Catalyst Design and Reaction Strategies for the Optimization of

Transcription

Catalyst Design and Reaction Strategies for the Optimization of
DR. STEVEN CROSSLEY, Page 1 of 11
Catalyst Design and Reaction Strategies for the Optimization of Liquid Products from Biomass Pyrolysis
Steven Crossley
University of Oklahoma, School of Chemical, Biological and Material Engineering
Norman, OK, USA
OK EPSCoR RESEARCH: OBJECTIVE 3
CATALYTIC/THERMOCHEMICAL CONVERSION PROCESSES
R. Jentoft (OU), Kumar (OSU): Biomass composition effects on pyrolysis and gasification
Nicholas, Halterman (OU):
Novel homogeneous
catalysts for oxygenates
conversion
Mallinson (OU): Catalytic
upgrading of bio-oil small
oxygenates
F. Jentoft (OU):
Spectroscopic
characterization of catalyst
adsorbates
Striolo (OU): Atomistic
simulation of nanohybridstabilized emulsions
ph
HO
ase mig
rati
on
O
CH3
oil phase
decarbonylation
250°C
HO
Mallinson, Lobban (OU):
Fast, staged pyrolysis to
bio-oil
Resasco, Crossley (OU):
Emulsion conversion of
complex mixtures
Hydrogenation
100°C
O
CH 3
OH
HO
CH3
O
CH 3
Hydrogenolysis
200°C
HO
O
CH3
O
HO
CH3
O
CH 3
igration
phase m
HO
O
CH 3
OH
+
CH3
Resasco,Crossley (OU):
Catalytic upgrading of biooil phenolic compounds
aqueous phase
Pd nanoparticles
DR. STEVEN CROSSLEY, Page 2 of 11
Ex‐Situ Catalytic Fast Pyrolysis
OBJECTIVES
BIOMASS
Switch grass
Sawdust, Pine
Torrefied-biomass
Drying
Increase Liquid Yield
Remove Oxygen
Minimize Deactivation
Pyrolysis
Fluidizing
Bed
Short
Residence
Time
Grinding
Liquid
Bio-oils
CHAR
Inert Gas
What should we ask from the catalysts ?
O
CH3
• Small oxygenates
( aldehydes, alcohols, ketones, acids )
• Sugar-derived compounds
( levoglucosan, furfurals )
• Lignin-derived phenolics
( guaiacol, vanillin, anisole, etc. )
Challenges to catalysts:
Biomass
‐ Cellulose
‐ Hemicellulose
‐ Lignin
•
•
•
•
•
Remove O
Maximize C capture
Minimize H2 consumption
Minimize catalyst deactivation
Tolerate
hot liquid water
Biomass
Resasco, Journal of Physical chemistry Letters, 2, 2294‐2295, 2011
DR. STEVEN CROSSLEY, Page 3 of 11
BIOMASS
Switch grass
Sawdust, Pine
Torrefied-biomass
Drying
OBJECTIVES
Increase Liquid Yield
Remove Oxygen
Minimize Deactivation
Grinding
Pyrolysis
Fluidizing
Bed
Short
Residence
Time
Liquid
Bio-oils
Desirable Reactions
O
CH3
OH
CHAR
CH3
Inert Gas
+ CO2
2
OH
CH3
CH3
UNIQUE COLLABORATIVE APPROACH
Bio‐oils
PILOT SCALE INDUSTRIAL RESEARCH
GASOLINE
$$$
LAB SCALE FUNDAMENTAL RESEARCH
+ THEORY
DR. STEVEN CROSSLEY, Page 4 of 11
Approach
O
•
•
•
•
•
CH3
Vapor phase
Condensed phase
Model compounds
Real bio‐oil
Bio oil vapors
OH
Model Compound Studies
lignin‐derived phenolics
undesirable
pathway
+ CH4 + 2*H2O
desirable
pathway
guaiacol
+2*H2O
Interface
Surface defects
Ru
*
Vapor phase T=400°C
P=1atm
H2/Guaiacol molar ratio=60
S. Boonyasuwat, T. Omotoso, D.E. Resasco, S. Crossley Catalysis Letters (submitted)
H
Surface OH groups
DR. STEVEN CROSSLEY, Page 5 of 11
Influence of support on catalyst stability
O
CH3
OH
100
Guaiacol Conversion (wt%)
Ru/C (0.22h)
Guaiacol (feed)
90
Ru/SiO2 (1.15h)
80
Ru/Al2O3 (0.3h)
70
Ru/TiO2 (0.06h)
Less catalyst needed
60
50
More stable!
40
30
20
10
0
0
50
100
150
200
250
Time on Stream (minutes)
300
350
S. Boonyasuwat, T. Omotoso, D.E. Resasco, S. Crossley Catalysis Letters (submitted)
Metal Particle Size
Metal particle diameter (nm)
Catalyst
dXRD
dTEM
Ru/C
-
1.7
Ru/Al2O3
11.8
4.1
Ru/SiO2
5.7
2.5
Ru/TiO2
5.5
3.3
Metal particle size does not explain increase in activity and stability
DR. STEVEN CROSSLEY, Page 6 of 11
Methyl Retention
CH3
O
OH
(mol methyl‐aroma c ring C‐C bonds formed)
(mol guaiacol fed)
CH3
80
70% of methyl groups conserved on ring
70
60
50
RU/C
40
W/F (h)
Conversion (mol %)
0.29
45
5 wt% Ru/Al2 O3
Al 2 O3
0.29
18
5 wt% Ru/TiO2 *
0.33
100
TiO2
0.33
7
*note: 100% conversion was achieved at W/F of 0.2h
RU/SIO2
30
Ru/Al2O3
20
Ru/TiO2
10
0
0
0.2
0.4
0.6
0.8
1
1.2
W/F (h)
Strong synergy between reducible oxide and metal
S. Boonyasuwat, T. Omotoso, D.E. Resasco, S. Crossley Catalysis Letters (submitted)
Ru / TiO2 / Carbon Catalyst ‐ XPS
5000
Intensity
Ti4+
(a)
4000
3000
TiO2/C (calcined) 2000
1000
c b a
0
Intensity
8000
457
(b)
462
Binding Energy (eV)
467
Ti3+
Ru/TiO2/C (calcined); 6000
4000
2000
0
452
457
10000
(c)
Intensity
8000
462
Binding Energy (eV)
467
472
Ru/TiO2/C (reduced at 500oC in H2)
6000
1
472
4000
2000
Normalized intensity
452
0.8
0.6
0.4
0.2
0
455
460
Binding Energy (eV)
0
452
457
462
Binding Energy (eV)
467
Resasco et al. (2012) Journal of Catalysis
472
Ru/TiO2 interaction promotes the formation of oxygen vacancies
New active sites?
DR. STEVEN CROSSLEY, Page 7 of 11
Ru/TiO2 conversion of real bio oil vapors
Shaolong Wan, Trung Pham, Sarah Zhang, Lance Lobban, Daniel Resasco, and Richard Mallinson AIChE Journal (in press).
Real pyrolysis oil vapors
• 4g Ru/TiO2
– 400°C
– 1Atm H2
• 30g oak/batch
Less change in MW upon aging after Ru/TiO2
treatment
Shaolong Wan, Trung Pham, Sarah Zhang, Lance Lobban, Daniel Resasco, and Richard Mallinson AIChE Journal (in press).
DR. STEVEN CROSSLEY, Page 8 of 11
Real pyrolysis oil vapors
Ru/TiO2 catalytic upgrading produces a stable intermediate product that has a high solubility in oil.
Shaolong Wan, Trung Pham, Sarah Zhang, Lance Lobban, Daniel Resasco, and Richard Mallinson AIChE Journal (in press).
Concept: catalytic cascade coupled with multi‐stage pyrolysis
Acetone
250-275°C
300-350°C
550-600°C
Light oxygenates:
Acetic acid, Acetol, Acetaldehyde, Water
Sugar derived compounds:
Furfurals
Lignin derived compounds: Phenolics
Alkylation
H2
Isopropanol
Alkylation
Aldol
Condensation
C6‐C8 Phenolics
C10‐C13 Phenolics
C8‐C13 Oxygenates
Hydro‐
deoxygenation
To Gasoline
or Diesel
pool
DR. STEVEN CROSSLEY, Page 9 of 11
Alkylation of phenolics with light alcohols
OH
+
CH3
L. Nei, D. Resasco, Applied Catalysis A: General 447– 448 (2012) 14– 21
Pyroprobe for rapid catalyst evaluation
Auto sampler
SEPARATE CATALYTIC REACTOR
DR. STEVEN CROSSLEY, Page 10 of 11
Pyroprobe 5250
SEPARATE REACTOR
VARY REACTOR CONDITIONS INDEPENDENTLY OF PYROLYSIS CONIDITONS
MEASURE CATALYST DEACTIVATION WITH MULTIPLE PULSES Results: HZSM‐5 vs. HY
Aromatics
Conditions
Catalyst Bed Temperature:
• 400°C
Pyrolysis Temperature:
• 500°C
Weight of Catalyst:
• HY5mg
• HZSM‐55mg
Si/Al: • HY40
• HZSM‐545
DR. STEVEN CROSSLEY, Page 11 of 11
Thank You
R. Jentoft (OU), Kumar (OSU): Biomass composition effects on pyrolysis and gasification
Nicholas, Halterman (OU):
Novel homogeneous
catalysts for oxygenates
conversion
Mallinson (OU): Catalytic
upgrading of bio-oil small
oxygenates
F. Jentoft (OU):
Spectroscopic
characterization of catalyst
adsorbates
Striolo (OU): Atomistic
simulation of nanohybridstabilized emulsions
ph
HO
ase mig
rati
on
O
CH3
oil phase
decarbonylation
250°C
HO
Mallinson, Lobban (OU):
Fast, staged pyrolysis to
bio-oil
Resasco, Crossley (OU):
Emulsion conversion of
complex mixtures
Hydrogenation
100°C
O
CH 3
OH
HO
CH3
O
CH 3
Hydrogenolysis
200°C
HO
O
CH3
O
HO
CH3
O
CH 3
igration
phase m
HO
O
CH 3
OH
+
CH3
Resasco,Crossley (OU):
Catalytic upgrading of biooil phenolic compounds
aqueous phase
Pd nanoparticles

Similar documents