P145,P164 P34 P2 P59 P86 C13 P161 P145 Demearath,EllenW P39 P88 P120 P13 P13 P58 C3 A5 P135 C13 P56 P113 P22 P33 Feng,ZenyZ Fernandes,Elisabete Fernández‐Rhodes, Lindsay Field,JohnK Field,L.Leigh Filipits,Martin Fischer,Christine Fischer,Krista Fisher,Virginia Flaquer,Antonia P4,P101 P108 M1 C16 I2,C10,P133 P49 C6 Fleischer,Sabine Foraita,Ronja Fornage,Myriam Forrester,Terrence Försti,Asta Fouladi,Ramouna Franceschini,Nora Francis,Ben P75 P140,P141 P39 P11 P94 P5,P154 P47 P90 Franke,Andre Franke,Lude Fraser,Abigail Freitag‐Wolf,Sandra Fridley,BrookeL Friedman,ThomasB Frigessi,Arnoldo Froguel,Philippe P75,P161 C10 P59 P156 E1,P88 C11 P38 P159 Fu,Wenjiang Fuchs,Michael G,Anilkumar Gadaleta,Francesco Gagné‐Ouellet,Valérie Gagnon,France Gamazon,EricR Garcia‐Closas,Montserrat P70 P94 P19 P132 P23 P79 C8 P118 P128 P164 P3 P78,P119 C13 P53,P58 Gaunt,Thomas Gauvin,Héloïse Gazal,Steven Geng,Ziqian Génin,Emmanuelle Ghasemi‐Dehkordi,Payam Ghosh,Saurabh Gieger,Christian P59 P147 P24,P150 I4 C7,P24 P17 P7,P50 P12 P55 Gilbert‐Diamond,Diane P86 Demenais,Florence Deng,Bo Deng,Xuan C9,P78,P119 P68 P49 Dennis,Jessica Denroche,RobertE Dering,Carmen Desch,KarlC Dimou,Niki Dizier,Marie‐Hélène D'Mello,Matthew Doheny,Kimberly P79 P101 P162 P84 P89,P163 P23,P26 P122 P25,P109 dosAnjosSilva,LuziaP Doumatey,Ayo Drenos,Fotios Drichel,Dmitriy Drummond,MeghanC Duan,Qing Dudbridge,Frank Dudek,ScottM P2 P77,P81 P52,P86 P74 C11 P39 P37,P72,P123 P30 Dupuis,Josée Durazo‐Arvizu,Ramon Easton,Douglas Eichler,EvanE Eikelboom,John Ekstrøm,ClausT Elhezzani,NajlaS Ellis,George A6 P11 P72,P118 P28 P122 C22 P125 P135 Emeny,Rebecca Engelman,CorinneD Engert,Andreas Erdmann,Jeanette Erickson,StephenW Esko,Tõnu Esparza‐Gordillo,Jorge Espin‐Garcia,Osvaldo C6 P113 P94 P51 P16,P18 C10,P133 P26 P127 Eu‐ahsunthornwattana, Jakris Evans,Jonathan Facheris,Maurizio Fan,Ruzong Fang,Shenying Farmaki,Aliki‐Eleni Feitosa,MaryF P148 Feng,Tao P96 P6 P39 Gilly,ArthurL Ginsburg,David Girirajan,Santhosh C13 P84 P42,P131 Haun,Margot Hayes,GeoffreyM Hayward,NicholasK P12 P33 C9 GirondoRodriguez,Mar Gögele,Martin Gold,Ralf Goldberg,Jack Gomez,Felicia Goodarzi,MarkO Göpel,Wolfgang Gorlov,IvanP A2 P145,P164 P75 P134 P22 A6 P62 P4,P44 He,Chunyan He,Liang He,Zong‐Xiao Heard‐Costa,Nancy Heesen,Christoph Heibati,Fatemeh Heid,IrisM Heit,JohnA P76 P27,P57 P28 P49 P75 P17 P53 P33 Gorlova,OlgaY Gosset,Simon Goulet,JosephL Graff,Mariaelisa Grallert,Harald Grätz,Christiane Greco,Brian Greene,CaseyS P44 P150 P41 P39,P49,P53 C1,C6 P75 P69 P63 Hemmer,Bernhard Hemminki,Kari Herder,Christian Hermann,BruceP Herms,Stefan Herold,Christine Heron,ElizabethA Herting,Egbert P75 P94 C1 P113 P94 P46,P74 P87,P92 P62 Greenwood,CeliaMT Grinde,Kelsey Grove,MeganL Guan,Shunjie Guan,Weihua Guey,Stephanie Gulick,RoyM Günther,Frauke P136 P69 P39 P70 P39 P150 C3 P140 Hertz‐Picciotto,Irva Heßler,Nicole Hetmanski,JacquelineB Hetrick,Kurt Hibberd,PatriciaL Hill,Doug Hirschfield,GideonM Hirschhorn,JoelN P42,P131 P160 P108 P25,P109 P153 P63 P67 P22 Guo,Wei Gusareva,ElenaS Gwozdz,Wencke Habermann,Nina Haessler,Jeffrey Haines,JonathanL Hainline,Allison Hall,IanP P142 P45 P140 P102 P47 C2,P35 P69 P43,P91 Ho,Ing‐Kang Hobbs,CharlotteA Hodgson,Karen Hoen,AnneG Hoffmeister,Michael Hofmann,Per Hoggart,CliveJ Holmes,Michael P65 P16,P18 P95 P153 P14,P102 P94 P22 P86 Hall,JacobB Hall,MollyA Hall,Per Hamann,Ute Hamon,Julie Hashemzadeh‐Chaleshtori, Morteza Hass,DavidW C2 P42,P45,P111,P131 P118 C15,C16 P83 P17 P75 P60,P108 C1 P114 P153 A2,C21,P105 C3 Holste,Theresa Holzinger,EmilyR Homuth,Georg Hosseini,BitaSadat Housman,MollyL Houwing‐Duistermaat, Jeanine Howey,Richard Haubrich,Richard C3 Hsu,Yi‐Hsiang P76 P1 Hu,Yijuan Huang,Jie Hudson,Marie P36 C14 P136 Kilpeläinen,Tuomas Kim,DanielS Kim,Dokyoon P49 P33 P30,P42,P131 Huff,ChadD Hui,Jennie Hung,Joseph Hung,RayjeanJ Hwang,Heungsun Igl,WilmarM Iles,MarkM Im,HaeKyung P149 P124 P124 P4,P54,P101 P15 P10 C9 E3,C8 Kirdwichai,Pianpool Kirubakaran,Richard Kitchner,Terrie Kloss‐Brandstätter,Anita Koestler,DevinC König,InkeR Koscik,RebeccaL Koslovsky,MatthewD P66 P21 P111 P12 P153 P51,P162 P113 P20 Ionita‐Laza,Iuliana Itan,Yuval Jackson,LatifaF Jackson,VictoriaE Jacob,KuruthukulangaraS Jacob,Molly Jäger,MartinL James,AlanL P8,P100 P151 P107 P91 P126 P126 P141 P124 Kovach,JaclynL Kramer,Holly Krawczak,Michael Kieseier,BerndC Kronenberg,Florian Krumm,Niklas Krystal,JohnH Kuivaniemi,Helena C2 P11 P64,P156 P75 P12 P28 P41 C4,P33 Jansen,Lina Jeanpierre,Marc Jenkins,Gregory Jiang,Congqing Johnson,Michael Johnson,SterlingC Jomphe,Michèle Jones,Dean P14 P144 P99 P77 P90 P113 P147 P134 Kulkarni,Hemant Kullo,Iftikhar Kulminski,AlexanderM Kung,AnnieWai‐Chee Kuo,Hsiang‐Wei Kuruvilla,Anju Kutalik,Zoltán Kümpfel,Tania P7 C4 P48,P93 P120 P65 P126 P22,P32,P53 P75 Jorgensen,Andrea Jöckel,Karl‐Heinz Just,Jocelyne Justice,AmyC Justice,Anne Justice,CristinaM Kaaks,Rudolf Kabisch,Maria P90 P75 P23 P41 P49,P53 P143 P117 C15,C16 Kwon,Soonil Labbe,Aurélie Labuda,Damian Lacour,Andre Ladwig,Karl‐Heinz Laisk‐Podar,Triin Läll,Kristi Lambert,Jean‐Charles C1 P15,P136 P147 P74 C6 P103 P133 P24 Kachuri,Linda Kap,ElisabethJ Karaderi,T Karyadi,Danielle Kasela,Silva Kaye,Walter Keane,Thomas Keating,BrendanJ P101 P14,P102 P103 P116 C10 P158 C14 P45,P86 Lambourne,Stephan BuscheJohn Lamina,Claudia Laprise,Catherine Lathrop,Mark Lauria,Fabio Lavielle,Nolwenn Law,MatthewH P136 P12 P26 P23,P78 P140 P23 C9 Kedenko,Lyudmyla P12 Lawlor,Debbie P59 Leal,SuzanneM Leavy,Olivia LeBlanc,Marissa A5,C11,P28,P155 P72 P38 Luke,Amy M,FabiolaDelGreco Ma,Qianyi P11 P164 P84 Lee,JeffreyE Lefebvre,Jean‐François Legrand,Carine Leiro,MarcelaMQL LeMarchand,Loïc Leslie,ElizabethJ Leutenegger,Anne‐Louise Lewis,Glyn P78,P119 P147 P146 P2 P4,P101 P9 P24 P95 MacLeod,StewartL Madan,JulietteC Mägi,Reedik P18 P153 P85,P103,P106,P 133 P158 P47,P85 P50 P26 Lewis,Sarah Li,Biao Li,Jing Li,Jingyun Li,JunZ Li,Ming Li,Qing Li,Ruowang P95 A5 P121 P16,P18 P84 P16 P108 P30 Li,ShuweiS Li,Yafang Li,Yun Liang,Kung‐Yee Lieb,Wolfgang Lin,Danyu Lindgren,CeciliaM Lindström,Sara P155 P4,P101,P112 P36,P39 P13 P75,P156 P36 P103 P117 Ling,Hua Linneman,Jim Lishout,FrancoisVan Liu,Aiyi Liu,Geoffery Liu,Guozheng Liu,Sheng‐Wen Liu,Yu‐Li P25,P109 P35 P5 C5 P101 P77 P65 P65 Lobach,Iryna Lokk,Kaie Loley,Christina Long,Quan Loos,RuthJF LorenzoBermejo,Justo Lu,Qing Lucas,AnastasiaM P3 P106 P51 C5 P22,P53 C15,C16,P146 P98 P33,P35 Lui,VivianWai‐Yan P120 Magistretti,Pierre Mahajan,Anubha Majumdar,Arunabha Malerba,Giovanni Malik,Sadia Malley,James Mangino,Massimo Mangold,Elisabeth Marazita,MaryL Marchini,Jonathan Margaritte‐Jeannin, Patricia Marson,Anthony MARTINEZ,Maria Masca,NicholasGD Mascalzoni,Deborah Matchan,Angela Matteini,AmyM Maubec,Eve Mayeux,Richard P18 P60 P22 P108 P108 P43 P23 P90 P83 P52 P164 C13 P58 P119 P58 McCallum,Kenneth McCarthy,Shane McCarty,CatherineA McDonnell,ShannonK McGuffin,Peter McKay,JamesD McKenzie,ColinA McPhersonJonn Medina‐Rivera,Alejandra Meisinger,Christa Meitinger,Thomas Mells,George Melotti,Roberto Melton,PhillipE Memari,Yasin Merikangas,AlisonK P100 C14 P35,P45,P111 P116 P95 P4,P101 P11 P101 P79 C6 C6 P67 P164 P124 C14 P92 Metspalu,Andres Middha,Sumit C10,P103,P106 P116 Mihailov,Evelin Milani,Lili Mills,JamesL P52 C10 P3 Milne,Roger Min,Josine Minster,RyanL Moffatt,Miriam Mohamdi,Hamida Moore,JasonH P118 C14 P58 P26 P78,P119 P5,P44,P45,P56,P 63,P121,P153 P17 Moradipour,Negar Morange,Pierre Moreau,Claudia Morin,Andréanne Morris,AndrewP Panoutsopoulou,Kalliope Pantavou,Katerina Parchami‐Barjui, Shahrbanuo Pare,Guillaume Parker,MargaretM Pastinen,Tomi Paternoster,Lavinia Paterson,AndrewD Pattaro,Cristian Paul,Fiedemann P61 P163 P17 P122 P108 P136 P128 C19,C20,P127 P145,P164 P75 Morrison,HilaryG Moses,EricK Müller,C P79 P147 P26 P43,P47,P61,P85,P 90,P103 P153 P124 C1 Paulweber,Bernhard Pedergnana,Vincent Peil,Barbara Peissig,Peggy Pendergrass,SarahA Müller,Christian Müller‐Myhsok,Bertram Munroe,PatriciaB Musk,ArthurW Na,Jie Nadif,Rachel Najafi,Mohammad Neumann,Christoph C1 M3,P75 P52 P124 P68 P23 P114 P29 Perry,John Peters,Annette Peters,Marie Peters,TimJ Peterson,Pärt Peto,Julian Petterson,TanyaM Pfuetze,Katrin C14 C6,P12 P85 P95 C10 P72 P68 P102 Newman,AnneB. Nick,ToddG Nickerson,DeborahA Nitsch,Dorothea Noce,Damia North,KariE Nöthen,MarkusM Nothnagel,Michael P58 P16 C11 P123 P145 P53 P75,P108 P64 Pharoah,PaulDP Pigeot,Iris Pineau,ChristianA Pirinen,Matti Pitkäniemi,Janne Posch,Martin Posevitz,Vilmos Pramstaller,PeterP C9,P118 P140 P136 A4 P27,P57 I1 P75 P145,P164 Ntalla,Ioanna Nutt,David O'Donovan,MichaelC O'Roak,BrianJ Oros,KathleenKlein Orr,Nick Ozel,AyseB P,SujithaS P43 P95 P95 P28 P136 P118 P84 P19 Preuss,Christoph Preuß,Michael Province,MichaelA Pugh,Elizabeth Qiu,Jingya R,Anand R,Veeramanikandan Rahmioglu,Nilufer P147 P62 A1 P25,P109 P56 P21 P21,P126 P85 Palla,Luigi Pankow,James P37,P72 P39 Rajkumar,AntoP Ramirez,Alfredo P126 P46 P12 P151 C16 P35,P111 C3,C4,P42,P45,P 86,P111,P131 Pericak‐Vance,MargaretA C2 Perls,ThomasT P58 Rashki,Ahmad Ray,Ajit Rehman,AtteeqU P17 P108 C11 Sanders,JasonL P58 Sandford,Richard P67 Santos‐Cortez,RegieLynP C11 Reinsch,Norbert Reisch,LuciaA Riazuddin,Saima Riazuddin,Sheikh Ripatti,Samuli Ritchie,GrahamRS Ritchie,MarylynD Rivolta,Carlo Robbins,GregoryK Roberts,Robert Robertson,Neil Rocheleau,Ghislain Rohde,Klaus Romdhani,Hela Romm,Jane P71 P140 C11 C11 A4,P27,P57 C14 C3,P30,P42,P45,P 86,P111,P131 P22 C3 P122 P85 P159 P26 P15 P109 Sarin,AnttiP Sarnowski,Chloé Sayers,Ian Scanlon,PaulD Scheet,Paul Scheinhardt,MarkusO Scherer,Dominique Schillert,Arne P57 P23,P26 P91 P68 I4 P71 P102 C1 Rosenberger,Albert Ross,Stephanie Rotimi,CharlesN Rousson,Valentin Roustazadeh,Abazar Roy‐Gagnon,Marie‐Hélène Ruczinski,Ingo Rudi,Knut P54 P122 C18,P77,P81 P22 P114 P147 P29 I5 Schmidt,Marjanka Schork,Nicholas Schramm,Katharina Schüller,Vitalia Schupf,Nicole Schurmann,Claudia Schwantes‐An,Tae‐Hwi Schwartz,StephenD P118 P158 C1 P46 P58 C1 P73,P143 C2 Rudolph,Anja Rue,AsenathLa Rüeger,Sina Russo,Paola S,Gunasekaran S,Harshavaradhan S,Lakshmanan S,Lakshmikirupa P118 P113 P32 P140 P19 P19 P19 P126 Schwartzentruber,Jeremy Schwender,Holger Schwerin,Manfred Schwienbacher,Christine Scott,WilliamK Segurado,Ricardo Seibold,Petra Seldin,Mike C13 P29 P71 P145,P164 C2 P92 P14,P102 P67 Saad,Mohamad Saare,Merli Sabourin,JeremyA Sager,MarkA Sahbatou,Mourad Sakuntabhai,Anavaj Sallis,Hannah Salumets,Andres A3 P85 P143 P113 P24 P154 P128 P85,P103,P106 Selleck,ScottB Severi,Gianluca Sham,Pak‐Chung She,Jun Shen,Mengtian Shete,Sanjay Shih,PBetty Shin,Ji‐Hyung P42,P131 P4 P120 P68 P70 P138,P157 P158 P40 Samani,NileshJ P122 Shrine,Nick Shriner,Daniel Shugart,YinYao Shui,Irene Siani,Alfonso Siegert,Sabine Sillanpää,MikkoJ Sills,Graeme P43 C18,P77,P81 P110 P117 P140 P64 P27,P57 P90 Siminovitch,KatherineA P67 Sing,Chor‐Wing Smith,GeorgeDavey Sobreira,Nara P120 P128 P25 Tissier,RenaudR Tobin,MartinD Todd,Nick P105 P43,P52,P91 P18 Sogin,MitchellL Sorant,AlexaJM Southam,Lorraine Spitz,Margaret Srivastava,Alok Srivastava,Amitabh SS,Prakash Stahl,EliA P153 P73,P143 C13 P157 P126 P121 P21 C5 Tongsima,Sissades Tõnisson,Neeme Tornaritis,Michael Tournier‐Lasserve, Elisabeth Tozeren,Aydin Trégouët,David Tromp,Gerard P154 P106 P140 P150 Stallard,Eric Stanford,Janet Stangel,Martin Staples,Jeffery Steen,KristelVan Steer,Colin Stewart,AlexanderFR Stewart,WilliamCL P48 P116 P75 P149 P5,P132,P154 P128 P122 P137 Truong,Vinh Tserel,Liina Tsonaka,Roula Tumani,Hayrettin Turpin,Williams Tworoger,Shelley Ukraintseva,SvetlanaV Ul‐Abideen,MuhammadZ P79 C10 C21,P105 P75 C19 P101 P48,P93 P153 Strachan,DavidP Strauch,Konstantin Sun,YanV Sun,Zhifu Sundquist,Jan Sung,Heejong Swartz,MichaelD Szymczak,Silke P43 C6,P12,P75,P152 P134 P68 P94 P73,P143 P20 P60,P161 Ulrich,CorneliaM Ushey,Kevin Vaccarino,ViolaL Vaitsiakhovich,Tatsiana Valle,David Vandewater,ElizabethA Vaysse,Amaury Veidebaum,Toomas P14 P135 P134 P46,P74 P25 P20 P78,P119 P140 Tachmazidou,Ioanna Tackenberg,Björn Táernikova,Natalia Talluri,Rajesh Tammiste,Triin Tan,KathrynChoon‐Beng Tang,Hua Tang,Xinyu C14 P75 P106 P157 P103 P120 C17 P16,P18 Venturini,Giulia Verdura,Edgard Verma,Anurag Verma,ShefaliS Vézina,Hélène Vincent,Quentin Volk,Heather P22 P150 C3,C4,P35 C4,P33,P35,P42,P 45,P86,P131 P147 P26,P151 P42,P131 Taub,MargaretA Tayo,BamideleO Tekola‐Ayele,Fasil Thibodeau,StephenN Thomas,DuncanC Thomsen,Hauke Thromp,Gerard Tikkanen,Emmi P9,P29 P11 C18 P116 P104 P94 P33 A4 vonStrandmann,ElkeP Vrabec,TamaraR Wagner,ErinK. Wahl,Simone Wain,LouiseV Waldenberger,Melanie Wallace,JohnR Walter,Klaudia P94 P35 P76 C1 P43,P52,P91 C6.P75 P45,P111 C14 Tintle,NathanL P69 Wampfler,JasonA Wang,GaoT P68 A5,P28,P155 P107 P79 P35 Wang,Sheng‐Chang Wang,Shuai Wang,Yifan P65 A6 P3 Wu,Deqing Xia,Jin Xiao,Xiangjun P93 P76 P112 Wang,Yu‐Ping Wang,Zhong Wang,Zuoheng Wangkumhang, Pongsakorn Warren,Helen Weber,Frank Weal,Mike P110 P41 P41 P154 P52 P75 P125 Weeks,DanielE Wei,Changshuai Wei,Peng Wei,Qingyi Weidinger,Stephan Wendt,Christine Westra,Harm‐Jan Wheeler,Eleanor P3 P98 P115 P78 C6 P68 C10 P61 Xiong,Momiao Xu,Ke Xu,Lizhen Xu,MengYuan Xu,Wei Yadav,Pankaj Yang,Hsin‐Chou Yao,Chen P3 P41 C19,C20 P142 C19,C20 P156 P65 P113 Wiendl,Heinz Wijsman,EllenM Wilantho,Alisa Wilch,EllenS Wildemann,Brigitte Wiles,Nicola Wilkinson,AnnaV Wilson,AlexanderF P75 A3 P154 C11 P75 P95 P20,P157 P3,P73,P143 Yao,Yin Yashin,AnatoliyI Yengo,Loïc Young,KristinL Younkin,SamuelG Zeeland,AshleyVan Zeggini,Eleftheria Zettl,Uwe P142 P48,P93 P159 P49 P29 P158 C13,P43,P61 P75 Wilson,Michael Winham,StaceyJ Winkler,ThomasW Witmer,Dane Witte,John Wojczynski,MaryK Wolf,Andreas Wong,IanChi‐Kei P79 P99 P49,P53 P25 E2 P58 P64 P120 Zhang,Di Zhang,Guosheng Zhang,Peng Zhang,Shuo Zhang,Zhenjian Zhao,JingH Zhou,Jie Zhou,Yanxun A5,P155 P39 P25,P109 P68 P77,P81 A6 P81 P77,P81 Zhu,Jun Zhu,Xiaofeng Ziegler,Andreas Wong,William Wright,MarvinN Wu,Chih‐Chieh Wu,ColinO P96 P80 P138 C5 C5 P55 M4,C1,P51,P62,P 71,P75,P80,P139,P 160,P162 P71 P75 I4 P85 P38 P101 Zimmer,Daisy Zipp,Frauke Zöllner,Sebastian Zondervan,KrinaT Zuber,Verena Zuzarte,PhilipC