Kreft-The Schweinrich Structure
Transcription
Kreft-The Schweinrich Structure
“The Schweinrich structure”, a potential site for industrial scale CO2 storage and a test case for a safety assessment in Germany Eric Kreft, Rickard Svensson, Robert Meyer, Arie Obdam, Rob Arts, Christian Bernstone, Sara Eriksson, Pierre Durst, Irina Gaus, Bert van der Meer, Cees Geel Rob van Eijs CO2STORE Study Sites 2 Major power plants operated by Vattenfall 2000 1000 Lippendorf Boxberg Schwarze Pumpe 0 Jänschvalde Electricity production [MW] Schwarze Pumpe Power plant: Representative size 3000 & location 10 Mton CO2 / year 3 Vattenfall CO2 free power plant project 4 Location of Schwarze Pumpe Power Plant 5 CO2 injection in the Schweinrich deep saline aquifer 6 W – E Cross Section Source: BGR & TNO 7 Process chain safety assessment CCS projects CO2STORE Schweinrich study Feasibility phase Feasibility examination Investigation phase Planning phase Construction phase Implementation Operation phase Operation and maintenance Project phases for a CCS project 8 Postoperation phase • Safety evaluation • based on SAMCARDS methodology + tools • assessment of shallow subsurface NOT included • stochastics without CO2 dissolution Vocabulary RISK MANAGEMENT RISK ASSESSMENT RISK ANALYSIS SOURCE IDENTIFICATION RISK ESTIMATION RISK EVALUATION RISK TREATMENT RISK AVOIDANCE RISK OPTIMISATION RISK TRANSFER RISK RETENTION RISK ACCEPTANCE RISK COMMUNICATION 9 •Risk analysis – Systematic use of information to identify hazards and to estimate the risk. •Risk evaluation – process of comparing the estimated risk against given risk criteria to determine the significance of the risk. •Risk assessment – Overall process of risk analysis and risk evaluation. Evaluation of spatial entities • 1: Reservoir • 2: Seal • 3: Overburden • 4: Faults • 5: Wells 10 Safety assessment 11 Safety assessment 12 Four scenarios • 1: Leaking seal scenario • 2: Leaking fault scenario • 3: Leaking well scenario • 4: Reference scenario (base case) 13 Procedure probabilistic modeling approach (per scenario) • Calibrate simplified models to fine scale model • Generate a long list of X stochastic input variables • Generate 10X input files (SIMED-II) • Execute 10X input files in batch mode • Analyse results • Assess CO2 in Pleistocene sediments • Evaluate / compare with risk criteria 14 Calibration to fine scale model • Similar (upscaled) input variables • Similar CO2 spread in time • Similar reservoir pressures in time 15 Fine scale model Schweinrich 16 Simplified Layer cake models Layer [#] top bottom [meters] [meters] thickness rocktype k_hor k_vert porosity [meters] [mD] [mD] [fraction] 1 0 164 164 RT5 500 0.01 2 164 260 96 RT2 500 50 3 260 490 230 RT6 1E-05 1E-05 4 490 700 210 RT5 100 0.01 5 700 802 102 RT2 500 50 6 802 896 94 RT4 250 0.001 7 896 925 29 RT2 500 50 8 925 1108 183 RT4 250 0.001 9 1108 1130 22 RT2 500 50 10 1130 1220 90 RT3 1 0.001 0.05 Lower Jurassic siltstones 11 1220 1308 88 RT6 1E-05 1E-05 0.03 Lower Jurassic claystones 12 1308 1466 158 RT1 500 5 0.15 Lower Jurassic sandstone 13 1466 1509 43 RT3 1 0.001 14 1509 1564 55 RT1 500 5 Reservoir Interpolated thickness of top of Schweinrich anticlinal structure 17 0.08 Pleistocene mix of gravel, sand, silt, clay and till 0.25 Tertiary clean sands 0.03 Tertiary claystones 0.1 Cretaceous limestones 0.25 Cretaceous sands 0.06 Middle Jurassic siltsones 0.25 Middle Jurassic sandstones 0.06 Lower Jurassic siltstones 0.25 Lower Jurassic sandstones 0.05 Uppermost Triassic siltstones 0.15 Uppermost Triassic sandstones Analysis of results Leaking Fault Scenario (1000 runs) 0.40 Relative probability [fraction] 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 Total CO2 release in 10,000 years [%] 18 80 - 90 90 - 100 Reference scenario 19 Reference scenario • No leakage / release from seal • No safety hazard 20 Leaking seal scenario 21 Leaking seal scenario • Release from reservoir into overburden • However CO2 does not reach shallow subsurface • No safety hazard 22 Leaking well scenario 23 Leaking well scenario • High leakage rates / fluxes • About 60 % released in 3000 years BUT: • No existing/historical wells penetrate the reservoir • Injection wells can be constructed with latest technology • In reality mitigation measures will be taken at early stage Leaking Well Scenario (20 runs) 300 250 250 200 200 150 150 100 100 50 50 240 0 1000 2000 3000 4000 5000 6000 Time [years] 7000 8000 9000 0 10000 Total CO2 Release [%] Maximum CO2 Flux [tons/m2/year] Leaking Well Scenario (20 runs) 300 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 1000 2000 3000 4000 5000 6000 Time [years] 7000 8000 9000 0 10000 Leaking fault scenario 25 Leaking fault scenario 26 Leaking fault scenario • High variability in outcome / results • Intermediate leakage rates / fluxes • Fluxes compare well to natural analogues (Streit & Watson, 2004) BUT: • No proven faults from reservoir to surface • Sealing properties of faults unknown (too large range applied) 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 27 0 1000 2000 3000 4000 5000 6000 Time [years] 7000 8000 9000 0 10000 Total CO2 Release [%] Leaking Fault Scenario (20 runs) 0.6 2 Maximum CO2 Flux [tons/m /year] Leaking Fault Scenario (20 runs) 0.6 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 1000 2000 3000 4000 5000 6000 Time [years] 7000 8000 9000 0 10000 Safety evaluation (I) Maximum CO2 Concentration in Pleistocene Sediments (1000 runs) 1 0.9 1 Leaking Fault Scenario 0.9 Relative probability [fraction] Leaking Well Scenario 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 28 0-2 2-4 4-6 6-8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 18 - 20 20 - 22 22 - 24 24 - 26 26 - 28 28 - 30 Maximum CO2 concentration in 10,000 years [%] Safety evaluation (II) Saripally et al. (2002): 29 Conclusions from safety analysis • Adverse effect for leaking fault scenario • Severe / lethal effects for leaking well scenario • BUT: • Leaking well scenario unrealistic • Range of model input parameters too large • Faults need further investigation • Location • Vertical extent • Properties 30 Upcoming work • Injection strategy • Fault characterization CO2STORE Schweinrich study Feasibility phase Feasibility examination Investigation phase Planning phase Construction phase Implementation Project phases for a CCS project 31 Operation phase Postoperation phase Operation and maintenance Acknowledgements • EU CO2STORE project and its partners, in particular: • • • • • 32 Vattenfall BGR BRGM TNO BGS