Mechanical_Vibration..
Transcription
Mechanical_Vibration..
Jiraphon Srisertpol, Ph.D School of Mechanical Engineering Recommended reading : ... ก : ก!"ก#, Pearson Education Indochina 2545 Singiresu S.Rao : Mechanical Vibration (Fourth Edition) ,Prentice Hall 2004. SI Edition Leonard Meirovitch : Fundamentals of Vibrations , Mc-Graw Hill 2001. Kelly S. Graham : Fundamentals of Mechanical Vibrations, Mc-Graw Hill 2000. 1 2 Introduction to Vibration and The Free Response The Spring-Mass model Single –degree of freedom Simple harmonic motion Relationship between Displacement, Velocity and Acceleration Representations of harmonic motion 3 School of Mechanical Engineering 4 The Vibration of a Fixed-Fixed String School of Mechanical Engineering 5 The main mass and dynamic absorber at three frequencies. 6 Vibration Characteristics of a Spring 7 8 Fundamental Torsional Mode of a Valve Support Stand Deflected Elastomer Shock Isolation 9 Structural Vibration 10 !"#$%&'ก)*+ก,!)-.&'%&'ก)/0.$1'2*ก)) 11 กกก !กก"" #$% &'()*+#+ ,)-.กก.""ก"ก . ก/"ก ก.ก)01#ก*ก/2 ก"% #$"" 12 กกกก กกกก #BCDEFGHI (Degree of Freedom, DOF) - LF Mก(Coordinate) !OPQ!OR!OSGTCUDTกVU"LHIP"WP BQXYT"T"Z C"!RกTFWBB!OC[HF#YU" Single degree of freedom system 13 14 Three degree of freedom system Two degree of freedom system 15 16 Infinite number of degree of freedom system กกกก Discrete System (Lumped System)-""*ก'#/ก $(#(//+ '/"2*'ก/# Continuous System (Distributed System)- ""* * '/"2)- ('ก/ 17 ก (Free Vibration) กกก 18 ก."" (Free Vibration) ก."""" (Forced Vibration) ก.""(*# (Undamped Vibration) ก.""*# (Damped Vibration) ก."", (Linear Vibration) ก.""(, (Nonlinear Vibration) ก.""ก'#/(/ (Deterministic Vibration) ก."" (Random Vibration) 19 $ก"" ก*# ก*ก"ก""*# +/ +*// 2.ก $'#ก/ก2. ก2/' ()%/+(*.ก3+กก'ก"""*ก + ก"ก"")-ก'#ก/ก/ #$'#ก/ 4#$2 .""ก 20 กXBBSGTGOEFGYTF" (Undamped Vibration) กXBBB"EB (Forced Vibration) $ก""3+.ก'ก3+ก &.ก'ก3+ก*2 )-. ก&2'#$(&2'ก4(/ ก ก*2 , ก$ก(/ $ก*ก/ก # * ก.""*2() ก"*5,"" ก*2* ก**,ก (amplitude) ก* ก *+กก ก*2 ก (Resonance) #+ก*(*ก1*+ #ก"./ "" (+ ).*+/ #$.$/ $"" $*.""(*#'# ""# ก $**2** ก*(*#""ก/2(/ก2 ก.""(*#. ก.""*""*+ก *5, (Natural Frequency) 21 22 ก (Linear Vibration) กXBBGOEFGYTF" (Damped Vibration) #+ก *ก* 1*+ #ก/ก $* "" (/+#/ก4 %/+(). ก3 )-2 )-ก.""* #."2 2 23 ""ก&)ก"/+ ) . # * !ก) *+.) .ก'()+,ก" +#$4 ก/*, ก."",, # กก'.# (Principle of Superposition) 24 กXBBSGTHIH"HP (Nonlinear Vibration) กXBBกYSP (Deterministic Vibration) ""ก&)ก"/+ ) . # * !ก) *+.) .ก'()+()-, ก"+#$4 ก /*, ""* ก/ก+3+.ก'ก3+ก ก /ก4 .*ก'+2ก'#//.(/ #$" 56. & )-70ก6, *. 2ก' 25 CDกFHEYก!"FFกG (Vibration Analysis Procedure) กXBBRTG (Random Vibration) 26 ""* ก/ก+3+.ก'ก3+ก ก /ก4 .*ก'""(ก'#// .(/ 27 ก.""' 6 (Mathematical Modeling) ก#กก $* (Derivation of Governing Equations) ก#8 9 +กก $* (Solution of Governing Equations) ก#68 *(/ (Interpretation of the Results) 28 กP"XBBL#"!"E[ (Mathematical Modeling) กYGกกHE#`!O (Derivation of Governing Equations) ก:"$2""*ก/ก %/+.** /+.""' ก+3 , ..# ก+6ก .""""/+)(spring ) .*'#ก/ก1*+ /+#(damped) .*)-.# 6 /+ (mass) , 9$+ ก.กก 56 ก) *+) ) & (Laplace)s transform) 5*, (Numerical method) Dynamic System Modeling and Analysis, Hung V Vu and Ramin S. Esfandiari, McGraw-Hill 1998 29 30 กFHEYb#!OSP (Interpretation of the Results) กYb#Hc#QGกกHE#`!O (Solution of Governing Equations) .กก $* ""ก".""' * 2&(/# +5* , ก;ก $* ก;กก6 * * * 31 5"+. )8 56*(/ /.*ก' +ก $(# 4, 32 Mathematical Model of Motorcycle Vibration Analysis Procedure ก."' *+*/ • Single-degree of freedom model *./) b. keq {kt , kr , ks }− equivalentstiffness. ceq {cs , cr }− equivalentdamping constant. meq {mr , mv , mw }− equivalent mass r − rider ,t − tires, s −struts , v − vehicle body, w − wheels, 33 Mathematical Model of Motorcycle 34 Mathematical Model of Motorcycle r − rider ,t − tires, s −struts ,v − vehicle body, w − wheels, r − rider ,t − tires, s −struts ,v − vehicle body, w − wheels, 35 36 Mathematical Model of Motorcycle ก ก!"#$ Springs Elements Mass or Inertia Elements Damping Elements r − rider ,t − tires, s −struts ,v − vehicle body, w − wheels, 37 38 Spring Elements Stiffness (N/m) Young’s modulus (N/m²) Density (kg/m³) Shear modulus G(N/m²) Springs in series Springs in parallel ).)ก6/ ""**/#+*, $ก ก+6"" Spring force F = kx k − spring contant or spring stiffness x − displacement(deformation) Potential energy in the spring : 39 U= 1 2 kx 2 40 Springs in Parallel Springs in Series 1. Static of the system (δ st ) Equilibrium equation W = k1δ st + k 2δ st δ st = δ1 + δ 2 2. Equilibrium equation W = k1δ1 W = keqδ st W = k2δ 2 where keq = k1 + k 2 3. keq for the same static deflection W = keqδ st k1δ1 = k 2δ 2 = keqδ st or Equivalent spring constant (keq ) in parallel Equivalent spring constant (keq ) in series keq = k1 + k 2 + k3 + ⋯ + k n 1 1 1 1 1 = + + +⋯+ keq k1 k 2 k3 kn δ1 = that is, keqδ st k1 , δ2 = keqδ st k2 1 1 1 = + keq k1 k 2 41 42 Damping Elements EX: Springs in Parallel shear modulus G = 80 ×109 N m 2 mean coil diameter D = 20 cm wire diameter d = 2 cm The stiffness of helical spring is given by ( #$ก#$/ (Viscous Damping) #$ก.*+/#.4ก".4 (Dry Friction or Coulomb Damping) #$ก(+/$ #+/ (Hysteretic Damping or Structural Damping) ) d 4G (0.02 ) 80 ×109 = 40,000 N m k= 3 8D 3n 8(0.2 ) 5 4 The equivalent spring constant of the suspension system is given by keq = 3k = 3 × 40,000 = 120,000 N m 43 44 Viscous Damping Damping All real systems dissipate energy when they vibrate. To account for this we must consider damping. The most simple form of damping (from a mathematical point of view) is called viscous damping. A viscous damper (or dashpot) produces a force that is proportional to velocity. Mostly a mathematically motivated form, allowing a solution to the resulting equations of motion that predicts reasonable (observed) amounts of energy dissipation. Damper (c) x f c = −cv(t ) = −cxɺ (t ) fc 45 46 Viscous Damping Equivalentdampingconstant (ceq ) in series 1 1 1 1 = + +⋯ ceq c1 c2 cn Damper Damping coefficient Critical damping coefficient Damping ratio Equivalentdampingconstant (ceq ) in parallel ceq = c1 + c2 + ⋯ + c3 47 48 Ex: Horizontal milling machine Underdamped Motion Overdamped Motion Critically Damped Motion 49 Ex: Horizontal milling machine 50 Ex: Horizontal milling machine Fs = keq x Fsi = ki x ; i = 1,2,3,4 Fdi = ci xɺ ; i = 1,2,3,4 Fd = ceq xɺ Fs = Fs1 + Fs 2 + Fs 3 + Fs 4 Fd = Fd1 + Fd 2 + Fd 3 + Fd 4 where keq = k1 + k2 + k3 + k4 ceq = c1 + c2 + c3 + c4 Fs + Fd = W − total vertical force G − center of mass , Fsi − forces acting on the springs , Fdi − forces acting on the dampers Fs − forces acting on all the springs , Fd − forces acting on all the dampers 51 52 Newton’s second law Conservation of Energy Potential Energy Kinetic Energy Natural frequency 53
Similar documents
Oral Sessions Agenda Life Sciences I
Oral Session Takara, Life Sciences VI Lunch Time Oral Session Suehiro, Literature Oral Session Koubai, Management II Oral Session Hagoromo, Material Sciences and Engineering III Oral Session Nishik...
More information