Ati RS600
Transcription
Ati RS600
RS600 Databook Technical Reference Manual Rev. 1.0 P/N: CHS-215RS600-10 © 2006 ATI Technologies Inc CONFIDENTIAL MATERIAL All information contained in this manual is confidential material of ATI Technologies Inc. Unauthorized use or disclosure of the information contained herein is prohibited. You may be held responsible for any loss or damage suffered by ATI for your unauthorized disclosure hereof, in whole or in part. Please exercise the following precautions: • Store all hard copies in a secure place when not in use. • Save all electronic copies on password protected systems. • Do not reproduce or distribute any portions of this manual in paper or electronic form (except as permitted by ATI). • Do not post this manual on any LAN or WAN (except as permitted by ATI). Your protection of the information contained herein may be subject to periodic audit by ATI. This manual is subject to possible recall by ATI. The information contained in this manual has been carefully checked and is believed to be entirely reliable. No responsibility is assumed for inaccuracies. ATI reserves the right to make changes at any time to improve design and supply the best product possible. Please note that in this databook, references to "DVI" and "HDMI" may refer to: (1) the function of the integrated DVI/HDMI interface described in details in section 2.3.1 and 3.8, as well as in other sections; or (2) the capability of the TMDS interface, multiplexed on the PCIE external graphics interface, to enable HDMI through passive enabling circuitries. Any statement in this databook on any DVI or HDMI-related functionality must be understood to apply to (1), (2), or both, according to the immediate context of the reference. ATI Technologies Inc. will not provide any indemnity, pay any royalty, nor provide any license/sublicense to any: (a) Intellectual property rights relating to any of the following: (i) Macrovision for its Analog Protection System ("APS") technologies; (ii) Advanced Television Systems Committee (ATSC) standard and related technologies; or (iii) the High Definition Multimedia Interface (HDMI) standard and related technologies; or (b) Audio and/or video codecs or any industry standard technology (e.g., technology or specifications promulgated by any standards development organization, consortium, trade association, special interest group or like entity) . ATI, MOBILITY, and Radeon are trademarks of ATI Technologies Inc. All other trademarks and product names are properties of their respective owners. Table of Contents Chapter 1: Overview 1.1 Introducing the RS600 ........................................................................................................................................................1-1 1.2 The RS600L ........................................................................................................................................................................1-1 1.3 RS600 Features ...................................................................................................................................................................1-2 1.3.1 CPU Interface .......................................................................................................................................................1-2 1.3.2 Memory Interface .................................................................................................................................................1-2 1.3.3 PCI Express Interface ...........................................................................................................................................1-2 1.3.4 A-Link Express II Interface..................................................................................................................................1-2 1.3.5 2D Acceleration Features .....................................................................................................................................1-2 1.3.6 3D Acceleration Features .....................................................................................................................................1-3 1.3.7 Motion Video Acceleration Features....................................................................................................................1-4 1.3.8 Multiple Display Features ....................................................................................................................................1-4 1.3.9 DVI/HDMI ...........................................................................................................................................................1-5 1.3.10 External Display Support by SDVO 1.0...............................................................................................................1-6 1.3.11 Power Management Features ...............................................................................................................................1-6 1.3.12 PC Design Guide Compliance..............................................................................................................................1-6 1.3.13 Test Capability Features .......................................................................................................................................1-6 1.3.14 Additional Features ..............................................................................................................................................1-7 1.3.15 Packaging .............................................................................................................................................................1-7 1.4 Software Features................................................................................................................................................................1-7 1.5 Branding Diagrams .............................................................................................................................................................1-7 1.6 Part Number Legend ...........................................................................................................................................................1-9 1.7 Conventions and Notations .................................................................................................................................................1-9 1.7.1 Pin Names.............................................................................................................................................................1-9 1.7.2 Pin Types ............................................................................................................................................................1-10 1.7.3 Numeric Representation .....................................................................................................................................1-10 1.7.4 Register Field......................................................................................................................................................1-10 1.7.5 Hyperlinks ..........................................................................................................................................................1-10 1.7.6 Acronyms and Abbreviations .............................................................................................................................1-10 Chapter 2: Functional Descriptions 2.1 Host Interface ......................................................................................................................................................................2-2 2.2 System Memory Interface ...................................................................................................................................................2-3 2.2.1 Memory Requests.................................................................................................................................................2-6 2.2.2 Supported Memory Components..........................................................................................................................2-6 2.2.3 Supported Memory Configurations......................................................................................................................2-6 2.2.4 Memory Banks .....................................................................................................................................................2-7 2.2.5 Row and Column Addressing...............................................................................................................................2-7 2.2.6 CAS Latency ........................................................................................................................................................2-8 2.2.7 Burst Type ............................................................................................................................................................2-8 2.2.8 Burst Length .........................................................................................................................................................2-8 2.2.9 Clock Enable, Chip Select, and On-Die Termination Distributions for DDR2/DDR3 SDRAMs ....................2-10 2.3 DVI/HDMI........................................................................................................................................................................ 2-11 2.3.1 Data Mapping for the Integrated DVI/HDMI Interface ..................................................................................... 2-11 2.3.2 Data Mapping on the TMDS Interface Multiplexed on the PCI-E Graphics Lanes ..........................................2-14 2.3.3 Support for HDMI Packet Types........................................................................................................................2-16 2.4 SDVO Interface.................................................................................................................................................................2-17 2.4.1 Symbol Replication ............................................................................................................................................2-17 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook Table of Contents-1 Table of Contents 2.4.2 2.4.3 2.4.4 Dual-link Mode.................................................................................................................................................. 2-17 I2C/DDC Support .............................................................................................................................................. 2-17 HPD Support...................................................................................................................................................... 2-17 2.5 VGA DAC Characteristics ............................................................................................................................................... 2-18 2.6 External Clock Chip ......................................................................................................................................................... 2-18 Chapter 3: Pin Descriptions and Strap Options 3.1 Pin Assignment Top View ................................................................................................................................................ 3-2 3.2 RS600 Interface Block Diagram ........................................................................................................................................ 3-4 3.3 CPU Interface ..................................................................................................................................................................... 3-5 3.4 DDR2/DDR3 Memory Interface ........................................................................................................................................ 3-7 3.5 PCI Express Interfaces ....................................................................................................................................................... 3-8 3.5.1 1 x16 Lane Interface for External Graphics ........................................................................................................ 3-8 3.5.2 1 x4 Lane A-Link Express II to IXP.................................................................................................................... 3-8 3.5.3 4 x1 Lane Interface for General Purpose External Devices ............................................................................... 3-8 3.5.4 Miscellaneous PCI Express Signals..................................................................................................................... 3-9 3.6 Clock Interface ................................................................................................................................................................... 3-9 3.7 CRT and TV Interface........................................................................................................................................................ 3-9 3.8 Integrated DVI/HDMI Interface....................................................................................................................................... 3-10 3.9 TMDS Interface Multiplexed on the PCI-E Graphics Lanes ............................................................................................3-11 3.10 SDVO Interface for External Displays............................................................................................................................3-11 3.11 Power Management Pins............................................................................................................................................... 3-12 3.12 Miscellaneous Pins......................................................................................................................................................... 3-12 3.13 Power Pins...................................................................................................................................................................... 3-13 3.14 Ground Pins.................................................................................................................................................................... 3-15 3.15 Strapping Options........................................................................................................................................................... 3-16 Chapter 4: Timing Specifications 4.1 Processor Front Side Bus Timing....................................................................................................................................... 4-1 4.2 Memory Timing ................................................................................................................................................................. 4-6 4.3 OSCIN Timing ................................................................................................................................................................... 4-6 4.4 Power Rail Power Up Sequence......................................................................................................................................... 4-7 Chapter 5: Electrical Characteristics and Physical Data 5.1 Electrical Characteristics.................................................................................................................................................... 5-1 5.1.1 Maximum and Minimum Ratings........................................................................................................................ 5-1 5.1.2 DC Characteristics ............................................................................................................................................... 5-1 5.2 RS600 Thermal Characteristics.......................................................................................................................................... 5-5 5.2.1 RS600 Thermal Limits ........................................................................................................................................ 5-5 5.2.2 Other Thermal Parameters................................................................................................................................... 5-5 5.3 Physical Package ................................................................................................................................................................ 5-6 5.4 Pressure Specifications....................................................................................................................................................... 5-8 5.5 Board Solder Reflow Process Recommendations .............................................................................................................. 5-8 5.5.1 Stencil Opening Size for Solderball Pads on PCB .............................................................................................. 5-8 5.5.2 Reflow Profiles .................................................................................................................................................... 5-9 Chapter 6: Power Management and ACPI 6.1 ACPI Power Management Implementation ....................................................................................................................... 6-1 6.2 Power Management for the Graphics Controller ............................................................................................................... 6-2 RS600 Databook Table of Contents-2 © 2006 ATI Technologies Inc. Proprietary and Confidential Table of Contents 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 PCI Function Power States...................................................................................................................................6-2 PCI Power Management Interface........................................................................................................................6-2 Capabilities List Data Structure in PCI Configuration Space ..............................................................................6-3 Register Block Definition.....................................................................................................................................6-3 Capability Identifier: Cap_ID (Offset = 0)...........................................................................................................6-4 Next Item Pointer .................................................................................................................................................6-5 PMC - Power Management Capabilities (Offset = 2) ..........................................................................................6-6 Chapter 7: Testability 7.1 Test Capability Features......................................................................................................................................................7-1 7.2 Test Interface.......................................................................................................................................................................7-1 7.3 XOR Tree ............................................................................................................................................................................7-1 7.3.1 Brief Description of an XOR Tree .......................................................................................................................7-1 7.3.2 Description of the XOR Tree for the RS600 ........................................................................................................7-2 7.3.3 XOR Tree Activation ...........................................................................................................................................7-2 7.3.4 XOR Chain for the RS600....................................................................................................................................7-2 7.3.5 Unused Pins ..........................................................................................................................................................7-8 Appendix A: Pin Listings A.1 Pin List Sorted by Ball Reference ......................................................................................................................................1-2 A.2 Pin List Sorted by Pin Name ............................................................................................................................................1-14 Appendix B: Revision History © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook Table of Contents-3 Table of Contents This page is left blank intentionally. RS600 Databook Table of Contents-4 © 2006 ATI Technologies Inc. Proprietary and Confidential List of Figures Figure 1-1: RS600 Branding Diagram ........................................................................................................................................... 1-8 Figure 1-2: RS600L Branding Diagram ......................................................................................................................................... 1-8 Figure 1-3: RS600-Family ASIC Part Number Legend ................................................................................................................. 1-9 Figure 2-1: RS600 Internal Block Diagram ................................................................................................................................... 2-1 Figure 2-2: Host Interface Block Diagram ..................................................................................................................................... 2-2 Figure 2-3: RS600 Host Bus Interface Signals .............................................................................................................................. 2-3 Figure 2-4: RS600 System Memory Interface ............................................................................................................................... 2-5 Figure 2-5: CAS Latency Example ................................................................................................................................................ 2-8 Figure 2-6: Consecutive Read Bursts (4 Cycles) ........................................................................................................................... 2-8 Figure 2-7: Consecutive Write Bursts (4 Cycles) .......................................................................................................................... 2-9 Figure 2-8: Consecutive Read Bursts (8 Cycles) ........................................................................................................................... 2-9 Figure 2-9: Consecutive Write Burst (8 Cycles) ............................................................................................................................ 2-9 Figure 2-10: CKE, CS, and ODT Distributions for DDR2/DDR3 SDRAMs .............................................................................. 2-10 Figure 2-11: Data Transmission Ordering for the Integrated DVI/HDMI Interface .................................................................... 2-11 Figure 2-12: Data Transmission Ordering for the TMDS Interface Multiplexed on the PCI-E Graphics Lanes ........................ 2-14 Figure 3-1: Pin Assignment Top View (Left) ................................................................................................................................ 3-2 Figure 3-2: Pin Assignment Top View (Right) .............................................................................................................................. 3-3 Figure 3-3: RS600 Interface Block Diagram ................................................................................................................................ 3-4 Figure 4-1: Front Side Bus Timing for Data Signals ..................................................................................................................... 4-4 Figure 4-2: Front Side Bus Timing for Address Signals ................................................................................................................ 4-4 Figure 4-3: Front Side Bus Timing for Control Signals ................................................................................................................. 4-5 Figure 4-4: SYSCLK/SYSCLK# AC Specifications ..................................................................................................................... 4-6 Figure 4-5: Power Rail Power Up Sequence for the RS600 .......................................................................................................... 4-7 Figure 5-1: Front Side Bus DC Characteristics .............................................................................................................................. 5-2 Figure 5-2: DC Characteristics for HDMI ..................................................................................................................................... 5-4 Figure 5-3: RS600 Package Outline ............................................................................................................................................... 5-6 Figure 5-4: RS600 Detailed Ball Arrangement .............................................................................................................................. 5-7 Figure 5-5: Recommended Stencil Opening Sizes for Solderball Pads on PCB ........................................................................... 5-8 Figure 5-11: Eutectic Solder(Sn63/Pb37 Tin-Lead) Reflow Profile .............................................................................................. 5-9 Figure 5-12: Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile ..................................................................... 5-10 Figure 6-1: Linked List for Capabilities ......................................................................................................................................... 6-5 Figure 7-1: An Example of a Generic XOR Tree .......................................................................................................................... 7-1 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook List of Figures-1 List of Figures This page is left blank intentionally. RS600 Databook List of Figures-2 © 2006 ATI Technologies Inc. Proprietary and Confidential List of Tables Table 1-1: RS600-Family ASIC Part Numbers ...............................................................................................................................1-9 Table 1-2: Pin Type Codes ............................................................................................................................................................1-10 Table 1-3: Acronyms and Abbreviations ......................................................................................................................................1-10 Table 2-1: Front Side Bus Interface Transaction Phases ................................................................................................................2-2 Table 2-2: Supported DDR2 Components ......................................................................................................................................2-6 Table 2-3: Supported DDR3 Components ......................................................................................................................................2-6 Table 2-4: DIMM Configurations Supported by the RS600 ...........................................................................................................2-6 Table 2-5: DDR2 Memory Row and Column Addressing ..............................................................................................................2-7 Table 2-6: Single Link Signal Mapping for the Integrated DVI/HDMI Interface .......................................................................2-12 Table 2-7: Dual-Link Signal Mapping for the Integrated DVI Interface ......................................................................................2-13 Table 2-8: Single Link Signal Mapping for the TMDS Interface Multiplexed on the PCI-E Graphics Lanes .............................2-15 Table 2-9: Support for HDMI Packet Types .................................................................................................................................2-16 Table 2-10: VGA DAC Characteristics ........................................................................................................................................2-18 Table 3-1: CPU Interface ................................................................................................................................................................3-5 Table 3-2: Address Signals and Associated Strobes .......................................................................................................................3-6 Table 3-3: Grouping of CPU_D[63:0]# Signals .............................................................................................................................3-6 Table 3-4: Response Signals ...........................................................................................................................................................3-6 Table 3-5: DDR2/DDR3 Memory Interface ...................................................................................................................................3-7 Table 3-6: 1 x16 Lane PCI Express Interface for External Graphics ..............................................................................................3-8 Table 3-7: 1 x4 Lane A-Link Express II Interface for IXP .............................................................................................................3-8 Table 3-8: 4 x1 Lane PCI Express Interface for General Purpose External Devices ......................................................................3-8 Table 3-9: Miscellaneous PCI Express Signals ...............................................................................................................................3-9 Table 3-10: Clock Interface .............................................................................................................................................................3-9 Table 3-11: CRT and TV Interface .................................................................................................................................................3-9 Table 3-12: Integrated DVI/HDMI Interface ................................................................................................................................3-10 Table 3-13: TMDS Interface (Multiplexed with the PCI-E Graphics Interface) ..........................................................................3-11 Table 3-14: SDVO Interface for External Displays ......................................................................................................................3-11 Table 3-15: Power Management Pins ...........................................................................................................................................3-12 Table 3-16: Miscellaneous Pins ....................................................................................................................................................3-12 Table 3-17: Power Pins .................................................................................................................................................................3-13 Table 3-18: Ground Pins ...............................................................................................................................................................3-15 Table 3-19: Strap Definitions for the RS600 ..............................................................................................................................3-16 Table 4-1: Processor Front Side Bus Timing (for 1066 MHz Front Side Bus*) ............................................................................4-1 Table 4-2: Processor Front Side Bus Timing (for 800MHz Front Side Bus) .................................................................................4-2 Table 4-3: Processor Front Side Bus Timing (for 533MHz Front Side Bus) .................................................................................4-3 Table 4-4: System Clock AC Specifications ...................................................................................................................................4-5 Table 4-5: Timing Requirements for the OSCIN Pad .....................................................................................................................4-6 Table 4-6: Power Rail Power Up Sequence Timing for the RS600 ................................................................................................4-7 Table 5-1: Maximum and Minimum Ratings ..................................................................................................................................5-1 Table 5-2: DC Characteristics for Front Side Bus Signals ..............................................................................................................5-1 Table 5-3: DC Characteristics for PCI-E Differential Clock (GFX_CLK, SB_CLK) Input ..........................................................5-2 Table 5-4: DC Characteristics for TTL Signals ..............................................................................................................................5-3 Table 5-5: DC Characteristics for the DDR2/3 Interface ................................................................................................................5-3 Table 5-6: DC and Characteristics for OSCIN Pad .........................................................................................................................5-3 Table 5-7: Electrical Requirements for DVI/HDMI .......................................................................................................................5-4 Table 5-8: RS600 Thermal Limits ..................................................................................................................................................5-5 Table 5-9: Thermal Parameters for the RS600 ................................................................................................................................5-5 Table 5-10: RS600 1201-Pin FCBGA Package Physical Dimensions ...........................................................................................5-6 Table 6-1: ACPI States Supported by the RS600 ...........................................................................................................................6-1 Table 6-2: ACPI Signal Definitions ................................................................................................................................................6-1 Table 6-3: Standard PCI Configuration Space Header Type 0 .......................................................................................................6-2 Table 6-4: PCI Status Register ........................................................................................................................................................6-3 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook List of Tables-1 List of Tables Table 6-5: Capabilities Pointer (CAP_PTR) ...................................................................................................................................6-3 Table 6-6: Power Management Register Block ..............................................................................................................................6-4 Table 6-7: Power Management Control/Status Register (PMCSR) ................................................................................................6-4 Table 6-8: Capability Identifier (Cap_ID) .......................................................................................................................................6-4 Table 6-9: Next Item Pointer (NEXT_ITEM_PTR) .......................................................................................................................6-5 Table 6-10: Power Management Capabilities – PMC .....................................................................................................................6-6 Table 7-1: Pins on the Test Interface ...............................................................................................................................................7-1 Table 7-2: Example of an XOR Tree ..............................................................................................................................................7-2 RS600 Databook List of Tables-2 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 1 Overview 1.1 Introducing the RS600 The RS600 is a seventh generation Integrated Graphics Processor (IGP) that integrates a DirectX 9.0 compliant 2D/3D graphics core and a system controller in a single chip, supporting the Intel desktop platform. The RS600 integrates an ATI Radeon X700-based graphics engine, dual display, a TV encoder, an integrated DVI/HDMI interface, an integrated TMDS controller, and north bridge functionality into a single BGA package. This high level of integration and scalability enables manufacturers to offer enthusiast level capabilities and performance while minimizing board space and system cost. Robust and Flexible Core Logic Features The RS600 combines graphics and system logic functions in a single chip using a 35mm-body FCBGA package, reducing overall solution area. For optimal system and graphics performance, the RS600 incorporates a dual-channel, 128-bit system memory interface with support for both DDR2 and DDR3-SDRAM. The RS600 is ideally suited to 64-bit operating systems, with 34-bit host addressing and support for up to 16 GB of system memory. The rich PCI Express expansion capabilities of RS600, including support for PCI Express external graphics and up to six other PCI Express peripherals, are complemented by the advanced I/O features of ATI’s SB600 south bridge. Best for Windows Vista The RS600 delivers the best Windows Vista experience of any integrated graphics and core logic products. It incorporates an ATI RADEON X700-based graphics core, which provides the 3D rendering power needed to generate the Windows Vista desktop even under the most demanding circumstances. In addition, dedicated hardware acceleration is provided for key new Windows Vista features such as ClearType, Virtual Memory, Context Switching, and Privileged Operations. This RADEON X700-based graphics technology also enables great 3D application performance through technologies such as SmartShader™ HD, Smoothvision™ HD, and 3Dc. Leading Multimedia Capabilities The RS600 incorporates ATI’s innovative Avivo™ display architecture, providing users with visual quality which is second to none. Advanced scaling and color correction capabilities, along with increased precision through the entire display pipeline, ensure an optimal image on CRT monitors, LCD panels, and any other display devices. A new TV encoder based on ATI’s Xilleon™ products provides unequalled quality, and fully integrated DVI/HDMI and HDCP support allows compatibility with even the most modern high definition televisions without the additional cost of external components. Low Power Consumption and Industry Leading Power Management The RS600 is manufactured using the power efficient 90nm technology, and it supports a whole range of industry standards and all new proprietary power management features. In addition to comprehensive support for the ACPI specification and Intel features such as SpeedStep, ATI's exclusive technologies including PowerOnDemand™ minimize the RS600’s power consumption by adjusting graphics core performance and core voltage to the task and usage environment. Integrated motion compensation and IDCT support reduce CPU loading and hence overall power consumption. Software Compatibility The graphics driver for the RS600 is fully compatible with all other Radeon class graphics controllers from ATI. A single driver can support multiple graphics configurations across ATI’s product lines, including the Radeon family and the Radeon IGP family. In addition, this driver compatibility allows the RS600 to benefit immediately from ATI's software optimization and from the advanced Windows XP and Windows Vista support available in the Radeon family drivers. 1.2 The RS600L The RS600L is a variant of the RS600 that supports Front Side Bus speeds of up to 800 MHz. Unless otherwise specified, all information in this databook is applicable to the RS600L. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 1-1 RS600 Features 1.3 RS600 Features 1.3.1 CPU Interface • Supports the Intel Pentium 4, Pentium D, Pentium Extreme Edition, Celeron, Celeron D, Cedar Mill, Conroe, and Allendale processors. • • • • • • • • Supports Front Side Bus (FSB) speeds 533, 800, and 1066MHz*. Supports Front Side Bus Dynamic Bus Inversion (DBI). Supports Intel Hyper-Threading Technology. In-Order Queue (IOQ) of depth 12. Supports Front Side Bus interrupt delivery. Supports Intel Extended Memory 64 Technology (EM64T). Supports Intel Execute Disable (XD) Bit Functionality. Supports 34-bit host addressing. *Note: 1066MHz FSB speed is not supported by the RS600L 1.3.2 Memory Interface • • • • • • • • • • 1.3.3 128-bit dual-channel DDR2/DDR3 SDRAM interface. Supports up to 16 GB of system memory. Unified Memory Architecture, with 16 to 512 MB of the main memory configurable as display memory. Supports DDR2-400, -533, -667, -800 SDRAM. Supports DDR3-800, -1067. Supports 256 Mbit, 512 Mbit, 1 Gbit, and 2 Gbit DDR2/DDR3 DIMMs. Supports memory device widths of x8 and x16. Supports industry-standard DDR SDRAM self refresh mechanism. Supports pre-charge powerdown. Supports independent CKE and ODT signals for each memory row (total of four CKEs and ODTs per channel). PCI Express Interface • • • Compliant with the PCI Express 1.1a Specifications. One x16 graphics interface. Instead of a graphics card, the interface can be configured to support an external display (see section 1.3.10, “External Display Support by SDVO 1.0” below), plus a x1, x2, or x4 general purpose PCI-E link at the same time. A TMDS interface, enabling HDMI, is also multiplexed on this interface. See section 1.3.9, “DVI/HDMI” below for details). Up to six* x1 PCI Express general purpose links. *Note: Actual number of general purpose links available depends on the width of the A-Link Express II Interface. See section 3.5.2“1 x4 Lane A-Link Express II to IXP” on page 3-8 for details. 1.3.4 A-Link Express II Interface • 1.3.5 One x4 (reducible to x2) A-Link Express II interface (PCI Express 1.1 compliant) for connection to an ATI IXP, providing more bandwidth than the older A-Link Express interface. 2D Acceleration Features • • • Highly-optimized 128-bit engine, capable of processing multiple pixels per clock. Hardware acceleration of Bitblt, Line Draw, Polygon / Rectangle Fill, Bit Masking, Monochrome Expansion, Panning/Scrolling, Scissoring, and full ROP support (including ROP3). Optimized handling of fonts and text using ATI proprietary techniques. RS600 Databook 1-2 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Features • • • • • • • • 1.3.6 Hardware acceleration for ClearType font rendering. Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtual Sprites, Transparent Blit, and Masked Blit. Supports a maximum resolution of 2048x1536 @ 32bpp (driver-limited). Acceleration in 1/8/15/16/32 bpp modes: • ClearType mode for 1bpp • Pseudocolor mode for 8bpp • ARGB1555 and RGB565 modes for 16bpp • ARGB8888 mode for 32bpp Significant increase in the High-End Graphics WinBench score due to capability for C18 color expansion. Setup of 2D polygons and lines. Support for new GDI extensions in Windows 2000 and Windows XP: Alpha BLT, Transparent BLT, Gradient Fill. Hardware cursor (up to 64x64x32bpp), with alpha channel for direct support of Windows 2000 and Windows XP alpha cursor. 3D Acceleration Features • • • • • • • • Multi-texturing via one texture blending unit per pixel pipes, allowing up to 512 texel reads per pixel in a single pass. • • • • • • • • • • • Supports Z-compression. 3D Texture support, including projective 3D textures. Comprehensive support for bump mapping: emboss, dot-product, and environment bump maps. Improved precision in anisotropic filtering and bilinear filtering. Complete 3D primitive support: points, lines, triangles, lists, strips and quadrilaterals and BLTs with Z compare. Improved texture compositing. Supports 2536x2536 @ 32bpp. Hidden surface removal using 16, 24, or 32-bit Z-buffering (maximum Z-buffer depth is 24 bits when stencil buffer enabled) and Early Z hardware. 8-bit stencil buffer. Bilinear and trilinear texture filtering. Full support of Direct3D texture lighting. Dithering support in 16 bpp for near 24 bpp quality in less memory. Extensive 3D mode support. Anti-aliasing using multi-sampling algorithm with support for 2, 4, and 6 samples. Optimized for full performance in true color triple buffered 32bpp acceleration modes. New generation rendering engine provides top 3D performance. Support for OpenGL format for Indirect Vertices in Vertex Walker. Full DirectX 9.0 support (Vertex Shader version 2.0 and Pixel Shader version 2.0): • Full precision floating point pixel pipeline. • Support for up to 4 MRTs (Multiple-Render-Targets). • Support for writing all texture formats from render pipe in floating points (including cube mapes and 3D textures). • Support for up to 512b per pixel formats (4 color case). • Advanced setup engine, capable of processing 1 polygon (lit and textured) per cycle © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 1-3 RS600 Features 1.3.7 Motion Video Acceleration Features • • • • • • • 1.3.8 Enhanced MPEG-2 hardware decode acceleration, including support for: • Integrated general purpose iDCT engine for MPEG2 and DV decode acceleration. • Integrated MPEG motion compensation engine for decode acceleration. • Parallel operation of the iDCT and MC and high processing rates with minimal software overhead. Provides dramatically reduced CPU utilization without incurring the cost of a full MPEG-2 decoder. MPEG-4 simple profile support. Hardware acceleration for H.264 playback. Hardware acceleration for WMV9 playback. Supports top quality DVD and time-shifted SDTV/HDTV television playback with the lowest CPU usage. Hardware-based adaptive de-interlacing filter and scaler provide high quality full-screen and full-speed video playback. Minimizes the aliasing artifacts along edges usually caused by a conventional deinterlacer/scaler. Multiple Display Features General • Dual independent displays. Possible configurations include: • CRT and DVI/HDMI • TV and DVI/HDMI • DVI and HDMI • CRT and CRT* • CRT and TV* • TV and TV* *Note: These options require implementation of the external display interface; see section 1.3.10, “External Display Support by SDVO 1.0,” on page 6. • • • Resolution, refresh rates, and display data can be completely independent for the two display paths. • • • • • • • Supports both interlaced and non-interlaced displays. • • • • • Both display controllers support true 30 bits per pixel throughout the display pipe. Both display paths support VGA and accelerated modes, video overlay, hardware cursor, hardware icon, and palette gamma correction. Support for display modes up to 2880 pixels/line per display. Full ratiometric expansion ability is supported for source desktop modes up to 1920 pixels/line. HD TV support (with underscan) for display modes of 1920 or less pixels/line. SD TV support (with underscan) for display modes of 1024 or less pixels/line. Maximum DAC frequency of 400 MHz. Supports 8, 16, 32 & 64-bpp depths for the main graphics layer: • For 32-bpp depth, supports xRGB 8:8:8:8, xRGB 2:10:10:10, sCrYCb 8:8:8:8, and xCrYCb 2:10:10:10 data formats. • For 64-bpp depth, supports xRGB 16:16:16:16 data format. Independent gamma, color conversion and correction controls for main graphics layer. Supports display resolutions beyond 2560x1600. Support for DDC1 and DDC2B+ for plug and play monitors. 8-bit alpha blending of graphics and video overlay. Hardware cursor up to 64x64 pixels in 2bpp, full color AND/XOR mix, and full color 8-bit alpha blend. RS600 Databook 1-4 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Features • Hardware icon up to 128x128 pixels in 2bpp, with two colors, transparent, and inverse transparent. AND/XOR mixing. Supports 2x2 icon magnification. • • • • Virtual desktop support. Support for flat panel displays and TVs via VGA, DVI, or HDMI. Integrated HD Audio Controller for HDMI audio data. Support for stereoscopic monitors. TV Out • An integrated TV encoder from ATI’s Xilleon products, with an on-chip DAC (shared with the CRT analog output) (Note: Simultaneous output for TV and CRT is not supported). • 10-bit DAC with 10-tap filter producing scaled, flicker removed, artifact suppressed display on a PAL or NTSC TV with composite, S-Video, component, and RGB output. • With the proper BIOS implementation, supports different TV standards including NTSC, NTSC-J, PAL-M, PAL-CN, PAL-B, PAL-G, PAL-D, PAL-H, PAL-I, PAL-K, and PAL-N. • • Supports Macrovision 7.1 copy protection standard (required by DVD players). • • • • • • 1024x768 support. Supports all standard resolutions for RGB-based TVs, including: • 640 x 480i • 720 x 480i • 640 x 480p • 720 x 480p • 640 x 576i • 720 x 576i • 640 x 576p • 720 x 576p • 1280 x 720p • 1980 x 1080i Supports the following formats of YPbPr component output: 480i, 480p, 576i, 576p, 720p, and 1080i. Internal adaptive flicker filtering available on both display paths for interlaced TV outputs. Supports fully-programmable 2D, adaptive comb filter for composite output. TV-out power management support. Line 21 Closed Caption and Extended Data Service support for encoding in Vertical Blanking Interval (VBI) of TV signal. CGMS copy management support in VBI through Line-20 and/or Extended Data Service (Line-21 Field 2) for NTSC, and through Wide Screen Signaling data (WSS) for PAL. SURROUNDVIEW • 1.3.9 RS600’s SURROUNDVIEW™ feature allows support for up to three independent monitors for systems equipped with an additional ATI discrete graphics card (requires special BIOS and display driver support). DVI/HDMI • • • • Integrated DVI or HDMI 1.2 interface: single-link support only for HDMI‡, 30-bit dual-link support for DVI. Also supports a TMDS interface, enabling HDMI 1.2, which is multiplexed on the PCI-E external graphics interface (only available if no external graphics card is attached to the PCI-E external graphics interface).‡ 1650 Mbps/channel† with 165 MHz† pixel clock rate per link. Supports industry standard EVA-861B video modes including 480p, 720p and 1080i. For a full list of currently supported modes, contact your ATI FAE representative. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 1-5 RS600 Features • HDMI basic audio support at 32, 44.1 or 48 kHz. Supports two-channel uncompressed audio data and, for Windows Vista platforms only, 5.1-channel AC3 compressed audio data. HD audio device compatible with the Microsoft HD audio driver. • HDCP 1.1 support on data stream with on-chip key storage (available only on either one of the integrated DVI/HDMI interface or the TMDS interface (multiplexed on the PCI-E graphics lanes) at any time; it is also unavailable for dual-link DVI mode). Notes: * CEC is not supported. ‡ The TMDS interface multiplexed on the PCI-E graphics lanes cannot enable HDMI when the integrated DVI/HDMI interface is supporting HDMI, and vice versa. † To be qualified. 1.3.10 External Display Support by SDVO 1.0 Note: External display support by SDVO is not available when an external graphics card is supported or when the TMDS interface multiplexed on the PCI-E graphics lanes is used to enable HDMI. • • • Supports an external display (e.g., CRT, or TV) via a dual-channel SDVO 1.0 port. Supports external analog TV encoders for NTSC, PAL, SECAM and SCART. Supports external VGA DAC for external DVI-I connection. 1.3.11 Power Management Features • • Fully supports ACPI states S1, S3, S4, and S5. • • Support for Intel SpeedStep and Enhanced SpeedStep technology. • • • Self-refresh DDR2/DDR3 SDRAM in Suspend mode. The Chip Power Management Support logic supports four device power states defined for the OnNow Architecture— On, Standby, Suspend, and Off. Each power state can be achieved by software control bits. Clocks to every major functional block are controlled by a unique dynamic clock switching technique that is completely transparent to the software. By turning off the clock to the block that is idle or not used at that point, the power consumption is significantly reduced during normal operation. Supports ATI PowerOnDemand™. Support dynamic lane reduction for the PCI-E interfaces, adjusting to the task the number of lanes employed. 1.3.12 PC Design Guide Compliance The RS600 complies with all relevant Windows Logo Program (WLP) requirements from Microsoft for WHQL certification. 1.3.13 Test Capability Features The RS600 has a variety of test modes and capabilities that provide a very high fault coverage and low DPM (Defect Per Million) ratio: • Full scan implementation on the digital core logic which provides about 99% fault coverage through ATPG (Automatic Test Pattern Generation Vectors). • • • • Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules. • Improved access to the analog modules and PLLs in the RS600 in order to allow full evaluation and characterization of these modules. • Improved IDDQ mode support to allow chip evaluation through current leakage measurements. A JTAG test mode in order to allow board level testing of neighboring devices. An EXOR tree test mode on all the digital I/O's to allow for proper soldering verification at the board level. An EXTEST test mode in order to allow board level testing by sampling the inputs and controlling the outputs of RS600. RS600 Databook 1-6 © 2006 ATI Technologies Inc. Proprietary and Confidential Software Features These test modes can be accessed through the settings on the instruction register of the JTAG circuitry. 1.3.14 Additional Features • Integrated spread spectrum PLLs on the memory interface. 1.3.15 Packaging • • 1.4 1201-FCBGA package, 35mmx35mm. Software Features • • • • • • • • 1.5 Single chip solution in 90nm, 1.0-1.2V CMOS technology. Supports Microsoft Windows 2000, XP, and Vista. BIOS ability to read EDID 1.1, 1.2, and 1.3. Ability to selectively enable and disable several devices including CRT, LCD, TV, and DFP. Register-compatible with VGA standards, BIOS-compatible with VESA VBE2.0. Supports corporate manageability requirements such as DMI. ACPI support. Full Write Combining support for maximum performance of the CPU. Full-featured, yet simple Windows utilities: • Calibration utility for WYSIWYG color • Independent brightness control of desktop and overlay • End user diagnostics • Drivers meet Microsoft's rigorous WHQL criteria and are suitable for systems with the "Designed for Windows" logos. • • • • • • • Comprehensive OS and API support. Hot-key support (Windows ACPI 1.0b or ATI Event Handler Utility where appropriate). Extensive Power Management support. Rotation mode support in software. Dual CRTC, simultaneous view, extended desktop support (Win98, Win XP) DirectX 9.0 support. Switchable overlay support. Branding Diagrams Note: The branding diagrams below do not necessarily contain the latest ASCI revision numbers for the devices. Unless specified otherwise, no information in this databook is specific to the ASIC revision numbers appearing in the diagrams. RS600 Databook 1-7 © 2006 ATI Technologies Inc. Proprietary and Confidential Branding Diagrams RS600 1021-FCBGA package 35mm X 35mm ATI Artwork RS600 215RPP6ALA11FK XXXXXX.XX.XXX YYWWSS TAIWAN RS600 215RPP6ALA11FK XXXXXX.XX.XXX YYWWSS TAIWAN ATI Code Name Part Number (for ASIC revision A11) Wafer Foundry’s Lot Number Date and Other Codes* Country of Origin * YY - Assembly Start Year WW - Assembly Start Week XX - Assembly Location Figure 1-1 RS600 Branding Diagram RS600L 1021-FCBGA package 35mm X 35mm ATI Artwork RS600L 215RLP6ALA11FK XXXXXX.XX.XXX YYWWSS TAIWAN RS600L 215RLP6ALA11FK XXXXXX.XX.XXX YYWWSS TAIWAN ATI Code Name Part Number (for ASIC revision A11) Wafer Foundry’s Lot Number Date and Other Codes* Country of Origin * YY - Assembly Start Year WW - Assembly Start Week XX - Assembly Location Figure 1-2 RS600L Branding Diagram RS600 Databook 1-8 © 2006 ATI Technologies Inc. Proprietary and Confidential Part Number Legend 1.6 Part Number Legend Foundry Code N – UMC M– IBM C- TSMC Fab3 S- TSMC Fab4 F- TSMC Fab5 G- TSMC Fab6 K- TSMC Fab12 L- TSMC Fab14 W- TSMC WSMC Q- TSMC WSMC (8B) T- TSMC Wafer Tech Marketing Brand Name RPP6 – RS600 RLP6 – RS600L RDP6 – RD600 MPP6 – RS600M MLP6 – RS600ML MDP6 – RS600MD MEP6 – RS600ME 215 RPP6 Product Type A Substrate Revision 215– Desktop 216– Mobile A11 L ASIC Revision Flip Chip Blank – No F– Yes K F Package BOM K – High Temp G– Lead Free Figure 1-3 RS600-Family ASIC Part Number Legend Table 1-1 RS600-Family ASIC Part Numbers 1.7 Code Name Part Number RS600 215RPP6ALA11FK / 215RPP6ALA11FG RS600L 215RLP6ALA11FK / 215RLP6ALA11FG RD600 215RDP6ALA11FK / 215RDP6ALA11FG RS600M 216MPP6ALA11FK / 216MPP6ALA11FG RS600ML 216MLP6ALA11FK / 216MLP6ALA11FG RS600MD 216MDP6ALA11FK / 216MDP6ALA11FG RS600ME 216MEP6ALA11FK / 216MEP6ALA11FG Conventions and Notations The following conventions are used throughout this manual. 1.7.1 Pin Names Pins are identified by their pin names or ball references. Multiplexed pins assume alternate “functional names” when they perform their alternate functions, and these “functional names” are given in Chapter 3, “Pin Descriptions and Strap Options.” RS600 Databook 1-9 © 2006 ATI Technologies Inc. Proprietary and Confidential Conventions and Notations All active-low signals are identified by the suffix ‘#’ in their names (e.g., MEM_RAS#). 1.7.2 Pin Types The pins are assigned different codes according to their operational characteristics. These codes are listed in Table 1-2. Table 1-2 Pin Type Codes Code 1.7.3 Pin Type I Digital Input O Digital Output I/O Bi-Directional Digital Input or Output M Multifunctional Pwr Power Gnd Ground A-O Analog Output A-I Analog Input A-I/O Analog Bi-Directional Input/Output A-Pwr Analog Power A-Gnd Analog Ground Other Pin types not included in any of the categories above Numeric Representation Hexadecimal numbers are appended with “h” (Intel assembly-style notation) whenever there is a risk of ambiguity. Other numbers are in decimal. Pins of identical functions but different trailing integers (e.g., “CPU_D0, CPU_D1, . . . CPU_D7”) are referred to collectively by specifying their integers in square brackets and with colons (i.e., “CPU_D[7:0]”). A similar short-hand notation is used to indicate bit occupation in a register. For example, NB_COMMAND[15:10] refers to the bit positions 10 through 15 of the NB_COMMAND register. 1.7.4 Register Field A field of a register is referred to by the format of [Register Name].[Register.Field]. For example, “NB_MC_CNTL.DISABLE_BYPASS” is the “DISABLE_BYPASS” field of the register “NB_MC_CNTL.” 1.7.5 Hyperlinks Phrases or sentences in blue italic font are hyperlinks to other parts of the manual. Users of the PDF version of this manual can click on the links to go directly to the referenced sections, tables, or figures. 1.7.6 Acronyms and Abbreviations The following is a list of the acronyms and abbreviations used in this manual. Table 1-3 Acronyms and Abbreviations Acronym ACPI A-Link II Full Expression Advanced Configuration and Power Interface A-Link Express II interface between the IGP and IXP. BGA Ball Grid Array BIOS Basic Input Output System. Initialization code stored in a ROM or Flash RAM used to start up a system or expansion card. BIST Built In Self Test. BLT Blit bpp bits per pixel CEC Consumer Electronic Control RS600 Databook 1-10 © 2006 ATI Technologies Inc. Proprietary and Confidential Conventions and Notations Table 1-3 Acronyms and Abbreviations (Continued) Acronym CPIS Full Expression Common Panel Interface Specification CRT Cathode Ray Tube DAC Digital to Analog Converter DBI Dynamic Bus Inversion DDC Display Data Channel. A VESA standard for communicating between a computer system and attached display devices. DDR Double Data Rate DFP Digital Flat Panel. Monitor connection standard from VESA. DPM Defects per Million DVI Digital Visual Interface DTV Digital TV DVD Digital Video Disc DVI Digital Video Interface. Monitor connection standard from the DDWG (Digital Display Work Group). DVS Digital Video Stream EPROM Erasable Programmable Read Only Memory FIFO First In, First Out FPDI Flat Panel Display Interface FSB Front Side Bus GDI Graphics Device Interface GND Ground GPIO General Purpose Input/Output GTL+ Gunning Transceiver Logic HDCP High-Bandwidth Digital Content Protection HDMI High Definition Multimedia Interface HDTV High Definition TV. The 1920x1080 and the 1280x720 modes defined by ATSC. HPD Hot Plug Detect iDCT inverse Discrete Cosine Transform IDDQ IGP Direct Drain Quiescent Current Integrated Graphics Processor. A single device that integrates a graphics processor and a system controller. JTAG Joint Test Access Group. An IEEE standard. LVDS Low Voltage Differential Signaling MB Mega Byte MPEG Motion Pictures Experts Group. Refers to compressed video image streams in either MPEG-1 or MPEG-2 formats. NTSC National Television Standards Committee. The standard definition TV system used in North America and other areas. PAL Phase Alternate Line. The standard definition TV system used in Europe and other areas. PCI PCI-E PCMCIA Peripheral Component Interface PCI Express Personal Computer Memory Card International Association. It is also the name of a standard for PC peripherals promoted by the Association. PLL Phase Locked Loop POST Power On Self Test PD Pull-down Resistor PU Pull-up Resistor ROP SDRAM TMDS UMA RS600 Databook 1-11 Raster Operation Synchronous Dynamic RAM Transition Minimized Differential Signaling Unified Memory Architecture © 2006 ATI Technologies Inc. Proprietary and Confidential Conventions and Notations Table 1-3 Acronyms and Abbreviations (Continued) Acronym UV UXGA VBI Full Expression Chrominance (also CrCb). Corresponds to the color of a pixel. Ultra Extended Graphics Array Vertical Blank Interval VESA Video Electronics Standards Association VGA Video Graphics Adapter VRM Voltage Regulation Module RS600 Databook 1-12 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 2 Functional Descriptions This chapter describes the functional operation of the major interfaces of the RS600 system logic chip. Figure 2-1, “RS600 Internal Block Diagram,” illustrates the RS600 internal blocks and interfaces. PCI-E Interface (1 x 16 Lanes) Root Complex DDR2/3 SDRAM Channel A PCI-E Interface Memory Controller (6 x 1 Lanes) Expansion Slots or On-board Devices A-Link-E II Interface External Graphics CPU BIU (1 x 4 Lanes) IXP CPU Interface CPU BIF Register Interface iDCT Setup Engine DDR2/3 SDRAM Channel B 2D Engine 3D Engine TMDS, enabling HDMI (multiplexed on PCI-E graphics lanes) TV-Out Display 1& 2 External Displays through SDVO MUX Integrated DVI/HDMI Overlay CRT Figure 2-1 RS600 Internal Block Diagram © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 2-1 Host Interface 2.1 Host Interface The RS600 is optimized to interface with the CPUs it supports. This section presents an overview of the host interface. For a detailed description of the interface, please refer to the specifications from the Intel Corporation. Figure 2-2, “Host Interface Block Diagram,” illustrates the basic blocks of the host bus interface of the RS600. Interface to CPU Configuration Registers CPU BIU Data Buffers Root Complex Memory Controller Figure 2-2 Host Interface Block Diagram The RS600 system logic implements the host address, control, and data bus interfaces within a single device. RS600 uses a split transaction bus methodology, which implies that the communication between the processor and the rest of the system is carried out by transactions that represent sequences of bus events following a certain protocol. Any transaction may contain up to six phases as described in Table 2-1, “Front Side Bus Interface Transaction Phases.” Table 2-1 Front Side Bus Interface Transaction Phases Phase Description Arbitration During this phase the bus requesters compete for bus ownership, and the requester that is granted the bus proceeds to the request phase. There are two kinds of requesters agents: symmetric and priority. The CPU is a symmetric agent and the RS600 is a priority agent. This gives the RS600 system logic the capability to grab the bus at any time and guarantees low latency by preferred service. All bus agents track the bus arbitration state internally. This reduces the number of signals required during this phase. Request The transaction is started by the current bus master asserting ADS#. Error This phase is entered on the second clock from ADS# asserted. Snoop Three clocks after ADS# is asserted or at least two clock cycles after the snoop phase of the previous transaction. All caching agents (e. g. CPUs with internal cache) perform a snoop to their internal caches, using the address sent out during the request phase. The result of the snoop operation is returned using the HIT# and HITM# signals. The RS600 observes these returned signals and when a HITM# (hit into a dirty cache line) signal is seen, the RS600 chip becomes the target for the cache writeback burst. Response RS600 delivers the response to the request agent during this phase. This phase will complete transaction with no data transfer. Data During this phase the data transfer for a transaction is performed. Not all transactions have a data phrase. The RS600 host bus interface consists of a bi-directional address interface, a bi-directional data interface, and a number of control pins. The interface is illustrated in Figure 2.1, “Host Interface”. The signal name and direction for each signal is shown with respect to the processor. Please note that the signal names may be different from those used in the pin listing of the RS600. A detailed description of the signals is given in section 3.3, “CPU Interface‚’ on page 3-5. RS600 Databook 2-2 © 2006 ATI Technologies Inc. Proprietary and Confidential System Memory Interface CPU_A[33:3]# CPU_CLKP 31 CPU_ADS# CPU_BNR# CPU_CLKN CPU_BPRI# CPU_BR0# CPU_DBSY# CPU_DEFER# CPU_DRDY# VDD_CPU CPU_EDRDY# CPU_COMP_N CPU_COMP_P CPU_D[63:0]# 64 CPU_DSTBN[3:0]# 4 CPU_DSTBP[3:0]# 4 CPU_ADSTB[1:0]# 2 CPU_DBI[3:0] 4 CPU VDD_CPU RS600 CPU_VREF CPU_HIT# CPU_HITM# CPU_LOCK# CPU_REQ[4:0]# 5 CPU_TRDY# CPU_RS[2:0]# 3 CPU_CPURST# Figure 2-3 RS600 Host Bus Interface Signals 2.2 System Memory Interface The RS600 memory controller is a highly optimized unified memory controller. It arbitrates and optimizes the incoming memory requests and accesses to the Graphics Address Remapping Table (GART). The RS600 memory controller supports DDR2 and DDR3 SDRAM. Figure 2-4, “RS600 System Memory Interface,” on page 5 illustrates the system memory interface of the RS600. The RS600 memory controller supports a total of 16 GB of addressable physical memory. It controls up to two un-buffered DDR2/DDR3 DIMMs per channel. It supports 256, 512, 1024, and 2048-Mbit memory devices. Device widths of x8 and x16 are supported. Mixed banks are supported, allowing the mixing of x8 DIMM with x16 DIMM. Please refer to Table 2-4, “DIMM Configurations Supported by the RS600,” on page 2-6 for the total memory sizes for the various supported DIMM configurations. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 2-3 System Memory Interface Memory timing parameters are programmable via the RS600 memory controller configuration registers, allowing support of different configurations and loadings. Refresh is also programmable, with support of various refresh rates as well as the ability to queue up outstanding refreshes for effective execution. The memory controller supports up to 32 open pages per memory channel. Memory page operations can be further optimized by programming the number of idle cycles or the memory accesses to a bank before the bank is automatically precharged. The number of idle cycles are either fixed or adaptively changed depending on the memory access pattern. RS600 supports a maximum of two DIMMs per memory channel. Each DIMM can have two ranks, thus a maximum of four ranks per channel are supported. The RS600 provides six differential clock pairs per memory channel (i.e., three for each unbuffered DIMM). RS600 Databook 2-4 © 2006 ATI Technologies Inc. Proprietary and Confidential System Memory Interface Differential Clocks 24 MEMA_CK[5:0]P / MEMA_CK[5:0]N 0,1,2 3,4,5 Clock Enable MEMA_CKE[3:0] 4 0,1 2,3 Chip Select MEMA_CS[3:0]# 4 2,3 0,1 Memory Channel A Column Address Strobe MEMA_CAS# Write Enable MEMA_WE# 15 Address MEMA_A [14:0] 3 Bank Address MEMA_BA [2:0] 8 Data Mask MEMA_DM[7:0] Data Strobes MEMA_DQS[7:0]P/ MEMA_DQS[7:0]N 16 64 Un-buffered DDR2/3 SDRAM DIMM Un-buffered DDR2/3 SDRAM DIMM Row Address Strobe MEMA_RAS# Data MEMA_DQ[63:0] On-Die Termination MEMA_ODT[3:0] 4 0,1 2,3 RS600 DIMM 1 DIMM 0 24 Differential Clocks MEMB_CK[5:0]P / MEMB_CK[5:0]N 0,1,2 4 3,4,5 Clock Enable MEMB_CKE[3:0] 0,1 4 2,3 Chip Select MEMB_CS[3:0]# 0,1 Memory Channel B Write Enable MEMB_WE# 15 Address MEMB_A [14:0] Bank Address MEMB_BA [2:0] 3 8 Data Mask MEMB_DM[7:0] Data Strobes MEMB_DQS[7:0]P/ MEMB_DQS[7:0]N 16 64 Un-buffered DDR2/3 SDRAM DIMM Column Address Strobe MEMB_CAS# Un-buffered DDR2/3 SDRAM DIMM Row Address Strobe MEMB_RAS# 2,3 Data MEMB_DQ[63:0] On-Die Termination MEMB_ODT[3:0] 4 0,1 DIMM 0 2,3 DIMM 1 Figure 2-4 RS600 System Memory Interface © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 2-5 System Memory Interface 2.2.1 Memory Requests For system memory requests, the RS600 memory controller takes the requests from the client interfaces and determines the next request to be executed based on a number of factors. These factors include efficiency of the memory bus, urgency of real-time requests, and request latency. Subsequently, the next request information is steered to the appropriate memory channel and sent to the memory sequencer. The sequencer converts these requests into the signal and data patterns required by a DDR SDRAM. In addition, the sequencer guarantees that all necessary DRAM refreshes are performed. The data bus is 64-bits wide per memory channel and may be configured for x8-bit or x16-bit memory components. Coherency checking is performed on certain clients to ensure that read requests return the proper data. 2.2.2 Supported Memory Components The memory controller supports DDR SDRAM chips in several configurations. These chips can be organized in banks, rows, and columns. The supported memory components have either 4 or 8 banks for DDR2. All supported DDR3 memory components have 8 banks. Only JEDEC timing is supported. Table 2-2 and Table 2-3 list the supported DDR2 and DDR3 components respectively. Table 2-2 Supported DDR2 Components DDR2 SDRAM config Mbits Organization banks bits rows Address Field Bits columns bank row col 16Mx16 256 4 16 8192 512 2 13 9 32Mx8 256 4 8 8192 1024 2 13 10 32Mx16 512 4 16 8192 1024 2 13 10 64Mx8 512 4 8 16384 1024 2 14 10 64Mx16 1024 8 16 8192 1024 3 13 10 128Mx8 1024 8 8 16384 1024 3 14 10 128Mx16 2048 8 16 16384 1024 3 14 10 256Mx8 2048 8 8 32768 1024 3 15 10 Table 2-3 Supported DDR3 Components DDR3 SDRAM config 2.2.3 Organization Mbits banks bits rows Address Field Bits columns bank row col 32Mx16 512 8 16 4096 1024 3 12 10 64Mx8 512 8 8 8192 1024 3 13 10 64Mx16 1024 8 16 8192 1024 3 13 10 128Mx8 1024 8 8 16384 1024 3 14 10 Supported Memory Configurations RS600 supports up to two DIMMs per memory channel. It is possible to have different memory capacities on the two memory channels. Table 2-4 below shows the DIMM configurations supported by the RS600. Table 2-4 DIMM Configurations Supported by the RS600 Memory Part Type config 16Mx16 32Mx8 RS600 Databook 2-6 banks DIMM Configuration Mbits ranks memory chips 4 MBytes 4 256 1 128 2 8 256 4 256 1 8 256 2 16 512 © 2006 ATI Technologies Inc. Proprietary and Confidential System Memory Interface Table 2-4 DIMM Configurations Supported by the RS600 Memory Part Type config Mbits 32Mx16 4 (DDR2) 8 (DDR3) 64Mx8 4 (DDR2) 8 (DDR3) 8 512 2048 8 256Mx8 512 1024 8 128Mx16 memory chips ranks 1024 8 128Mx8 2.2.4 DIMM Configuration banks 64Mx16 (Continued) 2048 MBytes 1 4 256 2 8 512 1 8 512 2 16 1024 1 4 512 2 8 1024 1 8 1024 2 16 2048 1 4 1024 2 8 2048 1 8 2048 2 16 4096 Memory Banks All supported DDR2 memories have 4 or 8 banks. Lower density DDR2 memories (256 Mb and 512 Mb memory parts) have 4 banks, and higher density memory parts have 8 banks. For supported DDR3 parts (512 Mb and 1 Gb parts), all memory components have 8 banks. The bank select bits are extracted from the physical address range [20:7]. Selection of bank bits are register programmed. 2.2.5 Row and Column Addressing Table 2-5 shows how the physical address P (after taking out the bank select bits) is used to provide the row and column addressing for each size of DDR2/DDR3 memories. Table 2-5 DDR2 Memory Row and Column Addressing Address A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Mode 4: 16Mx16 devices Row P12 P16 Column P15 P14 PC P13 P24 P23 P22 P21 P20 P19 P18 P17 P11 P10 P9 P8 P7 P6 P5 P4 P3 Mode 5: 32Mx8, 32Mx16 devices Row P25 P16 Column P15 P14 P13 P24 P23 P22 P21 P20 P19 P18 P17 PC P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 Mode 6: 64Mx8, 64Mx16 devices Row P26 P25 P16 Column P15 P14 P13 P24 P23 P22 P21 P20 P19 P18 P17 PC P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 Mode 7: 128Mx8, 128Mx16 devices Row P26 P25 P16 Column P15 PC P14 P13 P24 P23 P22 P21 P20 P19 P18 P17 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 Mode 8: 256Mx8 devices Row P27 P26 P25 Column © 2006 ATI Technologies Inc. Proprietary and Confidential P16 P15 P14 P13 P24 P23 P22 P21 P20 P19 P18 P17 P27 PC P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 RS600 Databook 2-7 System Memory Interface Address A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Mode 9: 128Mx16 devices Row P16 Column 2.2.6 P15 P14 P13 P24 P23 P22 P21 P20 P19 P18 P17 PC P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 CAS Latency The number of clock cycles that transpire between the availability of memory data and when the Read cycle was actually registered is known as the CAS latency. This latency is programmable with delays of 3, 4, 5, 6, or 7 clock cycles. The actual value chosen depends on the circuit implementation details and the memory speed (higher speeds require more CAS latency). An example of CAS latency is given in Figure 2-5, “CAS Latency Example.” 0 1 2 3 4 5 6 7 8 9 Clock Command Read Address Addr A Data (CAS = 3) DA0 DA1 Data (CAS = 4) DA2 DA3 DA0 DA1 Data (CAS = 5) DA2 DA3 DA0 DA1 Data (CAS = 6) DA2 DA3 DA0 DA1 Data (CAS = 7) DA2 DA3 DA0 DA1 DA2 DA3 Figure 2-5 CAS Latency Example 2.2.7 Burst Type There are two burst types used by DDR SDRAM chips: sequential and interleaved. The RS600 memory controller supports only interleaved bursts. 2.2.8 Burst Length Burst lengths are programmable with lengths of 4 cycles (for DDR2 only) or 8 cycles (for DDR2 or DDR3) per burst. Consecutive read bursts are shown in Figure 2-6. Consecutive write bursts are handled in the same manner as read bursts, and are shown in Figure 2-7. 0 1 2 3 4 5 6 7 Clock Command Address Data (CAS = 2) Read Read Addr A Addr B DA0 DA1 DA2 DA3 DB0 DB1 DB2 DB3 Figure 2-6 Consecutive Read Bursts (4 Cycles) RS600 Databook 2-8 © 2006 ATI Technologies Inc. Proprietary and Confidential System Memory Interface 0 1 2 3 4 5 6 7 8 Clock Command Address Write Write Addr A Addr B Data / Mask DA0 DA1 DA2 DA3 DB0 DB1 DB2 DB3 Strobe Figure 2-7 Consecutive Write Bursts (4 Cycles) 0 1 2 3 4 5 6 7 8 9 10 11 Clock Command Address Read Read Addr A Addr B Data (CAS = 2) DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 Figure 2-8 Consecutive Read Bursts (8 Cycles) 0 1 2 3 4 5 6 7 9 8 10 Clock Command Address Write Write Addr A Addr B Data / Mask DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 Strobe Figure 2-9 Consecutive Write Burst (8 Cycles) © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 2-9 System Memory Interface 2.2.9 Clock Enable, Chip Select, and On-Die Termination Distributions for DDR2/DDR3 SDRAMs The RS600 provides independent CKE and ODT signals for each memory row (total of four CKEs and ODTs per channel). To take advantage of these features, follow the CKE, CS (Chip Select), and ODT (On-Die Termination) distributions illustrated below for each memory channel. RS600 DIMM 0 DIMM 1 RS600M MEM_CKE0 MEM_CKE1 MEM_CKE2 MEM_CKE3 MEM_ODT0 MEM_ODT1 MEM_ODT2 MEM_ODT3 MEM_CS0# MEM_CS1# MEM_CS2# MEM_CS3# CKE0 CKE1 CKE0 CKE1 ODT0 ODT1 ODT0 ODT1 CS0# CS1# CS0# CS1# Figure 2-10 CKE, CS, and ODT Distributions for DDR2/DDR3 SDRAMs RS600 Databook 2-10 © 2006 ATI Technologies Inc. Proprietary and Confidential DVI/HDMI 2.3 DVI/HDMI 2.3.1 Data Mapping for the Integrated DVI/HDMI Interface The RS600 contains an integrated DVI/HDMI interface, which supports clock frequencies of up to 165 MHz on each link. Figure 2-1 below shows the transmission ordering of the signals on the integrated DVI/HDMI interface in single-link mode. TXCP TXCM TX0P TX0M TB0 TB1 TG0 TG1 Depending upon state of PLL_SYNC and CTL1 TX2P TX2M TB4 TB5 TB6 TB7 TB8 TB9 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 Depending upon encoded Green channel pixel data TR0 Depending upon state of CTL2 and CTL3 TB3 Depending upon encoded Blue channel pixel data Depending upon state of HSYNC and VSYNC TX1P TX1M TB2 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 Depending upon encoded Red channel pixel data Figure 2-11 Data Transmission Ordering for the Integrated DVI/HDMI Interface For dual-link mode, which is only supported for DVI, the same transmission order applies to data channels on the second link, with the first link transmitting data for even pixels and the second link for odd pixels. See Table 2-7 below for details. The signal mapping for the transmission is shown in Table 2-6 (single link) and Table 2-7 (dual-link DVI) below. RS600 Databook 2-11 © 2006 ATI Technologies Inc. Proprietary and Confidential DVI/HDMI Table 2-6 Single Link Signal Mapping for the Integrated DVI/HDMI Interface HDMI Functional Name TX0M/P TX1M/P TX2M/P Data Phase Signal Phase 1 B9 Phase 2 B8 Phase 3 B7 Phase 4 B6 Phase 5 B5 Phase 6 B4 Phase 7 B3 Phase 8 B2 Phase 9 B1 Phase 10 B0 Phase 1 G9 Phase 2 G8 Phase 3 G7 Phase 4 G6 Phase 5 G5 Phase 6 G4 Phase 7 G3 Phase 8 G2 Phase 9 G1 Phase 10 G0 Phase 1 R9 Phase 2 R8 Phase 3 R7 Phase 4 R6 Phase 5 R5 Phase 6 R4 Phase 7 R3 Phase 8 R2 Phase 9 R1 Phase 10 R0 Note: H/VSYNC are transmitted on TX0M/P(Blue) channel during blank. RS600 Databook 2-12 © 2006 ATI Technologies Inc. Proprietary and Confidential DVI/HDMI Table 2-7 Dual-Link Signal Mapping for the Integrated DVI Interface Link 1 HDMI Functional Name TX0M/P TX1M/P TX2M/P Data Phase Link 2 Signal HDMI Functional Name TX3M/P Data Phase Signal Phase 1 EVEN_B9 Phase 1 ODD_B9 Phase 2 EVEN_B8 Phase 2 ODD_B8 Phase 3 EVEN_B7 Phase 3 ODD_B7 Phase 4 EVEN_B6 Phase 4 ODD_B6 Phase 5 EVEN_B5 Phase 5 ODD_B5 Phase 6 EVEN_B4 Phase 6 ODD_B4 Phase 7 EVEN_B3 Phase 7 ODD_B3 Phase 8 EVEN_B2 Phase 8 ODD_B2 Phase 9 EVEN_B1 Phase 9 ODD_B1 Phase 10 EVEN_B0 Phase 10 ODD_B0 Phase 1 EVEN_G9 Phase 1 ODD_G9 Phase 2 EVEN_G8 Phase 2 ODD_G8 Phase 3 EVEN_G7 Phase 3 ODD_G7 Phase 4 EVEN_G6 Phase 4 ODD_G6 Phase 5 EVEN_G5 Phase 5 ODD_G5 Phase 6 EVEN_G4 Phase 6 ODD_G4 Phase 7 EVEN_G3 Phase 7 ODD_G3 Phase 8 EVEN_G2 Phase 8 ODD_G2 Phase 9 EVEN_G1 Phase 9 ODD_G1 Phase 10 EVEN_G0 Phase 10 ODD_G0 Phase 1 EVEN_R9 Phase 1 ODD_R9 Phase 2 EVEN_R8 Phase 2 ODD_R8 Phase 3 EVEN_R7 Phase 3 ODD_R7 Phase 4 EVEN_R6 Phase 4 ODD_R6 Phase 5 EVEN_R5 Phase 5 ODD_R5 Phase 6 EVEN_R4 Phase 6 ODD_R4 Phase 7 EVEN_R3 Phase 7 ODD_R3 Phase 8 EVEN_R2 Phase 8 ODD_R2 Phase 9 EVEN_R1 Phase 9 ODD_R1 Phase 10 EVEN_R0 Phase 10 ODD_R0 TX4M/P TX5M/P Notes: - H/VSYNC are transmitted on TX0M/P(Blue) channel during blank. - For DVI dual-link mode, the first active data pixel is defined as pixel#0 (an even pixel), as opposed to the DVI specifications. RS600 Databook 2-13 © 2006 ATI Technologies Inc. Proprietary and Confidential DVI/HDMI 2.3.2 Data Mapping on the TMDS Interface Multiplexed on the PCI-E Graphics Lanes The RS600 contains a TMDS interface, multiplexed on the PCI-E graphics lanes, which supports clock frequencies of up to 165 MHz. Figure 2-1 below shows the transmission ordering of the signals on the interface. The multiplexing relationships between the PCI-E graphics signals and the TMDS signals are given in section 3.9, “TMDS Interface Multiplexed on the PCI-E Graphics Lanes‚’ on page 3-11 TXCP TXCM TX0P TX0M TR0 TR1 TG0 TG1 Depending upon state of PLL_SYNC and CTL1 TX2P TX2M TR4 TR5 TR6 TR7 TR8 TR9 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 Depending upon encoded Green channel pixel data TB0 Depending upon state of CTL2 and CTL3 TR3 Depending upon encoded Red channel pixel data Depending upon state of HSYNC and VSYNC TX1P TX1M TR2 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 Depending upon encoded Blue channel pixel data Figure 2-12 Data Transmission Ordering for the TMDS Interface Multiplexed on the PCI-E Graphics Lanes The signal mapping for the transmission is shown in Table 2-8 below. RS600 Databook 2-14 © 2006 ATI Technologies Inc. Proprietary and Confidential DVI/HDMI Table 2-8 Single Link Signal Mapping for the TMDS Interface Multiplexed on the PCI-E Graphics Lanes TMDS Functional Name TX0M/P TX1M/P TX2M/P Data Phase Signal Phase 1 R9 Phase 2 R8 Phase 3 R7 Phase 4 R6 Phase 5 R5 Phase 6 R4 Phase 7 R3 Phase 8 R2 Phase 9 R1 Phase 10 R0 Phase 1 G9 Phase 2 G8 Phase 3 G7 Phase 4 G6 Phase 5 G5 Phase 6 G4 Phase 7 G3 Phase 8 G2 Phase 9 G1 Phase 10 G0 Phase 1 B9 Phase 2 B8 Phase 3 B7 Phase 4 B6 Phase 5 B5 Phase 6 B4 Phase 7 B3 Phase 8 B2 Phase 9 B1 Phase 10 B0 Note: H/VSYNC are transmitted on TX0M/P(Red) channel during blank. RS600 Databook 2-15 © 2006 ATI Technologies Inc. Proprietary and Confidential DVI/HDMI 2.3.3 Support for HDMI Packet Types Table 2-9 Support for HDMI Packet Types Packet Value Packet Type 0x00 Null 0x01 Audio Clock Regeneration 0x02 Audio Sample Supported Source or Not Comment Yes Sent when required to meet Inserted by hardware if no packets in horizontal active on line 2 (can be disabled maximum time between data island specification. by software). Yes Inserted by hardware or video driver. Contents from register bits or combination of register bits and hardware control. Inserted in horizontal blank. — Yes Audio samples come from HD audio DMA. Channel status from HD audio and video registers. Inserted in horizontal blank whenever audio FIFO contains data. — No Sending and contents controlled by video driver. Inserted (on even frames only in interlaced mode) when requested by software or whenever AVMUTE status changes. Inserted in horizontal active on line selected by software. — — Audio content protection information. 0x03 General Control 0x04 ACP Packet Yes* 0x05 ISRC1 Packet Yes Controlled by video driver. Inserted in horizontal active on line selected For transmitting UPC or ISRC codes. by software. 0x06 ISRC2 Packet Yes Software controlled. Inserted in horizontal active on line selected Implement if ISRC1 is used. by software. 0x07 Reserved N/A N/A N/A InfoFrame Packet Type HDMI ID EIA-861B ID 0x80 0x00 Vendor-Specific Yes* 0x81 0x01 AVI Yes 0x82 0x02 Source Product Descriptor Yes* — — Controlled by video driver. For colorimetry, repetition count, Inserted in horizontal active on line selected video format, picture formatting. by software. — — 0x83 0x03 Audio Yes Inserted in horizontal active on line selected by software. For channel counts, sampling Contents from registers written by video frequency, etc. and HD audio drivers. Sent only when HD audio enables audio (video driver can also disable). 0x84 0x04 MPEG Source Yes Software contolled. Inserted in horizontal active on line selected For bit rate, field repeat, frame type by software. * Note: These packet types are supported using generic packet types. A maximum of two of them can be supported simultaneously. RS600 Databook 2-16 © 2006 ATI Technologies Inc. Proprietary and Confidential SDVO Interface 2.4 SDVO Interface The RS600 contains a dual-link SDVO interface, which supports clock frequencies of up to 165 MHz on each link. SDVO is an Intel proprietary encoding scheme. On the RS600, the SDVO interface is multiplexed with the PCI-E interface for external graphics. SDVO support is therefore unavailable if an external graphics card is attached. See section 3.10, “SDVO Interface for External Displays‚’ on page 3-11 for the mapping between the PCI-E and SDVO pins. An SDVO compliant PCI-E add-on card, plugged into the external graphics/SDVO PCI-E interface, is responsible for converting the SDVO signals to a variety of desired output formats including TMDS, S-video, composite video, component video, CRT, etc. 2.4.1 Symbol Replication The SDVO interface pixel clock rate has to fall within 100-200 MHz, regardless of resolution. Hence, for resolution with pixel clock rate lower than 100 MHz, the RS600 provides data stuffing at 1X, 2X, 3X, 4X, or 5X to make the pixel clock rate fall within the required range. 2.4.2 Dual-link Mode For a resolution with pixel clock rate higher than 200 MHz, the SDVO data is transmitted in the dual-link mode: data stream is split into two, one for the odd and the other for even pixels, and the clock frequency is reduced by half. 2.4.3 I2C/DDC Support The RS600 SDVO interface has I2C/DDC support for transfer of opcodes and panel information read back. 2.4.4 HPD Support The RS600 SDVO interface supports hot plug detect. RS600 Databook 2-17 © 2006 ATI Technologies Inc. Proprietary and Confidential VGA DAC Characteristics 2.5 VGA DAC Characteristics Table 2-10 VGA DAC Characteristics Parameter Resolution Min Typ Max Notes 10 bits - - 1 Maximum PS/2 setting Output Voltage - 0.7V - 1, 10 Maximum PS/2 setting Output Current - 18.7mA - 1, 10 +8% / -3% - +10% 2, 3 -2% - +2% 1, 4 Full Scale Error DAC to DAC Correlation Differential Linearity -2 LSB - +2 LSB 1, 5 Integral Linearity -2 LSB - +2 LSB 1, 5 Rise Time (10% to 90%) 0.58ns - 1.7ns 1, 6 Full Scale Settling Time - TBA - 1, 7, 8 Glitch Energy - TBA - 1, 8 Monotonicity - - - 9 Notes: 1 - Tested over the operating temperature range at nominal supply voltage, with an Iref of -1.50mA (Iref is the level of the current flowing out of the RSET resistor). 2 - Tested over the operating temperature range at reduced supply voltage, with an Iref of -1.50mA (Iref is the level of the current flowing out of the Rset resistor). 3 - Full scale error from the value predicted by the design equations. 4 - About the mid-point of the distribution of the three DACs measured at full scale deflection. 5 - Linearity measured from the best fit line through the DAC characteristics. Monotonicity guaranteed. 6 - Load = 37.5Ω + 20 pF with Iref = -1.50 mA (Iref is the current flowing out of the Rset resistor). 7 - Measured from the end of the overshoot to the point where the amplitude of the video ringing is down to +/-5% of the final steady state value. 8 - This parameter is sampled, not 100% tested. 9 - Monotonicity is guaranteed. 10 - Levels are 7.8% higher with setup pedestal enabled. 2.6 External Clock Chip On the RS600 platform, an external clock chip provides the CPU, Front Side Bus, PCI Express, and A-Link Express II reference clocks. For more information about supported clock chips, please consult your ATI FAE representative. RS600 Databook 2-18 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 3 Pin Descriptions and Strap Options This chapter gives the pin descriptions and the strap options for the RS600. To jump to a topic of interest, use the following list of hyperlinked cross references: “Pin Assignment Top View” on page 3-2 “RS600 Interface Block Diagram” on page 3-4 “CPU Interface” on page 3-5 “DDR2/DDR3 Memory Interface” on page 3-7 “PCI Express Interfaces” on page 3-8: “1 x16 Lane Interface for External Graphics” on page 3-8 “1 x4 Lane A-Link Express II to IXP” on page 3-8 “4 x1 Lane Interface for General Purpose External Devices” on page 3-8 “Miscellaneous PCI Express Signals” on page 3-9 “Clock Interface” on page 3-9 “CRT and TV Interface” on page 3-9 “Integrated DVI/HDMI Interface” on page 3-10 “TMDS Interface Multiplexed on the PCI-E Graphics Lanes” on page 3-11 “SDVO Interface for External Displays” on page 3-11 “Power Management Pins” on page 3-12 “Miscellaneous Pins” on page 3-12 “Power Pins” on page 3-13 “Ground Pins” on page 3-15 “Strapping Options” on page 3-16 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 3-1 Pin Assignment Top View 3.1 Pin Assignment Top View The figures below do not show the actual ball positions on the package, for which one should refer to Figure 5-4, “RS600 Detailed Ball Arrangement,” on page 5- 7. . 3 4 A 1 2 VSS_PCIE VSS B VSS_PCIE VSS_PCIE C VSS_PCIE GFX_RX0N GFX_RX0P D VSS_PCIE GFX_TX0P E GFX_TX0N VSS_PCIE VSS_PCIE GFX_REFC LKN 10 11 12 17 18 GFX_REFC GPPSB_RE CPU_CLKP VDD_PCIE LKP FCLKP 5 VDD_PCIE PLLVSS PLLVDD12 PLLVDD18 VDD_18CP VDD_CORE U AVDD VDDR3 AVSSDI TESTMODE LTPVSS18 GPPSB_RE CPU_CLKN VDD_PCIE FCLKN VDD_PCIE OSCIN DDC_DATA STRP_DAT VDD_18ME VDD_CORE A M AVDD VDDR3 AVDDDI VSS 6 VSS 7 8 9 13 14 15 16 19 VDD_PCIE VSS VSS VSS VDD_18ME M VDD_CORE COMP RED VSS VDD_PCIE VSS VSS VDD_18CP U VDD_CORE VSS VSS TXCLK_UN TXOUT_U3 TXOUT_U1 N P VDD_PCIE POWERGO OD VSS VDD_18ME M VDD_CORE Y GREEN TXCLK_UP TXOUT_U3 P VSSLT VDD_PCIE VDD_PCIE VSS VDD_18CP U VDD_CORE VSS VSS TXOUT_U2 N VDDLT33 VDDLT18 VSS VDD_18ME M VDD_CORE C BLUE TXOUT_U2 P VDDLT33 VDDLT18 VDD_PCIE VDD_PCIE VDD_18CP U VSS VSS VSS VSS VSS VDD_PCIE VDD_PCIE VDD_18ME M VSS VSS VSS AVSSN VSS VDD_PCIE VDD_18ME M VSS VSS VSS AVSSN VDD_18CP U VSS J VSS VDD_PCIE K GFX_TX3N VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE GFX_RX2N L GFX_TX4N GFX_TX4P VSS_PCIE M GFX_TX5N GFX_TX5P VSS_PCIE GFX_RX4N GFX_RX4P GFX_RX3N GFX_RX2P VDD_PCIE VDD_PLLP CIE GFX_RX3P VSS_PCIE N P VSS_PCIE GFX_TX6P VSS_PCIE GFX_RX6P GFX_RX6N VSS_PCIE R GFX_TX6N VSS_PCIE VSS_PCIE GFX_RX5N GFX_RX5P VSS_PCIE VDD_PLLP VDD_PLLP CIE CIE VSS_PCIE GFX_RX8P GFX_RX8N VSS_PLLP VSS_PLLP CIE CIE VSS VDD_PCIE VDD_18ME VDD_18CP VDD_18CP VDD_18CP M U U U VDD_PCIE VDD_18ME VDD_18CP VDD_18CP VDD_18CP M U U U VDD_PCIE VDD_18ME VDD_COREVDD_COREVDD_CORE M T GFX_TX7N GFX_TX7P VSS_PCIE VSS_PCIE GFX_RX7N GFX_RX7P U GFX_TX8N GFX_TX8P VSS_PCIE V VDD_PCIE GFX_TX9P VDD_PCIE VSS_PCIE GFX_RX9P GFX_RX9N VSS_PCIE GFX_RX10 GFX_RX10 P N VSS_PLLP VDD_PCIE CIE VDD_PCIE VDD_18ME VDD_COREVDD_CORE M W GFX_TX9N VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VDD_PCIE VDD_PCIE VDD_PCIE VDD_18ME VDD_CORE M Y GFX_TX10 GFX_TX10 VSS_PCIE N P AA GFX_TX11 GFX_TX11 GFX_RX11 GFX_RX11 VSS_PCIE VSS_PCIE N P N P AB VSS_PCIE VSS_PCIE GFX_RX12 GFX_RX12 P N VDD_PCIE VDD_PCIE AC GFX_TX12 GFX_RX13 GFX_RX13 VSS_PCIE VSS_PCIE VSS_PCIE N P N VSS_PCIE GFX_RX14 GFX_RX14 P N VSS_PCIE VDD_PCIE AD GFX_TX13 GFX_TX13 VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE N P VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VDD_PCIE AE GFX_TX14 GFX_TX14 GFX_RX15 GFX_RX15 VSS_PCIE VSS_PCIE N P N P VSS_PCIE GPP_TX3P GPP_TX3N VSS_PCIE VDD_PCIE AF VSS_PCIE GFX_TX12 VSS_PCIE P GFX_TX15 VSS_PCIE P AG GFX_TX15 VSS_PCIE VSS_PCIE VSS_PCIE GPP_RX3P GPP_RX3N N AH GPP_TX2N GPP_TX2P VSS_PCIE AJ VSS VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VDD_CORE VSS VSS VDD_CORE VSS VDD_CORE VDD_CORE VSS VDD_CORE VSS AK VSS_PCIE GPP_TX1P VSS_PCIE VSS_PCIE GPP_RX0N GPP_RX0P VSS_PCIE VSS_PCIE VDD_PCIE VDD_PCIE VDD_18ME VDD_CORE M AL GPP_TX1N VSS_PCIE VSS_PCIE VDD_PCIE VDD_18ME VDD_COREVDD_COREVDD_CORE M AM GPP_RX1N GPP_RX1P VSS_PCIE VSS_PCIE SB_RX2P VDD_PCIE VDD_18ME VDD_18ME VDD_18ME VDD_18ME M M M M VDD_PCIE VDD_18ME VDD_MEM VDD_MEM VDD_MEM M AN SB_TX3N AP VDD_PCIE SB_TX2P VDD_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VDD_PCIE VDD_PCIE VSS_PCIE VSS_PCIE VSS_PCIE VDD_PCIE VDD_PCIE SB_TX3P VSS_PCIE AR AV SB_TX0P SB_TX0N SB_RX0N VSS MEMB_DQ4 SUS_STAT# MEMB_DQ MEMB_DQ MEMB_DQ 5 0 1 VSS AY VSS_PCIE VSS_PCIE VSS_PCIE BA PCE_CALR PCE_CALR PCE_CALI P N BB VSS_PCIE VSS_PCIE VSS_PCIE BC MEMA_DQ MEMA_DQ MEMA_DQ 5 4 0 BD MEMA_DQ MEMA_DM MEMA_DQ 1 0 S0N BE VSS BG 1 MEMA_CK1 P MEMB_DQ 6 VSS 2 VSS 3 4 VDD_MEM VDD_MEM VDD_MEM VDD_MEM VDD_MEM VDD_MEM VDD_MEM VDD_MEM MEMB_DQ VDD_MEM 16 VDD_MEM VDD_MEM VSS MEMB_DM 1 MEMB_DQ S1N VDD_MEM MEMB_DQ 21 VDD_MEM MEMB_DQ VDD_MEM 25 VSS MEMA_CK4 P VSS MEMB_DQ S1P VSS MEMB_DQ 17 VSS MEMB_DQ 18 VSS MEMA_CK1 N MEMA_CK4 N MEMB_DQ 9 VSS MEMB_DQ 20 VSS MEMB_DQ 23 VSS MEMB_DQ 19 MEMB_DQ 22 MEMB_DQ 24 VSS VSS MEMB_DQ 28 VSS MEMB_DQ S2N VSS MEMB_DQ 29 VSS MEMB_CK MEMB_A14 MEMB_A12 E2 VSS VSS VSS MEMB_DQ 12 MEMB_DQ 14 MEMB_CK4 N MEMB_CK1 N VSS MEMB_DQ 8 MEMB_DQ 11 MEMB_DQ 3 MEMB_CK4 P MEMB_CK1 P MEMB_DQ 13 VSS VSS MEMA_DQ MEMA_DQ MEMA_DQ 7 2 8 VSS VDD_MEM VSS MEMB_DQ 2 MEMA_DQ MEMA_DQ MEMA_DQ MEMA_DQ MEMA_DM MEMA_DQ MEMA_DQ1 S0P 6 3 13 1 14 0 VSS BF MEMB_DM MEMB_DQ MEMB_DQ 0 S0N S0P VSS MEMA_DQ MEMA_DQ MEMA_DQ 12 9 S1N 5 6 MEMA_DQ MEMA_DQ MEMA_DQ 16 17 S2P MEMA_DQ MEMA_DQ1 S1P 5 7 MEMA_DQ 20 VSS 8 9 VSS VSS MEMB_DQ7 AW VDD_CORE VDD_CORE VDD_18ME VDD_COREVDD_CORE M SB_RX1N TXOUT_U1 N VDD_CORE VDD_PCIE SB_RX1P VSS VSS VSS_PCIE VDD_PCIE VSS_PCIE VSS VDD_CORE VSS_PCIE VSS_PCIE VSS_PCIE SB_RX2N VSS VSS GPP_RX2N GPP_RX2P VSS_PCIE VSS_PCIE VSS_PCIE VSS_PCIE SB_RX3N I2C_CLK VDD_CORE VSS_PCIE VDD_PCIE SB_RX3P VSS TXOUT_U0 N VSS VSS_PCIE GPP_TX0P GPP_TX0N SB_RX0P DACHSYN C SYSRESET # VSS_PCIE GFX_TX3P VSS_PCIE GFX_RX1N GFX_RX1P VSS_PCIE SB_TX1P LTPVDD18 I2C_DATA DACVSYNC VDD_PCIE H SB_TX1N 24 AVSSQ VDD_PCIE VDD_PCIE GFX_TX2N GFX_TX2P VSS_PCIE AU 23 AVDDQ VSS GFX_TX1N GFX_TX1P VSS_PCIE VSS_PCIE THERMALD THERMALD IODE_N IODE_P 22 DACSDA VSS F SB_TX2N VSS_PCIE VSS_PCIE 21 VDD_18CP VDD_CORE CPU_SLP# U G AT 20 MEMB_DQ MEMB_DM 15 2 VSS MEMB_DQ MEMB_DQ 10 S2P MEMA_DQ MEMA_DQ MEMA_DQ MEMA_DM MEMA_DQ MEMA_DQ MEMA_DQ 22 19 29 3 S3P 31 27 MEMA_DQ S2N VSS MEMA_DQ 18 MEMA_DQ MEMA_DQ MEMA_DM 11 21 2 VSS MEMA_DQ MEMA_DQ MEMA_DQ 23 28 24 10 VSS 11 12 VSS 13 14 15 VSS 16 MEMA_DQ MEMA_DQ MEMA_DQ 25 S3N 26 17 VSS VSS MEMB_CK MEMB_CK E3 E0 VSS MEMA_DQ 30 VSS VSS VDD_MEM 18 19 20 21 22 MEMB_DM 3 VSS MEMB_CK MEMB_BA2 E1 23 24 Figure 3-1 Pin Assignment Top View (Left) RS600 Databook 3-2 CPU Interface CRT and TV Interface GND A-Link Express II Interface External graphics Interface Others Clock Interfaces Integrated DVI/HDMI Interface Memory Interface (Channel A) General Purpose External Device Interface Memory Interface (Channel B) Power Pins © 2006 ATI Technologies Inc. Proprietary and Confidential Pin Assignment Top View 25 26 27 DACRSET VSSLT TXCLK_LN TMDS_HPD TXCLK_LP TXOUT_U0 P VSS 28 29 TXOUT_L0 TXOUT_L2 P P 30 VSSLT 31 TXOUT_L0 TXOUT_L2 TXOUT_L1 N N P TXOUT_L3 TXOUT_L3 P N VSSLT 32 33 CPU_COM CPU_VREF VDD_CPU P_N VSS 34 35 VSS 36 37 38 39 CPU_DBI3# CPU_D60# CPU_D57# CPU_COM VDD_CPU CPU_D62# P_P 41 42 44 45 CPU_D49# CPU_DSTB 3N# CPU_D58# CPU_D48# CPU_D61# CPU_D56# CPU_DSTB CPU_D51# CPU_D52# 3P# VSS CPU_D21# VSS VSS CPU_D43# VSS CPU_D35# VSS CPU_D30# VSS VSS VSS CPU_D23# CPU_D22# VSS CPU_D44# VSS CPU_D39# VSS CPU_D31# CPU_D26# CPU_D24# CPU_D16# CPU_D18# CPU_D47# CPU_D41# CPU_D33# CPU_D28# CPU_D25# VSS CPU_D19# CPU_DSTB CPU_D38# 2P# 43 CPU_D55# CPU_D53# CPU_D14# CPU_D9# CPU_D54# CPU_D59# TXOUT_L1 VDD_CPU VDD_CPU VDD_CPU CPU_D63# N 40 VSS VSS VSS CPU_DSTB VDD_CPU 2N# VDD_CPU VSS VSS CPU_D29# CPU_D46# CPU_D45# VDD_CPU CPU_DBI2# CPU_D32# CPU_D27# CPU_DSTB 1P# CPU_DSTB 1N# CPU_CPUR ST# CPU_D42# VDD_CPU CPU_D37# CPU_D34# VSS CPU_DBI1# VSS CPU_D40# CPU_D36# VDD_CPU VDD_CPU VDD_CPU VSS VDD_18CP U VDD_CPU VDD_CPU VDD_CPU VDD_CPU VDD_CPU CPU_D50# CPU_D13# CPU_D15# VSS VSS VDD_COR E VSS VDD_COR E VSS VDD_CPU VDD_CPU VSS VDD_COR E VSS VDD_COR E VDD_COR VDD_18CP VDD_CPU E U IOPLLVDD1 CPU_A20# 2 VDD_COR VDD_COR VDD_18CP VDD_CPU E E U IOPLLVSS VDD_CPU VSS CPU_D10# CPU_D12# D E VSS CPU_D7# F CPU_D3# CPU_D5# CPU_D1# G CPU_D0# VSS H CPU_REQ3 # VSS CPU_BPRI CPU_D4# # VSS CPU_REQ4 # CPU_A4# VSS CPU_REQ2 CPU_DEFE CPU_D2# CPU_HIT# # R# CPU_RS0# L CPU_A7# CPU_REQ1 # VSS CPU_A3# VSS CPU_A5# CPU_LOCK CPU_DBSY CPU_BNR# # # M CPU_A10# CPU_REQ0 # VSS CPU_A8# VSS CPU_A11# CPU_DRDY CPU_HITM VDD_CPU_ # # PACKAGE P CPU_TRDY CPU_ADS# CPU_RS1# # R J VSS CPU_A6# CPU_ADST CPU_A9# B0# VSS VSS CPU_BR0# CPU_A23# VSS VDD_CPU CPU_A13# CPU_A14# CPU_A16# VSS VSS CPU_A15# CPU_A18# CPU_A19# VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VDD_COR E VSS VSS T U MEMA_DQ MEMA_DQ 62 58 CPU_A25# VSS CPU_A21# VDD_CPU VDD_CPU VSS CPU_A17# VSS VDD_18ME CPU_A27# M CPU_A28# VSS CPU_A31# VDD_MEM VDD_MEM VDD_MEM VSS VSS CPU_A24# VSS CPU_A26# CPU_A22# VSS CPU_A30# CPU_A33# CPU_A32# VSS VSS VSS VSS VSS VSS VDD_COR VDD_COR VDD_18ME VDD_MEM E E M VDD_MEM MEMB_DQ 60 VSS VSS VSS VDD_MEM VSS MEMB_DQ S7P MEMB_DQ MEMB_DQ 58 63 MEMB_DQ S7N VSS VDD_MEM VDD_MEM MEMB_DQ MEMB_DQ 56 62 VDD_MEM VDD_MEM VDD_MEM MEMB_DM MEMB_DQ 7 61 VSS VDD_MEM VDD_18ME M VDD_MEM VDD_MEM VDD_MEM VDD_MEM MEMB_CK3 N VDD_MEM VDD_MEM MEMB_CK0 P MEMB_DQ 37 VDD_MEM MEMB_DQ 50 MEMB_DQ 55 VSS MEMA_DM 6 MEMA_DQ 49 AD MEMA_DQ MEMA_DQ MEMA_DQ 53 48 52 AE VSS VSS AF MEMA_DQ MEMA_DM S5N 5 AH VSS MEMA_DQ MEMA_DQ MEMA_DQ 41 40 45 MEMB_DQ MEMA_DQ MEMA_DQ 57 44 35 VSS VSS AL MEMA_DQ MEMA_DQ S4P S4N AM MEMA_DM MEMA_DQ MEMA_DQ 4 33 37 AN VSS MEMB_DQ MEMA_DQ MEMA_DQ S6P 32 36 VSS AP AR MEMB_DM MEMB_DQ MEMB_DQ 6 51 49 VDD_MEM MEMB_CK3 P VDD_MEM MEMB_DQ 33 VDD_MEM VDD_MEM MEMB_DQ S3N MEMB_DQ S3P VSS MEMB_DQ 32 VSS MEMB_DQ 34 VSS MEMB_DM 5 VSS VSS MEMB_DQ 36 VSS MEMB_DQ 39 VSS MEMB_DQ 41 MEMB_DQ 42 MEMB_DQ 54 VSS MEMB_DQ MEM_COM MEM_COM MEMA_OD S6N PN PP T3 MEMB_DQ MEMB_DQ 53 48 VSS VSS MEMA_OD T1 MEMA_CK2 MEMA_CK2 MEMA_CS1 MEMA_OD MEMA_A13 P N # T2 MEMB_DQ 31 MEMB_DQ 30 VSS VSS MEMB_DQ 26 MEMB_A7 MEMB_A6 MEMB_A3 MEMB_A9 MEMB_A8 MEMB_A4 MEMB_A11 VDD_MEM MEMB_A5 25 26 27 MEMA_CK0 MEMA_CK0 N P VSS VSS MEMB_DQ 52 MEMA_CK3 MEMA_CK3 N P MEMB_DM 4 MEMB_DQ 38 MEMB_DQ 35 MEMB_DQ 44 MEMB_DQ 46 VSS VSS MEMB_DQ 45 MEMB_DQ S5P MEMB_DQ 43 MEMB_DQ S4P MEMB_DQ S4N VSS MEMA_CK5 MEMA_CK5 MEMA_OD MEMA_CA N P T0 S# VSS MEMA_CK MEMA_A14 MEMA_A12 E0 VSS MEMA_A6 MEMA_A4 MEMA_CK MEMA_CK VDD_MEM MEMB_A1 MEMA_A9 MEMA_A8 VDD_MEM E1 E2 28 29 30 31 32 33 34 MEMB_DQ 40 MEMB_DQ S5N MEMB_CS2 # MEMB_WE # MEMA_A1 MEMB_RA S# MEMB_CS0 MEMB_CS1 # # VSS MEMA_A2 MEMB_A10 MEMB_BA0 35 MEMB_CK2 MEMB_CK2 MEMB_OD N P T3 MEMB_A0 MEMB_BA1 VSS MEMA_CK MEMB_A2 MEMA_BA2 MEMA_A11 MEMA_A7 MEMA_A5 MEMA_A3 E3 36 37 38 AT AU AV AW VSS AY MEMA_WE MEMA_CS0 MEMA_CS2 # # # MEMB_DQ 27 AJ AK MEMA_DQ MEMA_DQ MEMA_DQ 34 39 38 MEMA_CS3 # MEMB_CK0 VDD_MEM N AB AC AG VDD_MEM VDD_MEM VDD_MEM VDD_MEM VDD_MEM VSS Y AA MEMB_DQ MEMA_DQ MEMA_DQ MEMA_DQ 59 42 46 S5P VDD_COR VDD_COR VDD_COR VDD_18ME VDD_MEM E E E M VDD_18ME VDD_18ME VDD_18ME VDD_18ME VDD_18ME M M M M M VSS W MEMA_DQ MEMA_DQ MEMA_DQ 54 S6P S6N VSS VDD_MEM VDD_MEM V MEMA_DQ MEMA_DQ 57 61 MEMA_DQ MEMA_DQ 43 47 VDD_MEM VDD_MEM VSS CPU_ADST MEMA_DQ MEMA_DQ MEMA_DQ B1# 56 60 51 MEMA_DQ MEMA_DQ 50 55 VDD_COR VDD_18ME VDD_MEM E M K MEMA_DQ CPU_RESE MEMA_DQ 63 RVED 59 VSS IOPLLVDD1 CPU_A29# 8 VDD_MEM VDD_MEM VDD_COR E VSS MEMA_DM MEMA_DQ MEMA_DQ 7 S7P S7N VSS VSS VDD_COR E C CPU_D20# VDD_COR VDD_COR VDD_COR VDD_18CP VDD_CPU E E E U VDD_COR E B VSS CPU_DSTB CPU_DSTB CPU_DBI0# 0P# 0N# CPU_D17# CPU_D6# VDD_CPU VDD_CPU VDD_CPU VDD_CPU VDD_CPU VSS A N VDD_CPU CPU_A12# VDD_COR E 47 VSS CPU_D11# CPU_D8# CPU_RS2# VDD_18CP VDD_18CP VDD_18CP VDD_18CP VDD_CPU U U U U 46 VSS VDD_MEM 39 40 MEMB_DQ 47 VSS MEMA_A0 VSS VSS VSS MEMB_CA MEMB_A13 S# 41 42 VSS 43 BA MEMB_OD T2 BB MEMB_OD MEMB_OD MEMA_RA T1 T0 S# BC MEMB_CK5 VDD_MEM MEMA_BA0 MEMA_BA1 N BD MEMB_CK5 VDD_MEM MEMA_A10 P BE VSS VSS VSS MEMB_CS3 VDD_MEM # BF MEM_VRE VDD_MEM F 44 45 BG 46 47 Figure 3-2 Pin Assignment Top View (Right) CPU Interface CRT and TV Interface GND A-Link Express II Interface External graphics Interface Others Clock Interfaces Integrated DVI/HDMI Interface Memory Interface (Channel A) General Purpose External Device Interface Memory Interface (Channel B) Power Pins © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 3-3 RS600 Interface Block Diagram 3.2 RS600 Interface Block Diagram Figure 3-3 shows the different interfaces on the RS600. Interface names in blue are hyperlinks to the corresponding sections in this chapter. CPU_A[33:3]# CPU_ADS# CPU_ADSTB[1:0]# CPU_BNR# CPU_BR0# CPU_BPRI# CPU_CPURST# CPU_D[63:0]# CPU_DBI[3:0]# CPU_DBSY# CPU_DEFER# CPU_DRDY# PCI-E External Graphics/ TMDS/ SDVO Interface PCI-E Interface for General Purpose External Devices CPU_EDRDY# CPU_HIT# CPU_HITM# CPU_LOCK# CPU_REQ[4:0]# CPU_RESERVED CPU_RS[2:0]# CPU_SLP# CPU_TRDY# CPU_CLKP CPU_CLKN TXOUT_U0N, TXOUT_U0P TXOUT_U1N, TXOUT_U1P TXOUT_U2N, TXOUT_U2P TXOUT_U3N, TXOUT_U3P TXCLK_UN, TXCLK_UP TXOUT_L0N, TXOUT_L0P TXOUT_L1N, TXOUT_L1P TXOUT_L2N, TXOUT_L2P TXOUT_L3N, TXOUT_L3P TXCLK_LN, TXCLK_LP SB_TX[3:0]P, SB_TX[3:0]N SB_RX[3:0]P, SB_RX[3:0]N SYSRESET# POWERGOOD SUS_STAT# CPU_VREF MEM_VREF TESTMODE THERMALDIDOE_N, THERMALDIODE_P DDC_DATA I2C_CLK I2C_DATA STRP_DATA TMDS_HPD GPIO[10:8] VDD_CPU_PACKAGE CPU_COMP_P, CPU_COMP_N MEM_COMPP, MEM_COMPN GFX_REFCLK CPU Interface CPU_DSTBN[3:0]#, CPU_DSTBP[3:0]# MEMA_A[14:0], MEMB_A[14:0] MEMA_BA[2:0], MEMB_BA[2:0] MEMA_RAS#, MEMB_RAS# MEMA_CAS#, MEMB_CAS# MEMA_WE#, MEMB_WE# MEMA_CKE[3:0], MEMB_CKE[3:0] MEMA_CK[5:0]P, MEMB_CK[5:0]P MEMA_CK[5:0]N, MEMB_CK[5:0]N MEMA_CS[3:0]#, MEMB_CS[3:0]# MEMA_DQ[63:0], MEMB_DQ[63:0] MEMA_DM[7:0], MEMB_DM[7:0] MEMA_DQS[7:0]P, MEMB_DQS[7:0]P MEMA_DQS[7:0]N, MEMB_DQS[7:0]N MEMA_ODT[3:0], MEMB_ODT[3:0] GFX_TX[15:0]P, GFX_TX[15:0]N GFX_RX[15:0]P, GFX_RX[15:0]N Misc. PCI-E Signals DDR2/DDR3 Memory Interface (2 Channels) Integrated DVI/HDMI Interface A-Link Express II Interface CRT and TV-out Interface Clock Interface GPP_TX[3:0]P, GPP_TX[3:0]N GPP_RX[3:0]P, GPP_RX[3:0]N GPPSB_REFCLKP, GPP_SBREFCLKN PCE_CALI PCE_CALRP PCE_CALRN RED GREEN BLUE DACVSYNC DACHSYNC DACSDA C Y COMP DACRSET OSCIN VDD_18CPU VDD_18MEM VDD_CORE VDD_CPU VDD_MEM Power Power Management Interface Reference Voltages Misc. Signals Grounds Compensation VDD_PCIE VDD_PLLPCIE VDDR3 IOPLLVDD18 IOPLLVDD12 AVDD AVDDDI AVDDQ PLLVDD18 PLLVDD12 VDDLT18 VDDLT33 LTPVDD18 VSS VSS_PCIE VSS_PLLPCIE VSSLT LTPVSS18 AVSSN AVSSQ AVSSDI PLLVSS IOPLLVSS Figure 3-3 RS600 Interface Block Diagram RS600 Databook 3-4 © 2006 ATI Technologies Inc. Proprietary and Confidential CPU Interface 3.3 CPU Interface Table 3-1 CPU Interface Pin Name Type Power Domain Ground Domain Functional Description CPU_A[33:3]# I/O GTL+ VDD_CPU VSS Address Bus: A[33:3]# connect to the processor address bus. During host cycles, the A[33:3]# are inputs. RS600 drives A[33:3]# during snoop cycles on behalf of PCI-E initiators and during deferred reply transactions. Address signals are source synchronous signals latched into receiving buffers by CPU_ADSTB[1:0]#. The address signals are running at 2X rate. Note that the address signals are inverted on the CPU bus. CPU_ADS# I/O GTL+ VDD_CPU VSS Address Strobe: The CPU bus owner asserts ADS# to indicate the request phase of a transaction. CPU_ADSTB[1:0]# I/O GTL+ VDD_CPU VSS Address strobes: Signals are used to latch the CPU_A[31:3]# address bus and CPU_REQ[4:0]# request bus on the rising and falling edges. Strobes are associated with signals as shown in Table 3-2. VSS Block Next Request: This signal is used to block the current request bus owner from issuing a new request. It is also used to block requests during CPU I/O calibration. This signal is used to dynamically control the CPU bus pipeline depth CPU_BNR# I/O GTL+ VDD_CPU CPU_BPRI# O GTL+ VDD_CPU VSS Priority Agent Bus Request: The RS600 system logic is the only Priority Agent on the CPU bus. This signal is used to obtain the ownership of the address bus. Unless the LOCK# signal was asserted, BPRI# has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions. CPU_BR0# O GTL+ VDD_CPU VSS Bus Request CPU_COMP_P CPU_COMP_N Other VDD_CPU VSS Compensation pins for matching impedance of the address and data buses to the motherboard bus traces (for push pull operation only). CPU_COMP_P is connected to ground through a resistor and CPU_COMP_N is connected to CPU I/O power through a resistor. Please refer to the RS600/RC610-Series IGP Schematic Review Checklist for the recommended resistor values for different CPUs. CPU_CPURST# O VDD_CPU VSS CPU Reset. It is asserted by the RS600 following a de-assertion of POWERGOOD or an assertion of SYSRESET#. VSS Host Data: These signals are connected to the CPU data bus. Data signals are "quad-pumped" signals and will be driven four times in one clock period. The falling edges of the CPU_DSTBN[3:0]# and CPU_DSTBP[3:0]# are used to latch data. Table 3-3 shows how signals and strobes are grouped. Note that the data signals are inverted on the CPU bus. CPU_D[63:0]# I/O GTL+ VDD_CPU CPU_DBI[3:0]# I/O GTL+ VDD_CPU VSS Data Bus Inversion. These signals indicate the polarity of the CPU_D[63:0] signals. The bus agent will invert the data if more than half of the bits within the covered group would change level in the coming cycle. Data bus inversion signals are "quad-pumped”, source synchronous signals. Refer to the description of CPU_D[63:0]# for more details. CPU_DBSY# I/O GTL+ VDD_CPU VSS Data Bus Busy: This signal is used by the data bus owner to hold the data bus for transfers requiring more than one cycle. CPU_DEFER# O GTL+ VDD_CPU VSS Defer: The RS600 chip will generate a deferred response. The RS600 system logic will also use the DEFER# signal to indicate a retry response on the CPU bus. CPU_DRDY# I/O GTL+ VDD_CPU VSS Data Ready: Asserted for each cycle of data transfer to indicate that data on the data bus is valid. CPU_DSTBN[3:0]# I/O GTL+ VDD_CPU VSS Negative Data Strobes. These signals are used as strobe signals to latch CPU_D host data bus as well as CPU_DBI data inversion signals. Refer to the description of CPU_D[63:0]# for more details. CPU_DSTBP[3:0]# I/O GTL+ VDD_CPU VSS Positive Data Strobes. These signals are used as strobe signals to latch CPU_D host data bus as well as CPU_DBI data inversion signals. Refer to the description of CPU_D[63:0]# for more details. CPU_EDRDY# VDD_CPU VSS Early Data Ready. This signal is used to notify the CPU that data will be ready in the next clock. O GTL+ © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 3-5 CPU Interface Table 3-1 CPU Interface Pin Name CPU_HIT# CPU_HITM# CPU_LOCK# (Continued) Power Domain Ground Domain VDD_CPU VSS Hit: Indicates that a caching agent holds an unmodified version of the requested line. Also, the target may extend the snoop window by driving HIT# in conjunction with HITM#. VSS Hit Modified: When asserted, this signal indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. It is also driven in conjunction with HIT# to extend the snoop window. VSS Host Lock: The signal provides a mechanism to ensure that cycles on the Host bus are atomic. All cycles initiated while LOCK# is asserted are guaranteed to be atomic. This implies that no PCI or AGP snoopable access to DRAM is allowed when LOCK# signal is asserted by the CPU. Type I GTL+ I GTL+ I GTL+ VDD_CPU VDD_CPU Functional Description CPU_REQ[4:0]# I/O GTL+ VDD_CPU VSS Request Command: This signal is asserted during both clocks of the request phase. Request command signals are source synchronous to the CPU_ADSTB0#, meaning that they are running at 2X rate. In the first half of a clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half, the signals carry additional information to define the complete transaction type. CPU_RS[2:0]# I/O GTL+ VDD_CPU VSS Response Signals: These signals indicate the type of response as described in Table 3-4. CPU_SLP# I/O GTL+ VDD_CPU VSS Sleep. The RS600 uses the signal to put the CPU into the C3 state during C2 popdown. CPU_TRDY# O GTL+ VDD_CPU VSS Host Target Ready: When asserted, this signal indicates that the target of the CPU bus transaction is able to enter the data transfer phase. CPU_VREF Power – – CPU interface voltage reference. Voltage level for this pin should be set to 0.67 x VTT_CPU, where VTT_CPU is the CPU’s I/O voltage. CPU_RESERVED O VDD_CPU VSS Reserved pin for achieving forward compatibility with the next generation of Intel CPUs. CPU_CLKP, CPU_CLKN I IOPLLVDD12 IOPLLVSS CPU Front Side Bus Clock Differential Pair. This pair is connected to the external clock generator on the motherboard. Table 3-2 Address Signals and Associated Strobes Signals Associated Strobes CPU_A[16:3]#, CPU_REQ[4:0]#, CPU_ADSTB0# CPU_RESERVED CPU_A[33:17]# CPU_ADSTB1# Table 3-3 Grouping of CPU_D[63:0]# Signals Data Group Associated Strobes Associated Bus Inversion Signal CPU_D[15:0]# CPU_DSTBN0# CPU_DSTBP0# CPU_DBI0# CPU_D[31:16]# CPU_DSTBN1# CPU_DSTBP1# CPU_DBI1# CPU_D[47:32]# CPU_DSTBN2# CPU_DSTBP2# CPU_DBI2# CPU_D[63:48]# CPU_DSTBN3# CPU_DSTBP3# CPU_DBI3# Table 3-4 Response Signals CPU_RS[2:0] Response Type 000 Idle state 001 Retry response 010 Deferred response 011 Reserved 100 Hard Failure RS600 Databook 3-6 © 2006 ATI Technologies Inc. Proprietary and Confidential DDR2/DDR3 Memory Interface Table 3-4 Response Signals 3.4 (Continued) CPU_RS[2:0] Response Type 101 No data response 110 Implicit Writeback 111 Normal data response DDR2/DDR3 Memory Interface Table 3-5 DDR2/DDR3 Memory Interface Pin Name MEMA_A[14:0] MEMB_A[14:0] Type O Power Domain Ground Domain Integrated Termination Functional Description VDD_MEM VSS None VDD_MEM VSS None MEMA_BA[2:0] O VDD_MEM VSS None MEMB_BA[2:0] O VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None VDD_MEM VSS None MEMA_RAS# MEMB_RAS# MEMA_CAS# MEMB_CAS# MEMA_WE# MEMB_WE# MEMA_CKE[3:0] MEMB_CKE[3:0] MEMA_CK[5:0]P MEMB_CK[5:0]P MEMA_CK[5:0]N MEMB_CK[5:0]N MEMA_CS[3:0]# MEMB_CS[3:0]# MEMA_DQ[63:0] MEMB_DQ[63:0] MEMA_DM[7:0] MEMB_DM[7:0] O O O O O O O I/O I/O MEMA_DQS[7:0]P MEMB_DQS[7:0]P I/O MEMA_DQS[7:0]N MEMB_DQS[7:0]N MEMA_ODT[3:0] MEMB_ODT[3:0] I/O O Channel A/B Address Bus . These are the multiplexed row and column address bits for DDR2/DDR3 SDRAMs. Channel A/B Bank Address Select Channel A/B RAS# Channel A/B CAS# Channel A/B WE# Channel A/B Clock Enable Channel A/B Differential Positive Clock Channel A/B Differential Negative Clock Channel A/B Chip Selects Channel A/B Data Bus Channel A/B. data masks for each byte during memory write cycles Channel A/B DDR2/DDR3 Differential Positive Data Strobe. These are bi-directional data strobes for latching read/write data. Channel A/B DDR2/DDR3 Differential Negative Data Strobe. These are bi-directional data strobes for latching read/write data. On-die Termination MEM_COMPP, MEM_COMPN Analog – VSS None DDR2 Memory interface compensation pins for N and P channel devices. Connect through resistors to VDD_MEM and ground respectively (refer to the reference schematics for the proper resistor values). MEM_VREF Analog – VSS None Reference voltage. It supplies the threshold value for distinguishing between “1” and “0” on a memory signal. Typical value is 0.5* VDD_MEM. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 3-7 PCI Express Interfaces 3.5 3.5.1 PCI Express Interfaces 1 x16 Lane Interface for External Graphics The external graphics interface is also multiplexed with the SDVO interface for external displays and the TMDS interface. See section 3.10, “SDVO Interface for External Displays,” on page 3- 11 and section 3.9, “TMDS Interface Multiplexed on the PCI-E Graphics Lanes,” on page 3- 11 for details. Table 3-6 1 x16 Lane PCI Express Interface for External Graphics Pin Name 3.5.2 Type Power Domain Ground Domain Integrated Termination Functional Description GFX_TX[15:0]P, GFX_TX[15:0]N O VDD_PCIE VSS_PCIE 50Ω between complements Transmit Data Differential Pairs. Connect to external connector for an external graphics card on the motherboard (if implemented). GFX_RX[15:0]P, GFX_RX[15:0]N I VDD_PCIE VSS_PCIE 50Ω between complements Receive Data Differential Pairs. Connect to external connector for an external graphics card on the motherboard (if implemented). GFX_REFCLKP, GFX_REFCLKN I/O VDD_PCIE VSS_PCIE 50Ω between complements Clock Differential Pairs. Connect to external clock generator when an external graphics card is implemented. 1 x4 Lane A-Link Express II to IXP The width of the A-Link Express II interface can be reduced from four lanes to two, with the extra two lanes configurable to become general purpose links. Table 3-7 1 x4 Lane A-Link Express II Interface for IXP Pin Name Type SB_TX[3:2]P, SB_TX[3:2]N Ground Domain Integrated Termination Functional Description VDD_PCIE VSS_PCIE Transmit Data Differential Pairs. Connect to the corresponding 50Ω between Receive Data Differential pairs on the IXP. complements Configurable to become GPP_TX[5:4]P/N to support general purpose external devices. SB_RX[3:2]P, SB_RX[3:2]N I VDD_PCIE VSS_PCIE Receive Data Differential Pairs. Connect to the corresponding 50Ω between Transmit Data Differential pairs on the IXP. complements Configurable to become GPP_RX[5:4]P/N to support general purpose external devices. SB_TX[1:0]P, SB_TX[1:0]N O VDD_PCIE VSS_PCIE 50Ω between Transmit Data Differential Pairs. Connect to the corresponding complements Receive Data Differential pairs on the IXP. SB_RX[1:0]P, SB_RX[1:0]N I VDD_PCIE VSS_PCIE 50Ω between Receive Data Differential Pairs. Connect to the corresponding complements Transmit Data Differential pairs on the IXP. I/O VDD_PCIE VSS_PCIE 50Ω between Clock Differential Pair. Connect to an external clock generator on complements the motherboard. GPPSB_REFCLKP, GPPSB_REFCLKN 3.5.3 O Power Domain 4 x1 Lane Interface for General Purpose External Devices Table 3-8 4 x1 Lane PCI Express Interface for General Purpose External Devices Pin Name Type Power Domain Ground Domain Integrated Termination Functional Description GPP_TX[3:0]P, GPP_TX[3:0]N O VDD_PCIE VSS_PCIE 50Ω between Transmit Data Differential Pairs. Connect to external connectors on complements the motherboard for add-in card or ExpressCard support. GPP_RX[3:0]P, GPP_RX[3:0]N I VDD_PCIE VSS_PCIE 50Ω between Receive Data Differential Pairs. Connect to external connectors on complements the motherboard for add-in card or ExpressCard support. RS600 Databook 3-8 © 2006 ATI Technologies Inc. Proprietary and Confidential Clock Interface 3.5.4 Miscellaneous PCI Express Signals Table 3-9 Miscellaneous PCI Express Signals 3.6 Power Domain Ground Domain Pin Name Type Functional Description PCE_CALI Other VDD_PCIE VSS_PCIE Current Biasing. Connect to VSS_PCIE on the motherboard with an external resistor of an appropriate value. PCE_CALRN Other VDD_PCIE VSS_PCIE RX Impedance Calibration. Connect to VDD_PCIE on the motherboard with an external resistor of an appropriate value. PCE_CALRP Other VDD_PCIE VSS_PCIE TX Impedance Calibration. Connect to ground on the motherboard with an external resistor of an appropriate value. Clock Interface Table 3-10 Clock Interface Pin Name OSCIN 3.7 Type Power Domain I VDDR3 Ground Integrated Domain Termination Functional Description VSS Disabled 14.3181818 MHz Reference clock input from the External Clock chip (3.3 volt signaling) CRT and TV Interface Table 3-11 CRT and TV Interface Pin Name Type Power Ground Integrated Domain Domain Termination Functional Description RED A-O AVDD AVSSN – Red for CRT monitor output, or Pr for component video TV output GREEN A-O AVDD AVSSN – Green for CRT monitor output, or Y for component video TV output BLUE A-O AVDD AVSSN – Blue for CRT monitor output, or Pb for component video TV output Y A-O AVDD AVSSN – SVID luminance output for TV out, or Y for component video TV output C A-O AVDD AVSSN – SVID chrominance output for TV out, or Pr for component video TV output COMP A-O AVDD AVSSN – Composite video TV output, or Pb for component video TV output DACHSYNC A-O VDDR3 VSS 50kΩ Display Horizontal Sync. It is also used as a strap pin (see Table 3-19 programmable: for details). PU/PD/none DACVSYNC A-O VDDR3 VSS 50kΩ Display Vertical Sync. It is also used as a strap pin (see Table 3-19 programmable: for details). PU/PD/none Other N/A AVSSQ I/O VDDR3 VSS DACRSET DACSDA © 2006 ATI Technologies Inc. Proprietary and Confidential – DAC internal reference to set full scale DAC current through 1% resistor to AVSS 50kΩ I2C data for display (to video monitor). It is also used as a strap pin programmable: (see Table 3-19 for details). PU/PD/none RS600 Databook 3-9 Integrated DVI/HDMI Interface 3.8 Integrated DVI/HDMI Interface Table 3-12 Integrated DVI/HDMI Interface Pin Name DVI/HDMI Functional Name Type Power Domain TXOUT_L0N TX0M O VDDLT33 VDDLT18 VSSLT None DVI/HDMI data channel 0 (-) TXOUT_L0P TX0P O VDDLT33 VDDLT18 VSSLT None DVI/HDMI data channel 0 (+) TXOUT_L1N TX1M O VDDLT33 VDDLT18 VSSLT None DVI/HDMI data channel 1 (-) TXOUT_L1P TX1P O VDDLT33 VDDLT18 VSSLT None DVI/HDMI data channel 1 (+) TXOUT_L2N TX2M O VDDLT33 VDDLT18 VSSLT None DVI/HDMI data channel 2 (-) TXOUT_L2P TX2P O VDDLT33 VDDLT18 VSSLT None DVI/HDMI data channel 2 (+) TXOUT_L3N TX3M O VDDLT33 VDDLT18 VSSLT None DVI data channel 3 (-). The channel is only used in DVI dual-link mode and is not used for HDMI support. TXOUT_L3P TX3P O VDDLT33 VDDLT18 VSSLT None DVI data channel 3 (+). The channel is only used in DVI dual-link mode and is not used for HDMI support. TXOUT_U0N TX4M O VDDLT33 VDDLT18 VSSLT None DVI data channel 4 (-). The channel is only used in DVI dual-link mode and is not used for HDMI support. TXOUT_U0P TX4P O VDDLT33 VDDLT18 VSSLT None DVI data channel 4 (+) The channel is only used in DVI dual-link mode and is not used for HDMI support. TXOUT_U1N TX5M O VDDLT33 VDDLT18 VSSLT None DVI data channel 5 (-). The channel is only used in DVI dual-link mode and is not used for HDMI support. TXOUT_U1P TX5P O VDDLT33 VDDLT18 VSSLT None DVI data channel 5 (+). The channel is only used in DVI dual-link mode and is not used for HDMI support. TXOUT_U2N – O VDDLT33 VDDLT18 VSSLT None Unused TXOUT_U2P – O VDDLT33 VDDLT18 VSSLT None Unused TXOUT_U3N – O VDDLT33 VDDLT18 VSSLT None Unused TXOUT_U3P – O VDDLT33 VDDLT18 VSSLT None Unused TXCLK_LN TXCM O VDDLT33 VDDLT18 VSSLT None DVI/HDMI clock channel (-) TXCLK_LP TXCP O VDDLT33 VDDLT18 VSSLT None DVI/HDMI clock channel (+) TXCLK_UN – O VDDLT33 VDDLT18 VSSLT None Unused TXCLK_UP – O VDDLT33 VDDLT18 VSSLT None Unused LTPVDD18 – Pwr – – – Power for DVI/HDMI PLL macro (1.8V). LTPVSS18 – Gnd – – – DVI/HDMI PLL macro ground pin. VDDLT18 – Pwr – – – 1.8V DVI/HDMI Digital Power, used for the digital portions of the DVI/HDMI transmitter. RS600 Databook 3-10 Ground Integrated Domain Termination Functional Description © 2006 ATI Technologies Inc. Proprietary and Confidential TMDS Interface Multiplexed on the PCI-E Graphics Lanes Table 3-12 Integrated DVI/HDMI Interface (Continued) DVI/HDMI Functional Name Type Power Domain VDDLT33 – A-Pwr – – – 3.3V DVI/HDMI Analog Power, used for the output stage of the transmitter. This power supply needs to be adequately filtered to prevent noise injection. VSSLT – Gnd – – – DVI/HDMI IO ground pin. Pin Name Ground Integrated Domain Termination Functional Description * Note: The maximum pixel clock speed is to be qualified. 3.9 TMDS Interface Multiplexed on the PCI-E Graphics Lanes The RS600 supports a TMDS interface, enabling HDMI, which is multiplexed with the PCI-E external graphics interface. The TMDS interface is available only if no external graphics card is attached to the PCI-E graphics interface. The interface cannot enable HDMI when the integrated DVI/HDMI interface is supporting HDMI, and vice versa. Table 3-13, “TMDS Interface (Multiplexed with the PCI-E Graphics Interface),” shows the multiplexing relationships between the PCI-E external graphics signals and the TMDS signals. Table 3-13 TMDS Interface (Multiplexed with the PCI-E Graphics Interface) 3.10 Pin Name Ball Reference TMDS Function GFX_TX0P D2 TX0P - Red+ GFX_TX0N E1 TX0M - Red- GFX_TX1P F2 TX1P - Green+ GFX_TX1N F1 TX1M - Green - GFX_TX2P G2 TX2P - Blue+ GFX_TX2N G1 TX2M - Blue- GFX_TX3P H2 TXCP - Clock+ GFX_TX3N K1 TXCM - Clock- SDVO Interface for External Displays Note: The SDVO interface is multiplexed with the 1 x16 PCI-E external graphics interface. SDVO support is therefore unavailable if an external graphics card or TMDS output is supported by that interface. Table 3-14, “SDVO Interface for External Displays,” shows the multiplexing relationships between the PCI-E external graphics signals and the SDVO signals. Table 3-14 SDVO Interface for External Displays Pin Name Ball SDVO Reference Function Control Signals GFX_RX0P C3 SDVO_TVClkIn+ GFX_RX0N C2 SDVO_TVClkIn- GFX_RX2P K8 SDVO_Stall+ GFX_RX2N K6 SDVO_Stall- I2C_CLK C21 SDVO_CtrlClk DDC_DATA B12 SDVO_CtrlData GFX_TX0P D2 SDVOB_Red+ GFX_TX0N E1 SDVOB_Red- First SDVO Device © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 3-11 Power Management Pins Ball SDVO Reference Function Pin Name GFX_TX1P F2 SDVOB_Green+ GFX_TX1N F1 SDVOB_Green- GFX_TX2P G2 SDVOB_Blue+ GFX_TX2N G1 SDVOB_Blue- GFX_TX3P H2 SDVOB_Clk+ GFX_TX3N K1 SDVOB_Clk- GFX_RX1P H5 SDVOB_Int+ GFX_RX1N H4 SDVOB_Int- GFX_TX4P L2 SDVOC_Red+ GFX_TX4N L1 SDVOC_Red- GFX_TX5P M2 SDVOC_Green+ Second SDVO Device 3.11 GFX_TX5N M1 SDVOC_Green- GFX_TX6P P2 SDVOC_Blue+ GFX_TX6N R1 SDVOC_Blue- GFX_TX7P T2 SDVOC_Clk+ GFX_TX7N T1 SDVOC_Clk- GFX_RX5P P9 SDVOC_Int+ GFX_RX5N P8 SDVOC_Int- Power Management Pins Table 3-15 Power Management Pins 3.12 Pin Name Type Power Domain Ground Domain SYSRESET# I VDDR3 VSS Global Hardware Reset. This signal comes from the south bridge. SUS_STAT# I VDD_18MEM VSS Input from the south bridge whose assertion puts the RS600 into the S3 state. POWERGOOD I VDDR3 VSS Input from the motherboard signifying that the power to the RS600 is up and ready. Signal High means all power planes are valid. It is not observed internally until it has been high for more than 6 consecutive REFCLK cycles. The rising edge of this signal is deglitched. The nominal input high voltage is 1.8V. Functional Description Miscellaneous Pins Table 3-16 Miscellaneous Pins Pin Name Type Power Ground Integrated Domain Domain Termination Functional Description I2C_CLK I/O VDDR3 VSS I2C interface clock signal. Can also be used simultaneously as 50kΩ programmable: DDC interface clock for more than one display. It can also be used PU/PD/none as GPIO. I2C_DATA I/O VDDR3 VSS 50kΩ programmable: I2C interface data signal. It can also be used as GPIO. PU/PD/none DDC_DATA I/O VDDR3 VSS Pin for additional DDC Data Channel for displays. It makes use of 50kΩ programmable: I2C_CLK to create an I2C interface. It is also used as a strap pin PU/PD/none (see Table 3-19 for details).Can also be used as GPIO.. VSS I2C interface data signal for external EEPROM based strap 50kΩ loading. It is also used as a strap pin (see Table 3-19 for details). programmable: Can also be used as GPIO or NB Voltage throttling on mobile PU/PD/none platforms. STRP_DATA RS600 Databook 3-12 I/O VDDR3 © 2006 ATI Technologies Inc. Proprietary and Confidential Power Pins Table 3-16 Miscellaneous Pins (Continued) Type TESTMODE I VDDR3 VSS – When High, puts the RS600 in test mode and disables the RS600 from operating normally. A-O – – – Diode connections to external SM Bus microcontroller for monitoring IC thermal characteristics. Other VDD_CPU VSS – The ball provides a power connection (via the package) to the VDD_CPU plane for an area on the motherboard which may not be connectable otherwise due to routing constraints. TMDS_HPD I VDDR3 VSS GPIO[10:8] I/O VDDR3 VSS THERMALDIODE_P, THERMALDIODE_N VDD_CPU_PACKAGE 3.13 Power Ground Integrated Domain Domain Termination Functional Description Pin Name 50kΩ TMDS Hot Plug Detect. It monitors the hot-plug line for panel programmable: detection. It is a 3.3V CMOS compatible input. PU/PD/none – General Purpose I/Os Power Pins Table 3-17 Power Pins Pin Name Pin Ball Reference Voltage Count Reference Ground Description AVDD 3.3V 2 A17, B17 Dedicated power for the DAC. Effort should be made AVSSN at the board level to provide as clean a power as possible to this pin to avoid noise injection, which can affect display quality. Adequate decoupling should be provided between this pin and AVSS. AVDDQ 1.8V 1 A23 DAC Bandgap Reference Voltage AVDDDI 1.8V 1 B19 Dedicated digital power for the DAC VDD_CORE 1.2V 78 Core power A16, AB19, AB22, AB25, AB28, AB30, AC18, AC20, AC23, AC26, AC29, AE19, AE22, AE25, AE28, AE30, AF18, AF20, AF23, AF26, AF29, AH19, AH22, AH25, AH28, AH30, AJ17, AJ18, AJ20, AJ23, AJ26, AJ29, AJ31, AK17, AK19, AK22, AK25, AK28, AK30, AK31, AL17, AL18, AL19, AL29, AL30, AL31, B16, C16, D16, E16, F16, H16, ,J16, U17, U18, U19, U29, U30, U31, V17, V18, V20, V23, V26, V29, V31, W17, W19, W22, W25, W28, W30, W31, Y18, Y20, Y23, Y26, Y29 VSS VDD_18CPU 1.8V 20 A15, C15, E14, H14, K16, N24, I/O Transform Power for memory and CPU N25, R17, R18, R19, T17, T18, T19, T29, T30, T31, T32, U32, V32, W32 VSS VDD_PLLPCIE 1.2V 3 M10, P12, P13 PCI Express interface PLL power VSS_PLLPCIE VDD_PCIE 1.2V 48 A10, A8, AA12, AA13, AC13, AD13, AE13, AG13, AJ13, AJ15, AK13, AK15, AL15, AM12, AM13, AM15, AN15, AP1, AP12, AP13, AP3, B10, B8, C10, C7, C8, D8 ,E8, F8, H10, H8, J10, K12, K14, K9, M12, M14, N14, R15, T15, U15, V1, V13, V15, V3, W12, W13, W15 PCI Express interface output driver I/O power VSS_PCIE RS600 Databook 3-13 AVSSQ AVSSDI © 2006 ATI Technologies Inc. Proprietary and Confidential Power Pins Table 3-17 Power Pins Pin Name (Continued) Pin Ball Reference Voltage Count Reference Ground Description 1.8V 29 Isolated IO power for memory interface AD35, AJ16, AJ32, AK16, AK32, AL16, AL32, AM16, AM17, AM18, AM19, AM29, AM30, AM31, AM32, AM33, AN16, AR27, B15, D14, F14, J14, M16, N16, R16, T16, U16, V16, W16 VSS VDD_MEM 1.5/1.8V 64 AE35, ,AE36, AE38, AG35, AG36, AG38, AG39, AJ33, AJ35, AJ36, AK33, AK35, AK38, AL33, AM35, AM36, AN17, AN18, AN19, AN29, AN30, AN31, AN32, AN33, AP35, AP36, AP38, AR14, AR16, AR18, AR19, AR21, AR23, AR24, AR25, AR29, AR30, AR32, AR34, AT14, AT16, AT19, AT21, AT23, AT27, AT29, AT34, AT36, AV18, AV21, AV24, AV27, AV30, AV34, AV36, BD45, BE45, BF46, BG22, BG26, BG30, BG34, BG40, BG45 Isolated IO power for memory interface VSS VDD_CPU Variable 33 A33, AC35, AC36, AR30, B33, IO power for CPU interface BF46, C31, C32, C33, H30, H32, J29, K29, M30, M32, M34, N27, N29, N30, N32, N34, P35, R29, R30, R31, R32, R33, T33, T35, T36, U33, V33, W33, W36, W38 VSS VDD_CPU_PA CKAGE Variable 1 P47 The ball provides a power connection (via the package) to the VDD_CPU plane for an area which cannot be connected otherwise due to routing constraints on a 4-layer motherboard. VSS VDDR3 3.3V 2 A18,B18 GPIO/clock 3.3V IO power VSS LTPVDD18 1.8V 1 B21 Power for PLL LTPVSS18 VDDLT18 1.8V 2 H24, J24 1.8V Digital Power VSSLT VDD_18MEM VDDLT33 3.3V 2 H23, J23 3.3V Analog Power VSSLT PLLVDD12 1.2V 1 A12 Power for system PLL PLLVSS PLLVDD18 1.8V 1 A14 Power for system PLL PLLVSS IOPLLVDD12 1.2V 1 V35 Power for CPU/memory interface PLL IOPLLVSS IOPLLVDD18 1.8V 1 AA35 Power for CPU/memory interface PLL IOPLLVSS Total Power Pin Count RS600 Databook 3-14 291 © 2006 ATI Technologies Inc. Proprietary and Confidential Ground Pins 3.14 Ground Pins Table 3-18 Ground Pins Pin Name Pin Count Ball Reference Description AVSSN 2 M23, N23 Dedicated analog ground for the DAC AVSSQ 1 A24 Dedicated ground for the Band Gap Reference. Effort should be made at the board level to provide as clean a ground as possible to this pin to avoid noise injection, which can affect display quality. Adequate decoupling should be provided between this pin and AVDD. AVSSDI 1 A19 Dedicated digital ground for the DAC (1.8V) LTPVSS18 1 A21 PLL macro ground pin. A26, A30, C29, F24 Interface ground pin. VSSLT 4 VSS 238 Common Ground A34, A4, A40, A45, AA39, AA43, AB18, AB20, AB23, AB26, AB29, AB47, AC19, AC22, AC25, AC28, AC30, AC38, AC40, AC44, AD39, AD46, AE18, AE20, AE23, AE26, AE29, AE39, AE40, AE42, AE43, AE44, AF19, AF22, AF25, AF28, AF30, AF47, AG40, AG42, AG43, AH18, AH20, AH23, AH26, AH29, AH45, AJ19, AJ22, AJ25, AJ28, AJ30, AJ38, AJ39, AJ40, AJ44, AK18, AK20, AK23, AK26, AK29, AK39, AK43, AK47, AM40, AM44, AM45, AP39, AP43, AP47, AT10, AT12, AT43, AT6, AU46, AV12, AV42, AV8, AW10, AW14, AW18, AW21, AW24, AW29, AW32, AW36, AY16, AY19, AY23, AY25, AY27, AY30, AY34, AY42, AY47, B31, B37, B42, B46, B5, BB10, BB12, BB24, BB46, BB8, BC12, BC18, BC19, BC21, BC24, BC27, BC29, BC30, BC32, BC34, BD14, BD16, BD23, BD25, BD36, BD4, BE1, BE21, BE41, BE43, BE47, BF11, BF14, BF16, BF2, BF20, BF21, BF24, BF28, BF32, BF37, BF42, BF43, BF44, BF6, BG14, BG18, BG20, BG21, BG3, BG4, BG43, BG8, C11, C12, C14, C19, C20, C22 ,C23, C26, C44, C47, C6, D12, D21, D23, D27, D30, D34, D36, D38, D4, D45, D6, E10, E12, E18, E19, E25, E29, E32, F12, F38, F46, F5, H12, H18, H19, H25, H27, H34, H36, H43, H47, J12, K18, K19, K21, K23, K24, K34, K39, K43, L46, M18, M19, M21, M24, M25, M36, M40, M43, N18, N19, N21, P40, P43, T38, T40, T44, T46, V19, V22, V25, V28, V30, V39, V43, V47, W18, W20, W23, W26, W29, W40, W44, Y19, Y22, Y25, Y28, Y30, Y45 VSS_PCIE 104 A3, AA3, AA4, AA8, AB1, AB3, AC12, AC2, PCI Express Interface Ground AC3, AC4, AC8, AD10, AD12, AD3, AD4, AD5, AD6, AD8, AD9, AE12, AE3, AE4, AE8, AF1, AF3, AG12, AG2, AG3, AG4, AG8, AH3, AJ10, AJ12, AJ3, AJ4, AJ5, AJ6, AJ8, AJ9, AK1, AK12, AK3, AK4, AK8, AL2, AL3, AM3, AM4, AM8, AN3, AP10, AP4, AP5, AP6, AP8, AP9, AT2, AT3, AY1, AY2, AY3, B2, B3, BB1, BB2, BB3, C1, D1, E2, E3, F3, F4, G3, H1, H3, H6, K2, K3, K4, K5, L3, M3, M9, P1, P10, P3, P6, R2, R3, T3, T4, T8, U3, V4, V8, W10, W2, W3, W4, W5, W6, W8, W9, Y3 VSS_PLLPCIE RS600 Databook 3-15 3 T12, T13, V12 PCI Express Interface PLL Ground © 2006 ATI Technologies Inc. Proprietary and Confidential Strapping Options Table 3-18 Ground Pins Pin Name Pin Count PLLVSS IOPLLVSS Total Ground Pin Count 3.15 (Continued) Ball Reference Description 1 A11 Ground pin for system PLL 1 W35 Ground pin for CPU/memory interface PLL 356 Strapping Options The RS600 provides strapping options to define specific operating parameters. The strap values are captured into internal registers after the de-assertion of the SYSRESET# signal to the RS600. Table 3-19, “Strap Definitions for the RS600,” shows the definitions of all the strap functions that can be set by board designers. These straps are set by pulling up (to VDDR3) or pulling down the specific strap pins through resistors to set their values to “1” or “0.” Table 3-19 Strap Definitions for the RS600 Strap Function Strap Pin Description STRAP_INTGFX_DISABLE DACHSYNC Enable/Disable integrated graphics 0: Enable integrated graphics 1: Disable integrated graphics STRAP_MEMSTRAPS STRP_DATA Debug strap configuration. This strap should not be set to “0” on production boards. 0: Select Memory Channel A to be a debug bus 1: Read debug straps from an external EEPROM, or disable debug mode when an EEPROM is absent. STRAP_MOBILE_GFX DACVSYNC Select configuration of the integrated graphics engine. 0: Required setting for the RS600 1: Reserved STRAP_MEMVMODE DDC_DATA Select DDR2 or DDR3 signalling level for the memory interface. 0: DDR3. On DDR3, it is necessary to put an isolation FET in series with the pull-up resistor on this strap to separate it from the I2C circuit during an NB reset. 1: DDR2 RS600 Databook 3-16 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 4 Timing Specifications 4.1 Processor Front Side Bus Timing Table 4-1 Processor Front Side Bus Timing (for 1066 MHz Front Side Bus*) Timing Parameter Symbol Min Max Unit Figure Data output valid delay from SYSCLK (first data only) T1 274 1235 ps 4-1 Data output valid delay before Data Strobe T2 122 — ps 4-1 Data Signals (4x FSB clocks) RS600 Driving Data output valid delay after Data Strobe T3 110 — ps 4-1 First data strobe ‘p’ (CPU_DSTBP#) output valid delay from SYSCLK T4a 753 1702 ps 4-1 Second data strobe ‘n’ (CPU_DSTBN#) output valid delay from SYSCLK T4b 3419 4526 ps 4-1 T5 94 — ps 4-1 RS600 Receiving Data to Data Strobe setup time Data to Data Strobe hold time T6 137 — ps 4-1 Data strobe to SYSCLK setup time T7 1149 — ps 4-1 Address output valid delay from SYSCLK (first address only) T8 241 1256 ps 4-2 Address output valid delay before Address Strobe T9 546 — ps 4-2 Address output valid delay after Address Strobe T10 593 — ps 4-2 Address strobe output valid delay from SYSCLK T11 1180 2113 ps 4-2 Address to Address Strobe setup time T12 49 — ps 4-2 Address to Address Strobe hold time T13 111 — ps 4-2 Address Strobe setup time to SYSCLK T14 1637 — ps 4-2 T15 41 1276 ps 4-3 Common clock signal setup time T16 690 — ps 4-3 Common clock signal hold time T17 149 — ps 4-3 Address Signals (2x FSB clocks) RS600 Driving RS600 Receiving Common Clock Signals (1x FSB or common clock) RS600 Driving Common clock signal output valid delay from SYSCLK RS600 Receiving *Note: The 1066MHz FSB speed is NOT supported by the RS600L. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 4-1 Processor Front Side Bus Timing Table 4-2 Processor Front Side Bus Timing (for 800MHz Front Side Bus) Timing Parameter Symbol Min Max Unit Figure Data output valid delay from SYSCLK (first data only) T1 274 1235 ps 4-1 Data output valid delay before Data Strobe T2 261 — ps 4-1 Data output valid delay after Data Strobe T3 250 — ps 4-1 First data strobe ‘p’ (CPU_DSTBP#) output valid delay from SYSCLK T4a 908 1858 ps 4-1 Second data strobe ‘n’ (CPU_DSTBN#) output valid delay from SYSCLK T4b 4505 5612 ps 4-1 T5 94 — ps 4-1 Data Signals (4x FSB clocks) RS600 Driving RS600 Receiving Data to Data Strobe setup time Data to Data Strobe hold time T6 137 — ps 4-1 Data strobe to SYSCLK setup time T7 1149 — ps 4-1 Address output valid delay from SYSCLK (first address only) T8 241 1256 ps 4-2 Address output valid delay before Address Strobe T9 856 — ps 4-2 Address output valid delay after Address Strobe T10 903 — ps 4-2 Address strobe output valid delay from SYSCLK T11 1490 2423 ps 4-2 T12 49 — ps 4-2 Address Signals (2x FSB clocks) RS600 Driving RS600 Receiving Address to Address Strobe setup time Address to Address Strobe hold time T13 111 — ps 4-2 Address Strobe setup time to SYSCLK T14 1637 — ps 4-2 T15 41 1276 ps 4-3 Common clock signal setup time T16 690 — ps 4-3 Common clock signal hold time T17 149 — ps 4-3 Common Clock Signals (1x FSB or common clock) RS600 Driving Common clock signal output valid delay from SYSCLK RS600 Receiving RS600 Databook 4-2 © 2006 ATI Technologies Inc. Proprietary and Confidential Processor Front Side Bus Timing Table 4-3 Processor Front Side Bus Timing (for 533MHz Front Side Bus) Timing Parameter Symbol Min Max Unit Figure Data output valid delay from SYSCLK (first data only) T1 274 1235 ps 4-1 Data output valid delay before Data Strobe T2 545 — ps 4-1 Data Signals (4x FSB clocks) RS600 Driving Data output valid delay after Data Strobe T3 533 — ps 4-1 First data strobe ‘p’ (CPU_DSTBP#) output valid delay from SYSCLK T4a 1223 2172 ps 4-1 Second data strobe ‘n’ (CPU_DSTBN#) output valid delay from SYSCLK T4b 6709 7816 ps 4-1 RS600 Receiving Data to Data Strobe setup time T5 94 — ps 4-1 Data to Data Strobe hold time T6 137 — ps 4-1 Data strobe to SYSCLK setup time T7 1149 — ps 4-1 T8 241 1256 ps 4-2 Address output valid delay before Address Strobe T9 1486 — ps 4-2 Address output valid delay after Address Strobe T10 1533 — ps 4-2 Address strobe output valid delay from SYSCLK T11 2120 3053 ps 4-2 Address to Address Strobe setup time T12 49 — ps 4-2 Address to Address Strobe hold time T13 111 — ps 4-2 Address Strobe setup time to SYSCLK T14 1637 — ps 4-2 T15 41 1276 ps 4-3 Common clock signal setup time T16 690 — ps 4-3 Common clock signal hold time T17 149 — ps 4-3 Address Signals (2x FSB clocks) RS600 Driving Address output valid delay from SYSCLK (first address only) RS600 Receive Common Clock Signals (1x FSB or common clock) RS600 Driving Common clock signal output valid delay from SYSCLK RS600 Receiving © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 4-3 Processor Front Side Bus Timing SYSCLK# SYSCLK T4a CPU_DSTBP# (@driver) T4b CPU_DSTBN# (@driver) T3 T3 T2 T2 CPU_D# (@driver) T1 VALID T7 CPU_DSTBP# (@receiver) CPU_DSTBN# (@receiver) CPU_D# (@receiver) T5 T6 VALID Figure 4-1 Front Side Bus Timing for Data Signals SYSCLK# SYSCLK CPU_ADSTB# (@driver) T11 T9 T10 CPU_A# (@driver) T8 VALID T14 CPU_ADSTB# (@receiver) CPU_A# (@receiver) T12 T13 VALID Figure 4-2 Front Side Bus Timing for Address Signals RS600 Databook 4-4 © 2006 ATI Technologies Inc. Proprietary and Confidential Processor Front Side Bus Timing SYSCLK# SYSCLK T15 Control Signals (@driver) VALID T16 Control Signals (@receiver) T17 VALID Figure 4-3 Front Side Bus Timing for Control Signals Table 4-4 System Clock AC Specifications Timing Parameter Symbol SYSCLK/SYSCLK# Period 133 MHz 200MHz 266MHz* Unit Figure 3751 ps 4-4 45 55 % of SYSCLK period 4-4 55 45 55 % of SYSCLK period 4-4 — 85 — 85 ps 4-4 700 175 700 175 700 ps 4-4 175 700 175 700 175 700 ps 4-4 T24 45 55 45 55 45 55 % of SYSCLK period 4-4 SYSCLK# low time T25 45 55 45 55 45 55 % of SYSCLK period 4-4 SYSCLK# falling edge (65-35%) T26 175 700 175 700 175 700 ps 4-4 SYSCLK# rising edge (35-65%) T27 175 700 175 700 175 700 ps 4-4 Min Max Min Max Min Max T18 7498 7502 5000 5002 3749 SYSCLK high time T19 45 55 45 55 SYSCLK low time T20 45 55 45 SYSCLK/SYSCLK# jitter (measured differentially) T21 — 85 SYSCLK rising edge (35-65%) T22 175 SYSCLK falling edge (65-35%) T23 SYSCLK# high time *Note: The 266 MHz FSB speeds are NOT supported by the RS600L. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 4-5 Memory Timing T23 T22 65% SYSCLK 50% 35% T21 T19 T20 T18 T24 T25 T21 65% SYSCLK# 50% 35% T26 T27 Figure 4-4 SYSCLK/SYSCLK# AC Specifications 4.2 Memory Timing The memory interface on the RS600 complies with all the timing requirements specified in the JEDEC DDR standards. On top of that, there are DLLs inside the RS600 that can delay the falling and rising edges of the write data, write data mask, write data strobes, and also the read data strobes with respect to the relevant data byte. The delays will ensure adequate hold and setup time for data transmission. These delays are programmable, and details on how to programme them can be found in the RS600 Memory Interface Programming Guide. As a result, the only design requirements for ensuring proper setup and hold time for the memory data are the length-matching requirements described in the RS600/RC610-Series IGP System Layout and Design Guide. 4.3 OSCIN Timing Table 4-5 Timing Requirements for the OSCIN Pad Symbol Parameter TIP REFCLK Period Min Typical Max Unit Note 0.037 – 1.1 µs 1 2 FIP REFCLK Frequency 0.9 – 27 MHz TIR REFCLK Rise Time – – 1.5 ns TIF REFCLK Fall Time – – 1.5 ns TIJCC REFCLK Cycle-to-Cycle Jitter Requirement – – 300 ps FTOL Frequency Tolerance – 30 – ppm 3 Notes: 1 Time intervals measured at 50% threshold point. 2 FIP is the reciprocal of TIP. 3 Of the desired frequency to generate expected PLL output frequencies. RS600 Databook 4-6 © 2006 ATI Technologies Inc. Proprietary and Confidential Power Rail Power Up Sequence 4.4 Power Rail Power Up Sequence VDD_MEM (1.8V/1.5V memory) T10 VDD18 (1.8V, see note) VDDR3/ VDDLT33/ AVDD (3.3V) T11 T12 IOPLLVDD12/ PLLVDD12 (1.2V) T13 T14 VDD_CPU (CPU I/O rail) VDD_CORE (ASIC core power) T16 T15 Note: The following power supplies comprise “VDD18,” and will ramp together and will have the same timing requirements— VDD18_MEM, VDD18_CPU, IOPLLVDD18, PLLVDD18, VDDLT18, LTPVDD18, AVDDDI, and, AVDDQ. Figure 4-5 Power Rail Power Up Sequence for the RS600 Table 4-6 Power Rail Power Up Sequence Timing for the RS600 Symbol Time Lag Min. VDD18 should not exceed VDD_MEM by more than 0.6V Max. T10 VDD18 (1.8V) ramps high relative to VDD_MEM (1.8V/1.5V) T11 VDDR3/VDDLT33/AVDD must not begin ramping until VDD18 has reach VDDR3/VDDLT33/AVDD (3.3V) ramps 90% of its final voltage, and No restriction VDDR3/VDDLT33/AVDD must not high relative to VDD18 (1.8V) exceed VDD18 by more than 2.0V at any time. T12 IOPLLVDD12/PLLVDD12 (1.2V) ramps high relative to VDD18 (1.8V IOPLLVDD12/PLLVDD12 should not exceed VDD18 by more than 0.6V No restriction T13 VDD_CORE (1.2V) ramps high relative to VDDR3/VDDLT33/AVDD VDD_CORE should not exceed VDDR3/VDDLT33/AVDD by more than 0.6V No restriction T14 VDD_CPU (CPU I/O rail) ramps high relative to VDD_CORE (1.2V) VDD_CPU must ramp up before or with VDD_CORE No restriction T15 VDD_CORE (1.2V) ramps high relative to IOPLLVDD12/PLLVDD12 (1.2V) VDD_CORE should not exceed IOPLLVDD12/PLLVDD12 by more than 0.6V No restriction T16 VDD_CORE (1.2V) ramps high relative to VDD18 (1.8V) VDD_CORE should not exceed VDD18 by more than 0.6V No restriction No restriction Note: For power down, the rails should either be turned off simultaneously or in the reversed order of the above power up sequence. Variations in speeds of decay due to different capacitor discharge rates can be safely ignored. Shown here is the power up sequence for the power rails that the RS600 connects to. For a power up sequence for the whole RS600 platform, please refer to the RS600/RC610-Series IGP System Layout and Design Guide, Section 5. RS600 Databook 4-7 © 2006 ATI Technologies Inc. Proprietary and Confidential Power Rail Power Up Sequence This page is left blank intentionally. RS600 Databook 4-8 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 5 Electrical Characteristics and Physical Data 5.1 Electrical Characteristics 5.1.1 Maximum and Minimum Ratings Table 5-1 Maximum and Minimum Ratings Minimum Typical Maximum Unit VDD_CORE Pin 1.14 1.2 1.26 V ASIC core power VDD_18CPU 1.71 1.8 1.89 V Core transform power for CPU pads VDD_18MEM 1.71 1.8 1.89 V Core transform power for memory pads 1.425/1.71 1.5/1.8 1.575/1.89 V IO power for the DDR Memory interface 0.8 Variable 1.35 V IO power for the CPU interface 3.135 3.3 3.465 V 3.3 Volt IO power VDD_MEM VDD_CPU VDDR3 5.1.2 Comments VDD_PCIE 1.14 1.2 1.26 V PCI Express Interface I/O Power VDD_PLLPCIE 1.14 1.2 1.26 V PCI Express Interface PLL Power AVDDDI 1.71 1.8 1.89 V Digital power for DAC AVDDQ 1.71 1.8 1.89 V Band gap reference voltage for DAC AVDD 3.135 3.3 3.465 V IO power for DAC LTPVDD18 1.71 1.8 1.89 V Power for integrated DVI/HDMI PLL VDDLT18 1.71 1.8 1.89 V 1.8V integrated DVI/HDMI Digital Power VDDLT33 3.234 3.3 3.465 V 3.3V integrated DVI/HDMI Analog Power PLLVDD12 1.14 1.2 1.26 V 1.2V Power for SYSTEM PLLs PLLVDD18 1.71 1.8 1.89 V 1.8V Power for SYSTEM PLLs IOPLLVDD12 1.14 1.2 1.26 V 1.2V Power for IO PLLs IOPLLVDD18 1.71 1.8 1.89 V 1.8V Power for IO PLLs DC Characteristics Table 5-2 DC Characteristics for Front Side Bus Signals Parameter VIL (Input Low) Minimum VIL (Input Low) -0.1V VIH (Input High) GTLREF+0.1V Overshoot — Undershoot -0.1V © 2006 ATI Technologies Inc. Proprietary and Confidential Maximum Comment GTLREF-0.1V Figure Figure 5-1 below illustrates the parameters. VDD_CPU+0.1V VDD_CPU is the voltage for the CPU I/O power. VDD_CPU+0.1V GTLREF is the reference voltage for GTL+ signals on the Front Side Bus. — RS600 Databook 5-1 Electrical Characteristics Overshoot VIH GTLREF VIL Undershoot Figure 5-1 Front Side Bus DC Characteristics Table 5-3 DC Characteristics for PCI-E Differential Clock (GFX_CLK, SB_CLK) Input Symbol Description VIL Input Low Voltage Minimum – VIH Input High Voltage VCROSS Absolute Crossing Point VMIN Absolute Minimum Input Voltage VMAX Absolute Maximum Input Voltage Maximum Unit Note -0.150 V 1 0.150 – V 1 0.250 0.550 V - 0.300 – V 2 – 1.15 V 3 Notes: 1 - The value specified is for the differential wave form. 2 - The value is defined as the minimum instantaneous voltage including undershoot, and is specified for the single-ended waveform. 3 - The value is defined as the maximum instantaneous voltage including overshoot, and is specified for the single-ended waveform. RS600 Databook 5-2 © 2006 ATI Technologies Inc. Proprietary and Confidential Electrical Characteristics Table 5-4 DC Characteristics for TTL Signals Pins Symbol DACVSYNC DACSDA DACHSYNC DDC_DATA GPIO[10:8] OSCIN I2C_DATA, I2C_CLK POWERGOOD * SUS_STAT# * STRP_DATA SYSRESET# TESTMODE TMDS_HPD Description Minimum Maximum Unit VILdc DC voltage at PAD pin that will produce a stable low at the Y pin of macro – 0.728 V VIHdc DC voltage at PAD pin that will produce a stable high at the Y pin of macro 1.329 – V VOL Output low voltage – 0.25 V VOH Output high voltage 2.65 – V IOL Output low current at V=0.1V 3.95 – mA IOH Output high current at V=VDDR-0.1V 4.95 – mA *Note: POWERGOOD and SUS_STAT# are input only, for which only the specifications for VILdc and VIHdc apply. Table 5-5 DC Characteristics for the DDR2/3 Interface Symbol Description Minimum Maximum Comments VIL(dc) DC Input Low Voltage -0.3V VREF-0.15V For DQ and DQS VIH(dc) DC Input High Voltage VREF + 0.15V VDDQ + 0.3V For DQ and DQS. (VDDQ is IO voltage for memory device.) VIL(ac) AC Input Low Voltage – VREF - 0.31 For DQ and DQS AC Input High Voltage VIH(ac) VREF + 0.31V – For DQ and DQS VUSH Minimum Voltage Allowed for Undershoot - 0.3V – For DQ and DQS VOSH Maximum Voltage Allowed for Overshoot – VDDQ + 0.3V 0.186V 0.305V I_out = 16.5mA I_out = -16.5mA VOI Output Low Voltage VOH Output High Voltage 1.90V 2.50V VREF DC Input Reference Voltage 1.125V 1.375V ILI Input Leakage Current 10µA 15µA ILO Tri-state Leakage Current 10µA 15µA CIN Input Capacitance 3pF 5pF For DQ and DQS. (VDDQ is IO voltage of memory device.) Table 5-6 DC and Characteristics for OSCIN Pad Symbol VIH VIL VIMAX Parameter Input High Voltage Min Typical Max Unit 2.5 2.6 – V Input Low Voltage – 0 0.6 V Maximum Input Voltage – – 3.3 V © 2006 ATI Technologies Inc. Proprietary and Confidential Note RS600 Databook 5-3 Electrical Characteristics Table 5-7 Electrical Requirements for DVI/HDMI Symbol Min Typical Max Unit VCM Differential Output Common-mode Voltage Parameter -0.5 – 4.0 V DVCM Differential Output Common-mode Voltage Ripple – – 580 mV Note VH Single-ended High Level Output Voltage AVCC - 10 – AVCC + 10 mV 2 VL Single-ended Low Level Output Voltage AVCC - 600 – AVCC - 400 mV 2 400 – 600 mV – – 180 mV VOD Differential Output Swing VOS Differential Output Overshoot (Ringing) Differential Output Undershoot (Ringing) – – 200 mV IDDLP VUS Average Supply Current at LTPVDD18 – 10.0 – mA 3 IDDLV Average Supply Current at VDDLT18/33 – 100.0 – mA 3 IPDLP Power Down Current at LTPVDD18 – 10.0 – µA 4 IPDLV Power Down Current at VDDLT18/33 – 10.0 – µA 4 Notes: 1 Figure 5-2 below illustrates some of the DC Characteristics for DVI/HDMI. 2 AVCC stands for the termination supply voltage of the receiver, which is 3.3V +/- 5%. 3 Measured under typical conditions, at minimum differential clock frequency and maximum DVI/HDMI PLL VOC frequency. 4 Measured under typical conditions, based on typical leakage values. Single-ended Waveforms VOD VCM = -0.5 to 4V Ground Differential Waveform VOD +600 to +400mV 0V -400 to -600mV Figure 5-2 DC Characteristics for DVI/HDMI RS600 Databook 5-4 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Thermal Characteristics 5.2 RS600 Thermal Characteristics This section describes some key thermal parameters of the RS600. For a detailed discussion on these parameters and other thermal design issues, please consult the Thermal Design and Analysis Guidelines for the RS600 . 5.2.1 RS600 Thermal Limits Table 5-8 RS600 Thermal Limits Parameter Operating Case Temperature Minimum Nominal Maximum — — 103 Unit ° C 1 2 3 Operating Junction Temperature — — 105 °C Absolute Junction Temperature — — 125 °C Note Storage Temperature -40 — 60 ° Ambient Temperature 5 — 45 °C 4 Thermal Design Power — 17 — W 5 C Notes: 1 - The maximum operating case temperature is the maximum case temperature at which the functionality of the chip is qualified. The temperature is measured using a fine thermocouple put between the thermal management device contact surface and the back side of the die. 2 - The maximum operating junction temperature is the interpolated value of the junction temperature at the time when the maximum operating case temperature is being measured. 3 - The maximum absolute junction temperature is the junction temperature at which the device can operate without causing damage to the ASIC. 4 - The ambient temperature is defined as the temperature of the local intake air at the inlet to the thermal management device. 5 - The Thermal Design Power (TDP) is defined as the worst-case power dissipation while running currently available applications at nominal voltages and at the maximum operating temperature. The TDP is intended only as a design reference. It is not an absolute maximum power under all conditions. The value shown here is a preliminary estimate only, and it is measured at a core voltage of 1.2V. 5.2.2 Other Thermal Parameters Two thermal parameters, θjc and θjb, are defined for the RS600 package under the “two-resistor” thermal model (see the Thermal Design and Analysis Guidelines for the RS600 for details), and their definitions are as follows: θjc = (Tj - Tc) / Qc θjb = (Tj - Tb) / Qb Where: Tc = Mean case (package-air interface) temperature Tb = Mean package-board interface temperature Qc = Heat dissipated through the case (package-air interface) Qb = Heat dissipated through the PCB. Table 5-9 shows the measured values for θjb and θjc: Table 5-9 Thermal Parameters for the RS600 Parameter Value (°C/W) θjb 22.85 θjc 0.12 However, the “two-resistor model,” under which these parameters are defined, is a highly simplified thermal model. A Delphi model for the RS600 package, available from your ATI FAE representative, will allow more accurate calculations and is preferred over the “two-resistor model.” RS600 Databook 5-5 © 2006 ATI Technologies Inc. Proprietary and Confidential Physical Package 5.3 Physical Package Figure 5-3 and Table 5-10 describes the physical dimensions of the RS600 package. Figure 5-4 shows the detailed ball arrangement for the RS600. POD-350350120108002_3-REVA Figure 5-3 RS600 Package Outline Table 5-10 RS600 1201-Pin FCBGA Package Physical Dimensions Ref. Min(mm) Typical (mm) Max. (mm) c 0.96 1.06 1.16 A* 2.18 2.33 2.48 A1 0.30 0.40 0.50 A2 0.84 0.87 0.90 φb 0.40 0.50 0.60 D1 34.80 35.00 35.20 D2 - 9.43 - E1 34.80 35.00 35.20 E2 - 9.35 - F1 - 33.60 - F2 - 33.60 - e1 - 0.80 - ddd - - 0.15 RS600 Databook 5-6 © 2006 ATI Technologies Inc. Proprietary and Confidential Physical Package User of the PDF version of this document can zoom in on the figure to read the ball references better. Figure 5-4 RS600 Detailed Ball Arrangement RS600 Databook 5-7 © 2006 ATI Technologies Inc. Proprietary and Confidential Pressure Specifications 5.4 Pressure Specifications To avoid damages to the ASIC (die or solder ball joint cracks) caused by improper mechanical assembly of the cooling device, follow the recommendations below: • The ASIC device can withstand up to 98 Newtons of force when uniformly distributed; however, it is recommended that the maximum force (evenly applied) across the contact area between the thermal management device and the die does not exceed 40 psi. (Note that a contact pressure of 30-40 psi is adequate to secure the thermal management device and achieve the lowest thermal contact resistance with a temperature drop across the thermal interface material of no more than 3°C.) • Pre-test the assembly fixture with a strain gauge to make sure that the flexing of the final assembled board and the pressure applying around the ASIC package will not exceed 600 micron strain under any circumstances. • Ensure that any distortion (bow or twist) of the board after SMT and cooling device assembly is within industry guidelines (IPC/EIA J-STD-001). For measurement method, refer to the industry approved technique described in the manual IPC-TM-650, section 2.4.22. 5.5 Board Solder Reflow Process Recommendations 5.5.1 Stencil Opening Size for Solderball Pads on PCB A stencil opening size of 350µm is recommended for the six pads at each corner of the ASIC package, and a size of 300µm is recommended for all other pads (see Figure 5-5 below). This recommendation is based on ATI’s sample land pattern design for the RS600, which is available from your ATI FAE representative. 350µm openings recommended 350µm openings recommended 300µm openings recommended for all other pads 350µm openings recommended 350µm openings recommended Figure 5-5 Recommended Stencil Opening Sizes for Solderball Pads on PCB RS600 Databook 5-8 © 2006 ATI Technologies Inc. Proprietary and Confidential Board Solder Reflow Process Recommendations 5.5.2 Reflow Profiles Two reference reflow profiles are given below—one for eutectic solder and the other for lead-free solder. Please note the following: • The final reflow temperature profile will depend on the type of solder paste and chemistry of flux used in the SMT process. Modifications to the reference reflow profile may be required in order to accommodate the requirements of the other components in the application. • For eutectic solder, a reflow oven with 8 heating zones or above is recommended. For lead-free solder, an oven with 10 heating zones or above is recommended. • To ensure that the reflow profile meets the target specification on both sides of the board, different profiles and oven recipes for the first and second reflow may be required. • Mechanical stiffening can be used to minimize board warpage during reflow. • The temperature ramp rate requirement is for minimizing board warpage. • Maximum number of reflows: 3. Solder/Parts Surface Temperature( °C) 250 Peak Temp. ° ° (215 C +/-5% typ., 225 C max.) <2.0oC / sec. 200 183°C 150 Soaking Zone 100 60 – 120 sec. typical Pre-heating Zone 50 Soldering Zone 45 - 90 sec. Max. 70-80 sec. typical <2.0oC / sec. 2 min. to 4 min. Max. Figure 5-11 Eutectic Solder(Sn63/Pb37 Tin-Lead) Reflow Profile RS600 Databook 5-9 © 2006 ATI Technologies Inc. Proprietary and Confidential Board Solder Reflow Process Recommendations o Solder/Part Surface Temp. ( C ) Peak Temp. (235 oC+/-5% typ., 245 oC max.) 250 220 deg.C <2.0oC / Sec. 200 170 oC 150 130 oC 100 50 Soaking Zone Soldering Zone 60 – 120 sec. max 60 – 80 sec. typical 45 - 90 sec. Max. 60 - 80 sec. typical <2.0o.C / Sec. Pre-heating Zone 2 min to 4 min Max. Heating Time Figure 5-12 Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile RS600 Databook 5-10 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 6 Power Management and ACPI 6.1 ACPI Power Management Implementation This chapter describes the support for ACPI power management provided by the RS600. The RS600 system controller supports ACPI Revision 1.0b. The hardware, system BIOS, video BIOS, and drivers of the RS600 have all the logic required for meeting the power management specifications of PC2001, OnNow, and the Windows Logo Program and Device Requirements version 2.1. Table 6-1, “ACPI States Supported by the RS600,” describes the ACPI states supported by the RS600 system controller. Table 6-2, “ACPI Signal Definitions,” describes the signals used in the ACPI power management scheme of the RS600. Table 6-1 ACPI States Supported by the RS600 ACPI State Description Graphics States: D0 Full on, display active. D1 Display Off. RS600 power on. Configuration registers, state, and main memory contents retained. D3 Hot Similar to D1, with memory put into self-refresh and graphics PLLs shut off. D3 Cold RS600 power off. Processor States: S0/C0: Working State Working State. The processor is executing instructions. S0/C1: Halt CPU Halt state. No instructions are executed. This state has the lowest latency on resume and contributes minimum power savings. S0/C2: Stop Grant Caches Snoopable Stop Grant or Cache Snoopable CPU state. This state offers more power savings but has a higher latency on resume than the C1 state. S0/C3: Stop Grant Caches Not Snoopable Stop Grant or Cache not Snoopable Sleep state. The CPU’s caches maintain state but ignore any snoops. This state offers more power savings but has a higher latency on resume than the C1 and C2 states. S0/C4: Deeper Sleep Deeper Sleep State. This is the lowest power state the CPU can enter. System States: S1: Standby Powered On Suspend System is in Standby mode. This state has low wakeup latency on resume. OEM support of this state is optional. S3: Standby Suspend to RAM System is off but context is saved to RAM. OEM support of this state is optional. System memory is put into self-refresh. S4: Hibernate Suspend to Disk System is off but context is saved to disk. When the system transitions to the working state, the OS is resumed without a system re-boot. S5: Soft Off System is off. OS re-boots when the system transitions to the working state. G3: Mechanical Off Occurs when system power (AC or battery) is not present or is unable to keep the system in one of the other states. Table 6-2 ACPI Signal Definitions Signal Name Description Source A_RST# PCI host bus reset South bridge CPU_CPURST# CPU reset RS600 CPU_STP# Stop CPU clock South Bridge DPRSLP# Deeper sleep South bridge DRPSLPVR Deeper sleep voltage regulator South bridge INIT# CPU initialization South bridge INTR Interrupt to CPU South bridge NMI Non-maskable Interrupt South bridge © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 6-1 Power Management for the Graphics Controller Table 6-2 ACPI Signal Definitions (Continued) Signal Name 6.2 Description Source PCIRST# PCI bus reset South bridge POWERON# Power on Power switch PWR_GOOD South bridge power good South bridge power good circuit on motherboard SLP# Sleep South bridge/ RS600 SLP_S3# S3 sleep power plane control South bridge SLP_S5# S5 sleep power plane control South bridge SMI# System management interrupt to CPU South bridge STPCLK# Stop clock signal to CPU South bridge SUS_STAT# Disable RS600 internal clock tree during S1-S3 states. South bridge Power Management for the Graphics Controller The RS600 supports power management for the embedded graphics device as specified by the PCI Bus Power Management Interface Specification version 1.0, according to which the integrated graphics core of the RS600 qualifies as a device embedding a single function in the power management system. 6.2.1 PCI Function Power States There are up to four power states defined for each PCI function associated with each PCI device in the system. These power states are D0, D1, D2 and D3. D0 (on) consumes the most power while D3 (off) consumes the least. D1 and D2 enable levels of power savings in between those of D0 and D3. The concepts of these power states are universal for all functions in the system. When transitioned to a given power management state, the intended functional behavior is dependent upon the type (or class) of the function. 6.2.2 PCI Power Management Interface The four basic power management operations are: • • • • Capabilities Reporting Power Status Reporting Setting Power State System Wakeup All four of these capabilities are required for each power management function with the exception of wakeup event generation. This section describes the format of the registers in the PCI Configuration Space that are used by these power management operations. The Status and Capabilities Pointer (CAP_PTR) fields have been highlighted to indicate where the PCI Power Management features appear in the standard Configuration Space Header. Table 6-3 Standard PCI Configuration Space Header Type 0 Register Fields (32bits) MSB Offset LSB Device ID Vendor ID 00h (LSB) Status (with Bit 4 set to 1) Command 04h Class Code Revision ID BIST RS600 Databook 6-2 Header Type Latency Timer 08h Cache Line Size 0Ch © 2006 ATI Technologies Inc. Proprietary and Confidential Power Management for the Graphics Controller Table 6-3 Standard PCI Configuration Space Header Type 0 (Continued) Register Fields (32bits) MSB Offset LSB Base Address Registers 10h 14h 18h 1Ch 20h 24h CardBus CIS Pointer 28h Subsystem ID Subsystem Vendor ID Expansion ROM Base Address 30h Reserved CAP_PTR 34h Interrupt Line 3Ch Reserved 38h Max_Lat 6.2.3 2Ch Min_Gnt Interrupt Pin Capabilities List Data Structure in PCI Configuration Space The Capabilities bit in the PCI Status register (offset = 06h) indicates whether or not the subject function implements a linked list of extended capabilities. Specifically, if bit 4 is set, the CAP_PTR register is implemented to give offset to the first item in the Capabilities link list. Table 6-4 PCI Status Register Bits Read/ Write Default Value Description 15:05 -- -- Refer to PCI Local Bus Specification, Revision 2.2 04 1b Read Only This bit indicates whether this function implements a list of extended capabilities such as PCI power management. When set, this bit indicates the presence of Capabilities. A value of 0 implies that this function does not implement Capabilities. 03:00 0h Read Only Reserved The location of the Capabilities Pointer (CAP_PTR) depends on the PCI header type. See PCI specification Revision 2.2 for specification of CAP_PTR offsets. Table 6-5 Capabilities Pointer (CAP_PTR) Bits 07:00 Default Value 5Ch Read/ Write Read Only Description The CAP_PTR provides an offset in the PCI Configuration Space of the function to access the location of the first item in the Capabilities linked list. The CAP_PTR offset is DWORD aligned, so that the two least significant bits are always zeros. The graphics core implements extended capabilities of the AGP and Power Management. It needs to provide the standardized register interface. The first entry in the chain of descriptors has to be the PMI descriptor, as this functionality will be supported even if the RS600 operates as a PCI device. The Capabilities Identifier for Power Management is 01h. 6.2.4 Register Block Definition This section describes the PCI Power Management Interface registers. These registers are implemented inside the Host Interface (HI) as part of the configuration space of the device (RS600). RS600 Databook 6-3 © 2006 ATI Technologies Inc. Proprietary and Confidential Power Management for the Graphics Controller Table 6-6 Power Management Register Block Register Fields Offset Capabilities ID 00h Next Item Ptr 01h Power Management Capabilities (PMC) 02h Power Management Control/Status Register (PMCSR) 04h Reserved 06h The first 16 bits (Capabilities ID [offset = 0] and Next Item Pointer [offset = 1]) are used for the linked list infrastructure. The next 32 bits (PMC [offset = 2] and PMCSR registers [offset = 4]) are required for compliance with this specification. As with all PCI configuration registers, these registers may be accessed as bytes, 16-bit words, or 32-bit DWORDs. All of the write operations to the reserved registers must be treated as no-ops. This implies that the access must be completed normally on the bus and the data should be discarded. Read accesses to the reserved or the unimplemented registers must be completed normally and a data value of 0000h should be returned. Table 6-7 Power Management Control/Status Register (PMCSR) Field Name Default (Reset) Bits Power State 1:0 00 Description This field describes the power state of the graphics core. States Power State 15:2 0 Function 00 = D0 Normal operation, no power savings enabled 01 = D1 Sleeping state 1: Display is off Host access to DRAM is allowed 10 = D2 Sleeping state 2 Display is off. All engines are off. Graphics core does not respond to host accesses to the frame buffer. 11 = D3 Everything, except Host Interface, is turned off. These Read Only bits will return the clock status of each clock tree, generated inside the clock block. The offset for each register is listed as an offset from the beginning of the linked list item that is determined either from the CAP_PTR (if Power Management is the first item in the list) or the NEXT_ITEM_PTR of the previous item in the list. 6.2.5 Capability Identifier: Cap_ID (Offset = 0) The Capability Identifier, when read by system software as 01h, indicates that the data structure currently being pointed to is the PCI Power Management data structure. Each function of a PCI device may have only one item in its capability list with Cap_ID set to 01h. Table 6-8 Capability Identifier (Cap_ID) Bits 07:00 Default Value 01h Read/ Write Read Only Description This field, when set to 01h, identifies the linked list item as being the PCI Power Management registers Figure 6-1, ‘Linked List for Capabilities,” shows the implementation of the capabilities list. The CAP_PTR gives the location of the first item in the list. PCI Power Management registers have been stated as example in this list (although the capabilities can be in any order). • The first byte of each entry is required to be the ID of that capability. The PCI Power Management capability has an ID of 01h. RS600 Databook 6-4 © 2006 ATI Technologies Inc. Proprietary and Confidential Power Management for the Graphics Controller • • The next byte is a pointer giving an absolute offset in the functions PCI Configuration Space to the next item in the list and must be DWORD aligned. If there are no more entries in the list, the NEXT_ITEM_PTR must be set to 0 to indicate an end of the linked list. Each capability can then have registers following the NEXT_ITEM_PTR. The definition of these registers (including layout, size, and bit definitions) is specific to each capability. The PCI Power Management Register Block is defined in Figure 6-1, ‘Linked List for Capabilities,” below. PCI Configuration Header Offset 34h Cap_Ptr = 50h 8 bits Offset 50h 5Ch 02 AGP Capability Offset 5Ch 00h 01 PM Registers Figure 6-1 Linked List for Capabilities 6.2.6 Next Item Pointer The Next Item Pointer register describes the location of the next item in the capability list of the function. The value given is an offset in the PCI Configuration Space of that function. This register must be set to 00h if the function does not implement any other capabilities defined by the PCI Specifications for inclusion in the capabilities list, or if power management is the last item in the list. Table 6-9 Next Item Pointer (NEXT_ITEM_PTR) Bits 07:00 RS600 Databook 6-5 Default Value 00h = PCI mode 50h = AGP mode Read/ Write Read Only Description This field provides an offset in the PCI Configuration Space of the function pointing to the location of next item in the capability list of the function. For Power Management of the RS600, this pointer must be set to zero if operating in PCI mode. This indicates that there is no additional Capability (AGP) of the device (RS600). In AGP mode, this pointer has to reflect the start offset of the AGP Capability Descriptor (50h). © 2006 ATI Technologies Inc. Proprietary and Confidential Power Management for the Graphics Controller 6.2.7 PMC - Power Management Capabilities (Offset = 2) The Power Management Capabilities register is a 16-bit Read Only register that provides information on the capabilities of the function related to power management. The information in this register is generally static and is known at design time. Table 6-10 Power Management Capabilities – PMC Bits Default Value Read/ Write Description 15:11 00111b Read Only This 5-bit field indicates the power states in which the function may assert PME#. A value of 0b for any bit indicates that the function is not capable of asserting the PME# signal while in that power state. bit(11) XXXX1b - PME# can be asserted from D0. bit(12) XXX1Xb - PME# can be asserted from D1. bit(13) XX1XXb - PME# can be asserted from D2. bit(14) X0XXXb - PME# cannot be asserted from D3hot. bit(15) 0XXXXb - PME# cannot be asserted from D3cold. 10 001b Read Only RS600 supports D2. 09 001b Read Only RS600 supports D1. 08:06 000b Read Only Reserved 05 1b Read Only The Device Specific Initialization bit indicates whether special initialization of this function is required (beyond the standard PCI configuration header) before the generic class device driver is able to use it. The RS600 requires device specific initialization after Reset; this field must therefore return a value 1 to the system. 04 0b Read Only Reserved 03 0b Read Only Reserved 02:00 001b Read Only A value of 001b indicates that this function complies with Revision 1.0 of the PCI Power Management Interface Specification. RS600 Databook 6-6 © 2006 ATI Technologies Inc. Proprietary and Confidential Chapter 7 Testability 7.1 Test Capability Features The RS600 system controller has integrated test modes and capabilities. These test features cover both the ASIC and board level testing. The ASIC tests provide a very high fault coverage and low DPM (Defect Per Million) ratio of the part. The board level tests modes can be used for motherboard manufacturing and debug purposes. The following are the test modes of the RS600 system controller: • • • • • • Full scan implementation on the digital core logic that provides approximately 99% fault coverage through ATPG (Automatic Test Pattern Generation Vectors). Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules. Improved access to the analog modules and PLLs in the RS600 system controller in order to allow full evaluation and characterization of these modules. A JTAG test mode (which is not entirely compliant to the IEEE 1149.1 standard) in order to allow board level testing of neighboring devices. An XOR TREE test mode on all the digital I/O’s to allow for proper soldering verification at the board level. An EXTEST test mode in order to allow board level testing by sampling the inputs and controlling the output of the RS600 system controller. These test modes can be accessed through the settings on the instruction register of the JTAG circuitry. 7.2 Test Interface Table 7-1 Pins on the Test Interface Pin Name Ball number Type Description TESTMODE A20 I IEEE 1149.1 test port reset DDC_DATA B12 I TMS: Test Mode Select (IEEE 1149.1 test mode select) I2C_DATA B22 I TDI: Test Mode Data In (IEEE 1149.1 data in) STRP_DATA B14 I TCLK: Test Mode Clock (IEEE 1149.1 clock) I2C_CLK C21 O TDO: Test Mode Data Out (IEEE 1149.1 data out) 7.3 XOR Tree 7.3.1 Brief Description of an XOR Tree An example of a generic XOR tree is shown in the figure below. XOR Start Signal 1 2 A 3 4 5 6 Figure 7-1 An Example of a Generic XOR Tree © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook 7-1 XOR Tree Pin A is assigned to the output direction, and pins 1 through 6 are assigned to the input direction. It can be seen that after all pins 1 to 6 are assigned to logic 0 or 1, a logic change in any one of these pins will toggle the output pin A. The following is the truth table for the XOR tree shown in Figure 7-1 The XOR start signal is assumed to be logic 1. Table 7-2 Example of an XOR Tree 7.3.2 Test Vector number Input Pin 1 Input Pin 2 Input Pin 3 Input Pin 4 Input Pin 5 Input Pin 6 Output Pin A 1 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 3 1 1 0 0 0 0 1 4 1 1 1 0 0 0 0 5 1 1 1 1 0 0 1 6 1 1 1 1 1 0 0 7 1 1 1 1 1 1 1 Description of the XOR Tree for the RS600 The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the TDO Pin. Refer to Section 7.3.4 for the list of the signals included on the XOR tree. There is no specific order to these signals in the tree. A toggle of any of these balls in the XOR tree will cause the output to toggle. 7.3.3 XOR Tree Activation The RS600 chip enters the XOR tree test mode by means of the JTAG. First, the 8-bit instruction register of the JTAG is loaded with the XOR instruction (“00001000”). This instruction will assign the input direction to all the pins except pin TDO, which is assigned the output direction to serve as the output of the XOR tree. After loading, the JTAG is taken to the Run-Test state for completion of the XOR tree initialization. Note: 10 MHz clock frequency is recommended for the XOR TREE test mode. 7.3.4 XOR Chain for the RS600 Note: In the XOR tree test mode, for certain differential pin pairs, opposite values should be applied to the pair (e.g., when “1” is applied to MEMA_DQS1P, “0” should be applied to MEMA_DQS1N). These pins are highlighted by the shading in the table below. Connection Order Pin Name Ball Ref. 1 CPU_LOCK# M45 2 CPU_HITM# P46 3 CPU_HIT# K47 4 CPU_REQ0# P39 5 CPU_REQ1# M39 6 CPU_REQ2# K44 7 CPU_REQ3# H42 8 CPU_REQ4# K40 9 CPU_RS0# L47 10 CPU_RS1# R47 11 CPU_RS2# L45 RS600 Databook 7-2 Connection Order Pin Name Ball Ref. 12 CPU_TRDY# R45 13 CPU_DRDY# P45 14 CPU_DEFER# K46 15 CPU_DSTB3N# B41 16 CPU_DSTB2N# H29 17 CPU_DSTB1N# J38 18 CPU_DSTB0N# E46 19 CPU_DSTB3P# C41 20 CPU_DSTB2P# F29 21 CPU_DSTB1P# J36 22 CPU_DSTB0P# E45 © 2006 ATI Technologies Inc. Proprietary and Confidential XOR Tree Connection Order Pin Name Ball Ref. Connection Order Pin Name Ball Ref. 23 CPU_ADSTB0# T42 59 CPU_D25# F36 24 CPU_ADSTB1# AA44 60 CPU_D26# E36 25 CPU_DBSY# M46 61 CPU_D27# J34 26 CPU_DBI0# E47 62 CPU_D28# F34 27 CPU_DBI1# K36 63 CPU_D29# H38 28 CPU_DBI2# J30 64 CPU_D30# D32 29 CPU_DBI3# A36 65 CPU_D31# E34 30 CPU_EDRDY# T47 66 CPU_D32# J32 31 CPU_BPRI# H44 67 CPU_D33# F32 32 CPU_BNR# M47 68 CPU_D34# K32 33 CPU_ADS# R46 69 CPU_D35# D29 34 CPU_D0# H46 70 CPU_D36# M29 35 CPU_D1# G47 71 CPU_D37# K30 36 CPU_D2# K45 72 CPU_D38# F30 37 CPU_D3# G45 73 CPU_D39# E30 38 CPU_D4# H45 74 CPU_D40# M27 39 CPU_D5# G46 75 CPU_D41# F27 40 CPU_D6# F45 76 CPU_D42# K27 41 CPU_D7# F47 77 CPU_D43# D25 42 CPU_D8# C46 78 CPU_D44# E27 43 CPU_D9# A44 79 CPU_D45# J27 44 CPU_D10# D46 80 CPU_D46# J25 45 CPU_D11# C45 81 CPU_D47# F25 46 CPU_D12# D47 82 CPU_D48# C37 47 CPU_D13# B44 83 CPU_D49# B40 48 CPU_D14# A43 84 CPU_D50# B43 49 CPU_D15# B45 85 CPU_D51# C42 50 CPU_D16# E40 86 CPU_D52# C43 51 CPU_D17# F44 87 CPU_D53# A42 52 CPU_D18# E42 88 CPU_D54# B38 53 CPU_D19# F40 89 CPU_D55# A41 54 CPU_D20# H40 90 CPU_D56# C40 55 CPU_D21# D44 91 CPU_D57# A38 56 CPU_D22# D42 92 CPU_D58# C36 57 CPU_D23# D40 93 CPU_D59# B36 58 CPU_D24# E38 94 CPU_D60# A37 RS600 Databook 7-3 © 2006 ATI Technologies Inc. Proprietary and Confidential XOR Tree Connection Order Pin Name Ball Ref. Connection Order Pin Name Ball Ref. 95 CPU_D61# C38 131 MEMA_A2 BG36 96 CPU_D62# B34 132 MEMA_A3 BE34 97 CPU_D63# C34 133 MEMA_A4 BF34 98 CPU_A3# M42 134 MEMA_A5 BE33 99 CPU_A4# K42 135 MEMA_A6 BF33 100 CPU_A5# M44 136 MEMA_A7 BE32 101 CPU_A6# T39 137 MEMA_A8 BG33 102 CPU_A7# M38 138 MEMA_A9 BG32 103 CPU_A8# P42 139 MEMA_A10 BE46 104 CPU_A9# T43 140 MEMA_A11 BE31 105 CPU_A10# P38 141 MEMA_A12 BF31 106 CPU_A11# P44 142 MEMA_A13 AV45 107 CPU_A12# P36 143 MEMA_A14 BF30 108 CPU_A13# W39 144 MEMA_BA0 BD46 109 CPU_A14# V40 145 MEMA_BA1 BD47 110 CPU_A15# W42 146 MEMA_BA2 BE30 111 CPU_A16# V42 147 MEMA_CS0# BA46 112 CPU_A17# AC39 148 MEMA_CS1# AV46 113 CPU_A18# W43 149 MEMA_CS2# BA47 114 CPU_A19# V44 150 MEMA_CS3# AU45 115 CPU_A20# V36 151 MEMA_CKE0 BF29 116 CPU_A21# AA40 152 MEMA_CKE1 BG28 117 CPU_A22# AC43 153 MEMA_WE# BA45 118 CPU_A23# V38 154 MEMA_CAS# AY46 119 CPU_A24# AA42 155 MEMA_RAS# BC47 120 CPU_A25# AA38 156 MEMA_ODT0 AY45 121 CPU_A26# AC42 157 MEMA_ODT1 AU47 122 CPU_A27# AD36 158 MEMA_ODT2 AV47 123 CPU_A28# AD38 159 MEMA_ODT3 AT47 124 CPU_A29# AA36 160 MEMA_CKE3 BE28 125 CPU_A30# AD42 161 MEMA_DQ0 BC3 126 CPU_A31# AD40 162 MEMA_DQ1 BD1 127 CPU_A32# AD44 163 MEMA_DQ2 BF4 128 CPU_A33# AD43 164 MEMA_DQ3 BE4 129 MEMA_A0 BE42 165 MEMA_DQ4 BC2 130 MEMA_A1 BF36 166 MEMA_DQ5 BC1 RS600 Databook 7-4 © 2006 ATI Technologies Inc. Proprietary and Confidential XOR Tree Connection Order Pin Name Ball Ref. Connection Order Pin Name Ball Ref. 167 MEMA_DQ6 BE3 203 MEMA_DQ42 AG45 168 MEMA_DQ7 BF3 204 MEMA_DQ43 AF45 169 MEMA_DQ8 BF5 205 MEMA_DQ44 AK45 170 MEMA_DQ9 BG6 206 MEMA_DQ45 AJ47 171 MEMA_DQ10 BE8 207 MEMA_DQ46 AG46 172 MEMA_DQ11 BG10 208 MEMA_DQ47 AF46 173 MEMA_DQ12 BG5 209 MEMA_DQ48 AE46 174 MEMA_DQ13 BE5 210 MEMA_DQ49 AD47 175 MEMA_DQ14 BE7 211 MEMA_DQ50 AB45 176 MEMA_DQ15 BF8 212 MEMA_DQ51 AA47 177 MEMA_DQ16 BE10 213 MEMA_DQ52 AE47 178 MEMA_DQ17 BE11 214 MEMA_DQ53 AE45 179 MEMA_DQ18 BF15 215 MEMA_DQ54 AC45 180 MEMA_DQ19 BE15 216 MEMA_DQ55 AB46 181 MEMA_DQ20 BF10 217 MEMA_DQ56 AA45 182 MEMA_DQ21 BG11 218 MEMA_DQ57 Y46 183 MEMA_DQ22 BE14 219 MEMA_DQ58 V46 184 MEMA_DQ23 BG15 220 MEMA_DQ59 U47 185 MEMA_DQ24 BG17 221 MEMA_DQ60 AA46 186 MEMA_DQ25 BF17 222 MEMA_DQ61 Y47 187 MEMA_DQ26 BF19 223 MEMA_DQ62 V45 188 MEMA_DQ27 BE20 224 MEMA_DQ63 U45 189 MEMA_DQ28 BG16 225 MEMA_DM0 BD2 190 MEMA_DQ29 BE16 226 MEMA_DM1 BE6 191 MEMA_DQ30 BG19 227 MEMA_DM2 BG12 192 MEMA_DQ31 BE19 228 MEMA_DM3 BE17 193 MEMA_DQ32 AP45 229 MEMA_DM4 AN45 194 MEMA_DQ33 AN46 230 MEMA_DM5 AH47 195 MEMA_DQ34 AL45 231 MEMA_DM6 AD45 196 MEMA_DQ35 AK46 232 MEMA_DM7 W45 197 MEMA_DQ36 AP46 233 MEMA_DQS0P BE2 198 MEMA_DQ37 AN47 234 MEMA_DQS1P BF7 199 MEMA_DQ38 AL47 235 MEMA_DQS2P BE12 200 MEMA_DQ39 AL46 236 MEMA_DQS3P BE18 201 MEMA_DQ40 AJ46 237 MEMA_DQS4P AM46 202 MEMA_DQ41 AJ45 238 MEMA_DQS5P AG47 RS600 Databook 7-5 © 2006 ATI Technologies Inc. Proprietary and Confidential XOR Tree Connection Order Pin Name Ball Ref. Connection Order Pin Name Ball Ref. 239 MEMA_DQS6P AC46 275 MEMB_A14 BE23 240 MEMA_DQS7P W46 276 MEMB_BA0 BG38 241 MEMA_DQS0N BD3 277 MEMB_BA1 BE37 242 MEMA_DQS1N BG7 278 MEMB_BA2 BG24 243 MEMA_DQS2N BF12 279 MEMB_CS0# BF40 244 MEMA_DQS3N BF18 280 MEMB_CS1# BF41 245 MEMA_DQS4N AM47 281 MEMB_CS2# BE38 246 MEMA_DQS5N AH46 282 MEMB_CKE1 BG23 247 MEMA_DQS6N AC47 283 MEMB_CAS# BG41 248 MEMA_DQS7N W47 284 MEMB_RAS# BF38 249 MEMA_CK0P BB30 285 MEMB_ODT0 BC46 250 MEMA_CK1P AY8 286 MEMB_ODT1 BC45 251 MEMA_CK2P AV43 287 MEMB_ODT2 BB47 252 MEMA_CK3P BD30 288 MEMB_ODT3 BB45 253 MEMA_CK4P AW12 289 MEMB_CKE3 BF22 254 MEMA_CK5P AY44 290 MEMB_DQ0 AV5 255 MEMA_CK0N BB29 291 MEMB_DQ1 AV6 256 MEMA_CK1N AY10 292 MEMB_DQ2 BC6 257 MEMA_CK2N AV44 293 MEMB_DQ3 BD6 258 MEMA_CK3N BD29 294 MEMB_DQ4 AT8 259 MEMA_CK4N AY12 295 MEMB_DQ5 AV4 260 MEMA_CK5N AY43 296 MEMB_DQ6 BB4 261 MEMB_A0 BE36 297 MEMB_DQ7 AV9 262 MEMB_A1 BG31 298 MEMB_DQ8 BC14 263 MEMB_A2 BE29 299 MEMB_DQ9 AY14 264 MEMB_A3 BE27 300 MEMB_DQ10 BD18 265 MEMB_A4 BF27 301 MEMB_DQ11 BC16 266 MEMB_A5 BG27 302 MEMB_DQ12 BB14 267 MEMB_A6 BE26 303 MEMB_DQ13 BD12 268 MEMB_A7 BE25 304 MEMB_DQ14 BB16 269 MEMB_A8 BF26 305 MEMB_DQ15 BB18 270 MEMB_A9 BF25 306 MEMB_DQ16 AT18 271 MEMB_A10 BG37 307 MEMB_DQ17 AW19 272 MEMB_A11 BG25 308 MEMB_DQ18 AW23 273 MEMB_A12 BE24 309 MEMB_DQ19 AY24 274 MEMB_A13 BG42 310 MEMB_DQ20 AY18 RS600 Databook 7-6 © 2006 ATI Technologies Inc. Proprietary and Confidential XOR Tree Connection Order Pin Name Ball Ref. Connection Order Pin Name Ball Ref. 311 MEMB_DQ21 AV19 347 MEMB_DQ57 AK44 312 MEMB_DQ22 BB21 348 MEMB_DQ58 AJ42 313 MEMB_DQ23 AY21 349 MEMB_DQ59 AG44 314 MEMB_DQ24 BB23 350 MEMB_DQ60 AK36 315 MEMB_DQ25 AV23 351 MEMB_DQ61 AM43 316 MEMB_DQ26 BD27 352 MEMB_DQ62 AM39 317 MEMB_DQ27 BB25 353 MEMB_DQ63 AJ43 318 MEMB_DQ28 BC23 354 MEMB_DM0 AY4 319 MEMB_DQ29 BD24 355 MEMB_DM1 AV14 320 MEMB_DQ30 BC25 356 MEMB_DM2 BB19 321 MEMB_DQ31 BB27 357 MEMB_DM3 AT24 322 MEMB_DQ32 AW30 358 MEMB_DM4 BB32 323 MEMB_DQ33 AV32 359 MEMB_DM5 AW38 324 MEMB_DQ34 AW34 360 MEMB_DM6 AT38 325 MEMB_DQ35 BB36 361 MEMB_DM7 AM42 326 MEMB_DQ36 AY29 362 MEMB_DQS0P AY6 327 MEMB_DQ37 AT32 363 MEMB_DQS1P AW16 328 MEMB_DQ38 BB34 364 MEMB_DQS2P BD19 329 MEMB_DQ39 AY32 365 MEMB_DQS3P AW27 330 MEMB_DQ40 BD38 366 MEMB_DQS4P BD32 331 MEMB_DQ41 AY36 367 MEMB_DQS5P BC38 332 MEMB_DQ42 AY38 368 MEMB_DQS6P AP44 333 MEMB_DQ43 BC40 369 MEMB_DQS7P AK40 334 MEMB_DQ44 BB38 370 MEMB_DQS0N AY5 335 MEMB_DQ45 BC36 371 MEMB_DQS1N AV16 336 MEMB_DQ46 BB40 372 MEMB_DQS2N BD21 337 MEMB_DQ47 BD42 373 MEMB_DQS3N AW25 338 MEMB_DQ48 AV40 374 MEMB_DQS4N BD34 339 MEMB_DQ49 AT40 375 MEMB_DQS5N BD40 340 MEMB_DQ50 AP40 376 MEMB_DQS6N AT44 341 MEMB_DQ51 AT39 377 MEMB_DQS7N AK42 342 MEMB_DQ52 AY40 378 MEMB_CK0P AT30 343 MEMB_DQ53 AV39 379 MEMB_CK1P BD10 344 MEMB_DQ54 AT42 380 MEMB_CK2P BB44 345 MEMB_DQ55 AP42 381 MEMB_CK3P AV25 346 MEMB_DQ56 AM38 382 MEMB_CK4P BD8 RS600 Databook 7-7 © 2006 ATI Technologies Inc. Proprietary and Confidential XOR Tree Connection Order 7.3.5 Pin Name Ball Ref. Connection Order Pin Name Ball Ref. 383 MEMB_CK5P BE44 413 GFX_RX11P AA6 384 MEMB_CK0N AV29 414 GFX_RX12N AA10 385 MEMB_CK1N BC10 415 GFX_RX12P AA9 386 MEMB_CK2N BB43 416 GFX_RX13N AC6 387 MEMB_CK3N AT25 417 GFX_RX13P AC5 388 MEMB_CK4N BC8 418 GFX_RX14N AC10 389 MEMB_CK5N BD44 419 GFX_RX14P AC9 390 GFX_RX0N C2 420 GFX_RX15N AE5 391 GFX_RX0P C3 421 GFX_RX15P AE6 392 GFX_RX1N H4 422 GPP_RX3N AG6 393 GFX_RX1P H5 423 GPP_RX3P AG5 394 GFX_RX2N K6 424 GPP_RX2N AJ1 395 GFX_RX2P K8 425 GPP_RX2P AJ2 396 GFX_RX3N M6 426 GPP_RX1N AM1 397 GFX_RX3P M8 427 GPP_RX1P AM2 398 GFX_RX4N M4 428 GPP_RX0N AK5 399 GFX_RX4P M5 429 GPP_RX0P AK6 400 GFX_RX5N P8 430 SB_RX0N AV3 401 GFX_RX5P P9 431 SB_RX0P AU3 402 GFX_RX6N P5 432 SB_RX1N AM10 403 GFX_RX6P P4 433 SB_RX1P AM9 404 GFX_RX7N T5 434 SB_RX2N AM6 405 GFX_RX7P T6 435 SB_RX2P AM5 406 GFX_RX8N T10 436 SB_RX3N AK10 407 GFX_RX8P T9 437 SB_RX3P AK9 408 GFX_RX9N V6 438 GPIO9 D3 409 GFX_RX9P V5 439 GPIO8 C5 410 GFX_RX10N V10 440 GPIO10 C4 411 GFX_RX10P V9 441 DACHSYNC B24 412 GFX_RX11N AA5 442 DACVSYNC B23 Unused Pins When the XOR tree is activated, any pin on the XOR tree must be either pulled down or pulled up to the I/O voltage of the interface to which the pin belongs. No pins on the XOR tree should be left floating. All pins that are not part of the XOR tree can be left floating, except for the pin MEMB_CKE2, which must be pulled down due to special internal function of the pin. RS600 Databook 7-8 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A Pin Listings This appendix contains pin listings for the RS600 sorted in different ways. To go to the listing of interest, use the linked cross-references below: “Pin List Sorted by Ball Reference” on page A-2 “Pin List Sorted by Pin Name” on page A-14 © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook A-1 Appendix A: Pin Listings A.1 Pin List Sorted by Ball Reference Table A-1 Pin List Sorted by Ball Reference Ball Ref. Pin Name A10 VDD_PCIE A11 PLLVSS A12 PLLVDD12 A14 PLLVDD18 A15 VDD_18CPU A16 VDD_CORE A17 AVDD A18 VDDR3 A19 AVSSDI A20 TESTMODE A21 LTPVSS18 A22 DACSDA A23 AVDDQ A24 AVSSQ A25 DACRSET A26 VSSLT A27 TXCLK_LN A28 TXOUT_L0P A29 TXOUT_L2P A3 VSS_PCIE A30 VSSLT A31 CPU_COMP_N A32 CPU_VREF A33 VDD_CPU A34 VSS A36 CPU_DBI3# A37 CPU_D60# A38 CPU_D57# A4 VSS A40 VSS A41 CPU_D55# A42 CPU_D53# A43 CPU_D14# RS600 Databook A-2 Ball Ref. Pin Name Ball Ref. Pin Name A44 CPU_D9# AB23 VSS A45 VSS AB25 VDD_CORE A5 GFX_REFCLKP AB26 VSS A6 GPPSB_REFCLKP AB28 VDD_CORE A7 CPU_CLKP AB29 VSS A8 VDD_PCIE AB3 VSS_PCIE AA1 GFX_TX11N AB30 VDD_CORE AA10 GFX_RX12N AB45 MEMA_DQ50 AA12 VDD_PCIE AB46 MEMA_DQ55 AA13 VDD_PCIE AB47 VSS AA2 GFX_TX11P AC1 GFX_TX12N AA3 VSS_PCIE AC10 GFX_RX14N AA35 IOPLLVDD18 AC12 VSS_PCIE AA36 CPU_A29# AC13 VDD_PCIE AA38 CPU_A25# AC18 VDD_CORE AA39 VSS AC19 VSS AA4 VSS_PCIE AC2 VSS_PCIE AA40 CPU_A21# AC20 VDD_CORE AA42 CPU_A24# AC22 VSS AA43 VSS AC23 VDD_CORE AA44 CPU_ADSTB1# AC25 VSS AA45 MEMA_DQ56 AC26 VDD_CORE AA46 MEMA_DQ60 AC28 VSS AA47 MEMA_DQ51 AC29 VDD_CORE AA5 GFX_RX11N AC3 VSS_PCIE AA6 GFX_RX11P AC30 VSS AA8 VSS_PCIE AC35 VDD_CPU AA9 GFX_RX12P AC36 VDD_CPU AB1 VSS_PCIE AC38 VSS AB18 VSS AC39 CPU_A17# AB19 VDD_CORE AC4 VSS_PCIE AB2 GFX_TX12P AC40 VSS AB20 VSS AC42 CPU_A26# AB22 VDD_CORE AC43 CPU_A22# © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name AC44 VSS AE2 GFX_TX14P AF29 VDD_CORE AC45 MEMA_DQ54 AE20 VSS AF3 VSS_PCIE AC46 MEMA_DQS6P AE22 VDD_CORE AF30 VSS AC47 MEMA_DQS6N AE23 VSS AF45 MEMA_DQ43 AC5 GFX_RX13P AE25 VDD_CORE AF46 MEMA_DQ47 AC6 GFX_RX13N AE26 VSS AF47 VSS AC8 VSS_PCIE AE28 VDD_CORE AG1 GFX_TX15N AC9 GFX_RX14P AE29 VSS AG10 GPP_TX0N AD1 GFX_TX13N AE3 VSS_PCIE AG12 VSS_PCIE AD10 VSS_PCIE AE30 VDD_CORE AG13 VDD_PCIE AD12 VSS_PCIE AE35 VDD_MEM AG2 VSS_PCIE AD13 VDD_PCIE AE36 VDD_MEM AG3 VSS_PCIE AD2 GFX_TX13P AE38 VDD_MEM AG35 VDD_MEM AD3 VSS_PCIE AE39 VSS AG36 VDD_MEM AD35 VDD_18MEM AE4 VSS_PCIE AG38 VDD_MEM AD36 CPU_A27# AE40 VSS AG39 VDD_MEM AD38 CPU_A28# AE42 VSS AG4 VSS_PCIE AD39 VSS AE43 VSS AG40 VSS AD4 VSS_PCIE AE44 VSS AG42 VSS AD40 CPU_A31# AE45 MEMA_DQ53 AG43 VSS AD42 CPU_A30# AE46 MEMA_DQ48 AG44 MEMB_DQ59 AD43 CPU_A33# AE47 MEMA_DQ52 AG45 MEMA_DQ42 AD44 CPU_A32# AE5 GFX_RX15N AG46 MEMA_DQ46 AD45 MEMA_DM6 AE6 GFX_RX15P AG47 MEMA_DQS5P AD46 VSS AE8 VSS_PCIE AG5 GPP_RX3P AD47 MEMA_DQ49 AE9 GPP_TX3P AG6 GPP_RX3N AD5 VSS_PCIE AF1 VSS_PCIE AG8 VSS_PCIE AD6 VSS_PCIE AF18 VDD_CORE AG9 GPP_TX0P AD8 VSS_PCIE AF19 VSS AH1 GPP_TX2N AD9 VSS_PCIE AF2 GFX_TX15P AH18 VSS AE1 GFX_TX14N AF20 VDD_CORE AH19 VDD_CORE AE10 GPP_TX3N AF22 VSS AH2 GPP_TX2P AE12 VSS_PCIE AF23 VDD_CORE AH20 VSS AE13 VDD_PCIE AF25 VSS AH22 VDD_CORE AE18 VSS AF26 VDD_CORE AH23 VSS AE19 VDD_CORE AF28 VSS AH25 VDD_CORE © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook A-3 Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name AH26 VSS AJ42 MEMB_DQ58 AK4 VSS_PCIE AH28 VDD_CORE AJ43 MEMB_DQ63 AK40 MEMB_DQS7P AH29 VSS AJ44 VSS AK42 MEMB_DQS7N AH3 VSS_PCIE AJ45 MEMA_DQ41 AK43 VSS AH30 VDD_CORE AJ46 MEMA_DQ40 AK44 MEMB_DQ57 AH45 VSS AJ47 MEMA_DQ45 AK45 MEMA_DQ44 AH46 MEMA_DQS5N AJ5 VSS_PCIE AK46 MEMA_DQ35 AH47 MEMA_DM5 AJ6 VSS_PCIE AK47 VSS AJ1 GPP_RX2N AJ8 VSS_PCIE AK5 GPP_RX0N AJ10 VSS_PCIE AJ9 VSS_PCIE AK6 GPP_RX0P AJ12 VSS_PCIE AK1 VSS_PCIE AK8 VSS_PCIE AJ13 VDD_PCIE AK10 SB_RX3N AK9 SB_RX3P AJ15 VDD_PCIE AK12 VSS_PCIE AL1 GPP_TX1N AJ16 VDD_18MEM AK13 VDD_PCIE AL15 VDD_PCIE AJ17 VDD_CORE AK15 VDD_PCIE AL16 VDD_18MEM AJ18 VDD_CORE AK16 VDD_18MEM AL17 VDD_CORE AJ19 VSS AK17 VDD_CORE AL18 VDD_CORE AJ2 GPP_RX2P AK18 VSS AL19 VDD_CORE AJ20 VDD_CORE AK19 VDD_CORE AL2 VSS_PCIE AJ22 VSS AK2 GPP_TX1P AL29 VDD_CORE AJ23 VDD_CORE AK20 VSS AL3 VSS_PCIE AJ25 VSS AK22 VDD_CORE AL30 VDD_CORE AJ26 VDD_CORE AK23 VSS AL31 VDD_CORE AJ28 VSS AK25 VDD_CORE AL32 VDD_18MEM AJ29 VDD_CORE AK26 VSS AL33 VDD_MEM AJ3 VSS_PCIE AK28 VDD_CORE AL45 MEMA_DQ34 AJ30 VSS AK29 VSS AL46 MEMA_DQ39 AJ31 VDD_CORE AK3 VSS_PCIE AL47 MEMA_DQ38 AJ32 VDD_18MEM AK30 VDD_CORE AM1 GPP_RX1N AJ33 VDD_MEM AK31 VDD_CORE AM10 SB_RX1N AJ35 VDD_MEM AK32 VDD_18MEM AM12 VDD_PCIE AJ36 VDD_MEM AK33 VDD_MEM AM13 VDD_PCIE AJ38 VSS AK35 VDD_MEM AM15 VDD_PCIE AJ39 VSS AK36 MEMB_DQ60 AM16 VDD_18MEM AJ4 VSS_PCIE AK38 VDD_MEM AM17 VDD_18MEM AJ40 VSS AK39 VSS AM18 VDD_18MEM RS600 Databook A-4 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name AM19 VDD_18MEM AN33 VDD_MEM AR30 VDD_MEM AM2 GPP_RX1P AN45 MEMA_DM4 AR32 VDD_MEM AM29 VDD_18MEM AN46 MEMA_DQ33 AR34 VDD_MEM AM3 VSS_PCIE AN47 MEMA_DQ37 AT1 SB_TX2N AM30 VDD_18MEM AP1 VDD_PCIE AT10 VSS AM31 VDD_18MEM AP10 VSS_PCIE AT12 VSS AM32 VDD_18MEM AP12 VDD_PCIE AT14 VDD_MEM AM33 VDD_18MEM AP13 VDD_PCIE AT16 VDD_MEM AM35 VDD_MEM AP2 SB_TX2P AT18 MEMB_DQ16 AM36 VDD_MEM AP3 VDD_PCIE AT19 VDD_MEM AM38 MEMB_DQ56 AP35 VDD_MEM AT2 VSS_PCIE AM39 MEMB_DQ62 AP36 VDD_MEM AT21 VDD_MEM AM4 VSS_PCIE AP38 VDD_MEM AT23 VDD_MEM AM40 VSS AP39 VSS AT24 MEMB_DM3 AM42 MEMB_DM7 AP4 VSS_PCIE AT25 MEMB_CK3N AM43 MEMB_DQ61 AP40 MEMB_DQ50 AT27 VDD_MEM AM44 VSS AP42 MEMB_DQ55 AT29 VDD_MEM AM45 VSS AP43 VSS AT3 VSS_PCIE AM46 MEMA_DQS4P AP44 MEMB_DQS6P AT30 MEMB_CK0P AM47 MEMA_DQS4N AP45 MEMA_DQ32 AT32 MEMB_DQ37 AM5 SB_RX2P AP46 MEMA_DQ36 AT34 VDD_MEM AM6 SB_RX2N AP47 VSS AT36 VDD_MEM AM8 VSS_PCIE AP5 VSS_PCIE AT38 MEMB_DM6 AM9 SB_RX1P AP6 VSS_PCIE AT39 MEMB_DQ51 AN1 SB_TX3N AP8 VSS_PCIE AT4 THERMALDIODE_N AN15 VDD_PCIE AP9 VSS_PCIE AT40 MEMB_DQ49 AN16 VDD_18MEM AR14 VDD_MEM AT42 MEMB_DQ54 AN17 VDD_MEM AR16 VDD_MEM AT43 VSS AN18 VDD_MEM AR18 VDD_MEM AT44 MEMB_DQS6N AN19 VDD_MEM AR19 VDD_MEM AT45 MEM_COMPN AN2 SB_TX3P AR21 VDD_MEM AT46 MEM_COMPP AN29 VDD_MEM AR23 VDD_MEM AT47 MEMA_ODT3 AN3 VSS_PCIE AR24 VDD_MEM AT5 THERMALDIODE_P AN30 VDD_MEM AR25 VDD_MEM AT6 VSS AN31 VDD_MEM AR27 VDD_18MEM AT8 MEMB_DQ4 AN32 VDD_MEM AR29 VDD_MEM AT9 SUS_STAT# RS600 Databook A-5 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name AU1 SB_TX1N AV9 MEMB_DQ7 AY36 MEMB_DQ41 AU2 SB_TX1P AW10 VSS AY38 MEMB_DQ42 AU3 SB_RX0P AW12 MEMA_CK4P AY4 MEMB_DM0 AU45 MEMA_CS3# AW14 VSS AY40 MEMB_DQ52 AU46 VSS AW16 MEMB_DQS1P AY42 VSS AU47 MEMA_ODT1 AW18 VSS AY43 MEMA_CK5N AV1 SB_TX0P AW19 MEMB_DQ17 AY44 MEMA_CK5P AV12 VSS AW21 VSS AY45 MEMA_ODT0 AV14 MEMB_DM1 AW23 MEMB_DQ18 AY46 MEMA_CAS# AV16 MEMB_DQS1N AW24 VSS AY47 VSS AV18 VDD_MEM AW25 MEMB_DQS3N AY5 MEMB_DQS0N AV19 MEMB_DQ21 AW27 MEMB_DQS3P AY6 MEMB_DQS0P AV2 SB_TX0N AW29 VSS AY8 MEMA_CK1P AV21 VDD_MEM AW30 MEMB_DQ32 B10 VDD_PCIE AV23 MEMB_DQ25 AW32 VSS B11 OSCIN AV24 VDD_MEM AW34 MEMB_DQ34 B12 DDC_DATA AV25 MEMB_CK3P AW36 VSS B14 STRP_DATA AV27 VDD_MEM AW38 MEMB_DM5 B15 VDD_18MEM AV29 MEMB_CK0N AY1 VSS_PCIE B16 VDD_CORE AV3 SB_RX0N AY10 MEMA_CK1N B17 AVDD AV30 VDD_MEM AY12 MEMA_CK4N B18 VDDR3 AV32 MEMB_DQ33 AY14 MEMB_DQ9 B19 AVDDDI AV34 VDD_MEM AY16 VSS B2 VSS_PCIE AV36 VDD_MEM AY18 MEMB_DQ20 B21 LTPVDD18 AV39 MEMB_DQ53 AY19 VSS B22 I2C_DATA AV4 MEMB_DQ5 AY2 VSS_PCIE B23 DACVSYNC AV40 MEMB_DQ48 AY21 MEMB_DQ23 B24 DACHSYNC AV42 VSS AY23 VSS B26 TMDS_HPD AV43 MEMA_CK2P AY24 MEMB_DQ19 B27 TXCLK_LP AV44 MEMA_CK2N AY25 VSS B28 TXOUT_L0N AV45 MEMA_A13 AY27 VSS B29 TXOUT_L2N AV46 MEMA_CS1# AY29 MEMB_DQ36 B3 VSS_PCIE AV47 MEMA_ODT2 AY3 VSS_PCIE B30 TXOUT_L1P AV5 MEMB_DQ0 AY30 VSS B31 VSS AV6 MEMB_DQ1 AY32 MEMB_DQ39 B32 CPU_COMP_P AV8 VSS AY34 VSS B33 VDD_CPU RS600 Databook A-6 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name B34 CPU_D62# BB3 VSS_PCIE BC46 MEMB_ODT0 B36 CPU_D59# BB30 MEMA_CK0P BC47 MEMA_RAS# B37 VSS BB32 MEMB_DM4 BC6 MEMB_DQ2 B38 CPU_D54# BB34 MEMB_DQ38 BC8 MEMB_CK4N B4 GFX_REFCLKN BB36 MEMB_DQ35 BD1 MEMA_DQ1 B40 CPU_D49# BB38 MEMB_DQ44 BD10 MEMB_CK1P B41 CPU_DSTB3N# BB4 MEMB_DQ6 BD12 MEMB_DQ13 B42 VSS BB40 MEMB_DQ46 BD14 VSS B43 CPU_D50# BB43 MEMB_CK2N BD16 VSS B44 CPU_D13# BB44 MEMB_CK2P BD18 MEMB_DQ10 B45 CPU_D15# BB45 MEMB_ODT3 BD19 MEMB_DQS2P B46 VSS BB46 VSS BD2 MEMA_DM0 B5 VSS BB47 MEMB_ODT2 BD21 MEMB_DQS2N B6 GPPSB_REFCLKN BB8 VSS BD23 VSS B7 CPU_CLKN BC1 MEMA_DQ5 BD24 MEMB_DQ29 B8 VDD_PCIE BC10 MEMB_CK1N BD25 VSS BA1 PCE_CALRP BC12 VSS BD27 MEMB_DQ26 BA2 PCE_CALRN BC14 MEMB_DQ8 BD29 MEMA_CK3N BA3 PCE_CALI BC16 MEMB_DQ11 BD3 MEMA_DQS0N BA45 MEMA_WE# BC18 VSS BD30 MEMA_CK3P BA46 MEMA_CS0# BC19 VSS BD32 MEMB_DQS4P BA47 MEMA_CS2# BC2 MEMA_DQ4 BD34 MEMB_DQS4N BB1 VSS_PCIE BC21 VSS BD36 VSS BB10 VSS BC23 MEMB_DQ28 BD38 MEMB_DQ40 BB12 VSS BC24 VSS BD4 VSS BB14 MEMB_DQ12 BC25 MEMB_DQ30 BD40 MEMB_DQS5N BB16 MEMB_DQ14 BC27 VSS BD42 MEMB_DQ47 BB18 MEMB_DQ15 BC29 VSS BD44 MEMB_CK5N BB19 MEMB_DM2 BC3 MEMA_DQ0 BD45 VDD_MEM BB2 VSS_PCIE BC30 VSS BD46 MEMA_BA0 BB21 MEMB_DQ22 BC32 VSS BD47 MEMA_BA1 BB23 MEMB_DQ24 BC34 VSS BD6 MEMB_DQ3 BB24 VSS BC36 MEMB_DQ45 BD8 MEMB_CK4P BB25 MEMB_DQ27 BC38 MEMB_DQS5P BE1 VSS BB27 MEMB_DQ31 BC40 MEMB_DQ43 BE10 MEMA_DQ16 BB29 MEMA_CK0N BC45 MEMB_ODT1 BE11 MEMA_DQ17 RS600 Databook A-7 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name BE12 MEMA_DQS2P BE5 MEMA_DQ13 BF42 VSS BE14 MEMA_DQ22 BE6 MEMA_DM1 BF43 VSS BE15 MEMA_DQ19 BE7 MEMA_DQ14 BF44 VSS BE16 MEMA_DQ29 BE8 MEMA_DQ10 BF45 MEMB_CS3# BE17 MEMA_DM3 BF10 MEMA_DQ20 BF46 VDD_MEM BE18 MEMA_DQS3P BF11 VSS BF5 MEMA_DQ8 BE19 MEMA_DQ31 BF12 MEMA_DQS2N BF6 VSS BE2 MEMA_DQS0P BF14 VSS BF7 MEMA_DQS1P BE20 MEMA_DQ27 BF15 MEMA_DQ18 BF8 MEMA_DQ15 BE21 VSS BF16 VSS BG10 MEMA_DQ11 BE22 MEMB_CKE2 BF17 MEMA_DQ25 BG11 MEMA_DQ21 BE23 MEMB_A14 BF18 MEMA_DQS3N BG12 MEMA_DM2 BE24 MEMB_A12 BF19 MEMA_DQ26 BG14 VSS BE25 MEMB_A7 BF2 VSS BG15 MEMA_DQ23 BE26 MEMB_A6 BF20 VSS BG16 MEMA_DQ28 BE27 MEMB_A3 BF21 VSS BG17 MEMA_DQ24 BE28 MEMA_CKE3 BF22 MEMB_CKE3 BG18 VSS BE29 MEMB_A2 BF23 MEMB_CKE0 BG19 MEMA_DQ30 BE3 MEMA_DQ6 BF24 VSS BG20 VSS BE30 MEMA_BA2 BF25 MEMB_A9 BG21 VSS BE31 MEMA_A11 BF26 MEMB_A8 BG22 VDD_MEM BE32 MEMA_A7 BF27 MEMB_A4 BG23 MEMB_CKE1 BE33 MEMA_A5 BF28 VSS BG24 MEMB_BA2 BE34 MEMA_A3 BF29 MEMA_CKE0 BG25 MEMB_A11 BE36 MEMB_A0 BF3 MEMA_DQ7 BG26 VDD_MEM BE37 MEMB_BA1 BF30 MEMA_A14 BG27 MEMB_A5 BE38 MEMB_CS2# BF31 MEMA_A12 BG28 MEMA_CKE1 BE4 MEMA_DQ3 BF32 VSS BG29 MEMA_CKE2 BE40 MEMB_WE# BF33 MEMA_A6 BG3 VSS BE41 VSS BF34 MEMA_A4 BG30 VDD_MEM BE42 MEMA_A0 BF36 MEMA_A1 BG31 MEMB_A1 BE43 VSS BF37 VSS BG32 MEMA_A9 BE44 MEMB_CK5P BF38 MEMB_RAS# BG33 MEMA_A8 BE45 VDD_MEM BF4 MEMA_DQ2 BG34 VDD_MEM BE46 MEMA_A10 BF40 MEMB_CS0# BG36 MEMA_A2 BE47 VSS BF41 MEMB_CS1# BG37 MEMB_A10 RS600 Databook A-8 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name BG38 MEMB_BA0 C33 VDD_CPU D36 VSS BG4 VSS C34 CPU_D63# D38 VSS BG40 VDD_MEM C36 CPU_D58# D4 VSS BG41 MEMB_CAS# C37 CPU_D48# D40 CPU_D23# BG42 MEMB_A13 C38 CPU_D61# D42 CPU_D22# BG43 VSS C4 GPIO10 D44 CPU_D21# BG44 MEM_VREF C40 CPU_D56# D45 VSS BG45 VDD_MEM C41 CPU_DSTB3P# D46 CPU_D10# BG5 MEMA_DQ12 C42 CPU_D51# D47 CPU_D12# BG6 MEMA_DQ9 C43 CPU_D52# D6 VSS BG7 MEMA_DQS1N C44 VSS D8 VDD_PCIE BG8 VSS C45 CPU_D11# E1 GFX_TX0N C1 VSS_PCIE C46 CPU_D8# E10 VSS C10 VDD_PCIE C47 VSS E12 VSS C11 VSS C5 GPIO8 E14 VDD_18CPU C12 VSS C6 VSS E16 VDD_CORE C14 VSS C7 VDD_PCIE E18 VSS C15 VDD_18CPU C8 VDD_PCIE E19 VSS C16 VDD_CORE D1 VSS_PCIE E2 VSS_PCIE C17 CPU_SLP# D10 SYSRESET# E21 TXCLK_UN C19 VSS D12 VSS E23 TXOUT_U3N C2 GFX_RX0N D14 VDD_18MEM E24 TXOUT_U1P C20 VSS D16 VDD_CORE E25 VSS C21 I2C_CLK D18 COMP E27 CPU_D44# C22 VSS D19 RED E29 VSS C23 VSS D2 GFX_TX0P E3 VSS_PCIE C24 TXOUT_U0N D21 VSS E30 CPU_D39# C25 TXOUT_U0P D23 VSS E32 VSS C26 VSS D24 TXOUT_U1N E34 CPU_D31# C27 TXOUT_L3P D25 CPU_D43# E36 CPU_D26# C28 TXOUT_L3N D27 VSS E38 CPU_D24# C29 VSSLT D29 CPU_D35# E40 CPU_D16# C3 GFX_RX0P D3 GPIO9 E42 CPU_D18# C30 TXOUT_L1N D30 VSS E45 CPU_DSTB0P# C31 VDD_CPU D32 CPU_D30# E46 CPU_DSTB0N# C32 VDD_CPU D34 VSS E47 CPU_DBI0# RS600 Databook A-9 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name E8 VDD_PCIE H10 VDD_PCIE J21 TXOUT_U2P F1 GFX_TX1N H12 VSS J23 VDDLT33 F10 POWERGOOD H14 VDD_18CPU J24 VDDLT18 F12 VSS H16 VDD_CORE J25 CPU_D46# F14 VDD_18MEM H18 VSS J27 CPU_D45# F16 VDD_CORE H19 VSS J29 VDD_CPU F18 Y H2 GFX_TX3P J30 CPU_DBI2# F19 GREEN H21 TXOUT_U2N J32 CPU_D32# F2 GFX_TX1P H23 VDDLT33 J34 CPU_D27# F21 TXCLK_UP H24 VDDLT18 J36 CPU_DSTB1P# F23 TXOUT_U3P H25 VSS J38 CPU_DSTB1N# F24 VSSLT H27 VSS K1 GFX_TX3N F25 CPU_D47# H29 CPU_DSTB2N# K12 VDD_PCIE F27 CPU_D41# H3 VSS_PCIE K14 VDD_PCIE F29 CPU_DSTB2P# H30 VDD_CPU K16 VDD_18CPU F3 VSS_PCIE H32 VDD_CPU K18 VSS F30 CPU_D38# H34 VSS K19 VSS F32 CPU_D33# H36 VSS K2 VSS_PCIE F34 CPU_D28# H38 CPU_D29# K21 VSS F36 CPU_D25# H4 GFX_RX1N K23 VSS F38 VSS H40 CPU_D20# K24 VSS F4 VSS_PCIE H42 CPU_REQ3# K25 CPU_CPURST# F40 CPU_D19# H43 VSS K27 CPU_D42# F44 CPU_D17# H44 CPU_BPRI# K29 VDD_CPU F45 CPU_D6# H45 CPU_D4# K3 VSS_PCIE F46 VSS H46 CPU_D0# K30 CPU_D37# F47 CPU_D7# H47 VSS K32 CPU_D34# F5 VSS H5 GFX_RX1P K34 VSS F8 VDD_PCIE H6 VSS_PCIE K36 CPU_DBI1# G1 GFX_TX2N H8 VDD_PCIE K39 VSS G2 GFX_TX2P J10 VDD_PCIE K4 VSS_PCIE G3 VSS_PCIE J12 VSS K40 CPU_REQ4# G45 CPU_D3# J14 VDD_18MEM K42 CPU_A4# G46 CPU_D5# J16 VDD_CORE K43 VSS G47 CPU_D1# J18 C K44 CPU_REQ2# H1 VSS_PCIE J19 BLUE K45 CPU_D2# RS600 Databook A-10 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name K46 CPU_DEFER# M43 VSS P44 CPU_A11# K47 CPU_HIT# M44 CPU_A5# P45 CPU_DRDY# K5 VSS_PCIE M45 CPU_LOCK# P46 CPU_HITM# K6 GFX_RX2N M46 CPU_DBSY# P47 K8 GFX_RX2P M47 CPU_BNR# VDD_CPU_PACKAG E K9 VDD_PCIE M5 GFX_RX4P P5 GFX_RX6N L1 GFX_TX4N M6 GFX_RX3N P6 VSS_PCIE L2 GFX_TX4P M8 GFX_RX3P P8 GFX_RX5N L3 VSS_PCIE M9 VSS_PCIE P9 GFX_RX5P L45 CPU_RS2# N14 VDD_PCIE R1 GFX_TX6N L46 VSS N16 VDD_18MEM R15 VDD_PCIE L47 CPU_RS0# N18 VSS R16 VDD_18MEM M1 GFX_TX5N N19 VSS R17 VDD_18CPU M10 VDD_PLLPCIE N21 VSS R18 VDD_18CPU M12 VDD_PCIE N23 AVSSN R19 VDD_18CPU M14 VDD_PCIE N24 VDD_18CPU R2 VSS_PCIE M16 VDD_18MEM N25 VDD_18CPU R29 VDD_CPU M18 VSS N27 VDD_CPU R3 VSS_PCIE M19 VSS N29 VDD_CPU R30 VDD_CPU M2 GFX_TX5P N30 VDD_CPU R31 VDD_CPU M21 VSS N32 VDD_CPU R32 VDD_CPU M23 AVSSN N34 VDD_CPU R33 VDD_CPU M24 VSS P1 VSS_PCIE R45 CPU_TRDY# M25 VSS P10 VSS_PCIE R46 CPU_ADS# M27 CPU_D40# P12 VDD_PLLPCIE R47 CPU_RS1# M29 CPU_D36# P13 VDD_PLLPCIE T1 GFX_TX7N M3 VSS_PCIE P2 GFX_TX6P T10 GFX_RX8N M30 VDD_CPU P3 VSS_PCIE T12 VSS_PLLPCIE M32 VDD_CPU P35 VDD_CPU T13 VSS_PLLPCIE M34 VDD_CPU P36 CPU_A12# T15 VDD_PCIE M36 VSS P38 CPU_A10# T16 VDD_18MEM M38 CPU_A7# P39 CPU_REQ0# T17 VDD_18CPU M39 CPU_REQ1# P4 GFX_RX6P T18 VDD_18CPU M4 GFX_RX4N P40 VSS T19 VDD_18CPU M40 VSS P42 CPU_A8# T2 GFX_TX7P M42 CPU_A3# P43 VSS T29 VDD_18CPU RS600 Databook A-11 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. Pin Name T3 VSS_PCIE U47 MEMA_DQ59 V6 GFX_RX9N T30 VDD_18CPU V1 VDD_PCIE V8 VSS_PCIE T31 VDD_18CPU V10 GFX_RX10N V9 GFX_RX10P T32 VDD_18CPU V12 VSS_PLLPCIE W1 GFX_TX9N T33 VDD_CPU V13 VDD_PCIE W10 VSS_PCIE T35 VDD_CPU V15 VDD_PCIE W12 VDD_PCIE T36 VDD_CPU V16 VDD_18MEM W13 VDD_PCIE T38 VSS V17 VDD_CORE W15 VDD_PCIE T39 CPU_A6# V18 VDD_CORE W16 VDD_18MEM T4 VSS_PCIE V19 VSS W17 VDD_CORE T40 VSS V2 GFX_TX9P W18 VSS T42 CPU_ADSTB0# V20 VDD_CORE W19 VDD_CORE T43 CPU_A9# V22 VSS W2 VSS_PCIE T44 VSS V23 VDD_CORE W20 VSS T45 CPU_BR0# V25 VSS W22 VDD_CORE T46 VSS V26 VDD_CORE W23 VSS T47 CPU_EDRDY# V28 VSS W25 VDD_CORE T5 GFX_RX7N V29 VDD_CORE W26 VSS T6 GFX_RX7P V3 VDD_PCIE W28 VDD_CORE T8 VSS_PCIE V30 VSS W29 VSS T9 GFX_RX8P V31 VDD_CORE W3 VSS_PCIE U1 GFX_TX8N V32 VDD_18CPU W30 VDD_CORE U15 VDD_PCIE V33 VDD_CPU W31 VDD_CORE U16 VDD_18MEM V35 IOPLLVDD12 W32 VDD_18CPU U17 VDD_CORE V36 CPU_A20# W33 VDD_CPU U18 VDD_CORE V38 CPU_A23# W35 IOPLLVSS U19 VDD_CORE V39 VSS W36 VDD_CPU U2 GFX_TX8P V4 VSS_PCIE W38 VDD_CPU U29 VDD_CORE V40 CPU_A14# W39 CPU_A13# U3 VSS_PCIE V42 CPU_A16# W4 VSS_PCIE U30 VDD_CORE V43 VSS W40 VSS U31 VDD_CORE V44 CPU_A19# W42 CPU_A15# U32 VDD_18CPU V45 MEMA_DQ62 W43 CPU_A18# U33 VDD_CPU V46 MEMA_DQ58 W44 VSS U45 MEMA_DQ63 V47 VSS W45 MEMA_DM7 U46 CPU_RESERVED V5 GFX_RX9P W46 MEMA_DQS7P RS600 Databook A-12 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Ball Ref. Pin Name W47 MEMA_DQS7N W5 VSS_PCIE W6 VSS_PCIE W8 VSS_PCIE W9 VSS_PCIE Y1 GFX_TX10N Y18 VDD_CORE Y19 VSS Y2 GFX_TX10P Y20 VDD_CORE Y22 VSS Y23 VDD_CORE Y25 VSS Y26 VDD_CORE Y28 VSS Y29 VDD_CORE Y3 VSS_PCIE Y30 VSS Y45 VSS Y46 MEMA_DQ57 Y47 MEMA_DQ61 RS600 Databook A-13 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings A.2 Pin List Sorted by Pin Name Table A-2 Pin List Sorted by Pin Name Pin Name Ball Ref. AVDD A17 AVDD B17 AVDDDI B19 AVDDQ A23 AVSSDI A19 AVSSN M23 AVSSN N23 AVSSQ A24 BLUE J19 C J18 COMP D18 CPU_A10# P38 CPU_A11# P44 CPU_A12# P36 CPU_A13# W39 CPU_A14# V40 CPU_A15# W42 CPU_A16# V42 CPU_A17# AC39 CPU_A18# W43 CPU_A19# V44 CPU_A20# V36 CPU_A21# AA40 CPU_A22# AC43 CPU_A23# V38 CPU_A24# AA42 CPU_A25# AA38 CPU_A26# AC42 CPU_A27# AD36 CPU_A28# AD38 CPU_A29# AA36 CPU_A3# M42 CPU_A30# AD42 CPU_A31# AD40 RS600 Databook A-14 Pin Name Ball Ref. Pin Name Ball Ref. CPU_A32# AD44 CPU_D22# D42 CPU_A33# AD43 CPU_D23# D40 CPU_A4# K42 CPU_D24# E38 CPU_A5# M44 CPU_D25# F36 CPU_A6# T39 CPU_D26# E36 CPU_A7# M38 CPU_D27# J34 CPU_A8# P42 CPU_D28# F34 CPU_A9# T43 CPU_D29# H38 CPU_ADS# R46 CPU_D3# G45 CPU_ADSTB0# T42 CPU_D30# D32 CPU_ADSTB1# AA44 CPU_D31# E34 CPU_BNR# M47 CPU_D32# J32 CPU_BPRI# H44 CPU_D33# F32 CPU_BR0# T45 CPU_D34# K32 CPU_CLKN B7 CPU_D35# D29 CPU_CLKP A7 CPU_D36# M29 CPU_COMP_N A31 CPU_D37# K30 CPU_COMP_P B32 CPU_D38# F30 CPU_CPURST# K25 CPU_D39# E30 CPU_D0# H46 CPU_D4# H45 CPU_D1# G47 CPU_D40# M27 CPU_D10# D46 CPU_D41# F27 CPU_D11# C45 CPU_D42# K27 CPU_D12# D47 CPU_D43# D25 CPU_D13# B44 CPU_D44# E27 CPU_D14# A43 CPU_D45# J27 CPU_D15# B45 CPU_D46# J25 CPU_D16# E40 CPU_D47# F25 CPU_D17# F44 CPU_D48# C37 CPU_D18# E42 CPU_D49# B40 CPU_D19# F40 CPU_D5# G46 CPU_D2# K45 CPU_D50# B43 CPU_D20# H40 CPU_D51# C42 CPU_D21# D44 CPU_D52# C43 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. CPU_D53# A42 CPU_REQ2# K44 GFX_RX3P M8 CPU_D54# B38 CPU_REQ3# H42 GFX_RX4N M4 CPU_D55# A41 CPU_REQ4# K40 GFX_RX4P M5 CPU_D56# C40 CPU_RESERVED U46 GFX_RX5N P8 CPU_D57# A38 CPU_RS0# L47 GFX_RX5P P9 CPU_D58# C36 CPU_RS1# R47 GFX_RX6N P5 CPU_D59# B36 CPU_RS2# L45 GFX_RX6P P4 CPU_D6# F45 CPU_SLP# C17 GFX_RX7N T5 CPU_D60# A37 CPU_TRDY# R45 GFX_RX7P T6 CPU_D61# C38 CPU_VREF A32 GFX_RX8N T10 CPU_D62# B34 DACHSYNC B24 GFX_RX8P T9 CPU_D63# C34 DACRSET A25 GFX_RX9N V6 CPU_D7# F47 DACSDA A22 GFX_RX9P V5 CPU_D8# C46 DACVSYNC B23 GFX_TX0N E1 CPU_D9# A44 DDC_DATA B12 GFX_TX0P D2 CPU_DBI0# E47 GFX_REFCLKN B4 GFX_TX10N Y1 CPU_DBI1# K36 GFX_REFCLKP A5 GFX_TX10P Y2 CPU_DBI2# J30 GFX_RX0N C2 GFX_TX11N AA1 CPU_DBI3# A36 GFX_RX0P C3 GFX_TX11P AA2 CPU_DBSY# M46 GFX_RX10N V10 GFX_TX12N AC1 CPU_DEFER# K46 GFX_RX10P V9 GFX_TX12P AB2 CPU_DRDY# P45 GFX_RX11N AA5 GFX_TX13N AD1 CPU_DSTB0N# E46 GFX_RX11P AA6 GFX_TX13P AD2 CPU_DSTB0P# E45 GFX_RX12N AA10 GFX_TX14N AE1 CPU_DSTB1N# J38 GFX_RX12P AA9 GFX_TX14P AE2 CPU_DSTB1P# J36 GFX_RX13N AC6 GFX_TX15N AG1 CPU_DSTB2N# H29 GFX_RX13P AC5 GFX_TX15P AF2 CPU_DSTB2P# F29 GFX_RX14N AC10 GFX_TX1N F1 CPU_DSTB3N# B41 GFX_RX14P AC9 GFX_TX1P F2 CPU_DSTB3P# C41 GFX_RX15N AE5 GFX_TX2N G1 CPU_EDRDY# T47 GFX_RX15P AE6 GFX_TX2P G2 CPU_HIT# K47 GFX_RX1N H4 GFX_TX3N K1 CPU_HITM# P46 GFX_RX1P H5 GFX_TX3P H2 CPU_LOCK# M45 GFX_RX2N K6 GFX_TX4N L1 CPU_REQ0# P39 GFX_RX2P K8 GFX_TX4P L2 CPU_REQ1# M39 GFX_RX3N M6 GFX_TX5N M1 RS600 Databook A-15 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. GFX_TX5P M2 LTPVDD18 B21 MEMA_CKE0 BF29 GFX_TX6N R1 LTPVSS18 A21 MEMA_CKE1 BG28 GFX_TX6P P2 MEM_COMPN AT45 MEMA_CKE2 BG29 GFX_TX7N T1 MEM_COMPP AT46 MEMA_CKE3 BE28 GFX_TX7P T2 MEM_VREF BG44 MEMA_CS0# BA46 GFX_TX8N U1 MEMA_A0 BE42 MEMA_CS1# AV46 GFX_TX8P U2 MEMA_A1 BF36 MEMA_CS2# BA47 GFX_TX9N W1 MEMA_A10 BE46 MEMA_CS3# AU45 GFX_TX9P V2 MEMA_A11 BE31 MEMA_DM0 BD2 GPIO10 C4 MEMA_A12 BF31 MEMA_DM1 BE6 GPIO8 C5 MEMA_A13 AV45 MEMA_DM2 BG12 GPIO9 D3 MEMA_A14 BF30 MEMA_DM3 BE17 GPP_RX0N AK5 MEMA_A2 BG36 MEMA_DM4 AN45 GPP_RX0P AK6 MEMA_A3 BE34 MEMA_DM5 AH47 GPP_RX1N AM1 MEMA_A4 BF34 MEMA_DM6 AD45 GPP_RX1P AM2 MEMA_A5 BE33 MEMA_DM7 W45 GPP_RX2N AJ1 MEMA_A6 BF33 MEMA_DQ0 BC3 GPP_RX2P AJ2 MEMA_A7 BE32 MEMA_DQ1 BD1 GPP_RX3N AG6 MEMA_A8 BG33 MEMA_DQ10 BE8 GPP_RX3P AG5 MEMA_A9 BG32 MEMA_DQ11 BG10 GPP_TX0N AG10 MEMA_BA0 BD46 MEMA_DQ12 BG5 GPP_TX0P AG9 MEMA_BA1 BD47 MEMA_DQ13 BE5 GPP_TX1N AL1 MEMA_BA2 BE30 MEMA_DQ14 BE7 GPP_TX1P AK2 MEMA_CAS# AY46 MEMA_DQ15 BF8 GPP_TX2N AH1 MEMA_CK0N BB29 MEMA_DQ16 BE10 GPP_TX2P AH2 MEMA_CK0P BB30 MEMA_DQ17 BE11 GPP_TX3N AE10 MEMA_CK1N AY10 MEMA_DQ18 BF15 GPP_TX3P AE9 MEMA_CK1P AY8 MEMA_DQ19 BE15 GPPSB_REFCLKN B6 MEMA_CK2N AV44 MEMA_DQ2 BF4 GPPSB_REFCLKP A6 MEMA_CK2P AV43 MEMA_DQ20 BF10 GREEN F19 MEMA_CK3N BD29 MEMA_DQ21 BG11 I2C_CLK C21 MEMA_CK3P BD30 MEMA_DQ22 BE14 I2C_DATA B22 MEMA_CK4N AY12 MEMA_DQ23 BG15 IOPLLVDD12 V35 MEMA_CK4P AW12 MEMA_DQ24 BG17 IOPLLVDD18 AA35 MEMA_CK5N AY43 MEMA_DQ25 BF17 IOPLLVSS W35 MEMA_CK5P AY44 MEMA_DQ26 BF19 RS600 Databook A-16 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. MEMA_DQ27 BE20 MEMA_DQ6 BE3 MEMB_A14 BE23 MEMA_DQ28 BG16 MEMA_DQ60 AA46 MEMB_A2 BE29 MEMA_DQ29 BE16 MEMA_DQ61 Y47 MEMB_A3 BE27 MEMA_DQ3 BE4 MEMA_DQ62 V45 MEMB_A4 BF27 MEMA_DQ30 BG19 MEMA_DQ63 U45 MEMB_A5 BG27 MEMA_DQ31 BE19 MEMA_DQ7 BF3 MEMB_A6 BE26 MEMA_DQ32 AP45 MEMA_DQ8 BF5 MEMB_A7 BE25 MEMA_DQ33 AN46 MEMA_DQ9 BG6 MEMB_A8 BF26 MEMA_DQ34 AL45 MEMA_DQS0N BD3 MEMB_A9 BF25 MEMA_DQ35 AK46 MEMA_DQS0P BE2 MEMB_BA0 BG38 MEMA_DQ36 AP46 MEMA_DQS1N BG7 MEMB_BA1 BE37 MEMA_DQ37 AN47 MEMA_DQS1P BF7 MEMB_BA2 BG24 MEMA_DQ38 AL47 MEMA_DQS2N BF12 MEMB_CAS# BG41 MEMA_DQ39 AL46 MEMA_DQS2P BE12 MEMB_CK0N AV29 MEMA_DQ4 BC2 MEMA_DQS3N BF18 MEMB_CK0P AT30 MEMA_DQ40 AJ46 MEMA_DQS3P BE18 MEMB_CK1N BC10 MEMA_DQ41 AJ45 MEMA_DQS4N AM47 MEMB_CK1P BD10 MEMA_DQ42 AG45 MEMA_DQS4P AM46 MEMB_CK2N BB43 MEMA_DQ43 AF45 MEMA_DQS5N AH46 MEMB_CK2P BB44 MEMA_DQ44 AK45 MEMA_DQS5P AG47 MEMB_CK3N AT25 MEMA_DQ45 AJ47 MEMA_DQS6N AC47 MEMB_CK3P AV25 MEMA_DQ46 AG46 MEMA_DQS6P AC46 MEMB_CK4N BC8 MEMA_DQ47 AF46 MEMA_DQS7N W47 MEMB_CK4P BD8 MEMA_DQ48 AE46 MEMA_DQS7P W46 MEMB_CK5N BD44 MEMA_DQ49 AD47 MEMA_ODT0 AY45 MEMB_CK5P BE44 MEMA_DQ5 BC1 MEMA_ODT1 AU47 MEMB_CKE0 BF23 MEMA_DQ50 AB45 MEMA_ODT2 AV47 MEMB_CKE1 BG23 MEMA_DQ51 AA47 MEMA_ODT3 AT47 MEMB_CKE2 BE22 MEMA_DQ52 AE47 MEMA_RAS# BC47 MEMB_CKE3 BF22 MEMA_DQ53 AE45 MEMA_WE# BA45 MEMB_CS0# BF40 MEMA_DQ54 AC45 MEMB_A0 BE36 MEMB_CS1# BF41 MEMA_DQ55 AB46 MEMB_A1 BG31 MEMB_CS2# BE38 MEMA_DQ56 AA45 MEMB_A10 BG37 MEMB_CS3# BF45 MEMA_DQ57 Y46 MEMB_A11 BG25 MEMB_DM0 AY4 MEMA_DQ58 V46 MEMB_A12 BE24 MEMB_DM1 AV14 MEMA_DQ59 U47 MEMB_A13 BG42 MEMB_DM2 BB19 RS600 Databook A-17 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. MEMB_DM3 AT24 MEMB_DQ37 AT32 MEMB_DQS1P AW16 MEMB_DM4 BB32 MEMB_DQ38 BB34 MEMB_DQS2N BD21 MEMB_DM5 AW38 MEMB_DQ39 AY32 MEMB_DQS2P BD19 MEMB_DM6 AT38 MEMB_DQ4 AT8 MEMB_DQS3N AW25 MEMB_DM7 AM42 MEMB_DQ40 BD38 MEMB_DQS3P AW27 MEMB_DQ0 AV5 MEMB_DQ41 AY36 MEMB_DQS4N BD34 MEMB_DQ1 AV6 MEMB_DQ42 AY38 MEMB_DQS4P BD32 MEMB_DQ10 BD18 MEMB_DQ43 BC40 MEMB_DQS5N BD40 MEMB_DQ11 BC16 MEMB_DQ44 BB38 MEMB_DQS5P BC38 MEMB_DQ12 BB14 MEMB_DQ45 BC36 MEMB_DQS6N AT44 MEMB_DQ13 BD12 MEMB_DQ46 BB40 MEMB_DQS6P AP44 MEMB_DQ14 BB16 MEMB_DQ47 BD42 MEMB_DQS7N AK42 MEMB_DQ15 BB18 MEMB_DQ48 AV40 MEMB_DQS7P AK40 MEMB_DQ16 AT18 MEMB_DQ49 AT40 MEMB_ODT0 BC46 MEMB_DQ17 AW19 MEMB_DQ5 AV4 MEMB_ODT1 BC45 MEMB_DQ18 AW23 MEMB_DQ50 AP40 MEMB_ODT2 BB47 MEMB_DQ19 AY24 MEMB_DQ51 AT39 MEMB_ODT3 BB45 MEMB_DQ2 BC6 MEMB_DQ52 AY40 MEMB_RAS# BF38 MEMB_DQ20 AY18 MEMB_DQ53 AV39 MEMB_WE# BE40 MEMB_DQ21 AV19 MEMB_DQ54 AT42 OSCIN B11 MEMB_DQ22 BB21 MEMB_DQ55 AP42 PCE_CALI BA3 MEMB_DQ23 AY21 MEMB_DQ56 AM38 PCE_CALRN BA2 MEMB_DQ24 BB23 MEMB_DQ57 AK44 PCE_CALRP BA1 MEMB_DQ25 AV23 MEMB_DQ58 AJ42 PLLVDD12 A12 MEMB_DQ26 BD27 MEMB_DQ59 AG44 PLLVDD18 A14 MEMB_DQ27 BB25 MEMB_DQ6 BB4 PLLVSS A11 MEMB_DQ28 BC23 MEMB_DQ60 AK36 POWERGOOD F10 MEMB_DQ29 BD24 MEMB_DQ61 AM43 RED D19 MEMB_DQ3 BD6 MEMB_DQ62 AM39 SB_RX0N AV3 MEMB_DQ30 BC25 MEMB_DQ63 AJ43 SB_RX0P AU3 MEMB_DQ31 BB27 MEMB_DQ7 AV9 SB_RX1N AM10 MEMB_DQ32 AW30 MEMB_DQ8 BC14 SB_RX1P AM9 MEMB_DQ33 AV32 MEMB_DQ9 AY14 SB_RX2N AM6 MEMB_DQ34 AW34 MEMB_DQS0N AY5 SB_RX2P AM5 MEMB_DQ35 BB36 MEMB_DQS0P AY6 SB_RX3N AK10 MEMB_DQ36 AY29 MEMB_DQS1N AV16 SB_RX3P AK9 RS600 Databook A-18 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. SB_TX0N AV2 VDD_18CPU C15 VDD_18MEM AR27 SB_TX0P AV1 VDD_18CPU E14 VDD_18MEM B15 SB_TX1N AU1 VDD_18CPU H14 VDD_18MEM D14 SB_TX1P AU2 VDD_18CPU K16 VDD_18MEM F14 SB_TX2N AT1 VDD_18CPU N24 VDD_18MEM J14 SB_TX2P AP2 VDD_18CPU N25 VDD_18MEM M16 SB_TX3N AN1 VDD_18CPU R17 VDD_18MEM N16 SB_TX3P AN2 VDD_18CPU R18 VDD_18MEM R16 STRP_DATA B14 VDD_18CPU R19 VDD_18MEM T16 SUS_STAT# AT9 VDD_18CPU T17 VDD_18MEM U16 SYSRESET# D10 VDD_18CPU T18 VDD_18MEM V16 TESTMODE A20 VDD_18CPU T19 VDD_18MEM W16 THERMALDIODE_N AT4 VDD_18CPU T29 VDD_CORE A16 THERMALDIODE_P AT5 VDD_18CPU T30 VDD_CORE AB19 TMDS_HPD B26 VDD_18CPU T31 VDD_CORE AB22 TXCLK_LN A27 VDD_18CPU T32 VDD_CORE AB25 TXCLK_LP B27 VDD_18CPU U32 VDD_CORE AB28 TXCLK_UN E21 VDD_18CPU V32 VDD_CORE AB30 TXCLK_UP F21 VDD_18CPU W32 VDD_CORE AC18 TXOUT_L0N B28 VDD_18MEM AD35 VDD_CORE AC20 TXOUT_L0P A28 VDD_18MEM AJ16 VDD_CORE AC23 TXOUT_L1N C30 VDD_18MEM AJ32 VDD_CORE AC26 TXOUT_L1P B30 VDD_18MEM AK16 VDD_CORE AC29 TXOUT_L2N B29 VDD_18MEM AK32 VDD_CORE AE19 TXOUT_L2P A29 VDD_18MEM AL16 VDD_CORE AE22 TXOUT_L3N C28 VDD_18MEM AL32 VDD_CORE AE25 TXOUT_L3P C27 VDD_18MEM AM16 VDD_CORE AE28 TXOUT_U0N C24 VDD_18MEM AM17 VDD_CORE AE30 TXOUT_U0P C25 VDD_18MEM AM18 VDD_CORE AF18 TXOUT_U1N D24 VDD_18MEM AM19 VDD_CORE AF20 TXOUT_U1P E24 VDD_18MEM AM29 VDD_CORE AF23 TXOUT_U2N H21 VDD_18MEM AM30 VDD_CORE AF26 TXOUT_U2P J21 VDD_18MEM AM31 VDD_CORE AF29 TXOUT_U3N E23 VDD_18MEM AM32 VDD_CORE AH19 TXOUT_U3P F23 VDD_18MEM AM33 VDD_CORE AH22 VDD_18CPU A15 VDD_18MEM AN16 VDD_CORE AH25 RS600 Databook A-19 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. VDD_CORE AH28 VDD_CORE V18 VDD_CPU N34 VDD_CORE AH30 VDD_CORE V20 VDD_CPU P35 VDD_CORE AJ17 VDD_CORE V23 VDD_CPU R29 VDD_CORE AJ18 VDD_CORE V26 VDD_CPU R30 VDD_CORE AJ20 VDD_CORE V29 VDD_CPU R31 VDD_CORE AJ23 VDD_CORE V31 VDD_CPU R32 VDD_CORE AJ26 VDD_CORE W17 VDD_CPU R33 VDD_CORE AJ29 VDD_CORE W19 VDD_CPU T33 VDD_CORE AJ31 VDD_CORE W22 VDD_CPU T35 VDD_CORE AK17 VDD_CORE W25 VDD_CPU T36 VDD_CORE AK19 VDD_CORE W28 VDD_CPU U33 VDD_CORE AK22 VDD_CORE W30 VDD_CPU V33 VDD_CORE AK25 VDD_CORE W31 VDD_CPU W33 VDD_CORE AK28 VDD_CORE Y18 VDD_CPU W36 VDD_CORE AK30 VDD_CORE Y20 VDD_CPU W38 VDD_CORE AK31 VDD_CORE Y23 P47 VDD_CORE AL17 VDD_CORE Y26 VDD_CPU_PACKAG E VDD_CORE AL18 VDD_CORE Y29 VDD_MEM AE35 VDD_CORE AL19 VDD_CPU A33 VDD_MEM AE36 VDD_CORE AL29 VDD_CPU AC35 VDD_MEM AE38 VDD_CORE AL30 VDD_CPU AC36 VDD_MEM AG35 VDD_CORE AL31 VDD_CPU B33 VDD_MEM AG36 VDD_CORE B16 VDD_CPU C31 VDD_MEM AG38 VDD_CORE C16 VDD_CPU C32 VDD_MEM AG39 VDD_CORE D16 VDD_CPU C33 VDD_MEM AJ33 VDD_CORE E16 VDD_CPU H30 VDD_MEM AJ35 VDD_CORE F16 VDD_CPU H32 VDD_MEM AJ36 VDD_CORE H16 VDD_CPU J29 VDD_MEM AK33 VDD_CORE J16 VDD_CPU K29 VDD_MEM AK35 VDD_CORE U17 VDD_CPU M30 VDD_MEM AK38 VDD_CORE U18 VDD_CPU M32 VDD_MEM AL33 VDD_CORE U19 VDD_CPU M34 VDD_MEM AM35 VDD_CORE U29 VDD_CPU N27 VDD_MEM AM36 VDD_CORE U30 VDD_CPU N29 VDD_MEM AN17 VDD_CORE U31 VDD_CPU N30 VDD_MEM AN18 VDD_CORE V17 VDD_CPU N32 VDD_MEM AN19 RS600 Databook A-20 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. VDD_MEM AN29 VDD_MEM BD45 VDD_PCIE E8 VDD_MEM AN30 VDD_MEM BE45 VDD_PCIE F8 VDD_MEM AN31 VDD_MEM BF46 VDD_PCIE H10 VDD_MEM AN32 VDD_MEM BG22 VDD_PCIE H8 VDD_MEM AN33 VDD_MEM BG26 VDD_PCIE J10 VDD_MEM AP35 VDD_MEM BG30 VDD_PCIE K12 VDD_MEM AP36 VDD_MEM BG34 VDD_PCIE K14 VDD_MEM AP38 VDD_MEM BG40 VDD_PCIE K9 VDD_MEM AR14 VDD_MEM BG45 VDD_PCIE M12 VDD_MEM AR16 VDD_PCIE A10 VDD_PCIE M14 VDD_MEM AR18 VDD_PCIE A8 VDD_PCIE N14 VDD_MEM AR19 VDD_PCIE AA12 VDD_PCIE R15 VDD_MEM AR21 VDD_PCIE AA13 VDD_PCIE T15 VDD_MEM AR23 VDD_PCIE AC13 VDD_PCIE U15 VDD_MEM AR24 VDD_PCIE AD13 VDD_PCIE V1 VDD_MEM AR25 VDD_PCIE AE13 VDD_PCIE V13 VDD_MEM AR29 VDD_PCIE AG13 VDD_PCIE V15 VDD_MEM AR30 VDD_PCIE AJ13 VDD_PCIE V3 VDD_MEM AR32 VDD_PCIE AJ15 VDD_PCIE W12 VDD_MEM AR34 VDD_PCIE AK13 VDD_PCIE W13 VDD_MEM AT14 VDD_PCIE AK15 VDD_PCIE W15 VDD_MEM AT16 VDD_PCIE AL15 VDD_PLLPCIE M10 VDD_MEM AT19 VDD_PCIE AM12 VDD_PLLPCIE P12 VDD_MEM AT21 VDD_PCIE AM13 VDD_PLLPCIE P13 VDD_MEM AT23 VDD_PCIE AM15 VDDLT18 H24 VDD_MEM AT27 VDD_PCIE AN15 VDDLT18 J24 VDD_MEM AT29 VDD_PCIE AP1 VDDLT33 H23 VDD_MEM AT34 VDD_PCIE AP12 VDDLT33 J23 VDD_MEM AT36 VDD_PCIE AP13 VDDR3 A18 VDD_MEM AV18 VDD_PCIE AP3 VDDR3 B18 VDD_MEM AV21 VDD_PCIE B10 VSS A34 VDD_MEM AV24 VDD_PCIE B8 VSS A4 VDD_MEM AV27 VDD_PCIE C10 VSS A40 VDD_MEM AV30 VDD_PCIE C7 VSS A45 VDD_MEM AV34 VDD_PCIE C8 VSS AA39 VDD_MEM AV36 VDD_PCIE D8 VSS AA43 RS600 Databook A-21 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. VSS AB18 VSS AH20 VSS AW10 VSS AB20 VSS AH23 VSS AW14 VSS AB23 VSS AH26 VSS AW18 VSS AB26 VSS AH29 VSS AW21 VSS AB29 VSS AH45 VSS AW24 VSS AB47 VSS AJ19 VSS AW29 VSS AC19 VSS AJ22 VSS AW32 VSS AC22 VSS AJ25 VSS AW36 VSS AC25 VSS AJ28 VSS AY16 VSS AC28 VSS AJ30 VSS AY19 VSS AC30 VSS AJ38 VSS AY23 VSS AC38 VSS AJ39 VSS AY25 VSS AC40 VSS AJ40 VSS AY27 VSS AC44 VSS AJ44 VSS AY30 VSS AD39 VSS AK18 VSS AY34 VSS AD46 VSS AK20 VSS AY42 VSS AE18 VSS AK23 VSS AY47 VSS AE20 VSS AK26 VSS B31 VSS AE23 VSS AK29 VSS B37 VSS AE26 VSS AK39 VSS B42 VSS AE29 VSS AK43 VSS B46 VSS AE39 VSS AK47 VSS B5 VSS AE40 VSS AM40 VSS BB10 VSS AE42 VSS AM44 VSS BB12 VSS AE43 VSS AM45 VSS BB24 VSS AE44 VSS AP39 VSS BB46 VSS AF19 VSS AP43 VSS BB8 VSS AF22 VSS AP47 VSS BC12 VSS AF25 VSS AT10 VSS BC18 VSS AF28 VSS AT12 VSS BC19 VSS AF30 VSS AT43 VSS BC21 VSS AF47 VSS AT6 VSS BC24 VSS AG40 VSS AU46 VSS BC27 VSS AG42 VSS AV12 VSS BC29 VSS AG43 VSS AV42 VSS BC30 VSS AH18 VSS AV8 VSS BC32 RS600 Databook A-22 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. VSS BC34 VSS C14 VSS H34 VSS BD14 VSS C19 VSS H36 VSS BD16 VSS C20 VSS H43 VSS BD23 VSS C22 VSS H47 VSS BD25 VSS C23 VSS J12 VSS BD36 VSS C26 VSS K18 VSS BD4 VSS C44 VSS K19 VSS BE1 VSS C47 VSS K21 VSS BE21 VSS C6 VSS K23 VSS BE41 VSS D12 VSS K24 VSS BE43 VSS D21 VSS K34 VSS BE47 VSS D23 VSS K39 VSS BF11 VSS D27 VSS K43 VSS BF14 VSS D30 VSS L46 VSS BF16 VSS D34 VSS M18 VSS BF2 VSS D36 VSS M19 VSS BF20 VSS D38 VSS M21 VSS BF21 VSS D4 VSS M24 VSS BF24 VSS D45 VSS M25 VSS BF28 VSS D6 VSS M36 VSS BF32 VSS E10 VSS M40 VSS BF37 VSS E12 VSS M43 VSS BF42 VSS E18 VSS N18 VSS BF43 VSS E19 VSS N19 VSS BF44 VSS E25 VSS N21 VSS BF6 VSS E29 VSS P40 VSS BG14 VSS E32 VSS P43 VSS BG18 VSS F12 VSS T38 VSS BG20 VSS F38 VSS T40 VSS BG21 VSS F46 VSS T44 VSS BG3 VSS F5 VSS T46 VSS BG4 VSS H12 VSS V19 VSS BG43 VSS H18 VSS V22 VSS BG8 VSS H19 VSS V25 VSS C11 VSS H25 VSS V28 VSS C12 VSS H27 VSS V30 RS600 Databook A-23 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. Pin Name Ball Ref. Pin Name Ball Ref. VSS V39 VSS_PCIE AE3 VSS_PCIE AT2 VSS V43 VSS_PCIE AE4 VSS_PCIE AT3 VSS V47 VSS_PCIE AE8 VSS_PCIE AY1 VSS W18 VSS_PCIE AF1 VSS_PCIE AY2 VSS W20 VSS_PCIE AF3 VSS_PCIE AY3 VSS W23 VSS_PCIE AG12 VSS_PCIE B2 VSS W26 VSS_PCIE AG2 VSS_PCIE B3 VSS W29 VSS_PCIE AG3 VSS_PCIE BB1 VSS W40 VSS_PCIE AG4 VSS_PCIE BB2 VSS W44 VSS_PCIE AG8 VSS_PCIE BB3 VSS Y19 VSS_PCIE AH3 VSS_PCIE C1 VSS Y22 VSS_PCIE AJ10 VSS_PCIE D1 VSS Y25 VSS_PCIE AJ12 VSS_PCIE E2 VSS Y28 VSS_PCIE AJ3 VSS_PCIE E3 VSS Y30 VSS_PCIE AJ4 VSS_PCIE F3 VSS Y45 VSS_PCIE AJ5 VSS_PCIE F4 VSS_PCIE A3 VSS_PCIE AJ6 VSS_PCIE G3 VSS_PCIE AA3 VSS_PCIE AJ8 VSS_PCIE H1 VSS_PCIE AA4 VSS_PCIE AJ9 VSS_PCIE H3 VSS_PCIE AA8 VSS_PCIE AK1 VSS_PCIE H6 VSS_PCIE AB1 VSS_PCIE AK12 VSS_PCIE K2 VSS_PCIE AB3 VSS_PCIE AK3 VSS_PCIE K3 VSS_PCIE AC12 VSS_PCIE AK4 VSS_PCIE K4 VSS_PCIE AC2 VSS_PCIE AK8 VSS_PCIE K5 VSS_PCIE AC3 VSS_PCIE AL2 VSS_PCIE L3 VSS_PCIE AC4 VSS_PCIE AL3 VSS_PCIE M3 VSS_PCIE AC8 VSS_PCIE AM3 VSS_PCIE M9 VSS_PCIE AD10 VSS_PCIE AM4 VSS_PCIE P1 VSS_PCIE AD12 VSS_PCIE AM8 VSS_PCIE P10 VSS_PCIE AD3 VSS_PCIE AN3 VSS_PCIE P3 VSS_PCIE AD4 VSS_PCIE AP10 VSS_PCIE P6 VSS_PCIE AD5 VSS_PCIE AP4 VSS_PCIE R2 VSS_PCIE AD6 VSS_PCIE AP5 VSS_PCIE R3 VSS_PCIE AD8 VSS_PCIE AP6 VSS_PCIE T3 VSS_PCIE AD9 VSS_PCIE AP8 VSS_PCIE T4 VSS_PCIE AE12 VSS_PCIE AP9 VSS_PCIE T8 RS600 Databook A-24 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings Pin Name Ball Ref. VSS_PCIE U3 VSS_PCIE V4 VSS_PCIE V8 VSS_PCIE W10 VSS_PCIE W2 VSS_PCIE W3 VSS_PCIE W4 VSS_PCIE W5 VSS_PCIE W6 VSS_PCIE W8 VSS_PCIE W9 VSS_PCIE Y3 VSS_PLLPCIE T12 VSS_PLLPCIE T13 VSS_PLLPCIE V12 VSSLT A26 VSSLT A30 VSSLT C29 VSSLT F24 Y F18 RS600 Databook A-25 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix A: Pin Listings This page is left blank intentionally. RS600 Databook A-26 © 2006 ATI Technologies Inc. Proprietary and Confidential Appendix B Revision History Note: The revision number of this manual reflects either one of the two release states defined below: Preliminary Release - Revision numbers from 0.1 to 0.9. Generally with incomplete information and/or information subject to change. Full Release - Revision numbers from 1.0 onwards. Occurring after essential elements have been reviewed, typically after tape-out. Rev 0.1 (June 2006) • Preliminary release. Rev 0.2 (Feb 2006) • First release (Rev 0.1 has not been released publicly). Rev 1.0 (July 2006) • • • • • • • • • • • • • • • • • • • • • Corrected VDD_CORE to 1.2V. Affected: Table 3-17, “Power Pins,”and Table 5-1, “Maximum and Minimum Ratings.” Updated Section 1.3.9, “DVI/HDMI”: Added reference to the HDMI interface multiplexed on the PCI-E graphics lanes; clarified features of HDMI and HDCP support. Updated Table 2-2, “Supported DDR2 Components,” and Table 2-3, “Supported DDR3 Components”: Removed “Refresh” columns from the tables. Added Section 2.3.2, “Data Mapping on the TMDS Interface Multiplexed on the PCI-E Graphics Lanes.” Updated Table 3-1, “CPU Interface”: Added voltage level for CPU_VREF. Move description for VDD_CPU_PACKAGE from section 3.12 to 3.11, as it is not a power pin. Updated Table 3-9, “Miscellaneous PCI Express Signals”: Corrected connection requirement for PCE_CALRP (to ground through a resistor). Added Section 3.9, “TMDS Interface Multiplexed on the PCI-E Graphics Lanes.” Updated Table 3-17, “Power Pins”: Corrected voltage of VDD_PCIE to 1.2V. Updated Table 3-18, “Ground Pins”: Corrected description for AVSSN. Updated Table 3-19, “Strap Definitions for the RS600”: Added STRAP_MEMSTRAPS to the table. Updated Section 4.1, “Processor Front Side Bus Timing”: Corrected common clock signal hold time (T17) to 149ps min; corrected Figure 4-1, “Front Side Bus Timing for Data Signals.” Updated Table 4-6, “Power Rail Power Up Sequence Timing for the RS600”: Corrected description for T11 min. Updated Section 4.2, “Memory Timing.” Updated Table 4-5, “Timing Requirements for the OSCIN Pad”: Changed maximum cycle-to-cylcle jitter to 300ps and removed peak-to-peark and longe-term jitter specifications. Updated Table 5-1, “Maximum and Minimum Ratings”: Corrected voltage of VDD_PCIE to 1.2V. Added Table 5-2, “DC Characteristics for Front Side Bus Signals.” Added Table 5-3, “DC Characteristics for PCI-E Differential Clock (GFX_CLK, SB_CLK) Input.” Added Table 5-4, “DC Characteristics for TTL Signals.” Updated Table 5-7, “Electrical Requirements for DVI/HDMI” with correct data. Updated Section 5.5.1, “Stencil Opening Size for Solderball Pads on PCB”: Added stencil opening size recommendations. © 2006 ATI Technologies Inc. Proprietary and Confidential RS600 Databook B-1 Appendix B: Revision History • • Revised Section 5.2.1, “RS600 Thermal Limits”: Added new parameters, descriptions, as well as values for θjb and θjc. Updated Table 6-2, “ACPI Signal Definitions”: Revised list of ACPI signals coming from the SB. RS600 Databook B-2 © 2006 ATI Technologies Inc. Proprietary and Confidential