Product Catalog - Quanta BioDesign

Transcription

Product Catalog - Quanta BioDesign
Product Catalog
Leading innovator, producer and provider of single molecure
discrete PEG (dPEG® ) derivatives
Fax your orders to 614 760-9781 or NEW: Order online at www.quantabiodesign.com
195 West Olentangy Street
I
Suite O
I
Powell, Ohio 43065
I
Tel: 866 792-9222
I
Fax: 614 760-9781
Last update 7/10
I
sales@quantabiodesign.com
I
www.quantabiodesign.com
®
)
.
Ordering Information
How do I order?

Phone:



Fax:
E-mail:
Website:
(866) 792-9222 or (614) 792-2958
Monday through Friday 9:00 am to 5:00 pm (EST)
(614) 760-9781 (24 hours, 7 days a week)
sales@quantabiodesign.com
www.quantabiodesign.com
Ordering Information needed







Company Name
Purchaser
Telephone and Fax number
E-mail Address for shipping confirmation
Shipping and Billing Addresses
P.O # and Credit Card Information
Orders can be placed via web, e-mail or fax
Payment
We accept MasterCard, Visa, American Express, USD check, and bank transfers. Some
international orders may require payment in advance. Our banking information will be on the
invoice. (Please do not send cash)
Shipping and Storage Details
Products will usually ship the same day as ordered, if it is received by 3:00pm EST. We ship all
products by Fedex overnight. Storage details will be shipped with each product. We
recommend storing Quanta BioDesign products in the freezer at -20° or in the refrigerator at
4° for long term storage. Orders outside the United States are shipped by Fedex International
Priority.
No products are shipped or delivered on weekends or U.S. holidays.
General Information
If you have a technical question about a product you received or have seen in the
catalog, please send an e-mail to tech@quantabiodesign.com or call us at (614) 7922958 or (866) 792-9222.
Material Safety Data Sheets
MSDS’s are available on our website under each individual product. We can also fax or
e-mail a copy. Please mention your request on the order form if needed.
Product Analysis
Quanta BioDesign’s products are unique, single molecular weight (MW), discrete
PEG (dPEG™) compounds, synthesized de novo from pure, small units (e.g.,
triethylene glycol or tetraethylene glycol).Purity is assayed by HPLC, TLC, and/or
NMR.
Certificate of Analysis
A certificate of analysis (C of A) will be sent with your product(s) if requested. The C of
A provides the test method used, the results, and the purity level of the product.
Re-Stocking Fee
Due to the cost of re-qualifying product, there is a charge of $250 for each previously
un-opened vial/bottle that is returned. No previously opened product will be accepted.
Please note there are no returns on bulk quantity purchases.
Distributors
United States
Europe
India
Peptides International
Bio-Connect BV
Sri Lakshmi Bhargavi Pharma Pvt. Ltd.
11621 Electron Drive
Louisville, Kentucky 40299
Phone: 1-800-777-4779
Fax: (502)-267-1329
www.pepnet.com
VWR International
1310 Goshen Parkway
West Chester, PA 19380
Orders: 800-932-5000
www.vwr.com
Tim Tec, Inc.
100 Interchange Boulevard
Newark, Delaware 19711
Phone: (302) 292-8500
Fax: (302) 292-8520
info@temtec.net
www.timtec.net
Fisher Scientific
200 Park Lane Drive
Pittsburg, PA 15275
Phone: (800) 776-7000
Fax: (800) 926-5007
elaine.harris@thermofisher.com
www.fishersci.com
Begonialaan 3a
6851 TE Hulssen
The Netherlands
Phone: +31 (0)326 4450
Fax: +31 (0)26 326 4451
info@bio-connect.nl
www.bio-connect.nl
Stratech Scientific Limited
7 Acorn Business Centre Oak Dr.
Newmarket Suffolk
CB8 7SY United Kingdom
Phone: +44 (0) 1638-782600
Fax: +44 (0) 1638-782606
www.stratech.co.uk
Iris Biotech GmbH
Waldershofer Str. 51
95615 Marktredwitz
Germany
Phone: +49-(0)9231-9619-73
Fax: +49-(0)9231-9619-99
info@iris-biotech.de
www.iris-biotech.de
Dynamic Diagnostics, Inc.
12665 Richfield Ct
Livonia, MI 48150
Phone: (800)-717-4677
Fax: (734)-425-5226
info@dynamicdiagnostics.com
www.dynamicdiagnostics.com
Canada
BioVectra
11 Aviation Ave.
Charlottetown, PE C1E 2E6
Canada
Phone: 866-883-2873
Fax: 902-628-2045
www.biovectra.com
3 GF and 3, 4, 5 FF, SDF BLOCK II, EPIP
Pashamylaram – 502307
Patancheru (M), Medak Dist, AP, INDIA
Telefax: 011-91-8455-223699
info@srilbpharma.com
www.srilbpharma.com
Australia
Stratech Scientific APAC Pty Ltd.
Sydney, Australia
Phone: +61 (0)2 9973 2421
Fax: +61 (0)2 9012 0019
Info@stratechscientific.com.au
www.startechscientific.com.au
Japan
Nacalai Tesque, Inc.
498 Higashitamaya-cho
Nijo Karasuma,Nakagyo-ku
Kyoto 604-0855 Japan
Phone: +81 75 251 1723
Fax: +81 75 251-1762
info.intl@nacalai.co.jp
www.nacalai.com
Wako Pure Chemical Industries
1-2 Doshomachi 3-Chome
Chuo-ku
Osaka 540-8605
Phone: +81 6 6203 3741
Fax: +81 6 6201 5964
labchem-tec@wako-chem.co.jp
www.wako-chem.co.j
Terms and Conditions
Quanta BioDesign, Ltd. owns self-developed technologies, materials and information, as well
as accompanying patents, patent applications, know- how and practical knowledge for the
production of discrete polyethylene glycols, dPEG®s, and related products.
The following are standard terms of trade and are an integral part of all quotations and sales of
Quanta BioDesign, Ltd. to customers, buyers and business enterprises:
1. By placing a Purchase Order, the customer
accepts the standard Terms and Conditions
of Sale of Quanta BioDesign, Ltd. as
binding.
2. Payment terms of sale are net 30 days of
date of invoice, unless otherwise stated.
Credit Cards may not be used on past due
invoices.
3. Products sold are solely for use by qualified
individuals who are experts in their fields for
laboratory use only and are not intended to
be used for any other purposes, including
but not limited to, in vitro diagnostic
purposes, in foods, drugs, medical devices,
cosmetics or commercial use. Customer
represents and warrants to Quanta
BioDesign, Ltd. that Buyer will properly test,
manufacture, use and market any products
purchased from or materials produced from
products made or purchased from Quanta
BioDesign, Ltd. in strict compliance with all
applicable laws and regulations.
4. Nothing in terms of trade or quotation of
orders by Quanta BioDesign, Ltd. may be
interpreted such that they would result in
the assignment of rights of use by Quanta
BioDesign, Ltd. technology by the
customer.
5. A separate licensing agreement/supply
agreement between Quanta BioDesign,
Ltd. and its customer will be necessary for
the use of Quanta BioDesign, Ltd. products
in applications beyond laboratory use.
Customers are responsible to informing
Quanta BioDesign when products are being
used beyond lab use.
6. All goods must be inspected upon arrival
and may not be returned for credit except
with Quanta BioDesign, Ltd.’s permission.
Due to the cost of re-qualifying product,
there is a charge of $250 for each previously
un-opened vial/bottle that is returned. No
previously opened product will be
accepted. Please note there are no returns
on bulk quantity purchases.
7. Quanta BioDesign, Ltd.’s products are
subject to US export laws, treaties, rules
international agreements and regulations.
All
customers
purchasing
Quanta
BioDesign, Ltd.’s products assume the
responsibility of abiding by US export laws,
treaties, rules international agreements and
regulations along with applicable foreign
laws.
Please Note: International customers are responsible for any international customs, duties or taxes on
merchandise delivered to addresses outside the United States. These amount are not included in the
shipping charges shown on invoices and will be billed to the customer separately by the chosen carrier,
if applicable.
Table of Contents
0BBioconjugate Techniques.......................................................................................................................................................5
dPEG ® Drug Delivery and Drug Loading Reagents.................................. 6
Phospholipids ...................................................................................................................... 6




m-dPEG®x-DSPE..........................................................................................................................................................6
m-dPEG®24-amido-dPEG®24-DSPE .............................................................................................................................6
TFP-dPEG®13-DSPE .....................................................................................................................................................7
MAL-dPEG®12-DSPE....................................................................................................................................................7
dPEG ® Based Chemical Modification Reagents ....................................... 9
Branched dPEG® PK/Serum Half-Life Modifiers .................................................................... 9



MAL-dPEG®12 or 24-Tris(m-dPEG®x or-dPEG®y-acid)3 and 9 .......................................................................................9
Amino-dPEG®12 or 24-Tris(m-dPEG®x or-dPEG®y-acid)3 and 9 ..................................................................................10
Bis-MAL-Lysine-dPEG®4+12-Tris(m-dPEG®24 or-dPEG®24-acid)3 ...............................................................................11
Amine Reactive .................................................................................................................. 12








m-dPEG®x-NHS ester ................................................................................................................................................12
m-dPEG®48-NH-CO(CH2)3 CO-TFP ester .................................................................................................................13
m-dPEG®x-amido dPEG®x-TFP ester........................................................................................................................13
m-dPEG®x-amido-dPEG®x acid.................................................................................................................................13
m-dPEG®x-acid ..........................................................................................................................................................14
NHS/TFP-dPEG®4-(m-dPEG®x)3-ester.......................................................................................................................15
Carboxyl-dPEG®4-(m-dPEG®X)3 .................................................................................................................................16
m-dPEG®x-alcohol .....................................................................................................................................................17
Carboxyl and Active Ester Reactive.................................................................................... 18





m-dPEG®x-NHS carbonate .......................................................................................................................................18
m-dPEG®x-Propionaldehyde ....................................................................................................................................19
m-dPEG®x-amine.......................................................................................................................................................20
Amino-dPEG®x-acids.................................................................................................................................................21
Amino-dPEG®4-(m-dPEG®x)3 .....................................................................................................................................23
Carbonyl Reactive .............................................................................................................. 24

Aminooxy-dPEG®12-amido- dPEG®12-(m-dPEG®11)3.................................................................................................24
Thiol and Sulfhydryl Reactive ............................................................................................. 25


m-dPEG®x-MAL .........................................................................................................................................................25
MAL-dPEG®4-(m-dPEG®x)3 ........................................................................................................................................26
Other important reactivities............................................................................................... 27

m-dPEG®x-Azide (Azido-m-dPEG®x).........................................................................................................................27
Metal Surface Modification Reagents (e.g., Au) ................................................................. 28






Thiol-dPEG®x-acid .....................................................................................................................................................28
m-dPEG®x-Thiol.........................................................................................................................................................29
Lipoamido-dPEG®x-TFP ester ..................................................................................................................................30
Lipoamido-dPEG®x-acid ...........................................................................................................................................31
MAL and Biotin-dPEG®x-lipoamide .........................................................................................................................32
m-dPEG®x-Lipoamide ...............................................................................................................................................33
Reactivity: Converting an Amine to a Latent Thiol ............................................................. 34


dPEG®x-SATA (S-acetyl-dPEG®x-NHS ester)............................................................................................................34
dPEG®x-SATA acid (S-acetyl-dPEG®x-acid)..............................................................................................................35
Reagents to extend Carboxyl with a dPEG® spacer............................................................ 36









Amino-dPEG®x-t-butyl ester .....................................................................................................................................36
Amino-dPEG®x-methyl ester Prep KIT .....................................................................................................................37
Hydroxy-dPEG®x-t-butyl ester ..................................................................................................................................38
Amino-dPEG®x-alcohol .............................................................................................................................................39
t-boc-N-amido-dPEG®x-alcohol ...............................................................................................................................39
Azido-dPEG®x-alcohol ..............................................................................................................................................40
S-acetyl-dPEG®x-alcohol ...........................................................................................................................................41
dPEG®12-diol ..............................................................................................................................................................41
m-dPEG®x-tosylate ....................................................................................................................................................41
dPEG ® Based Crosslinking Reagents ...................................................... 43
Heterobifunctional Reagents: Amine and Thiol Reactive .................................................... 43








4-formyl-benzamido-dPEG®x- TFP ester..................................................................................................................43
Phthalimidooxy-dPEG®x NHS ester .........................................................................................................................44
MAL-dPEG®x-NHS ester ...........................................................................................................................................45
MAL-dPEG®x-acid .....................................................................................................................................................46
MAL-dPEG®x-t-boc-hydrazide ..................................................................................................................................47
SPDP-dPEG®x-NHS ester ..........................................................................................................................................48
SPDP-dPEG®x-acid ....................................................................................................................................................49
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP).............................................................................................50
Homobifunctional Reagents: Amine Reactive..................................................................... 51



Bis-dPEG®x-NHS ester ..............................................................................................................................................51
Bis-dPEG®x-PFP & TFP esters ...................................................................................................................................53
Bis-dPEG®x-acid ........................................................................................................................................................55
Click Reagents: Azide ........................................................................................................ 56



Azido-dPEG®x-NHS ester..........................................................................................................................................56
Azido-dPEG®x-acid....................................................................................................................................................57
Azido-dPEG®x-amine ................................................................................................................................................58
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
2
Click Reagents: Amine and Carboxyl Acetylide Partners .................................................... 59


Propargyl-dPEG®1-NHS ester...................................................................................................................................59
Propargyl amine ........................................................................................................................................................59
Homobifunctional: Thiol Reactive....................................................................................... 60

Bis-MAL-dPEG®x........................................................................................................................................................60
Homobifunctional: Diamine Monoprotected ...................................................................... 60





t-boc-N-amido-dPEG®x-amine .................................................................................................................................60
Azido-dPEG®x-amine ................................................................................................................................................61
Diamido-dPEG®11-diamine .......................................................................................................................................61
CBZ-N-amido-dPEG®3-amine...................................................................................................................................62
t-boc-N-EDA .............................................................................................................................................................62
Miscellaneous: Homobifunctional; Monoprotected ............................................................ 63



Acid-dPEG®x-NHS ester............................................................................................................................................63
Amino-dPEG®11-ONH-t-boc .....................................................................................................................................64
Bis-dPEG®5, half benzyl half NHS ester....................................................................................................................64
Thiol Reactive Miscellaneous without dPEG® ..................................................................... 65






MPS (NHS-3-maleimidopropionate) ........................................................................................................................65
MPS-Acid ...................................................................................................................................................................65
MPS-EDA.TFA ...........................................................................................................................................................65
Bis-Maleimide amine, TFA salt.................................................................................................................................66
Bis-MAL-Lysine-dPEG®4-acid....................................................................................................................................67
Bis-MAL-Lysine-dPEG®4-TFP ester...........................................................................................................................68
Others................................................................................................................................ 69



Amino-dPEG®x-t-boc-hydrazide...............................................................................................................................69
Fmoc-N-amido-dPEG®4-t-boc-hydrazide ................................................................................................................70
NHS-dPEG®4-t-boc-hydrazide ..................................................................................................................................70
dPEG ® Biotinylation Reagents................................................................. 71
Amine Reactive .................................................................................................................. 71





NHS-dPEG®x-biotin...................................................................................................................................................71
dPEG®x-biotin acid ....................................................................................................................................................72
Biotin-dPEG®x-TFP ester...........................................................................................................................................73
NHS-S-S-dPEG®4-biotin ............................................................................................................................................74
TFP/NHS-dPEG®x-biotinidase resistant biotin ........................................................................................................75
Carbonyl Reactive .............................................................................................................. 76




Biotin-dPEG®4-hydrazide ..........................................................................................................................................76
Biotin-dPEG®x-NH2 ....................................................................................................................................................77
Biotin-dPEG®x-oxyamine. HCl ..................................................................................................................................78
Biotin-dPEG®4-SS-NH-dPEG®3-ONH2.......................................................................................................................79
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
3
Thiol Reactive .................................................................................................................... 80

Biotin-dPEG®x-MAL...................................................................................................................................................80
Photoaffinity Biotinylation Reagents .................................................................................. 81


Biotin-dPEG®3-benzophenone .................................................................................................................................81
Biotin-dPEG®3-TFPA .................................................................................................................................................81
Miscellaneous Biotinylation Reagents ................................................................................ 82






Biotinoylsarcosine .....................................................................................................................................................82
Biotinoyl-2-Aminobutyric acid..................................................................................................................................82
Biotin-dPEG®x-azide..................................................................................................................................................83
NHS-biotin.................................................................................................................................................................84
Bis-dPEG®3-biotin......................................................................................................................................................84
Biotin-dPEG®3-cyanocobalamin ...............................................................................................................................84
dPEG ® based Fluorescent and other Dye Labels ................................... 87




Lissamine Rhodamine B sulfonamide-dPEG®4-acid................................................................................................87
DNP-dPEG®x-NHS ester ...........................................................................................................................................87
DNP-dPEG®x-acid .....................................................................................................................................................88
Carboxy Fluorescein-dPEG®12-NHS ester................................................................................................................88
dPEG ® Based Reagents for Peptide Modification .................................. 89









Fmoc-N-amido-dPEG®x-acid....................................................................................................................................89
Fmoc-N-amido-dPEG®x-NHS esters ........................................................................................................................90
Fmoc-N-Lys-(dPEG®x-biotin)-OH-(acid) ...................................................................................................................91
t-boc-N-amido-dPEG®x-acid ....................................................................................................................................92
Fmoc-amidooxy-dPEG®12 acid .................................................................................................................................93
Methoxytrityl-N-dPEG®x-acid ...................................................................................................................................94
Methoxytrityl-N-dPEG®x-TFP ester ..........................................................................................................................95
CBZ-N-amido-dPEG®x-acid ......................................................................................................................................96
Methoxytrityl-S-dPEG®x acid ...................................................................................................................................97
dPEG ® Reagents for Nucleic Acids ......................................................... 99

Amino-dPEG®12-ODMT ............................................................................................................................................99
Please Note:
www.QuantaBioDesign.com
We make and offer many intermediates from which a range of otherwise
unavailable nucleic/oligonucleotides reagetns can be created.
Tel. 866 792-9222
Fax 614 760-9781
4
Bioconjugate Techniques
0B
A Tour de Force!
Buy it NOW!!
Greg has accomplished a Tour de Force with his new edition of
“Bioconjugate Techniques.” It is without a doubt the best
resource for those practicing in this broad field. He not only
teaches his theory, but also shows practical applications of his
theory. The book dicusses the latest advances in the field of
bioconjugates and is a great tool for those wishing to further
their understanding of biomolecules and bioconjugates. See
Chapter 18 for an introduction to the world of discrete PEG
(dPEG®). Thank you, Greg!
Buy a copy for only $90 or
get it FREE with an order of $1200 or more!
One book per customer.
Upon Request.
PLEASE NOTE: Book is shipped separately from products ordered.
Plesase allow 7-10 days for delivery .
Product #
Description
Price Per Book
10000
Bioconjugate Techniques by Greg T. Hermanson
$90
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
5
dPEG® Drug Delivery and Drug Loading Reagents
dPEG® Drug Delivery and Drug Loading Reagents
Phospholipids
Phospholipids
m-dPEG®x-DSPE
Product #
Description
25 mg
100 mg
11024
m-dPEG ®8-DSPE
$125
$250
$125
$250
$125
$250
Mol. Wt.:1173.60; single compound; dPEG® Spacer is 26 atoms and 29.8 Å, Avg.
m-dPEG ®₁₂-DSPE
11025
Mol. Wt.:1349.81; single compound; dPEG® Spacer is 38 atoms and 44 Å, Avg.
m-dPEG ®24-DSPE
11026
Mol. Wt.:1878.45; single compound; dPEG® Spacer is 74 atoms and 86.2 Å, Avg.
m-dPEG®24-amido-dPEG ®24-DSPE
Product #
Description
m-dPEG
11027
®
®
24-amido-dPEG 24-DSPE
25 mg
100 mg
$125
$250
Mol. Wt.:3006.80; single compound; dPEG® Spacer is 150 atoms and 177.0 Å, Avg.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
6
dPEG® Drug Delivery and Drug Loading Reagents
Phospholipids
TFP-dPEG ®13-DSPE
Product #
Description
TFP-dPEG
11029
®
13-DSPE
25 mg
100 mg
$125
$400
25 mg
100 mg
$250
$600
Mol. Wt. 1599.96; single compound; dPEG® Spacer is 43 atoms and 50.0 Å, Avg.
MAL-dPEG®12-DSPE
Product #
Description
MAL-dPEG
11028
®
12 -DSPE
Mol. Wt.:1529.97; single compound; dPEG® Spacer is 46 atoms and 53.3Å, Avg.
References
1.
2.
3.
Gavin T. Noble, Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer, Ligand-targeted liposome design: challenges and
fundamental considerations, Trends in Biotechnology, 2014, 32(1), 32-45; http://dx.doi.org/10.1016/j.tibtech.2013.09.007.
Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer, Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased
Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length, ACSNano, 2013, 7(9), 8115-8127;
http://dx.doi.org/10.1021/nn4033954.
Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer, ASystematic Analysis of Peptide Linker Length and Liposomal
Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes, ACSNano, 2013, 7(4), 2935-2947; http://dx.doi.org/
10.1021/nn305663e.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
7
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
8
dPEG® Based Chemical Modification Reagents
dPEG® Based Chemical Modification Reagents
Branched dPEG® PK/Serum Half Life Modifiers
Branched dPEG ® PK/Serum Half-Life Modifiers
®
®
12
24
x
®
y
3
9
MAL-dPEG or -Tris(m-dPEG
or-dPEG -acid) and
Product #
Description
25 mg
100 mg
11471
MAL-dPEG®₁₂-Tris(m-dPEG®₂₄)₃
$250
$750
$350
$900
$450
$1100
$550
$1250
H
O N
O
O
N
O
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OO
O
O
O
O
O
O
N O O O O O O O O O O O O
O
O
O
O
O
O
N O
H O H H
O
O
O
O
O
O
N O O O O O O O O O O O O
O
O
O
O
O
O
O
Mol. Wt.: 4299.06; single compound; dPEG® Spacer is 127 atoms and 103.0 Å, Avg.
11451
MAL-dPEG®₁₂-Tris(-dPEG®₂₄-acid)₃
Mol. Wt.: 4473.21; single compound; dPEG® Spacer is 130 atoms and 102.4 Å, Avg.
10484
MAL-dPEG®₁₂-Tris (dPEG®₁₂-Tris (m-dPEG®₁₁)₃)₃
Mol. Wt.: 8323.87; single compound; dPEG® Spacer is 135 atoms and 98.3 Å, Avg.
11487
MAL-dPEG®₂₄-Tris (-dPEG®₂₄-Tris (m-dPEG®₂₄)₃)₃
Mol. Wt.:15592.45; single compound; dPEG® Spacer is 247 atoms and 158.8 Å, Avg.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
9
dPEG® Based Chemical Modification Reagents
Branched dPEG® PK/Serum Half Life Modifiers
Amino-dPEG®12 or 24-Tris(m-dPEG®x
or-dPEG®y-acid)3 and 9
Product #
Description
25 mg
100 mg
11474
Amino-dPEG®₁₂-Tris(m-dPEG®₂₄)₃
$225
$700
$325
$800
$425
$1050
$525
$1200
Mol. Wt.: 4147.94; single compound; dPEG® Spacer is 121 atoms and 99.8 Å, Avg.
11449
Amino-dPEG®₁₂-Tris(-dPEG®₂₄-acid)₃
Mol. Wt.: 4490.37; single compound; dPEG® Spacer is 126 atoms and 102.8 Å, Avg.
10482
Amino-dPEG®₁₂-Tris (dPEG®₁₂-Tris (m-dPEG®₁₁)₃)₃
Mol. Wt.: 8172.75; single compound; dPEG® Spacer is 129 atoms and 96.0 Å, Avg.
11486
Amino-dPEG®₂₄-Tris (-dPEG®₂₄-Tris (m-dPEG®₂₄)₃)₃
Mol. Wt.: 15441.49; single compound; dPEG® Spacer is 241 atoms and 155.1 Å, Avg.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
10
dPEG® Based Chemical Modification Reagents
Branched dPEG® PK/Serum Half Life Modifiers
Bis-MAL-Lysine-dPEG ®4+12Tris(m-dPEG®24 or-dPEG®24-acid)3
Product #
Description
25 mg
100 mg
11633
Bis-MAL-Lysine-dPEG® 4-dPEG®12-Tris(m-dPEG®₂₄)₃
$225
$700
$325
$900
Mol. Wt.: 4825.69; single compound; dPEG® Spacer are atoms 149 and 153; 110.3 and 112.5 Å, Avg.
11630
Bis-MAL-Lysine-dPEG® 4-dPEG®12-Tris(-dPEG®₂₄-acid)₃
Mol. Wt.:
4999.80; single compound; dPEG® Spacer is 152 and 156 atoms and 113.0 and 115.4 Å, Avg.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
11
dPEG® Based Chemical Modification Reagents
Amine Reactive
Amine Reactive
m-dPEG®x-NHS ester
O
NH2
+
NHS-dPEG®x-m
=
dPEG®X-m
N
H
Antibody (reduce non-s pecific binding); Drug/protein (increased
solubility)
Product #
Description
100 mg
1000 mg
10327
m-dPEG ®2-NHS ester
$100
$300
$100
$400
$175
$500
$175
$600
$225
$1250
$325
$1500
$400
$1700
O
O
O
O
O
N
O
Mol. Wt.: 245.23; single compound; dPEG® Spacer is 8 atoms and 8.5 Å
m-dPEG ®4-NHS ester
10211
O
O
O
O
O
O
O
N
O
Mol. Wt.: 333.33; single compound; dPEG® Spacer is 14 atoms and 15.6 Å
m-dPEG ®8-NHS ester
10260
Mol. Wt.: 509.54; single compound; dPEG® Spacer is 26 atoms and 29.8 Å
m-dPEG ®12-NHS ester
10262
Mol. Wt.: 685.75; single compound; dPEG® Spacer is 38 atoms and 44.0 Å
m-dPEG ®24-NHS ester
10304
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 1214.39; single compound; dPEG Spacer is 74 atoms and 86.2 Å
®
m-dPEG ®37-NHS ester
10910
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
ON
O
Mol. Wt.: 1787.07; single compound; dPEG® Spacer is 112 atoms and 133.9 Å
m-dPEG ®49-NHS ester
10920
Mol. Wt.: 2315.70; single compound; dPEG® Spacer is 149 atoms and 174.9 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
12
dPEG® Based Chemical Modification Reagents
Amine Reactive
m-dPEG®48-NH-CO(CH2)3 COTFP ester
Product #
Description
100 mg
1000 mg
10143
m-dPEG ®48-NH-CO(CH2)3CO-TFP ester
$375
$1600
Mol. Wt.: 2407.76; single compound; dPEG® Spacer is 151 atoms and 178.5 Å
m-dPEG®x-amido dPEG®x-TFP ester
Product #
Description
10149
m-dPEG
®
®
12-amido-dPEG 12-TFP
100 mg
1000 mg
$275
$1300
$400
$1700
100 mg
1000 mg
$250
$1100
$400
$1700
ester
Mol. Wt.:1336.45; single compound; dPEG® Spacer is 77 atoms and 91.3 Å
m-dPEG ®24-amido-dPEG®24-TFP ester
10144
Mol. Wt.:2393.71; single compound; dPEG® Spacer is 150 atoms and 8.5 Å
m-dPEG®x-amido-dPEG ®x acid
Product #
10148
Description
m-dPEG
®
®
12-amido-dPEG 12-acid
Mol. Wt.:1188.39; single compound; dPEG® Spacer is 77 atoms and 91.3 Å
10147
m-dPEG ®24-amido-dPEG®24-acid
Mol. Wt.:2245.68; single compound; dPEG® Spacer is 150 atoms and 177 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
13
dPEG® Based Chemical Modification Reagents
Amine Reactive
m-dPEG®x-acid
O
NH 2
+
NHS-dPEG ®x-m
=
dPEG®X-m
N
H
Antibody (reduce non-s pecific binding); Drug/protein (increased solubility)
Product #
Description
100 mg
1000 mg
10326
m-dPEG ®2-acid
$100
$250
$100
$300
$175
$400
$175
$515
$225
$1000
$325
$1500
$400
$1700
O
O
O
OH
Mol. Wt.: 148.16; single compound; dPEG® Spacer is 8 atoms and 8.5 Å
m-dPEG ®4-acid
10234
O
O
O
O
O
OH
Mol. Wt.: 236.26; single compound; dPEG® Spacer is 14 atoms and 15.6 Å
m-dPEG ®8-acid
10324
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 412.47; single compound; dPEG® Spacer is 26 atoms and 29.8 Å
m-dPEG ®12-acid
10328
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 588.68; single compound; dPEG® Spacer is 38 atoms and 44.0 Å
m-dPEG ®24-acid
10339
Mol. Wt.: 1117.31; single compound; dPEG® Spacer is 74 atoms and 86.2 Å
m-dPEG ®37-acid
10909
Mol. Wt.: 1690.00; single compound; dPEG® Spacer is 112 atoms and 133.9 Å
m-dPEG ®48-CO(CH2)3-acid
10142
Mol. Wt.: 2259.70; single compound; dPEG® Spacer is 151 atoms and 178.5 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
14
dPEG® Based Chemical Modification Reagents
Amine Reactive
NHS/TFP-dPEG ®4-(m-dPEG®x)3-ester
NH 2 +
dPEG ®y
NHS
dPEG®X-m
dP EG®X-m
O
dP EG®X-m
O
NH
dPEG ®y
dP EG®X-m
=
dPEG®X-m
dP EG®X-m
Antibody (reduce non-specific binding); Drug/protein (increase solubility)
Product #
Description
100 mg
1000 mg
10411
NHS-dPEG®4-(m-dPEG®4)3-ester
$250
$1300
$250
$1300
$250
$1300
$250
$1300
$350
$1575
$350
$1575
Mol. Wt.: 1363.54; single compound; dPEG® Spacer is 43 atoms and 46.2 Å, Avg.
NHS-dPEG®4-(m-dPEG®8)3-ester
10421
Mol. Wt.: 1892.17; single compound; dPEG® Spacer is 55 atoms and 60.2 Å, Avg.
TFP-dPEG®4-(m-dPEG ®11)3-ester
11401
Mol. Wt.; 2339.62; single compound; dPEG® Spacer is 63 atoms and 74.1 Å, Avg.
NHS-dPEG®4-(m-dPEG®12)3-ester
10401
Mol. Wt.; 2420.80; single compound; dPEG® Spacer is 66 atoms and 51.1 Å, Avg.
NHS-dPEG®4-(m-dPEG®24)3-ester
10454
. Mol. Wt.: 4006.69; single compound; dPEG® Spacer is 103 atoms and 107.1 Å, Avg.
TFP-dPEG®4-(m-dPEG ®24)3-ester
10458
. Mol. Wt.: 4057.72; single compound; dPEG® Spacer is 103 atoms and 107.1 Å, Avg.
References:
GregT. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., Ch. 18, pp.
711-742.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
15
dPEG® Based Chemical Modification Reagents
Amine Reactive
Carboxyl-dPEG ®4-(m-dPEG ®X)3
Product #
10412
Description
100 mg
1000 mg
Carboxyl-dPEG®4-(m-dPEG®4)3
$250
$1300
$250
$1300
$250
$1300
$250
$1300
$350
$1575
Mol. Wt.: 1266.47; single compound; dPEG® Spacer is 43 atoms and 28 Å, Avg.
Carboxyl-dPEG®4-(m-dPEG®8)3
10422
Mol. Wt.: 1795.10; single compound; dPEG® Spacer is 55 atoms and 57 Å, Avg.
Carboxyl-dPEG®4-(m-dPEG®11)3
11402
Mol. Wt.: 2191.57; single compound; dPEG® Spacer is 63 atoms and 76.1 Å, Avg.
Carboxyl-dPEG®4-(m-dPEG®12)3
10402
Mol. Wt.: 2323.73; single compound; dPEG® Spacer is 66 atoms and 74.1 Å, Avg.
Carboxyl-dPEG®4-(m-dPEG®24)3
10455
Mol. Wt.: 3909.62; single compound; dPEG® Spacer is 103 atoms and 107.1 Å, Avg.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
16
dPEG® Based Chemical Modification Reagents
Amine Reactive
m-dPEG®x-alcohol
Product #
Description
100 mg
1000 mg
10348
m-dPEG ®4-alcohol
$75
$250
$50
$200
$100
$250
$150
$350
$175
$500
$200
$600
$350
$1000
Mol. Wt.: 208.25; single compound; dPEG® Spacer is 14 atoms and 46.3 Å
m-dPEG ®7-alcohol
10251
Mol. Wt.: 340.41; single compound; dPEG® Spacer is 23 atoms and 26.1 Å
m-dPEG ®11-alcohol
10252
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 516.62; single compound; dPEG® Spacer is 35 atoms and 40.3 Å
m-dPEG ®15-alcohol
10894
Mol. Wt.: 692.83; single compound; dPEG® Spacer is 46 atoms and 54.7 Å
m-dPEG ®19-alcohol
10895
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
O
Mol. Wt.: 869.04; single compound; dPEG Spacer is 58 atoms and 69.0 Å
®
m-dPEG ®23-alcohol
10942
Mol. Wt.: 1045.25; single compound; dPEG® Spacer is 70 atoms and 83.1 Å
m-dPEG ®36-alcohol
10728
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1617.93; single compound; dPEG® Spacer is 109 atoms and 130.1 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
17
Carboxyl and Active Ester Reactive
dPEG® Based Chemical Modification Reagents
Carboxyl and Active Ester Reactive
m-dPEG®x-NHS carbonate
O
O
NH2
+
=
O-dPEG ®x-m
NHS
(potentially cleavable)
O-dPEG ®x-m
N
H
Antibody (r educe non-specific binding); Drug/pr otein (increase solubility)
Product #
Description
100 mg
1000 mg
10305
m-dPEG ®3-NHS carbonate
$100
$500
$150
$650
$165
$850
$225
$950
$300
$1050
$325
$1200
Mol. Wt.: 305.28; single compound; dPEG® Spacer is 12 atoms and 13.1 Å
m-dPEG ®7-NHS carbonate
10929
Mol. Wt.: 481.49; single compound; dPEG® Spacer is 21 atoms and 27.2 Å
m-dPEG ®11-NHS carbonate
10307
Mol. Wt.: 657.70; single compound; dPEG® Spacer is 36 atoms and 41.5 Å
m-dPEG ®15-NHS carbonate
10898
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 833.91; single compound; dPEG® Spacer is 46 atoms and 54.7 Å
m-dPEG ®19-NHS carbonate
10899
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 1010.12; single compound; dPEG® Spacer is 58 atoms and 69.0 Å
10930
m-dPEG ®23-NHS carbonate
Mol. Wt.: 1186.33; single compound; dPEG® Spacer is 70 atoms and 84.4 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
18
dPEG® Based Chemical Modification Reagents
Carboxyl and Active Ester Reactive
m-dPEG®x-Propionaldehyde
O
NH 2
+
O
+
w/ reductive amination
NHNH2
=
Stab le
O
O
H
dPEG ®x-m
HN
dPEG ®x-m
H
N
H
dPEG ®x-m
N
dPEG®x-m
A cid labile
Antibody (reduce non-specific binding); Drug/protein (increased solubility)
Product #
Description
10362
m-dPEG ®4-Propionaldehyde
100 mg
1000 mg
$100
$600
$100
$600
$175
$900
$225
$1200
O
O
O
O
O
H
Mol. Wt. 220.26; single compound; dPEG® Spacer is 14 atoms and 16.5 Å
10363
m-dPEG ®8-Propionaldehyde
Mol. Wt.: 396.47; single compound; dPEG® Spacer is 27 atoms and 29.8 Å
10424
m-dPEG ®12-Propionaldehyde
M.W. 572.68; single compound; dPEG® Spacer is 38 atoms and 44.0 Å
10364
m-dPEG ®24-Propionaldehyde
Mol. Wt.: 1101.31; single compound; dPEG® Spacer is 74 atoms and 86.4 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
19
dPEG® Based Chemical Modification Reagents
Carboxyl and Active Ester Reactive
m-dPEG®x-amine
Product #
Description
100 mg
1000 mg
10175
m-dPEG ®4-amine
$125
$325
$175
$500
$200
$700
$225
$1025
$250
$1125
$300
$1250
$350
$1325
Mol. Wt.: 207.27; single compound; dPEG® Spacer is 14 atoms and 15.5 Å
m-dPEG ®8-amine
10278
O
O
O
O
O
O
O
O
NH2
Mol. Wt.: 383.48; single compound; dPEG® Spacer is 26 atoms and 29.7 Å
m-dPEG ®12-amine
10288
O
O
O
O
O
O
O
O
O
O
O
O
NH2
Mol. Wt.: 559.69; single compound; dPEG® Spacer is 38 atoms and 43.9 Å
m-dPEG ®15-amine
10298
Mol. Wt.: 691.85; single compound; dPEG® Spacer is 47 atoms and 53.4 Å
m-dPEG ®24-amine
10318
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
NH2
Mol. Wt.: 1088.32; single compound; dPEG® Spacer is 74 atoms and 86.1 Å
m-dPEG ®36-amine
10908
Mol. Wt.: 1616.95; single compound; dPEG® Spacer is 109 atoms and 130.0 Å
m-dPEG ®48-amine
10918
Mol. Wt.: 2145.58; single compound; dPEG® Spacer is 146 atoms and 173.1 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0).
Specifically see pp. 726-729 in his Chapter 18 on discrete PEG compounds for pegylation applications.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
20
dPEG® Based Chemical Modification Reagents
Carboxyl and Active Ester Reactive
Amino-dPEG ®x-acids
Product #
Description
100 mg
1000 mg
10244
Amino-dPEG®4-acid
$100
$350
$100
$450
$175
$500
$195
$800
Mol. Wt.: 265.30; single compound; dPEG® Spacer is 16 atoms and 18.0 Å
10067
Amino-dPEG®6-acid
Mol. Wt.: 353.41; single compound; dPEG® Spacer is 22 atoms and 25.1 Å
10277
Amino-dPEG®8-acid
Mol. Wt.: 441.51; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
10287
Amino-dPEG®12-acid
Mol. Wt.: 617.72; single compound; dPEG® Spacer is 40 atoms and 46.5 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
21
dPEG® Based Chemical Modification Reagents
Carboxyl and Active Ester Reactive
Amino-dPEG ®x-acids (cont.)
Product #
Description
100 mg
1000 mg
10317
Amino-dPEG®24-acid
$250
$1250
$300
$1400
Mol. Wt.: 1146.35; single compound; dPEG® Spacer is 76 atoms and 89 Å
Amino-dPEG®36-acid
10907
Mol. Wt.: 1674.99; single compound; dPEG® Spacer is 111 atoms and 132.7 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Chapter
14, pp. 582-626. Many of these can be applied to surfaces as well as particles, as Greg has emphasized in this chapter. A great picture of an optimal chemistry is shown
in his Figure 14.5, pg. 591. The example uses them in conjunction with the m-dPEG®x amines, generally equal to or shorter than the amino-dPEG® acid.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
22
dPEG® Based Chemical Modification Reagents
Carboxyl and Active Ester Reactive
Amino-dPEG ®4-(m-dPEG ®x)3
dPEG ®X-m
O
NHS (OH)
+
H2N
dP EG®y
dPEG ®X-m
dPEG ®X-m
O
NH
dPEG®y
dPEG ®X-m
=
dPEG ®X-m
dPEG ®X-m
Antibody (r educe non-specific binding); Drug/protein (increase solubility)
Product #
Description
100 mg
1000 mg
10410
Amino-dPEG®4-(m-dPEG ®4)3
$250
$1300
$250
$1300
$250
$1300
$250
$1300
$325
$1575
Mol. Wt.: 1152.37; single compound; dPEG® Spacer is 37 atoms and 21 Å, Avg.
Amino-dPEG®4-(m-dPEG ®8)3
10420
Mol. Wt.: 1681.00; single compound; dPEG® Spacer is 49 atoms and 50 Å, Avg.
NH2-dPEG®4-(m-dPEG®11)3-ester
11400
Mol. Wt.: 2077.47; single compound; dPEG® Spacers are 58 atoms and 64.63 Å, Avg.
Amino-dPEG®4-(m-dPEG ®12)3
10400
Mol. Wt.: 2209.63; single compound; dPEG® Spacers are 61 atoms and 63 Å, Avg.
Amino-dPEG®4-(m-dPEG ®24)3
10453
Mol. Wt.: 3795.52; single compound; dPEG® Spacers are 97 atoms and 96.2(avg) Å, Avg.
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Chapter 1,
pp. 25.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
23
dPEG® Based Chemical Modification Reagents
CarboxylReactive
Carbonyl Reactive
Aminooxy-dPEG®12-amidodPEG®12-(m-dPEG®11)3
Aldehydes (latent) are common
in carbohydrates, carbohydrate
containing proteins, in oxidizable
matrices, among others AND can
be incorporated using reagents
like the 4-FB-dPEG®x TFP esters
(amine reactive)
Aminooxy-dPEG®s with a
LABEL. Quanta has available a
BIOTIN label. PN 11112 below is
perfect for making your own.
Product #
Description
100 mg
1000 mg
10492
Aminooxy-dPEG®12-amido-dPEG®12-(m-dPEG ®11) 3
$350
$2000
Mol. Wt.: 3045.60; single compound; dPEG® Spacer is 123 atoms and 124.8 Å, Avg.
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
24
dPEG® Based Chemical Modification Reagents
Thiol and Sulfhydryl Reactive
Thiol and Sulfhydryl Reactive
m-dPEG®x-MAL
O
SH
+
N m-dPEG®x
S
m-dPEG®x-MAL
O
= antibody fragment; cystine terminated peptide; protein with thiol, natural or engineered; small molecule;
soluble and hydrophilic alternative to NEM
Product #
Description
10745
m-dPEG ®4-MAL
100 mg
1000 mg
$200
$650
$225
$900
$250
$1125
$275
$1300
$350
$1400
$425
$1500
O
O
O
O
O
H
N
N
O
O
Mol. Wt.: 360.40; single compound; dPEG® Spacer is 20 atoms and 22.1Å
m-dPEG ®8-MAL
10746
Mol. Wt.: 534.60; single compound; dPEG® Spacer is 32 atoms and 36.4 Å
m-dPEG ®12-MAL
10289
Mol. Wt.: 710.81; single compound; dPEG® Spacer is 44 atoms and 50.7 Å
m-dPEG ®24-MAL
10319
Mol. Wt.: 1239.44; single compound; dPEG® Spacer is 80 atoms and 50.7 Å
m-dPEG ®36-MAL
10931
Mol. Wt.: 1768.07; single compound; dPEG® Spacer is 116 atoms and 137.2 Å
m-dPEG ®48-MAL
10932
Mol. Wt.: 2296.70; single compound; dPEG® Spacer is 152 atoms and 178.6 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See all of
the extensive references to the reactions of maleimides with a wide variety of compounds and applications, Hermanson, pg. 1174 (index for malemides) and references
therein.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
25
dPEG® Based Chemical Modification Reagents
Thiol and Sulfhydryl Reactive
MAL-dPEG ®4-(m-dPEG ®x)3
O
O
+
SH
dPEG ®X-m
dPEG®y
N
S
dPEG®X-m
=
dPEG®X-m
dPEG ®X-m
O
dPEG ®X-m
O
dPEG ®X-m
dPEG®y
N
Antibody (reduce non-specific binding); Drug/protein (increase solubility)
Product #
Description
100 mg
1000 mg
10416
MAL-dPEG ®4-(m-dPEG®4)3
$250
$1300
$250
$1300
$250
$1300
$250
$1300
$350
$1575
Mol. Wt.: 1303.49; single compound; dPEG® Spacer is 43 atoms and 47.9 Å, Avg.
MAL-dPEG ®4-(m-dPEG®8)3
10426
O
O
O
N
N
H
O
O
O
O
O
O
H
N
O
N
H
O
O
O
O
O
N
H
O
H
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
M.W. 1832.12; single compound; dPEG® Spacer is 55 atoms and 61.9 Å, Avg.
MAL-dPEG ®4-(m-dPEG®11)3
11406
Mol. Wt.: 2228.59; single compound; dPEG® Spacer is 64 atoms and 75.8 Å, Avg.
MAL-dPEG ®4-(m-dPEG®12)3
10406
Mol. Wt.: 2360.75; single compound; dPEG® Spacer is 67 atoms and 75.8 Å, Avg.
MAL-dPEG ®4-(m-dPEG®24)3
10456
Mol. Wt.: 3946.64; single compound; dPEG® Spacer is 103 atoms and 108.3 Å, Avg.
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Ch. 1, Pg.
30
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
26
dPEG® Based Chemical Modification Reagents
Other important reactivities
Other important reactivities
m-dPEG ®x-Azide (Azido-m-dPEG ®x)
(reduce)
m-dPEG ®x-N3
m-dPEG ®x-NH 2
Cu(I)
+
=
N
m-dPEG ®x-N3
dPEG®x-m
N N
Small molecule; modified surface; peptide, oligo
Product #
Description
100 mg
1000 mg
10532
m-dPEG ®4-Azide (Azido-m-dPEG ®4)
$125
$500
$175
$600
$225
$700
$275
$800
$300
$1000
O
O
O
N3
O
Mol. Wt.: 233.26; single compound; dPEG Spacer is 14 atoms and 15.5 Å
®
m-dPEG ®8-Azide (Azido-m-dPEG ®8)
10534
Mol. Wt.: 409.48; single compound; dPEG® Spacer is 26 atoms and 29.7 Å
m-dPEG ®12-Azide (Azido-m-dPEG ®12)
10536
Mol. Wt.: 585.69; single compound; dPEG® Spacer is 38 atoms and 44.0 Å
m-dPEG ®24 Azide (Azido-m-dPEG ®24)
10540
Mol. Wt.: 1114.32; single compound; dPEG® Spacer is 74 atoms and 86.9 Å
m-dPEG ®36 Azide (Azido-m-dPEG ®36)
10531
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N3
Mol. Wt.: 1642.95; single compound; dPEG® Spacer is 110 atoms and 131.2 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
27
dPEG® Based Chemical Modification Reagents
Metal Surface Modification Reagents (e.g., Au)
Metal Surface Modification Reagents (e.g., Au)
Thiol-dPEG®x-acid
HO O
x
dP
EG ®
x
®
G
dPE
O OH
Metal
Par ticle,
e.g., Au
O
+
X
HS
O
HO dP
EG ®
x
S
S
Metal
Particle,
e.g., Au
dPEG®x OH
O
x
S
®
EG
dP
S d
PE
S
OH
x
G®
x
O
OH
S
dP EG ®
HO
®
EG
dP
O
S
x
HO
O
Product #
Description
100 mg
1000 mg
10247
Thiol-dPEG®4-acid
$200
$500
$250
$700
$250
$900
Mol. Wt.: 282.35; single compound; dPEG® Spacer is 16 atoms and 18.3 Å
Thiol-dPEG®8-acid
10183
Mol. Wt.: 458.57; single compound; dPEG® Spacer is 28 atoms and 32.5 Å
Thiol-dPEG®12-acid
10850
Mol. Wt.: 634.77; single compound; dPEG® Spacers are 39 atoms and 46.8 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0).
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
28
dPEG® Based Chemical Modification Reagents
Metal Surface Modification Reagents (e.g., Au)
m-dPEG®x-Thiol
x
dP
EG ®
x -m
®
G
PE
m -d
S
m -d
P EG®
S
x
Metal
Particle,
e.g., Au
X
+
HS
Metal
Particle,
e.g., Au
dPEG®x-m
Product #
Description
10792
m-dPEG ®4-Thiol
O
O
O
® x-m
EG
dP
S d
PE
S
x
S
G®
x -m
S
dPEG ®
xm
m
®
G
PE
-d
S
100 mg
1000 mg
$150
$400
$200
$600
$250
$900
SH
O
Mol. Wt.: 224.32; single compound; dPEG® Spacer is 14 atoms and 15.8 Å
m-dPEG ®8-Thiol
10793
O
O
O
O
O
O
O
SH
O
Mol. Wt.: 400.53; single compound; dPEG® Spacer is 26 atoms and 30.0 Å
m-dPEG ®12-Thiol
10794
O
O
O
O
O
O
O
O
O
O
O
O
SH
Mol. Wt.: 576.74; single compound; dPEG® Spacer is 38 atoms and 44.2 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0).
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
29
dPEG® Based Chemical Modification Reagents
Metal Surface Modification Reagents (e.g., Au)
Lipoamido-dPEG ®x-TFP ester
Product #
Description
100 mg
1000 mg
10641
Lipoamido-dPEG ®4-TFP ester
$200
$800
$250
$1150
$300
$1250
$400
$1400
Mol. Wt.: 601.18; single compound; dPEG® Spacer is 24 atoms and 28 Å
10642
Lipoamido-dPEG ®8-TFP ester
Mol. Wt.: 629.82; single compound; dPEG® Spacer is 36 atoms and 42.7 Å
10814
Lipoamido-dPEG ®12-TFP ester
Mol. Wt.: 954.09; single compound; dPEG® Spacer is 48 atoms and 56.5 Å
10643
Lipoamido-dPEG ®24-TFP ester
Mol. Wt.: 11482.72; single compound; dPEG® Spacer is 84 atoms and 98.8 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
30
dPEG® Based Chemical Modification Reagents
Metal Surface Modification Reagents (e.g., Au)
Lipoamido-dPEG ®x-acid
Product #
Description
10806
Lipoamido-dPEG ®4-acid
O
O
N
H
S S
1000 mg
$200
$800
$250
$1150
$300
$1250
$400
$1400
O
O
O
100 mg
O
OH
Mol. Wt.: 453.61; single compound; dPEG® Spacer is 24 atoms and 27.5 Å
Lipoamido-dPEG ®8-acid
10807
O
O
O
N
H
S S
O
O
O
O
O
O
O
OH
Mol. Wt.: 629.82; single compound; dPEG® Spacer is 36 atoms and 41.2 Å
Lipoamido-dPEG ®12-acid
10808
O
O
N
H
S S
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 806.03; single compound; dPEG® Spacer is 48 atoms and 55.5 Å
Lipoamido-dPEG ®24-acid
10811
O
S S
O
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1334.66; single compound; dPEG® Spacer is 83.5 atoms and 99.0 Å
References:
Greg T. Hermanson. Bioconjugate Techniques, 2nd edition. Elsevier, Inc., Burlington, MA 01803, April 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), pages
188-190, 485-497, 924-935
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
31
dPEG® Based Chemical Modification Reagents
Metal Surface Modification Reagents (e.g., Au)
MAL and Biotin-dPEG ®x-lipoamide
MAL O
O MAL
x
dP
EG ®
x
®
G
dPE
Maleimide provides functionality for antibody immobilization,
as well as peptides, oligos, etc.!!
LA
O
MAL dP
EG ®
O
Metal
Particle,
e.g., Au, Ag
QD, magn.
X
+
LA
x
LA =
LA
x
Metal
Particle,
e.g., Au, Ag
QD, magn.
N
dPEG®
O
O
O
S S
MAL
O
x
LA
O
MAL
biotin O
x
dP
EG ®
x
®
G
dPE
O biotin
LA
O
biotin dP
EG ®
X
+
biotin
x
LA
Metal
Particle,
e.g., Au, Ag
QD, magn.
LA
O
®
EG
dP
LA d
PE
biotin
x
G®
LA
x
O
bio tin
LA
dP EG ®
®
EG
dP
O
O
LA =
LA
x
O
dPEG®x biotin
LA
LA d
PE ® O
G
x MAL
x
O
Biotin opens the door to binding streptavidin derivatives!
Metal
Particle,
e.g., Au, Ag
QD, magn.
MAL
x
LA
N
MAL =
LA
O
®
EG
dP
dP EG ®
®
EG
dP
LA
x
S S
biotin
Product #
O
Description
MAL-dPEG ®3-Lipoamide
10817
O
O
O
O
N
H
S S
O
100 mg
1000 mg
$225
$900
$325
$1100
$250
$975
$350
$1250
$450
$1250
O
N
H
N
O
Mol. Wt.: 559.74; single compound; dPEG® Spacer is 27 atoms and 31.1 Å
MAL-dPEG ®11-Lipoamide
10819
O
O
N
H
S S
O
O
O
O
O
O
O
O
O
O
O
O
N
H
N
O
Mol. Wt.: 884.11; single compound; dPEG® Spacer is 49 atoms and 59.3 Å
Biotin-dPEG ®3-Lipoamide
10820
O
O
S
S
O
O
N
H
O
HN
O
NH
N
H
S
Mol. Wt.: 634.91; single compound; dPEG® Spacer is 22 atoms and 27.7 Å
Biotin-dPEG ®11-Lipoamide
10822
O
O
S S
N
H
O
O
O
O
O
O
O
O
O
O
O
N
H
HN
O
NH
S
Mol. Wt.: 959.28; single compound; dPEG® Spacer is 43 atoms and 52.9 Å
Biotin-dPEG ®23-Lipoamide
10828
Mol. Wt.: 1487.92; single compound; dPEG® Spacer is 73 atoms and 87.6 Å
References:
Greg T. Hermanson. Bioconjugate Techniques, 2nd edition. Elsevier, Inc., Burlington, MA 01803, April 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), pages
188-190, 485-497, 924-935
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
32
dPEG® Based Chemical Modification Reagents
Metal Surface Modification Reagents (e.g., Au)
m-dPEG®x-Lipoamide
dP
E
x
G®
x -m
®
G
PE
m -d
Lipoamide vs. thiol- produces HIGHER binding to metal!
LA
m-d
P EG®
X
+
LA
dPEG ®x-m
O
®
G
PE
-d
x
LA
Metal
Particle,
e.g., Au, Ag
QD, magn. LA
® x-m
EG
dP
dP
EG ®
x -m
LA
dPEG ®
xm
m
LA =
LA
LA
x
Metal
Particle,
e.g., Au, Ag
QD, magn.
LA
S S
Product #
Description
100 mg
1000 mg
10799
m-dPEG ®4-Lipoamide
$150
$700
$200
$1000
$300
$1150
$400
$1300
O
S
O
N
H
S
O
O
O
Mol. Wt.: 395.58; single compound; dPEG® Spacer is 21 atoms and 23.9 Å
m-dPEG ®8-Lipoamide
10800
O
O
N
H
S S
O
O
O
O
O
O
O
Mol. Wt.: 571.79; single compound; dPEG® Spacer is 34.5 atoms and 38.8 Å
m-dPEG ®12-Lipoamide
10801
O
O
N
H
S S
O
O
O
O
O
O
O
O
O
O
O
Mol. Wt.: 748.00; single compound; dPEG® Spacer is 46 atoms and 53.3 Å
m-dPEG ®24-Lipoamide
10804
O
SS
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Mol. Wt.: 1276.63; single compound; dPEG Spacer is 82 atoms and 96.2 Å
®
References:
Greg T. Hermanson. Bioconjugate Techniques, 2nd edition. Elsevier, Inc., Burlington, MA 01803, April 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), pages
188-190, 485-497, 924-935
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
33
dPEG® Based Chemical Modification Reagents
Reactivity: Converting an Amine to a Latent Thiol
Reactivity: Converting an Amine to a Latent Thiol
dPEG®x-SATA (S-acetyl-dPEG ®x-NHS ester)
O
NH 2
+
O
N
H
dPEG®X-SH
+
N
H
N
S
R emove a cetyl with H 2 NOH
dPEG®X-SH
O
HS
S
O
= small molecule --> biologicals
O
O
NHS-dPEG ®xS
-
N
Fabulous Conjugates!!!
O
Some op tions; availab le
with dPEG ®
x
Product #
Description
100 mg
1000 mg
10181
dPEG®4-SATA (S-acetyl-dPEG ®4-NHS ester)
$235
$1250
$350
$1250
$400
$1300
$550
$1600
Mol. Wt.: 421.46; single compound; dPEG® Spacer is 16 atoms and 18.3 Å
dPEG®8-SATA (S-acetyl-dPEG ®8-NHS ester)
10184
Mol. Wt.: 597.67; single compound; dPEG® Spacer is 28 atoms and 32.5 Å
dPEG®12-SATA (S-acetyl-dPEG®12-NHS ester)
10852
Mol. Wt.: 773.88; single compound; dPEG® Spacer is 39 atoms and 46.8 Å
dPEG®24-SATA (S-acetyl-dPEG®24-NHS ester)
10188
Mol. Wt.: 1302.51; single compound; dPEG® Spacer is 76 atoms and 89.1 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). References
to SATA, which can be directly applied to the dPEG® pegylation versions: a) general description and use, pg. 71; b) modification of antibodies, pg. 795; c) modification
of amines on nucleotides and DNA probes, pg. 984 ; and d) modification of enzymes, avidin and streptavidin with, pg. 90,909, and 919.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
34
dPEG® Based Chemical Modification Reagents
Reactivity: Converting an Amine to a Latent Thiol
dPEG®x-SATA acid (S-acetyl-dPEG ®x-acid)
O
NH 2
+
O
N
H
dP EG®X-SH
+
N
H
N
S
Remove a cetyl with H 2NOH
dPEG®X-S
O
HS
S
O
= small molecule --> biologicals
O
O
NHS-dPEG ®xS
-
N
Fabulous Conjugates!!!
O
So me op tions; availab le
with dPEG ®
x
Product #
Description
100 mg
1000 mg
10180
dPEG®4-SATA acid (S-acetyl-dPEG ®4-acid)
$215
$1175
$215
$1175
$350
$1250
$500
$1550
Mol. Wt.: 324.39; single compound; dPEG® Spacer is 16 atoms and 18.3 Å
10182
dPEG®8-SATA acid (S-acetyl-dPEG ®8-acid)
Mol. Wt.: 500.60; single compound; dPEG® Spacer is 28 atoms and 32.5 Å
10851
dPEG®12-SATA acid (S-acetyl-dPEG®12-acid)
Mol. Wt.: 676.81 single compound; dPEG® Spacer is 39 atoms and 46.8 Å
10208
dPEG®24-SATA acid (S-acetyl-dPEG®24-acid)
Mol. Wt.: 1205.44; single compound; dPEG® Spacer is 76 atoms and 88.3 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). References
to SATA, which can be directly applied to the dPEG® pegylation versions: a) general description and use, pg. 71; b) modification of antibodies, pg. 795; c) modification
of amines on nucleotides and DNA probes, pg. 984 ; and d) modification of enzymes, avidin and streptavidin with, pg. 90,909, and 919.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
35
dPEG® Based Chemical Modification Reagents
Reagents to extend Carboxyl with a dPEG® spacer
®
Reagents to extend Carboxyl with a dPEG spacer
Amino-dPEG ®x-t-butyl ester
O
O
+
NHS
NH2-dPEG®x-t-butyl
NH-dPEG ®x -t-butyl ester
ester
= any small molecule or activated biological, as acid (activatable in situ) or activated ester, e.g., NHS ester
Product #
Description
100 mg
1000 mg
10264
Amino-dPEG®2-t-butyl ester
$100
$350
$135
$700
$135
$700
$175
$800
O
O
H2N
O
O
Mol. Wt.: 233.30; single compound; dPEG® Spacer is 10 atoms and 10.9 Å
Amino-dPEG®4-t-butyl ester
10221
Mol. Wt.: 321.41; single compound; dPEG® Spacer is 16 atoms and 18.0 Å
Amino-dPEG®6-t-butyl ester
10061
O
O
H2 N
O
O
O
O
O
O
Mol. Wt.: 409.51; single compound; dPEG Spacer is 22 atoms and 25.1 Å
®
Amino-dPEG®8-t-butyl ester
10271
Mol. Wt.: 497.62; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
Amino-dPEG®12-t-butyl ester
10281
$225
$900
$250
$1200
Mol. Wt.: 673.83; single compound; dPEG® Spacer is 40 atoms and 46.5 Å
Amino-dPEG®24-t-butyl ester
10311
Mol. Wt.: 1202.46; single compound; dPEG® Spacer is 76 atoms and 89 Å
Amino-dPEG®36-t-butyl ester
10901
H2 N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
$300
O
O
O
O
O
O
O
O
O
O
O
O
$1400
O
O
O
Mol. Wt.: 1731.09; single compound; dPEG Spacer is 111 atoms and 132.7 Å
®
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
36
dPEG® Based Chemical Modification Reagents
Reagents to extend Carboxyl with a dPEG® spacer
Amino-dPEG ®x-methyl ester Prep KIT
Product #
Description
100 mg
1000 mg
10330
Amino-dPEG®4-methyl ester Prep KIT
$150
$800
$200
$900
$200
$925
$225
$1050
$325
$1500
Mol. Wt.: 279.33; single compound; dPEG® Spacer is 16 atoms and 18.0 Å
Amino-dPEG®6-methyl ester Prep KIT
10331
O
H 2N
O
O
O
O
O
O
OCH3
Mol. Wt.: 367.44; single compound; dPEG® Spacer is 22 atoms and 25.1 Å
10332
Amino-dPEG®8-methyl ester Prep KIT
Mol. Wt.: 455.54; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
10334
Amino-dPEG®12-methyl ester Prep KIT
Mol. Wt.: 631.75; single compound; dPEG® Spacer is 40 atoms and 46.5 Å
10337
Amino-dPEG®24-methyl ester Prep KIT
Mol. Wt.: 1160.38; single compound; dPEG® Spacer is 76 atoms and 89 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
37
dPEG® Based Chemical Modification Reagents
Reagents to extend Carboxyl with a dPEG® spacer
Hydroxy-dPEG ®x-t-butyl ester
Product #
Description
10223
Hydroxy-dPEG®4-t-butyl ester
100 mg
1000 mg
$100
$350
$125
$500
$150
$550
$200
$650
$300
$1050
O
O
HO
O
O
O
O
Mol. Wt.: 322.39; single compound; dPEG® Spacer is 16 atoms and 18.0 Å
Hydroxy-dPEG®6-t-butyl ester
10717
Mol. Wt.: 410.50; single compound; dPEG® Spacer is 22 atoms and 25.1 Å
Hydroxy-dPEG®8-t-butyl ester
10185
Mol. Wt.: 498.60; single compound; dPEG® Spacer is 28 atoms and 32.1 Å
Hydroxy-dPEG®12-t-butyl ester
10719
O
HO
O
O
O
O
O
O
O
O
O
O
O
O
O
Mol. Wt.: 674.81; single compound; dPEG® Spacer is 40 atoms and 46.4 Å
Hydroxy-dPEG®24-t-butyl ester
10722
HO
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Mol. Wt.: 1203.45; single compound; dPEG® Spacer is 86 atoms and 88.5 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
38
dPEG® Based Chemical Modification Reagents
Reagents to extend Carboxyl with a dPEG® spacer
Amino-dPEG ®x-alcohol
Product #
Description
100 mg
1000 mg
10249
Amino-dPEG®4-alcohol
$100
$250
$150
$650
$200
$850
$250
$1100
$350
$1400
Mol. Wt.: 193.24; single compound; dPEG® Spacer is 13 atoms and 14.3 Å
Amino-dPEG®8-alcohol
10240
Mol. Wt.: 369.45; single compound; dPEG® Spacer is 28 atoms and 32.1 Å
Amino-dPEG®12-alcohol
10170
O
H2N
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 545.66; single compound; dPEG® Spacer is 38 atoms and 42.7 Å
Amino-dPEG®24-alcohol
10868
H 2N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1074.29; single compound; dPEG® Spacers are 71 atoms and 86.0 Å.
Amino-dPEG®36-alcohol
10869
H2N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1602.92; single compound; dPEG® Spacers are 107 atoms and 129 Å.
t-boc-N-amido-dPEG ®x-alcohol
Product #
Description
100 mg
1000 mg
10250
t-boc-N-amido-dPEG®4-alcohol
$100
$500
$225
$900
Mol. Wt.: 293.36; single compound; dPEG® Spacer is 13 atoms and 14.3 Å
t-boc-N-amido-dPEG®12-alcohol
10171
O
O
N
H
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 645.78; single compound; dPEG® Spacer is 38 atoms and 42.7 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
39
dPEG® Based Chemical Modification Reagents
Reagents to extend Carboxyl with a dPEG® spacer
Azido-dPEG ®x-alcohol
Click:
+
Cu(I)
N 3-dPEG®x-OH
e.g., Dmt-Cl
N
(reduction)
N 3-dPEG®x-O-Dmt
N3-dPEG ®x-OH
Product #
Description
10541
Azido-dPEG®4-alcohol
HO
O
O
N
-dPEG ®x-OH
N
NH2 -dPEG®x-O-Dmt
100 mg
1000 mg
$150
$200
$200
$500
$225
$600
$325
$1000
$350
$1100
N3
O
Mol. Wt.: 219.24; single compound; dPEG® Spacers are 14 atoms and 15.3 Å.
Azido-dPEG®8-alcohol
10542
Mol. Wt.: 395.45; single compound; dPEG® Spacers are 24 atoms and 29.5 Å
Azido-dPEG®12-alcohol
10340
HO
O
O
O
O
O
O
O
O
O
O
O
N3
Mol. Wt.: 571.66; single compound; dPEG® Spacer is 37 atoms and 43.0 Å
Azido-dPEG®24-alcohol
10543
Mol. Wt.: 1100.29; single compound; dPEG® Spacers are 72 atoms and 86.7 Å
Azido-dPEG®36-alcohol
10544
Mol. Wt.: 1628.92; single compound; dPEG® Spacers are 108 atoms and 129.7 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
40
dPEG® Based Chemical Modification Reagents
Reagents to extend Carboxyl with a dPEG® spacer
S-acetyl-dPEG ®x-alcohol
Product #
Description
100 mg
1000 mg
10156
S-acetyl-dPEG ®4-alcohol
$100
$500
$150
$650
$200
$800
Mol. Wt.: 252.33; single compound; dPEG® Spacer is 13 atoms and 14.6 Å
S-acetyl-dPEG ®8-alcohol
10160
Mol. Wt.: 428.54; single compound; dPEG® Spacer is 25 atoms and 28.8 Å
S-acetyl-dPEG ®12-alcohol
10939
Mol. Wt.: 604.75; single compound; dPEG® Spacer is 36 atoms and 43.1 Å
dPEG®12-diol
Product #
Description
100 mg
1000 mg
10261
dPEG®12-diol
$125
$750
Mol. Wt.: 546.65; single compound; dPEG® Spacer is 37 atoms and 42.8 Å
m-dPEG®x-tosylate
Product #
Description
1000 mg
10254
m-dPEG ®2-tosylate
$200
Mol. Wt.: 274.33; single compound; dPEG® Spacer is 7 atoms and 8.4 Å
m-dPEG ®4-tosylate
10256
$300
Mol. Wt.: 362.44; single compound; dPEG® Spacer is 13 atoms and 15.4 Å
m-dPEG ®7-tosylate
10259
O
O
O
O
O
$400
O
O
OTs
Mol. Wt.: 494.60; single compound; dPEG® Spacer is 22 atoms and 26.0 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
41
dPEG® Based Chemical Modification Reagents
References
MAL-dPEG®x-(dPEG®x-acid)x
1.
Site specific discrete PEGylation of 124I-labeled mCC49 Fab’ fragments improves tumor microPET/CT imaging in mice. Haiming Ding,
Michelle M Carleton, Stephen P Povoski, Keisha Milum, Krishan Kumar, Kothandaraman Shankaran, George H Hinkle, David Colcher, Rich
Brody, Paul D Davis, Alexander Pokora, Mitchell Phelps, Edward W. Martin, and Michael F. Tweedle. Bioconjugate Chemistry. 2013, October
4, 2013. DOI: 10.1021/bc400375f.
Bis-MAL-Lysine-dPEG®x-acid
1.
Mono-PEGylated Dimeric Exendin-4 as High Receptor Binding and Long-Acting Conjugates for Type 2 Anti-Diabetes Therapeutics.Tae Hyung
Kim, Hai Hua Jiang, Seulki Lee, Yu Seok Youn, Chan Woong Park,Youngro Byun, Xiaoyuan Chen, and Kang Choon Lee, Bioconjugate Chem.,
2011, 22 (4), pp 625–632 March 14, 2011. DOI: 10.1021/bc100404x.
m-dPEG ®x-NHS ester
1.
Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson, Andrew M. Dattelbaum, Harshini Mukundan,
Dominique N. Price, W. Kevin Grace, Basil I. Swanson. Spie Digital Library, 2010, 7553. January 23, 2010. DOI: 10.1117/12.809383.
2.
Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces.
Marie J. Archer, Jinny L. Liu. Sensors. 2009, 9 pp 6298-6311. August 12, 2009. DOI: 10.3390/s90806298
3.
Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin. Peter R. Diamente, Robert D. Burke, and Frank C. J. M. van Veggel. Langmuir.
2006, 22 (4) pp 1782–1788. December 30, 2005. DOI: 10.1021/la052589r.
4.
Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki,
Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.
5.
Self-Assembly of Solid-Supported Membranes Using a Triggered Fusion of Phospholipid-Enriched Proteoliposomes Prepared from the Inner
Mitochondrial Membrane. Ce´line Elie-Caille, Ophe´lie Fliniaux, Jacques Pantigny,Jean-Claude Mazie`re, and Christian Bourdillon. Langmuir.
2005, 21 (10) pp 4661–4668. April 7, 2005. DOI: 10.1021/la046973k.
6.
N-Alkylated aminopyrazines for use as hydrophilic optical agents. Amruta R. Poreddy, Bethel Asmelash, Karen P. Galen, Richard M. Fitch,
Jeng-Jong Shieh, James M. Wilcox, Tasha M. Schoenstein, Jolette K. Wojdyla, Kimberly R. Gaston, John N. Freskos, William L. Neumann,
Raghavan Rajagopalan, Hyo-Yang Ahn, James G. Kostelc, Martin P. Debreczeny, Kevin D. Belfield, and Richard B. Dorshow. Proc. SPIE.
Nanoparticles, and Molecular Probes for Biomedical Applications. 2009. 71900. February 20, 2009. doi:10.1117/12.809287.
7.
Reconstitution of the M13 Major Coat Protein and Its Transmembrane Peptide Segment on a DNA Template. Weijun Li, Itai Suez and Francis
C. Szoka, Jr. Biochemistry. 2007, 46 (29) pp 8579–8591. June 27, 2007. DOI: 10.1021/bi700165m
8.
Enhancement of the CD8+ T cell response to a subdominant epitope of respiratory syncytial virus by deletion of an immunodominant epitope.
Hoyin Mok, Sujin Lee, David W. Wright, and James E. Crowe Jr. Vaccine. 2008, 26 (37) pp 4775-4782. September 2, 2008. DOI:
10.1016/j.vaccine.2008.07.012.
9.
Electrostatic readout of DNA microarrays with charged microspheres. Nathan G Clack, Khalid Salaita, Jay T Groves. Nature Biotechnology.
2008, 26 (7) pp 825-830. June 29, 2008. DOI: 10.1038/nbt1416.
10.
Poly(ethylene oxide)-bonded stationary phase for capillary ion chromatography. Toyohide Takeuchi, Budhi Oktavia, Lee Wah Lim. Anal
Bioanal Chem. 2009, 393(4) pp 1267-1272. November 30, 2008. DOI: 10.1007/s00216-008-2533-7.
11.
An Adsorption Chromatography Assay to Probe Bulk Particle Transport Through Hydrogels. I. VLADESCU, O. LIELEG, S. JANG, KATHARINA
RIBBECK. Journal of Pharmaceutical Sciences. 2012, 101 (1) pp 4369-442. September 8, 2011. DOI 10.1002/jps.2273.
12.
BIOMOLECULAR STRATEGIES FOR CELL SURFACE ENGINEERING. John Tanner Wilson. 2008, December 5, 2008.
13.
Investigations into Improving the Separation of PEGylated Proteins. Vita Knudson, Tividar Farkas, and Michael McGinley. Phenomenex, (TN1034) www.Phenomenex.com/TechNotes/1034.
14.
Development of Polyethylene Glycol-Conjugated Alendronate, a Novel Nitrogen-Containing Bisphosphonate Derivative: Evaluation of
Absorption, Safety, and Effects After Intrapulmonary Administration in Rats. HIDEMASA KATSUMI, MIKI TAKASHIMA, JUN-ICHI SANO,
KAZUSHI NISHIYAMA, NORIKO KITAMURA, TOSHIYASU SAKANE, TORU HIBI, AKIRA YAMAMOTO. Journal of Pharmaceutical Sciences.
2011, 100 (9) pp 3783-3792. May 12, 2011. DOI: 10.1002/jps.22620.
15.
Stabilization of α-chymotrypsin upon PEGylation correlates with reduced structural dynamics. Jose´ A. Rodrı´guez-Martı´nez, Ricardo J. Sola´,
Betzaida Castillo, He´ctor R. Cintro´n-Colo´ n, Izarys Rivera-Rivera, Gabriel Barletta, Kai Griebenow. Biotechnology and Bioengineering. 2008,
101 (6) pp 1142-1149. December 15, 2008. DOI: 10.1002/bit.22014.
16.
Biological and Structural Basis for Aha1 Regulation of Hsp90 ATPase Activity in Maintaining Proteostasis in the Human Disease Cystic Fibrosis.
Atanas V. Koulov, Paul LaPointe, Bingwen Lu, Abbas Razvi, Judith Coppinger,_ Meng-Qiu Dong, Jeanne Matteson, Rob Laister, Cheryl
Arrowsmith, John R. Yates III, and William E. Balch. Molecular Biology of the Cell. 2010, 21 pp 871–884. March 15, 2010 DOI:
10.1091/mbc.E09–12–1017.
17.
Acid-degradable cationic methacrylamide polymerized in the presence of plasmid DNA as tunable non-viral gene carrier. In Kap Ko, Assem
Ziady, Shiwei Lu, Young Jik Kwon. Biomaterials. 2008, 29 (28) pp 3872–3881. June 27, 2008. DOI:10.1016/j.biomaterials.2008.06.003.
18.
Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol.
Boris N. Novikov, Janet K. Grimsley, Rory J. Kern, James R. Wild, Melinda E. Wales. Elsevier. 2010, 3 (146), pp 318-325. September 15, 2010.
DOI:10.1016/j.jconrel.2010.06.003.
19.
Molecular Dendritic Transporter Nanoparticle Vectors Provide Efficient Intracellular Delivery of Peptides, Sharon K. Hamilton and Eva Harth.
ACS Nano. 2009, 3 (2), pp 402–410. February 5, 2009. DOI: 10.1021/nn800679z.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
20.
Synthesis and Characterization of a New class of Cationic Protein Polymers for Multivalent Display and Biomaterial Applications, Nicolynn E.
Davis, Lindsay S. Karfield-Sulzer, Sheng Ding, and Annelise E. Barron. Biomacromolecules. 2009, 10 (5), pp 1125–1134. April 10, 2009. DOI:
10.1021/bm801348g.
21.
Noncovalent Cell Surface Engineering with Cationic Graft Copolymers, John T. Wilson, Venkata R. Krishnamurthy, Wanxing Cui, Zheng Qu,
and Elliot L. Chaikof. J. Am. Chem. Soc. 2009, 131 (51), pp 18228–18229. December 4, 2009. DOI: 10.1021/ja908887v.
22.
The impact of molecular Weight and PEG Chain Length on the Systemic Pharmacokinetics of PEGylated Poly L-Lysine Dendrimers, Lisa M.
Kaminskas, Ben J. Boyd, Peter Karellas, Guy Y. Krippner, Romina Lessene, Brian Kelly, and Christopher J. H. Porter. Mol. Pharmaceutics. 2008,
5 (3), pp 449–463. April 5, 2008. DOI: 10.1021/mp70012088.
23.
Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates,Gary B Braun, Alessia Pallaoro, Guohui Wi, Dimitris Missirlis, Joseph A.
Zasadzinski, Matthew Tirrell, and Norbert O. Reich. ACS Nano. 2009, 3 (7), pp 2007–2015. June 15, 2009. DOI:10.1021/nn900469q.
24.
Pharmacokinetics and Tumor Disposition of PEGylated, Methotrexate Conjugated Poly-L-lysine Dendrimers, Lisa M. Kaminskas, Brian D. Kelly,
Victoria M. McLeod, Ben J. Boyd, Guy Y. Krippner, Elizabeth D. Williams, and Christopher J. H. Porter, Mol. Pharmaceutics. 2009, 6 (4), pp
1190–1204. May 19, 2009. DOI: 10.1021/mp900049a.
25.
Hairpin Structure of a Biarsenical- Tetracysteine Motif Determined by NMR Spectroscopy, Fatemeh Madani, Jesper Lind, Peter Damberg,
Stephen R. Adams, Roger Y. Tsien, and Astrid O. Graslund. JACS (J. Am. Chem. Soc.). 2009, 131 (13), pp 4613–4615. March 12, 2009. DOI:
10.1021/ja809315x.
26.
Genetic PEGylation. Seiichi Tada, Takashi Andou, Takehiro Suzuki, Naoshi Dohmae, Eiry Kobatake, Yoshihiro Ito. PLoS One 2012 7 (11) pp
e49235 November 8, 2012. DOI:10.1371/journal.pone.0049235.
27.
Stimulation of F1-ATPase activity by sodium dodecyl sulfate, Muhammad Delawar Hossain, Shou Furuike, Yasuhiro Onoue, Keng Adachi,
Masasuke Yoshida, Kazuhiko Kinosita Jr. Biochimica et Biophysica Acta (BBA). Bioenergetics. 2010, 1797 (4), pp 435-442. April 2010.
DOI:10.1016/j.bbabio.2009.12.018.
28.
Multifunctional Separation Mechanism on Poly(oxyethylene) Stationary Phases in Capillary Liquid Chromatography. Toyohide Takeuchi and
Lee Wah Lim. Analytical Sciences. 2010, 26 (9) pp 937-941. September 10, 2010. DOI: 10.2116/analsci.26.937
29.
Capping Methotrexate R-Carboxyl Groups Enhances Systemic Exposure and Retains the Cytotoxicity of Drug Conjugated PEGylated
Polylysine Dendrimers. Lisa M. Kaminskas, Brian D. Kelly, Victoria M. McLeod, Gian Sberna, Ben J. Boyd, David J. Owen, and Christopher J. H.
Porter. Mol. Pharmaceutics. 2011, 8 (2), pp 338–349. December 20, 2010. DOI: 10.1021/mp1001872.
30.
Torque Generation in F1-ATPase Devoid of the Entire Amino-Terminal Helix of the Rotor That Fills Half of the Stator Orifice. Ayako Kohori,
Ryohei Chiwata, Mohammad Delawar Hossain, Shou Furuike, Katsuyuki Shiroguchi, Kengo Adachi, Masasuke Yoshida, and Kazuhiko Kinosita,
Jr. Biophysical Journal. 2011, 101 (1), pp 188–195. July 6, 2011. DOI: 10.1016/j.bpj.2011.05.008.
31.
Stability, Antimicrobial Activity, and Cytotoxicity of Poly(amidoamine) Dendrimers on Titanium Substrates. Lin Wang, Uriel J. Erasquin,
Meirong Zhao, Li Ren, Martin Yi Zhang, Gary J. Cheng, Yingjun Wang, and Chengzhi Cai. ACS Applied Materials & Interfaces. 2011, 3 (8), pp
2885-2894, July 20, 2011. DOI: 10.1021/am2004398.
32.
Prevention of benzyl alcohol-induced aggregation of chymotrypsinogen by PEGylation. José A. Rodríguez-Martínez, Izarys Rivera-Rivera and
Kai Griebenow. Journal of Pharmacy and Pharmacology. 2011, 63 (6), pp 800–805. January 6, 2011. DOI:10.1111/j.2042-7158.2011.01288.
33.
Development and Application of a Multimodal Contrast Agent for SPECT/CT Hybrid Imaging Jason M. Criscione, Lawrence W. Dobrucki,
Zhen W. Zhuang, Xenophon Papademetris, Michael Simons, Albert J. Sinusas and Tarek M. Fahmy. Bioconjugate Chem. 2011, 22 (9), pp
1784–1792. August 18, 2011. DOI: 10.1021/bc200162r.
34.
Temperature Dependence of the Rotation and Hydrolysis Activities of F1-ATPase. Furuike, Shou; Adachi, Kengo; Sakaki, Naoyoshi; ShimoKon, Rieko; Itoh, Hiroyasu; Muneyuki, Eiro; Yoshida, Masasuke; Kinosita, Kazuhiko, Jr. Biophysical Journal. 2008, 95 (2) pp 761-770 July 15,
2008. DOI:10.1529/biophysj.107.123307.
35.
Antibacterial Activities of Poly(amidoamine) Dendrimers Terminated with Amino and Poly(ethylene glycol) Groups. Michelle K. Calabretta,
Amit Kumar, Alison M. McDermott, and Chengzhi Cai. Biomacromolecules. 2009, 5 (10), pp 1148-1156. May 28, 2009. DOI: 10.1039/b904746h.
36.
Potent D-peptide inhibitors of HIV-1 entry, Brett D. Welch, Andrew P. VanDemark, Annie Heroux, Christopher P. Hill, and Michael S. Kay.
PNAS. 2007, 43 (104), pp 16828-16833. October 23, 2007. DOI: 10.1073/pnas.0708109104.
37.
Characterization of Particle Translocation through Mucin Hydrogels. Oliver Lieleg, Ioana Vladescu, and Katharina Ribbeck. Biophysical
Journal. 2010, 98 (9) pp 1782–1789. January 11, 2010. 10.1016/j.bpj.2010.01.012
38.
Development of a widefield SERS imaging endoscope. Patrick Z McVeigh, Rupananda J Mallia, Israel Veilleux, Brian C Wilson. SPIE
Proceedings. 2012, 8217 (1) pp 1-6. February 13, 2012. DOI: 10.1117/12.907304.
39.
Enhanced stability of a nanostructured cytochrome c biosensor by PEGylation. Lenibel Santiago-Rodríguez, Jessica Méndez, Giselle M. FloresFernandez, Miraida Pagán, José A. Rodríguez-Martínez, Carlos R. Cabrera, Kai Griebenow. Journal of Electroanalytical Chemistry. 2011, 663
(1) pp 1-7. September 13, 2011. DOI: 10.1016/j.jelechem.2011.09.011.
40.
Functionalization of Fullerenes with Cyclopentadienyl and Anthracenyl Capped Polymeric Building Blocks via Diels–Alder Chemistry. Leena
Nebhani, Christopher Barner-Kowollik. Macromolecular Rapid Communications. 2010, 31 (14) pp 1298-1305. July 15, 2010. DOI:
10.1002/marc.201000142
41.
Modified Epidermal Growth Factor Receptor (EGFR)-Bearing Liposomes (MRBLs) Are Sensitive to EGF in Solution. Albert Wong. PloS
One.2009, 4 (10) e7391. September 14, 2009. 10.1371/journal.pone.0007391.
42.
Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity. Onursal Onen, Asad A. Ahmad, Rasim Guldiken and Nathan D.
Gallant. Sensors. 2012, 12 pp 12317-12328. September 10, 2012. DOI: 10.3390/s120912317.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
43.
Novel Comb-Shaped PEGModification Enhances the Osteoclastic Inhibitory Effect and Bone Delivery of Osteoprotegerin After Intravenous
Administration in Ovariectomized Rats. Yoshihiro Miyaji, Yuji Kasuya, Yoshitake Furuta, Atsushi Kurihara, Masayuki Takahashi, Ken-ichi
Ogawara, Takashi Izumi & Osamu Okazaki & Kazutaka Higaki. Pharmaceutical Research. 2012, 29 (11) pp 3143-3155. June 23, 2012. DOI
10.1007/s11095-012-0807-4.
44.
Surface Functionalization and Analysis Thereof for an Ovarian Cancer Diagnostic Biosensor. Asad Ali Ahmad. USF Scholor Commons. 2011, 1
(1) pp 297-416. June 21, 2011. DOI: scholarcommons.usf.edu/etd/2977.
45.
Production of microporous aluminum oxide electrodes as supports for tethered lipid bilayers of large surface area. Ophélie Fliniaux, Céline
Elie-Caille, Jacques Pantigny, Christian Bourdillon. Electrochemistry Communications. 2005, 7(7) pp 697-702. April 19, 2005.
10.1016/j.elecom.2005.04.023
m-dPEG®x-NHS ester
1.
Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimersw. Analette I. Lopez, Rose Y. Reins, Alison M. McDermott,
Barbara W. Trautner and Chengzhi Cai. Molecular BioSystems. 2009, 10 (5) pp 1148–1156. May 26, 2009. DOI: 10.1039/b904746h.
m-dPEG®x-acid
1.
New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P.
Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan
Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C.
February 13,2008. doi:10.1117/12.763697.
2.
Determination of bacterial viability by selective capture using surface-bound siderophores. Mark L. Wolfenden, Rama M. Sakamuri, Aaron S.
Anderson, Lakshman Prasad, Jurgen G. Schmidt, Harshini Mukundan. Advances in Biological Chemistry. 2012, (2) pp 396-402. September 30,
2012. DOI: 10.4236/abc.2012.24049.
3.
Incorporation of Monodisperse Oligoethyleneglycol Amino Acids into Anticonvulsant Analogs of Galanin and Neuropeptide Y Provides
Peripherally-Acting Analgesics. Liuyin Zhang, Brian D Klein, Cameron S Metcalf, Misty D Smith, Daniel R McDougle, Hee-Kyoung Lee, H.
Steve White, and Grzegorz Bulaj. Molecular Pharmaceutics, 2012, 10 (2), pp 574-585, December 21, 2012. DOI: 10.1021/mp300236v.
4.
Protein-Functionalized Synthetic Antiferromagnetic Nanoparticles for Biomolecule Detection and Magnetic Manipulation. Aihua Fu, Wei Hu,
Liang Xu, Robert J. Wilson, Heng Yu, Sebastian J. Osterfeld, Sanjiv S. Gambhir, and Shan X. Wang. Angewandte Chemie, International Edition
2009 48 (9) p 1620-1624. January 1, 2010. DOI:10.1002/anie.200803994.
5.
DPP-IV-resistant, long-acting oxyntomodulin derivatives. Alessia Santoprete, Elena Capito, Paul E. Carrington, Alessandro Pocai, Marco
Finotto, Annunziata Langella, Paolo Ingallinella, Karolina Zytko, Simone Bufali, Simona Cianetti, Maria Veneziano, Fabio Bonelli, Lan Zhu, Edith
Monteagudo, Donald J. Marsh, Ranabir SinhaRoy, Elisabetta Bianchia,and Antonello Pessi. Journal of Peptide Science. 2011, 4 (17), pp 270280. February 3, 2011. DOI 10.1002/psc.1328.
6.
Surface functionalization of magnetic iron oxide nanoparticles for MRI applications –effect of anchoring group and ligand exchange protocol.
Eric D. Smolensky, Hee-Yun E. Park, Thelma S. Berquo and Valerie C. Pierre. Contrast Media Mol. Imaging Journal. 2010 6 (4), pp 189-199.
August 2010. DOI:10.1002/cmmi.417.
7.
Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson ; Andrew M. Dattelbaum ; Harshini
Mukundan ;Dominique N. Price ; W. Kevin Grace ; Basil I. Swanson. Frontiers in Pathogen Detection: From Nanosensors to Systems., 2009,
Proc. Of SPIE 7167. 71670q-1 February 18, 2009. 10.1117/12.809383.
8.
Arrays of lipid bilayers and liposomes on patterned polyelectrolyte template. Neeraj Kohli, Sachin Vaidya, Robert Y. Ofoli, Robert M. Worden,
Illsoon Lee. Journal of Colloid and Interface Science. 2006, 301 (2) pp 461-469. January 2006. DOI:10.1016/j.jcis.2006.05.048.
9.
Tunable Resistive m-dPEG Acid Patterns on Polyelectrolyte Multilayers at Physiological Conditions: Template for Directed Deposition of
Biomacromolecules, Srivatsan Kidambi, Christina Chan, and Ilsoon Lee. Langmuir. 2008, 24 (1), pp 224–230. December 1, 2007. DOI:
10.1021/la702925r.
10.
Selective Depositions on Polyelectrolyte Multilayers: Self-Assembled Monolayers of m-dPEG Acid as Molecular Template, Srivatsan Kidambi,
Christina Chan, and Ilsoon Lee. J. Am. Chem. Soc. 2004, 126 (14), pp 4697–4703. March 17, 2004. DOI: 10.1021/ja039359o.
11.
Functional PEG-Modified Thin Films for Biological Detection, Aaron S. Anderson, Andrew M. Dattelbaum, Gabriel A. Montano, Dominique N.
Price, Jurgen G. Schmidt, Jennifer S. Martinez, W. Kevin Grace, Karen M. Grace, and Basil I. Swanson. Langmuir. 2008, 24 (5), pp 2240–2247.
January 30, 2008. DOI: 10.1021/la7033438.
12.
Pharmacokinetics and Tumor Disposition of PEGylated Methotrexate Conjugated Poly-L-lysine Dendrimers, Lisa M. Kaminskas, Brian D. Kelly,
Victoria M. McLeod, Ben J. Boyd, Guy Y. Krippner, Elizabeth D. Williams, and Christopher J. H. Porter, Mol. Pharmaceutics, 2009, 6 (4), pp
1190–1204 May 19, 2009. DOI: 10.1021/mp900049a.
13.
Polyelectrolyte Multilayer Stamping in Aqueous Phase and Non-Contact Mode. Sumit Mehrotra, Ilsoon Lee, Chun Liu, and Christina Chan.
Industrial & Engineering Chemistry Research. 2011, 50 (15) pp 8851 - 8858. January 21, 2011. DOI:10.1021/ie102011m.
NHS/TFP-dPEG®₄-( m-dPEG®x)₃-ester
1.
Synthesis and Preliminary Biological Evaluation of High-Drug-Load Paclitaxel-Antibody Conjugates for Tumor-Targeted Chemotherapy, Sherly
Quiles, Kevin P. Raisch, Leisa L. Sanford, James A. Bonner, and Ahmad Safavy, J Med. Chem., 2010, 53 (2), pp 586-594, December 3, 2009.
DOI: 10.1021/jm900899g.
2.
The influence of polyethylence glycol structure on the conjugation of recombinant human interferon a2b overproduced using synthetic gene
in E. coli. Heni Rachmawati, Prima L. Febrina, Ratih A, Ningrum, Debbie S. Retnoningrum. International Journal of Research in Pharmaceutical
Sciences. 2012, 3(2) pp 228-233. March 20, 2012. ISSN: 0975-7538.
3.
Monitoring Protein PEGylation with Ion Exchange Chromatography. Peter Yu, Deanna Hurum, Leo Wang, Terry Zhang,and Jeffrey Rohrer.
ThermoFisher Scientific Poster Note. 2013, PN70510_E01/3s.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
4.
Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylent glycol,
Boris N. Novikov, Janet K. Grimsley, Rory J. Kern, James R. Wild, Melinda E. Wales, Journal of Controlled Release. 2010 3 (146), pp 318–325
September 15, 2010. DOI: 10.1016/j.jconrel.2010.06.003.
5.
Towards the Development of Hemerythrin-Based Blood Substitutes. Augustin C. Mot, Alina Roman, Iulia Lupan , Donald M. Kurtz Jr , Radu
Silaghi-Dumitrescu. Protein J. 2010, 29 (6) pp 87-393. June 27, 2010. DOI: 10.1007/s10930-010-9264-2.
6.
TIRF microscopy as a screening method for non-specific binding on surfaces. Christy Charlton, Vladimir Gubala, Ram Prasad Gandhiraman,
Julie Wiechecki, Nam Cao Hoai Le, Conor Coyle, Stephen Daniels, Brian D. MacCraith, David E. Williams. Journal of Colloid and Interface
Science. 2011, 354 (1) pp 405-409. February 1, 2011. DOI: 10.1016/j.jcis.2010.10.029.
7.
Rapid Raman Imaging of Stable, Functionalized Nanoshells in Mammalian Cell Cultures. Yiming Huang, Vimal P. Swarup, Sandra Whaley
Bishnoi. Nano Letters. 2009, 9 (8) pp 2914-2920. May 23, 2009. DOI: 10.1021/nl901234x.
8.
A New Polyethyleneglycol-Derivatized Hemoglobin Derivative with Decreased Oxygen Affinity and Limited Toxicity. Oana Zolog, Augustin
Mot, Florina Deac, Alina Roman, Eva Fischer-Fodor, Radu Silaghi-Dumitrescu. The Protein Journal. 2010 1 (30), pp 27-31. December 16, 2012
DOI: 10.1007/s10930-010-9298-5.
9.
Differential patterning of neuronal, glial and neural progenitor cells on phosphorus-doped and UV irradiated diamond-like carbon. Edward M.
Regan, James B. Uney, Andrew D. Dick, Yiwei Zhang, Jose Nunez-Yanez, Joseph P. McGeehan, Frederik Claeyssens, Stephen Kelly.
Biomaterials. 2010, 31 (2) pp 207-215. October 14, 2009. DOI: 10.1016/j.biomaterials.2009.09.042.
10.
Different radiolabelling methods alter the pharmacokinetic and biodistribution properties of Plasminogen Activator Inhibitor Type 2 (PAI-2)
forms. Marie Ranson, Paula Berghofer, Kara L. Vine, Ivan Greguric, Rachael Shepherd, Andrew Katsifis. Nuclear Medicine and Biology. 2012, 39
(6) pp 833-839. January 17, 2012. DOI: 10.1016/j.nucmedbio.2012.01.006.
11.
Visualizing Systemic Clearance and Cellular Level Biodistribution of Gold Nanorods by Intrinsic Two-Photon Luminescence, Ling Tong, Wei
He, Yanshu Zhang, Wei Zheng, and Ji-Xin Cheng, Langmuir 2009, 25 (21), pp 12454-12459. DOI: 10.1021/la902992w.
12.
Influence of PEGylation with linear and branched PEG chains on the adsorption of glucagon to hydrophobic surfaces. Charlotte Pinholt , Jens
Thostrup Bukrinsky, Susanne Hostrup, Sven Frokjaer, Willem Norde, Lene Jorgensen. European Journal of Pharmaceutics and
Biopharmaceutics. 2010, 77 (1) pp 139–147. November 3, 2010. DOI: 10.1016/j.ejpb.2010.11.001.
13.
Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes.in mice probed by Raman spectroscopy.
Zhuang Liu, Corrine Davis, Weibo Cai, Lina He, Xiaoyuan Chen, and Hongjie Dai. PNAS. 2008, 105 (5) pp 1410-1415. February 5, 2008.
doi_10.1073_pnas.0707654105.
Carboxyl-dPEG®4-(m-dPEG®x)3
1.
Pharmacokinetics and Tumor Disposition of PEGylated Methotrexate Conjugated Poly-L-lysine Dendrimers, Lisa M. Kaminskas, Brian D. Kelly,
Victoria M. McLeod, Ben J. Boyd, Guy Y. Krippner, Elizabeth D. Williams, and Christopher J. H. Porter, Molecular Pharmaceutics, Vol. 6, No. 4,
2009, 6 (4), pp 1190-1204, May 19, 2009. DOI: 10.1021/mp900049a.
m-dPEG®x-alcohol
1.
Temperature-Responsive Self-Assembled Monolayers of Oligo(ethylene glycol): Control of Biomolecular Recognition .Hadi M. Zareie , Cyrille
Boyer , Volga Bulmus , Ebrahim Nateghi and Thomas P. Davis. ACS Nano. 2008, 2 (4) pp 757-765. April 4, 2008. 10.1021/nn800076h
2.
Sequential Nucleophilic Substitutions Permit Orthogonal Click Functionalization of Multicomponent PEG Brushes. Jin Sha, Ethan S. Lippmann,
Jason McNulty, Yulu Ma, and Randolph S. Ashton. Biomacromolecules. 2013, 14 (9) pp 3294–3303. August 13, 2013. DOI: 10.1021/bm400900r.
3.
Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew
B. Greytak, Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F. Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai
Fukumura, Rakesh K. Jain and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.
m-dPEG®x-amine
1.
A new reagent for stable thiol specific conjugation. Stephen Brocchini , George Badescu , Penny Bryant , Julia Swierkosz , Farzad Khayrzad ,
Estera Pawlisz , Monika Farys , Yuehua Cong , Norbert Rumpf , and Antony Godwin. Bioconjugate Chemistry. 2013. December 23, 2013. DOI:
10.1021/bc400245v.
2.
Near-Infrared Fluorescent Labeled Peptosome for Application to Cancer Imaging, Hiroki Tanisaka, Shinae Kizaka-Kondoh, Akira Makino,
Shotaro Tanaka, masahiro Hiraoka, and Shunsaku Kimura. Bioconjugate Chem. 2008, 19 (1), pp 109–117. December 29, 2007. DOI:
10.1021/bc7001665.
3.
Streptavidin in Antibody Pretargeting. 5. Chemical Modification of Recombinant Streptavidin for Labeling with the α-Particle Emitting
Radionuclides 213Bi and 211At. D. Scott Wilbur, Donald K. Hamlin, Ming-Kuan Chyan, and Martin W. Brechbiel. Bioconjugate Chemistry.
2008, 19 (1) pp 158-170. January 19, 2008. DOI:10.1021/bc7002428.
4.
Molecular Pincers: Antibody-Based Homogeneous Protein Sensors, Ewa Heyduk, Benjamin Dummit, yie-Hwa Chang, and Tomasz Heyduk,
Anal. Chem., 2008, 80 (13), pp 5152–5159 May 21, 2008. DOI: 10.1021/ac8004154.
5.
FePt Nanoparticles as an Fe Reservoir for Controlled Fe Release and Tumor Inhibition. Chenjie Xu, Zhenglong Yuan, Nathan Kohler, Jaemin
Kim, Maureen A. Chung and Shouheng Sun. J. Am. Chem. Soc. 2009, 131 (42) pp 15346–15351. October 1, 2009. DOI: 10.1021/ja905938a.
6.
Combined Multimodal Optimal Imaging and Targeted Gene Silencing Using Stimuli-Transforming Nanotheragnostics, Min Suk Shim, Chang
Soo Kim, Yeh-Chan Ahn, Zhongping Chen, and Young Jik Kwon. Journal of the American Chemical Society. 2010, 132 (24), pp 8316-8324,
June 2, 2010. DOI: 10.1021/ja100580y.
7.
Noncompetitive On-Chip Immunoassays for Detection of Nonlabeled Antibodies Based on the Excluded Volume Effect of the Target Itself.
Kin-ya Tomizaki, Masaki Obi, and Hisakazu Mihara. The Chemical Society of Japan Bull Chem. Soc. Jpn, 2011, 1 (85), pp 69-78, December 23,
2011. DOI: 10.1246/bcsj.20110239.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
8.
Antifouling and tunable amino functionalized porous membranes for filtration Applications. Bijay P. Tripathi, Nidhi C. Dubey, S. Choudhury
and M. Stamm. Journal of Materials Chemistry. 2012, 22 (1) pp 19981-19992. August 1, 2012. DOI: 10.1039/c2jm34172g.
9.
De Novo Synthesis and Cellular Uptake of Organic Nanocapsules with Tunable Surface Chemistry. Kun Huang, Amy Jacobs, and Javid Rzayev.
Biomacromolecules. 2011, 12 (6), pp 2327–2334. May 12, 2011. DOI: 10.1021/bm200394t.
10.
Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew
B. Greytak, Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F. Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai
Fukumura, Rakesh K. Jain and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.
11.
Luminescent Iridium(III) Polypyridine PEG Complexes: Synthesis, Photophysical, and Biological Properties. Steve Po-Yam Li, Johnson Lui-Lui
Tsai, and Kenneth Kam-Wing Lo. NANOMED. 2010, pp 66-71. December 5, 2010. http://dx.doi.org/10.1109/NANOMED.2010.5749807.
12.
Effects of PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and in Vitro Transfection Efficiency. Kristina Fant,
Elin K. Esbjörner, Alan Jenkins, Martin C. Grossel, Per Lincoln, and Bengt Nordén. Mol. Pharmaceutics. 2010, 7 (5) pp 1734–1746. August 9,
2010. DOI: 10.1021/mp1001312.
13.
New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P.
Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan
Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C.
February 13,2008. doi:10.1117/12.763697.
14.
Surface functionalization of magnetic iron oxide nanoparticles for MRI applications –effect of anchoring group and ligand exchange protocol.
Eric D. Smolensky, Hee-Yun E. Park, Thelma S. Berquo and Valerie C. Pierre. Contrast Media Mol. Imaging. 2010, 6 (4), pp 189-199. August
2010. DOI:10.1002/cmmi.417.
15.
Design of cyclometalated iridium(III) polypyridine complexes as luminescent biological labels and probes. Kenneth Kam-Wing Lo, Kenneth Yin
Zhang, and Steve Po-Yam Li. Pure Appl. Chem. 2011, 83, (4) pp 823–840. February 28, 2011. doi:10.1351/PAC-CON-10-08-20.
16.
Modification of Luminescent IridiumACHTUNGTRENUNG(III) Polypyridine Complexes with discrete Poly(ethylene glycol) (PEG) Pendants:
Synthesis, Emissive behavior, Intracellular Uptake, and PEGylation Properties. Steve Po-Yam Li, Hua-Wei Liu, Kenneth Yin Zhang, and Kenneth
Kam-Wing Lo. Chemistry A European Journal. 2010, 16 (28), pp. 8329 – 8339. July 26, 2010. DOI: 10.1002/chem.201000474.
17.
Size-Exclusion Properties of Nanoporous Films Derived from Polystyrene−Poly(methylmethacrylate) Diblock Copolymers Assessed Using
Direct Electrochemistry of Ferritin. Yongxin Li and Takashi Ito. Anal. Chem. 2009, 81 (2) pp 851–855. December 10, 2008. DOI:
10.1021/ac802201w.
Amino-dPEG®x-acid
1.
Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Navdeep Grover, Indrakant V. Borkar,
Cerasela Zoica Dinu, Ravi S. Kane, Jonathan S. Dordick. Enzyme and Microbial Technology. 2012, 50 (6-7) pp 271-279. January 24, 2012.
DOI:10.1016/j.enzmictec.2012.01.006.
2.
Bionanoconjugate-based composites for decontamination of nerve agents. Indrakant V.Borkar, Cerasela Zoica Dinu, Guangyu Zhu, Ravi S.
Kane, and Jonathan S. Dordick. Biotechnol Prog. 2010, 26 (6) pp 1622-1628. September 21, 2010. 10.1002/btpr.498.
3.
Microwave-Mediated Synthesis of Labeled Nucleotides with Utility in the Synthesis of DNA Probes. Mark Lefever, Jerome W. Kosmeder, II,
Michael Farrell, and Christopher Bieniarz. Bioconjugate Chem. 2010, 21 (10), pp 1773–1778. September 2, 2010. DOI: 10.1021/bc100013b.
4.
Perhydrolase-nanotube paint composites with sporicidal and antiviral activity. Navdeep Grover & Marc P. Douaisi & Indrakant V. Borkar &
Lillian Lee & Cerasela Zoica Dinu & Ravi S. Kane & Jonathan S. Dordick. Applied Microbiology and Biotechnology. 2013, (97) pp 8813-8821.
October 1, 2013. DOI:10.1007/s00253-012-4573-3.
5.
Development of a sensitive surface Plasmon resonance immunosensor for detection of 2, 4-dinitrotoluene with a novel oligo (ethylene glycol)based sensor surface. Kazutaka Nagatomo, Toshikazu Kawaguchi, Norio Miura, Kiyoshi Toko, Kiyoshi Matsumoto. Talanta. 2009, 4 (79), p. 11421148. Sept. 15, 2009. DOI:10.1016/j.talanta.2009.02.018.
6.
PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis. Shiv Kumar, Chuanjuan Tao, Minchen
Chien, Brittney Hellner, Arvind Balijepalli, Joseph W. F. Robertson, Zengmin Li, James J. Russo, Joseph E. Reiner3, John J. Kasianowicz &
Jingyue Ju. Scientific Reports. 2012, 2 (684). September 21, 2012. DOI:10.1038/srep00684.
7.
Immobilized molecular beacons: A new strategy using UV-activated poly(methyl methacrylate) surfaces to provide large fluorescence
sensitivities for reporting on molecular association events, Catherine Situma, Amanda J. Moehring, Mohamed A.F. Noor, Steven A. Soper.
Analytical Biochemistry. 2007, 1 (363), pp 35-45, April 1, 2007. DOI:10.1016/j.ab.2006.12.029.
8.
Synthesis and Preliminary Biological Evaluation of High-Drug-Load Paclitaxel-Antibody Conjugates for Tumor-Targeted Chemotherapy, Sherly
Quiles, Kevin P. Raisch, Leisa L. Sanford, James A. Bonner, and Ahmad Safavy, J Med. Chem. 2010, 53 (2), pp 586-594. Dec. 3, 2009. DOI:
10.1021/jm900899g.
9.
Spacer length effects on in vitro imaging and surface accessibility of fluorescent inhibitors of prostate specific membrane antigen. Tiancheng
Liu, Jessie R. Nedrow-Byers, Mark R. Hopkins, Clifford E. Berkman. Bioorganic & Medicinal Chemistry Letters. 2011, 21 (23), pp 7013–7016
October 4, 2011. DOI:10.1016/j.bmcl.2011.09.115.
10.
Antistaphylococcal Nanocomposite Films Based on Enzyme- Nanotube Conjugates, Ravindra C. Pangule, Sarah J. Brooks, Cerasela Zoica
Dinu, Shyam Sundhar Bale, Sharon L. Salmon, Guangyu Zhu, Dennis W. Metzgeter, Ravi S. Kane, and Jonathan S. Dordick. ACS Nano. 2010, 4
(7), pp 3993–4000. July 6, 2010. DOI: 10.1021/nn100932t.
11.
Influence of Different Spacers on the Biological Profile of a DOTA-Somatostatin Analogue. Patricia Antunes, Mihaela Ginj, Martin A. Walter,
Jianhua Chen, Jean-Claude Reubi, and Helmut R. Maecke. Bioconjugate Chem. 2007, 18 (1) pp 84–92. December 15, 2006. DOI:
10.1021/bc0601673.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
12.
Short PEG-Linkers Improve the Performance of Targeted, Activatable Monoclonal Antibody-Indocyanine Green Optical Imaging Probes. Kohei
Sano, Takahito Nakajima, Kiminori Miyazaki, Yuya Ohuchi, Takashi Ikegami, Peter L. Choyke and Hisataka Kobayashi. Bioconjugate Chem.
2013, 24 (5) pp 811–816. April 22, 2013. DOI: 10.1021/bc400050k.
13.
Enzyme-Based Nanoscale Composites Composites for Use as Active Decontamination Surfaces. Cerasela Zoica Dinu, Guangyu Zhu, Shyam
Sundhar Bale, Gaurav Anand, Philippa J. Reeder, Karl Sanford, Gregg Whited, Ravi S. Kane, and Jonathan S. Dordick. Advance Fuctional
Materials. 2010, 20 (3), pp 392-398. December 15, 2009. DOI: 10.1002/adfm.200901388.
14.
Carboxyl-Terminated Dendrimer-Coated Bioactive Interdace for Protein Microarray: High-Sensitivity Detection of Antigen in Complex
Biological Samples, Parayil Kumaran Ajikumar, Jin Kiat Ng, Yew Chung Tang, Jim Yang Lee, Gregory Stephanopoulos, and Heng-Phon Too.
Langmui., 2007, 23 (10), pp 5670–5677. March 28, 2007. DOI: 10.1021/la063717u.
15.
Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers. Jiyun Shi, YoungSeung Kim, Shizhen Zhai, Zhaofei Liu, Xiaoyuan Chen and Shuang Liu. Bioconjugate Chem. 2009, 20 (4) pp 750–759. March 25, 2009. DOI:
10.1021/bc800455p.
16.
Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Elena Heister, Vera Neves,
Constanze Lamprecht, S.Ravi P. Silva, Helen M. Coley, Johnjoe McFadden. Carbon. 2011, 50 (2) pp 622-632. August 31, 2011. DOI:
10.1016/j.carbon.2011.08.074.
17.
Improving Tumor-Targeting Capability and Pharmacokinetics of 99mTc-Labeled Cyclic RGD Dimers with PEG4 Linkers. Lijun Wang, Jiyun Shi,
Young-Seung Kim, Shizhen Zhai, Bing Jia, Huiyun Zhao, Zhaofei Liu, Fan Wang, Xiaoyuan Chen and Shuang Liu. Mol. Pharmaceutics. 2009, 6
(1) pp 231–245. December 9, 2008. DOI: 10.1021/mp800150r.
18.
NOVEL 3D LITHOGRAPHICALLY-PREPARED SOLID-PHASE SURFACES MADE FROM SU-8 FOR NEXT GENERATION SEQUENCING. Hong
Wang, Makgorzata Witek, Daniel Park, Jianmin Huang,Francis Barany, Steven A. Soper. Miniaturized Systems for Chem and Life Sci. 2011,
pp.73-75. October 6, 2011. DOI: www.rsc.org/images/LOC/2011/PDFs/Papers/026_0829.pdf
Amino-dPEG®₄-(m-dPEG®x)₃
1.
Design of cyclometalated iridium(III) polypyridine complexes as luminescent biological labels and probes. Kenneth Kam-Wing Lo, Kenneth Yin
Zhang, and Steve Po-Yam Li. Pure Appl. Chem. 2011, 83, (4) pp 823–840. February 28, 2011. doi:10.1351/PAC-CON-10-08-20.
2.
Modification of Luminescent IridiumACHTUNGTRENUNG(III) Polypyridine Complexes with discrete Poly(ethylene glycol) (PEG) Pendants:
Synthesis, Emissive behavior, Intracellular Uptake, and PEGylation Properties. Steve Po-Yam Li, Hua-Wei Liu, Kenneth Yin Zhang, and Kenneth
Kam-Wing Lo. Chemistry A European Journal. 2010, 16 (28), 8329 – 8339. July 26, 2010 DOI: 10.1002/chem 201000474.
Aminooxy-dPEG®x-amido-dPEG®x-(m-dPEG®x)x
1.
Simultaneous Dual Protein Labeling Using a Triorthogonal Reagent. Mohammad Rashidian, Sidath C. Kumarapperuma, Kari Gabrielse,
Adrian Fegan, Carston R. Wagner, and Mark D. Distefano. J. Am. Chem. Soc., 2013. October 17, 2013. DOI: 10.1021/ja403813b.
m-dPEG®x-MAL
1.
DksA2, a zinc-independent structural analog of the transcription factor DksA. Ran Furman, Tapan Biswas, Eric M. Danhart, Mark P. Foster,
Oleg V. Tsodikov, Irina Artsimovitch. FEBS Letters. 2013, 587 (6) pp 614–619. January 31, 2013. DOI: 10.1016/j.febslet.2013.01.073.
2.
Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in Quiescin sulfhydryl oxidase. Benjamin A. Israel,
Vamsi K. Kodali, and Colin Thorpe. The Journal of Biological Chemistry. 2013, December 30, 2013. DOI: 10.1074/jbc.M113.536219.
3.
Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor. Clive Metcalfe, Peter Cresswell and A. Neil
Barclay. Open Biology. 2012, 2 (1). January 11, 2012. DOI: 10.1098/rsob.110036.
4.
Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide, Jolanta
Skalska, Paul S. Brookes, Sergiy M. Nadtochiy, Shannon P. Hilchey, Craig T. Jordan, Monica L. Guzman, Sanjay B. Maggirwar, Margaret M.
Briehl, Steven H. Bernstein. PLoS ONE. 4 (12), e8115. December 2, 2009. DOI: 10.1371 /journal.pone.0008115.
5.
Cell-Specific Delivery of Diverse Cargos by BacteriophageMS2 Virus-like Particles. Carlee E. Ashley Eric C. Carnes, Genevieve K. Phillips, Paul
N. Durfee, Mekensey D. Buley, Christopher A. Lino, David P. Padilla, Brandy Phillips, Mark B. Carter, Cheryl L. Willman, C. Jeffrey Brinker,
Jerri do Carmo Caldeira, Bryce Chackerian, Walker Wharton, and David S. Peabody.ACS Nano, 2011, 5 (7), pp 5729–5745, May 26, 2011. DOI:
10.1021/nn201397z.
6.
Complement Activation and Cell Uptake Responses Toward Polymer-Functionalized Protein Nanocapsules. Nicholas M. Molino, Kateryna
Bilotkach, Deborah A. Fraser, Dongmei Ren, and Szu-Wen Wang. Biomacromolecules, 2012, 13 (4), pp 974–981. March 14, 2012.
10.1021/bm300083e.
MAL-dPEG®4-(m-dPEG®x)3
1.
Inhibition of fatty acid oxidation enhances oxidative protein folding and protects hepatocytes from endoplasmic reticulum stress. Heather M.
Tyra, Douglas R. Spitz, and D. Thomas Rutkowski. Molecular Biology of the Cell. 2012, 23 (5) pp 811-819. March 1, 2012. DOI: 10.1091/mbc.E1112-1011.
2.
Oxidation Status of Human OGG1-S326C Polymorphic Variant Determines Cellular DNA Repair Capacity. Anne Bravard, Monique Vacher, Eva
Moritz,Laurence Vaslin, Janet Hall,Bernd Epe,and J. Pablo Radicella. Cancer Research.2009, 69 (8) pp 3642-3649.April 7, 2009. 10.1158/00085472.CAN-08-3943.
3.
Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. Furukawa Y, Kaneko
K, Nukina N. . The Journal of Biological Chemistry. 2011, 286 (31) pp 27236-46. June 9, 2011. 10.1074/jbc.M111.248963.
4.
Dissecting Molecular Interactions Involved in Recognition of Target Disulfides by the Barley Thioredoxin System. Olof Bjornberg, Kenji
Maeda, Birte Svensson, and Per Hagglund. Biochemistry. 2012, 51 (49) pp 9930-9939. November 19, 2012. DOI: 10.1021/bi301051b.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
5.
Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of
cadmium. Anne Bravard, Anna Campalans, Monique Vacher, Barbara Gouget, Céline Levalois, Sylvie Chevillard, J. Pablo Radicella. Mutation
Research. 2010, 685 (1-2) pp 61-69. October 2, 2009. DOI: 10.1016/j.mrfmmm.2009.09.013.
6.
Enzymatic Deglutathionylation to Generate Interleukin-4 Cysteine Muteins with Free Thiol. Viswanadham Duppatla, Maja Gjorgjevikj, Werner
Schmitz, Mathias Kottmair, Thomas D. Mueller, and Walter Sebald. Bioconjugate Chem., 2012, 23 (7), pp 1396–1405 June 9, 2012. DOI:
10.1021/bc2004389.
7.
Surface Location of Individual Residues of SlpA Provides Insight into the Lactobacillus brevis S-Layer. Heikki Vilen, Ulla Hynönen, Helga BadeltLichtblau, Nicola Ilk, Pentti Jääskeläinen, Mika Torkkeli and Airi Palva. J. Bacteriol. 2009, 191 (10) pp 3339-3351. March 20, 2009. DOI:
10.1128/JB.01782-08.
8.
The Chloroplast Twin Arginine Transport (Tat) Component, Tha4, Undergoes Conformational Changes Leading to Tat Protein Transport.
Cassie Aldridge, Amanda Storm, Kenneth Cline and Carole Dabney-Smith. J. Biol. Chem. 2012, 287 (1) pp 34752-34763. August 15, 2012. DOI:
10.1074/jbc.M112.385666.
Thiol-dPEG®x-acid
1.
Biomarker-Mediated Disruption of Coffee-Ring Formation as a Low Resource Diagnostic Indicator. Joshua R. Trantum, David W. Wright, and
Frederick R. Haselton. Langmuir, 2012, 28 (4), pp 2187–2193. December 9, 2011. DOI.org/10.1021/la203903a.
2.
Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Se Yeon Park, So Min Lee, Gae Baik,
Kim and Young-Pil Kim. Gold Bull. 2012, 45 pp 213–219. October 25, 2012. DOI 10.1007/s13404-012-0070-9.
3.
Enantioselective analysis of melagatran via a LSPR biosensor integrated with microfluidic chip. Longhua Guo, Yuechun Yin, Rong Huang, Bin
Qiu, Zhenyu Lin, HH Yang, Jianrong Li and Guo Nan Chen. Lab on a Chip. 2012, 20 (12), pp 3901-3906. June 15, 2012. DOI:
10.1039/C2LC40388A.
4.
Cyclic RGD Functionalized Gold Nanoparticles for Tumor Targeting. Daniela Arosio, Leonardo Manzoni, Elena M. V. Araldi, and Carlo
Scolastico. Bioconjugate Chem. 2011, 22 (4), pp 664–672. March 24, 2011. DOI: 10.1021/bc100448r.
5.
Short-Chain PEG Mixed Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts. Carrie A. Simpson, Amanda C.
Agrawal, Andrzej Balinski, Kellen M. Harkness, and David E. Cliffel. ACS Nano, 2011, 5 (5), pp 3577-3584. April 7, 2011. DOI:
10.1021/nn103148x.
m-dPEG®x-thiol
1.
Polymerase Chain Reaction-Free Variable-Number Tandem Repeat Typing Using Gold Nanoparticle–DNA Monoconjugates. Jong Young Choi
, Yong Tae Kim , and Tae Seok Seo. ACS Nano 2013, 7 (3) pp 2627–2633. February 12, 2013. DOI: 10.1021/nn400004d.
2.
Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Se Yeon Park, So Min Lee, Gae Baik,
Kim and Young-Pil Kim. Gold Bull. 2012, 45 pp 213–219. October 25, 2012. DOI 10.1007/s13404-012-0070-9.
3.
Biomarker-Mediated Disruption of Coffee-Ring Formation as a Low Resource Diagnostic Indicator. Joshua R. Trantum, David W. Wright, and
Frederick R. Haselton, Langmuir, 2012, 28 (4), pp 2187–2193 December 9, 2011. DOI.org/10.1021/la203903a.
Lipoamido-dPEG®x-acid
1.
Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Wenhao Liu, Mark Howarth, Andrew B. Greytak, Yi Zheng, Daniel
G. Nocera, Alice Y. Ting, and Moungi G. Bawendi. J. Am. Chem. Soc. 2008, 130 (4) pp 1274–1284. January 5, 2008. DOI: 10.1021/ja076069p.
2.
Directed self-assembly of proteins into discrete radial patterns. Garima Thakur, Kovur Prashanthi and Thomas Thundat. Science Reports. 2013,
1923 (3) May 30, 2013. DOI: 10.1038/srep01923.
3.
PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to Oneand Two-Photon Cellular
Imaging. Eunkeu Oh, Fredrik Fatemi, Marc Currie, James B. Delehanty, Thomas Pons, Alexandra Fragola, Sandrine L´evˆeque-Fort, Ramasis
Goswami, Kimihiro Susumu, Alan L. Huston, and Igor L. Medintz. Particle & Particle Systems Characterization 2013, (30), pp 1-13. February 5,
2013. DOI: 10.1002/ppsc.201200140.
4.
Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy. Mark F. McLaughlin, Jonathan Woodward,
Rose A. Boll, Jonathan S. Wall, Adam J. Rondinone, Stephen J. Kennel, Saed Mirzadeh, J. David Robertson. PLoS ONE 2012 8 (1)
e54531January 18, 2013. DOI:10.1371/journal.pone.0054531.
m-dPEG®x-Lipoamide
1.
Gastrointestinal Bioavailability of 2.0 nm Diameter Gold Nanoparticles. Candice A. Smith, Carrie A. Simpson, Ganghyeok Kim, Carly J. Carter,
and Daniel L. Feldheim. ACS Nano. 2013, 7 (5) pp 3991–3996. April 21, 2013. DOI: 10.1021/nn305930e.
2.
PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to Oneand Two-Photon Cellular
Imaging. Eunkeu Oh, Fredrik Fatemi, Marc Currie, James B. Delehanty, Thomas Pons, Alexandra Fragola, Sandrine L´evˆeque-Fort, Ramasis
Goswami, Kimihiro Susumu, Alan L. Huston, and Igor L. Medintz. Particle & Particle Systems Characterization 2013, (30), pp 1-13. February 5,
2013. DOI: 10.1002/ppsc.201200140.
3.
Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires. Kelly Boeneman, Duane E. Prasuhn, Juan B. Blanco-Canosa, Philip
E. Dawson, Joseph S. Melinger, Mario Ancona, Michael H. Stewart, Kimihiro Susumu, Alan Huston, and Igor L. Medintz.
J. Am. Chem.
Soc., 2010, 132 (51), pp 18177–18190 December 8, 2010. DOI: 10.1021/ja106465x.
dPEG®x-SATA (S-acetyl-dPEG®x-NHS ester)
1.
Biodegradable Polydisulfide Dendrimer Nanoclusters as MRI Contrast Agents. Ching-Hui Huang, Kido Nwe, Ajlan Al Zaki, Martin W.
Brechbiel, and Andrew Tsourkas. ACS Nano. 2012, 6 (11) pp 9416–9424. October 25, 2012. DOI: 10.1021/nn304160p.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Chemical Modification Reagents
References (cont.)
2.
Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. Anna Bershteyn, Melissa C. Hanson, Monica
P. Crespo, James J. Moon, Adrienne V. Li, Heikyung Suh, Darrell J. Irvine. Journal of Controlled Release. 2011, 157 (3) pp 354-365. July 24,
2011. DOI: 10.1016/j.jconrel.2011.07.029.
3.
A new class of nontoxic nanoparticle tags based on surface enhanced Raman scattering. Qian, X.-M.; Ansari, D.; Nie, Shuming. Colloidal
Quantum Dots for Biomedical Applications II. 2007, Proceedings of the SPIE, Volume 6448, article id. 64480O. February 1, 2007.
10.1117/12.718459.
4.
Immobilization of His-tagged endoglucanase on gold via various Ni-NTA self-assembled monolayers and its hydrolytic activity. Nakamura
I, Makino A, Ohmae M, Kimura S. Macromolecular Bioscience. 2010, 10 (10) pp1265-1272. October 8, 2010. 10.1002/mabi.201000189.
5.
Synthesis and Function of Bioactive, Block Copolymer Surfactant Constructs as Relevant to the Preparation of Anticoagulant and Antibacterial
Medical Implant Surfaces. Pranav R. Joshi. Doctor of Philosophy in Chemical Engineering. 2006, November 17, 2006.
6.
Array-based fluorescence assay for serine/threonine kinases using specific chemical reaction. Shoji Akita, Naoki Umezawa, Nobuki
Kato, Tsunehiko Higuchi. Bioorganic & Medicinal Chemistry. 2008, 16 (16) pp 7788-94. July 1, 2008. 10.1016/j.bmc.2008.07.007.
7.
Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki,
Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.
8.
In vitro and in vivo evaluation of a non-carbohydrate targeting platform for lysosomal proteins, James E. Stefano, Lihui Hou, Denise Honey,
Josephine Kyazike, Anna Park, Qun Zhou, Clark Q. Pan, Tim Edmunds. Journal of Controlled Release. 2009, 2 (135), pp 113-118. April 17, 2009.
DOI: 10.1016/j.jconrel.2008.12.006.
Amino-dPEG®x-t-butyl ester
1.
High-purity discrete PEG-oligomer crystals allow structural insight. Alister C. French, Amber L. Thompson, and Benjamin G. Davis. Angew
Chem Int Ed Engl.2009, 48 (7) pp 1248-52. January 13, 2009 10.1002/anie.200804623.
2.
The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Sara D. Alvarez, Austin M.
Derfus, Michael P. Schwartz, Sangeeta N. Bhatia, Michael J. Sailor. Biomaterials. 2009, 30(1) pp26-34. September 4, 2008.
10.1016/j.biomaterials.2008.09.005.
3.
Chemical Modification of Silicon Surfaces for Biological Applications. Michael P. Schwartz, Frédérique Cunin, Ronnie W. Cheung, Michael J.
Sailor. physica status solidi. 2005, 202 (8) pp 1380-1384. May 23, 2005. 10.1002/pssa.200461106.
HO-dPEG®x-CO₂-t-butyl ester
1.
Synthesis of Poly(amidoamine) Dendron-Bearing Lipids with Poly(ethylene glycol) Grafts and Their Use for Stabilization of Nonviral Gene
Vectors. Toshinari Takahashi, Jun Hirose, Chie Kojima, Atsushi Harada, and Kenji Kono. Bioconjugate Chem. 2007, 18 (4) pp 1163–1169. June
15, 2007. DOI: 10.1021/bc070014v.
Amino-dPEG®x-alcohol
1.
Development of an oligo (ethylene glycol)-based SPR immunosensor for TNT detection, Yutaka Mizuta, Takeshi Onodera, Praveen Singh,
Kiyoshi Matsumoto, Norio Miura, Kiyoshi Toko. Biosensors and Bioelectronics. 2008, 24 (2), pp 191-197. Ocyober 15, 2008.
DOI:10.1016/j.bios.2008.03.042.
2.
Synthesis of Biotinylated r-D-Mannoside or N-Acetyl _-D-Glucosaminoside Decorated Gold Nanoparticles: Study of Their Biomolecular
Recognition with Con A and WGA Lectins. Xiaoze Jiang, Abdelghani Housni, Guillaume Gody, Paul Boullanger, Marie-The´re`se Charreyre,
Thierry Delair, and Ravin Narain. Bioconjugate Chem. 2010, 21 pp 521–530. February 3, 2010. DOI: 10.1021/bc900431p.
3.
Confocal imaging to quantify passive transport across biomimetic lipid membranes. Su Li, Peichi Hu, and Noah Malmstadt. Analytical
Chemistry. 2010, 82 (18) pp 7766-7771 September 15, 2010. DOI: 10.1021/ac1016826.
4.
Quantum Dots with Multivalent and Compact Polymer Coatings for Efficient Fluorescence Resonance Energy Transfer and Self-Assembled
Biotagging. Hongwei Duan , Min Kuang and Y. Andrew Wang. Chemistry of Materials. 2010, 22 (15) pp 4372–4378. July 13, 2010.
10.1021/cm100442x.
5.
Surface Chemical Functionalization of Cylindrical Nanopores Derived from a Polystyrene−Poly(methylmethacrylate) Diblock Copolymer via
Amidation. Yongxin Li and Takashi Ito. Langmuir. 2008, 24 (16) pp 8959–8963. July 1, 2008. DOI: 10.1021/la800992f.
6.
Label-Free Detection of Proteins in Crude Cell Lysate with Antibody Arrays by a Surface Plasmon Resonance Imaging Technique, Motoki Kyo,
Kazue Usui-Aoki, and Hisashi Koga. Analytical Chemistry. 2005, 77 (22), pp 7115–7121. October 18, 2005. DOI: 10.1021/ac050884a.
7.
Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Grace M. Credo, Xing Su,
Kai Wu, Oguz H. Elibol, David J. Liua, Bobby Reddy Jr., Ta-Wei Tsai, Brian R. Dorvel, Jonathan S. Daniels, Rashid Bashir, and Madoo Varma.
Analyst. 2012 137 (6) p 1351-1362. March 21, 2012. DOI:10.1039/c2an15930a.
8.
Real-Time Video Imaging of Protease Expression In Vivo. Lei Zhu, Jin Xie, Magdalena Swierczewska, Fan Zhang, Qimeng Quan, Ying Ma,
Xuexun Fang, Kwangmeyung Kim, Seulki Lee, Xiaoyuan Chen.Theranostics. 2011, (1) pp. 18-27. January 12, 2011.
http://www.thno.org/v01p0018.htm.
S-acetyl-dPEG®x-alcohol
1.
5’-Sulfhydryl-Modified RNA: Initiator Synthesis, in Vitro Transcription, and Enzymatic Incorporation. Lei Zhang, Lele Sun, Zhiyong Cui, Robert L.
Gottlieb and Biliang Zhang. Bioconjugate Chem.2001, 12 (6) pp 939–948. October 16, 2001. DOI: 10.1021/bc015504g.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
42
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
dPEG ® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
4-formyl-benzamido-dPEG ®xTFP ester
Convert an AMINE to a dPEG ® containing ALDEHYDE,
reactable with an aminooxy or hydrazide compound!


Aldehydes
(latent)
are
common
in
carbohydrates,
carbohydrate
containing
proteins, in oxidizable matrices, among others
AND can be incorporated using reagents like
the 4-FB-dPEG®x TFP esters (amine reactive)
Aminooxy-dPEG®s with a LABEL. Quanta has
available a BIOTIN label. PN 11112 below is
perfect for making your own
Product #
Description
100 mg
1000 mg
10081
4-formyl-benzamido-dPEG ®12-TFP ester
$200
$1250
$275
$1500
Mol. Wt.: 897.90; single compound; dPEG® Spacer is 46 atoms and 49.3 Å
10082
4-formyl-benzamido-dPEG ®24-TFP ester
Mol. Wt.: 1426.53; single compound; dPEG® Spacer is 83 atoms and 93.0 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
43
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
Phthalimidooxy-dPEG ®x
NHS ester
A New dPEG ® Reagent for Stable Oxime
Conjugation Systems!
Aldehydes (latent) are common in
carbohydrates, carbohydrate containing
proteins, in oxidizable matrices, including
most native antibodies and many enzymes,
for example, HRP. The amines from the
lysines in proteins can also be converted to
aldehydes and incorporated using reagents
like the 4-FB-dPEG®x TFP esters (amine
reactive). See PN’s 10081 and 10082.
Product #
Description
100 mg
1000 mg
10011
Phthalimidooxy-dPEG®4 NHS ester
$100
$750
$250
$1250
Mol. Wt.: 508.48; single compound; dPEG® Spacer is 17 atoms and 19.0 Å
Phthalimidooxy-dPEG®12 NHS ester
11135
Mol. Wt.: 860.38; single compound; dPEG® Spacer is 41 atoms and 46.3 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
44
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
MAL-dPEG®x-NHS ester
O
O
NH 2
+
NHS-dPEG ®x-MAL
MAL =
dPEG®X-MAL
N
H
O
O
O
O
dPEG®X-MAL
+
N
dPEG®X N
SH
S
O
Try it with you antigens on your carrier protein and be amazed!
O
O
O
Carrier
Protein,
e.g., KLH,
BSA, OVA
H2N
H2N
O
O
-NH2
O
-NH2
O
dPEG®x
HN
N
O
dPEG®x
dPEG®x
-NH2
O
O
-NH
-NH2
dPEG®x
O
O
-NH
N
-H
-NH
-NH2
2
-NH2
N
-H
-NH2
N
dPEG®xN
-NH
O
O
O
-NH
HN
O
10266
O
dPEG®x
O
O
Product #
O
Carrier
Protein,
e.g., KLH,
BSA, OVA
H2N
O
N
O
N
HN
N dPEG®x
-NH2
H2N
O
N dPEG®x
-NH2
-NH2
O
H2N
-NH
-NH2
O
-NH
2
-NH2
-NH2
dPEG®x
-NH
N
O
-NH
Make a new generation of antibodies with a superior
carrier...higher loading, more soluble, greater yields of a
better antibody! Could there be more? Find out for
yourself!
O
dPEG®x
N
O
O
N
O
O
dPEG®x
O
O
N
O
dPEG®x O
N
O
Description
100 mg
1000 mg
MAL-dPEG ®2-NHS ester
$150
$250
$200
$300
$215
$350
$225
$500
$225
$750
$250
$1250
Mol. Wt.: 425.39; single compound; dPEG® Spacer is 16 atoms and 17.7 Å
MAL-dPEG ®4-NHS ester
10214
O
O
N
O
N
H
O
O
O
O
O
O
O
N
O
Mol. Wt.: 513.50; single compound; dPEG Spacer is 22 atoms and 24.8 Å
®
MAL-dPEG ®6-NHS ester
10064
O
O
O
N
H
N
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 601.60; single compound; dPEG Spacer is 28 atoms and 31.7 Å
®
MAL-dPEG ®8-NHS ester
10274
O
O
N
N
H
O
O
O
O
O
O
O
O
O
O
O
N
O
O
Mol. Wt.: 689.71; single compound; dPEG® Spacer is 34 atoms and 39.2 Å
MAL-dPEG ®12-NHS ester
10284
Mol. Wt.: 865.92; single compound; dPEG® Spacer is 46 atoms and 53.3 Å
MAL-dPEG ®24-NHS ester
10314
O
O
N
O
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
O
Mol. Wt.: 1394.55; single compound; dPEG® Spacer is 82 atoms and 95.2 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, as well as his specific discussion with protocols of our MAL-dPEG®x-NHS esters on pp. 718722.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
45
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
MAL-dPEG®x-acid
O
O
+
NH 2
NHS-dPEG ®x-MAL
MAL =
dP EG®X-MAL
N
H
O
O
O
O
dPEG®X-MAL
+
N
dPEG®X N
SH
S
O
Try it with your antigens on your carrier protein and be amazed!
O
O
O
O
O
-NH2
O
N dPEG®x
-NH2
H2N
O
-NH2
dPEG®x
O
N
O
O
dPEG®x
N
O
dPEG®x
-NH
Carrier
Protein,
e.g., KLH,
BSA, OVA
H2N
HN
-NH
O
O
O
-NH
-NH2
dPEG®x
N
-H
N
-NH
2
-NH2
N
-H
-NH2
-NH2
O
dPEG®x
N
O
O
dPEG® x O
N
O
dPEG® x
-NH2
HN
O
dPEG®xN
O
-NH
O
O
O
O
HN
O
N
-NH2
O
N dPEG®x
-NH2
Carrier
Protein,
e.g., KLH,
BSA, OVA
H2N
O
-NH
-NH2
H2N
H2N
O
-NH
2
-NH2
-NH2
dPEG®x
-NH
N
O
-NH
Make a new generation of antibodies with a superior
carrier...higher loading, more soluble, greater yields of a
better antibody! Could there be more? Find out for
yourself!
O
O
N
O
dPEG®x
O
N
O
O
roduct #
Description
100 mg
1000 mg
10265
MAL-dPEG ®2-acid
$60
$100
$100
$125
$125
$150
$225
$275
$225
$300
$225
$1250
Mol. Wt.: 328.32; single compound; dPEG® Spacer is 16 atoms and 17.5 Å
MAL-dPEG ®4-acid
10338
Mol. Wt.: 416.42; single compound; dPEG® Spacer is 16 atoms and 17.5 Å
MAL-dPEG ®6-acid
10065
O
O
N
O
N
H
O
O
O
O
O
O
O
OH
Mol. Wt.: 504.53; single compound; dPEG® Spacer is 28 atoms and 31.9 Å
10275
MAL-dPEG ®8-acid
Mol. Wt.: 592.63; single compound; dPEG® Spacer is 34 atoms and 38.8 Å
10285
MAL-dPEG ®12-acid
Mol. Wt.: 768.84; single compound; dPEG® Spacer is 46 atoms and 53.3 Å
10315
MAL-dPEG ®24-acid
Mol. Wt.: 1297.47; single compound; dPEG® Spacer is 82 atoms and 95.2 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See
pp. 276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SMCC or sulfo-SMCC on pp. 283-286.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
46
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
MAL-dPEG ®x-t-boc-hydrazide
Product #
Description
10210
MAL-dPEG ®4-t-boc-hydrazide
O
O
O
N
H
N
O
O
O
O
N
H
H
N
O
100 mg
1000 mg
$175
$900
$200
$1000
$225
$1100
O
O
Mol. Wt.: 530.57; single compound; dPEG® Spacer is 24 atoms and 27.1 Å
MAL-dPEG ®8-t-boc-hydrazide
10961
Mol. Wt.: 706.78; single compound; dPEG® Spacer is 36 atoms and 39.2 Å
MAL-dPEG ®12-t-boc-hydrazide
10962
Mol. Wt.: 882.99; single compound; dPEG® Spacer is 51 atoms and 51.1 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pp.
297-302 for general description and use of the conventional linkers like our dPEG® version
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
47
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
SPDP-dPEG ®x-NHS ester
NH2
+
S
N
H
dPEG® x--NHS
dPEG ®
X
S
dPEG ®X
S
S
N
+
N
H
SH
Reduce: TCEP, DTT, TE
O
N
H
N
dPEG ®X
S-S
O
O
dPEG® X
S
O
O
O
O
N
H
S
O
O
O
N
SH
+
N dPEG ®X
; or other thiol reactive
partners
O
= Enzyme, protein; 5'-amineoligo; antibody
Product #
Description
100 mg
1000 mg
10374
SPDP-dPEG®4-NHS ester
$225
$1075
$250
$1200
$250
$1200
$275
$1325
$300
$1450
Mol. Wt.: 559.65; single compound; dPEG® Spacer is 20 atoms and 23.1 Å
SPDP-dPEG®8-NHS ester
10376
Mol. Wt.: 735.87; single compound; dPEG® Spacer is 32 atoms and 37.2 Å
SPDP-dPEG®12-NHS ester
10378
Mol. Wt.: 912.08; single compound; dPEG® Spacer is 44 atoms and 51.3 Å
SPDP-dPEG®24 -NHS ester
10379
Mol. Wt.: 1440.70; single compound; dPEG® Spacer is 80 atoms and 97.3 Å
SPDP-dPEG®36-NHS ester
10867
Mol. Wt.: 1969.33; single compound; dPEG® Spacer is 115 atoms and 137.8 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
48
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
SPDP-dPEG ®x-acid
NH2
+
S
N
H
dPEG® x--NHS
dPEG ®
O
X
S
S
N
+
N
H
SH
Reduce: TCEP, DTT, TE
O
N
H
S
N
O
dPEG ®X
S-S
O
O
dPEG® X
S
dPEG ®X
O
O
N
H
S
O
O
O
N
SH
+
N dPEG ®X
; or other thiol reactive
partners
O
= Enzyme, protein; 5'-amineoligo; antibody
Product #
Description
100 mg
1000 mg
10373
SPDP-dPEG®4-acid
$225
$400
$250
$600
$250
$800
$275
$1100
$300
$1450
Mol. Wt.: 462.58; single compound; dPEG® Spacer is 20 atoms and 23.1 Å
SPDP-dPEG®8-acid
10375
Mol. Wt.: 638.79; single compound; dPEG® Spacer is 32 atoms and 37.2 Å
SPDP-dPEG®12-acid
10377
Mol. Wt.: 815.00; single compound; dPEG® Spacer is 44 atoms and 51.3 Å
SPDP-dPEG®24-acid
10380
Mol. Wt.: 1343.63; single compound; dPEG® Spacer is 80 atoms and 93.7 Å
SPDP-dPEG®36-acid
10866
Mol. Wt.: 1872.26; single compound; dPEG® Spacers are 137.8 atoms and 115 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
49
dPEG® Based Crosslinking Reagents
Heterobifunctional Reagents: Amine and Thiol Reactive
Tris(2-carboxyethyl)phosphine
hydrochloride (TCEP)
Product #
Description
1000 mg
5000 mg
10014
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP))
$55
$100
O
HO
O
P
OH
HCl
O
OH
Mol. Wt.: 286.65; single compound
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), pages 9597 (protocol), 654
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
50
dPEG® Based Crosslinking Reagents
Homobifunctional Reagents: Amine Reactivee
Homobifunctional Reagents: Amine Reactive
Bis-dPEG®x-NHS ester
O
NHS
E.g., Activate amine surface with NHS
H2N
NH2
O
+
H 2N
O
dPEG®
NHS
O
HN
O
dPEG ®x
xO
O
O
O
HN
O
NH
NH
O
dPEG®x
O
®
dPEG x
NHS
NHS
dPEG ®x
NH
O HN
O
H 2N
NH
O HN
dPEG® xO
dPEG ®x
NHS
NH2
HN
NHS
NH
= Small molecule; modified surface; peptide, oligo
O
= Small molecule; modified surface; peptide, oligo
dPEG®x
O
dPEG ®x
HN
NH
Product #
Description
100 mg
1000 mg
10724
Bis-dPEG ®2-NHS ester
$150
$335
$150
$335
$150
$385
$150
$435
$225
$525
Mol. Wt.: 400.34; single compound; dPEG® Spacer is 10 atoms and 11.0 Å
Bis-dPEG ®3-NHS ester
10726
Mol. Wt.: 444.39; single compound; dPEG® Spacer is 13 atoms and 14.6 Å
Bis-dPEG ®4-NHS ester
10699
O
N
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 488.44; single compound; dPEG Spacer is 16 atoms and 18.1 Å
®
Bis-dPEG ®5-NHS ester
10224
Mol. Wt.: 532.50; single compound; dPEG® Spacer is 19 atoms and 21.7 Å
Bis-dPEG ®7-NHS ester
10988
O
N
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 620.60; single compound; dPEG® Spacer is 25 atoms and 28.6 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
51
dPEG® Based Crosslinking Reagents
Homobifunctional Reagents: Amine Reactivee
Bis-dPEG ®x-NHS ester (cont.)
Product #
Description
10246
Bis-dPEG ®9-NHS ester
O
N
O
O
O
O
O
O
O
O
O
O
O
O
O
100 mg
1000 mg
$250
$550
$275
$900
$300
$1275
$325
$1350
$350
$1400
O
O
N
O
Mol. Wt.: 708.71; single compound; dPEG® Spacer is 31 atoms and 35.7 Å
Bis-dPEG ®13-NHS ester
10954
Mol. Wt.: 884.92; single compound; dPEG® Spacer is 43 atoms and 50.1Å
Bis-dPEG ®17-NHS ester
10979
O
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 1061.13; single compound; dPEG® Spacer is 55 atoms and 64.4 Å
Bis-dPEG ®21-NHS ester
10956
Mol. Wt.: 1237.34; single compound; dPEG® Spacer is 67 atoms and 79.1 Å
Bis-dPEG ®25-NHS ester
10968
O
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
O
Mol. Wt.: 1413.55; single compound; dPEG® Spacer is 79 atoms and 93.0 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
52
dPEG® Based Crosslinking Reagents
Homobifunctional Reagents: Amine Reactivee
Bis-dPEG ®x-PFP & TFP esters
NEW! All of our bis-dPEG® x NHS esters, now as the PFP esters!
More aqueous stable than the NHS esters!
Product #
Description
100 mg
1000 mg
10981
Bis-dPEG ®2-PFP ester
$150
$650
$150
$550
$150
$650
$150
$650
$225
$750
F
F
F
F
F
O
O
O
O
O
O
F
F
F
F
F
Mol. Wt.: 538.29; single compound; dPEG Spacer is 10 atoms and 10.9 Å
®
Bis-dPEG ®3-PFP ester
10982
F
F
F
F
F
F
O
O
O
O
O
O
F
O
F
F
F
Mol. Wt.: 582.34; single compound; dPEG® Spacer is 13 atoms and 14.5 Å
10085
Bis-dPEG ®4-TFP ester
Mol. Wt.: 590.41; single compound; dPEG® Spacer is 16 atoms and 18.1 Å
10015
Bis-dPEG ®5-PFP ester
Mol. Wt.: 670.45; single compound; dPEG® Spacer is 19 atoms and 21.7 Å
10987
Bis-dPEG ®7-PFP ester
Mol. Wt.: 758.55; single compound; dPEG® Spacer is 25 atoms and 28.6 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
53
dPEG® Based Crosslinking Reagents
Homobifunctional Reagents: Amine Reactivee
Bis-dPEG ®x-PFP & TFP ester (cont.)
Product #
Description
100 mg
1000 mg
10983
Bis-dPEG ®9-PFP ester
$250
$1100
$275
$1200
$300
$1275
$325
$1350
$350
$1400
Mol. Wt.: 846.66; single compound; dPEG® Spacer is 31 atoms and 35.8 Å
Bis-dPEG ®13-PFP ester
10984
Mol. Wt.: 1022.87; single compound; dPEG® Spacer is 43 atoms and 50.0 Å
Bis-dPEG ®17-PFP ester
10980
Mol. Wt.: 1199.08; single compound; dPEG® Spacer is 55 atoms and 64.4 Å
Bis-dPEG ®21-PFP ester
10985
Mol. Wt.: 1375.29; single compound; dPEG® Spacer is 67 atoms and 78.7 Å
Bis-dPEG ®25-TFP ester
10092
Mol. Wt.: 1515.52; single compound; dPEG® Spacer is 79 atoms and 93.0 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
54
dPEG® Based Crosslinking Reagents
Homobifunctional Reagents: Amine Reactivee
Bis-dPEG®x-acid
Product #
Description
100 mg
1000 mg
10723
Bis-dPEG ®2-acid
$125
$550
$125
$550
$125
$550
$125
$550
$200
$800
$225
$1000
$250
$1100
$275
$1200
O
HO
O
O
OH
O
Mol. Wt.: 206.19; single compound; dPEG® Spacer is 10 atoms and 11.0 Å
Bis-dPEG ®3-acid
10725
O
O
HO
O
O
O
OH
Mol. Wt.: 250.25; single compound; dPEG® Spacer is 13 atoms and 14.6 Å
Bis-dPEG ®4-acid
10698
O
HO
O
O
O
O
OH
O
Mol. Wt.: 294.30; single compound; dPEG® Spacer is 16 atoms and 18.1 Å
Bis-dPEG ®5-acid
10230
Mol. Wt.: 338.35; single compound; dPEG® Spacer is 19 atoms and 21.7 Å
Bis-dPEG ®7-acid
10236
Mol. Wt.: 426.46; single compound; dPEG® Spacer is 25 atoms and 28.8 Å
Bis-dPEG ®9-acid
10245
Mol. Wt.: 514.56; single compound; dPEG® Spacer is 31 atoms and 35.7 Å
Bis-dPEG ®13-acid
10953
Mol. Wt.: 690.77; single compound; dPEG® Spacer is 43 atoms and 50.1 Å
Bis-dPEG ®17-acid
10978
O
HO
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 866.98; single compound; dPEG® Spacer is 55 atoms and 64.4 Å
Bis-dPEG ®21-acid
10955
$300
$1275
$325
$1350
Mol. Wt.: 1043.19; single compound; dPEG® Spacer is 67 atoms and 79.1 Å
Bis-dPEG ®25-acid
10967
O
HO
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1219.40; single compound; dPEG Spacer is 79 atoms and 93.0 Å
®
Bis-dPEG ®29-acid
10320
$375
$1500
Mol. Wt.: 1395.61; single compound; dPEG® Spacer is 91 atoms and 106.4 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
55
dPEG® Based Crosslinking Reagents
Click Reagents: Azide
Click Reagents: Azide
Azido-dPEG ®x-NHS ester
Product #
Description
100 mg
1000 mg
10501
Azido-dPEG®4-NHS ester
$175
$900
$200
$1050
$225
$1125
Mol. Wt.: 388.37; single compound; dPEG® Spacer is 16 atoms and 17.7 Å
Azido-dPEG®8-NHS ester
10503
Mol. Wt.: 564.58; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
Azido-dPEG®12-NHS ester
10505
Mol. Wt.: 740.79; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
56
dPEG® Based Crosslinking Reagents
Click Reagents: Azide
Azido-dPEG®x-acid
Product #
Description
100 mg
1000 mg
10502
Azido-dPEG®4-acid
$200
$850
$225
$1100
$250
$1150
$275
$1200
Mol. Wt.: 291.30; single compound; dPEG® Spacer is 16 atoms and 17.7 Å
Azido-dPEG®8-acid
10512
O
N3
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 467.51; single compound; dPEG Spacer is 28 atoms and 32.2 Angstroms
®
Azido-dPEG®12-acid
10513
O
N3
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 643.72 ; single compound; dPEG® Spacer is 40 atoms and 46.4 Angstroms
Azido-dPEG®24-acid
10514
N3
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1172.35; single compound; dPEG® Spacer is 76 atoms and 90.44 Angstroms
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
57
dPEG® Based Crosslinking Reagents
Click Reagents: Azide
Azido-dPEG ®x-amine
O
NHS
+
(reduction)
NH-dPEG ®x-N3
NH2-dPEG ®x-N 3
=
O
NH-dPEG ®x-NH2
Small molecule; modified surface; peptide, oligo
Carboxyl reactive …also acts as a mono-protected diamine (reduce azide to amine)
Product #
Description
10522
Azido-dPEG®3-amine
H2N
O
O
O
100 mg
1000 mg
$100
$400
$200
$500
$250
$600
$300
$1250
$350
$1350
N3
Mol. Wt.: 218.25; single compound; dPEG® Spacers are 14 atoms and 15.4 Å
Azido-dPEG®7-amine
10523
Mol. Wt.: 394.46; single compound; dPEG® Spacer is 25 atoms and 28.8 Å
Azido-dPEG®11-amine
10524
Mol. Wt.: 570.67; single compound; dPEG® Spacers are 36 atoms and 44.2 Å
Azido-dPEG®23-amine
10525
Mol. Wt.: 1099.30; single compound; dPEG® Spacers are 72 atoms and 86.8 Å
Azido-dPEG®35-amine
10526
Mol. Wt.: 1627.94; single compound; dPEG® Spacers are 107 atoms and 129 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
58
dPEG® Based Crosslinking Reagents
Click Reagents: Amine and Carboxyl Acetylide Partners
Click Reagents: Amine and Carboxyl Acetylide Partners
Propargyl-dPEG ®1-NHS ester
Product #
Description
100 mg
1000 mg
10511
Propargyl-dPEG®1-NHS ester
$100
$450
Mol. Wt.: 225.20; single compound; dPEG® Spacer is 7 atoms and 7.2 Å
Propargyl amine
Product #
Description
1000 mg
10510
Propargyl amine
$50
Mol. Wt.: 55.08; single compound; Spacer is 4 atoms and 3.5 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Pp. 722716 (Greg has several general protocols on pp. 725 and 726).
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
59
dPEG® Based Crosslinking Reagents
Homobifunctional: Thiol Reactive
Homobifunctional: Thiol Reactive
Bis-MAL-dPEG ®x
Product #
Description
10215
Bis-MAL-dPEG ®3
50 mg
1000 mg
$125
$750
$225
$1200
O
O
H
N
N
O
O
H
N
O
O
N
O
O
O
Mol. Wt.: 522.55; single compound; dPEG® Spacer is 28 atoms and 30.0 Å
Bis-MAL-dPEG ®11
10397
Mol. Wt.: 846.92; single compound; dPEG® Spacer is 28 atoms and 30.0 Å
Homobifunctional: Diamine Monoprotected
t-boc-N-amido-dPEG®x-amine
O
O
NHS
+
NH2-dPEG® x-NH
O
NH-dPEG ®x-NH
O
=
O
(Acid)
O
NH-dPEG ®x-NH2
Small molecule; modified surface; peptide, oligo
Product #
Description
10225
t-boc-N-amido-dPEG®3-amine
100 mg
1000 mg
NA
$200
$235
$1050
O
H2N
O
O
O
N
H
O
Mol. Wt.: 320.43; single compound; dPEG Spacer is 15 atoms and 16.9 Å
®
t-boc-N-amido-dPEG®11-amine
10172
Mol. Wt.: 644.79; single compound; dPEG® Spacer is 37 atoms and 42.8 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
60
dPEG® Based Crosslinking Reagents
Homobifunctional: Diamine Monoprotected
Azido-dPEG ®x-amine
O
NHS
+
(reduction)
NH-dPEG ®x-N3
NH2-dPEG ®x-N 3
=
O
NH-dPEG ®x-NH2
Small molecule; modified surface; peptide, oligo
Carboxyl reactive …also acts as a mono-protected diamine (reduce azide to amine)
Product #
Description
10522
Azido-dPEG®3-amine
H2 N
O
O
O
100 mg
1000 mg
$100
$800
$200
$1000
$250
$1150
$300
$1250
$350
$1350
N3
Mol. Wt.: 218.25; single compound; dPEG® Spacers are 14 atoms and 15.4 Å
Azido-dPEG®7-amine
10523
Mol. Wt.: 394.46; single compound; dPEG® Spacer is 25 atoms and 28.8 Å
Azido-dPEG®11-amine
10524
Mol. Wt.: 570.67; single compound; dPEG® Spacers are 36 atoms and 44.2 Å
Azido-dPEG®23-amine
10525
Mol. Wt.: 1099.30; single compound; dPEG® Spacers are 72 atoms and 86.8 Å
Azido-dPEG®35-amine
10526
Mol. Wt.: 1627.94; single compound; dPEG® Spacers are 107 atoms and 129 Å
Diamido-dPEG ®11-diamine
* Licensed under U.S. Pat. No. 6,492,560 B2
Product #
Description
100 mg
1000 mg
10361
Diamido-dPEG ®11-diamine
$150
$800
Mol. Wt.: 742.94; single compound; dPEG® Spacer is 49 atoms and 57.1 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
61
dPEG® Based Crosslinking Reagents
Homobifunctional: Diamine Monoprotected
CBZ-N-amido-dPEG ®3-amine
Product #
Description
1000 mg
10269
CBZ-N-amido-dPEG ®3-amine
$375
Mol. Wt.: 354.44; single compound; dPEG® Spacer is 15 atoms and 16.9 Å
t-boc-N-EDA
Product #
Description
1000 mg
10226
t-boc-N-EDA
$175
Mol. Wt.: 160.21; single compound; Spacer is 4 atoms and 3.8 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
62
dPEG® Based Crosslinking Reagents
Miscellaneous: Homobifunctional; Monoprotected
Miscellaneous: Homobifunctional; Monoprotected
Acid-dPEG®x-NHS ester
Product #
Description
100 mg
1000 mg
10109
Acid-dPEG ®5-NHS ester
$215
$1200
$230
$1250
$250
$1300
$300
$1450
Mol. Wt.: 435.42; single compound; dPEG® Spacer is 19 atoms and 21.6 Å
10119
Acid-dPEG ®9-NHS ester
Mol. Wt.: 611.64; single compound; dPEG® Spacer is 31 atoms and 35.7 Å
10127
Acid-dPEG ®13-NHS ester
Mol. Wt.: 787.38; single compound; dPEG® Spacer is 43 atoms and 50.0 Å
10140
Acid-dPEG ®25-NHS ester
Mol. Wt.: 1272.43; single compound; dPEG® Spacer is 79 atoms and 93.0 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
63
dPEG® Based Crosslinking Reagents
Miscellaneous: Homobifunctional; Monoprotected
Amino-dPEG ®11-ONH-t-boc


Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, in oxidizable matrices,
among others AND can be incorporated using reagents like the 4-FB-dPEG®x TFP esters (amine reactive)
Aminooxy-dPEG ®s with a LABEL. Quanta has available a BIOTIN label. PN 11112 below is perfect for making
your own
Product #
Description
100 mg
1000 mg
11112
Amino-dPEG®11-ONH-t-boc
$250
$1200
Mol. Wt.: 3045.60; single compound; dPEG® Spacer is 123 atoms and 124.8 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
Bis-dPEG ®5, half benzyl half NHS ester
Product #
Description
100 mg
1000 mg
10237
Bis-dPEG ®5, half benzyl half NHS ester
$250
$1100
Mol. Wt.: 525.55; single compound; dPEG® Spacer is 19 atoms and 21.7 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
64
dPEG® Based Crosslinking Reagents
Thiol Reactive Miscellaneous without dPEG ®
Thiol Reactive Miscellaneous
MPS (NHS-3-maleimidopropionate)
Description
250 mg
1000 mg
MPS (NHS-3-maleimidopropionate)
$200
$400
Product #
10217
Mol. Wt.: 266.21; single compound; Spacer is 6 atoms and 6.0 Å
MPS-Acid
Product #
Description
100 mg
1000 mg
10323
MPS-Acid
$100
$350
Mol. Wt.: 169.13; single compound; Spacer is 6 atoms and 6.0 Å
MPS-EDA.TFA
Product #
Description
100 mg
1000 mg
10177
MPS-EDA.TFA
$225
$750
O
O
N
N
H
NH3+CF3COO-
O
Mol. Wt. 325.24; single compound; dPEG® Spacer is 10 atoms and 10.7 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
65
dPEG® Based Crosslinking Reagents
Thiol Reactive Miscellaneous
Bis-Maleimide amine, TFA salt
Product #
Description
100 mg
1000 mg
10232
Bis-Maleimide amine, TFA salt
$225
$750
Mol. Wt.: 660.64; single compound; Spacers are 17 and 21 atoms and 19.1 and 19.6 Å, resp.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
66
dPEG® Based Crosslinking Reagents
Thiol Reactive Miscellaneous
Bis-MAL-Lysine-dPEG ®4-acid
Product #
Description
100 mg
1000 mg
10630
Bis-MAL-Lysine-dPEG®4-acid
$225
$1050
Mol. Wt.: 695.71; single compound; Spacers are 25 and 29 atoms and 17.5 and 27.9 Å, resp.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
67
dPEG® Based Crosslinking Reagents
Thiol Reactive Miscellaneous
Bis-MAL-Lysine-dPEG ®4-TFP ester
Product #
Description
100 mg
1000 mg
10631
Bis-MAL-Lysine-dPEG®4-TFP ester
$250
$1250
Mol. Wt.: 843.77; single compound; Spacers are 25 and 29 atoms and 17.5 and 27.9 Å, resp.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
68
dPEG® Based Crosslinking Reagents
Others
Others
Amino-dPEG ®x-t-boc-hydrazide
Product #
Description
10041
Amino-dPEG®4-t-boc-hydrazide
O
H2N
O
O
O
O
N
H
H
N
100 mg
1000 mg
$150
$750
$250
$950
$300
$1050
O
O
Mol. Wt.: 379.45; single compound; dPEG® Spacer is 18 atoms and 21.1 Å
10957
Amino-dPEG®8-t-boc-hydrazide
Mol. Wt.: 555.66; single compound; dPEG® Spacers are 30 atoms and 35.9 Å
10958
Amino-dPEG®12-t-boc-hydrazide
Mol. Wt.: 731.87; single compound; dPEG® Spacers are 45 atoms and 50.1 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
69
dPEG® Based Crosslinking Reagents
Others
Fmoc-N-amido-dPEG ®4-t-boc-hydrazide
Product #
Description
100 mg
1000 mg
10043
Fmoc-N-amido-dPEG®4-t-boc-hydrazide
$175
$750
Mol. Wt.: 601.69; single compound; dPEG® Spacer is 18 atoms and 21.1 Å
NHS-dPEG ®4-t-boc-hydrazide
Product #
Description
100 mg
1000 mg
10044
NHS-dPEG®4-t-boc-hydrazide
$200
$1000
Mol. Wt.: 590.62; single compound; dPEG® Spacer is 23 atoms and 27.7 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
70
dPEG® Based Crosslinking Reagents
References
4-formyl benzamido-dPEG®x-TFP ester
1.
2.
Strategies for Neoglycan Conjugation to Human Acid r-Glucosidase. Qun Zhou, James E. Stefano, John Harrahy, Patrick Finn, Luis Avila, Josephine
Kyazike, Ronnie Wei, Scott M. Van Patten, Russell Gotschall, Xiaoyang Zheng, Yunxiang Zhu, Tim Edmunds, and Clark Q. Pan. Bioconjugate Chem. 2011,
22 pp 741–751. March 18, 2011. doi.org/10.1021/bc1005416.
Single-Step Conjugation of Antibodies to Quantum Dots for Labeling Cell Surface Receptors in Mammalian Cells. Gopal Iyer, Jianmin Xu, and Shimon
Weiss. Bioconjugation Protocols. 2011, 751 pp 553-563. January 2, 2011. DOI: 10.1007/978-1-61779-151-2_34.
MAL-dPEG®x-NHS ester
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
111In-Labeled Immunoconjugates (ICs) Bispecific for the Epidermal Growth Factor Receptor (EGFR) and Cyclin-Dependent Kinase Inhibitor, p27Kip1.
Bart Cornelissen, Veerle Kersemans, Kristin McLarty, Lara Tran, Raymond M. Reilly. CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS. 2009, 24 (2)
pp 163-173. May 1, 2009. DOI: 10.1089/cbr.2008.0553.
Therapy of Murine Pulmonary Aspergillosis with Antibody-Alliinase Conjugates and Alliin. Elena Appel, Alexandra Vallon-Eberhard, Aharon Rabinkov, Ori
Brenner, Irina Shin, Keren Sasson, Yona Shadkchan, Nir Osherov, Steffen Jung, and David Mirelman. AAC. 2010. 54 (2) pp 898–906. February 1,2010.
doi:10.1128/AAC.01267-09.
Conjugation of Peptides to the Passivation Shell of Gold Nanoparticles for Targeting of Cell-Surface Receptors. Lisa Maus, Oliver Dick, Hilmar Bading,
Joachim P. Spatz, and Roberto Fiammengo. ACS Nano. 2010, 4 (11), pp 6617–6628. October 7, 2010. DOI: 10.1021/nn101867w.
Cell recruitment and transfection in gene activated collagen matrix. Silvia Orsi, Antonia De Capua, Daniela Guarnieri, Daniela Marasco, Paolo A. Netti.
Biomaterials. 2010, 31 (3) pp 570–576.October 7, 2009. DOI:10.1016/j.biomaterials.2009.09.054.
Development of a novel bead-based96-well filtrationplate competitive immunoassay for the detection of Gentamycin. Tien Yu Jessica Ho, ChiaChungChan, KingHoChan, YuChiehWang, Jing-TangLin, Cheng-Ming Chang, Chien-ShengChen. Biosensors and Bioelectronics. 2013, 49 pp
126–132.May 8,2013. DOI: 10.1016/j.bios.2013.04.027.
Fluorescent homogeneous immunosensors for detecting pathogenic bacteria. Ewa Heyduk, Tomasz Heyduk. Analytical Biochemistry. 2010, 396 (2) pp
298–303. September 24, 2009. DOI:10.1016/j.ab.2009.09.039.
Structural characterization and functionalization of engineered spider silk films. Kristina Spieß, Stefanie Wohlrab and Thomas Scheibel. Soft Matter. 2010,
6 (17) pp 4168-4174. June 16, 2010. DOI: 10.1039/b927267d.
Single molecule tracking of quantum dot-labeled mRNAs in a cell nucleus. Yo Ishihama, Takashi Funatsu. Biochemical and Biophysical Research
Communications. 2009, 381 pp 33-38. February 8, 2009. DOI:10.1016/j.bbrc.2009.02.001.
Nanoparticle Self-Assembly Directed by Antagonistic Kinase and Phosphatase Activities. Geoffrey von Maltzahn, Dal-Hee Min, Yingxin Zhang, Ji-Ho Park,
Todd J. Harris, Michael Sailor, Sangeeta N. Bhatia. Advance Materials. 2007, 19 (21) pp 3579-3583. October 16, 2007. DOI: 10.1002/adma.200701183.
MicroSPECT/CT imaging of co-expressed HER2 and EGFR on subcutaneous human tumor xenografts in athymic mice using 111In-labeled bispecific
radioimmunoconjugates. Eva Razumienko, Lindsay Dryden, Deborah Scollard, Raymond M. Reilly. Breast Cancer Res Treat. 2013, 138 (3) pp 709-718.
March 24, 2013. DOI: 10.1007/s10549-013-2490-5.
Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard
Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry 15, 2007,20 (15), pp 6565 – 6573
July 25, 2007. DOI:10.1016/j.bmc.2007.07.001.
Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device. Mary Nora Dickson, Pavel Tsinberg, Zhongliang Tang,
Farideh Z. Bischoff, Timothy Wilson, and Edward F. Leonard. Biomicrofluidics. 2011, 5 (3). August 22, 2011. DOI:10.1063/1.3623748.
Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Young-Seok Cho, Tae-Jong Yoon, EueSoon Jang, Kwan Soo Hong, Shin Young Lee, Ok Ran Kim, Cheongsoo Park, Yong-Jin Kim, Gyu-Chul Yi, Kiyuk Chang. Cancer Letters. 2010, 299 (1) pp 6371. August 9, 2010. DOI: 10.1016/j.canlet.2010.08.004.
Immobilizing Reporters for Molecular Imaging of the Extracellular Microenvironment in Living Animals. Zuyong Xia, Yun Xing, Jongho Jeon, Young-Pil
Kim, Jessica Gall, Anca Dragulescu-Andrasi, Sanjiv S. Gambhir, and Jianghong Rao. ACS Chem. Biol. 2011, 6 (10), pp 1117–1126. August 10, 2011. DOI:
10.1021/cb200135e.
Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Eric A. Murphy, Bharat K. Majeti, Leo A. Barnes, Milan Makale, Sara
M. Weis, Kimberly Lutu-Fuga, Wolfgang Wrasidlo, David A. Cheresh. PNAS. 2008, 105 (27) pp 9343-9348. July 8, 2008. DOI: 10.1073/pnas.0803728105.
U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo. Rafal Goraczniak, Brian A Wall, Mark
A Behlke, Kim A Lennox, Eric S Ho, Nikolas H Zaphiros, Christopher Jakubowski, Neil R Patel, Steven Zhao, Carlo Magaway, Stacey A Subbie, Lumeng
Jenny Yu, Stephanie LaCava, Kenneth R Reuhl,Suzie Chen, and Samuel I Gunderson. Citation: Molecular Therapy–Nucleic Acids. 2013, 2 (e92). May 14,
2013. DOI: 10.1038/mtna.2013.24.
Self-Protecting Bactericidal Titanium Alloy Surface Formed by Covalent Bonding of Daptomycin Bisphosphonates. Chang-Po Chen and Eric Wickstrom.
Bioconjugate Chemistry. 2010, 21 (11), pp 1978–1986. Nov. 17, 2010. DOI: 10.1021/bc100136e.
Interactive Configuration through Force Analysis of GM1 Pentasaccharide-Vibrio cholera Toxin Interaction. Jeong Hyun Seo, Chang Sup Kim, Hea Yeon
Lee, Tomoji Kawai, and Hyung Joon Cha. Analytical Chemistry. 2011, 83 (15), pp 6011–6017. June 24, 2011. DOI: 10.1021/ac201013p.
Functional improvement of an IRQ-PEG-MEND for delivering genes to the Lung. Taichi Ishitsuka, Hidetaka Akita, Hideyoshi Harashima. Journal of
Controlled Release PII: 2011, 1 (154), pp 77-83, August 25, 2011. DOI: 10.1016/j.jconrel.2011.05.012.
Small-Animal SPECT/CT of HER2 and HER3 Expression in Tumor Xenografts in Athymic Mice Using Trastuzumab Fab–Heregulin Bispecific
Radioimmunoconjugates. Eva J. Razumienko, Deborah A. Scollard, and Raymond M. Reilly. J Nucl Med. 2012, 53 pp 1943–1950. October 24, 2012. DOI:
10.2967/jnumed.112.106906.
Photounbinding of Calmodulin from a Family of CaM Binding Peptides. Klaus G. Neumu ller, Kareem Elsayad, Johannes M. Reisecker, M. Neal Waxham,
Katrin G. Heinze. PLoS ONE. 2010, 5 (11) pp e14050. November 18, 2010. doi:10.1371/journal.pone.0014050.
Synthesis and Evaluation of Hydrophilic Linkers for Antibody_Maytansinoid Conjugates. Robert Y. Zhao, Sharon D. Wilhelm, Charlene Audette, Gregory
Jones, Barbara A. Leece, Alexandru C. Lazar, Victor S. Goldmacher, Rajeeva Singh, Yelena Kovtun, Wayne C. Widdison, John M. Lambert, and Ravi V. J.
Chari. J. Med. Chem. 2011, 54 (10), pp 3606–3623. April 25, 2011. DOI: 10.1021/jm2002958.
Human pIgR mimetic peptidic ligand for affinity purification of IgM Part II: Ligand binding characteristics. Satyen Gautam, Kai-Chee Loh. Separation and
Purification Technology. 2013, 102 pp 43–49. January 4, 2013. DOI:/10.1016/j.seppur.2012.09.024.
Cell selective targeting of a simian virus 40 virus-like particle conjugated to epidermal growth factor. Yuichi Kitai, Hajime Fukuda, Teruya Enomoto, Yuki
Asakawa, Takahiro Suzuki, Satoshi Inouye, Hiroshi Handa. Journal of Biotechnology PII. 2011, 2 (155), pp 251-256. Sept 2011. DOI:
10.1016/j.jbiotec.2011.06.030.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
Directed Intermixing in Multicomponent Self-Assembling Biomaterials. Joshua Z. Gasiorowski and Joel H. Collier. Biomacromolecules. 2011, 12 (10), pp
3549–3558. August 25, 2011. DOI: 10.1021/bm200763y.
Properties of PEI-based Polyplex NanoparticlesThat Correlate With Their Transfection Efficacy. Alexey V Ulasov, Yuri V Khramtsov, Georgiy A Trusov,
Andrey A Rosenkranz, Eugene D Sverdlov and Alexander S Sobolev. Molecular Therapy 2011 19 (1) pp 103-112 January 2011 DOI:10.1038/mt.2010.233.
Multifunctional nanoagent for thrombus-targeted fibrinolytic Therapy. Jason R. McCarthy, Irina Y. Sazonova, S. Sibel Erdem, Tetsuya Hara, Brian D.
Thompson, Purvish Patel, Ion Botnaru, Charles P. Lin, Guy L. Reed, Ralph Weissleder, and Farouc A. Jaffer. Nanomedicine 2012 7 (7) pp 1017–1028 July,
2012. DOI:10.2217/nnm.11.179.
Enhanced transfection of tumor cells in vivo using “Smart” pHsensitive TAT-modified pegylated liposomes. Amit A. Kale and Vladimir P. Torchilin. Journal
of Drug Targeting 2007 15 (7-8) pp 538-545 September 13, 2007. DOI:10.1080/10611860701498203.
Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging. Parminder Kaur, Qiang-Fu, Alexander Fuhrmann,
Robert Ros, Linda Obenauer Kutner, Lumelle A. Schneeweis, Ryman Navoa,Kirby Steger, Lei Xie, Christopher Yonan, Ralph Abraham, Michael J. Grace,
and Stuart Lindsay. Biophysical Journal. 2011 100 (1) pp 243-250 November 23, 2010. DOI:10.1016/j.bpj.2010.11.050.
Subcellular trafficking and transfection efficacy of polyethyleniminepolyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1.
Mikhail O. Durymanov, Elena A. Beletkaia, Alexey V. Ulasov, Yuri V. Khramtsov, Georgiy A. Trusov, Nikita S. Rodichenko, Tatiana A. Slastnikova, Tatiana V.
Vinogradova, Natalia Y. Uspenskaya, Eugene P. Kopantsev, Andrey A. Rosenkranz, Eugene D. Sverdlov, Alexander S. Sobolev. Journal of Controlled
Release PII: 2012, 2 (163), pp 211-219, October 28, 2011. DOI: 10.1016/j.jconrel.2012.08.027.
Intercellular and extracellular adhesion signals control cardiac myocyte structural and functional remodeling: mechanosensing mediated by cadherin and
hyaluronan receptors. Anant Chopra. iDEA: Drexel E-repository and Archives. 2012, May 2012. http://hdl.handle.net/1860/3777.
Aptamer-Containing Surfaces for Selective Capture of CD4 Expressing Cells. Qing Zhou, Ying Liu, Dong-Sik Shin, Jaime Silangcruz, Nazgul Tuleuova, and
Alexander Revzin. Langmuir. 2012, 28 (34) pp 2544−12549. August 1, 2012. doi.org/10.1021/la2050338.
Sensitive Detection of Small Molecule–Protein Interactions on a Metal – Insulator – Metal Label-Free Biosensing Platform Amir Syahir, Kotaro Kajikawa
and Hisakazu Mihara. Chemistry Asian Journal. 2012, 8 (7) pp 1867-1874. May 25, 2012. DOI: 10.1002/asia.201200138.
Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. J. Nicholas Francis, Joseph S
Redman, Debra M Eckert, and Michael S. Kay. Bioconjugate Chemistry. 2012, 23 (6), pp 1252-1258. May 1, 2012. DOI: 10.1021/bc300076f.
Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of celleselectin interaction kinetics. Hao Cheng, Marta ByrskaBishop, Cathy T. Zhang, Christian J. Kastrup, Nathaniel S. Hwang, Albert K. Tai, Won Woo Lee, Xiaoyang Xu, Matthias Nahrendorf , Robert Langer, Daniel
G. Anderson. Biomaterials. 2012, 20 (33), pp 5004-5012. July 2012. DOI: 10.1016/j.biomaterials.2012.03.065.
Biomimetic Ligands for Immunoglobulin-M Purification. Satyen Gautam. National University of Singapore. 2010, April 12, 2010. DOI:
www.scholarbank.nus.edu.sg/handle/10635/22872.
Immobilization of hydrophobic peptidic ligands to hydrophilic chromatographic matrix: A preconcentration approach. Satyen Gautam, Kai-Chee Loh.
Analytical Biochemistry. (2012) 423 (2), pp 202-209. January 20, 2012. DOI: 10.1016/j.ab.2012.01.02.0.
Cell-Penetrating Peptide-Functionized Quantum Dots for Intracellular Delivery. Betty R. Liu, Yue-Wern Huang, Huey-Jenn Chiang, and Han-Jung Lee,
JNN, 2010. 10 (12) pp. 7897-7905. December 2010. DOI: 10.1166/jnn.2010.3012.
Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investion of Myotube Formation on Defined Patterns, Sonny C. Haiso,
Betty J. Shaun, Hiroaki Onoe, Erik S. Douglas, Zev J. Gartner, Richard A. Mathies, Carolyn R. Bertozzi, and Matthew B. Francis. Langmuir. 2009, 25 (12), pp
6985–6991. April 29, 2009. DOI: 10.1021/la900150n.
Investigation of the Interaction between a Bivalent Aptamer and Thrombin by AFM. Lin Ge, Gang Jin and Xiaohong Fang. Langmuir. 2012. 28 (1), pp
707–713. November 21, 2011. DOI: 10.1021/la203954x.
Targeted nanogels: a versatile platform for drug delivery to tumors. Eric A. Murphy, Bharat K. Majeti, Rajesh Mukthavaram, Lisette M. Acevedo,Leo A.
Barnes, and David A. Cheresh. Molecular Cancer Therapeutics.2011, 10 (6) pp 972-982. April 25, 2011. 10.1158/1535-7163.MCT-10-0729.
Single-molecule Structural and Functional Analyses of Nuclear Pore Complex. Shotaro Otsuka, Hirohide Takahashi and Shige H. Yoshimura. MicroNanoMechatronics and Human Science. 2006. November 5, 2006. DOI:10.1109/MHS.2006.320314.
A methodology for preparing nanostructured biomolecular interfaces with high enzymatic activity. Lu Shin Wong, Chinnan V. Karthikeyan, Daniel J.
Eichelsdoerfer, Jason Micklefield and Chad A. Mirkin. Nanoscale, 2012, 4 (2), pp 659-666. December 8, 2011. DOI:10.1039/C1NR11443C.
NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion Nanoparticles. Yanmei Yang, Fang Liu, Xiaogang
Liu and Bengang Xing. Nanoscale. 2013,5 pp 231-238. Oct 30, 2012. DOI: 10.1039/C2NR32835F.
Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. Anant Chopra, Victor Lin, Amanda
McCollough, Sarah Atzet, Glenn D. Prestwich, Andrew S. Wechsler, Maria E. Murray, Shaina A. Oake, J. Yasha Kresh, Paul A. Janmey. Journal of
Biomechanics. 2012, 45 (5), pp 824-831. October 4, 2011. DOI:10.1016/j.jbiomech.2011.11.023.
Effect of Compressive Force on Unbinding Specific Protein−Ligand Complexes with Force Spectroscopy. Carleen M. Bowers, David A. Carlson, Monica
Rivera, Robert L. Clark, and Eric J. Toone. J. Phys. Chem. B. 2013, 117 pp 4755-4762. March 28, 2013. doi.org/10.1021/jp309393s.
Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Jeong Hyun Seo, Dong-Sik Shin, Priam Mukundan, Alexander
Revzin. Colloids and Surfaces B: Biointerfaces. 2012, 98, pp 1–6. October 1, 2012. doi.org/10.1016/j.colsurfb.2012.03.025.
Single-molecule anatomy by atomic force microscopy and recognition imaging. Hirohide Takahashi, Kohji Hizume, Masahiro Kumeta, Shige H. Yoshimura
and Kunio Takeyasu. Arch Histo1 Cyto1. 2009, 72 (4/5) pp 217-225. January 27, 2009. DOI: 10.1679/aohc.72.217.
Attaching Antibodies to AFM Probes with the Sulfhydryl Reactive PEG Tether, NHS-PEG18-PDP. W. Travis Johnson, Ph.D. Agilent Technologies, Inc.
2007, 5989-7702EN. December 18, 2007. www.agilent.com/find/afm.
Targeting of Primary Breast Cancers and Metastases in a Transgenic Mouse Model Using Rationally Designed Multifunctional SPIONs. Forrest M. Kievit,
Zachary R. Stephen, Omid Veiseh, Hamed Arami, Tingzhong Wang, Vy P. Lai, James O. Park, Richard G. Ellenbogen, Mary L. Disis, and Miqin Zhang. ACS
Nano, 2012, 6 (3), pp 2591–2601 February 10, 2012. DOI: 10.1021/nn205070h.
Improved Biodistribution and Radioimmunoimaging with Poly(ethylene glycol)-DOTA-Conjugated Anti-CEA Diabody, Lin li, Paul J. Yazaki, Anne-Line
Anderson, Desiree Crow, David Colcher, Anna M. Wu, Lawrence E. Williams, Jeffrey Y.C. Wong, Andrew Raubitschek, and John E. Shively. Bioconjugate
Chem. 2006, 17 (1), pp 68–76. December 24, 2005. DOI: 10.1021/bc0502614.
Intravital confocal Raman microscopy with multiplexed SERS contrast agents. Patrick Z McVeigh, Brian C Wilson. Plasmonics in Biology and Medicine IX.
2012, 8234 PP 82340D. February 9, 2012.DOI: 10.1117/12.907048.
TAT Peptide and Its Conjugate: Proteolytic Stability, Jacob Grunwald, Tomas Rejtar, Rupa Sawant, Zhouxi Wang, and Vladimir P. Torchilin, Bioconjugate
Chem., 2009, 20 (8), pp 1531–1537 July 14, 2009. DOI: 10.1021/bc900081e.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
Antigen Peptide-Based Immunosensors for Rapid Detection of Antibodies and Antigens, Ling Tian and Tomasz Heyduk, Anal. Chem., 2009, 81 (13), pp
5218–5225 May 26, 2009. DOI: 10.1021/ac900845a.
Application of HaloTag Protein to Covalent Immobilization of Recombinant Proteins for Single Molecule Force Spectroscopy. Yukinori Taniguchi and
Masaru Kawakami. Langmuir. 2010, 26 (13) pp 10433–10436. June 9, 2010. DOI: 10.1021/la101658a.
Creating Antibacterial Surfaces with the Peptide Chrysophsin‑1. Ivan E. Ivanov, Alec E. Morrison, Jesse E. Cobb, Catherine A. Fahey, and Terri A.
Camesano. ACS Appl. Mater. Interfaces. 2012, 4 (11) pp 5891−5897. October 8, 2012. DOI: 10.1021/am301530a.
Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Omid Veiseh, Forrest M. Kievit, Chen Fang, Ni
Mu, Soumen Jana, Matthew C. Leung, Hyejung Mok, Richard G. Ellenbogen, James O. Park, Miqin Zhang. Biomaterials. 2010, 31 (31) pp 8032e8042. July
4, 2010. DOI: 10.1016/j.biomaterials.2010.07.016.
Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Matthias T. Stephan, Sirkka B. Stephan, Peter Bak, Jianzhu Chen,
Darrell J. Irvine. Biomaterials. 2012, 33 (23) pp 5776-5787. May 15, 2012. DOI: 10.1016/j.biomaterials.2012.04.029.
Recognition Imaging with a DNA Aptamer. Liyun Lin, Hongda Wang, Yan Liu, Hao Yan, and Stuart Lindsay. Biophysical Journal. 2006, 90 (11), pp 42364238. June 1, 2006. DOI: 10.1529/biophysj.105.079111.
Photodynamic characterization and optimization using multifunctional nanoparticles for brain cancer treatment. Kristen Herrmann, Yong-Eun Lee Koo,
Daniel A. Orringer, Oren Sagher, Martin Philbert ,Raoul Kopelman. SPIE Proceedings. 2013, 8568 (1) pp 1-8. March 13, 2013. DOI: 10.1117/12.2005530.
Development of a widefield SERS imaging endoscope. Patrick Z McVeigh, Rupananda J Mallia, Israel Veilleux, Brian C Wilson. SPIE Proceedings. 2012,
8217 (1) pp 1-6. February 13, 2012. DOI: 10.1117/12.907304.
Interaction of Synaptotagmin with Lipid Bilayers, Analyzed by Single-Molecule Force Spectroscopy.Hirohide Takahashi, Victor Shahin, Robert M.
Henderson, Kunio Takeyasu, and J. Michael Edwardson. Biophysical Journal. 2010, 99 (8), pp 2550–2558, October 20, 2010. Doi:
10.1016/j.bpj.2010.08.047.
A proof of the specificity of kanamycin-ribosomal RNA interaction with designed synthetic analogs and the antibacterial activity, Yoshio Nishimura,
Hayamitsu Adachi, Motoki Kyo, Shoichi Murakami, Seiko Hattori, and Keiichi Ajito. Bioorganic & Medicinal Chemistry. 2005, 8 (15), pp 2159-2162. April 15,
2005. DOI: 10.1016/j.bmcl.2005.02.043.
Nanomechanics of HaloTag Tethers. Ionel Popa, Ronen Berkovich, Jorge Alegre-Cebollada, Carmen L. Badilla, Jaime Andrés Rivas-Pardo, Yukinori
Taniguchi, Masaru Kawakami, and Julio M. Fernandez. J. Am. Chem. Soc. 2013, 135 (34) pp 12762–12771. August 2, 2013. DOI: 10.1021/ja4056382.
“Smart” Drug Carriers: PEGylated TATp-Modified pH-Sensitive Liposomes. Amit A. Kale and Vladimir P. Torchilin. Journal of Liposome Research. 2007, 17
(1) pp 197-203. June 6, 2007. DOI: 10.1080/08982100701525035.
Efficient Transfection of Blood-Brain Barrier Endothelial Cells by Lipoplexes and Polyplexes in the Presence of Nuclear Targeting NLS-PEG-Acridine
Conjugates, Hongwei Zhang, Anton Mitin, and Sergui V. Vinogradov. Bioconjugate Chem. 2009, 20 (1), pp 120–128. December 9, 2008. DOI:
10.1021/bc8003414.
Optimal Surface Chemistry for Peptide Immobilization in On-Chip Phosporylation Analysis, Kazuki Inamori, Motoki Kyo, Kazuki Matsukawa, Yusuke Inoue,
Tatsuhiko Sonoda, Kenji Tatematsu, Katsuyuki Tanizawa, Takeshi Mori, and Yoshiki Katayama. Anal. Chem. 2008, 80 (3), pp 643–650. January 8, 2008. DOI:
10.1021/ac701667g.
Therapeutic Anti-Methamphetamine Antibody Fragment-Nanoparticle Conjugates: Synthesis and in Vitro Characterization. Nisha Nanaware-Kharade ,
Guillermo A. Gonzalez , III, Jackson O. Lay , Jr., Howard P. Hendrickson , and Eric C. Peterson. Bioconjugate Chemistry. 2012, 23 (9), pp 1864–1872.
August 9, 2012. 10.1021/bc300204n.
Surface Coating Directed Cellular Delivery Of TAT-Functionalized Quantum Dots. Yifeng Wei, Nikhil R. Jana, Shawn J. Tan, and Jackie Y. Ying.
Bioconjugate Chem. 2009, 20 (9) pp1752-1758. August 14, 2009. 10.1021/bc8003777.
Molecular Pincers: Antibody-Based Homogeneous Protein Sensors, Ewa Heyduk, Benjamin Dummit, yie-Hwa Chang, and Tomasz Heyduk. Anal. Chem.,
2008, 80 (13), pp 5152–5159. May 21, 2008. DOI: 10.1021/ac8004154.
Detection Methodology Based on Target Molecule-Induced Sequence-Specific Binding to a Single-Stranded Oligonucleotide. Agnieszka LassNapiorkowska, Ewa Heyduk, Ling Tian, and Tomasz Heyduk. Analytical Chemistry. 2012, 84 (7), pp 3382–3389. March 7, 2012. 10.1021/ac3001034.
Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent, Genhua Zheng, Victor Ambros and Wen-hong Li, Zheng et al.
Silence Journal. 2010, 1 (9) April 1, 2010. http://www.silencejournal.com/content/1/1/9.
Single-molecule imaging, force measurement and fluorescence observation reveal protein and chromosome dynamics around the nuclear envelope. S.
Otsuka, Y. Hirano, H. Takahashi, M. Kumeta, K. Takeyasu, and S.H Yoshimura. Micro-NanoMechatronics and Human Science.2007, International
Symposium. pp 310-315. December 1, 2007. 10.1109/MHS.2007.4420872.
The use of glass substrates with bi-functional silanes for designing micropatterned cell-secreted cytokine immunoassays. Seo JH, Chen LJ, Verkhoturov
SV, Schweikert EA, Revzin A. Biomaterials. 2011, 32 (23) pp 5478-5488. April 6, 2011. 10.1016/j.biomaterials.2011.04.026.
New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Yasunaga M, Manabe S, Matsumura Y. Cancer Science. 2011,
102 (7) pp 1396-1402.April 11, 2011. 10.1111/j.1349-7006.2011.01954.x.
Peptide ligands that use a novel binding site to target both TGF-B receptors. Lingyin Li, Brendan P. Orner, Tao Huang,b Andrew P. Hinck and Laura L.
Kiessling. Molecular BioSystems. 2010. 6 (12) pp 2341-2576. September 3, 2010. DOI: 10.1039/c0mb00115e.
BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment. Stefanie M. Shiels, Kimberly D. Solomon,
Marcello Pilia,Mark R. Appleford, Joo L. Ong. Journal of Biomedical Materials Research. 2012, 100A (11) pp 3117-3123. November 1, 2012. DOI:
10.1002/jbm.a.34241.
Mass Spectrometry-Guided Optimization and Characterization of a Biologically Active Transferrin−Lysozyme Model Drug Conjugate. Son N. Nguyen,
Cedric E. Bobst, and Igor A. Kaltashov. Mol. Pharmaceutics. 2013, 10, pp 1998−2007. March 27, 2013. doi.org/10.1021/mp400026y.
A sandwich-type DNA array platformfor detection of GM targets in multiplex assay.Sena Cansız, Can Ozen, Ceren Bayrac, A. Tahir Bayrac, Fatma Gul,
Murat Kavruk, Remziye Yılmaz, Fusun Eyidogan, Huseyin, Avni Oktem. European Food Research and Technology. 2012, 235 (3) pp 429-437. July 6, 2012.
DOI 10.1007/s00217-012-1767-y.
Characterisation and tumour targeting of PEGylated polylysine dendrimersbearing doxorubicin via a pH labile linker. Lisa M. Kaminskas, Brian D. Kelly,
Victoria M. McLeod, Gian Sberna, David J. Owen, Ben J. Boyd, Christopher J.H. Porter. Journal of Controlled Release. 2011 152 (2) Pages 241-248 June
10, 2011. DOI: 10.1016/j.jconrel.2011.02.005.
Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Inge K. Herrmann, Riccardo E. Bernabei, Martin Urner,
Robert N. Grass, Beatrice Beck-Schimmer and Wendelin J. Stark. Nephrol Dial Transplant. 2011, 26 (9), pp 2948-2958. February 10, 2011. DOI:
10.1093/ndt/gfq846.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
Development of glutathione-coupled cantilever for the single-molecule force measurement by scanning force microscopy, Shige H. Yoshimua, Hirohide
Takahashi, Shotaro Otsuka, Kunio Takeyasu. FEBS Letters. 2006, 580 (16), pp 3961-3965. July 10, 2006. DOI: 10.1016/j.febslet.2006.06.032.
A homogeneous fluorescent sensor for human serum albumin. Rongsheng E. Wang, Ling Tian, Yie-Hwa Chang. Journal of Pharmaceutical and Biomedical
Analysis. 2012, 63 pp 165-169. April 7, 2012. DOI :10.1016/j.jpba.2011.12.035.
SNAP-Tag Technology Mediates Site Specific Conjugation of Antibody Fragments with a Photosensitizer and Improves Target Specific Phototoxicity in
Tumor Cells. Ahmad Fawzi Hussain, Florian Kampmeier, Verena von Felbert, Hans-F. Merk, Mehmet Kemal Tur, and Stefan Barth. Bioconjugate Chem.
2011, 22 (12) pp 2487–2495. October 13, 2011. DOI: 10.1021/bc200304k.
Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Shuji Yamashita,
Hiromitsu Fukushima, Yasuyuki Akiyama, Yasuro Niidome, Takeshi Mori, Yoshiki Katayama, Takuro Niidome. Bioorganic & Medicinal Chemistry. 2011, 7
(19), pp 2130-2135. April 1, 2011. DOI: 10.1016/j.bmc.2011.02.042.
Genotyping by allele-specific L-DNA-tagged PCR, Gosuke Hayashi, Masaki Hagihara, Kazuhiko Nakatani. Journal of Biotechnology. 2008, 2 (135), pp 157160. June 2008. DOI: 10.1016/j.jbiotec.2008.03.011.
Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display. Angela
Natilla, Rosemarie W. Hammond. Journal of Virological Methods. 2011, 178 (1-2) pp 209-215. September 22, 2011. doi:10.1016/j.jviromet.2011.09.013.
Single –molecule detection of phosphorylation-induced plasticity changes during ezrin activation. Dan Liu, Ling Ge, Fengsong Wang, hirohide Takahashi,
DOngmei Wang, Zhen Guo, Shige H. Yoshimura, Tarsha Ward, Xia Ding, Kunio Takeyasu, Xuebiao Yao. FEBS Letters. 2007, 581 (18), pp 3563-3571. July
24, 2007. DOI: 10.1016/j.febslet.2007.06.071.
A virus-like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Laura E. Richert, Amy E.
Servidb, Ann L. Harmsen, Agnieszka Rynda-Apple, Soo Han, James A. Wiley, Trevor Douglas, Allen G. Harmsen. Vaccine. 2012, 30 (24) pp 3653-3665. May
21, 2012. DOI: 10.1016/j.vaccine.2012.03.035.
Chemical cross-linking of HIV-1 Env for direct TLR7/8 ligand conjugation compromises recognition of conserved antigenic determinants. Yu Feng, Mattias
N.E. Forsell, Barbara Flynn, William Adams, Karin Loré, Robert Seder, Richard T. Wyatt, Gunilla B. Karlsson Hedestam. Virology. 2013, 446 (1-2) pp 56-65.
August 15, 2013. DOI: 10.1016/j.virol.2013.07.028.
Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers. Carlee E. Ashley, Eric C. Carnes,
Katharine E. Epler, David P. Padilla, Genevieve K. Phillips, Robert E. Castillo, Dan C. Wilkinson, Brian S. Wilkinson, Cameron A. Burgard, Robin M. Kalinich,
Jason L. Townson, Bryce Chackerian, Cheryl L. Willman, David S. Peabody, Walker Wharton and C. Jeffrey Brinker. ACS Nano. 2006, 6 (3) pp 2174-2188.
February 6, 2012. DOI: 10.1021/nn204102q.
Transfection efficiency of depolymerized chitosan and epidermal growth factor conjugated to chitosan–DNA polyplexes. Sasamon Supaprutsakul,
Wilaiwan Chotigeat, Supreya Wanichpakorn, Ureporn Kedjarune-Leggat. Journal of Materials Science- Materials in Medicine. 2010, 21 (5) pp 1553-1561.
May 1, 2010. DOI: 10.1007/s10856-010-3993-9.
Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Farnoosh Roohi, Jessica Lohrke,
Andreas Ide, Gunnar Schütz, Katrin Dassler. International Journal of Nanomedicine. 2012, 7 pp 4447–4458. August 9, 2012. DOI: 10.2147/IJN.S33120.
Protein purification to analyze AAA+ proteolytic machine in vitro. Diego Rojas. Columbia University Academic Commons. 2011, DOI:
http://hdl.handle.net/10022/AC:P:12138.
Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. International Journal of Nanomedicine.
2013, 8 pp 2041–2052. May 20, 2013. DOI: 10.2147/IJN.S43683.
MAL-dPEG®x-acid
1.
2.
Synthesis and anti-HIV activity of trivalent CD4-mimetic miniproteins. Hengguang Li, Yongjun Guan, Agnieszka Szczepanska, Antonio J. Moreno-Vargas,
Ana T. Carmona, Inmaculada Robina, George K. Lewis and Lai-Xi Wang. Bioorganic & Medicinal Chemistry. 2007, 15 (12) pp 4220–4228. June 15, 2007.
doi.org/10.1016/j.bmc.2007.03.064.
New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human.
Miklos Fagyas, Katalin Uri, Ivetta M. Siket, Gabor A. Fulop, Viktoria Csato, Andrea Darago, Judit Boczan, Emese Banyai, Istvan Elek Szentkiralyi, Tamas
Miklos Maros, Tamas Szerafin, Istvan Edes, Zoltan Papp, Attila Toth. PLoS ONE. 2014, 9 (4) e87844. April, 1 2014. DOI: 10.1371/journal.pone.0087844.
MAL-dPEG®x-t-boc-hydrazide
1.
2.
Molecular Dendritic Transporter Nanoparticle Vectors Provide Efficient Intracellular Delivery of Peptides, Sharon K. Hamilton and Eva Harth. ACS Nano.
2009, 3 (2), pp 402–410. February 5, 2009. DOI: 10.1021/nn800679z.
Reagents for Astatination of Biomolecules. 5. Evaluation of Hydrazone Linkers in 211At- and 125I-Labeled closo-Decaborate(2-) Conjugates of Fab0 as a
Means of Decreasing Kidney Retention. D. Scott Wilbur, Ming-Kuan Chyan, Donald K. Hamlin, Holly Nguyen, and Robert L. Vessella. Bioconjugate Chem.
2011, 22 (6), pp 1089–1102. April 23, 2011. DOI: 10.1021/bc1005625.
SPDP-dPEG®x-NHS ester
1.
2.
3.
Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods. Laia Llovera, Peter R. Berthold,
Peter E. Nielsen and Takehiko Shiraishi. Artificial DNA, PNA & XNA 2012, 3 (1) pp 22-27 March 5, 2012. DOI: 10.4161/adna.19906.
Cellular Delivery and Antisense Effects of Peptide Nucleic Acid Conjugated to Polyethyleneimine via Disulfide Linkers. Peter R. Berthold, Takehiko
Shiraishi, and Peter E. Nielsen.Bioconjugate Chem., 2010, 21 (10), pp 1933–1938 September 27, 2010. DOI: 10.1021/bc1003586.
Different pH-Dependencies of the Two Synaptic Adhesion Molecules N-Cadherin and Cadherin-11 and the Possible Functional Implication for Long-term
Potentiation. WERNER BAUMGARTNER, ARMIN OSMANAGIC, MARITA GEBHARD,SANDRA KRAEMER, AND NIKOLA GOLENHOFEN. SYNAPSE. 2013,
67 (10) pp 705-715. June 3, 2013. DOI: 10.1002/syn.21679.
Bis-dPEG®x-NHS ester
1.
2.
Design of a Potent D-Peptide HIV-1 Entry Inhibitor with a Strong Barrier to Resistance. Brett D. Welch, J. Nicholas Francis, Joseph S. Redman, Suparna
Paul, Matthew T. Weinstock, Jacqueline D. Reeves, Yolanda S. Lie, Frank G. Whitby, Debra M. Eckert, Christopher P. Hill, Michael J. Root, and Michael S.
Kay. Journal of Virology. 2010, 84 (21) pp 11235–11244. November 2010. DOI:10.1128/JVI.01339-10.
Orientation-regulated immobilization of Jagged1 on glass substrates for ex vivo proliferation of a bone marrow cell population containing hematopoietic
stem cells. Hiroyuki Toda, Masaya Yamamoto, Hiroshi Kohara, Yasuhiko Tabata. Biomaterials. 2011, 29 (32), pp 6920-6928. May 30, 2011. DOI:
10.1016/j.biomaterials.2011.05.093.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
3.
4.
5.
6.
7.
8.
9.
10.
Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard
Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 15 (2007) pp 6565–6573. July 25,
2007. doi:10.1016/j.bmc.2007.07.001.
Potent D-peptide inhibitors of HIV-1 entry, Brett D. Welch, Andrew P. VanDemark, Annie Heroux, Christopher P. Hill, and Michael S. Kay. PNAS. 104, No.
43, 2007, 43 (104), pp 16828-16833. October 23, 2007. DOI:10.1073/pnas.0708109104.
Dynamic electromagnetophoretic force analysis of a single binding interaction between lectin and mannan polysaccharide on yeast cell surface Yoshinori
Iigunia and Hitoshi Watarai. Analyst. 2010, 135 (6), pp 1426–1432. November 18, 2009. DOI: 10.1039/b924339a.
Phosphoramidate and phosphate prodrugs of (_)-b-D-(2R,4R)-dioxolane-thymine: Synthesis, anti-HIV activity and stability studies. Yuzeng Liang,
Janarthanan Narayanasamy, Raymond F. Schinazib and Chung K. Chua. Bioorganic & Medicinal Chemistry. 2006, 14 (7) pp 2178–2189. April 1, 2006.
doi.org/10.1016/j.bmc.2005.11.008.
Surface Functionalization and Analysis Thereof for an Ovarian Cancer Diagnostic Biosensor. Asad Ali Ahmad. USF Scholor Commons. 2011, 1 (1) pp 297
416. June 21, 2011. DOI: scholarcommons.usf.edu/etd/2977.
Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity. Onursal Onen, Asad A. Ahmad, Rasim Guldiken and Nathan D. Gallant.
Sensors. 2012, 12 pp 12317-12328. September 10, 2012. DOI: 10.3390/s120912317.
Inhibition of HLA-DQ2 Mediated Antigen Presentation by Analogues of a High Affinity 33-Residue Peptide from α2-Gliadin. Jiang Xia, Matthew Siegel,
Elin Bergseng, Ludvig M. Sollid, and Chaitan Khosla. Journal of the American Chemical Society 2006 128 (6) pp 1859-1867 February 15, 2006.
DOI:10.1021/ja056423o.
Ligand-regulated oligomerization of b2-adrenoceptors in a model lipid bilayer. Juan Jose´ Fung, Xavier Deupi, Leonardo Pardo, Xiao Jie Yao, Gisselle A
Velez-Ruiz, Brian T DeVree, Roger K Sunahara and Brian K Kobilka. The EMBO Journal, 2009, 28, pp 3315–3328. September 17, 2009. DOI:
10.1038/emboj.2009.267.
Bis-dPEG®x-TFP ester
1.
Holistic Assessment of Covalently Labeled Core–Shell Polymeric Nanoparticles with Fluorescent Contrast Agents for Theranostic Applications. Tiffany P.
Gustafson, Young H. Lim, Jeniree A. Flores, Gyu Seong Heo, Fuwu Zhang, Shiyi Zhang, Sandani Samarajeewa, Jeffery E. Raymond, and Karen L. Wooley.
Langmuir. 2014, January 6, 2014. DOI: 10.1021/la403943w.
Bis-dPEG®x-acid
1.
2.
3.
Dimeric analogs of immunosuppressive decapeptide fragment of ubiquitin. Alicja Kluczyk, Marzena Cydzik, Monika Biernat, Remigiusz Bąchor,Paweł
Pasikowski, Piotr Stefanowicz, Jolanta Artym, Michał Zimecki and Zbigniew Szewczuka. Journal of Peptide Science. 2012, 18 (7) pp 456-465. May 25, 2012.
DOI: 10.1002/psc.2416.
50-O-Aliphatic and amino acid ester prodrugs of (_)-b-D-(2R,4R)-dioxolane-thymine (DOT): Synthesis, anti-HIV activity, cytotoxicity and stability studies.
Yuzeng Liang, Ashoke Sharon , Jason P. Grier, Kimberly L. Rapp , Raymond F. Schinazi, Chung K. Chu. Bioorganic & Medicinal Chemistry. 2009, 17 (3) pp
1404–1409 February 1, 2009. DOI: 10.1016/j.bmc.2008.10.078.
Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Jin Xie, Chenjie Xu, Nathan
Kohler, Yanglong Hou, and Shouheng Sun. Advanced Materials. 2007, 19 (20) pp 3163-3166. October 17, 2007. DOI: 10.1002/adma.200701975.
Azido-dPEG®x-NHS ester
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Constant-speed vibrational signaling along polyethylene glycol chain up to 60-Å distance. Zhiwei Lin and Igor V. Rubtsov. PNAS. 2012, 109 (5) pp 14131418. January 31, 2012. DOI:10.1073/pnas.1116289109.
Clickable Poly(ethylene glycol)-Microsphere-Based Cell Scaffolds. Peter K. Nguyen, Christopher G Snyder, Jason D. Shields, Amanda W. Smith, Donald L.
Elbert. Macromolecular Journals. 2013, 214 (8) 948-956. March 4, 2013. DOI: 10.1002/macp.201300023.
Nano-Scale Alignment of Proteins on a Flexible DNA Backbone. Tatsuya Nojima1, Hiroki Konno, Noriyuki Kodera, Kohji Seio, Hideki Taguchi, Masasuke
Yoshida. PLoS ONE. 2012, 7(12): e52534. December 26, 2012. DOI:10.1371/journal.pone.0052534.
A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry. Jian Hao, Li-Li Huang, Rui Zhang, Han-Zhong
Wang and Hai-Yan Xie. Anal. Chem. 2012, 84, pp 8364−8370. September 4, 2012. doi.org/10.1021/ac301918t.
An Effective Targeted Nanoglobular Manganese(II) Chelate Conjugate for Magnetic Resonance Molecular Imaging of Tumor Extracellular Matrix,
Mingqian Tan, Xueming Wu, Eun-Kee Jeong, Qianjin Chen, Dennis L. Parker, and Zheng-Rong Lu,Mol. Pharmaceutics, 2010, 7 (4), pp 936–943 May 19,
2010. DOI: 10.1021/mp100054m.
A Modular Platform for the Rapid Site-Specific Radiolabeling of Proteins with F Exemplified by Quantitative Positron Emission Tomography of Human
Epidermal Growth Factor Receptor 2, Herman S. Gill, Jeff N. Tinianow, Annie Pgasawara, Judith E. Flores, Alexander N. Vanderbilt, Helga Raab, Justin M.
Scheer, Richard Vandlen, Simon-P. Williams, and Jan Marik, J. Med. Chem., 2009, 52 (19), pp 5816–5825 September 9, 2009. DOI: 10.1021/jm900420c.
Chemoselective Immobilization of Peptides on Abiotic and Cell Surfaces at Controlled Densities, Venkata R. Krishnamurthy, John T. Wilson, Wanxing Cui,
XueZheng Song, Yi Lasanajak, Richard D. Cummings, and Elliot L. Chaikof. Langmuir 2010, 26 (11), pp 7675-7678. DOI: 10.1021/la101192v.
Bio-Inspired Liposomal Thrombomodulin Conjugate through Bio-Orthogonal Chemistry. Hailong Zhang, Jacob Weingart, Rui Jiang, Jianhao Peng,
Qingyu Wu, and Xue-Long Sun. Bioconjugate Chem. 2013, 24 (4) pp 550–559. March 4, 2013. DOI: 10.1021/bc300399f.
Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Helen Wanga, Wei Huang,
Jared Orwenyo, Aditi Banerjee, Gerardo R. Vasta, Lai-Xi Wang. Bioorganic & Medicinal Chemistry. 2013, 21 (7) pp 2037–2044. January 9, 2013. DOI:
10.1016/j.bmc.2013.01.028.
A Method for Determining Small Anharmonicity Values from 2DIR Spectra Using Thermally Induced Shifts of Frequencies of High-Frequency Modes.
Zhiwei Lin , Patrick Keiffer , and Igor V. Rubtsov. Journal of Physical ChemistryB. 2011, 115 (18) pp 5347-5353. December 28, 2010. 10.1021/jp1094189.
ADIBO-Based ”Click” Chemistry for Diagnostic Peptide Micro-Array Fabrication: Physicochemical and Assay Characteristics. Denis Prim, Fabien Rebeaud,
Vincent Cosandey, Roger Marti, Philippe Passeraub and Marc E. Pfeifer. ADIBO-Based ”Click” Chemistry for Diagnostic Peptide Micro-Array Fabrication:
Physicochemical and Assay Characteristics. Denis Prim, Fabien Rebeaud, Vincent Cosandey, Roger Marti, Philippe Passeraub and Marc E. Pfeifer.
Molecules. 2013, 18 pp 9833-9849. August 16, 2013. DOI: 10.3390/molecules18089833.
An Intein-Mediated Site-Specific Click Conjugation Strategy for Improved Tumor Targeting of Nanoparticle Systems. Drew R. Elias, Dr. Zhiliang Cheng,
and Prof. Andrew Tsourkas. Small 2010 6 (21) pp 2460–2468 November 5, 2010. DOI:10.1002/smll.201001095.
Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging. Mingqian Tan, Xueming Wu,
Eun-Kee Jeong, Qianjin Chen, and Zheng-Rong Lu. Biomacromolecules 2010 11 (3) pp 754–761 March 8, 2010. DOI:10.1021/bm901352v.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
14.
15.
16.
Enzymatic Ligation of Large Biomolecules to DNA. Rasmus Schøler Sørensen, Anders Hauge Okholm, David Schaffert, Anne Louise Bank Kodal, Kurt V.
Gothelf, and Jørgen Kjems. ACS Nano. 2013, 7 (9) pp 8098–8104. August 8, 2013. DOI: 10.1021/nn403386f.
Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Zhiwei Lin , Nan Zhang , Janarthanan Jayawickramarajah and
Igor V. Rubtsov. Physical Chemistry Chemical Physics. 2012, 30 (14), pp 10445-10454. April 12, 2012. DOI: 10.1039/C2CP40187H.
Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Xiao-Wen Shi,, Ling Qiu, Zhen Nie, Ling
Xiao, Gregory F Payne and Yumin Du. Biofabrication. 2013, (5) 041001, pp7. September 23, 2013. DOI:10.1088/1758-5082/5/4/041001.
Azido-dPEG®x-acid
1.
Click Chemistry on Solution-Dispersed Graphene and Monolayer CVD Graphene. Zhong Jin, Thomas P. McNicholas, Chih-Jen Shih, Qing Hua Wang,
Geraldine L. C. Paulus, Andrew J. Hilmer, Steven Shimizu and Michael S. Strano. Chemistry of Materials. 2011, 23(1) pp 3362-3370. June 30, 2011.
10.1021/cm201131v.
Azido-dPEG®x-amine
1.
2.
3.
4.
Structure-Based Design of a Heptavalent Anthrax Toxin Inhibitor. Amit Joshi, Sandesh Kate, Vincent Poon, Dhananjoy Mondal, Mohan B. Boggara,
Arundhati Saraph, Jacob T. Martin, Ryan McAlpine, Ryan Day, Angel E. Garcia, Jeremy Mogridge, and Ravi S. Kane. Biomacromolecules, 2011, 12 (3), pp
791–796 February 8, 2011. DOI: 10.1021/bm101396u.
Epinephrine Modulates BCAM/Lu and ICAM-4 Expression on the Sickle Cell Trait Red Blood Cell Membrane. Jamie L. Maciaszek, Biree Andemariam,
Greg Huber, and George Lykotrafitis. Biophysical Journal. 2012, 102 pp 1137–1143. January 27, 2012. DOI: 10.1016/j.bpj.2012.01.050.
Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Cameron R. Kinnane, Georgina K. Such, and Frank Caruso.
Macromolecules, 2011, 44 (5), pp 1194–1202 February 4, 2010. DOI: 10.1021/ma102593k.
Detection of SK2 Channels on Hippocampal Neurons. Jamie L. Maciaszek University of Connecticut (2012) DigitalCommons@Uconn Master's Theses
Paper 237 April 20, 2012. http://digitalcommons.uconn.edu/gs_theses/237.
Propargyl-dPEG®₁-NHS ester
1.
2.
3.
4.
5.
6.
7.
8.
Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging. Mingqian Tan, Xueming Wu,
Eun-Kee Jeong, Qianjin Chen, and Zheng-Rong Lu. Biomacromolecules 2010 11 (3) pp 754–761 March 8, 2010. DOI:10.1021/bm901352v.
An Effective Targeted Nanoglobular Manganese(II) Chelate Conjugate for Magnetic Resonance Molecular Imaging of Tumor Extracellular Matrix,
Mingqian Tan, Xueming Wu, Eun-Kee Jeong, Qianjin Chen, Dennis L. Parker, and Zheng-Rong Lu, Mol. Pharmaceutics, 2010, 7 (4), pp 936–943 May 19,
2010. DOI: 10.1021/mp100054m.
An Intein-Mediated Site-Specific Click Conjugation Strategy for Improved Tumor Targeting of Nanoparticle Systems. Drew R. Elias, Dr. Zhiliang Cheng,
and Prof. Andrew Tsourkas. Small 2010 6 (21) pp 2460–2468 November 5, 2010. DOI:10.1002/smll.201001095.
Nanoconjugation: a materials approach to enhance epidermal growth factor induced apoptosis. Linxi Wu, Xinwei Yu, Amin Feizpour and Björn M.
Reinhard. Biomaterials Science. 2013, (www.rsc.org/biomaterialsscience). September 23,2013. DOI: 10.1039/c3bm60142k.
Monitoring the Size and Lateral Dynamics of ErbB1 Enriched Membrane Domains through Live Cell Plasmon Coupling Microscopy. Guoxin Rong, Bjorn
M. Reinhard. PLoS ONE. 2012, 7 (3) e34175. March 28, 2012. DOI:10.1371/journal.pone.0034175.
Covalent Attachment of Lipid Cesicles to a Fluid-Supported BIlayer Allows Observation of DNA-Mediated Vesicle Interactions, Bettina van Lengerich,
Robert J. Rawle, and Steven G. Boxer, Langmuir, 2010, 26 (11), pp 8666–8672, February 24, 2010. DOI: 10.1021/la904822f.
Illuminating Epidermal Growth Factor Receptor Densities on Filopodia through Plasmon Coupling. Jing Wang, Svetlana V. Boriskina, Hongyun Wang, and
Bjorn M. Reinhard. ACS Nano. 2011, 5 (8), pp 6619–6628. July 17, 2011. DOI: 10.1021/nn202055b.
Prodrug Strategy for PSMA-Targeted Delivery of TGX-221 to Prostate Cancer Cells. Yunqi Zhao, Shaofeng Duan, Xing Zeng, Chunjing Liu, Neal M.
Davies, Benyi Li, and M. Laird Forrest. Mol. Pharmaceutics. 2012, 9 (6) pp 1705–1716. April 11, 2012. DOI: 10.1021/mp3000309.
Bis-MAL-dPEG®x
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Polymercaptosiloxane Anchor Films for Robust Immobilization of Biomolecules to Gold Supports. Patrick A. Johnson and Rastislav Levicky. Langmuir .
2003, 19 (24) pp10288-10294. October 30, 2003. 10.1021/la035102s.
X-ray Photoelectron Spectroscopy and Differential Capacitance Study of Thiol-Functional Polysiloxane Films on Gold Supports. Patrick A.
Johnson and Rastislav Levicky. Langmuir. 2004, 20 (22) pp 9621-9627. September 28, 2004. 10.1021/la048458s.
X-ray Photoelectron Spectroscopy and Differential Capacitance Study of Thiol-Functional Polysiloxane Films on Gold Supports. Patrick A.
Johnson and Rastislav Levicky. Langmuir. 2004, 20 (22) pp 9621-9627. September 28, 2004. 10.1021/la048458s.
Kinetics of endophilin N-BAR domain dimerization and membrane interactions. Benjamin R. Capraro, Zheng Shi, Tingting Wu, Zhiming Chen, Joanna M.
Dunn, Elizabeth Rhoades, Tobias Baumgart. Journal of Biological Chemistry. 2013, 288 (11) March 12, 2013. DOI: 10.1074/jbc.M112.435511.
Enhanced Fluorescence resonance energy transfer immunoassay with improved sensitivity based on the Fab’-based immunoconjugates. Yoshiyuki Ohiro,
Hiroshi Ueda, Norio Shibata, Teruyuki Nagamune. Analytical Biochemistry. 2007, 360 (2) pp 266-272. January 15, 2007. DOI:10.1016/j.ab.2006.10.025.
Analysis of the Quaternary Structure of the MutL C-terminal Domain. Jan Kosinski, Ina Steindorf, Janusz M. Bujnicki, Luis Giron-Monzon and Peter
Friedhoff. Journal of Molecular Biology. 2005, 351 (4) pp 895-909. August 26, 2005. DOI: 10.1016/j.jmb.2005.06.044.
A Divalent Immunotoxin Formed by the Disulfide Bond between Hinge Regions of Fab Domain. SeongHyeok Choi, JiEun Kim, YongChan Lee, Young-Ju
Jang, Ira Pastan, MuHyeon Choe. Bull Korean Chem.Soc. 2001, 22 (12) pp 1361-1365. September 3, 2001. DOI: www.pdf.lookchem.com/pdf/32/77fb36eaeea2-4741-a825-b3234cd24299.pdf.
Development of a homogeneous competitive immunoassay for phosphorylated protein antigen based on the enhanced fluorescence resonance energy
transfer technology. Yoshiyuki Ohiro,1, Hiroshi Ueda,2,3 Norio Shibata,1 and Teruyuki Nagamune. Journal of Bioscience and Bioengineering. 2010, 109
(1), pp 15–19. July 29, 2009. DOI: 10.1016/j.jbiosc.2009.07.004.
Backbone Degradable Multiblock N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates via Reversible Addition Fragmentation Chain Transfer
Polymerization and Thiol-ene Coupling Reaction. Huaizhong Pan, Jiyuan Yang, Pavla Kopečková, and Jindřich Kopeček. Biomacromolecules. 2011, 12 (1)
pp 247–252. January 10, 2011. DOI:10.1021/bm101254e.
Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic
T cells. Jure Pohleven, Nataša Obermajer, Jerica Sabotič, Sabina Anžlovar, Kristina Sepčić, Janko Kos , Bogdan Kralj, Borut Štrukelj, Jože Brzin.
Biochimica et Biophysica Acta (BBA) - General Subjects. 2009, 1790 (3) pp 173-181. December 8, 2008. DOI: 10.1016/j.bbagen.2008.11.006.
Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts. David Halpin, Petr Kalab, Jay Wang, Karsten Weis, Rebecca Heald. PLoS
Bio. 2011, 9 (12) pp e1001225. December 27, 2011. doi:10.1371/journal.pbio.1001225.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
12.
13.
14.
15.
16.
17.
Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. NORA S. GREEN, EMIL REISLER, K.N.
HOUK. Protein Science. 2001, 10 (7) pp 1293-1304. March 23, 2010. DOI: 10.1101/ps.51201.
Effects of modification at the fifth residue of l-conotoxin GIIIA with bulky tags on the electricallystimulated contraction of the rat diaphragm. M.
Nakamura, Y. Oba, H. Nakamura, Y. Ishida, T. Kohno, K. Sato. Journal Peptide Res. 2004, 64 (3) pp 110-117. May 30, 2004. DOI: 10.1111/j.13993011.2004.00175.x.
Functional Characterization of Rhodopsin Monomers and Dimers in Detergents. Beata Jastrzebska, Tadao Maeda, Li Zhu, Dimitrios Fotiadis, Slawomir
Filipek, Andreas Engel, Ronald E. Stenkamp, and Krzysztof Palczewskia. JBC. 2004, 279 (52) pp 54663-54675. December 24, 2004. doi:
10.1074/jbc.M408691200.
Chemical Trapping of the Dynamic MutS-MutL Complex Formed in DNA Mismatch Repair in Escherichia coli. Ines Winkler, Andreas D. Marx, Damien
Lariviere, Roger J. Heinze, Michele Cristovao, Annet Reumer, Ute Curth, Titia K. Sixma, and Peter Friedhoff. JBC. 2011, 286 (19) pp 17326–17337. May 13,
2011. DOI 10.1074/jbc.M110.187641.
SWI/SNF- and RSC-Catalyzed Nucleosome Mobilization Requires Internal DNA Loop Translocation within Nucleosomes. Ning Liu, Craig L. Peterson and
Jeffrey J. Hayes. Molecular and Cellular Biology. 2011, 31 (20), pp 4165-4177. August 22, 2011. DOI: 10.1128/MCB.05605-11.
Mapping Protein-Protein Interactions between MutL and MutH by crosslinking. Luis Giron-Monzon, Laura Manelyte, Robert Ahrends, Dieter Kirsch,
Bernhard Spengler, and Peter Friedhoff. J. Biol. Chem. 2004, 279 ( 47) pp 49338-49345. September 14, 2004. DOI: 10.1074/jbc.M409307200.
t-boc-N-amido-dPEG®x-amine
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
A continuous fluorescence displacement assay for BioA: An enzyme involved in biotin biosynthesis. Daniel J. Wilson, Ce Shi, Benjamin P. Duckworth,
Joseph M. Muretta, Ujjini Manjunatha, Yuk Y. Sham, David D. Thomas, and Courtney C. Aldrich. Analytical Biochemistry. 2011, 416 (1) pp 27-38.
September 2011. DOI:10.1016/j.ab.2011.05.003.
Time-resolved fluorescence resonance energy transfer and surface plasmon resonance-based assays for retinoid and transthyretin binding to retinolbinding protein 4. Orzala Sharif, Huiyong Hu, Heath Klock, Eric N. Hampton, Edward Nigoghossian, Mark W. Knuth, Jason Matzen, Paul Anderson,
Richard Trager, Tetsuo Uno, Richard J. Glynne, Sassan M. Azarian, Jeremy S. Caldwell , Achim Brinker. Analytical Biochemistry. 2009, 392, (2) PP 162–168.
September 15 , 2009. doi.org/10.1016/j.ab.2009.05.038.
Nanotube-assisted protein deactivation. Amit Joshi, Supriya Punyani, Shyam Sundhar Bale, Hoichang Yang, Theodorian Borca-Tasciuc and Ravi S. Kane.
Nature Nanotechnology. 2008, 3 pp 41 – 45. December 9, 2007. doi:10.1038/nnano.2007.386
Immobilization of Actively Thromboresistant Assemblies on Sterile Blood-Contacting Surfaces. Zheng Qu, Venkat Krishnamurthy, Carolyn A. Haller,
Brent M. Dorr, Ulla M. Marzec, Sawan Hurst, Monica T. Hinds, Stephen R. Hanson, David R. Liu, and Elliot L. Chaikof. Adv. Healthcare Mater. 2013. March
23, 2013. DOI: 10.1002/adhm.201300110.
Biomimetic Ligands for Immunoglobulin-M Purification. Satyen Gautam. National University of Singapore. 2010, April 12, 2010. DOI:
www.scholarbank.nus.edu.sg/handle/10635/22872.
Effects of linker variation on the in vitro and in vivo characteristics of an In-labeled RGD peptide, Ingrid Dijkgraaf, Shuang Liu, John A.W. Kruijtzer,
Annemieke C. Soede, Wim J.G. Oyen, Rob M.J. Liskamp, Frans H.M. Corstens, Otto C. Boerman. Nuclear Medicine and Biology. 2007, 1 (34), pp 29-35,
January 2007. DOI: 10.1016/j.nucmedbio.2006.10.006.
Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew B. Greytak,
Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F. Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain
and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.
Design, Synthesis, and Validation of a Branched Flexible Linker for Bioactive Peptides. Martina E. Bowen, Yasunari Monguchi, Rajesh Sankaranarayanan,
Josef Vagner, Lucinda J. Begay, Liping Xu, Bhumasamudram Jagadish, Victor J. Hruby, Robert J. Gillies, and Eugene A. Mash. J. Org. Chem. 2007, 72 (5)
pp 1675–1680. February 6, 2007. DOI: 10.1021/jo062276g.
Design and Synthesis of Bis-Biotin-Containing Reagents for Applications Utilizing Monoclonal Antibody-Based Pretargeting system with Streptavidin
Mutants, D. Scott Wibur, Steven I. Park, Ming-Kuan Chyan, Feng Wan, Donald K. Hamlin, Jaideep Shenoi, Yukang Lin, Shani M. Wilbur, Franz Buchegger,
Anastasia Pantelias, John M. Pagel, and Oliver W. Press. Bioconjugate Chem. 2010, 21 (7), pp 1225–1238. July 2, 2010. DOI: 10.1021/bc100030q.
Thiol-Mediated Anchoring of Ligands to Self-Assembled Monolayers for Studies of Biospecific Interactions. Kunal V. Gujraty, Randolph Ashton, Sridhar
R. Bethi, Sandesh Kate, Christopher J. Faulkner, G. Kane Jennings, and Ravi S. Kane. Langmuir. 2006, 22 (24) pp 10157–10162. October 19, 2006.DOI:
10.1021/la0621463.
Development of an oligo (ethylene glycol)-based SPR immunosensor for TNT detection. Yutaka Mizuta, Takeshi Onodera, Praveen Singh, Kiyoshi
Matsumoto, Norio Miura, Kiyoshi Toko. Biosensors and Bioelectronics. 2008. 24 (2). Pp. 191-197. DOI:10.1016/j.bios.2008.03.042.
Oriented Surface Immobilization of Antibodies at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nathan J Alves, Tanyel
Kiziltepe, and Basar Bilgicer. Langmuir. 2012, 28 (25), pp 9640-9648. May 1, 2012. DOI: 10.1021/la301887s.
Novel Nanoassemblies Composed of Squalenoyl—Paclitaxel Derivatives: Synthesis, Characterization, and Biological Evaluation, Franco Dosio, L.
Harivardhan Reddy, Annalisa Ferrero, Barbara Stella, Luigi Cattel, and Patrick Couvreur. Bioconjugate Chem. 2010, 21 (7), pp 1349–1361. July 2, 2010. DOI:
10.1021/bc100154g.
Diamido-dPEG®x-diamine
1.
Visualizing Active Enzyme Complexes Using a Photoreactive Inhibitor for Proximity Ligation – Application on y-Secretase. Sophia Schedin-Weiss,
Mitsuhiro Inoue, Yasuhiro Teranishi, Natsuko Goto Yamamoto, Helena Karlstrom, Bengt Winblad, Lars O. Tjernberg. PLoS ONE 2013, 8 (5) e63962. May
24, 2013. DOI:10.1371/journal.pone.0063962.
t-boc-N-EDA
1.
DEVD-NucView 488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. Hui Cen, Fei Mao, Ida Aronchik,
Rholinelle Joy Fuentes, and Gary L. Firestone. The FASEB Journal. 2008, (22), pp 2243-2252. July 2010. DOI: 10.1096/fj.07-099234.
MPS(NHS-3-maleimidopropionate)
1.
2.
Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Ann-Charlotts teffen, Ylva Almqvist, Ming-Kuan Chyan, Hans Lundqvist,
Vladimir Tolmachev, D. Scott Wilbur and Jorgen Carlsson. Oncology Reports. 2007, 17 (5) pp 1141-1147. May 1, 2007. DOI: www.tessera.spandidospublications.com/or/17/5/1141.
Reagents for Astatination of Biomolecules. 2. Conjugation of Anionic Boron Cage Pendant Groups to a Protein Provides a Method for Direct Labeling
that is Stable to in Vivo Deastatination. D. Scott Wilbur, Ming-Kuan Chyan, Donald K. Hamlin, Robert L. Vessella, Timothy J. Wedge, and M. Frederick
Hawthorne. Bioconjugate Chem. 2007, 18 (4) pp 1226–1240. June 21, 2007. DOI: 10.1021/bc060345s.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Crosslinking Reagents
References (cont.)
Bis-Maleimide amine, TFA Salt
1.
2.
Reorienting the Fab Domains of Trastuzumab Results in Potent HER2 Activators. Justin M. Scheer, Wendy Sandoval, J. Michael Elliott, Lily Shao,
Elizabeth Luis, Sock-Cheng Lewin-Koh, Gabriele Schaefer, Richard Vandlen. PLOS ONE. 2012, 7 (12) e51817. December 20, 2012. DOI:
10.1371/journal.pone.0051817.
Mono-PEGylated Dimeric Exendin-4 as High Receptor Binding and Long-Acting Conjugates for Type 2 Anti-Diabetes Therapeutics.Tae Hyung Kim, Hai
Hua Jiang, Seulki Lee, Yu Seok Youn, Chan Woong Park,Youngro Byun, Xiaoyuan Chen, and Kang Choon Lee. Bioconjugate Chem. 2011, 22 (4), pp
625–632. March 14, 2011. DOI: 10.1021/bc100404x.
Bis-MAL-Lysine-dPEG®x-TFP ester
1.
Mono-PEGylated Dimeric Exendin-4 as High Receptor Binding and Long-Acting Conjugates for Type 2 Anti-Diabetes Therapeutics.Tae Hyung Kim, Hai
Hua Jiang, Seulki Lee, Yu Seok Youn, Chan Woong Park,Youngro Byun, Xiaoyuan Chen, and Kang Choon Lee, Bioconjugate Chem., 2011, 22 (4), pp
625–632 March 14, 2011. DOI: 10.1021/bc100404x.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
Amine Reactive
dPEG® Biotinylation Reagents
Amine Reactive
NHS-dPEG ®x-biotin
Extremely useful for labeling proteins especially on the available random lysines!
Due to the extreme solubility of the dPEG ® linker, up to 35-40 biotins can
be labeled on to an IgG with NO aggregation!
Product #
Description
50 mg
1000 mg
10200
NHS-dPEG®4-biotin
$100
$750
$150
$1250
$250
$1400
Mol. Wt.: 588.67; single compound; dPEG® Spacer is 16 atoms and 19.2 Å
NHS-dPEG®12-biotin
10198
Mol. Wt.: 941.09; single compound; dPEG® Spacer is 40 atoms and 47.6 Å
NHS-dPEG®24-biotin
10774
Mol. Wt.: 1469.72; single compound; dPEG® Spacer is 81 atoms and 97.7 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Specifically
see pp. 726-730 in his Chapter 18 on discrete PEG compounds for pegylation applications.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
71
dPEG® Biotinylation Reagents
Amine Reactive
dPEG®x-biotin acid
Extremely useful for labeling proteins especially on the available random lysines!
Due to the extreme solubility of the dPEG ® linker, up to 35-40 biotins
can be labeled on to an IgG with NO aggregation!
Product #
Description
100 mg
1000 mg
10199
dPEG®4-biotin acid
$100
$600
$150
$975
$225
$1350
$300
$1500
Mol. Wt.: 491.60; single compound; dPEG® Spacer is 16 atoms and 19.2 Å
dPEG®12-biotin acid
10197
Mol. Wt.: 844.02; single compound; dPEG® Spacer is 40 atoms and 47.6 Å
dPEG®24-biotin acid
10773
Mol. Wt.: 1372.65; single compound; dPEG® Spacer is 76 atoms and 95.7 Å
dPEG®48-biotin acid
10776
Mol. Wt.: 2500.99; single compound; dPEG® Spacer is 157 atoms and 187.8 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
72
dPEG® Biotinylation Reagents
Amine Reactive
Biotin-dPEG ®x-TFP ester
Extremely useful for labeling proteins especially on the
available random lysines! Due to the extreme solubility of the
dPEG ® linker, up to 35-40 biotins can be labeled on to an
IgG with NO aggregation!
Product #
Description
100 mg
1000 mg
10009
Biotin-dPEG ®4-TFP ester
$100
$600
$150
$975
$250
$1400
Mol. Wt.: 639.66; single compound; dPEG® Spacer is 16 atoms and 19.2 Å
10008
Biotin-dPEG ®12-TFP ester
Mol. Wt.: 992.08; single compound; dPEG® Spacer is 40 atoms and 47.6 Å
10007
Biotin-dPEG ®24-TFP ester
Mol. Wt.: 1520.71; single compound; dPEG® Spacer is 76 atoms and 99.3 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Specifically
see pp. 726-729 in his Chapter 18 on discrete PEG compounds.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
73
dPEG® Biotinylation Reagents
Amine Reactive
NHS-S-S-dPEG®4-biotin
Cleavable Biotinylation! See NHS-dPEG ®x biotin! This product can
label, but can subsequently be cleaved
with a reducing agent!
Product #
Description
50 mg
500 mg
10194
NHS-S-S-dPEG®4-biotin
$175
$875
$150
$1125
Mol. Wt.: 751.94; single compound; dPEG® Spacer is 24 atoms and 28.7 Å
TFP-dPEG®4-Lys-(dPEG®4-biotin)2
10409
Mol. Wt.: 1488.72; single compound; dPEG® Spacers are 40 and 35 atoms and 43.4 and 41.7 Å, resp, Avg..
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0).
Specifically see pp. 726-729 in his Chapter 18 on discrete PEG compounds for pegylation applications.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
74
dPEG® Biotinylation Reagents
Amine Reactive
TFP/NHS-dPEG ®x-biotinidase
resistant biotin
Biotinidase resistant: Biotinidase is ubiquitous in serum and any
biotin amide bond will BE CLEAVED! This chemistry creates
a stable linkage in the presence of BIOTINIDASE!
Product #
Description
100 mg
1000 mg
10202
NHS-dPEG®4 -biotinidase resistant biotin
$150
$1200
$150
$1200
$250
$1750
Mol. Wt.: 673.78; single compound; dPEG® Spacer is 19 atoms and 21.5 Å
10203
TFP-dPEG®4-biotinidase resistant biotin
Mol. Wt.: 724.77; single compound; dPEG® Spacers are 19 atoms and 21.5 Å
10204
TFP-dPEG®12-biotinidase resistant biotin
Mol. Wt.: 1077.19; single compound; dPEG® Spacers are 43 atoms and 50.1 Å, resp.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
75
dPEG® Biotinylation Reagents
Carbonyl Reactive
Carbonyl Reactive
Biotin-dPEG ®4-hydrazide
Carbonyl reactive dPEG ® biotin reagent! Reacts with carboxylic
acids and aldehydes!
Product #
Description
50 mg
1000 mg
10219
Biotin-dPEG ®4-hydrazide
$250
$1100
Mol. Wt.: 505.63; single compound; dPEG® Spacer is 18 atoms and 20.6 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pp.
733-736 for a general discussion of the chemistry and a general protocol for labeling of a glycoprotein is given on pg. 736!
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
76
dPEG® Biotinylation Reagents
Carbonyl Reactive
Biotin-dPEG®x-NH2
Product #
Description
100 mg
1000 mg
10193
Biotin-dPEG ®3-NH3+TFA -
$100
$750
$250
$900
$275
$1000
$300
$1100
Mol. Wt.: 560.63; single compound; dPEG® Spacer is 15 atoms and 18.1 Å
Biotin-dPEG ®7-NH2
10826
Mol. Wt.: 594.76; single compound; dPEG® Spacer is 25 atoms and 29.8 Å
Biotin-dPEG ®11-NH2
10196
Mol. Wt.: 770.97; single compound; dPEG® Spacer is 37 atoms and 44.1 Å
Biotin-dPEG ®23-NH2
10786
Mol. Wt.: 1299.60; single compound; dPEG® Spacer is 71 atoms and 87.0 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pages
529 and 530 for a general discussion in Greg’s book and on biotinylation as well, as well as pp. 737 and 738 for a protocol for a compound with just two oxygen.
However, other than enhanced solubility and binding distances, the protocol is adaptable to our PN 10193.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
77
dPEG® Biotinylation Reagents
Carbonyl Reactive
Biotin-dPEG ®x-oxyamine. HCl


Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, in oxidizable matrices,
among others AND can be incorporated using reagents like the 4-FB-dPEG®x TFP esters (amine reactive)
Aminooxy-dPEG ®s with a LABEL. Quanta has available a BIOTIN label. PN 11102 below is perfect for making
your own
Product #
Description
50 mg
1000 mg
11100
Biotin-dPEG ®3-oxyamine. HCl
$100
$750
$150
$1250
Mol. Wt.: 471.01; single compound; dPEG® Spacer is 14 atoms and 16.6 Å
Biotin-dPEG ®11-oxyamine. HCl
11102
Mol. Wt.: 823.43; single compound; dPEG® Spacer is 38 atoms and 44.9 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
78
dPEG® Biotinylation Reagents
Carbonyl Reactive
Biotin-dPEG ®4-SS-NH-dPEG ®3-ONH2
Product #
Description
50 mg
1000 mg
11106
Biotin-dPEG ®4-SS-NH-dPEG ®₃-ONH₂
$225
$1750
Mol. Wt.: 845.10; single compound; dPEG® Spacer is 38 atoms and 46.1 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
79
dPEG® Biotinylation Reagents
Thiol Reactive
Thiol Reactive
Biotin-dPEG ®x-MAL
Maleimide reacts VERY efficiently and rapidly with a thiol/sulfhydryl under
very mild conditions, pH 5 to 7.
®
...and the dPEG x biotin gives the same solubility and availabilty of the biotin
as amine and carbonyl reactive dPEG ® biotin reagents!
Product #
Description
25 mg
50 mg
100 mg
10201
Biotin-dPEG ®3-MAL
NA
$175
NA
$225
NA
$450
$250
NA
$500
O
NH
O
O
HN
N
H
S
O
O
O
O
N
H
N
O
Mol. Wt.: 597.73; single compound; dPEG® Spacer is 21 atoms and 24.9 Å
Biotin-dPEG ®11-MAL
10195
O
HN
O
NH
N
H
S
O
O
O
O
O
O
O
O
O
O
O
O
N
H
O
N
O
Mol. Wt.: 922.09; single compound; dPEG® Spacer is 43 atoms and 50.5 Å
Biotin-dPEG ®23-MAL
10785
O
HN
NH
S
O
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
H
N
O
O
Mol. Wt.: 1450.72; single compound; dPEG® Spacer is 77 atoms and 94.1 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pp.
732-733 in Greg’s new edition for a summary of the reactions, plus a typical protocol.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
80
dPEG® Biotinylation Reagents
Photoaffinity Biotinylation Reagents
Photoaffinity Biotinylation Reagents
Biotin-dPEG ®3-benzophenone
dPEG ® Based Photoaffinity label: Inserts into some C-H bonds
using wavelengths that are Protein friendly!
R
O
R
H
+
H
N
O
NH
OH
R
H
N
R
O
O
HN
O
O
O
O
Light, UV, 360 nm
S
H
N
O
O
O
S
H
N
NH
O
HN
O
Product #
Description
25 mg
100 mg
10267
Biotin-dPEG ®3-benzophenone
$125
$275
Mol. Wt.: 654.82; single compound; dPEG® Spacer is 15 atoms and 16.9 Å
Biotin-dPEG ®3-TFPA
A Non-specific dPEG ® Photoaffinity Label
dPEG ® Based Photoaffinity label: Inserts into some C-H bonds using SHORT
UV wavelengths that are less protein friendly, useful for
labeling surfaces!
Product #
Description
25 mg
100 mg
10308
Biotin-dPEG ®3-TFPA
$125
$275
Mol. Wt.: 663.69; single compound; dPEG® Spacer is 15 atoms and 16.9 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
81
dPEG® Biotinylation Reagents
Miscellaneous Biotinylation Reagents
Miscellaneous Biotinylation Reagents
Biotinoylsarcosine
Product #
Description
1000 mg
10355
Biotinoylsarcosine
$250
Mol. Wt.: 315.39; single compound
Biotinoyl-2-Aminobutyric acid
Product #
Description
1000 mg
10356
Biotinoyl-2-Aminobutyric acid
$250
Mol. Wt.: 329.42; single compound
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
82
dPEG® Biotinylation Reagents
Miscellaneous Biotinylation Reagents
Biotin-dPEG ®x-azide
dPEG ® Based Biotinylation Reagent useful for introducing biotin
via a Cu catalyzed Click Reaction
Product #
Description
100 mg
1000 mg
10825
Biotin-dPEG ®7-azide
$200
$1350
$250
$1400
$300
$1600
O
HN
O
NH
S
N
H
O
O
O
O
O
O
O
N3
Mol. Wt.: 620.32; single compound; dPEG® Spacer is 27 atoms and 30.7 Å
Biotin-dPEG ®11-azide
10784
Mol. Wt.: 796.97; single compound; dPEG® Spacer is 40 atoms and 50.4 Å
Biotin-dPEG ®23-azide
10787
Mol. Wt.: 1325.60; single compound; dPEG® Spacer is 73 atoms and 87.7 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), and
specifically see pp. 722-724.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
83
dPEG® Biotinylation Reagents
Miscellaneous Biotinylation Reagents
NHS-biotin
Product #
Description
10205
NHS-biotin
O
100 mg
1000 mg
$50
$150
O
O
NH
HN
O
N
O
S
Mol. Wt.: 341.38; single compound
Bis-dPEG®3-biotin
Product #
Description
50 mg
1000 mg
10325
Bis-dPEG ®3-biotin
$100
$750
Mol. Wt.: 672.90; single compound; dPEG® Spacer is 15 atoms and 18.1 Å
Biotin-dPEG ®3-cyanocobalamin
Product #
Description
5 mg
10218
Biotin-dPEG ®3-cyanocobalamin
$125
Mol. Wt.: 1800.93; single compound; dPEG® Spacer is 15 atoms and 18.1 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
84
dPEG® Biotinylation Reagents
Miscellaneous Biotinylation Reagents
Biotin-dPEG ®3-cyanocobalamin
Product #
Description
5 mg
10218
Biotin-dPEG ®3-cyanocobalamin
$125
Mol. Wt.: 1800.93; single compound; dPEG® Spacer is 15 atoms and 18.1 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
85
dPEG® Biotinylation Reagents
References
NHS-dPEG®x-biotin
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
Calcium-dependent self-association of the C-type lectin domain of versican. Andreas Ney, Patrick Booms, Guido Epple, Matthias Morgelin, Gao Guo,
Gerhard Kettelgerdes, Reinhard Geßner, Peter N. Robinson. Science Direct. 2006, 38 ( 1) pp23-29. July 2, 2005. DOI: 10.1016/j.biocel.2005.07.007.
An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe mice and ameliorates anemia and iron overload in murine b -thalassemia
intermedia. Paul J. Schmidt, Iva Toudjarska, Anoop K. Sendamarai, Tim Racie, Stuart Milstein, Brian R. Bettencourt, Julia Hettinger, David Bumcrot and
Mark D. Fleming. Blood. 2013, 121 (7) pp 1200-1208. February 14, 2013. doi:10.1182/blood-2012-09-453977.
Continuous association of cadherin with b-catenin requires the non-receptor tyrosine-kinase Fer. Gang Xu, Andrew W. B. Craig, Peter Greer, Matthew
Miller, Panos Z. Anastasiadis, Jack Lilien, Janne Balsamo. J of Cell Science. 2004, 117 (15) pp 3207-3219. February 24, 2004. DOI: 10.1242/jcs.01174.
Chemotactic Activity of S100A7 (Psoriasin) Is Mediated by the Receptor for Advanced Glycation End Products and Potentiates Inflammation with Highly
Homologous but Functionally Distinct S100A15. Ronald Wolf, O. M. Zack Howard, Hui-Fang Dong, Christopher Voscopoulos, Karen Boeshans, Jason
Winston, Rao Divi, Michele Gunsior, Paul Goldsmith, Bijan Ahvazi, Triantafyllos Chavakis, Joost J. Oppenheim, Stuart H. Yuspa. J of Immun. 2008, 181 (2)
pp 1499-1506. May 17, 2008. DOI: www. jimmunol.org/content/181/2/1499.full.
A generalized kinetic model for amine modification of proteins with application to phage display. Xiaofang Jin, Jessica Rose Newton, Stephen
Montgomery-Smith, George P. Smith. Bio Techniques. 2009, 46 (3) pp 175-182. March 1, 2009. DOI: 10.2144/000113074.
Antibody affinity maturation in vitro using unconjugated peptide antigen. Hiroto Iwai, Bengu Ozturk, Masaki Ihara, Hiroshi Ueda. Protein Engineering,
Design & Selection. 2010, 23 (4) pp 185-193. February 1, 2010. DOI: 10.1093/protein/gzp093.
Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification and Selected Reaction Monitoring. Celine
Huillet, Annie Adrait, Dorothee Lebert, Guillaume Picard, Mathieu Trauchessec, Mathilde Louwagie, Alain Dupuis, Luc Hittinger, Bijan Ghaleh, Philippe
Le Corvoisier, Michel Jaquinod, Je rome Garin, Christophe Bruley, Virginie Brun. Molecular and Celluar Proteomics. 2012, 11(12) pp 1-11. November 11,
2011. DO: 10.1074/mcp.M111.008235.
Binding and signaling of surface-immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins. ROBERT M. DE LORIMIER,
YAJI TIAN, HOMME W. HELLINGA. Protein Science. 2006, 15 (8) pp 1936-1944. May 18, 2006. DOI: 10.1110/ps.062261606.
Anti-cytokine autoantibodies are ubiquitous in healthy individuals. Masato Watanabea, Kanji Uchidac, Kazuhide Nakagakid, Hiroko Kanazawaa, Bruce C.
Trapnellc, Yoshihiko Hoshinoe, Hiroshi Kagamua, Hirohisa Yoshizawaa, Naoto Keichof, Hajime Gotob, Koh Nakata. FEBS Letters. 2007, 581 (10) pp 20172021. April 24, 2007. DOI: 10.1016/j.febslet.2007.04.029.
An Anti-Insulin-like Growth Factor I Receptor AntibodyIs a Potent Inhibitor of Cancer Cell Proliferation. Erin K. Maloney, Jennifer L. McLaughlin, Nancy E.
Dagdigian. Cancer Research. 2003, 63 pp 5073-5083. August 15, 2003. DOI: www.cancerres.aacrjounrals.org/content/63/5073.
Antibody Array Analysis with Label-based Detection and Resolution of Protein Size. Weiwei Wu, Heidi Slåstad, Daniel de la Rosa Carrillo, Tom Frey, Geir
Tjønnfjord, Eva Boretti, Hans-Christian Aasheim, Vaclav Horejsi, Fridtjof Lund-Johansen. Molecular and Cellular Proteomics. 2008, 8 pp 245-257.
September 16, 2008. DOI:10.1074/mcp.M800171-MCP200.
An Adsorption Chromatography Assay to Probe Bulk Particle Transport Through Hydrogels. VLADESCU, O. LIELEG, S. JANG, KATHARINA RIBBECK.
Journal of Pharmaceutical Sciences. 2012, 101 (1) pp 4369-442. September 8, 2011. DOI 10.1002/jps.2273.
Mapping of Conformational IgE Epitopes with Peptide-Specific Monoclonal Antibodies Reveals Simultaneous Binding of Different IgE Antibodies to a
Surface Patch on the Major Birch Pollen Allergen, Bet v 1. Anna Gieras, Petra Cejka, Katharina Blatt, Margarete Focke-Tejkl, Birgit Linhart, Sabine Flicker,
Angelika Stoecklinger, Katharina Marth, Anja Drescher, Josef Thalhamer, Peter Valent, Otto Majdic, Rudolf Valenta. J of Immun. 2011, 186 (9) pp 53335344. March 30, 2009. DOI: 10.4049/jimmunol.1000804.
Bifunctional phage-based pretargeted imaging of human prostate carcinoma. Jessica R. Newton-Northup, Said D. Figueroa, Thomas P. Quinn, Susan L.
Deutscher. Science Direct. 2009, 36 (7) pp 789-800. April 27, 2009. DOI: 10.1016/j.nucmedbio.2009.04.010.
M Cell–Targeted Ocular Immunization: Effect on Immunoglobulins in Tears, Feces, and Serum. Thomas E. Phillips, Jeremy Sharp, Kay Rodgers, and
Hongshan Liu. IVOS. 2010, 51 (3) pp 1533-1539. March 1, 2010. DOI:10.1167/iovs.09-4491.
Characterization of a mouse amelogenin [A−4]/M59 cell surface receptor. Kevin Tompkins, Anne George, Arthur Veis, Kevin Tompkins, Anne George,
Arthur Veis. Bone. 2006, 38 (2) pp 172-180. October 6, 2005. DOI: 10.1016/j.bone.2005.08.013.
Chemical and biological characterisation of a sensor surface for bioprocess monitoring. Jonathan D. Moore, Miguel A. Perez-Pardo, Jonathan F.
Popplewell, Steve J. Spencer, Santanu Ray, Marcus J. Swann, Alex G. Shard, Walis Jones, Anna Hills, Daniel G. Bracewell. Biosensors and Bioelectronics.
2011, 26 (6) pp 2940-2947. February 15, 2011. DOI: 10.1016/j.bios.2010.11.043.
Classification of protein profiles from antibody microarrays using heat and detergent treatment. Anna Haggmark, Maja Neiman, Kimi Drobin, Martin
Zwahlen, Mathias Uhlen, Peter Nilsson, Jochen M. Schwenk. New Biology. 2012, 29 (5) pp 564-570. June 15, 2012. DOI: 10.1016/j.nbt.2011.10.005.
Comparative protein profiling of serum and plasma using an antibody suspension bead array approach. Jochen M. Schwenk, Ulrika Igel, Bernet S. Kato,
George Nicholson, Fredrik Karpe, Mathias Uhlen, Peter Nilsson. Proteomics. 2010, 10 (3) pp 532-540. November 13, 2009. DOI : 10.1002/pmic.200900657.
Detection of botulinum neurotoxins in buffer and honey using a surface plasmon resonance (SPR) sensor. Jon Ladd, Allen D. Taylor, Jiˇr´ı Homola, Shaoyi
Jiang. Science Direct. 2008, 130 (1) pp 129-134. March 14, 2008. DOI: 10.1016/j.snb.2007.07.140.
Development of immobilized enzyme reactors based on human recombinant cytochrome P450 enzymes for phase I drug metabolism studies. R. Nicoli, M.
Bartolini, S. Rudaz, V. Andrisano, J.-L. Veuthey. Journal of Chromatography A. 2008, 1206 (1) pp 2-10. June 14, 2008. DOI: 10.1016/j.chroma.2008.05.080.
Engineering of novel tamavidin 2 muteins with lowered isoelectric points and lowered non-specific binding properties. Yoshimitsu Takakura, Naomi Oka,
Hitomi Kajiwara, Masako Tsunashima. Journal of Bioscience and Bioengineering. 2012, 114 (5) pp 485-489. July 12, 2012. DOI:
10.1016/j.jbiosc.2012.06.009.
Fibronectin Type III Domain Based Monobody with High Avidity. Jinzhu Duan, Jinsong Wu, C. Alexander Valencia, Rihe Liu. Biochemistry. 2007, 46 (44) pp
12656-12664. October 12, 2007. DOI: 10.1021/bi701215e.
Mapping the Membrane Topology and Extracellular Ligand Binding Domains of the Retinol Binding Protein Receptor. Riki Kawaguchi, Jiamei Yu, Patrick
Wiita, Mariam Ter-Stepanian, Hui Sun. Biochemistry. 2008, 47 (19) pp 5387-5395. March 25, 2008. DOI: 10.1021/bi8002082.
Large-Scale Identification of Bacteria_Host Crosstalk by Affinity Chromatography: Capturing the Interactions of Streptococcus suis Proteins with Host
Cells. Bo Chen, Anding Zhang, Zhongmin Xu, Ran Li, Huanchun Chen, Meilin Jin. Journal of Proteome Research. 2011, 10 (11) pp 5163-5174. July 4, 2011.
DOI: org/10.1021/pr200758q.
Microstructured layers of spherical biofunctional core-shell nanoparticles provide enlarged reactive surfaces for protein microarrays. Kirsten Borchers,
Achim Weber, Herwig Brunner, Gunter E. M. Tovar. Anal Bioanal Chem. 2005, 383 (5) pp 738-746. August 11, 2005. DOI: 10.1007/s00216-005-3396-9.
Antibody Suspension Bead Arrays within Serum Proteomics. Jochen M. Schwenk, Marcus Gry, Rebecca Rimini, Mathias Uhlén, Peter Nilsson. Journal of
Proteome. 2008, 7 (8) pp 3168-3175. June 28, 2008. DOI: 10.1021/pr700890b.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
An analysis of the function and expression of D6 on lymphatic endothelial cells. Clive S. McKimmie, Mark D. Singh, Kay Hewit, Oscar Lopez-Franco,
Michelle Le Brocq, Stefan Rose-John, Kit Ming Lee, Andrew H. Baker, Rachel Wheat, David J. Blackbourn, Robert J. B. Nibbs and Gerard J. Graham.
Blood Journal. 2013, 121, pp 3768-3777. March 11, 2013. DOI:1 0.1182/blood-2012-04-425314.
A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl) -3, 5, 7-triaza-1-azoniatricyclo [3.3.1.13,7]decane; bromide
effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Vita M.Golubovskaya_,
Sheila Figel1, Baotran T.Ho, Christopher P. Johnson, Michael Yemma, Grace Huang, Min Zheng, Carl Nyberg, Andrew Magis,David A.Ostrov, Irwin
H.Gelman1 and William G. Cance. Carcinogenesis. 2012 33 (5) pp 1004–1013. May 1, 2012. doi:10.1093/carcin/bgs120.
Major Membrane Protein TDE2508 Regulates Adhesive Potency in Treponema denticola. Yuki Abiko, Keiji Nagano, Yasuo Yoshida, Fuminobu Yoshimura.
PLOS ONE. 2014, 9 (2) e89051. February 21, 2014. DOI: 10.1371/journal.pone.0089051.
Structurally Defined Nano-scale Sheets from Self-Assembly of Collagen-Mimetic Peptides.
Tao Jiang, Chunfu Xu, Yang Liu, Zheng Liu, Joseph S. Wall, Xiaobing Zuo, Tianquan Lian, Khalid Salaita, Chaoying Ni, Darrin Pochan, Vincent P.
Conticello. Journal of the American Chemical Society. 2014. February 26, 2014. DOI: 10.1021/ja412867z.
A Small-molecule Inhibitor, 5′-O-Tritylthymidine, targets FAK and Mdm-2 Interaction, and Blocks Breast and Colon Tumorigenesis in vivo. Vita
Golubovskaya1, Nadia L. Palma, Min Zheng, Baotran Ho1, Andrew Magis, David Ostrov, and William G. Cance. Anticancer Agents Med Chem. 2013. 13
(4)pp 532–545. May 1, 2013. PMC3625481.
Bivalent carbohydrate binding is required or biological activity of CNL, the LacdiNAc (GalNAcb1-4GlcNAc)-specific lectin from basidiomycete Clitocybe
nebularis. Jure Pohleven, Miha Renko, Spela Magister, David F. Smith, Markus Kuenzler, Borut Strukelj, Dusan Turk, Janko Kos and Jerica Sabotic. J. Biol.
Chem. 2012, 287 (13) 10602-10612.March 23, 2012. doi:10.1074/jbc.M111.317263.
Ferritin Blocks Inhibitory Effects of Two-Chain High Molecular Weight Kininogen (HKa) on Adhesion and Survival Signaling in Endothelial Cells. Lia Tesfay,
Annissa J. Huhn, Heather Hatcher, Frank M. Torti1, Suzy V. Torti. PLoS ONE, 2012, 7 (7)pp e40030. July 2, 2012. doi:10.1371/journal.pone.0040030.
Recurrence of Intracranial Tumors following Adoptive T Cell Therapy Can Be Prevented by Direct and Indirect Killing Aided by High Levels of Tumor
Antigen Cross-Presented on Stromal Cells. Diana L. Thomas, Miri Kim, Natalie A. Bowerman, Samanthi Narayanan, David M. Kranz, Hans Schreiber and
Edward J. Roy. J Immunol. 2009, 183 pp 1828-1837. June 3, 2009. doi: 10.4049/jimmunol.0802322.
Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. J Wykosky, E Palma, DM Gibo, S Ringler, CP
Turner and W Debinski. Oncogene. 2008. 27, pp 7260–7273.September 15, 2008. doi:10.1038/onc.2008.328.
Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter. Soshana Svendsen, Chad Zimprich, Mark G McDougall,
Dieter H Klaubert and Georgyi V Los. BMC Cell Biology. 2008, 9 (17) pp 1471. April 2, 2008. doi:10.1186/1471-2121-9-17.
SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. Gerhard Winter, Satoru Kawai, Malin
Haeggström, Osamu Kaneko, Anne von Euler, Shin-ichiro Kawazu, Daniel Palm, Victor Fernandez, and Mats Wahlgren. JEM. 2005, 201 (11) pp 1853–1863.
June 6, 2005. DOI:10.1084/jem.20041392.
Ligand-regulated oligomerization of b2-adrenoceptors in a model lipid bilayer. Juan Jose´ Fung, Xavier Deupi, Leonardo Pardo, Xiao Jie Yao, Gisselle A
Velez-Ruiz, Brian T DeVree, Roger K Sunahara and Brian K Kobilka. The EMBO Journal, 2009, 28, pp 3315–3328. September 17, 2009. DOI:
10.1038/emboj.2009.267.
Modified Tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Mark L. Smith, John A. Lindbo, Stephan
Dillard-Telm, Paul M. Brosio, Amanda B. Lasnik, Alison A. McCormick, Long V. Nguyen, Kenneth E. Palmer. Virology. 2006, 348 (2) pp 475-488. February 8,
2006. DOI: 10.1016/j.virol.2005.12.039.
Kinetic Approach to Pathway Attenuation Using XOMA 052, a Regulatory Therapeutic Antibody That Modulates Interleukin-1 b Activity. Marina K. Roell,
Hassan Issafras, Robert J. Bauer, Kristen S. Michelson, Nerissa Mendoza, Sandra I. Vanegas, Lisa M. Gross, Paul D. Larsen, Daniel H. Bedinger, David J.
Bohmann, Genevieve H. Nonet, Naichi Liu, Steve R. Lee, Masahisa Handa, Seema S. Kantak, Arnold H. Horwitz, John J. Hunter, Alexander M. Owyang,
Amer M. Mirza, John A. Corbin and Mark L. White. J. Biol. Chem. 2010, 285, pp 20607-20614. April 21, 2010. DOI: 10.1074/jbc.M110.115790.
PG27 is a novelmembrane protein essential for a Porphyromonas gingivalis protease secretion system. Ikumi Ishiguro, Keitarou Saiki, Kiyoshi Konishi.
FEMS Microbiol Letter. 2009, 292 (2) pp 261-267. January 29, 2009. DOI:10.1111/j.1574-6968.2009.01489.x.
Molecular Cloning, Functional Expression, and Tissue Distribution of a Novel Human Gap Junction-forming Protein, Connexin-31.9: INTERACTION WITH
ZONA OCCLUDENS PROTEIN-1. Peter A. Nielsen, Derek L. Beahm, Ben N. G. Giepmans, Amos Baruch, James E. Hall and Nalin M Kumar. J. Biol. Chem.
2002, 277(41) pp. 38272-38283. August 1, 2002. DOI: 10.1074/jbc.M205348200.
Native Polycystin 2 Functions as a Plasma Channel in Renal Epithelia Membrane Ca 2+-Permeable Cation. Ying Luo, Peter M. Vassilev, Xiaogang Li,
Yoshifumi Kawanabe and Jing Zhou. Mol. Cell. Biol. 2003, 23(7) pp. 2600. 2003. DOI:10.1128/MCB.23.7.2600-2607.
BIOMOLECULAR STRATEGIES FOR CELL SURFACE ENGINEERING. John Tanner Wilson. 2008, December 5, 2008.
Rapid Tumor Necrosis Factor α-Induced Exocytosis of Glutamate Receptor 2-Lacking AMPA Receptors to Extrasynaptic Plasma Membrane Potentiates
Excitotoxicity. Dmitri Leonoudakis, Pingwei Zhao, and Eric C. Beattie. The Journal of Neuroscience. 2008, 28 (9) pp 2119-2130. February 27, 2008.
10.1523/JNEUROSCI.5159-07.2008.
Selection of human antibody fragments by phage display. Lee, C.M, Iorno, N., Sierro, F. and Christ, D. Nat. Protoc. 2007, 2(11) pp 3001-3008. November
15, 2007. DOI:10.1038/nprot.2007.448.
Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors. Miguel Aste-Ame´zaga, Ningyan Zhang,
Janet E. Lineberger, Beth A. Arnold, Timothy J. Toner,Mingcheng Gu, Lingyi Huang, Salvatore Vitelli, Kim T. Vo, Peter Haytko, Jing Zhang Zhao, Frederic
Baleydier, Sarah L’Heureux, Hongfang Wang, Wendy R. Gordon, Elizabeth Thoryk, Marie Blanke Andrawes, Kittichoat Tiyanont, Kimberly Stegmaier,
Giovanni Roti, Kenneth N. Ross, Laura L. Franlin, Hui Wang, Fubao Wang, Michael Chastain, Andrew J. Bett, Laurent P. Audoly, Jon C. Aster, Stephen C.
Blacklow, Hans E. Huber. PLoS ONE. 2010, 5(2):e9094.February8,2010. DOI: 10.1371/journal.pone.0009094.
Connexin 47 (Cx47)-Deficient Mice with Enhanced Green Fluorescent Protein Reporter Gene Reveal Predominant Oligodendrocytic Expression of Cx47
and Display Vacuolized Myelin in the CNS. Benjamin Odermatt, Kerstin Wellershaus, Anke Wallraff, Gerald Seifert, Joachim Degen, Carsten Euwens,
Babette Fuss, Heinrich Bu¨ssow, Karl Schilling, Christian Steinha¨user, and Klaus Willecke. The Journal of Neuroscience. 2003, 3(11) pp.4549–4559. June 1,
2003.
Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Tony Taldone, Anna Rodina, Erica M. DaGama
Gomes, Matthew Riolo, Hardik J. Patel, Raul Alonso-Sabadell, Danuta Zatorska, Maulik R. Patel, Sarah Kishinevsky and Gabriela Chiosis. Beilstein J. Org.
Chem. 2013, 9 pp 544-556. March 15, 2013. DOI: 10.3762/bjoc.9.60.
Comparison between Ovalbumin and Ovalbumin Peptide 323-339 Responses in Allergic Mice: Humoral and Cellular Aspects. L.-Z. Sun, S. Elsayed, T. B.
Aasen, T. Van Do, N. P. Aardal, E. Florvaag, K. Vaali. J. of Immun. 2010, 71 (5) pp 323-339. January 21, 2010. DOI: 10.1111/j.1365-3083.2010.02382.x.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
Detection of oligoclonal IgG kappa and IgG lambda bands in cerebrospinal fluid and serumwith Hevylite™ antibodies. Comparison with the free light
chain oligoclonal pattern. David Zeman, Pavel Hradílek, Zdeněk Švagera, Eva Mojžíšková, Ivana Woznicová, Olga Zapletalová. Fluids and Barriers CNS.
2012, 9 (5) pp 1-11. February 23, 2013. DOI: 10.1186/2045-8118-9-5.
Integrin Binds to the RGD Motif of Glycoprotein B of Kaposi’s Sarcoma-Associated Herpesvirus and Functions as an RGD-Dependent Entry Receptor. H.
Jacques Garrigues, Yelena E. Rubinchikova, C. Michael DiPersio, Timothy M. Rose. J. of Virology. 2008, 82 (3) pp 1570-1579. November 28, 2007. DOI:
10.1128/JVI.01673-07.
Induction of Terminal Differentiation in Melanoma Cells on Downregulation of b-Amyloid Precursor Protein. Michelle G. Botelho, Xiaolei Wang, Donna J.
Arndt-Jovin, Dorothea Becker and Thomas M. Jovin. Journal of Investigative Dermatology. 2010, 130, pp 1400-1410. September 17, 2009.
DOI:10.1038/jid.2009.296.
Biomimetic approach to the formation of gold nanoparticle/silica cor/shell structures and subsequent bioconjugation. Sung Min Kang, Kyung-Bok Lee,
Dong Jin Kim and Insung S Choi. Nanotechnology. 2006, 17 (18), pp 4719–4725. September 1, 2006. DOI: 10.1088/0957.
Highly Bright Avidin-based Affinity Probes Carrying Multiple Lanthanide Chelates. Laura Wirpsza, Shyamala Pillai, Mona Batish, Salvatore Marras, Lev
Krasnoperov, Arkady Mustaev. Journal of Photochemistry and Photobiology B: Biology. 2012 (116) pp 22-29. November 5, 2012. DOI:
10.1016/j.jphotobiol.2012.07.001.
Evaluation of Substrate and Inhibitor Binding to Yeast and Human Isoprenyl-cysteine Carboxyl Methyltransferases (Icmts) using Biotinylated Benzophenone-containing Photoaffinity Probes. Kalub Hahne, Jeffery Vervacke, Liza Shrestha, James L. Donelson, Richard A.Gibbs, Mark D. Distefano, Christine A.
Hrycyna. Biochemical and Biophysical Research Communications. 2012, 1 (423), pp 98-103. June 22, 2012. DOI: 10.1016/j.bbrc.2012.05.089.
Regulation of Integrin Adhesions by Varying the Density of Substrate-Bound Epidermal Growth Factor. Tamar Shahal Benjamin Geiger Iain E. Dunlop
Joachim P. Spatz. Biointerphases 2012, 7 (23) February 13, 2012. DOI 10.1007/s13758-012-0023-0.
Generation of Monoclonal Antibodies to the AML1-ETO Fusion Protein: Strategies for Overcoming High Homology. Stephen G. Simkins, Steven L. Knapp,
George H. Brough, Karen L. Lenz, Lise Barley-Maloney, Jeffrey P. Baker, Liesbeth Dekking, Hobert Wai, and Eric P. Dixon. HYBRIDOMA. 2011, 30 (5), pp
433-443, Oct. 11, 2011. DOI: 10.1089/hyb.2011.0037.
From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay.
Stephan Kraemer, Jonathan D. Vaught, Christopher Bock, Larry Gold, Evaldas Katilius, Tracy R. Keeney, Nancy Kim, Nicholas A. Saccomano, Sheri K.
Wilcox, Dom Zichi, Glenn M. Sanders. PLoS ONE 6 (10), e26332 October 17, 2011. DOI:10.1371/journal.pone.0026332.
Quantitative Label-Free Characterization of Avidin-Biotin Assemblies on Silanized Glass. Li-Jung Chen, Jeong Hyun Seo, Michael J. Eller, Stanislav V.
Verkhoturov, Sunny S. Shah, Alexander Revzin, and Emile A. Schweikert. Analytical Chemistry. 2011, 83 (18), pp 7173–7178. August 15, 2011.
DOI:10.1021/ac2016085.
Identification and characterization of alternative splice variants of the mouse Trek2/Kcnk10 GENE. K. Mirkovic and K. Wickman. Neuroscience. 2011, 194
(1), pp 11-18 July 25, 2011. DOI: 10.1016/j.neuroscience.2011.07.064.
Kinetics of G-protein–coupled receptor endosomal trafficking pathways revealed by single quantum dots. Katye M. Fichter, Marc Flajolet, Paul Greengard
and Tania Q. Vu. PNAS. 2010, 43 (107), pp 18658-18663. October 26, 2010. DOI: 10.1073/pnas.1013763107.
Preparation, characterization, resistance to protein adsorption, and specific avidin–biotin binding of poly(amidoamine) dendrimers functionalized with
oligo (ethylene glycol) on gold. Chi Ming Yam , Maxence Deluge, David Tang, Amit Kumar, Chengzhi Cai. Journal of Colloid and Interface Science. 2006,
296 (1), pp 118–130. April 2006. doi:10.1016/j.jcis.2005.08.052.
Structural Characterization of Individual Vesicles using Fluorescence Microscopy. Emily C. Heider, Moussa Barhoum, Kyle Edwards, Karl-Heinz Gericke,
and Joel M. Harris. Anal. Chem. 2011, 83 (12), pp 4909–4915. May 16, 2011. DOI: 10.1021/ac200632h.
Single and multiple bonds in (strept)avidin–biotin interactions. Jean-Marie Teulon, Yannick Delcuze, Michael Odorico, Shu-wen W. Chen, Pierre Parot and
Jean-Luc Pellequer. Journal of Molecular Recognition. 2011, 24 (3), pp 490–502. October 12, 2010. DOI:10.1002/jmr.1109.
Monolithic columns with immobilized monomeric avidin: preparation and application for affinity chromatography. Jens Sproß, Andrea Sinz. Anal Bioanal
Chem. 2012, 402 (7) pp 2395-2405. January 20, 2012. DOI: 10.1007/s00216-011-5670-3.
The initial substrate-binding site of –secretase is located on presenilin near the active site, Anna Y. Kornilova, Frederic Bihel, Chittaranjan Das, and
Michael S. Wolfe. PNAS. 2005, 9 (102), pp 3230-3235. March 1, 2005. DOI: 10.1073/pnas.0407640102.
Determination of bacterial viability by selective capture using surface-bound siderophores. Mark L. Wolfenden, Rama M. Sakamuri, Aaron S. Anderson,
Lakshman Prasad, Jurgen G. Schmidt, Harshini Mukundan. Advances in Biological Chemistry. 2012, (2) pp 396-402. September 30, 2012. DOI:
10.4236/abc.2012.24049.
Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies, Wlad Kusnezow Virryan Banzon, Christoph
Schroder, Rene Schaal, Jorg D. Hoheisel, Sven Ruffer, Petra Luft, Albert Duschl and Yana V. Syagailo. Protemics. 2007, 11 (7), pp 1786-1799. June 11, 2007.
DOI: 10.1002/pmic.200600762.
DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells. Yinghao Zhang, Fang-Mei
Chang, Jianjun Huang, Jacob J. Junco, Shivani K. Maffi,
Hannah I. Pridgen, Gabriel Catano, Hong Dang, Xiang Ding, Fuquan Yang, Dae Joon Kim,
Thomas J. Slaga, Rongqiao He, Sung-Jen Wei. Protein & Cell. 2013. February 11, 2014. DOI: 10.1007/s13238-013-0018-8.
Polymorphisms of Mouse Apolipoprotein A-II Alter Its Physical and Functional Nature. Timothy J. Sontag, Catherine A. Reardon. PLOS ONE. 2014, 9 (2)
e88705. February 10, 2014. DOI:10.1371/journal.pone.0088705.
Optimal Design of Microarray Immunoassays to Compensate for Kinetic Limitations, Wlad Kusnezow, Yana V. Syagailo, Sven Ruffer, Nina Baudenstiel,
Christopher Gauer, Jorg D. Hoheisel, David Wild and Igor Goychuck. Molecular & Cellular Proteomics. 2006, (5) pp 1681-1696. DOI:
10.1074/mcp.T500035-MCP200.
Bioconjugation of Ln-Doped LaF3 Nanoparticles to Avidin, Peter R. Diamente, Robert D. Burke, and Frank C. J. M. van Veggel. Langmuir. 2006, 22 (4), pp
1782–1788. December 3, 2005. DOI: 10.1021/la052589r.
Surface-Immobilized Self Assembled Protein-Based Quantum Dot Nanoassemblies, Kim E. Sapsford, Igor L. Medintz, Joel P. Golden, Jeffery R.
Deschamps, Harry Tetsuo Uyeda, and Heidi Mattoussi. Langmuir. 2004, 20 (18), pp 7720–7728. August 6, 2004. DOI: 10.1021/la049263n.
Intermolecular Interaction of Avidin and PEGylated Biotin. Shan Ke, John C. Wright, and Glen S. Kwon. Bioconjugate Chem. 2007, 18 (6), pp 2109–2114.
October 19, 2007. DOI: 10.1021/bc700204k.
Kinetics of Amine Modification of Proteins, George P. Smith. Bioconjugate Chem. 2006, 17 (2), pp 501–506. February 16, 2006. DOI: 10.1021/bc0503061.
Preparation of Biotinylated Cypridina Luciferase and Its Use in Bioluminescent Enzyme Immunoassay, Chun Wu, Kosei Kawasaki, Yoko Ogawa, Yasukazu
Yoshida, Satoru Ohgiya, and Yoshihiro Ohmiya. Anal. Chem. 2007, 79 (4), pp 1634–1638. January 13, 2007. DOI: 10.1021/ac061754k.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
Delivery of NADPH-Cytochrome P450 Reductase Antisense Oligos Using Avidin-Biotin Approach, Venkateswaren C. Pillai, Rekha Yesudas, Imam H. Shaik,
Thomas J. Thekkumkara, Ulrich Bickel, Kalkunte S. Srivenugopal, and Reza Mehvar. Bioconjugate Chem. 2010, 21 (2), pp 203–207. January 11, 2010. DOI:
10.1021/bc900449b.
Magnetic Separation of Melenoma-Specific Cytoxic T Lymphocytes from a Vaccinated Melanoma Patients’s Blood Using MHC/Peptide ComplexConjugated Bacterial Magnetic Particles, Masayuki Takahashi, Yasuto Akiyama, Junpei Ikezumi, Takeshi Nagata, Tomoko Yoshino, Akira Iizuka, Ken
Yamaguchi, and Tadashi Matsunaga. Bioconjugate Chem. 2009, 20 (2), pp 304–309. January 14, 2009. DOI: 10.1021/bc800398d.
On-Bead Screening of Combinatorial Libraries: Reduction of Nonspecific Binding by Decreasing Surface Ligand Density, Xianwen Chen, Pauline H. Tan,
Yanyan Zhang and Dehua Pei. J. Comb. Chem. 2009, 11 (4), pp 604-611. April 28, 2009. DOI: 10.1021/cc9000168.
Prion protein detection in serum using micromechanical resonator arrays. Madhukar Varshneya, Philip S.Waggonera, Richard A. Montagnab, Harold G.
Craighead. Talanta. 2009, 80 (2) pp 593–599. July 23, 2009. DOI:10.1016/j.talanta.2009.07.032.
Optimization of solid phase PLA with emphasis on antibody modification. Junhong Yan. 2010
Rapid prediction of expression and refolding yields using phage display. Kip Dudgeon, Romain Rouet, Daniel Christ. Protein Engineering, Design &
Selection, 2013, 10 pp 1-4. April 9, 2013. DOI: 10.1093/protein/gzt019.
Solid-phase biotinylation of antibodies. Elizabeth Strachan, A. Krishna Mallia, Joanna M. Cox, Babu Antharavally, Surbhi Desai, Laura Sykaluk, Valerie
O’Sullivan, Peter A. Bell. Journal of Molecular Recognition. 2004, 17 (3) pp 268-276. January 28, 2004. DOI:10.1002/jmr.669.
Solution Structural Dynamics of HIV-1 Reverse Transcriptase Heterodimer. James M. Seckler, Kathryn J. Howard, Mary D. Barkley, Patrick L. Wintrode.
Biochemistry. 2009, 48 (32) pp7646-7655. July 13, 2009. DOI: 10.1021/bi900790x.
Subnanometre single-molecule localization, registration and distance measurements. Alexandros Pertsinidis, Yunxiang Zhang, Steven Chu. Nature. 2010,
466 pp 647-651. July 29, 2010. DOI 10.1038/nature09163.
Synthesis, Characterization and Applications of Tether Supported Biomembrane-Microsphere Assemblies. Bin He, M. Lane Gilchrist. IEEE Xplore. 2010,
pp 1-2. March 28, 2010. DOI: 10.1109/NEBC.2010.5458221.
Thyroid-stimulating hormone (TSH): Measurement of intracellular, secreted, and circulating hormone in Xenopus laevis and Xenopus tropicalis. Joseph J.
Korte, Robin M. Sternberg, Jose A. Serrano, Kara R. Thoemke, Scott M. Moen, Kathryn E. Lillegard, Michael W. Hornung, Joseph E. Tietge, Sigmund J.
Degitz. General and Comparative Endocrinology. 2011, 171 (3) pp 319-325. February 24, 2011. DOI: 10.1016/j.ygcen.2011.02.017.
Weak Adsorption-Induced Surface Stress for Streptavidin Binding to Biotin Tethered to Silicon Microcantilever Arrays. Stanley J. Ness, Ryan R. Anderson,
Weisheng Hu, Danny C. Richards, Joseph Oxborrow, Timothy Gustafson,Ben Tsai, Seunghyun Kim, Brian Mazzeo, Adam Woolley, Gregory P. Nordin.
IEEE Sensors Journal. 2013, 31 (3) pp 959-968. October 18, 2012. DOI:10.1109/JSEN.2012.2225613.
Validation of serum protein profiles by a dual antibody array approach. Rebecca Rimini, Jochen M. Schwenk, Mårten Sundberg, Ronald Sjöberg, Daniel
Klevebring, Marcus Gry, Mathias Uhlén, Peter Nilsson. Journal of Proteomics 2009, 73 (2) pp 252-266. September 10, 2009. DOI:
10.1016/j.jprot.2009.09.009.
Urinary kidney injury molecule -1: sensitive quantitative biomarkers for early detection of kidney tubular injury. Joseph V. BonventreVishal S. Vaidya,
Victoria Ramirez, Takaharu Ichimura, Norma A. Bobadilla and Joseph V. Bonventre. Am J Physiol/Renal Physiol. 2006, 290 (2) pp 517-529. February 1, 2006.
DOI: 10.1152/ajprenal.00291.2005.
Synthetic, site-specific biotinylated analogs of human MCP-1. MARIAN KRUSZYNSKI,* PING TSUI, NICOLE STOWELL, JINQUAN LUO, JENNIFER F.
NEMETH, ANUK M. DAS, RAYMOND SWEET, GEORGE A. HEAVNER. Journal of Peptide Science. 2005, 12 (5) pp 354-360. November 14, 2005. DOI:
10.1002/psc.734.
Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Georgios Skretas, Sean Carroll, Shawn DeFrees, Marc F Schwartz, Karl F
Johnson and George Georgiou. Microbial Cell Factories. 2009 8 (50) September 30, 2009. DOI: 10.1186/1475-2859-8-50.
Relevant antibody subsets against MOG recognize conformational epitopes exclusively exposed in solid-phase ELISA. Til Menge, Hans-Christian von
Budingen Patrice H Lalive, Claude P Genain. Eur.J. Immunol. 2007, 37 (11) pp 3229-3239. Auguts 29, 2007. DOI: 10.1002/eji.200737249.
Aptamer-Based Molecular Recognition of Lysergamine, Metergoline and Small Ergot Alkaloids. Elsa Rouah-Martin, Jaytry Mehta, Bieke van Dorst, Sarah
de Saeger, Peter Dubruel, Bert U. W. Maes, Filip Lemiere, Erik Goormaghtigh, Devin Daems, Wouter Herrebout, François van Hove, Ronny Blust and
Johan Robbens. International Journal of Molecular Sciences. 2012, 13 (12) pp 17138-17159. December 14, 2012. DOI:10.3390/ijms131217138.
Increased cytochrome c in rat cerebrospinal fluid after cardiac arrest and its effects on hypoxic neuronal survival. Hao Liua, Syana M. Sarnaikc, Mioara D.
Manolec, Yaming Chend, Sunita N. Shindeb, Wenjin Li, Marie Rosea, Henry Alexandere, Jie Chenb, Robert S.B. Clarkd, Steven H. Grahama, Robert W.
Hickey. Resuscitation. 2012, 83 (12) pp 1491– 1496. April 16, 2012. DOI: 10.1016/j.resuscitation.2012.04.009.
Bioengineered surfaces to improve the blood compatibility of biomaterials through direct thrombin inactivation. S.C. Freitas, T.B. Cereija, A.C.
Figueiredo, H. Osório P.J.B. Pereira, M.A. Barbosa, M.C.L. Martins. Acta Biomaterialia. 2012, 8 (11) pp 4101–4110. July 27, 2012.
DOI:10.1016/j.actbio.2012.07.020.
A single step multiplex immunofluorometric assay for differential diagnosis of BSE and scrapie. Yue Tang ,Jemma Thorne, Kirsty Whatling , Jorg G.
Jacobs, Jan Langeveld, Maurice J. Sauer. J. of Immunological Methods. 2010, 356 (1-2) pp 29–38. April 30, 2010. DOI:10.1016/j.jim.2010.03.002.
A novel method for quantitative measurement of a therapeutic monoclonal antibody in the presence of its target protein using enzymatic digestion. Julie
Doucet, Alexandre Avrameas. Journal of Pharmaceutical and Biomedical Analysis. 2010, 52 (4) pp 565–570. January 25, 2010.
DOI:10.1016/j.jpba.2010.01.033.
A novel immunotherapy for superficial bladder cancer by intravesical immobilization of GM-CSF. Zhiming Hu, Wanlong Tan, Lin Zhang, Zhongkun Liang,
Cuixiang Xu , Hua Su, Jianxin Lu, Jimin Gao. J. Cell. Mol. Med. 2010, 14 (6B) pp 1836-1844. May 6, 2009. DOI: 10.1111/j.1582-4934.2009.00818.x.
Entwicklung von Antikörper-Mikroarray: von Biophysik der Mikrospot-Reaktion bis zur Hochdurchsatzanalyse der Proteine. Vorgelegt von Wals Kusnezow,
Nishnij, Ural and Russische Foderation. Proteomics 2005, 6 pp 1-285 June 27, 2005. DOI: 10.1002/pmic.200500149.
Topography and Recognition Imaging with the Agilent 6000ILM, an Integrated AFM/ILM. W. Travis Johnson, Ph.D. Agilent Technologies, Inc. 2011, 59908982EN. August 24, 2011. www.agilent.com/find/afm.
Psoralen Conjugates for Visualization of Genomic Interstrand Cross-Links Localized by Laser Photoactivation. Arun Kalliat Thazhathveetil, Su-Ting Liu, Fred
E. Indig, and Michael M. Seidman. Bioconjugate Chem. 2007, 18 (2) pp 431–437. January 9, 2007. DOI: 10.1021/bc060309t.
The detection of biomolecules using self-assembled microspheres in an immunoassay. Chen-Hao Chen, Huei-Shian Lin & James R. Carey. Innovation,
Communication and Engineering. 2014. January 2, 2014. ISBN 978-1-138-00117-6.
Alternative mRNA Splicing Generates Two Distinct ADAM12 Prodomain Variants. Sara Duhachek-Muggy, Hui Li, Yue Qi, Anna Zolkiewska. PLOS ONE.
2013, 8 (10) e75730, October 7, 2013. DOI: 10.1371/journal.pone.0075730.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
Biotin-end-functionalized highly fluorescent water-soluble polymers. Paula Relogio, Mael Bathfield, Zofia Haftek-Terreau, Mariana Beija, Arnaud Favier,
Marie-Josephe Giraud-Panis, Franck D'Agosto, Bernard Mandrand, Jose Paulo S. Farinha, Marie-Therese Charreyre and Jose M. G. Martinho. Polymer
Chemistry. 2013, 4 (10), pp 2909-3148. May 21, 2013. DOI: 10.1039/c3py00059a.
Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Shigeyuki Namiki, Hirokazu Sakamoto, Sho Iinuma, Masamitsu Iino, Kenzo
Hirose. European Journal of Neuroscience, 2007, 25 (8) pp 2249-2259. March 6, 2007. DOI: 10.1111/j.1460-9568.2007.05511.x.
Silicon Nanoribbons for Electrical Detection of Biomolecules. Niklas Elfström, Amelie Eriksson Karlström, Jan Linnros. Nano Letters. 2008, 8 (3) pp 945-949.
January 11, 2008. DOI: 10.1021/nl080094r.
Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Qing Liu, Xiaoguang Tu, Kyung Woo Kim, Jack Sheng
Kee, Yong Shin, Kyungsup Han, Yong-Jin Yoon, Guo-Qiang Lo, Mi Kyoung Park. Sensors and Actuators B: Chemical. 2013, 188 pp 681-688. July 25, 2013.
DOI.org/10.1016/j.snb.2013.07.053.
Autocatalytic Activation of Influenza Hemagglutinin. Jeong H. Lee, Mark Goulian, Eric T. Boder. Journal of Molecular Biology. 2006, 365 (3) pp 275-282.
December 1, 2006. DOI: 10.1016/j.jmb.2006.09.015.
Robust dithiocarbamate-anchored amine functionalization of Au nanoparticles. Kai Chen, Hans D. Robinson. Journal of Nanoparticle Research. 2011, 13
(2) pp 751-761. February 1, 2011. DOI: 10.1007/s11051-010-0075-3.
Anti-tumor efficacy of chitosan-g-poly(ethylene glycol) nanocapsules containing docetaxel: Anti-TMEFF-2 functionalized nanocapsules vs. nonfunctionalized nanocapsules. Daniel Torrecilla, Maria V. Lozano, Enrique Lallana, Jose I. Neissa, Ramon Novoa-Carballal, Anxo Vidal, Eduardo FernandezMegia, Dolores Torres, Ricardo Riguera, Maria J. Alonso, Fernando Dominguez. European Journal of Pharmaceutics and Biopharmaceutics. 2013, 83 (3)
pp 330-337. April 1, 2013. DOI: 10.1016/j.ejpb.2012.10.017.
A Fresnel zone plate biosensor for signal amplification with enhanced signal-to-noise ratiow. Yong-Cheol Jeong, Bokyung Jung, Jung-Hwan Park and
Jung-Ki Park. Chemical Communications. 2012, 48 (51) pp 6378-6380. May 2, 2012. DOI: 10.1039/C2CC32008H.
Light-Up Hoechst–DNA Aptamer Pair: Generation of an Aptamer-Selective Fluorophore from a Conventional DNA-Staining Dye. Shinsuke Sando, Atsushi
Narita, and Yasuhiro Aoyama. ChemBioChem. 2007, 8 (15) pp 1795-1803. October 15, 2007. DOI: 10.1002/cbic.200700325.
A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. Simone Grasso • Chiara Lico •Francesca Imperatori • Luca
Santi. Transgenic Res. 2013, 22 (3) pp 519-535. October 30, 2012. DOI:10.1007/s11248-012-9663-6.
Detection of human platelet antigen-1a alloantibodies in cases of fetomaternal alloimmune thrombocytopenia using recombinant b3 integrin fragments
coupled to fluorescently labeled beads. Winnie Chong, Paul Metcalfe, Rosey Mushens, Geoff Lucas,Willem H. Ouwehand, and Cristina V. Navarrete.
Transfusion. 2010, 51 (6) pp 1261-1270. December 16, 2010. DOI: 10.1111/j.1537-2995.2010.02977.x.
Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury. Yonggang Li , Pamela J. Lein , Cuimei Liu , Donald
A. Bruun , Cecilia Giulivi , Gregory D. Ford , Teclemichael Tewolde , Catherine Ross-Inta , Byron D. Ford. Toxicology and Applied Pharmacology. 2012,
262 (2) pp 194-204. May 11, 2012. DOI: 10.1016/j.taap.2012.05.001.
Enhancing Peptide Ligand Binding to Vascular Endothelial Growth Factor by Covalent Bond Formation. Bernadette V. Marquez, Heather E. Beck,Tolulope
A. Aweda, Brett Phinney, Cynthia Holsclaw, William Jewell, Diana Tran, Jeffrey J. Day, Malalage N. Peiris, Charles Nwosu,Carlito Lebrilla, and Claude F.
Meares.Bioconjugate Chemistry. 2012, 23 (5) pp 1080-1089. April 26, 2012. 10.1021/bc300114d.
Secretome protein enrichment identifies physiological BACE1 protease substratesin neurons. Peer-Hendrik Kuhn, Katarzyna Koroniak, Sebastian Hogl,
Alessio Colombo, Ulrike Zeitschel, Michael Willem, Christiane Volbracht, Ute Schepers, Axel Imhof, Albrecht Hoffmeister, Christian Haass, Steffen Roßner,
Stefan Brase and Stefan F Lichtenthaler. The EMBO Journal. 2012, 31, pp 3157–3168. June 22, 2012. DOI: 10.1038/emboj.2012.173.
Characterization and use of a rabbit-anti-mouse VPAC1 antibody by flow cytometry. Rebecca J. Hermann, Travis Van der Steen, Emilie E. Vomhof-DeKrey,
Sejaa Al-Badrani, Steve B. Wanjara, Jarrett J. Failing, Jodie S. Haring, Glenn P. Dorsam. Journal of Immunological Methods. 2012, 376 (1-2) pp 20-31.
February 28, 2012. DOI:10.1016/j.jim.2011.10.009.
Layer-by-layer assembly of bioengineered flagella protein nanotubes. Mudalige Thilak Kumara, Brian C Tripp, Subra Muralidharan. Biomacromolecules.
2007,8(12) pp 3718-3722. November 03, 2007. 10.1021/bm7005449.
Selection of Human VH Single Domains with Improved Biophysical Properties by Phage Display. Kip Dudgeon , Romain Rouet , Kristoffer Famm , and
Daniel Christ. Methods in Molecular Biology. 2012, 911 pp 383-397. 2012. DOI: 10.1007/978-1-61779-968-6_23.
Site-Specifically Biotinylated VEGF121 for Near-Infrared Fluorescence Imaging of Tumor Angiogenesis. Hui Wang , Kai Chen , Gang Niu and Xiaoyuan
Chen. Molecular Pharmaceutics. 2009, 6 (1) pp 285-294. November 26, 2008. 10.1021/mp800185h.
Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Anna Ha¨ggmark, Sanna Bystro¨m, Burcu Ayoglu, Ulrika Qundos, Mathias Uhle´n,
Mohsen Khademi, Tomas Olsson, Jochen M. Schwenk and Peter Nilsson. Proteomics, 2013, 13 (15) pp 2256-2267. June 25, 2013. DOI:
10.1002/pmic.201200580.
Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein. YAJI TIAN, MATTHEW J.
CUNEO, ANITA CHANGELA, BIRTE HO¨ CKER, LORENA S. BEESE, and HOMME W. HELLINGA. Protein Science. 2007, 16 (10) pp 2240-2250. January 1,
2009. DOI: 10.1110/ps.072969407.
Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Daniel R Stabley, Carol Jurchenko, Stephen S Marshall & Khalid S
Salaita. Nature Method. 2012, 9 (1) pp 64-67. October 30, 2011. DOI:10.1038/nmeth.1747.
Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Josep Garcia, Yue Zhang, Hannah Taylor, Oscar
Cespedes, Michael E. Webb and Dejian Zhou. Nanoscale. 2011, 3 (9) pp 3721-3730. June 10, 2011. DOI: 10.1039/C1NR10411J.
Identification of Quantum Dot Bioconjugates and Cellular Protein Co-localization by Hybrid Gel Blotting. Hong Yan Liu and Tania Q. Vu. Nano Lett. 2007,
7 (4) pp 1044-1049. March 3, 2007. DOI: 10.1021/nl070239e.
a-synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling. Myriam M. Ouberai, Juan Wang,
Marcus J. Swann, Celine Galvagnion, Tim Guilliams, Christopher M. Dobson and Mark E. Welland. The Journal of Biological Chemistry. 2013, June 5,
2013. DOI: 10.1074/jbc.M113.478297.
Identifi cation of the human eosinophil lineage-committed progenitor: revision of phenotypic defi nition of the human common myeloid progenitor. Yasuo
Mori, Hiromi Iwasaki, Kentaro Kohno, Goichi Yoshimoto, Yoshikane Kikushige, Aki Okeda, Naokuni Uike, Hiroaki Niiro, Katsuto Takenaka, Koji Nagafuji,
Toshihiro Miyamoto, Mine Harada, Kiyoshi Takatsu, and Koichi Akashi. The Journal of Experimental Medicine. 2008, 206 (1) PP 183-193. December 29,
2008. DOI: 10.1084/jem.20081756.
Antibody Repertoire Profiling Using Bacterial Display Identifies Reactivity Signatures of Celiac Disease. Bradley N. Spatola, Joseph A. Murray, Martin
Kagnoff, Katri Kaukinen, and Patrick S. Daugherty. Anal. Chem. 2013, 85 (2) pp 1215–1222. December 12, 2012. DOI: 10.1021/ac303201d.
Design of a prototype flow microreactor for synthetic biology in vitro. Christian R. Boehm, Paul S. Freemont and Oscar Ces. Lab Chip. 2013, 13 (17) pp
3426-3432. June 27, 2013. DOI: 10.1039/c3lc50231g.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
Linker length matters: Fynomer - Fc Fusion with an optimized linker displaying picomolar IL-17A inhibition potency. Michela Silacci, Nadja BaenzigerTobler, Wibke Lembke, Wenjuan Zha, Sarah Batey, Julian Bertschinger and Dragan Grabulovski. The Journal of Biological Chemistry. 2014, 289 (14)
jbc.M113.534578. April 1, 2014. DOI: 10.1074/jbc.M113.534578.
A visualized observation of calcium-dependent gelsolin activity upon the surface coverage of fluorescent-tagged actin filaments. Yongkuk Lee, Ming-Yuan
Wei, Parviz Famouri. Journal of Colloid and Interface Science. 2013, 389 (1) pp 182–187. August 24, 2012. DOI: 1 0.1016/j.jcis.2012.08.049.
Selective attachment of F-actin with controlled length for developing an intelligent Nanodevice. Ming-Yuan Wei, Lenin J. Leon, Yongkuk Lee, Denzel
Parks, Lloyd Carroll, Parviz Famouri. Journal of Colloid and Interface Science. 2011, 356 (1) pp 182-189. January 3, 2011. DOI: 10.1016/j.jcis.2010.12.079.
A pretargeted nanoparticle system for tumor cell labeling. Jonathan Gunn, Steven I. Park, Omid Veiseh, Oliver W. Press and Miqin Zhang. Molecular
BioSystems. 2011, 7 (3) pp 742-748. October 13, 2010. DOI: 10.1039/c005154c.
Site-Specific Labeling of DNA and RNA Using an Efficiently Replicated and Transcribed Class of Unnatural Base Pairs. Young Jun Seo, Denis A. Malyshev,
Thomas Lavergne, Phillip Ordoukhanian, and Floyd E. Romesberg . J. Am. Chem. Soc. 2011, 133 (49) pp 19878–19888. October 8, 2011. DOI:
10.1021/ja207907d.
Directional Transport by Nonprocessive Motor Proteins on Fascin-Cross-Linked Actin Arrays. Yongkuk Lee and Parviz Famouri. Nano Letter. 2013, 13 (8)
pp 3775–3782. July 2, 2013. DOI: 10.1021/nl401718q.
All major prion types recognised by a multiplex immunofluorometric assay for disease screening and confirmation in sheep. Yue Tang, Adriana Gielbert,
Jorg G. Jacobs, Thierry Baron, Olivier Andreoletti, Takashi Yokoyama, Jan P.M. Langeveld, Maurice J. Sauer. Journal of Immunological Methods. 2012,
380 (1-2) pp 30-39. June 1, 2012. .DOI:10.1016/j.jim.2012.03.004.
AL Amyloid Imaging and Therapy with a Monoclonal Antibody to a Cryptic Epitope on Amyloid Fibrils. Jonathan S. Wall, Stephen J. Kennel, Angela
Williams, Tina Richey, Alan Stuckey, Ying Huang, Sallie Macy, Robert Donnell, Robin Barbour, Peter Seubert, Dale Schenk. PLOS ONE. 2012, 7 (12) pp
e52686. December 26, 2012. DOI: 10.1371/journal.pone.0052686.
An extended range generic immunoassay for total human therapeutic antibodies in preclinical pharmacokinetic studies. Colin M. Hall, Josh T. Pearson,
Vimal Patel, Larry C. Wienkers, Robert J. Greene. Journal of Immunological Methods. 2013, 393 (1-2) pp 70-73. July 31, 2013. DOI:
10.1016/j.jim.2013.03.011.
Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. Kazuhide Watanabe, Tadahiro Nagaoka, Joseph M. Lee, Caterina
Bianco, Monica Gonzales, Nadia P. Castro, Maria Cristina Rangel, Kei Sakamoto, Youping Sun, Robert Callahan, and David S. Salomon. J. Cell Biol. 2009,
187 (3) pp 343–353. November 2, 2009. DOI: 10.1083/jcb.200905105.
Phage Display Approaches for the Isolation of Monoclonal Antibodies Against Dengue Virus Envelope Domain III from Human and Mouse Derived
Libraries. Nicole J. Moreland , Patricia Susanto , Elfin Lim , Moon Y. F. Tay , Ravikumar Rajamanonmani , Brendon J. Hanson and Subhash G. Vasudevan ,
Int. J. Mol. Sci. 2012, 13 pp 2618-2635. February 27, 2012. DOI: 10.3390/ijms13032618.
Generationandcharacterizationofanti-AAamyloid-specificmonoclonalantibodies. Jonathan S. Wall , Stephen J. Kennel, Tina Richey, Amy Allen, Alan
Stuckey, Deborah T. Weiss, Sallie D. Macy, Robin Barbour, Peter Seubert , Alan Solomon and Dale Schenk. Frontiers in Immunology. 2011, 2 (32). August
8, 2011. DOI: 10.3389/fimmu.2011.00032.
Quantitative Analysis of Multivesicular Bodies (MVBs) in the Hypoglossal Nerve: Evidence That Neurotrophic Factors Do Not Use MVBs for Retrograde
Axonal Transport. Amy L. Altick, Larisa M. Baryshnikova, Tania Q. Vu and Christopher S. von Bartheld. Journal of Comparative Neurology. 2009, 514 (6) pp
641-657. June 1, 2009. DOI 10.1002/cne.22047.
P25a ⁄ TPPP expression increases plasma membrane presentation of the dopamine transporter and enhances cellular sensitivity to dopamine toxicity. Anja
W. Fjorback, Sabrina Sundbye, Justus C. Da¨ chsel, Steffen Sinning, Ove Wiborg and Poul H. Jensen. FEBS Journal. 2011, 278 (3) pp 493-505. February 1,
2011. DOI: 10.1111/j.1742-4658.2010.07970.x.
G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker. Xiaoyi Zheng, Frank Chang, Xinmin Zhang, Vicki L.
Rothman, George P. Tuszynski. Experimental and Molecular Pathology. 2012, 93 (1) pp 111-115. August 1, 2012. doi:10.1016/j.yexmp.2012.03.013.
Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers. Brita S. Pukstad, Liv Ryan, Trude H. Flo,
Jørgen Stenvik, Ryan Moseley, Keith Harding, David W. Thomas, Terje Espevik. Journal of Dermatological Science. 2010, 59 (2) pp 115-122. August 1,
2010. DOI: 10.1016/j.jdermsci.2010.05.003.
Possible involvement of glycolipids in lectin-mediated cellular transformation of symbiotic microalgae in corals. Mitsuru Jimbo, Yuya Suda, Kazuhiko
Koike, Sachiko Nakamura-Tsuruta, Junko Kominami, Masugu Kamei, Jun Hirabayashi Ryuichi Sakai, Hisao Kamiya. Journal of Experimental Marine Biology
and Ecology. 2013, 439 pp 129-135. January 1, 2013. DOI: 10.1016/j.jembe.2012.10.022.
Chemoaffinity Capture of Pre-Targeted Prostate Cancer Cells With Magnetic Beads. Lisa Y. Wu, Tiancheng Liu, Mark R. Hopkins, William C. Davis, and
Clifford E. Berkman. The Prostate. 2012, 72 (14) pp 1532-1541. April 4, 2012. DOI: 10.1002/pros.22508.
Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins. Jens Sproß, Sebastian Brauch, Friedrich
Mandel, Moritz Wagner, Stephan Buckenmaier, Bernhard Westermann, Andrea Sinz. Analytical and Bioanalytical Chemistry. 2012, 405 (7) pp 2163-2173.
May 29, 2012. DOI: 10.1007/s00216-012-6057-9.
Cutting Edge: A Monoclonal Antibody Specific for the Programmed Death-1 Homolog Prevents Graft-versus-Host Disease in Mouse Models. Dallas B.
Flies, Shengdian Wang, Haiying Xu and Lieping Chen. J Immunol. 2011, 187 pp 1537-1541. July 19, 2011. doi: 10.4049/jimmunol.1100660.
Targeted delivery of a photosensitizer to Aggregatibacter actinomycetemcomitans biofilm. Suci P, Kang S, Gmür R, Douglas T, Young M.. Antimicrobial
Agents and Chemotherapy. 2010, 54 (6) pp 2489-2496. April 12, 2010. 10.1128/AAC.00059-10.
High-Throughput Screening of Small Molecules Identifies Hepcidin Antagonists. Eileen Fung, Priscilla Sugianto, Jason Hsu, Robert Damoiseaux, Tomas
Ganz, and Elizabeta Nemeth. Mol Pharmacol. 2013, 83 (3) pp 681-690. January 4, 2013. DOI.org/10.1124/mol.112.083428.
Mitoxantrone Targets the ATP-binding Site of FAK, Binds the FAK Kinase Domain and Decreases FAK, Pyk-2, c-Src, and IGF-1R, In Vitro Kinase Activities.
Vita Golubovskaya, Baotran Ho, Min Zheng, Andrew Magis, David Ostrov and William Cance. Anticancer Agents Med Chem. 2013, 13 (4) pp 546-554.
May 1, 2013. DOI: PMC3625494.
Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. Barbara Hjelm, Bjo¨ rn Forsstro¨ m, Ulrika Igel, Henrik
Johannesson, Charlotte Stadler, Emma Lundberg, Fredrik Ponten, Anna Sjo¨ berg, Johan Rockberg, Jochen M. Schwenk, Peter Nilsson, Christine
Johansson, and Mathias Uhle´n. Protein Science. 2011, 20 (11) pp 1824-1835. October 12, 2011. DOI: 10.1002/pro.716.
The therapeutic potential of SA-sCD40L in the orthotopic model of superficial bladder cancer. Zhang Z, Xu X, Zhang X, Chen X, Chen Q, Dong L, Hu Z, Li
J, Gao J.. Acta Oncologica. 2011, 50 (7) pp 1111-1118. January 19, 2011. 10.3109/0284186X.2010.549838.
Trafficking of immature _F508-CFTR to the plasma membrane and its detection by biotinylation. Yishan Luo, Ken McDonald and John W. Hanrahan.
Biochem J. 2009 419 pp 211–219. December 8, 2008. doi:10.1042/BJ20081869.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nicole C. Hauser, Rafael
Martinez, Anette Jacob, Steffen Rupp, Jörg D. Hoheisel, and Stefan Matysiak. Nucleic Acids Research. 2006, 34 (18) pp 5101–5111. September 20, 2006.
10.1093/nar/gkl671.
The Lysosomal Transmembrane Protein 9B Regulates the Activity of Inflammatory Signaling Pathways. Francis Dodeller, Marie Gottar, Dieter Huesken,
Vadim Iourgenko and Bruno Cenni. The Journal of Biological Chemistry. 2008, 283 (31) pp 21487-21494. June 9, 2008. 10.1074/jbc.M801908200.
Melanoma imaging with pretargeted bivalent bacteriophage. Jessica R Newton, Yubin Miao, Susan L Deutscher, Thomas P Quinn. Journal of Nuclear
Medicine.2006, 48 (3) pp 429-436. November 21, 2006. PMID: 17332621.
Members of RTP and REEP Gene Families Influence Functional Bitter Taste Receptor Expression. Maik Behrens, Juliane Bartelt, Claudia Reichling, Marcel
Winnig, Christina Kuhn, and Wolfgang Meyerhof. JBC. 2006, 281 (29) pp 20650–20659. July 21, 2006. DOI 10.1074/jbc.M513637200.
Single-Molecule Detection for Femtomolar Quantification of Proteins in Heterogeneous Immunoassays. Eric A. Nalefski, Christina M. D’Antoni, Evan P.
Ferrell, Janice A. Lloyd, Haoqun Qiu, John L. Harris, and Duncan H. Whitney. Clinical Chemistry. 2006, 52 (11) pp 2172-2175. November 1, 2006. DOI:
10.1373/clinchem.2006.072850.
Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients. Houda Saadi, Marion Seillier,
Maria Jose Sandi, Sylvain Peuget , Christine Kellenberger, Gwenaelle Gravi, Nelson J. Dusetti, Juan L. Iovanna, Palma Rocchi, Mohamed Amri, Alice
Carrier. Results in Immunology. 2013, 3 pp 51-56. May 13, 2013. doi.org/10.1016/j.rinim.2013.05.002.
The Nutrigenetics of Hyperhomocysteinemia. Patricia M. DiBello, Sanjana Dayal, Suma Kaveti, Dongmei Zhang, Michael Kinter, Steven R.
Lentz, and Donald W. Jacobsen. Molecular & Cellular Proteomics. 2010, 9 (3) pp457-470. December 21, 2009. 10.1074/mcp.M900406-MCP200.
Diabetes Insipidus in Mice with a Mutation in Aquaporin-2. David J. Lloyd1, Frank Wesley Hall2, Lisa M. Tarantino1, Nicholas Gekakis. PLoS Genetics.
2005, 1 (2) pp e20. August 19, 2005. DOI:10.1371/journal.pgen.0010020.
Characterization of Particle Translocation through Mucin Hydrogels. Oliver Lieleg, Ioana Vladescu, and Katharina Ribbeck. Biophysical Journal. 2010, 98
(9) pp 1782–1789. January 11, 2010. 10.1016/j.bpj.2010.01.012.
Targeted Contrast-Enhanced Ultrasound Imaging of Tumor Angiogenesis with Contrast Microbubbles Conjugated to Integrin-Binding Knottin Peptides.
Jürgen K. Willmann, Richard H. Kimura, Nirupama Deshpande, Amelie M. Lutz, Jennifer R. Cochran and Sanjiv S. Gambhir. The Journal of Nuclear
Medicine. 2010, 51 (3) pp 433-440. February 11, 2010. 10.2967/jnumed.109.068007.
Sequence determinants of protein aggregation in human VH domains. Kip Dudgeon, Kristoffer Famm, and Daniel Christ. Protein Engineering, Design &
Selection. 2009, 22 (3) pp217-220. October 28, 2008. 10.1093/protein/gzn059.
Epithelial Cell Retention of Transcriptionally Active, P3HR-1-Derived Heterogeneous Epstein-Barr Virus DNA with Concurrent Loss of Parental Virus.
Kazufumi Ikuta, Mingyu Ding, Fangfang Zhang, John W. Sixbey and Rona S. Scott. J. Virol. 2011, 85(15) pp 7634-7643. August 1, 2011 DOI:
10.1128/JVI.00045-11.
Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Timothy C. Cheung,
Ian R. Humphreys, Karen G. Potter, Paula S. Norris, Heather M. Shumway, Bonnie R. Tran, Ginelle Patterson, Rochelle Jean-Jacques, Miri Yoon, Patricia G.
Spear, Kenneth M. Murphy, Nell S. Lurain, Chris A. Benedict, and Carl F. Ware. PNAS. 2005, 102 (37) pp 13218-13223. September 13, 2005.
doi_10.1073_pnas.0506172102.
Multiplexed protein analysis using encoded antibody-conjugated microbeads. Nora Theilacker, Eric E. Roller, Kristopher D. Barbee, Matthias Franzreb
and Xiaohua Huang. J. R. Soc. Interface. 2011, 1 pp 1104-1111. January 19, 2011. doi: 10.1098/rsif.2010.0594.
Immune response to a potyvirus with exposed amino groups available for chemical conjugationCarlos Alberto Manuel-Cabrera, Ana Márquez-Aguirre,
Hernández-Gutiérrez Rodolfo, Pablo César Ortiz-Lazareno, Gabriela Chavez-Calvillo, Mauricio Carrillo-Tripp, Laura Silva-Rosales3 and Abel GutiérrezOrtega. Virology Journal. 2012, 9 (75). March 27, 2012. doi:10.1186/1743-422X-9-75.
Plasma Profiling Reveals Human Fibulin-1 as Candidate Marker for Renal Impairment. Maja Neiman, Jesper J. Hedberg, Pierre R. D€onnes, Ina SchuppeKoistinen, Stephan Hanschke, Ralf Schindler, Mathias Uhl’en, Jochen M. Schwenk, and Peter Nilsson. J. Proteome Res. 2011, 10 (11) pp 4925-4934.
September 3, 2011. DOI.org/10.1021/pr200286c.
Engineering the binding properties of the T cell receptor:peptide:MHC ternary complex that governs T cell activity. Natalie A. Bowerman, Terence S.
Crofts, Lukasz Chlewicki, Priscilla Do, Brian M. Baker, K. Christopher Garcia, David M. Kranz. Molecular Immunology. 2009, 46 (15) pp 3000-3008. June 16,
2009. DOI: 10.1016/j.molimm.2009.06.012.
Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Kerstin Ho¨ner, zu Bentrup,Rajee
Ramamurthy,C. Mark Ott , Kamal Emami, Mayra Nelman-Gonzalez , James W. Wilson , Emily G. Richter , Thomas J. Goodwin , J. Stephen Alexander ,
Duane L. Pierson , Neal Pellis , Kent L. Buchanan , Cheryl A. Nickerson. Microbes and Infection. 2006, 8 (7) pp 1813-1825. April 27, 2006.
DOI:10.1016/j.micinf.2006.02.020.
Introduction of the Mass Spread Function for Characterization of Protein Conjugates. Joseph P. Skinner, Lianli Chi, Panfilo F. Ozeata,Carol S.
Ramsay, Robynn L. O’Hara, Brenda B. Calfin, and Sergey Y. Tetin. Analytical Chemistry. 2011, 84 (2), pp 1172–1177. November 30, 2011. 10.1021/ac202239j.
Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow. Sanford H. Leuba, Travis B. Wheeler , Chao-Min Cheng
, Philip R. LeDuc , Mónica Fernández-Sierra , Edwin Quiñones. Methods. 2009, 47 (3) pp 214-222. November 17, 2008. DOI:10.1016/j.ymeth.2008.10.022
Generation of streptavidin-tagged human-granulocyte macrophage colony-stimulating factor fusion proteins. Bai Li, Hu Zhiming, Wang Fei, Xu Xiaoling,
Xia Chang, Jin Liqin, Li Jinlong, Gao Jimin. J South Med Univ. 2012, 32 (10) ) pp 1389-1393. October 1, 2012. DOI: PMID:23076170.
DNA sequencing by denaturation: experimental proof of concept with an integrated fluidic device. Ying-Ja Chen, Eric E. Roller and Xiaohua Huang. Lab
Chip. 2010, 10 (9) pp 1153-1159. February 9, 2010. DOI: 10.1039/b921417h.
Hepatocyte Targeting of Nucleic Acid Complexes and Liposomes by a T7 Phage p17 Peptide. So C. Wong, Darren Wakefield, Jason Klein, Sean D.
Monahan, David B. Rozema, David L. Lewis, Lori Higgs, James Ludtke, Alex V. Sokoloff, and Jon A. Wolff. Mol. Pharm. 2006, 3, (4) pp 386-397. March 28,
2006. DOI: 10.1021/mp050108r.
Reduction of matrix interferences by the combination of chaotropic salt and DMSO in a broadly applicable target-based ELISA for pharmacokinetic
studies of therapeutic monoclonal antibodies. Julie Doucet , Jasna Canadi, Christoph Kalis, Marie-Anne Valentin, Séverine Marrony ,Fabienne DeckertSalva, Francois Legay, Alexandre Avrameas. Journal of Pharmaceutical and Biomedical Analysis. 2009, 50 (5) pp 924-931. June 21, 2009. DOI
:10.1016/j.jpba.2009.06.029.
Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. M. Bisoffi, B. Hjelle, D.C. Brown, D.W. Branch, T.L. Edwards, S.M.
Brozik, V.S. Bondu-Hawkins, R.S. Larson. Biosensors and Bioelectronics. 2008 23 (9) pp 1397-1403. April 15, 2008. DOI: 10.1016/j.bios.2007.12.016.
Comparative study of thiolated Protein G scaffolds and signal antibody conjugates in the development of electrochemical immunosensors. Jeremy M.
Fowler, Margaret C. Stuart, Danny K.Y. Wong. Biosensors and Bioelectronics. 2007, 23 (5) pp 633-639. July 28, 2007. DOI: 10.1016/j.bios.2007.07.007.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
186.
187.
188.
189.
190.
191.
Formation of raloxifene homo-dimer in CYP3A4, evidence for multi-substrate binding in a single catalytically competent P450 active site. John A. Davis,
Robert J. Greene, Sean Han, Dan A. Rock, Larry C. Wienkers. Archives of Biochemistry and Biophysics. 2011, 513 (2) pp 110-118. September 15, 2011.
doi:10.1016/j.abb.2011.06.016.
Electrochemical Template Synthesis of Multisegment Nanowires: Fabrication and Protein Functionalization. Bridget Wildt, Prashant Mali, and Peter C.
Searson. Langmuir. 2006, 22 (25), pp 10528–10534. September 8, 2006. 10.1021/la061184j.
Micro-total analysis system for virus detection: microfluidic pre-concentration coupled to liposome-based detection. John T. Connelly & Sowmya
Kondapalli & Marc Skoupi & John S. L. Parker & Brian J. Kirby & Antje J. Baeumner. Analytical and Bioanalytical Chemistry. 2012, 402 (1) pp 315-323.
September 10, 2011. DOI: 10.1007/s00216-011-5381-9.
Synthetic, site-specific biotinylated analogs of human MCP-1. Marian Kruszynski*, Ping Tsui, Nicole Stowell, Jinquan Luo, Jennifer F. Nemeth, Anuk M.
Das, Raymond Sweet, George A. Heavner. Journal of Peptide Science. 2006, 12 (5) pp 354-360. November 14, 2005. 10.1002/psc.734.
Biotinylation reagents for the study of cell surface proteins. Giuliano Elia. Proteomics. 2008, 8 (19) pp 4012-4024. April 16, 2008. 10.1002/pmic.200800097.
Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Patrick R. Romano, Andrew Mackay, Minh
Vong, Johann deSa, Anne Lamontagne , Mary Ann Comunale , Julie Hafner , Timothy Block, Ryszard Lec, Anand Mehta. Biochemical and Biophysical
Research Communications. 2011, 414 (1) pp 84-89. October 14, 2011. DOI: 10.1016/j.bbrc.2011.09.027.
dPEG®x-biotin acid
1.
2.
3.
4.
5.
6.
7.
8.
Sensitive Detection of Small Molecule–Protein Interactions on a Metal – Insulator – Metal Label-Free Biosensing Platform Amir Syahir, Kotaro Kajikawa
and Hisakazu Mihara. Chemistry Asian Journal. 2012, 8 (7), pp 1867-1874. August 2012. DOI: 10.1002/asia.201200138.
Surface Functionalization Using Catalyst-Free Azide-Alkyne Cycloaddition. Alexander Kuzmin, Andrei Poloukhtine, Margreet A. Wolfert, and Vladimir V.
Popik. Bioconjugate Chem. 2010, 21 (11) pp 2076–2085. October 21, 2010. DOI: 10.1021/bc100306u.
Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard
Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 2007, 15 (20), pp 6565-6573.
October 15, 2007. DOI: 10.1016/j.bmc.2007.07.001.
Protein-Functionalized Synthetic Antiferromagnetic Nanoparticles for Biomolecule Detection and Magnetic Manipulation. Aihua Fu, Wei Hu, Liang Xu,
Robert J. Wilson, Heng Yu, Sebastian J. Osterfeld, Sanjiv S. Gambhir, and Shan X. Wang. Angewandte Chemie, International Edition 2009 48 (9) p 16201624. January 1, 2010. DOI:10.1002/anie.200803994.
Measurement of Inflammatory Cytokine Secretion from Human Monocytes after Inflammasome Activation. Yoshitaka Shirasaki, Asahi Nakahara, Nanako
Shimura, Kazushi Izawa, Nobutake Suzuki, Mai Yamagishi, Jun Mizuno, Tetsushi Sekiguchi, Ryuta Nishikomori, Shuichi Shoji, Osamu Ohara. Royal Society
of Chemistry. 2012, 978-0-9798064-5-2 pp 1012-1014. November 1, 2012. DOI: 12CBMS-0001.
Macrocycles That Inhibit the Binding between Heat Shock Protein 90 and TPR-Containing Proteins. Veronica C. Ardi, Leslie D. Alexander, Victoria A.
Johnson, and Shelli R. McAlpine. ACS Chem. Biol. 2011, 6 (12), pp 1357–1366. September 27, 2011. DOI: 10.1021/cb200203m.
Palmitoylation of superoxide dismutase 1(SOD1) is increased for familial ALS-linked SOD1 mutants. Sarah E. Antinone, Ghanashyam D. Ghadge, TuKiet T.
Lam, Lijun Wang, Raymond P. Roos and William N. Green. J. Biol. Chem. 2013, 288 (49) pp 1-25. June 12, 2013. DOI: 10.1074/jbc.M113.487231.
Prion protein 90-231 contains a streptavidin-binding motif. Thurid Boetel, Steffen Bade, Marcus Alexander Schmidt, Andreas Frey. Biochemical and
Biophysical Research Communications. 2006, 349 (1) pp 296-302. October 13, 2006. DOI: 10.1016/j.bbrc.2006.08.041.
NHS-S-S-dPEG®x-biotin
1.
2.
3.
4.
Site-Specific Labeling of DNA and RNA Using an Efficiently Replicated and Transcribed Class of Unnatural Base Pairs. Young Jun Seo, Denis A. Malyshev,
Thomas Lavergne, Phillip Ordoukhanian, and Floyd E. Romesberg . J. Am. Chem. Soc. 2011, 133 (49) pp 19878–19888. October 8, 2011. DOI:
10.1021/ja207907d.
Noncovalent Assembly of Anti-Dendritic Cell Antibodies and Antigens for Evoking Immune Responses In Vitro and In Vivo. Anne-Laure Flamar, Sandra
Zurawski, Felix Scholz, Ingrid Gayet, Ling Ni, Xiao-Hua Li, Eynav Klechevsky, John Quinn, SangKon Oh, Daniel H. Kaplan, Jacques Banchereau and Gerard
Zurawski. J Immunol. 2012, 189 pp 2645-2655. September 1, 2012 doi: 10.4049/jimmunol.1102390
Biotinylation reagents for the study of cell surface proteins. Giuliano Elia. Proteomics. 2008, 8 (19) pp 4012-4024. April 16, 2008. 10.1002/pmic.200800097.
Thiol-Mediated Anchoring of Ligands to Self-Assembled Monolayers for Studies of Biospecific Interactions. Kunal V. Gujraty, Randolph Ashton, Sridhar
R. Bethi, Sandesh Kate, Christopher J. Faulkner, G. Kane Jennings, and Ravi S. Kane. Langmuir. 2006, 22 (24) pp 10157–10162. October 19, 2006.DOI:
10.1021/la0621463.
NHS-dPEG®₄-biotinidase resistant biotin
1.
2.
Biotin Reagents for Antibody Pretargeting. 7. Investigation of Chemically Inert Biotinidase Blocking Functionalities for Synthetic Utility. D. Scott Wilbur,
Donald K. Hamlin, and Ming-Kuan Chyan. Bioconjugate Chem. 2006, 17 (6) pp 1514–1522. October 28, 2006. DOI: 10.1021/bc060084m.
Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in
Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Wei Xu, Yiu Chung Tse, Frederick A. Dobie, Michel Baudry, Ann Marie Craig, Tak
Pan Wong, and Yu Tian Wang. The Journal of Neuroscience. 2013, 33 (13) pp 5867-5877. March 27, 2013. DOI:10.1523/JNEUROSCI.1508-12.2013.
Biotin-dPEG®x-hydrazide
1.
2.
3.
4.
5.
6.
Chemical labelling of active serum thioester proteins for quantification. Lotta Holm, Gareth L. Ackland, Mark R. Edwards, Ross A. Breckenridge, Robert B.
Sim, John Offer. Immunbiology. 2010, 2017 (2) 256-264. July 18, 2011. DOI :10.1016/j.imbio.2011.07.021.
Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in
Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Wei Xu, Yiu Chung Tse, Frederick A. Dobie, Michel Baudry, Ann Marie Craig, Tak
Pan Wong, and Yu Tian Wang. The Journal of Neuroscience. 2013, 33 (13) pp 5867-5877. March 27, 2013. DOI:10.1523/JNEUROSCI.1508-12.2013.
Comparing the efficiencies of hydrazide labels in the study of protein carbonylation in human serum albumin. Zafer Ugur & Chelsea M. Coffey & Scott
Gronert. Analytical and Bioanalytical Chemistry. 2012, 404 (5) pp 1399-1411. July 19, 2012. DOI: 10.1007/s00216-012-6235-9.
Development of biosensor-based assays to identify anti-infective oligosaccharides. Jonathan A. Lane, Raj K. Mehra, Stephen D. Carrington, Rita M.
Hickey. Analytical Biochemistry. 2011, 410 (2) pp 200-205. November 25, 2010. DOI: 10.1016/j.ab.2010.11.032.
Transcription Termination Factor Rho Can Displace Streptavidin from Biotinylated RNA. Annie Schwartz, Emmanuel Margeat, A. Rachid Rahmouni, and
Marc Boudvillain. JBC. 2007, 282 (43) pp 31469–31476. October 26, 2007. DOI 10.1074/jbc.M706935200.
WSS25 Inhibits Growth of Xenografted Hepatocellular Cancer Cells in Nude Mice by Disrupting Angiogenesis via Blocking Bone Morphogenetic Protein
(BMP)/Smad/Id1 Signaling. Hong Qiu, Bo Yang, Zhi-Chao Pei, Zhang Zhang and Kan Ding. JBC. 2010, 285 (42) pp 32638–32646. October 15, 2010. doi:
10.1074/jbc.M110.105544.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
7.
Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development. Daegeun Yu and Kyuwon Kim. Bull
Korean Chem. Soc.2009, 30 (4) pp 955-958. February 23, 2009.
Biotin-dPEG®x-NH₂
1.
2.
3.
4.
5.
6.
7.
8.
9.
Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody Detection. Jiayun Zhang, Hans Peter
Lang, Felice Battiston, Natalija Backmann, Francois Huber and Christoph Gerber. Sensors. 2013, 13 pp5273-5285. April 19, 2013. doi:10.3390/s130405273.
Efficient Short Interference RNA Delivery to Tumor Cells Using a Combination of Octaarginine, GALA and Tumor-Specific, Cleavable Polyethylene Glycol
System. Yu SAKURAI, Hiroto HATAKEYAMA, Hidetaka AKITA, Motoi OISHI, Yukio NAGASAKI, Shiro FUTAKI and Hideyoshi HARASHIMA. Biol. Pharm.
Bull. 2009, 32 (5) pp 928-932. May 1, 2009. doi:10.1248/bpb.32.928.
Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]---2+-Containing Microspheres, Wujian
Miao and Allen J. Bard. Anal. Chem. 2004, 76 (18), pp 5379-5386. August 7, 2004. DOI: 10.1021/ac0495236.
Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Tony Taldone, Anna Rodina, Erica M. DaGama
Gomes, Matthew Riolo, Hardik J. Patel, Raul Alonso-Sabadell, Danuta Zatorska, Maulik R. Patel, Sarah Kishinevsky and Gabriela Chiosis. Beilstein J. Org.
Chem. 2013, 9 pp 544-556. March 15, 2013. DOI: 10.3762/bjoc.9.60.
Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development. Daegeun Yu and Kyuwon Kim. Bull
Korean Chem. Soc.2009, 30 (4) pp 955-958. February 23, 2009.
KCa3.1 and TRPM7 Channels at the Uropod Regulate Migration of Activated Human T Cells. Zerrin Kuras, Yeo-Heung Yun, Ameet A. Chimote, Lisa
Neumeier, Laura Conforti. PLoS ONE 7(8), e43859. August 27, 2012. DOI: 10.1371/journal.pone.0043859.
Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew B. Greytak,
Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F. Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain
and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.
Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Rocio B. Dominguez,
Akhtar Hayat, Audrey Sassolas, Gustavo A. Alonso, Roberto Munoz, Jean-Louis Marty. Elsevier. 2012, (99), pp 232-237, September 15, 2012. DOI:
10.1016/j.talanta.2012.05.045.
Synthesis of Biotinylated r-D-Mannoside or N-Acetyl _-D-Glucosaminoside Decorated Gold Nanoparticles: Study of Their Biomolecular Recognition with
Con A and WGA Lectins. Xiaoze Jiang, Abdelghani Housni, Guillaume Gody, Paul Boullanger, Marie-The´re`se Charreyre, Thierry Delair, and Ravin
Narain. Bioconjugate Chem. 2010, 21 pp 521–530. February 3, 2010. DOI: 10.1021/bc900431p.
Biotin-dPEG®x-MAL
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
A magnetic bead-based protein kinase assay with dual detection techniques. Guangchang Zhou, Juliesta E. Sylvester, Ding Wua, Darren R. Veach ,
Stephen J. Kron. Analytical Biochemistry. 2011, 1 (408), pp 5-11, January 2011. DOI: 10.1016/j.ab.2010.08.034.
Exploration of Dimensions of Estrogen Potency Parsing Ligand Binding and Coactivator Binding Affinities. M. Jeyakumar, Kathryn E. Carlson, Jillian R.
Gunther, and John A. Katzenellenbogen. Journal of Biological Chemistry. 2011 (286), pp. 12971-12982. February 14, 2011. DOI: 10.1074/jbc.M110.205112.
Probing the Topological Tolerance of Multimeric Protein Interactions: Evaluation of an Estrogen/Synthetic Ligand for FK506 Binding Protein Conjugate.
Terry W. Moore Jillian R. Gunther, and John A. Katzenellenbogen. Bioconjugate Chem. 2010, 21 (10), pp 1880–1889. October 4, 2010. DOI:
10.1021/bc100266v.
Electrochemical Template Synthesis of Multisegment Nanowires: Fabrication and Protein Functionalization. Bridget Wildt, Prashant Mali, and Peter C.
Searson. Langmuir. 2006, 22 (25), pp 10528–10534. September 8, 2006. 10.1021/la061184j.
Biomimetic approach to the formation of gold nanoparticle/silica cor/shell structures and subsequent bioconjugation, Sung Min Kang, Kyung-Bok Lee,
Dong Jin Kim and Insung S Choi. Nanotechnology. 2006, (17), pp. 4719–4725. September 1, 2006. DOI: 10.1088/0957.
An Assay to Quantitate Reducible Cysteines from Nanograms of GST-Fusion Proteins Dixon J. Woodbury, Chris A. Rees, Ammon Thompson, Paul
Meiners, April Adams. Analytical Biochemistry. 2011, 417 (2) pp 165-173. October 15, 2011. DOI: 10.1016/j.ab.2011.06.017.
5’-Sulfhydryl-Modified RNA: Initiator Synthesis, in Vitro Transcription, and Enzymatic Incorporation. Lei Zhang, Lele Sun, Zhiyong Cui, Robert L. Gottlieb
and Biliang Zhang. Bioconjugate Chem.2001, 12 (6) pp 939–948. October 16, 2001. DOI: 10.1021/bc015504g.
Colorimetric multiplexed immunoassay using specific aggregation of antigenic peptide-modified luminous nanoparticles. Toshihiro Ihara, Yasunori Mori,
Takaaki Imamura, Motoko Mukae, Shojiro Tanaka, Akinori Jyo. Science Direct. 2006, 578 (1) pp 11-18. May 4, 2006. DOI: 10.1016/j.aca.2006.04.066.
Targeted delivery of a photosensitizer to Aggregatibacter actinomycetemcomitans biofilm. Suci P, Kang S, Gmür R, Douglas T, Young M.. Antimicrobial
Agents and Chemotherapy. 2010, 54 (6) pp 2489-2496. April 12, 2010. 10.1128/AAC.00059-10.
Manipulation of Carrier Proteins in Antibiotic Biosynthesis, James J. La Clair, Timothy L. Foley, Tracy R. Schegg, Conor M. Regan, and Michael D. Burkart.
Chemistry & Biology. 2004. 11 (2), pp 195-201. February 2004. DOI: 10.1016/j.chembiol.2004.02.010.
Solid Phase 4’-Phosphopantetheinylation: Fungal Thiolation Domains are Targets for Chemoenzymatic Modification, Deirdre Stack, Aisling Frizzell, Karen
Tomkins, and Sean Doyle. Bioconjugate Chem. 2009, 20 (8), pp 1514–1522. July 23, 2009. DOI: 10.1021/bc900071j.
Sugar-Binding Proteins from Fish: Selection of High Affinity “Lambodies” That Recognize Biomedically Relevant Glycans. Xia Hong, Mark Z. Ma, Jeffrey C.
Gildersleeve, Sudipa Chowdhury, Joseph J. Barchi, Jr., Roy A. Mariuzza,∥ Michael B. Murphy, Li Mao and Zeev Pancer. ACS Chem. Biol. 2013, 8 pp
152−160. October 2, 2012. doi.org/10.1021/cb300399s.
Structural characterization and functionalization of engineered spider silk films. Kristina Spieß, Stefanie Wohlrab and Thomas Scheibel. Soft Matter. 2010,
6 (17) pp 4168-4174. June 16, 2010. DOI: 10.1039/b927267d.
High-Throughput Screening of Small Molecules Identifies Hepcidin Antagonists. Eileen Fung, Priscilla Sugianto, Jason Hsu, Robert Damoiseaux, Tomas
Ganz, and Elizabeta Nemeth. Mol Pharmacol. 2013, 83 (3) pp 681-690. January 4, 2013. DOI.org/10.1124/mol.112.083428.
Diarylpropionitrile (DPN) Enantiomers: Synthesis and Evaluation of Estrogen Receptor β-Selective Ligands. Vincent M. Carroll, M. Jeyakumar, Kathryn E.
Carlson, and John A. Katzenellenbogen. J. Med. Chem. 2012, 55 (1) pp 528–537. November 28, 2011. DOI: 10.1021/jm201436k.
Self-Assembled Quantum Dot-Bioconjugates: Characterization and Use for Sensing Proteolytic Activity. Igor L. Medintz1, Thomas Pons, Kim E. Sapsford,
Philip E. Dawson and Hedi Mattoussi. Proc. of SPIE. 2008, 6945. April 15, 2008. DOI: 10.1117/12.782174.
Enzyme-independent, orientation-selective conjugation of whole human complement C3 to protein surfaces. Daniel A. Mitchell, Rebecca Ilyas, Alister W.
Dodds, Robert B. Sim. Journal of Immunological Methods. 2008, 337 (1) pp 49-54. June 9, 2008. DOI: 10.1016/j.jim.2008.05.011.
The rotation-coupled sliding of EcoRV. Jasmina Dikic, Carolin Menges, Samuel Clarke, Michael Kokkinidis, Alfred Pingoud, Wolfgang Wende and Pierre
Desbiolles. Nucleic Acids Research. 2012, 40 (9), pp 4064-4070. January 12, 2012. DOI:10.1093/nar/gkr1309.
Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor. Clive Metcalfe, Peter Cresswell and A. Neil Barclay.
Open Biology. 2012, 2 (1). January 11, 2012. DOI: 10.1098/rsob.110036.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Biotinylation Reagents
References (cont.)
20.
21.
22.
23.
24.
Solid Phase 4′-Phosphopantetheinylation: Fungal Thiolation Domains are Targets for Chemoenzymatic Modification.Deirdre Stack, Aisling Frizzell, Karen
Tomkins, and Sean Doyle. Bioconjugate Chem. 2009, 20 (8) pp 1514–1522. July 23, 2009. DOI: 10.1021/bc900071j.
Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Jeong Hyun Seo, Dong-Sik Shin, Priam Mukundan, Alexander
Revzin. Colloids and Surfaces B: Biointerfaces. 2012, 98, pp 1–6. October 1, 2012. doi.org/10.1016/j.colsurfb.2012.03.025.
Monitoring a Coordinated Exchange Process in a Four-Component Biological Interaction System: Development of a Time-Resolved Terbium-Based One
Donor/Three-Acceptor Multi-Color FRET System. Sung Hoon Kim, Jillian R. Gunther, and John A. Katzenellenbogen. JACS. 2010 132 (13) pp 4685-4692.
April 7, 2011. DOI:10.1021/ja100248q.
A Set of Time-Resolved Fluorescence Resonance Energy Transfer Assays for the Discovery of Inhibitors of Estrogen Receptor-Coactivator Binding. Jillian
R. Gunther, Yuhong Du, Eric Rhoden, Iestyn Lewis, Brian Revennaugh, Terry W. Moore, Sung Hoon Kim, Raymond Dingledine, Haian Fu and John A.
Katzenellenbogen. Journal of Biomolecular Screening. 2009, 14 (2) pp # 181-195. February 4, 2009. DOI: 10.1177/1087057108329349.
An Anti-Insulin-like Growth Factor I Receptor AntibodyIs a Potent Inhibitor of Cancer Cell Proliferation. Erin K. Maloney, Jennifer L. McLaughlin, Nancy E.
Dagdigian. Cancer Research. 2003, 63 pp 5073-5083. August 15, 2003. DOI:
Biotin-dPEG®x-TFPA
1.
2.
Molded hyaluronic-acid gel as a micro-template for blood capillaries. Ko Sugibayashi, Yoshikazu Kumashiro, Tatsuya Shimizu, Jun Kobayashi, and Teruo
Okano. Journal of biomaterials science. Polymer edition, 2012 May 22, 2012. DOI: 10.1163/156856212X627847.
Elastomeric microparticles for acoustic mediated Bioseparations. Leah M Johnson, Lu Gao, C Wyatt Shields IV, Margret Smith, Kirill Efimenk, Kevin
Cushing, Jan Genzer and Gabriel P López. Journal of Nanobiotechnology. 2013, 11 (22) pp 1-8. June 28, 2013. DOI:10.1186/1477-3155-11-22.
Biotin-dPEG®x-azide
1.
2.
3.
4.
5.
6.
7.
8.
Sequential Nucleophilic Substitutions Permit Orthogonal Click Functionalization of Multicomponent PEG Brushes. Jin Sha, Ethan S. Lippmann, Jason
McNulty, Yulu Ma, and Randolph S. Ashton. Biomacromolecules. 2013, 14 (9) pp 3294–3303. August 13, 2013. DOI: 10.1021/bm400900r.
Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Robert Pola, Richard Laga, Karel Ulbrich, Irena Sieglová, Vlastimil
Král, Milan Fábry, Martina Kabešová, Marek Kovář, and Michal Pechar. Biomacromolecules. 2013, 14 (3) pp 881–889. February 1, 2013. DOI:
10.1021/bm3019592.
Herpes Simplex Virus 2 Infection Impacts Stress Granule Accumulation. Renée L. Finnen, Kyle R. Pangka, and Bruce W. Banfield. J. Virol. 2012, 86 (15) pp
8119–8130. August 1, 2012. doi:10.1128/JVI.00313-12.
Dendron Avidity Platforms with Orthogonal Focal Point Coupling Site. Daniel Quinn McNerny. University of Michigan Library. 2010. DOI:
www.hdl.handle.net/2027.42/78871.
RGD Dendron bodies; synthetic avidity agents with defined and potentially interchangeable effector sites that can substitute for antibodies. Daniel Q.
McNerny, Jolanta F. Kukowska-Latallo, Douglas G. Mullen, Joseph M. Wallace, Ankur M. Desai, Rameshwer Shukla, Baohua Huang, Mark M. Banaszak
Holl, and James R. Baker Jr. Bioconjugate Chemistry 2009 20 (10) pp 1853-1859 September 14, 2009. DOI:10.1021/bc900217h.
Detection of O -GlcNAc Modi fi cations on Cardiac Myo fi lament Proteins. Genaro A. Ramirez-Correa , Isabel Martinez Ferrando , Gerald Hart and Anne
Murphy. Methods in Molecular Biology. 2013, 1005 (13) pp 157-168. January 1, 2013. DOI: 10.1007/978-1-62703-386-2_13.
Site-Specific Incorporation of Photo-Cross-Linker and Bioorthogonal Amino Acids into Enteric Bacterial Pathogens. Shixian Lin, Zhenrun Zhang, Hao Xu,
Lin Li, She Chen, Jie Li, Ziyang Hao, and Peng R. Chen. J. Am. Chem. Soc. 2011, 133 (50), pp 20581–20587. November 15, 2011. DOI: 10.1021/ja209008w.
Surface Functionalization Using Catalyst-Free Azide-Alkyne Cycloaddition. Alexander Kuzmin, Andrei Poloukhtine, Margreet A. Wolfert, and Vladimir V.
Popik. Bioconjugate Chem. 2010, 21 (11) pp 2076–2085. October 21, 2010. DOI: 10.1021/bc100306u.
Biotin-dPEG®x-cyanocobalamin
1.
2.
Pretargeting CD45 enhances the selective delivery of radiation to hematolymphoid tissues in nonhuman primates. Green, Damian J.; Pagel, John M.;
Nemecek, Eneida R.; Lin, Yukang; Kenoyer, Aimee; Pantelias, Anastasia; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Rajendran, Joseph G.;
Gopal, Ajay K.; Park, Steven I.; Press, Oliver W. Blood Journal. 2009, 114 (6) pp 1226-1235. March 11, 2009. DOI:10.1182/blood-2009-03-210344.
Comparison of a tetravalent single-chain antibody-streptavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20
radioimmunotherapy of B-cell lymphomas. Pagel, John M.; Lin, Yukang; Hedin, Nathan; Pantelias, Anastasia; Axworthy, Donald; Stone, Diane; Hamlin,
Don K., Wilbur, D. Scott; Press, Oliver W. Blood. 2006, 108 (1) pp 328-336. February 21, 2006. DOI:10.1182/blood-2005-11-4327.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
86
dPEG® based Fluorescent and other Dye Labels
dPEG ® based Fluorescent and other Dye Labels
Lissamine Rhodamine B sulfonamide-dPEG ®4-acid
A fluorescent dPEG ® label (5- and 6-mixed isomers)
Product #
Description
10 mg
10229
Lissamine Rhodamine B sulfonamide-dPEG ®4-acid
$175
Mol. Wt.: 805.96; single compound; dPEG® Spacer is 16 atoms and 18 Å
DNP-dPEG ®x-NHS ester
Product #
Description
100 mg
1000 mg
10347
DNP-dPEG®4-NHS ester
$200
$1000
$250
$1250
Mol. Wt.: 528.47; single compound; dPEG® Spacer is 16 atoms and 18.0 Å
DNP-dPEG®12-NHS ester
10399
Mol. Wt.: 880.89; single compound; dPEG® Spacer is 40 atoms and 46.4 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See his
Chapter 19 especially in hapten-carrier chemistry and applications, as well as Chapter 18 on Discrete PEG pegylation reagents, with much of the chapter featuring our
reagents.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
87
dPEG® based Fluorescent and other Dye Labels
DNP-dPEG ®x-acid
Product #
Description
100 mg
1000 mg
10346
DNP-dPEG®4-acid
$175
$900
$225
$1125
Mol. Wt.: 431.39; single compound; dPEG® Spacer is 16 atoms and 18.0 Å
DNP-dPEG®12-acid
10398
Mol. Wt.: 783.82; single compound; dPEG® Spacer is 45 atoms and 50 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See his
Chapter 19 especially in hapten-carrier chemistry and applications, as well as Chapter 18 on Discrete PEG pegylation reagents, with much of the chapter featuring our
reagents.
Carboxy Fluorescein-dPEG ®12-NHS ester
Product #
Description
5 mg
10 mg
10885
Carboxy Fluorescein-dPEG®12-NHS ester
$250
$450
Mol. Wt.: 1073.10; single compound; dPEG® Spacer is 40 atoms and 47.4 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
88
dPEG® Based Reagents for Peptide Modification
dPEG ® Based Reagents for Peptide Modification
Fmoc-N-amido-dPEG ®x-acid
dPEG ® as versatile tool in tailoring peptide struture or for
modifying physical properties...as a SPACER within sequence
or as a end group SPACER/LINKER or modifier!
Product #
Description
100 mg
1000 mg
5000 mg
10243
Fmoc-N-amido-dPEG®2-acid
NA
$175
$550
NA
$275
$700
$100
$250
$700
NA
$300
$850
$125
$350
$1150
Mol. Wt.: 399.44; single compound; dPEG® Spacer is 10 atoms and 10.9 Å
Fmoc-N-amido-dPEG®3-acid
10033
O
O
O
N
H
O
O
OH
O
Mol. Wt.: 443.49; single compound; dPEG® Spacer is 13 atoms and 14.4 Å
Fmoc-N-amido-dPEG®4-acid
10213
Mol. Wt.: 487.54; single compound; dPEG® Spacer is 17 atoms and 18.1 Å
Fmoc-N-amido-dPEG®5-acid
10053
O
O
O
N
H
O
O
O
O
O
H
O
Mol. Wt.: 531.59; single compound; dPEG® Spacer is 19 atoms and 21.6 Å
Fmoc-N-amido-dPEG®6-acid
10063
O
O N
H
O
O
O
O
O
O
O
OH
Mol. Wt.: 575.65; single compound; dPEG® Spacer is 22 atoms and 25.1 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
89
dPEG® Based Reagents for Peptide Modification
Fmoc-N-amido-dPEG ®x-acid (cont.)
Product #
Description
Fmoc-N-amido-dPEG®8-acid
10273
O
O
O N
H
O
O
O
O
1000 mg
5000 mg
$150
$600
NA
$150
$650
NA
$250
$900
NA
$300
$1100
NA
O
O
O
100 mg
O
OH
Mol. Wt.: 663.75; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
Fmoc-N-amido-dPEG®12-acid
10283
O
O
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 839.96; single compound; dPEG® Spacer is 40 atoms and 46.5 Å
Fmoc-N-amido-dPEG®24-acid
10313
Mol. Wt.: 1368.59; single compound; dPEG® Spacer is 76 atoms and 89 Å
Fmoc-N-amido-dPEG®36-acid
10903
Mol. Wt.: 1897.22; single compound; dPEG® Spacer is 111 atoms and 132.7 Å
Fmoc-N-amido-dPEG®x-NHS esters
Product #
Description
100 mg
1000 mg
10994
Fmoc-N-amido-dPEG®4-NHS ester
$125
$325
$175
$675
$185
$725
Mol. Wt.: 584.24; single compound; dPEG® Spacer is 17 atoms and 18.1 Å
Fmoc-N-amido-dPEG®8-NHS ester
10995
Mol. Wt.: 760.82; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
Fmoc-N-amido-dPEG®12-NHS ester
10996
Mol. Wt.: 937.03; single compound; dPEG® Spacer is 40 atoms and 46.5 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
90
dPEG® Based Reagents for Peptide Modification
Fmoc-N-Lys-(dPEG ®x-biotin)-OH-(acid)
Product #
Description
50 mg
100 mg
1000
mg
10613
Fmoc-N-Lys-(dPEG ®4-biotin)-OH-(acid)
NA
$200
$1000
NA
$300
$1350
S
H
N
HN
O
NH
O
O
O
O
O
H
N
O
O
O
NH
HO
O
Mol. Wt.: 842.01; single compound; dPEG® Spacer is 19.1 atoms and 16 Å
Fmoc-N-Lys-(dPEG ®12-biotin)-OH-(acid)
10615
Mol. Wt.: 1194.43; single compound; dPEG® Spacer is 60 atoms and 57.9 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
91
dPEG® Based Reagents for Peptide Modification
t-boc-N-amido-dPEG ®x-acid
dPEG ® as versatile tool in tailoring peptide struture or for modifying
physical properties...as a SPACER within sequence or as a end group
SPACER/LINKER or modifier!
Product #
Description
100 mg
1000 mg
5000 mg
10220
t-boc-N-amido-dPEG®4-acid
$100
$275
$950
$150
$650
upon
request
$175
$750
upon
request
$250
$950
upon
request
$300
$1150
upon
request
Mol. Wt.: 365.42; single compound; dPEG® Spacer is 17 atoms and 19.2 Å
t-boc-N-amido-dPEG®8-acid
10760
Mol. Wt.: 541.63; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
t-boc-N-amido-dPEG®12-acid
10761
Mol. Wt.: 717.84; single compound; dPEG® Spacer is 40 atoms and 46.4 Å
t-boc-N-amido-dPEG®24-acid
10763
Mol. Wt.: 1246.47.; single compound; dPEG® Spacer is 76 atoms and 89.0 Å
t-boc-N-amido-dPEG®36-acid
10902
Mol. Wt.: 1775.10; single compound; dPEG® Spacer is 111 atoms and 132.7 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
92
dPEG® Based Reagents for Peptide Modification
Fmoc-amidooxy-dPEG ®12 acid


Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, in oxidizable matrices,
among others AND can be incorporated using reagents like the 4-FB-dPEG ®x TFP esters (amine reactive)
Aminooxy-dPEG ®s and peptide synthesis: These reagents can be incorporated as the final step to the Nterminus of the peptide, which with simple deprotection will provide a selective linkage to an aldehyde of a
ketone! Aniline catalysis avails us to both of these. The ketone can be more stable, especially if going into an
aqueous reaction medium.
Product #
Description
100 mg
1000 mg
10849
Fmoc-amidooxy-dPEG®12 acid
$175
$850
Mol. Wt.: 855.96; single compound; dPEG® Spacer is 41 atoms and 47.6 Å
References:
Greg T. Hermanson, Bioconjugate Techniques, 2nd Ed, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.
276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s
extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
93
dPEG® Based Reagents for Peptide Modification
Methoxytrityl-N-dPEG®x-acid
Product #
Description
100 mg
1000 mg
10358
Methoxytrityl-N-dPEG ®4-acid
$125
$300
$175
$650
$200
$750
$275
$1250
Mol. Wt.: 537.64; single compound; dPEG® Spacer is 16 atoms and 18.3 Å
Methoxytrityl-N-dPEG ®8-acid
10393
Mol. Wt.: 713.85; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
Methoxytrityl-N-dPEG ®12-acid
10394
Mol. Wt.: 890.06; single compound; dPEG® Spacer is 40 atoms and 46.5Å
Methoxytrityl-N-dPEG ®24-acid
10396
Mol. Wt.: 1418.70; single compound; dPEG® Spacer is 76 atoms and 89 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
94
dPEG® Based Reagents for Peptide Modification
Methoxytrityl-N-dPEG®x-TFP ester
O
NH2
+
TFP
O
dPEG ®x-NH-Mmt
Product #
Description
10751
Methoxytrityl-N-dPEG ®4-TFP ester
O
N
H
O
O
O
O
TFE
dPEG ®x-NH-Mmt
HN
O
O
F
O
F
F
20% DCM
HN
dPEG ®x-NH2
100 mg
1000 mg
$150
$350
$200
$700
$225
$850
H
F
Mol. Wt.: 685.71; single compound; dPEG® Spacer is 16 atoms and 18.1 Å
Methoxytrityl-N-dPEG ®8-TFP ester
10752
Mol. Wt.:861.92; single compound; dPEG® Spacer is 28 atoms and 31.4 Å
Methoxytrityl-N-dPEG ®12-TFP ester
10753
Mol. Wt.: 1038.14; single compound; dPEG® Spacer is 40 atoms and 46.4 Å
Additional Reference for these products can be located at the end of this Category.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
95
dPEG® Based Reagents for Peptide Modification
CBZ-N-amido-dPEG®x-acid
Product #
Description
100 mg
1000 mg
10268
CBZ-N-amido-dPEG ®4-acid
$125
$300
$150
$400
$150
$600
$150
$650
$250
$750
$300
$1000
Mol. Wt.: 399.44; single compound; dPEG® Spacer is 17 atoms and 19.2 Å
CBZ-N-amido-dPEG ®6-acid
10066
Mol. Wt.: 487.54; single compound; dPEG® Spacer is 22 atoms and 25.1 Å
CBZ-N-amido-dPEG ®8-acid
10276
Mol. Wt.: 575.65; single compound; dPEG® Spacer is 28 atoms and 32.2 Å
CBZ-N-amido-dPEG ®12-acid
10286
Mol. Wt.: 751.86; single compound; dPEG® Spacer is 40 atoms and 46.5 Å
CBZ-N-amido-dPEG ®24-acid
10316
Mol. Wt.: 1280.49; single compound; dPEG® Spacer is 76 atoms and 88.5 Å
CBZ-N-amido-dPEG ®36-acid
10906
O
O
N
H
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 1809.12 single compound; dPEG® Spacer is 111 atoms and 132.7 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
96
dPEG® Based Reagents for Peptide Modification
Methoxytrityl-S-dPEG®x acid
Tool to add a dPEG ® with a terminal thiol to modify physical
properties or introduce a SPACER end group!
Product #
10301
Description
100 mg
1000 mg
Methoxytrityl-S-dPEG®4-acid
$150
$550
$200
$900
$250
$1050
O
O
S
O
O
O
O
OH
Mol. Wt.: 554.70; single compound; dPEG® Spacer is 16 atoms and 18.3 Å
Methoxytrityl-S-dPEG®8-acid
10166
O
S
O
O
O
O
O
O
O
O
O
OH
Mol. Wt.: 730.91; single compound; dPEG® Spacer is 28 atoms and 32.5 Å
Methoxytrityl-S-dPEG®12-acid
10846
Mol. Wt.: 907.11; single compound; dPEG® Spacer is 39 atoms and 46.8 Å
Additional Reference for these products can be located at the end of this Category
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
97
dPEG® Based Reagents for Peptide Modification
References
Fmoc-N-amido-dPEG®x-acid
1.
Neutrophil Targeting Heterobivalent SPECT Imaging Probe: cFLFLF-PEG-TKPPR-99mTc. Yi Zhang, Li Xiao, Mahendra D. Chordia, Landon W.
Locke, Mark B. Williams, Stuart S. Berr, and Dongfeng Pan. Bioconjugate Chem. 2010, 21 (10), pp 1788–1793. September 15, 2010. DOI:
10.1021/bc100063a.
2.
Trivalent PEGylated Platform for the Conjugation of Bioactive Compounds. Angela Torres, Carlos Mas-Moruno, Enrique Perez-Paya, Fernando
Albericio, and Miriam Royo. Bioconjugate Chem. 2011, 22 (10), pp 2172–2178. August 25, 2011. DOI: 10.1021/bc100393g.
3.
PulmoBind, an Adrenomedullin-Based Molecular Lung Imaging Tool. Myriam Létourneau, Quang Trinh Nguyen, Francois Harel, Alain Fournier,
and Jocelyn Dupuis. J Nucl Med. 2013, 54 (10) pp 1789-1796. October 1, 2013. doi:10.2967/jnumed.112.118984
4.
Selective photocrosslinking of functional ligands to antibodies via the conserved nucleotide binding site. Nathan J. Alves, Matthew M.
Champion, Jared F. Stefanick, Michael W. Handlogten, Demetri T. Moustakas, Yunhua Shi, Bryan F. Shawd, Rudolph M. Navari, Tanyel Kiziltepe,
Basar Bilgicer. Biomaterials. 2013, 34 (22) pp 5700–5710. April 16, 2013. doi.org/10.1016/j.biomaterials.2013.03.082.
5.
Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino) amides for receptor-mediated gene delivery. Irene Martin,
Christian Dohmen, Carlos Mas-Moruno, Christina Troiber, Petra Kos, David Schaffert, Ulrich Lächelt, Meritxell Teixidó, Michael Günther, Horst
Kessler, Ernest Giralt and Ernst Wagner. Org. Biomol. Chem. 2012,10, PP 3258-3268. February 23, 2012. DOI: 10.1039/C2OB06907E.
6.
Monodispersed DOTA-PEG-Conjugated Anti-TAG-72 Diabody Has Low Kidney Uptake and High Tumor-to-Blood Ratios FResulting in Improved
Cu PET, Lin Li, Fabio Turatti, Desiree Crow, James R. Bading, Anne-Line Anderson, Erasmus Poku, Paul J. Yazaki, Lawrence E. Williams, Debra
Tamvakis, Paul Sanders, David Leong, Andrew Raubitschek, peter J. Hudson, David Colcher, and John E. Shively. Journal of Nuclear Medicine.
2010, 7 (51), pp 1139-1146. June 16, 2010. DOI: 10.2967/jnumed.109.074153.
7.
Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol PeptideLinker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI:
10.1021/nn4033954.
8.
Effect of PEGylation of N-WASP181-200 on the Inhibitory Potency for Renal Aminoglycoside Accumulation, Kenju Fujii, Junya Nagai, Takeshi
Sawada, Ryko Yumoto, and Mikihisa Takano, Bioconjugate Chem., 2009, 20 (8), pp 1553–1558 July 2, 2009. DOI: 10.1021/bc900094g.
9.
A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes.
Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI:
10.1021/nn305663e.
10.
Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson ; Andrew M. Dattelbaum ; Harshini
Mukundan ;Dominique N. Price ; W. Kevin Grace ; Basil I. Swanson. Frontiers in Pathogen Detection: From Nanosensors to Systems., 2009, Proc.
Of SPIE 7167. 71670q-1 February 18, 2009. 10.1117/12.809383.
11.
Optimization of Xenon Biosensors for Detection of Protein Interactions. Thomas J. Lowery, Sandra Garcia, Lana Chavez, E. Janette Ruiz, Tom Wu,
Thierry Brotin, Jean-Pierre Dutasta, David S. King, Peter G. Schultz, Alex Pines, and David E. Wemmer. ChemBioChem. 2006, 7 (1), pp 65-73.
DOI: 10.1002/cbic.200500327.
12.
Development of Peptide Nucleic Acid Probes for Detection of the HER2 Oncogene.
Belhu Metaferia., Jun S. Wei., Young K. Song, Jennifer Evangelista, Konrad Aschenbach, Peter Johansson, Xinyu Wen, Qingrong Chen, Albert
Lee, Heidi Hempel, Jinesh S. Gheeya, Stephanie Getty, Romel Gomez, Javed Khan. PLoS ONE. 2012, 8 (4) e58870. April 10, 2013. DOI:
10.1371/journal.pone.0058870.
13.
Liposomes containing monophosphoryl lipid A: A potent adjuvant system for inducing antibodies to heroin hapten analogs. Gary R. Matyas,
Alexander V. Mayorova, Kenner C. Rice, Arthur E. Jacobson, Kejun Cheng, Malliga R. Iyer, Fuying Li, Zoltan Becka, Kim D. Janda, Carl R. Alvinga.
Vaccine. 2013, 31 (26) pp 2804-2810. June 10, 2013. doi.org/10.1016/j.vaccine.2013.04.027.
14.
Neutrophil Targeting Heterobivalent SPECT Imaging Probe: cFLFLF-PEG-TKPPR-99mTc. Yi Zhang, Li Xiao, Mahendra D. Chordia, Landon W.
Locke, Mark B. Williams, Stuart S. Berr, and Dongfeng Pan. Bioconjugate Chem., 2010, 21 (10), pp 1788–1793 September 15, 2010. DOI:
10.1021/bc100063a.
15.
Calcium Condensed LABL-TAT Complexes Effectively Target Gene Delivery to ICAM-1 Expressing Cells Supang Khondee, Abdulgader Baoum,
Teruna J. Siahaan, and Cory Berkland. Mol. Pharmaceutics. 2011, 8 (3), pp 788–798. April 7, 2011. DOI: 10.1021/mp100393j.
16.
Site-Specific Conjugation of Monodispersed DOTA-PEGn to a Thiolated Diabody Reveals the Effect of Increasing PEG Size on Kidney Clearance
and Tumor Uptake with Improved 64-Copper PET Imaging. Lin Li,Desiree Crow, Fabio Turatti, James R. Bading, Anne-Line Anderson, Erasmus
Poku, Paul J. Yazaki, Jenny Carmichael, David Leong, Michael P. Wheatcroft,Andrew A. Raubitschek, Peter J. Hudson,David Colcher, and John E.
Shively.Bioconjugate Chem., 2011, 22 (4), pp 709–716 March 12, 2011. DOI: 10.1021/bc100464e.
17.
Expanding the Scope of Biocatalysis: Oxidative Biotransformations on Solid-Supported Substrates. Sarah J. Brooks, Lydie Coulombel, Disha
Ahuja, Douglas S. Clark, and Jonathan S. Dordick. Advanced Synthesis & Catalysis. 2008, 350 (10), pp 1517–1525. July 7, 2008.
DOI:10.1002/adsc.200800188.
18.
Evaluation of 99mTc-Labeled Cyclic RGD Peptide with a PEG4 Linker for Thrombosis Imaging: Comparison with DMP444. Wei Fang, Jia He,
Young-Seung Kim, Yang Zhou, and Shuang Liu. Bioconjugate Chem. 2011, 22 (8), pp 1715–1722. July 24, 2011. DOI: 10.1021/bc2003742.
19.
Flexible antibodies with nonprotein hinges. Daniel J. Capon, Naoki Kaneko, Takayuki Yoshimori, Takashi Shimada, Florian M. Wurm, Peter K.
Hwang, Xiaohe Tong, Staci A. Adams, Graham Simmons, Taka-Aki Sato and Koichi Tanaka. The Japan Academy Series B Physical and Biological
Sciences.. 2011, 87 (9), pp 603-616. November 11, 2011. DOI: 10.2183/pjab.87.603.
20.
Oriented Surface Immobilization of Antibodies at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nathan J Alves,
Tanyel Kiziltepe, and Basar Bilgicer. Langmuir. 2012, 28 (25) pp 9640-9648. May 21, 2012. DOI: 10.1021/la301887s.
21.
Precise and multifunctional conjugates for targeted siRNA delivery. Prof. Dr. Ernst Wagner Prof. Dr. Wolfgang Friess. Dissertation zur Erlangung
des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München. April 27, 2012.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Reagents for Peptide Modification
References (cont.)
22.
Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing. Christian Dohmen, Thomas Fröhlich, Ulrich Lächelt, Ingo Röhl, HansPeter Vornlocher, Philipp Hadwiger and Ernst Wagner. Molecular Therapy–Nucleic Acids, 2011, 1 (1), F7, December 27, 2011. DOI:
10.1038/mtna.2011.10.
23.
Photocleavable Peptide-Conjugated Magnetic Beads for Protein Kinase Assays by MALDI-TOF MS. Guangchang Zhou, Xiaoliang Yan, Ding Wu,
and Stephen J. Kron. Bioconjugate Chem. 2010, 21 (10), pp 1917–1924. September 22, 2010. DOI: 10.1021/bc1003058.
24.
PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014. April 1, 2014. DOI: 10.1021/bm500246w.
25.
Synthesis of the Cyanine 7 labeled neutrophil-specific agents for noninvasive near infrared fluorescence imaging. Xiao L, Zhang Y, Liu Z, Yang M,
Pu L, Pan D. Bioorganic & Medicinal Chemistry Letters. 2010, 20 (12) pp 3515-3517. June 15, 2010. 10.1016/j.bmcl.2010.04.136.
26.
Radionuclides in Targeted Therapy of Cancer. Adina Elena STANCIU. Rev. Roum. Chim. 2012, 57 (1) pp 5-13. May 27, 2011. DOI:
http://web.icf.ro/rrch/.
27.
2-Mercaptoacetylglycylglycyl (MAG2) as a Bifunctional Chelator for 99mTc-Labeling of Cyclic RGD Dimers: Effect of Technetium Chelate on
Tumor Uptake and Pharmacokinetics. Jiyun Shi, Young-Seung Kim, Sudipta Chakraborty, Bing Jia, Fan Wang and Shuang Liu. Bioconjugate
Chem. 2009, 20 (8) pp 1559–1568. July 15, 2009. DOI: 10.1021/bc9001739.
28.
99mTc-Galacto-RGD2: A Novel 99mTc-Labeled Cyclic RGD Peptide Dimer Useful for Tumor Imaging. Shundong Ji, Andrzej Czerwinski, Yang
Zhou, Guoqiang Shao, Francisco Valenzuela, Paweł Sowiński, Satendra Chauhan, Michael Pennington, and Shuang Liu. Mol. Pharmaceutics. 2013,
10 (9) pp 3304–3314. July 22, 2013. DOI: 10.1021/mp400085d.
29.
Impact of PKM Linkers on Biodistribution Characteristics of the 99mTc-Labeled Cyclic RGDfK Dimer. Shuang Liu, Zhengjie He, Wen-Yuan Hsieh,
Young-Seung Kim, and Young Jiang. Bioconjugate Chem. 2006, 17 (6) pp 1499–1507. November 1, 2006. DOI: 10.1021/bc060235l.
30.
Two 90Y-Labeled Multimeric RGD Peptides RGD4 and 3PRGD2 for Integrin Targeted Radionuclide Therapy. Zhaofei Liu, Jiyun Shi, Bing Jia, Zilin
Yu, Yan Liu, Huiyun Zhao, Fang Li, Jie Tian, Xiaoyuan Chen, Shuang Liu, and Fan Wang.Two 90Y-Labeled Multimeric RGD Peptides RGD4 and
3PRGD2 for Integrin Targeted Radionuclide Therapy. Zhaofei Liu, Jiyun Shi, Bing Jia, Zilin Yu, Yan Liu, Huiyun Zhao, Fang Li, Jie Tian, Xiaoyuan
Chen, Shuang Liu, and Fan Wang. Mol. Pharmaceutics. 2011, 8 (2) pp 591–599. January 19, 2011. DOI: 10.1021/mp100403y.
31.
Evaluation of the Pharmacokinetic Effects of Various Linking Group Using the 111In-DOTA-X-BBN(7−14)NH2 Structural Paradigm in a Prostate
Cancer Model. Jered C. Garrison, Tammy L. Rold, Gary L. Sieckman, Farah Naz, Samantha V. Sublett, Said Daibes Figueroa, Wynn A. Volkert and
Timothy J. Hoffman. Bioconjugate Chem. 2008, 19 (9) pp 1803–1812. August 20, 2008. DOI: 10.1021/bc8001375.
32.
Novel Synthetic Route to Peptide-Capped Gold Nanoparticles, Takeshi Serizawa, Yu Hirai, and Mamoru Aizawa. Langmuir. 2009, 25 (20), pp
12229–12234. September 21, 2009. DOI: 10.1021/la9021799.
33.
Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers. Jiyun Shi, YoungSeung Kim, Shizhen Zhai, Zhaofei Liu, Xiaoyuan Chen and Shuang Liu. Bioconjugate Chem. 2009, 20 (4) pp 750–759. March 25, 2009. DOI:
10.1021/bc800455p.
34.
Improving Tumor-Targeting Capability and Pharmacokinetics of 99mTc-Labeled Cyclic RGD Dimers with PEG4 Linkers. Lijun Wang, Jiyun Shi,
Young-Seung Kim, Shizhen Zhai, Bing Jia, Huiyun Zhao, Zhaofei Liu, Fan Wang, Xiaoyuan Chen and Shuang Liu. Mol. Pharmaceutics. 2009, 6 (1)
pp 231–245. December 9, 2008. DOI: 10.1021/mp800150r.
35.
Design of a heterotetravalent synthetic allergen that reflects epitope heterogeneity and IgE antibody variability to study mast cell degranulation.
Michael W. Handlogten, Tanyel Kiziltepe and Basar Bilgicer. Biochem. J. 2013, 449 pp 91–99. October 11, 2011. doi:10.1042/BJ20121088.
36.
Controlling HBV Replication in Vivo by Intravenous Administration of Triggered PEGylated siRNA-Nanoparticles, Sergio Carmona, Michael R.
Jorgensen, Soumia Kolli, Carol Crowther, Felix H. Salazar, Patricia L. Marion, Masato Fujino, Yukikazu Natori, Maya Thanou, Patrick Arbuthnot,
and Andrew D. Miller. Mol. Pharmaceutic., 2009, 6 (3), pp 706–717. January 21,2009. DOI: 10.1021/mp800157x.
37.
Tumor Uptake of the RGD Dimeric Probe 99mTc-G3-2P4-RGD2 is Correlated with Integrin rv_3 Expressed on both Tumor Cells and
Neovasculature. Zhaofei Liu, Bing Jia, Jiyun Shi, Xiaona Jin, Huiyun Zhao, Fang Li, Shuang Liu, and Fan Wang. Bioconjugate Chem. 2010, 21 (3)
pp 548-555. February 25, 2010. DOI: 10.1021/bc900547d.
38.
Hepatocyte Targeting of Nucleic Acid Complexes and Liposomes by a T7 Phage p17 Peptide. So C. Wong, Darren Wakefield, Jason Klein, Sean
D. Monahan, David B. Rozema, David L. Lewis, Lori Higgs, James Ludtke, Alex V. Sokoloff, and Jon A. Wolff. Mol. Pharm. 2006, 3 (4) pp 386-397.
March 28, 2006. DOI: 10.1021/mp050108r.
39.
Spring-Loaded Model Revisited: Paramyxovirus Fusion Requires Engagement of a Receptor Binding Protein beyond Initial Triggering of the
Fusion Protein. Matteo Porotto, Ilaria DeVito, Samantha G. Palmer, Eric M. Jurgens, Jia L. Yee, Christine C. Yokoyama, Antonello Pessi and Anne
Moscona. J. Virol. 2011, 85 (24) pp 12867-12880. DOI: 10.1128/JVI.05873-11.
40.
Optical Imaging of Integrin αv β3 Expression with Near-Infrared Fluorescent RGD Dimer with Tetra(ethylene glycol) Linkers. Zhaofei Liu,
Shuanglong Liu, Gang Niu, Fan Wang, Shuang Liu, Xiaoyuan Chen. Mol Imaging. 2010, 9 (1) pp 21-29. February 1, 2010. DOI:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629979/.
41.
Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson, Andrew M. Dattelbaum, Harshini Mukundan,
Dominique N. Price, W. Kevin Grace, Basil I. Swanson. Spie Digital Library, 2010, 7553. January 23, 2010. DOI: 10.1117/12.809383.
42.
Species Differences of Bombesin Analog Interactions with GRP-R Define the Choice of Animal Models in the Development of GRP-R-Targeting
Drugs. Theodosia Maina, PhD; Berthold A. Nock, PhD; Hanwen Zhang, Anastasia Nikolopoulou, Msci, Beatrice Waser, PhD; Jean Claude Reubi,
MD; and Helmut R. Maecke, PhD. Journal of Nuclear Medicine. 2005, 46 (5) pp. 823-830. January 23, 2005.
43.
Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells. Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, and
Basxar Bilgicer. Chemistry & Biology. 2011, 18 (9) pp 1179–1188. September 23, 2011. DOI 10.1016/j.chembiol.2011.06.012.
44.
Functional PEG-Modified Thin Films for Biological Detection, Aaron S. Anderson, Andrew M. Dattelbaum, Gabriel A. Montano, Dominique N.
Price, Jurgen G. Schmidt, Jennifer S. Martinez, W. Kevin Grace, Karen M. Grace, and Basil I. Swanson. Langmuir. 2008, 24 (5), pp 2240–2247.
January 30, 2008. DOI: 10.1021/la7033438.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Reagents for Peptide Modification
References (cont.)
45.
Polyproline-Rod Approach to Isolating Protein Targets of Bioactive Small Molecules: Isolation of a New Target of Indomethacin, Shin-ichi Sato,
Youngjoo Kwon, Shinji Kamisuki, Neeta Srivastava, Quian Mao, Yoshinori Kawazoe, and Motonari Uesugi. J. Am. Chem. Soc. 2007, 129 (4), pp
873–880. January 4, 2007. DOI: 10.1021/ja0655643.
Fmoc-N-amido-dPEG®x-NHS ester
1.
Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. J. Nicholas Francis, Joseph
S Redman, Debra M Eckert, and Michael S. Kay. Bioconjugate Chemistry, 2012, 23 (6), pp 1252-1258, May 1, 2012. DOI: 10.1021/bc300076f.
Lipoamido-dPEG®x-acid
1.
Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Wenhao Liu, Mark Howarth, Andrew B. Greytak, Yi Zheng, Daniel G.
Nocera, Alice Y. Ting, and Moungi G. Bawendi. J. Am. Chem. Soc. 2008, 130 (4) pp 1274–1284. January 5, 2008. DOI: 10.1021/ja076069p.
Fmoc-N-amido-dPEG®x-acid
1.
New Enzyme-Activated Solubility-Switchable Contrast Agent for Magnetic Resonance Imaging: From Synthesis to in Vivo Imaging, Beata
Jastrzabska, Rejean Lebel, Helene Therriault, J. Oliver McIntyre, Emanuel Escher, Briggitte Guerin, Benoit Paquette, Witold A. Neugebauer, and
Martin Lepage. J. Med. Chem. 2009, 52 (6), pp 1576–1581. February 19, 2009. DOI: 10.1021/jm801411h.
2.
A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes.
Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI:
10.1021/nn305663e.
3.
A Non-Chromatographic Method for the Purification of a Bivantly Active Monoclonal IgG Antibody from Biological Fluids, Basar Bilgicer, Samuel
W. Thomas III, Bryan F. Shaw, George K. Kaufman, Vijay M. Krishnamurthy, Lara A. Estroff, Jerry Yang, and George M. Whitesides. JACS. 2009,
131 (26), pp 9361–9367. June 17, 2009. DOI: 10.1021/ja9023836.
4.
Synthetic Allergen Design Reveals the Significance of Moderate Affinity Epitopes in Mast Cell Degranulation. Michael W. Handlogten, Tanyel
Kiziltepe, Nathan J. Alves, and Basar Bilgicer. ACS Chem. Biol., 2012, 7 (11) pp 1796–1801. August 10, 2012. DOI: 10.1021/cb300193f.
5.
Evaluation of the Pharmacokinetic Effects of Various Linking Group Using the 111In-DOTA-X-BBN(7−14)NH2 Structural Paradigm in a Prostate
Cancer Model. Jered C. Garrison, Tammy L. Rold, Gary L. Sieckman, Farah Naz, Samantha V. Sublett, Said Daibes Figueroa, Wynn A. Volkert and
Timothy J. Hoffman. Bioconjugate Chem. 2008, 19 (9) pp 1803–1812. August 20, 2008. DOI: 10.1021/bc8001375.
6.
PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014. April 1, 2014. DOI: 10.1021/bm500246w.
7.
Design of a Heterobivalent Inhibitor of Allergy and More Physiologically Relevant Allergy Models. Michael William Handlogten. University of
Notre Dame. 2013, March 28, 2013. DOI: etd-04022013-155410.
8.
Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells. Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, and
Basxar Bilgicer. Chemistry & Biology. 2011, 18 (9) pp 1179–1188. September 23, 2011. DOI 10.1016/j.chembiol.2011.06.012.
9.
B-Peptide Conjugates: Syntheses and CD and NMR Investigations of B/a-Chimeric Peptides, of a DPA-B-Decapeptide, and of a PEGylated bHeptapeptide. James Gardiner, Raveendra I. Mathad, Berhard Jaun, Jurg V. Schreiber, Oliver Flogel, and Dieter Seebach. Helvetica Chimica
Acta. 2009, 92 (12) pp 2698-2721. December 17, 2009. DOI: 10.1002/hlca.200900325.
10.
Design of a heterotetravalent synthetic allergen that reflects epitope heterogeneity and IgE antibody variability to study mast cell degranulation.
Michael W. Handlogten, Tanyel Kiziltepe and Basar Bilgicer. Biochem. J. 2013, 449 pp 91–99. October 11, 2011. doi:10.1042/BJ20121088.
11.
Novel Solubility-Switchable MRI Agent Allows the Noninvasive Detection of Matrix Metalloproteinase-2 Activity In Vivo in a Mouse Model.
Rejean Lebel, Beata Jastrzebska, Helene Therriault, Marie-Michele Cournoyer, J. Oliver McIntyre, Emanuel Escher, Witold Neugebauer, Benoit
Paquette, and Martin Lepage. Magnetic Resonance in Medicine, 2008, 60 (5) pp 1056–1065. November 1,2008. DOI: 10.1002/mrm.21741.
12.
Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA). Duanwen Shen., Fei Xie2, W. Barry
Edwards. PLoS One. 2013, 8 (7), e68339. July 25, 2013. DOI: 10.1371/journal.pone.0068339.
13.
Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol PeptideLinker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI:
10.1021/nn4033954.
14.
Polyproline-Rod Approach to Isolating Protein Targets of Bioactive Small Molecules: Isolation of a New Target of Indomethacin, Shin-ichi Sato,
Youngjoo Kwon, Shinji Kamisuki, Neeta Srivastava, Quian Mao, Yoshinori Kawazoe, and Motonari Uesugi. J. Am. Chem. Soc. 2007, 129 (4), pp
873–880. January 4, 2007. DOI: 10.1021/ja0655643.
15.
Determination of bacterial viability by selective capture using surface-bound siderophores. Mark L. Wolfenden, Rama M. Sakamuri, Aaron S.
Anderson, Lakshman Prasad, Jurgen G. Schmidt, Harshini Mukundan. Advances in Biological Chemistry. 2012, (2) pp 396-402 September 30,
2012. DOI: 10.4236/abc.2012.24049.
16.
A Synthetic Trivalent Hapten that Aggregates Anti-2,4-DNP IgG into Bicyclic Trimers. Başar Bilgiçer, Demetri T. Moustakas, and George M.
Whitesides. Journal of the American Chemical Society. 2007, 129 (12,) pp 3722-3728. March 28 2007. DOI: 10.1021/ja067159h.
17.
Multifunctional nanoparticles as simulants for a gravimetric Immunoassay. Scott A. Miller, Leslie A. Hiatt, Robert G. Keil, David W. Wright, and
David E. Cliffel. Analytical and Bioanalytical Chemistry. 2011, 399 (3) pp 1021-1029 January 1, 2011. DOI:10.1007/s00216-010-4419-8.
18.
Mechanistic Studies of a Peptidic GRP78 Ligand for Cancer Cell-Specific Drug Delivery. Ying Liu, Sebastian C.J. Steiniger, YoungSoo Kim,
Gunnar F. Kaufmann, Brunhilde Felding-Habermann, and Kim D. Janda. Molecular Pharmaceutics 2007 4(3) p 435-447. January 2007.
DOI:10.1021/mp060122j.
19.
Design and Synthesis of Multifunctional Gold Nanoparticles Bearing Tumor-Associated Glycopeptide Antigens as Potential Cancer Vaccines.
Raymond P. Brinãs, Andreas Sundgren, Padmini Sahoo, Susan Morey, Kate Rittenhouse-Olson, Greg E. Wilding, Wei Deng, and Joseph J.
Barchi, Jr. Bioconjugate Chem. 2012, 23 (8), pp 1513-1523. July 19, 2012. DOI: 10.1021/bc200606s.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
dPEG® Based Reagents for Peptide Modification
References (cont.)
20.
Photocleavable Peptide-Oligonucleotide Conjugates for Protein Kinase Assays by MALDI-TOF MS. Guangchang Zhou, Faraz Khan, Qing Dai,
Juliesta E Sylvester and Stephen J Kron. Molecular BioSystems. 2012, 8 (9), pp 2395-2404. June 13, 2012. DOI: 10.1039/C2MB25163A.
21.
Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. J. Nicholas Francis, Joseph
S Redman, Debra M Eckert, and Michael S. Kay. Bioconjugate Chemistry. 2012, 23 (6), pp 1252-1258. May 1, 2012. DOI: 10.1021/bc300076f.
22.
Novel Monodisperse PEGtide Dendrons: Design, Fabrication, and Evaluation of Mannose Receptor-Mediated Macrophage Targeting. Jieming
Gao, Peiming Chen, Yashveer Singh, Xiaoping Zhang, Zoltan Szekely, Stanley Stein, and Patrick J. Sinko. Bioconjugate Chem. 2013, 24 (8) pp
1332–1344. June 29, 2013. DOI: 10.1021/bc400011v.
Methoxytrityl-S-dPEG®x-acid
1.
Gold Nanoparticles Functionalized with Peptides for Specific Affinity Aggregation Assays of Estrogen Receptors and Their Agonists. Yoshiyuki
Takatsuji, Shinya Ikeno and Tetsuya Haruyama. Sensors. 2012, 12 (4), pp 4952-4961. April 18, 2012. DOI: 10.3390/s120404952.
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
98
dPEG® Reagents for Nucleic Acids
dPEG ® Reagents for Nucleic Acids
Amino-dPEG ®12-ODMT
Product #
Description
100 mg
1000 mg
10342
Amino-dPEG®12-ODMT
$225
$900
Mol. Wt.: 848.03; Single compound: dPEG® Spacer is 38 atoms and 43.9 Å
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
99
INDEX
10000 .................................................................................. 5
10007 ................................................................................ 73
10008 ................................................................................ 73
10009 ................................................................................ 73
10011 ................................................................................ 44
10014 ................................................................................ 50
10015 ................................................................................ 53
10033 ................................................................................ 89
10041 ................................................................................ 69
10043 ................................................................................ 70
10044 ................................................................................ 70
10053 ................................................................................ 89
10061 ................................................................................ 36
10063 ................................................................................ 89
10064 ................................................................................ 45
10065 ................................................................................ 46
10066 ................................................................................ 96
10067 ................................................................................ 21
10081 ................................................................................ 43
10082 ................................................................................ 43
10085 ................................................................................ 53
10092 ................................................................................ 54
10109 ................................................................................ 63
10119 ................................................................................ 63
10127 ................................................................................ 63
10140 ................................................................................ 63
10142 ................................................................................ 14
10143 ................................................................................ 13
10144 ................................................................................ 13
10147 ................................................................................ 13
10148 ................................................................................ 13
10149 ................................................................................ 13
10156 ................................................................................ 41
10160 ................................................................................ 41
10166 ................................................................................ 97
10170 ................................................................................ 39
10171 ................................................................................ 39
10172 ................................................................................ 60
10175 ................................................................................ 20
10177 ................................................................................ 65
10180 ................................................................................ 35
10181 ................................................................................ 34
10182 ................................................................................ 35
10183 ................................................................................ 28
10184 ................................................................................ 34
10185 ................................................................................ 38
10188 ................................................................................ 34
10193 ................................................................................ 77
10194 ................................................................................ 74
10195 ................................................................................ 80
10196 ................................................................................ 77
10197 ................................................................................ 72
10198 ................................................................................ 71
10199 ................................................................................ 72
10200 ................................................................................ 71
www.QuantaBioDesign.com
10201 .................................................................................80
10202 .................................................................................75
10203 .................................................................................75
10204 .................................................................................75
10205 .................................................................................84
10208 .................................................................................35
10210 .................................................................................47
10211 .................................................................................12
10213 .................................................................................89
10214 .................................................................................45
10215 .................................................................................60
10217 .................................................................................65
10218 ...........................................................................84, 85
10219 .................................................................................76
10220 .................................................................................92
10221 .................................................................................36
10223 .................................................................................38
10224 .................................................................................51
10225 .................................................................................60
10226 .................................................................................62
10229 .................................................................................87
10230 .................................................................................55
10232 .................................................................................66
10234 .................................................................................14
10236 .................................................................................55
10237 .................................................................................64
10240 .................................................................................39
10243 .................................................................................89
10244 .................................................................................21
10245 .................................................................................55
10246 .................................................................................52
10247 .................................................................................28
10249 .................................................................................39
10250 .................................................................................39
10251 .................................................................................17
10252 .................................................................................17
10254 .................................................................................41
10256 .................................................................................41
10259 .................................................................................41
10260 .................................................................................12
10261 .................................................................................41
10262 .................................................................................12
10264 .................................................................................36
10265 .................................................................................46
10266 .................................................................................45
10267 .................................................................................81
10268 .................................................................................96
10269 .................................................................................62
10271 .................................................................................36
10273 .................................................................................90
10274 .................................................................................45
10275 .................................................................................46
10276 .................................................................................96
10277 .................................................................................21
10278 .................................................................................20
10281 .................................................................................36
10283 .................................................................................90
10284 .................................................................................45
Tel. 866 792-9222
Fax 614 760-9781
100
10285 ................................................................................ 46
10286 ................................................................................ 96
10287 ................................................................................ 21
10288 ................................................................................ 20
10289 ................................................................................ 25
10298 ................................................................................ 20
10301 ................................................................................ 97
10304 ................................................................................ 12
10305 ................................................................................ 18
10307 ................................................................................ 18
10308 ................................................................................ 81
10311 ................................................................................ 36
10313 ................................................................................ 90
10314 ................................................................................ 45
10315 ................................................................................ 46
10316 ................................................................................ 96
10317 ................................................................................ 22
10318 ................................................................................ 20
10319 ................................................................................ 25
10320 ................................................................................ 55
10323 ................................................................................ 65
10324 ................................................................................ 14
10325 ................................................................................ 84
10326 ................................................................................ 14
10327 ................................................................................ 12
10328 ................................................................................ 14
10330 ................................................................................ 37
10331 ................................................................................ 37
10332 ................................................................................ 37
10334 ................................................................................ 37
10337 ................................................................................ 37
10338 ................................................................................ 46
10339 ................................................................................ 14
10340 ................................................................................ 40
10342 ................................................................................ 99
10346 ................................................................................ 88
10347 ................................................................................ 87
10348 ................................................................................ 17
10355 ................................................................................ 82
10356 ................................................................................ 82
10358 ................................................................................ 94
10361 ................................................................................ 61
10362 ................................................................................ 19
10363 ................................................................................ 19
10364 ................................................................................ 19
10373 ................................................................................ 49
10374 ................................................................................ 48
10375 ................................................................................ 49
10376 ................................................................................ 48
10377 ................................................................................ 49
10378 ................................................................................ 48
10379 ................................................................................ 48
10380 ................................................................................ 49
10393 ................................................................................ 94
10394 ................................................................................ 94
10396 ................................................................................ 94
10397 ................................................................................ 60
10398 ................................................................................ 88
10399 ................................................................................ 87
www.QuantaBioDesign.com
10400 .................................................................................23
10401 .................................................................................15
10402 .................................................................................16
10406 .................................................................................26
10409 .................................................................................74
10410 .................................................................................23
10411 .................................................................................15
10412 .................................................................................16
10416 .................................................................................26
10420 .................................................................................23
10421 .................................................................................15
10422 .................................................................................16
10424 .................................................................................19
10426 .................................................................................26
10453 .................................................................................23
10454 .................................................................................15
10455 .................................................................................16
10456 .................................................................................26
10458 .................................................................................15
10482 .................................................................................10
10484 ...................................................................................9
10492 .................................................................................24
10501 .................................................................................56
10502 .................................................................................57
10503 .................................................................................56
10505 .................................................................................56
10510 .................................................................................59
10511 .................................................................................59
10512 .................................................................................57
10513 .................................................................................57
10514 .................................................................................57
10522 ...........................................................................58, 61
10523 ...........................................................................58, 61
10524 ...........................................................................58, 61
10525 ...........................................................................58, 61
10526 ...........................................................................58, 61
10531 .................................................................................27
10532 .................................................................................27
10534 .................................................................................27
10536 .................................................................................27
10540 .................................................................................27
10541 .................................................................................40
10542 .................................................................................40
10543 .................................................................................40
10544 .................................................................................40
10613 .................................................................................91
10615 .................................................................................91
10630 .................................................................................67
10631 .................................................................................68
10641 .................................................................................30
10642 .................................................................................30
10643 .................................................................................30
10698 .................................................................................55
10699 .................................................................................51
10717 .................................................................................38
10719 .................................................................................38
10722 .................................................................................38
10723 .................................................................................55
10724 .................................................................................51
Tel. 866 792-9222
Fax 614 760-9781
101
10725 ................................................................................ 55
10726 ................................................................................ 51
10728 ................................................................................ 17
10745 ................................................................................ 25
10746 ................................................................................ 25
10751 ................................................................................ 95
10752 ................................................................................ 95
10753 ................................................................................ 95
10760 ................................................................................ 92
10761 ................................................................................ 92
10763 ................................................................................ 92
10773 ................................................................................ 72
10774 ................................................................................ 71
10776 ................................................................................ 72
10784 ................................................................................ 83
10785 ................................................................................ 80
10786 ................................................................................ 77
10787 ................................................................................ 83
10792 ................................................................................ 29
10793 ................................................................................ 29
10794 ................................................................................ 29
10799 ................................................................................ 33
10800 ................................................................................ 33
10801 ................................................................................ 33
10804 ................................................................................ 33
10806 ................................................................................ 31
10807 ................................................................................ 31
10808 ................................................................................ 31
10811 ................................................................................ 31
10814 ................................................................................ 30
10817 ................................................................................ 32
10819 ................................................................................ 32
10820 ................................................................................ 32
10822 ................................................................................ 32
10825 ................................................................................ 83
10826 ................................................................................ 77
10828 ................................................................................ 32
10846 ................................................................................ 97
10849 ................................................................................ 93
10850 ................................................................................ 28
10851 ................................................................................ 35
10852 ................................................................................ 34
10866 ................................................................................ 49
10867 ................................................................................ 48
10868 ................................................................................ 39
10869 ................................................................................ 39
10885 ................................................................................ 88
10894 ................................................................................ 17
10895 ................................................................................ 17
10898 ................................................................................ 18
10899 ................................................................................ 18
10901 ................................................................................ 36
10902 ................................................................................ 92
10903 ................................................................................ 90
10906 ................................................................................ 96
10907 ................................................................................ 22
10908 ................................................................................ 20
10909 ................................................................................ 14
10910 ................................................................................ 12
www.QuantaBioDesign.com
10918 .................................................................................20
10920 .................................................................................12
10929 .................................................................................18
10930 .................................................................................18
10931 .................................................................................25
10932 .................................................................................25
10939 .................................................................................41
10942 .................................................................................17
10953 .................................................................................55
10954 .................................................................................52
10955 .................................................................................55
10956 .................................................................................52
10957 .................................................................................69
10958 .................................................................................69
10961 .................................................................................47
10962 .................................................................................47
10967 .................................................................................55
10968 .................................................................................52
10978 .................................................................................55
10979 .................................................................................52
10980 .................................................................................54
10981 .................................................................................53
10982 .................................................................................53
10983 .................................................................................54
10984 .................................................................................54
10985 .................................................................................54
10987 .................................................................................53
10988 .................................................................................51
10994 .................................................................................90
10995 .................................................................................90
10996 .................................................................................90
11024 ...................................................................................6
11025 ...................................................................................6
11026 ...................................................................................6
11027 ...................................................................................6
11028 ...................................................................................7
11029 ...................................................................................7
11100 .................................................................................78
11102 .................................................................................78
11106 .................................................................................79
11112 .................................................................................64
11135 .................................................................................44
11400 .................................................................................23
11401 .................................................................................15
11402 .................................................................................16
11406 .................................................................................26
11449 .................................................................................10
11451 ...................................................................................9
11471 ...................................................................................9
11474 .................................................................................10
11486 .................................................................................10
11487 ...................................................................................9
11630 .................................................................................11
11633 .................................................................................11
Tel. 866 792-9222
Fax 614 760-9781
102
4-formyl-benzamido-dPEG®12-TFP ester ........................ 43
4-formyl-benzamido-dPEG®24-TFP ester ........................ 43
A
Acid-dPEG®13-NHS ester................................................. 63
Acid-dPEG®25-NHS ester................................................. 63
Acid-dPEG®5-NHS ester .................................................. 63
Acid-dPEG®9-NHS ester .................................................. 63
Amino-dPEG®11-ONH-t-boc ........................................... 64
Amino-dPEG®12-acid ....................................................... 21
Amino-dPEG®12-alcohol .................................................. 39
Amino-dPEG®12-methyl ester Prep KIT .......................... 37
Amino-dPEG®12-ODMT.................................................. 99
Amino-dPEG®12-t-boc-hydrazide .................................... 69
Amino-dPEG®12-t-butyl ester .......................................... 36
Amino-dPEG®₁₂-Tris (dPEG®₁₂-Tris (m-dPEG®₁₁)₃)₃ .. 10
Amino-dPEG®₁₂-Tris(-dPEG®₂₄-acid)₃.......................... 10
Amino-dPEG®₁₂-Tris(m-dPEG®₂₄)₃............................... 10
Amino-dPEG®24-acid ....................................................... 22
Amino-dPEG®24-alcohol .................................................. 39
Amino-dPEG®24-methyl ester Prep KIT .......................... 37
Amino-dPEG®24-t-butyl ester .......................................... 36
Amino-dPEG®₂₄-Tris (-dPEG®₂₄-Tris (m-dPEG®₂₄)₃)₃ . 10
Amino-dPEG®2-t-butyl ester ........................................... 36
Amino-dPEG®36-acid ....................................................... 22
Amino-dPEG®36-alcohol .................................................. 39
Amino-dPEG®36-t-butyl ester .......................................... 36
Amino-dPEG®4-(m-dPEG®12)3 .......................................... 23
Amino-dPEG®4-(m-dPEG®24)3 .......................................... 23
Amino-dPEG®4-(m-dPEG®4)3 ........................................... 23
Amino-dPEG®4-(m-dPEG®8)3 ........................................... 23
Amino-dPEG®4-acid......................................................... 21
Amino-dPEG®4-alcohol ................................................... 39
Amino-dPEG®4-methyl ester Prep KIT............................ 37
Amino-dPEG®4-t-boc-hydrazide ..................................... 69
Amino-dPEG®4-t-butyl ester ........................................... 36
Amino-dPEG®6-acid......................................................... 21
Amino-dPEG®6-methyl ester Prep KIT............................ 37
Amino-dPEG®6-t-butyl ester ........................................... 36
Amino-dPEG®8-acid......................................................... 21
Amino-dPEG®8-alcohol ................................................... 39
Amino-dPEG®8-methyl ester Prep KIT............................ 37
Amino-dPEG®8-t-boc-hydrazide ..................................... 69
Amino-dPEG®8-t-butyl ester ........................................... 36
Aminooxy-dPEG®12-amido-dPEG®12-(m-dPEG®11) 3 ....... 24
Azido-dPEG®11-amine.................................................58, 61
Azido-dPEG®12-acid......................................................... 57
Azido-dPEG®12-alcohol.................................................... 40
Azido-dPEG®12-NHS ester............................................... 56
Azido-dPEG®23-amine.................................................58, 61
Azido-dPEG®24-acid......................................................... 57
Azido-dPEG®24-alcohol.................................................... 40
Azido-dPEG®35-amine.................................................58, 61
Azido-dPEG®36-alcohol.................................................... 40
Azido-dPEG®3-amine..................................................58, 61
Azido-dPEG®4-acid .......................................................... 57
Azido-dPEG®4-alcohol..................................................... 40
Azido-dPEG®4-NHS ester ................................................ 56
www.QuantaBioDesign.com
Azido-dPEG®7-amine..................................................58, 61
Azido-dPEG®8-acid ...........................................................57
Azido-dPEG®8-alcohol......................................................40
Azido-dPEG®8-NHS ester.................................................56
B
Bioconjugate Techniques ..................................................5
Biotin-dPEG®11-azide........................................................83
Biotin-dPEG®11-Lipoamide...............................................32
Biotin-dPEG®11-MAL.........................................................80
Biotin-dPEG®11-NH2 ..........................................................77
Biotin-dPEG®11-oxyamine. HCl ........................................78
Biotin-dPEG®12-TFP ester.................................................73
Biotin-dPEG®23-azide........................................................83
Biotin-dPEG®23-MAL.........................................................80
Biotin-dPEG®23-NH2 ..........................................................77
Biotin-dPEG®24-TFP ester.................................................73
Biotin-dPEG®3- Lipoamide ...............................................32
Biotin-dPEG®3-benzophenone ........................................81
Biotin-dPEG®3-cyanocobalamin ................................84, 85
Biotin-dPEG®3-MAL ..........................................................80
Biotin-dPEG®3-NH3+TFA¯..................................................77
Biotin-dPEG®3-oxyamine. HCl .........................................78
Biotin-dPEG®3-TFPA.........................................................81
Biotin-dPEG®4-hydrazide .................................................76
Biotin-dPEG®4-SS-NH-dPEG®₃-ONH₂.............................79
Biotin-dPEG®4-TFP ester ..................................................73
Biotin-dPEG®7-azide .........................................................83
Biotin-dPEG®7-NH2 ...........................................................77
Biotin-dPEG23-Lipoamide.................................................32
Biotinoyl-2-Aminobutyric acid .........................................82
Biotinoylsarcosine ............................................................82
Bis-dPEG®13-acid ..............................................................55
Bis-dPEG®13-NHS ester ....................................................52
Bis-dPEG®13-PFP ester......................................................54
Bis-dPEG®17-acid ..............................................................55
Bis-dPEG®17-NHS ester ....................................................52
Bis-dPEG®17-PFP ester......................................................54
Bis-dPEG®21-acid ..............................................................55
Bis-dPEG®21-NHS ester ....................................................52
Bis-dPEG®21-PFP ester......................................................54
Bis-dPEG®25-acid ..............................................................55
Bis-dPEG®25-NHS ester ....................................................52
Bis-dPEG®25-TFP ester......................................................54
Bis-dPEG®29-acid ..............................................................55
Bis-dPEG®2-acid................................................................55
Bis-dPEG®2-NHS ester......................................................51
Bis-dPEG®2-PFP ester .......................................................53
Bis-dPEG®3-acid................................................................55
Bis-dPEG®3-biotin .............................................................84
Bis-dPEG®3-NHS ester......................................................51
Bis-dPEG®3-PFP ester .......................................................53
Bis-dPEG®4-acid................................................................55
Bis-dPEG®4-NHS ester......................................................51
Bis-dPEG®4-PFP ester .......................................................53
Bis-dPEG®5, half benzyl half NHS ester ...........................64
Bis-dPEG®5-acid................................................................55
Bis-dPEG®5-NHS ester......................................................51
Tel. 866 792-9222
Fax 614 760-9781
103
Bis-dPEG®5-PFP ester ...................................................... 53
Bis-dPEG®7-acid............................................................... 55
Bis-dPEG®7-NHS ester ................................................... 51
Bis-dPEG®7-PFP ester ...................................................... 53
Bis-dPEG®9-acid............................................................... 55
Bis-dPEG®9-NHS ester..................................................... 52
Bis-dPEG®9-PFP ester ...................................................... 54
Bis-MAL-dPEG®11 ............................................................. 60
Bis-MAL-dPEG®3 .............................................................. 60
Bis-Maleimide amine, TFA salt ....................................... 66
Bis-MAL-Lysine-dPEG®4- dPEG®12-Tris(-dPEG®₂₄-acid)₃
...................................................................................... 11
Bis-MAL-Lysine-dPEG®4-acid .......................................... 67
Bis-MAL-Lysine-dPEG®4-dPEG®12-Tris(m-dPEG®₂₄)₃.. 11
Bis-MAL-Lysine-dPEG®4-TFP ester ................................. 68
C
Carboxy Fluorescein-dPEG 12-NHS ester ...................... 88
Carboxyl-dPEG®4-(m-dPEG®11)3 ...................................... 16
Carboxyl-dPEG®4-(m-dPEG®12)3 ...................................... 16
Carboxyl-dPEG®4-(m-dPEG®24)3 ...................................... 16
Carboxyl-dPEG®4-(m-dPEG®4)3 ....................................... 16
Carboxyl-dPEG®4-(m-dPEG®8)3 ....................................... 16
CBZ-N-amido-dPEG®12-acid ........................................... 96
CBZ-N-amido-dPEG®24-acid ........................................... 96
CBZ-N-amido-dPEG®36-acid ........................................... 96
CBZ-N-amido-dPEG®3-amine ......................................... 62
CBZ-N-amido-dPEG®4-acid ............................................ 96
CBZ-N-amido-dPEG®6-acid ............................................ 96
CBZ-N-amido-dPEG®8-acid ............................................ 96
®
Fmoc-N-amido-dPEG®2-acid ...........................................89
Fmoc-N-amido-dPEG®36-acid ..........................................90
Fmoc-N-amido-dPEG®3-acid ...........................................89
Fmoc-N-amido-dPEG®4-acid ...........................................89
Fmoc-N-amido-dPEG®4-NHS ester .................................90
Fmoc-N-amido-dPEG®4-t-boc-hydrazide........................70
Fmoc-N-amido-dPEG®5-acid ...........................................89
Fmoc-N-amido-dPEG®6-acid ...........................................89
Fmoc-N-amido-dPEG®8-acid ...........................................90
Fmoc-N-amido-dPEG®8-NHS ester .................................90
Fmoc-N-Lys-(dPEG®12-biotin)-OH-(acid) .........................91
Fmoc-N-Lys-(dPEG®4-biotin)-OH-(acid) ..........................91
H
Hydroxy-dPEG 12-t-butyl ester ........................................38
Hydroxy-dPEG®24-t-butyl ester ........................................38
Hydroxy-dPEG®4-t-butyl ester..........................................38
Hydroxy-dPEG®6-t-butyl ester..........................................38
Hydroxy-dPEG®8-t-butyl ester..........................................38
®
L
Lipoamido-dPEG 12- TFP ester........................................30
Lipoamido-dPEG®12-acid .................................................31
Lipoamido-dPEG®24- TFP ester........................................30
Lipoamido-dPEG®24-acid .................................................31
Lipoamido-dPEG®4-acid...................................................31
Lipoamido-dPEG®4-TFP ester..........................................30
Lipoamido-dPEG®8- TFP ester.........................................30
Lipoamido-dPEG®8-acid...................................................31
Lissamine Rhodamine B sulfonamide-dPEG®4-acid .......87
®
D
Diamido-dPEG 11-diamine.............................................. 61
DNP-dPEG®12-acid........................................................... 88
DNP-dPEG®12-NHS ester ................................................ 87
DNP-dPEG®4-acid............................................................ 88
DNP-dPEG®4-NHS ester.................................................. 87
dPEG®12-biotin acid ......................................................... 72
dPEG®12-diol .................................................................... 41
dPEG®12-SATA (S-acetyl-dPEG®12-NHS ester)................ 34
dPEG®12-SATA acid (S-acetyl-dPEG®12-acid).................. 35
dPEG®24-biotin acid ......................................................... 72
dPEG®24-SATA (S-acetyl-dPEG®24-NHS ester)................ 34
dPEG®24-SATA acid (S-acetyl-dPEG®24-acid).................. 35
dPEG®48-biotin acid ......................................................... 72
dPEG®4-biotin acid .......................................................... 72
dPEG®4-SATA (S-acetyl-dPEG®4-NHS ester) .................. 34
dPEG®4-SATA acid (S-acetyl-dPEG®4-acid) .................... 35
dPEG®8-SATA (S-acetyl-dPEG®8-NHS ester) .................. 34
dPEG®8-SATA acid (S-acetyl-dPEG®8-acid) .................... 35
M
®
F
Fmoc-amidooxy-dPEG®12 acid........................................ 93
Fmoc-N-amido-dPEG®12-acid ......................................... 90
Fmoc-N-amido-dPEG®12-NHS ester ............................... 90
Fmoc-N-amido-dPEG®24-acid ......................................... 90
www.QuantaBioDesign.com
MAL-dPEG®12-acid............................................................46
MAL-dPEG®12-DSPE ...........................................................7
MAL-dPEG®12-NHS ester .................................................45
MAL-dPEG®12-t-boc-hydrazide ........................................47
MAL-dPEG®₁₂-Tris (dPEG®₁₂-Tris (m-dPEG®₁₁)₃)₃ ........9
MAL-dPEG®₁₂-Tris(-dPEG®₂₄-acid)₃................................9
MAL-dPEG®₁₂-Tris(m-dPEG®₂₄)₃.....................................9
MAL-dPEG®24-acid............................................................46
MAL-dPEG®24-NHS ester .................................................45
MAL-dPEG®₂₄-Tris (-dPEG®₂₄-Tris (m-dPEG®₂₄)₃)₃ .......9
MAL-dPEG®2-acid.............................................................46
MAL-dPEG®2-NHS ester...................................................45
MAL-dPEG®3-Lipoamide..................................................32
MAL-dPEG®4-(m-dPEG®11)3 ..............................................26
MAL-dPEG®4-(m-dPEG®12)3 ..............................................26
MAL-dPEG®4-(m-dPEG®24)3 ..............................................26
MAL-dPEG®4-(m-dPEG®4)3 ...............................................26
MAL-dPEG®4-(m-dPEG®8)3 ...............................................26
MAL-dPEG®4-acid.............................................................46
MAL-dPEG®4-NHS ester...................................................45
MAL-dPEG®4-t-boc-hydrazide .........................................47
MAL-dPEG®6-acid.............................................................46
MAL-dPEG®6-NHS ester...................................................45
MAL-dPEG®8-acid.............................................................46
Tel. 866 792-9222
Fax 614 760-9781
104
MAL-dPEG®8-NHS ester.................................................. 45
MAL-dPEG®8-t-boc-hydrazide ........................................ 47
m-dPEG®11-alcohol .......................................................... 17
m-dPEG®11-NHS carbonate ............................................ 18
m-dPEG®12-acid ............................................................... 14
m-dPEG®12-amido-dPEG®12-acid .................................... 13
m-dPEG®12-amine ............................................................ 20
m-dPEG®12-Azide (Azido-m-dPEG®12)............................. 27
m-dPEG®₁₂-DSPE .............................................................. 6
m-dPEG®12-Lipoamide .................................................... 33
m-dPEG®12-MAL .............................................................. 25
m-dPEG®12-NHS ester ..................................................... 12
m-dPEG®12-Propionaldehyde ......................................... 19
m-dPEG®12-Thiol .............................................................. 29
m-dPEG®15-alcohol .......................................................... 17
m-dPEG®15-amine ............................................................ 20
m-dPEG®15-NHS carbonate ............................................ 18
m-dPEG®19-alcohol .......................................................... 17
m-dPEG®19-NHS carbonate ............................................ 18
m-dPEG®23-alcohol .......................................................... 17
m-dPEG®23-NHS carbonate ............................................ 18
m-dPEG®24 Azide (Azido-m-dPEG®24)............................. 27
m-dPEG®24 Azide (Azido-m-dPEG®36)............................. 27
m-dPEG®24-acid ............................................................... 14
m-dPEG®24-amido-dPEG®24-acid .................................... 13
m-dPEG®₂₄-amido-dPEG®₂₄-DSPE .................................. 6
m-dPEG®24-amido-dPEG®24-TFP ester ........................... 13
m-dPEG®24-amine ............................................................ 20
m-dPEG®24-DSPE ............................................................... 6
m-dPEG®24-Lipoamide .................................................... 33
m-dPEG®24-MAL .............................................................. 25
m-dPEG®24-NHS ester ..................................................... 12
m-dPEG®24-Propionaldehyde ......................................... 19
m-dPEG®2-acid ................................................................ 14
m-dPEG®2-NHS ester ...................................................... 12
m-dPEG®2-tosylate .......................................................... 41
m-dPEG®36-alcohol .......................................................... 17
m-dPEG®36-amine ............................................................ 20
m-dPEG®36-MAL .............................................................. 25
m-dPEG®37-acid ............................................................... 14
m-dPEG®37-NHS ester ..................................................... 12
m-dPEG®3-NHS carbonate.............................................. 18
m-dPEG®48-amine ............................................................ 20
m-dPEG®48-CO(CH2)3-acid .............................................. 14
m-dPEG®48-MAL .............................................................. 25
m-dPEG®48-NH-CO(CH2)3CO-TFP ester ......................... 13
m-dPEG®49-NHS ester ..................................................... 12
m-dPEG®4-acid ................................................................ 14
m-dPEG®4-alcohol ........................................................... 17
m-dPEG®4-amine ............................................................. 20
m-dPEG®4-Azide (Azido-m-dPEG®4)............................... 27
m-dPEG®4-Lipoamide...................................................... 33
m-dPEG®4-MAL................................................................ 25
m-dPEG®4-NHS ester ...................................................... 12
m-dPEG®4-Propionaldehyde........................................... 19
m-dPEG®4-Thiol ............................................................... 29
m-dPEG®4-tosylate .......................................................... 41
m-dPEG®7-alcohol ........................................................... 17
www.QuantaBioDesign.com
m-dPEG®7-NHS carbonate...............................................18
m-dPEG®7-tosylate ...........................................................41
m-dPEG®8-acid .................................................................14
m-dPEG®8-amine ..............................................................20
m-dPEG®8-Azide (Azido-m-dPEG®8)................................27
m-dPEG®8-DSPE .................................................................6
m-dPEG®8-Lipoamide ......................................................33
m-dPEG®8-MAL.................................................................25
m-dPEG®8-NHS ester .......................................................12
m-dPEG®8-Propionaldehyde............................................19
m-dPEG®8-Thiol ................................................................29
Methoxytrityl-N-dPEG®12-acid .........................................94
Methoxytrityl-N-dPEG®12-TFP ester ................................95
Methoxytrityl-N-dPEG®24-acid .........................................94
Methoxytrityl-N-dPEG®4-acid ..........................................94
Methoxytrityl-N-dPEG®4-TFP ester..................................95
Methoxytrityl-N-dPEG®8-acid ..........................................94
Methoxytrityl-N-dPEG®8-TFP ester..................................95
Methoxytrityl-S-dPEG®12-acid ..........................................97
Methoxytrityl-S-dPEG®4 acid............................................97
Methoxytrityl-S-dPEG®8 acid............................................97
MPS (NHS-3-maleimidopropionate) ...............................65
MPS-Acid ..........................................................................65
MPS-EDA.TFA ..................................................................65
N
NH2-dPEG®4-(m-dPEG®11)3-ester......................................23
NHS -dPEG®4-(m-dPEG®12)3-ester....................................15
NHS-biotin ........................................................................84
NHS-dPEG®12-biotin .........................................................71
NHS-dPEG®24-biotin .........................................................71
NHS-dPEG®4 -biotinidase resistant biotin.......................75
NHS-dPEG®4-(m-dPEG®24)3-ester.....................................15
NHS-dPEG®4-(m-dPEG®4)3-ester......................................15
NHS-dPEG®4-(m-dPEG®8)3-ester......................................15
NHS-dPEG®4-biotin ..........................................................71
NHS-dPEG®4-t-boc-hydrazide .........................................70
NHS-S-S-dPEG®4-biotin ...................................................74
P
Phthalimidooxy-dPEG 12 NHS ester................................44
Phthalimidooxy-dPEG®4 NHS ester.................................44
Propargyl amine ...............................................................59
Propargyl-dPEG®1-NHS ester ..........................................59
®
S
S-acetyl-dPEG®12-alcohol .................................................41
S-acetyl-dPEG®4-alcohol ..................................................41
S-acetyl-dPEG®8-alcohol ..................................................41
SPDP-dPEG®12-acid ..........................................................49
SPDP-dPEG®12-NHS ester ................................................48
SPDP-dPEG®24 -NHS ester ...............................................48
SPDP-dPEG®24-acid ..........................................................49
SPDP-dPEG®36-acid ..........................................................49
SPDP-dPEG®36-NHS ester ................................................48
SPDP-dPEG®4-acid ...........................................................49
Tel. 866 792-9222
Fax 614 760-9781
105
SPDP-dPEG®4-NHS ester ................................................ 48
SPDP-dPEG®8-acid .......................................................... 49
SPDP-dPEG®8-NHS ester ................................................ 48
T
t-boc-N-amido-dPEG®11-amine ...................................... 60
t-boc-N-amido-dPEG®12-acid ......................................... 92
t-boc-N-amido-dPEG®12-alcohol .................................... 39
t-boc-N-amido-dPEG®24-acid ......................................... 92
t-boc-N-amido-dPEG®36-acid ......................................... 92
t-boc-N-amido-dPEG®3-amine ....................................... 60
t-boc-N-amido-dPEG®4-acid........................................... 92
t-boc-N-amido-dPEG®4-alcohol ..................................... 39
t-boc-N-amido-dPEG®8-acid............................................92
t-boc-N-EDA.....................................................................62
TFP-dPEG®12-biotinidase resistant biotin ......................75
TFP-dPEG®13-DSPE.............................................................7
TFP-dPEG®4 -Lys-(dPEG®4-biotin)2 ...................................74
TFP-dPEG®4-(m-dPEG®11)3-ester ......................................15
TFP-dPEG®4-(m-dPEG®24)3-ester ......................................15
TFP-dPEG®4-biotinidase resistant biotin .......................75
Thiol-dPEG®12-acid ...........................................................28
Thiol-dPEG®4-acid ............................................................28
Thiol-dPEG®8-acid ............................................................28
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) ....50
Print Date Thursday, May 22, 2014
www.QuantaBioDesign.com
Tel. 866 792-9222
Fax 614 760-9781
106