Numerical method for HJB equations. Optimal control problems and
Transcription
Numerical method for HJB equations. Optimal control problems and
Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3) Maurizio Falcone (La Sapienza) & Hasnaa Zidani (ENSTA) ANOC, 23–27 April 2012 M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 1 / 50 Outline 1 Introduction 2 Planing Motion, reachability analysis 3 Hamilton-Jacobi approach: level set method 4 Differential games under state-constraints M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 2 / 50 Consider the controlled system: ẏx (s) = f (yx (s), α(s)), yx (0) = x, α(s) ∈ A, s ∈ (0, +∞), (1) a.e s ∈ (0, +∞). where A is a convex compact set in Rm , (m ≥ 1). Admissible trajectories: S[0,τ ] (x) := {yx satisfying (1) on(0, τ ), yx (0) = x} Under classical assumptions, the set-valued function x S[0,τ ] (x) is Lipschitz continuous, ∃L > 0, S[0,τ ] (x) ⊂ S[0,τ ] (z) + L|x − z|BW 1,1 M. Falcone & H. Zidani () HJB approach for optimal control problems ∀x, z ∈ Rd . ANOC, 23–27 April 2012 4 / 50 Now, consider the following control problems: ä Mayer’s problem: V (x, t) = inf yx ∈S[0,t] (x) Φ(yx (t)) ä Time minimum problem (C closed set in Rd ): T (x) = inf t; yx (t) ∈ C, yx ∈ S[0,t] (x) ä Supremum cost: V ∞ (x, t) = M. Falcone & H. Zidani () inf yx ∈S[0,t] (x) Φ(yx (t)) _ sup g(yx (θ)) θ∈[0,t] HJB approach for optimal control problems ANOC, 23–27 April 2012 5 / 50 Assume that g : Rd → R is Lipschitz continuous (+classical assumptions on f ) If Φ : Rd → R is lsc (resp. Lipschitz), then V and V ∞ are lsc (resp. Lipschitz). When the target C is closed, the minimum time function T is lsc. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 6 / 50 Mayer Problem V (x, t) = min yx ∈S[0,h] (x) V (yx (h), t − h) h ∈ (0, t), V (x, 0) = Φ(x) Minimum time problem: T (x) = min yx ∈S[0,h] (x) T (yx (h)) + h h < T (x), x 6∈ C, T (x) = 0 x ∈ C; Supremum cost V ∞ (x, t) = min yx ∈S[0,h] (x) V ∞ (x, 0) = Φ(x) M. Falcone & H. Zidani () _ V ∞ (yx (h), t − h) _ sup g(yx (θ)) θ∈[0,h] g(x); HJB approach for optimal control problems ANOC, 23–27 April 2012 7 / 50 V (x, t) = V (x, t) = min yx ∈S[0,t] (x) Φ(yx (t)) min V (yx (h), t − h) yx ∈S[0,h] h ∈ (0, t). V (x, 0) = Φ(x) ä Suboptimality: ∀yx ∈ S[0,t] (x), s 7−→ V (yx (s), t − s) is increasing, ä Superoptimality ∃yx∗ ∈ S[0,t] (x), M. Falcone & H. Zidani () s 7−→ V (yx∗ (s), t − s) is constant HJB approach for optimal control problems ANOC, 23–27 April 2012 8 / 50 Next, we derive the Hamilton-Jacobi-Bellman equation (HJB), which is an infinitesimal version of the DPP. ä ∂t V (x, t) + H(x, Dx V (x, t)) = 0, V (x, 0) = Φ(x) ä H(x, DT (x)) = 1, T (x) = 0 on C x ∈ Rd , t > 0; Time-dependent HJB equation x 6∈ C, T (x) < +∞; Steady HJB equation ä min(∂t V ∞ (x, t) + H(x, DV ∞ (x, t)), V ∞ (x, t) − g(x)) = 0, x ∈ Rd , t > 0; V ∞ (x, 0) = Φ(x) ∨ g(x) HJB-VI ineqation where H(x, q) := maxa∈A (−f (x, a) · q). M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 9 / 50 ä To each control problem is associated an adequate Hamilton-Jacobi equation ä A very large class of control problems can be considered within the HJ framework (state-constrained control problem, infinite horizon control problems, hybrid systems, impulsive control, ... ) ä The viscosity notion provides a very convenient framework for the theoretical and numerical studies of the value function M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 10 / 50 ä When the (exact) value function is known, the feed-back controller can be defined as the minimizer of the DPP. ä This feedback can be shown to be an optimal control law Van der Pol Problem : ẏ1 (t) = y2 ẏ2 (t) = −y1 + y2 (1 − y12 ) + a a(t) ∈ [−1, 1] 2 1.5 1 0.5 0 −0.5 −1 Scheme:ENO2−RK1 Target −1.5 −2 −2 M. Falcone & H. Zidani () HJB approach for optimal control problems −1 0 1 ANOC, 23–27 April 2012 2 11 / 50 ä When the (exact) value function is known, the feed-back controller can be defined as the minimizer of the DPP. ä This feedback can be shown to be an optimal control law 1.5 1 0.5 x2 Van der Pol Problem : ẏ1 (t) = y2 ẏ2 (t) = −y1 + y2 (1 − y12 ) + a(t) a(t) ∈ [−1, 1] 0 −0.5 −1 −1.5 −1.5 M. Falcone & H. Zidani () −1 −0.5 HJB approach for optimal control problems 0 x1 0.5 1 1.5 ANOC, 23–27 April 2012 12 / 50 Open problem In general, only an approximation of the value function can be computed. It is not clear how the feedback control behaves with respect to a small perturbation of the value function. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 13 / 50 Numerical methods Semi-Lagrangian methods: based on the DPP (Falcone, Ferretti, Jakobsen, Grüne, Kushner-Dupuis, ...) PROS: no CFL condition for stability (⇒ adaptative schemes) CONS: non-local Finite difference methods: approximation of the gradient by FD (Crandall/Lions, Barles, Souganidis) CONS: needs CFL condition for stability PROS: local method =⇒ can be parallelized PROS: non-monotone variants are proposed to get numerically "high-order" • -monotone schemes (R. Abgrall) • ENO, WENO (Osher, Shu, ... ) • Discontinuous Galerkin, direct DG (Cockburn, Shu, Cheng&Shu, Bokanowski’12) • Anti-diffusive schemes, Ultra-Bee (Megdich-Bokanowski-HZ’10, Bokanowski-Cristiani-HZ’10) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 14 / 50 Recent developments and ongoing works: • "Curse of dimentionality free methods" : max-plus algebra (McKeneaney, Akian, Gaubert, Sridharan, ...) • Sparse grids method (Bokanowski/Klompmaker/Garke/Griebel 12’) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 15 / 50 ENO2-RK1 scheme (and example of numerical Hnum ) void HJB_FD::ENO2_RK1(double t, double deltat, double* vin, double* vout){ int i,j,d; double vi,v1,v2,v3,v4,vv,h; for(j=0;j<mesh->inn_nbPoints;j++){ i = rank[j]; vi = vin[i]; for(d=0;d<dim;d++){ v1 = vin[i mesh->out_neighbors[d]]; v3 = vin[i - 2*mesh->out_neighbors[d]]; v2 = vin[i + mesh->out_neighbors[d]]; v4 = vin[i + 2*mesh->out_neighbors[d]]; h = mesh->Dx[d]; vv = (v2-2.*vi+v1)*divdx[d]*divdx[d]; Dvnum[2*d] = (vi-v1)*divdx[d] + h*.5*minmod((vi-2.*v1+v3)*divdx[d]*divdx[d],vv); Dvnum[2*d+1]= (v2-vi)*divdx[d] - h*.5*minmod((vi-2.*v2+v4)*divdx[d]*divdx[d],vv); } vout[i] = vi - deltat * (*this.*Hnum)((mesh->*(mesh->getcoords))(i),Dvnum,t); } } inline double Hnum(const double* x, const double* v, double t) { double z=0., p[DIM], amax[DIM]; int i; for(i=0;i<DIM;i++){ amax[i]=1.; //- a maximal bound of the dynamics p[i]=(v[2*i] + v[2*i+1])/2.; z += amax[i]*(v[2*i+1] - v[2*i])/2.; } return H(x,p)-z; //- H(x,Nabla u) is the Hamiltonian } M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 16 / 50 HJ parallel Library (Binope) by O. Bokanowski, A. Désilles, J. Zhao, H. Zidani http://www.ensta-paristech.fr/~zidani/BiNoPe_HJ/presentation.html Finite Differences solver (ENO, UltraBee) C++, parallel (MPI/OpenMP) works in any dimension (limited to machine’s capacity) Semi-Lagrangian solver C++ (OpenMP) works in any dimension (limited to machine’s capacity) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 17 / 50 Reachable (or Attainable) set ä The reachable set Rf (x; t) from x at time t is the set of all points of the form yx (τ ), where yx ∈ S[0,t] (x): Rf (x; t) := {yx (τ ) | yx ∈ S[0,t] (x), τ ∈ [0, t]}. ä The reachable set from X is defined by: RfX (t) := ∪x∈X Rf (x; t). M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 19 / 50 Let C be a closed target set (in our examples, C is safe) Capture Basin (or Backward reachable set) ä The Capture Basin CaptCt , at time t, is the set of all initial positions x from which a trajectory yx ∈ S[0,t] (x) can reach the target C. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 20 / 50 ä Does there exist a trajectory leading from a state in initial set X to a state in the target C, during some finite time horizon? ä Once an obstacle has been detected by suitable sensors (e.g. radar, pursuer), can a collision be avoided? ä Sometimes we have no control over input signal (noise, actions of other agents, unknown system parameters, ...): it is safest to consider the worst-case. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 21 / 50 Different approaches for computing the reachable sets ä set-valued integration schemes [Saint-Pierre’91, Baier’95], optimal control techniques [Varaiya’00, Baier et al.’07] ä external and inner ellipsoidal techniques [Kurzhanski and Varaiya’00,’01,’02] ä discretization methods for nonlinear problems with state constraints [Chahma’03, Beyn an Rieger’07] ä Optimal controller design: level set method [Osher-Sethian’91, Falcone-et-al.’05, Mitchell’07, Bokanowski-HZ’07, Bokanowski-Forcadel-HZ’10] M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 22 / 50 Optimization-based controller design Minimum-time control problem: T (x) = inf t; yx (t) ∈ C, yx ∈ S[0,t] (x) . The sublevels of the minimum function T correspond to the Capture Basins of the target C: CaptCt = {x ∈ Rd | T (x) = t}. When the minimum time function T is continuous, it can be characterized as the unique viscosity solution of the HJB equation: H(x, DT (x)) = 1, T (x) = 0 in C, x 6∈ C, T (x) < +∞; where H(x, q) := maxa∈A (−f (x, a).q). M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 23 / 50 Unfortunately ... ä The continuity of T is equivalent to small controllability of the system around the target: let ηx be the normal to C, min f (x, α) · ηx < 0, α∈A ∀x ∈ ∂C. ä This (restrictive) controllability property is not satisfied in several examples (e.g. Zermelo problem). ä In the general case, the minimum time function is only lsc. In this case, the approximation of the minimum value function becomes more difficult. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 24 / 50 Zermelo problem M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 25 / 50 Optimal control problem. Level set approach Define the signed distance function Φ(x) = dC (x), and consider the following control problem: V (x, t) = M. Falcone & H. Zidani () inf yx ∈S[0,t] (x) Φ(yx (t)) HJB approach for optimal control problems ANOC, 23–27 April 2012 27 / 50 ä V is Lipschitz continuous and satisfies (Crandall-Lions’84): ∂t V (x, t) + H(x, DV (x, t)) = 0, V (x, 0) = Φ(x), where H(x, q) := supa∈A (−f (x, a) · q) ä For every t ≥ 0, CaptCt = {x ∈ Rd ; V (x, t) ≤ 0}; ä The minimum time function T : Rd → R+ ∪ {+∞} is lsc. Moreover, we have: T (x) = inf{t ≥ 0; x ∈ CaptCt } = min{t ≥ 0; V (x, t) ≤ 0}. ã Φ can be any function satisfying Φ(x) ≤ 0 ⇐⇒ x ∈ C. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 28 / 50 ä The level set approach can be used even when the minimum time function is discontinuous! The value function V is Lipschitz continuous! ä The level set approach can be extended to more general situations: differential games, avoidance of obstacles, moving target and/or obstacles, ... M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 29 / 50 General setting: differential games under state constraints Let α ∈ A be a controlled input, and β ∈ B an uncontrolled input (perturbance). Consider the trajectory: ẏx (s) = f (yx (s), α(s), β(s)), s ∈ (0, 1), yx (0) = x, Let (Kθ )θ≥0 be a family of closed set (of constraints). Consider a game involving two players. I I The first player wants to steer the system from the initial position at point x to the target C and by staying in K (and using his/her input α(t) ∈ A) while the second player tries to steer the system away from C or from K (with his/her input β(t) ∈ B). Assume θ 7−→ Kθ is usc. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 31 / 50 Non anticipative strategies We define the set of non-anticipative strategies for the first player, as follows: Γ := a : B → A, ∀(β, β̃) ∈ B and ∀s ∈ [0, ∞), β(θ) = β̃(θ) a.e. θ ∈ [0, s] ⇒ a[β](θ) = a[β̃](θ) a.e. θ ∈ [0, s] . M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 32 / 50 ä For τ ≥ 0, a[β],β CaptK (τ ) := {x ∈ Rd | ∃α, ∀β, yx a[β],β (s) ∈ Ks , and yx (τ ) ∈ C} ä Again, let Φ(x) = dC (x) and consider the control problem: ϑ(x, τ ) := min max Φ(y (τ )). a[β] β|y a[β],β (t)∈K t x Then CaptK (τ ) = {x ∈ Rd , ϑ(x, τ ) ≤ 0} T (x) = min{τ ≥ 0, ϑ(x, τ ) ≤ 0}. ä For controlled systems lacking controllability assumptions, the characterization of ϑ by means of HJB equations is not an easy task !!! (Ref: Soner’86, Ishii-Koike’91, Frankowska’91, Altarovici-Bokanowski-HZ’12) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 33 / 50 An other formulation: exact penalisation ä Let g(x, θ) = dKθ (x) for any θ ≥ 0 and x ∈ Rd . Then, consider : ϑg (x, τ ) := inf max Φ(yx (τ )) a[.]∈Γ β _ a[β],β max g(yx (θ), θ). θ∈[0,τ ] ä ϑg is the unique continuous viscosity solution min ∂ϑg (x, τ ) + H(x, Dx ϑg (x, τ )), ϑg (x, τ ) − g(x, τ )) = 0, ϑg (x, 0) = max(Φ(x), g(x, 0)). where H(x, q) := supa∈A minb∈B (−f (x, a, b) · q) ä And Captt = {x ∈ Rd , ϑg (x, τ ) ≤ 0}, M. Falcone & H. Zidani () T (x) = min{τ ≥ 0, ϑg (x, τ ) ≤ 0}. HJB approach for optimal control problems ANOC, 23–27 April 2012 34 / 50 Example1: One player, fixed obstacles M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 35 / 50 Example2: Zermelo problem with obstacles x 0 = Vboat cos(θ) + Vcurrent − ay 2 y 0 = Vboat sin(θ) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 36 / 50 Zermelo problem with obstacles: feedback control law 2 1.5 x 0 = Vboat cos(θ) + Vcurrent − ay 2 y 0 = Vboat sin(θ) 1 0.5 0 −0.5 −1 Scheme:ENO2−RK1 Obstacle Target −1.5 −2 −3 M. Falcone & H. Zidani () −2.5 −2 −1.5 −1 −0.5 0 0.5 HJB approach for optimal control problems 1 1.5 2 ANOC, 23–27 April 2012 37 / 50 Exemple: Ariane V Objectif Minimize the ergol consumption to steer the (given) payload MCU to the GTO (or GEO). Collaboration with Cnes (projet OPALE 2007-2010) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 38 / 50 −−→ The physical model involves 7 state variables, the position OG of → − the rocket in the 3D space, its velocity v and its mass m. eK er G → − v γ ` O eJ e` G L eI χ eL → − Projection of v on the frame (er , eL , e` ) → − − → The forces acting on the rocket are: Gravity P , Drag FD , Thrust − → → − FT , and Coriolis Ω . Newton Law: → − → − − → − → → − → → − → − −−→ dv − m = P + FD + FT − 2m Ω ∧ v − m Ω ∧ ( Ω ∧ OG), dt M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 39 / 50 PHASE C (HJB) m1 m2 m3 GEO GTO PHASE B (transport) PHASE A(HJB) M. Falcone & H. Zidani () m1 m3 m2 HJB approach for optimal control problems ANOC, 23–27 April 2012 40 / 50 The related equation State variables: r =altitude v =modulus of the velocity γ=angle between the direction earth-rocket and the direction of the rocket’s velocity. L= latitude `= longitude χ= azimuth m= masse of the engine Control: α=angle between the thrust direction and the direction of the rocket’s velocity. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 41 / 50 ṙ = v cos γ FD (r , v ) FT (r , v , a) + cos α m m Ω2 r cos `(cos γ cos ` − sin γ sin ` sin χ) g(r ) v FT (r , v , a) γ̇ = sin γ − − sin α v r vm r −2Ω cos ` cos χ − Ω2 v cos `(sin γ cos ` − cos γ sin ` sin χ) v̇ = −g(r ) cos γ − v sin γ cos χ r cos ` v `˙ = sin γ sin χ r v χ̇ = − sin γ tan ` cos χ − 2Ω(sin ` − cotanγ cos ` sin χ)+ r r sin ` cos ` cos χ Ω2 v sin γ L̇ = M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 42 / 50 â The plane of motion is the equatorial plane ` ≡ 0, and χ ≡ 0. ṙ = v cos γ FD (r , v ) FT (r , v , a) + cos α + Ω2 r cos γ v̇ = −g(r ) cos γ − m m r g(r ) v FT (r , v , a) γ̇ = sin γ − − sin α − 2Ω − Ω2 sin γ v r vm v v L̇ = sin γ r ṁ = −b(m(t)) M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 43 / 50 The rocket’s mass ä The evolution of the mass can be summarized as follows Phase 0 & 1 ṁ1 (t) = −βEAP ṁ2 (t) = −βE1 ṁ3 (t) = 0 Phase 2 ṁ1 (t) = 0 ṁ2 (t) = −βE1 ṁ3 (t) = 0 Phase 3 ṁ1 (t) = 0 ṁ2 (t) = 0 ṁ3 (t) = −βE2 where βEAP , βE1 and βE2 are the mass flow rates for the boosters, the first and the second stage. ä At the changes of phases, we have a (not negligible) discontinuity in the rocket’s mass. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 44 / 50 The control problem can be formulated as (for a fixed payload) Minimize tf (r , v , γ, m, α) satisfy the state equation α(t) ∈ [0, π/2] a.e. t ∈ (0, tf ), (r (tf ), v (tf ), γ(tf )) ∈ C, Q(r (t), v (t))α(t)) ≤ Cs for t ∈ (0, tf ), m(tf ) = Mp . where the target C corresponds to the GTO orbit, and the function Q is the dynamic pressure. M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 45 / 50 ã The Capture Basin is wide + We introduce "physical" state constraints to define the computational domain ã Due to the CFL condition, the time step is very small + Adaptative time discretization ã "Different scales" for the state variables: r = r0 (ex − 1) + rT + Change of variable: v = v0 (ey − 1) + vT M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 46 / 50 200 0 gamma (rad) speed (m/s) 400 0 10000 8000 6000 4000 2000 500 1000 time (sec) 1.5 mass (ton) altitude (km) GTO target 1 0.5 0 500 1000 time (sec) 0 500 1000 time (sec) 600 400 200 0 0 500 1000 time (sec) Figure: Full trajectory using the HJB minimal time value function Reference trajectory, final mass: HJB trajectory, final mass (after reconstruction): M. Falcone & H. Zidani () HJB approach for optimal control problems mT = 21.57 (t) mT = 22.50 (t) ANOC, 23–27 April 2012 47 / 50 200 0 gamma (rad) speed (m/s) 400 0 10000 8000 6000 4000 2000 500 1000 time (sec) 1.5 mass (ton) altitude (km) GTO target 1 0.5 0 500 1000 time (sec) 0 500 1000 time (sec) 600 400 200 0 0 500 1000 time (sec) Figure: Full trajectory using the HJB minimal time value function Reference trajectory, final mass: HJB trajectory, final mass (after reconstruction): M. Falcone & H. Zidani () HJB approach for optimal control problems mT = 21.57 (t) mT = 22.50 (t) ANOC, 23–27 April 2012 48 / 50 "Collision analysis for an UAV". E. Crück, A. Desilles, HZ. AIAA Guidance, Navigation, and Control, 2012 "A general Hamilton-Jacobi framework for nonlinear state-constrained control problems". A. Altarovici, O. Bokanowski and HZ ESAIM:COCV, 2012 "Minimal time problems with moving targets and obstacles". O. Bokanowski and HZ. 18th IFAC World Congress, Milan, 2011 "Deterministic state constrained optimal control problems without controllability assumptions". O. Bokanowski, N. Forcadel and HZ ESAIM: COCV, 17(04), pp. 975–994, 2011 "An efficient data structure and accurate scheme to solve front propagation problems". O. Bokanowski, E. Cristiani and HZ J. of Scientific Computing, 42(2), pp. 251–273, 2010 "Reachability and minimal times for state constrained nonlinear problems without any controllability assumption". O. Bokanowski, N. Forcadel and HZ SIAM J. Control and Optimization, vol. 48(7), pp. 4292-4316, 2010 "Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data". O. Bokanowski, N. Megdich and HZ. Numerische Mathematik, 115(1), pp. 1–44, 2010 "An anti-diffusive scheme for viability problems" O. Bokanowski, S. Martin, R. Munos and HZ. Applied Num. Methematics, 56(9), pp. 1147–1162, 2006 M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 49 / 50 ... many thanks for your attention! M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 50 / 50
Similar documents
Oxford - Tidewater Vacations
Cummins dealer. Transient slips available by appointment. Complimentary seasonal Wi-Fi. 26106A Bachelor Harbor Dr. · 410-226-5592 · Fax: 410-226-5489 mstein@campbellsboatyards.com · www.campbellsbo...
More information