ambientes sedimentarios
Transcription
ambientes sedimentarios
Definición: Los ambientes sedimentarios son partes de la superficie terrestre con propiedades físicas, químicas y biológicas definidas y diferentes de las que presentan las áreas adyacentes (Selley, 1970). Los ambientes sedimentarios se clasifican en: continentales, marinos y transicionales Ambientes Sedimentarios Continentales Ambientes Sedimentarios Continentales Subaéreo Subaéreo Desértico Glacial Subacuático Fluvial Aluvial Lacustre Erosivos Equilibrio Depósito Dominantes Suelos Locales Desconocidos Locales Subacuático Locales (Selley, 1976 en Arche ……) Sedimentary Environments Continental - Fluvial Continental - Glacial Continental Desert/Arid Continental Lacustrine Swamp/Bog Transitional (Coastlines): Beach & Tidal Zone Transitional: Deltas & Estuaries Transitional: Tidal Glaciers Transitional: Barrier Islands Transitional: Reef & Lagoon Shallow Marine Marine Deep Marine AMBIENTE GLACIAL GLACIAL EaES 350-8 18 Ambiente Glacial Restrictos a los polos Norte y Sur y a las altas montañas Asociados a bajas temperaturas, altas tasas de precipitación y muy bajas tasas de evaporación El principal agente geológico es el transporte por el hielo. EaES 350-8 20 EaES 350-8 21 Glacial/eolian/lacustrine environments Glacial environments Glaciers and ice sheets form where precipitation rates, in the form of snow (accumulation), exceed melting rates (ablation) Ice flows as a result of gravity and essentially acts like a highhighviscosity fluid exhibiting laminar flow Temperate (warm(warm-based) vs. polar (cold (cold--based) glaciers reflect the temperature regime within the ice Ice shelves can form when a glacier or ice sheet reaches the coast and extends offshore, and ultimately breaks up into icebergs EaES 350-8 22 EaES 350-8 23 Glacial/eolian/lacustrine environments Glacial environments Abrasion leads to the formation of rock flour (mineralogically diverse siltsilt- and clay clay--sized sediment grains); plucking results in coarser (up to boulderboulder-sized) material Warm--based ice tends to be more erosive (abrasive) than coldWarm coldbased ice Till/tillite (also known as diamict/diamictite) is poorly sorted, angular, and immature • • Lodgement till forms by active deposition under the ice (relatively compact and usually fractured) Meltout till forms passively during melting EaES 350-8 24 EaES 350-8 25 EaES 350-8 26 EaES 350-8 27 EaES 350-8 28 EaES 350-8 29 Glacial/eolian/lacustrine environments Glacial environments Abrasion leads to the formation of rock flour (mineralogically diverse siltsilt- and clay clay--sized sediment grains); plucking results in coarser (up to boulderboulder-sized) material Warm--based ice tends to be more erosive (abrasive) than coldWarm coldbased ice Till/tillite (also known as diamict/diamictite) is poorly sorted, angular, and immature • • Lodgement till forms by active deposition under the ice (relatively compact and usually fractured) Meltout till forms passively during melting EaES 350-8 30 EaES 350-8 31 EaES 350-8 32 EaES 350-8 33 EaES 350-8 34 Glacial/eolian/lacustrine environments Glacial environments Glaciofluvial or fluvioglacial deposits are sediments formed in association with glacial meltwater (e.g., glacial outwash) More distal glaciolacustrine and glaciomarine deposits are typically dominated by finefine-grained sediment (rock flour), along with iceice-rafted debris and dropstones The preservation potential of glacial deposits is usually limited, with the exception of tills and glaciomarine deposits associated with big ice sheets EaES 350-8 35 Tipo De Glaciares Transporte Glaciar Depósitos Glaciares Depósitos no estratificados: acumulaciones de morrena basal (depósitos basales, arcilla conglomerádica o till) Depósitos Glaciares Depósitos estratificados: acumulaciones de morrenas internas durante el rápido deshielo y sedimentos subacuosos formados en contacto con el glaciar (kame, skerns, varves) Insertar pdf ABANICOS ALUVIALES What is an alluvial fan? … a fan-shaped deposit of alluvium found where a stream flows out of a mountain onto flatter terrain. An alluvial fan in Death Valley Narrow outlet (valley or gorge) Fan apex Radial spreading alluvial fan An alluvial fan in Death Valley Coarse, channelized debris Sediments become finergrained Ok, back to alluvial fans….. The evolutionary stages of alluvial fans Alluvial fans: Steeper gradient than “normal” river profiles, thus are often dominated by debris flow processes Kosi megafan, northern India Migrating fluvial channels Debris flows Shear stress vs. strain So flow is plug like and ceases as it reaches shallower surface, hence the velocity diminishes Flows also stop as they thin or lose water Losing water and velocity caused the debris flow to become more viscous and stop, creating a very steep front Debris flow “channel” on a talus in eastern Sierra Nevada A closer view Note the existence of the “levees” The radial deposition of alluvial fan Active depositional lobe Period of active deposition, massive floods and debris flows Debris flow fan caused by typhoon, southern Taiwan, 2005 And afterwards……. So, what will the stratigraphy look like? Channels near apex of fan Channel gravels And suspended load deposits on distal portions of the fan With bioturbation…. Downslope fining of alluvial fan deposits Facies relationships, a Devonian fan in Sweden, showing characteristic interfingering of depositional facies Pleasant Valley, Nevada Pleasant Valley, Nevada AMBIENTE FLUVIAL Running water Begins as sheetflow Infiltration is controlled by • Intensity and duration of rainfall • Prior wetted condition of the soil • Soil texture • Slope of the land • Nature of the vegetative cover • Runoff of rain or spring snowmelt only occurs when soil is saturated. Running water Streamflow Factors that determine velocity • Gradient Gradient,, or slope • Channel characteristics including shape, size, and roughness • Discharge – the volume of water moving past a given point in a certain amount of time Running Water Changes from upstream to downstream Profile • Cross Cross--section of a stream • From head (headwaters) to mouth of stream • Profile is a smooth curve • Gradient decreases downstream Factors that increase downstream • Velocity • Discharge • Channel size Longitudinal profile of a stream Drainage Divide Tributaries Gradient decreases downstream Factors that increase downstream: Velocity Discharge Channel size Trunk Stream Distributaries And Delta Running water Changes from upstream to downstream Gradient and channel roughness decrease downstream Base level and graded streams Base level is the lowest point to which a stream can erode Base level and graded streams Two types of base level • Ultimate (sea level) • Local or temporary Changing conditions causes adjustment • Sudden extra sediment steeper gradient, faster flow erosion, sediment removed and equilibrium reestablished. • Equilibrium is temporary A waterfall results from change in local base level Local change in baselevel affects river profiles Important definitions Stream - Sediment Terminology Transport of sediment by streams Transported material is called load Types of load • Dissolved load – ions in solution from weathering • Suspended load – fine particles • Bed load Moves during high velocity events Sandy Portion – Saltation (bouncing) Cobbles – Traction (rolling) Capacity –maximum load stream transports Competence – Largest particles it can move – Proportional to velocity squared Suspended load - confluence Green & Colorado Rivers in Canyonlands, Utah Competence maximum particle size a stream transports Proportional to velocity squared –K.E. Deposition of sediment by a stream Caused by a decrease in velocity Competence is reduced Sediment begins to drop out Deposition of sediment by a stream Channel deposits • Pointbars • Mid Mid--channel bars in braided streams • Deltas Floodplain deposits • Natural levees – form parallel to the stream channel by successive floods over many years Running water Deposition of sediment by a stream Alluvial fans • Develop where a highhigh-gradient stream leaves a narrow valley • Slopes outward in a broad arc Ambiente Fluvial S = l/L (Miall, 1974) BP = función del número de islas o barras dentro de los canales SISTEMA FLUVIAL BRAIDED Sistema Fluvial Braided Presentan cursos de agua múltiples de baja sinuosidad Amplio predomino de carga de fondo, granulometría gruesa Alta relación ancho / profundidad Pendientes en general mayores a 5º Variabilidad de descarga Facilidad de erosión de los márgenes Depósitos En Sistemas Fluviales Braided Sistema braided de gravas Sistemas braided de arenas Ej. en el Uruguay: Fm. Salto (C) buen desarrollo de artesas. Ejemplo de dos tipos de elementos arquitecturales de canal. Calcos de carga rellenos de pequeños canales abandonados. Pisadas, frecuentes en planicies de inundación. Grietas de desecación, también presentes en planicies de inundación. Perfil esquemático mostrando los elementos arquitecturales, litofacies y principales subambientes en un sistema fluvial meandriforme. Aspectos de secuencias meandrosas de la Formación Loma Larga. (A) depósitos de canal con estratificación entrecruzada, (B) facies de planicies de inundación (pelitas carbonosas). SISTEMA FLUVIAL MEANDRIFORME Sistema Fluvial Meandriforme Corresponden a un único canal con alta sinuosidad Baja relación ancho / profundidad Pendientes suaves Márgenes de canales estables Transportan mayoritariamente carga en suspensión Depósitos En Sistemas Fluviales Meandriformes Depósitos En Sistemas Fluviales Meandriformes SISTEMA FLUVIAL ANASTOMOSADO Complejo de canales de baja energía que se separan y se unen, interconectándose entre si Baja relación ancho / profundidad Pendientes suaves Márgenes estabilizados por la vegetación Detritos transportados por carga en suspensión o mixta Depósitos En Sistemas Fluviales Anastomosados 1 turberas; 2 pantano; 3 laguna de inundación; 4 dique marginal; 5 depósito de rompimiento de dique marginal; 6 canal fluvial; 7 depósito de canal; 8 arena; 9 turba; 10 limo arenoso; 11 barro Abanicos Aluviales Morfología concoidal centrada en un ápice Dimensiones métricas a kilométricas Se localizan en áreas de importante rotura de la pendiente Presentan sedimentos gruesos en la cabecera y finos en las partes distales Presentan un perfil radial cóncavo y un perfil transversal convexo Depósitos En Abanicos Aluviales Ej. en Uruguay: Fm. Cañada Solís AMBIENTE LACUSTRE Ambiente Lacustre Lago: cuerpo de agua profunda, tan grande como sea, que no presenta conexión con el mar La dinámica del medio lacustre está controlada principalmente por: la geometría de la cuenca, el clima, las propiedades del agua y aportes externos Ambiente Lacustre En función de la predominancia de los factores físicos, químicos y biológicos, los sedimentos lacustres se clasifican en: Sedimentos clásticos (predominancia de factores físicos) Sedimentos químicos (predominancia de factores químicos) Sedimentos bioquímicos y orgánicos (predominancia de factores biológicos) Lacustrine environments Playa (saline) lakes are hydrologically closed, ephemeral water bodies that form in arid environments and are characterized by mud--evaporite couplets mud Freshwater lakes are permanent (commonly hydrologically open) water bodies • • Waves and relatively weak windwind-driven currents constitute the main mechanisms of sediment transport Density stratification develops under seasonal climate conditions and when currents are limited EaES 350-8 108 EaES 350-8 109 EaES 350-8 110 EaES 350-8 111 Glacial/eolian/lacustrine environments Lacustrine environments Coarse sediments mainly occur on lake margins (lacustrine deltas, beaches) In the central parts of lakes, deposition occurs from suspension and by means of turbidity currents Stratified lakes promote the accumulation of organic matter and the formation of varves; organics are especially important in small lakes Carbonates of both chemical and biogenic origin can contribute significantly to lake sediments EaES 350-8 112 Lagos Con Predominancia De Sedimentos Clásticos Ej. en Uruguay de ambiente fluvio-lacustre Fm. Tacuarembó, miembro inferir Lagos Con Predominancia de Sedimentos Químicos 1 Halita; 2 Arcillas; 3 Anhidrita;4 Areniscas eólicas; 5 conglomerados, areniscas y arcillas fluviales (de wadis) Glennie, 1972 EaES 350-8 115 EaES 350-8 116 EaES 350-8 117 EaES 350-8 118 Lacustrine environments The final stage of filling of lakes commonly involves an important organic component Hydrosere:: vertical succession of organic deposits associated Hydrosere with the transition from a limnic, through a telmatic, to a terrestrial environment • Gyttja --> --> fen peat --> --> wood peat --> --> moss peat EaES 350-8 119 Lacustrine environments Playa (saline) lakes are hydrologically closed, ephemeral water bodies that form in arid environments and are characterized by mud--evaporite couplets mud Freshwater lakes are permanent (commonly hydrologically open) water bodies • • Waves and relatively weak windwind-driven currents constitute the main mechanisms of sediment transport Density stratification develops under seasonal climate conditions and when currents are limited EaES 350-8 120 EaES 350-8 121 EaES 350-8 122 EaES 350-8 123 EaES 350-8 124 AMBIENTE DESÉRTICO Eolian environments Eolian deposits dominate deserts (mostly at low latitudes, but sometimes arctic), but are also important along shorelines (coastal dunes) and in association with ice sheets (loess) Air is a lowlow-density and lowlow-viscosity fluid; therefore high flow velocities are required to enable sediment transport Eolian deposits are mostly texturally and mineralogically mature, due to the selective transport of specific grain sizes and the large impact of graingrain-toto-grain collision 127 Ambiente Desértico Area donde la tasa de evaporación potencial excede la tasa de precipitación El viento es el principal agente de transporte Predomina la hipergénesis física Depósitos en ambientes desérticos: wadis, wadis, sebkhas,, serir, sebkhas serir, reg, reg, depósitos eólicos, entre otros. EaES 350-8 136 EaES 350-8 137 EaES 350-8 138 Eolian environments Sand dunes are the most common eolian landforms; their geometry and resulting sedimentary structures depend primarily on sediment supply and prevailing wind direction Large (>~5 m) sets of cross strata are very commonly eolian in origin Eolian sand sheets develop when sediment supply is limited and are characterized by planar stratification; vegetation can contribute to dune formation under such circumstances Loess is a homogeneous, very well sorted, siltsilt-dominated sediment that is deposited from suspension; it is commonly associated with ice sheets that produce large quantities of source material (rock flour) 139 EaES 350-8 140 EaES 350-8 141 EaES 350-8 142 Eolian environments Sand dunes are the most common eolian landforms; their geometry and resulting sedimentary structures depend primarily on sediment supply and prevailing wind direction Large (>~5 m) sets of cross strata are very commonly eolian in origin Eolian sand sheets develop when sediment supply is limited and are characterized by planar stratification; vegetation can contribute to dune formation under such circumstances Loess is a homogeneous, very well sorted, siltsilt-dominated sediment that is deposited from suspension; it is commonly associated with ice sheets that produce large quantities of source material (rock flour) EaES 350-8 143 Depósitos Desérticos Reg: depósitos de fragmentación in sitú Serir: depósitos groseros, interdunas Wadi: depósitos de ríos temporarios Sebkhas: depósitos de lagos desérticos Depósitos Desérticos - Eólicos Sábanas de arena Dunas de arena EaES 350-8 146 EaES 350-8 147 EaES 350-8 148