3_ Kehl wooden beam end CESBP 2013
Transcription
3_ Kehl wooden beam end CESBP 2013
Faculty of architecture, Institute of Building Climatology Hygrothermal Behaviour of Wooden Beam Ends literature review, decay model and convection at the beam end Dipl.-Ing.(FH) Daniel Kehl Vienna, CESBP 09.09.2013 Content 1. Causes of decay at wooden beam ends 2. Field tests of different wooden beam ends (literature review) Decay (brown rot) of a wooden beam end before renovation 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 2 © picture TUD – Daniel Kehl 3. Simplified decay model 4. Convection at the beam end 5. Future work EnOB-Project (Energy-Efficient Buildings) Assessment of existing buildings with wooden beam ceilings 3D simulation 3D material properties of wood Convection model field tests field tests decay model field tests Funded by Federal Ministry of Economics and Technology 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 3 1.1 Causes of decay at wooden beam ends • Long construction time • High moisture content of the beams at the beginning > 30 M-% Long period of high moisture content is expected The risk of decay is high 1908 construction site Leipzig 1937 amount of wooden beam ceilings: ~ 80 % 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 4 © picture: Kalender 2013 LTM GmbH, Adolf Deininger, 1908 1) At the beginning of the building: 1.2 Causes of decay at wooden beam ends 2) Lack of maintenance • downpipes • leaking roofs • lack of protection against wdr The wall is wet and … © picture TUD – Daniel Kehl … the beam end has decay no downpipe before 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 5 2. Field tests - literature review / own measurments 1 2 3-5 6 7 8 9/10 11 13 21.10.2013 12 no. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. town D-Hamburg D-Berlin D-Drebkau D-Senftenberg D-Brieske D-Dresden D-Wassenberg D-Wiesbaden D-Ludwigshafen D-Ludwigshafen A-Waidhofen A-Graz CH-Zürich wooden beam end – Dipl.-Ing. Daniel Kehl research institut TUHH TUD BTU BTU BTU TUD TUD IWU PHI PHI TUW TUG City Zürich Nr. 6 2.1 class of wind driven rain (cwdr) CWDR = class of wind driven rain (DIN 4108-3) I = low II = average moisture load III = high 1 2 3-5 7 6 8 9/10 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 7 2.2 Wiesbaden – Lehrstraße (IWU) W Source: [Loga 2005] N E S Cardinal direction of the facade South-West CWDR II + cardinal direction average moisture load outside: new plaster and coating 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 8 picture: Institut Wohnen und Umwelt,, Darmstadt building from 1890 after renovation (2002) NEW Linoleum Wooden floor 4 cm Moisture content picture: Institut Wohnen und Umwelt,, Darmstadt „water repellent plaster“ Source: [Loga 2005] 2.2.1 Wiesbaden – Lehrstraße (IWU) beam plaster interior insulation: 55 mm EPS (expanded polystyrene) + 5 mm wood wool cement bonded board 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 9 2.2.2 Wiesbaden – Lehrstraße (IWU) moisture content at the wooden beam end 25 Holzfeuchte [%] 20 15 10 Nr. 1 (3. OG Wohnraum) - Balkenkopf in innenged. Fassade / Balkenzwischenr. gedämmt Nr. 4 (3. OG Wohnraum) - Balken im Gebäudeinneren Nr. 5 (2. OG Küche) - Balkenkopf in innengedämmter Fassade Nr. 6 (2. OG Wohnraum) - Balkenkopf in innengedämmter Fassade 0 Okt 02 21.10.2013 Dez Feb 02 03 Apr 03 Jun Aug Okt 03 03 03 Dez Feb 03 04 Apr 04 Jun 04 Jul 04 Sep Nov Jan 04 04 05 wooden beam end – Dipl.-Ing. Daniel Kehl Mrz 05 Mai 05 Jul 05 Nr. 10 Source: [Loga 2005] 5 Nr. 2 (3. OG Wohnraum) - Balkenkopf in innengedämmter Fassade Nr. 3 (3. OG Wohnraum) - Balkenkopf in innengedämmter Fassade 2.3 Ludwigshafen – Limburger Straße (PHI) Building from 1890 After renovation (2002) N W E S Very low moisture load of wdr front site (North-East) outside: facade was hydrophobed 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 11 Source: [Ratzlaff et.al. 2005] Cardinal direction of the facade North-East CWDR I + cardinal direction 2.3.1 Ludwigshafen – Limburger Straße (PHI) two types of interior insulation The facade was hydrophobed • 80 mm mineral wool with humidity variable vapor barrier respectively • 80 mm expanded polystyrene beam source: [Ratzlaff et.al. 2005] relative humidity temperature sketch 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 12 Ludwigshafen – Limburger Straße (Passivhaus-Institut) 21.10.2013 graphic: Passivhaus-Institut, Darmstadt rel. humidity [%] Source: [Ratzlaff et.al. 2005] relative humidity between wall and interior insulation wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 13 2.3.2 Ludwigshafen – Limburger Straße (PHI) relative humidity at the beam end RH - beam end OG1 21.10.2013 source: [Ratzlaff et.al. 2005] relative humidity umidity [%] RH - beam end OG2 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 14 2.4 Brieske - (Gnoth, Stopp, Strangfeld 2005) N W E S old plaster picture / source: Gnoth et.al. 2005 Cardinal direction of the facade North-West CWDR I/II + cardinal direction low moisture load of wdr 25 mm calziumsilicat board direction: North-West 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 15 2.4.1 Brieske - (Gnoth, Stopp, Strangfeld 2005) Relative humidity in the air gap 65 % 45 % Moisture content M-% graphic / source: Gnoth et.al. 2005 15 M-% 9 M-% Temperature at the beam end 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 16 2.5 Conclusion of the literature review Wooden beam end will keep dry, when … 1. 2. The moisture load of wind driven rain is low The wall is protected against wind driven rain - low AW-value (water absorption coef.) and a vapour open surface Other protection (no measurements were found in the literature, but well known constructions): - cavity wall – attention old masonry with header bricks - ventilated cladding Special and risky: bare brick walls (without plaster outside) treated with water repellent fluids (check is necessary!) 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 17 3. Decay of wood - When it starts? Moisture content Wälchi 1980 Minium % Cartwright & Findlay 1958 Theden < 20 No growth 28 1941 Viitanen Ritschkoff 1991 a / 28b >2626 M-% Results Huckfeldt Laboratory Results Huckfeldt in buildings 26,2 28 Optimum % 4 weeks 30-40 hypoth. - - - 35-55 - Optimum % 40-60 30-40 ab 40 bis 55 45-90 40-70 Maximum % 119 - 180 90 225 224 a) b) Spruce Pine sapwood … but decay depends on temperature 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 18 Source: T. Huckfeldt; O. Schmidt; H. Quader 2005 Minimum – Optimum – Maximum of moisture content M-% (serpula lacrymans – „dry rot“) 3.1 Decay – model of Hannu Viitanen Brown rot (0 % mass loss) 1. „Activation“ 2. Mass loss month 21.10.2013 constant boundary conditions 12 month no mass loss was detected wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 19 3.2 From Viitanen to a simplified model - suggestion relative humidity moisture content DIN 68800 Easy to measure Well known value Well known value pay attention: Measurement of the resistance is inaccurate ± 1,5 M-% Simulation: the result depends on sorption curve in the program pay attention: High fluctuation in comparison to moisture content 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 20 Sorption isotherms of spruce 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 21 4. Example – simulation of a wooden beam end climate Essen west = a lot of wdr Indoor climate normal moisture load EN 15026 (30 % / 60 %) How much air will flow? plaster Aw = 0,0083 kg/m²√s 36,5 cm brick 21.10.2013 10 cm Multipor wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 22 4.1 Driving force for convection: pressure difference as a result of the stack effect pressure difference height of the building 12 m Overpressure h Underpressure Wind effect and underpressure in summer is ignored 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 23 4.2 Convection Delphin 5.8 – 2D / laminare convection Airtightness of masonry and plaster? construction or layer airtightness q50 [m³/m²h] Cement plaster 0,001 – 0,002 Lime- cement-plaster 0,002 – 0,05 „soft“ lime-interior plaster (1928) 0,02 – 0,6 Plaster with coating (distemper) airtight Bare masonry wall 2,1 – 15 Masonry with interior plaster 0,1 – 2,0 plaster: q50 von 0,1 m³/m²h brick q50 von 2,0 m³/m²h 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 24 table: IWU 1995 Model for convection 4.3 Convection simulation – results Model for convection 21.10.2013 Moisture content for beam end (5 mm) wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 25 4.4 Convection – simplified decay model evaluation of the simulation results Wall without insulation with convection Wall with insulation with convection Daily average values 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 26 4.5 Convection – simplified decay model evaluation of the simulation results Wall without insulation with convection Wall with insulation without convection Daily average values 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 27 5. Future work • Measurements in double climate chamber to validate the new material data (Frank Meissner) (radial, tangential, longitudinal) • Implement a 3D model in Delphin (Stefan Vogelsang) • Measurements of the permeability of masonry, wooden beam end in an pressure chamber (Daniel Kehl) • Implement an improved convection model in Delphin 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 28 5.1 Convection at the wooden beam Test chamber ∆P = 0… 100 Pa LFE V [m³] 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 29 5.2 Permeability of masonry – first step (2013) Test chamber with 11.5 cm Brick-Wall no beam / no plaster inside 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 30 … then you will sleep dry pictures: [IBA 1985] Pay attention to (wind driven) rain and convection Thank you for attention 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 31 Other investigations on decay growth 20 °C 95 % RH 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 32 Other investigations on decay Holzart: Japanese red pine Holzzerstörer: Braunfäulepilz Fomitopsis palustris 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 33 Strömung am Holzbalken - Stufe 1 Erste Messungen bis Herbst 2013 Fall 1: beiseitig unverputzt Fall 2: oben/unten innen verputzt Fall 3: Fläche innen verputzt Fall 4: Nur Holzbalken (inkl. „Riss“) Messung von • Abklebung • Abdichtungen • Rissen 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 34 Literature [Gnoth et.al. 2005] [Huckfeldt, Schmidt 2005] [IBA 1985] [Loga 2005] [Ratzlaff et.al. 2005] [Viitanen 1996] 21.10.2013 Gnoth, S.; Strangfeld, P.; Stopp, H.: Hygrothermisches Verhalten eingebetteter Holzbalkenköpfe im innengedämmten Außenmauerwerk, Beitrag in der Zeitschrift Bauphysik, Verlag Ernst und Sohn, Berlin 2005 Huckfeldt, T.; Schmidt, O.: Hausfäule- und Bauholz-pilze – Diagnose und Sanierung, Rudolph Müller Verlag, Köln 2006 Hrsg.: Internationale Bauausstellung Berlin, Sanierung von Holzbalkendecken, Verlag Ernst und Sohn, Berlin 1985 Loga, T.: Energetische Modernisierung eines Gründerzeithauses in Wiesbaden, Beitrag zum 6. Leipziger Bauschadenstag 2005, MFPA Leipzig GmbH, Eigenverlag, Leipzig Ratzlaff, M.; Schnieders, J.: Mehrfamilienhäuser in Ludwigs-hafen, Beitrag in Arbeitskreis kostengünstige Passivhäuser, Protokollband 32, Eigenverlag, Darmstadt 2005 Viitanen, H. Factors affecting the development of mould and brown rot decay in wooden material and wooden structures. Effect of humidity, temperature and exposure time. Doctoral Thesis. Uppsala. The Swedish University of Agricultural Sciences, Department of Forest Products wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 35 Measurements from Hannu Viitanen (VTT Helsinki FIN) since 1990 Investigations: a. Wood species: Spruce Pine sapwood b. Test samples were inoculated with Coniophora puteana and serpula lacrymans (both brown rot) Test samples were put into different constant RH with different temperatures d. The mass loss of the samples were measured 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl picture: Hannu Viitanen 1996 c. Nr. 36 Contact TU Dresden Institute of building climatology Daniel Kehl daniel.kehl@tu-dresden.de 21.10.2013 wooden beam end – Dipl.-Ing. Daniel Kehl Nr. 37
Similar documents
EHEC sings: pour some sugar on me
• QseC is an inner membrane bacterial adrenergic receptor that responds to the bacterial signal AI-3 and to the host signals epinephrine and norepinephrine. • Signaling of QseC leads to autophospho...
More information