Inferred Pa(V) Complex Formation via Selective Extraction
Transcription
Inferred Pa(V) Complex Formation via Selective Extraction
1 Inferred Pa(V) Complex Formation via Selective Extraction by Aliphatic Alcohols and Mesoporous Carbon Materials Andrew Knight University of Iowa SACSESS 22 April 2015 Warsaw, Poland Radiochemistry at The University of Iowa 2 3 Pa in Conventional Fuel Cycles Pa 233 Pa 231 Figures by Andrew Nelson http://energyfromthorium.com/2011/01/30/china‐initiates‐tmsr/ 4 Thorium Fuel Cycle Breeds natural 232Th to make fissile 233U through 233Pa intermediate India: Advanced Heavy water Reactor Molten Salt Breeder Reactor Aqueous Suspension Reactor ‐ ‐ World Thorium Deposits Kumari, N., Desalin. Water Treat., 2012, 38,46‐51 IAEA and OECD, Uranium 2014: Resources, Production, and Demand 5 Extraction Studies 1. Aliphatic Alcohols 1‐octanol 2‐ethyl‐hexanol 2. Modeling 3.Mesoporous Carbon 2,6‐dimethyl‐4‐heptanol (diisobutylcarbinol; DIBC) 6 1. Pa Extraction By Alcohols % Activity Extracted 100 % Pa Extracted in HCl % Pa Extracted in HNO3 % Extracted≈ 75 [Pa]A + [Pa]O 5 mL organic 40% extractant 60% dodecane 50 25 DIBC 2-Ethyl-hexanol 1-octanol DIBC 2-Ethyl-hexanol 1-octanol 0 [Pa]O 2 4 6 [HCl] 8 2 4 6 [HNO3] 8 5 mL Aqueous Acid (HCl , HNO3) Ranging from 1‐9 M 7 Pa and Other Metals Extraction 100 Pa Pa % Activity Extracted % Extracted by DIBC in HNO3 % Extracted by DIBC in HCl Ga 75 50 25 0 2,6‐dimethyl‐4‐heptanol (diisobutylcarbinol; DIBC) Po Np, Am, Pu, U, Th, Eu, Ba, Ac, Zn 2 4 [HCl] 6 8 Np, Am, Pu, U, Th, Eu, Ba, Ac, Zn, Po, Ga 2 4 6 [HNO3] 8 8 % Pa Extracted in HCl 100% % Pa Extracted In HNO3 100% H+ Pa(OH)2(NO3)4‐ (org) %Extracted Pa(OH)3Cl+ (aq) H+ PaCl6‐ (org) H+ PaOCl4‐ (org) 50% 50% Pa(OH)2(NO3)3 (aq) Pa(OH)32+ (aq) Pa(OH)2(NO3)2+ (aq) Pa(OH)2(NO3)2+ (aq) 0% 1 3 H+ PaO2Cl2‐ (org) 5 [HCl] Guillaumont, R. J. Chim. Phys. 1960, 57,1019. 7 9 0% 0 Pa(OH)23+ 2 (aq) 4 [HNO3] 6 Spitsyn, V., Doklady AN SSSR. 1964, 157,135. 8 9 Literature proposed Species… [HCl] Pa Ions Reference HNO3 Pa Ions Reference 1 Pa(OH)4+, PaO(OH)2+ Hageman (1947), Schreff (1966) pH >7 Colloids Starik (1959), Sheidina (1961) 1‐2 Pa(OH)32+, PaO(OH)2+ Guillamont (1966), Schreff (1966) pH 5‐7 hydroxide Starik (1959), Sheidina (1961) [Cl‐]= 1 M, [H+]= 1‐3 M Pa(OH)3Cl+ Guillamont (1966), Schreff (1966) pH 0‐2 Pa(OH)4.50.5+ Starik (1959), Sheidina (1961) >2 Pa(OH)2(NO3), Pa(OH)2(NO3)4‐ Spitsyn (1964) 2‐4 Pa(OH)3Cl+, PaO(OH)Cl+, Pa(OH)4Cl2‐, PaO2Cl2‐ Casey (1959), Schreff (1966) < 3 Hardy (1958) Pa(OH)Cl3+, Pa(OH)2Cl3, Pa(OH)Cl4‐ Casey (1959) Pa(OH)32+, Pa(OH)3NO3+, Pa(OH)2(NO3)22+ 1‐4 Neutral or Cations with 3+ charge Starik (1961) 4‐6 Pa(OH)23+, PaO3+, Pa(OH)2Cl4, PaOCl4‐ Schreff (1966) 1‐5 PaO2(NO3)43‐ Goble (1956) 6 Pa(OH)2Cl4‐, Pa(OH)Cl5‐, PaCl6‐ Casey (1959) 3‐6 Anions with ‐1 and ‐2 charge Guillot (1966) 6‐8 Pa(OH)Cl62‐, PaCl6‐, PaCl72‐ Schreff (1966) 4‐6 Uncharged Species 6‐9 PaOCl52‐ Goble (1958) Davydov (1966), Starik (1961) Pa(NO3)6‐, Pa(NO3)72‐ Starik (1963) 8 PaCl72‐, PaCl83‐ Bagnall (1964), Schreff (1966) [H+] = 6 , [NO3‐]= 3‐6 [H+] = 6, [NO3‐]= 1‐ 3 Pa(NO3)5 Starik (1963) 8‐12 Anions with charge 3‐ Starik (1961) 3‐6 10 PaOCl63‐ Guillamont (1966) No consensus on the dominant species Extractant Stoichiometry 10 Log D = m Log [ROHorg] + Log Kex + n Log [Cl‐aq] – j Log[H+] y = m * x 1 + b 0.6 Pa:Alcohol Stoichiometry in HCl m= 1.786 ± 0.14 Pa:Alcohol Stoichiometry in HNO3 m= 1.972± 0.02 (DIBC)2PaOx(OH)yClzq‐ 0.4 0.8 (DIBC)2PaOx(OH)y(NO3)zq‐ 0.6 Log D Log D 0.2 0 0.4 ‐0.2 [HCl] = 6 M [HNO3] = 6 M 0.2 ‐0.5 ‐0.25 Log [ROH] 0 ‐0.4 ‐0.6 ‐0.5 ‐0.4 ‐0.3 Log [ROH] ‐0.2 ‐0.1 Anion Stoichiometry 11 Log D = n Log [A‐aq] + Log Kex + m Log [ROHorg] – j Log[H+] y = n * x 1 + b 1.75 Pa:Cl‐ Stoichiometry 4M H+; Pa:NO3‐ Stoichiometry 4 M H+; n = 1.94 ± 0.07 n = 5.61 ± 0.58 (DIBC)2PaOx(OH)y(NO3)2q‐ (DIBC)2PaOx(OH)yCl5‐6q‐ ‐1 1 M H+; n = 2.08 ± 0.08 (DIBC)2PaOx(OH)y(NO3)2q‐ Log D Log D 0 1 M H+;n = 4.60 ± 0.38 0 (DIBC)2PaOx(OH)yCl4‐5q‐ 0.1 M H+; n = 2.20 ± 0.24 (DIBC)2PaOx(OH)y(NO3)2q‐ 0.1 M H+; n = 2.47± 0.9 (DIBC)2PaOx(OH)yCl2‐3q‐ ‐2 0.4 [DIBC] = 2.5 M [DIBC] = 2.5 M 0.5 0.6 Log [Cl‐] 0.7 0.8 ‐1.25 0 0.2 0.4 0.6 Log [NO3‐] 0.8 1.0 12 2. Log D Main Effects HCl Parameters: [H+]: 4 - 5 M; [Cl-]: 5 - 5.5 M; [DIBC]: 0.5 - 1 M 50 t‐ Value of Effect 40 B: [H+] A: [DIBC] 30 C: [Cl‐] 20 10 0 BC AC AB ABC t‐Value Limit 13 5 M Cl- 5.25 M Cl- Predicted D 5.5 M Cl- R2 = 0.99 Actual D 14 Log D Main Effect HNO3 Parameters: [H+]: 1 - 3 M; [NO3-]: 3 - 4 M; [DIBC]: 0.5 - 1 M 40 A: [DIBC] t‐ Value of Effect 30 20 B: [H+] C: [NO3‐] 10 BC 0 AC AB ABC t‐Value Limit 15 3 M NO3- 3.5 M NO3- 4 M NO3Predicted D Predicted Vs. Actual R2 = 0.99 Actual D 16 Further Exploration Need to understand the effects of: [extractant] [anion] pH Contact time Diluent [analyte metal] Radiolysis Hydrolysis Etc… 3. Radiation Shielding Mesoporous Carbon (CMK‐3) Hybrids CMK‐3 Shows promising properties to shield embedded extraction reagents 17 1‐decanol HDEHP % 241Am Extracted 100 75 50 HDEHP in dodecane HDEHP in carbon 25 0 0 250 500 kGy 750 1000 18 Weight Distributions 105 Impossible d’afficher l’image. Weight Distributions on CMK‐3 Weight Distributions CMK:decanol Hybrid 60% (w:w) 1‐decanol Pa 104 100 fold increase in Pa extraction Dw 103 Pa 102 Np Np U Th 101 Am Th Aadded‐Asolution Volume (mL) Dw = x Asolution Mass (g) U Am 100 1 [HNO3] 10 10 1 [HNO3] 19 Potential in Th Fuel Cycle Chemical Separation with CMK:Alcohol Hybrid yielding isotopically pure 233U Figure by Andrew Nelson 20 Conclusions and Future Directions Pa can be selectively extracted from the actinides with aliphatic alcohols Unique complex formation Extraction modeling Mesoporous carbon has potential for separations Further model solvent extraction behavior Access higher quantities of Protactinium for spectroscopic studies 21 Acknowledgements University of Iowa Dr. Michael Schultz Eric Eitrheim Andy Nelson Madeline Peterson Dr. Tori Forbes Daniel Unruh Josh de Groot Ashini Jayasinghe Madeline Basile Maurice Payne Eichrom Technologies, LLC Idaho National Laboratory Savannah River National Laboratory 22 Thank You! The 61st Annual Radiobioassay & Radiochemical Measurements Conference October 25th- 30th, 2015. Iowa City, IA