Mechanical_Vibration..

Transcription

Mechanical_Vibration..
Jiraphon Srisertpol, Ph.D
School of Mechanical Engineering
Recommended reading :
... ก : ก!"ก#, Pearson Education
Indochina 2545
Singiresu S.Rao : Mechanical Vibration (Fourth Edition) ,Prentice Hall
2004. SI Edition
Leonard Meirovitch : Fundamentals of Vibrations , Mc-Graw Hill 2001.
Kelly S. Graham : Fundamentals of Mechanical Vibrations,
Mc-Graw Hill 2000.
1
2
Introduction to Vibration and The
Free Response
The Spring-Mass model
Single –degree of freedom
Simple harmonic motion
Relationship between Displacement, Velocity
and Acceleration
Representations of harmonic motion
3
School of Mechanical Engineering
4
The Vibration of a Fixed-Fixed String
School of Mechanical Engineering
5
The main mass and dynamic absorber at three
frequencies.
6
Vibration Characteristics of a
Spring
7
8
Fundamental Torsional Mode of a
Valve Support Stand
Deflected Elastomer Shock
Isolation
9
Structural Vibration
10
!"#$%&'ก)*+ก,!)-.&'%&'ก)/0.$1'2*ก))
11
กกก
!กก"" #$% &'()*+#+
,)-.กก.""ก"ก .
ก/"ก
ก.ก)01#ก*ก/2 ก"% #$""
12
กกกก
กกกก
#BCDEFGHI (Degree of Freedom, DOF) - LF
Mก(Coordinate) !OPQ!OR!OSGTCUDTกVU"LHIP"WP
BQXYT"T"Z C"!RกTFWBB!OC[HF#YU"
Single degree of freedom system
13
14
Three degree of freedom system
Two degree of freedom system
15
16
Infinite number of degree of freedom
system
กกกก
Discrete System (Lumped System)-""*ก'#/ก
$(#(//+
'/"2*'ก/#
Continuous System (Distributed System)- ""* *
'/"2)-
('ก/
17
ก (Free Vibration)
กกก
18
ก."" (Free Vibration)
ก."""" (Forced Vibration)
ก.""(*# (Undamped Vibration)
ก.""*# (Damped Vibration)
ก."", (Linear Vibration)
ก.""(, (Nonlinear Vibration)
ก.""ก'#/(/ (Deterministic Vibration)
ก."" (Random Vibration)
19
$ก""
ก*#
ก*ก"ก""*# +/
+*//
2.ก $'#ก/ก2.
ก2/'
()%/+(*.ก3+กก'ก"""*ก
+
ก"ก"")-ก'#ก/ก/ #$'#ก/
4#$2 .""ก
20
กXBBSGTGOEFGYTF"
(Undamped Vibration)
กXBBB"EB (Forced Vibration)
$ก""3+.ก'ก3+ก &.ก'ก3+ก*2
)-.
ก&2'#$(&2'ก4(/
ก
ก*2 , ก$ก(/
$ก*ก/ก
#
*
ก.""*2() ก"*5,"" ก*2*
ก**,ก (amplitude) ก* ก *+กก
ก*2
ก (Resonance)
#+ก*(*ก1*+ #ก"./
"" (+
).*+/ #$.$/
$""
$*.""(*#'# ""#
ก
$**2**
ก*(*#""ก/2(/ก2
ก.""(*#.
ก.""*""*+ก
*5, (Natural Frequency)
21
22
ก (Linear Vibration)
กXBBGOEFGYTF" (Damped Vibration)
#+ก *ก* 1*+ #ก/ก
$*
"" (/+#/ก4
%/+().
ก3 )-2 )-ก.""*
#."2 2
23
""ก&)ก"/+ ) .
# *
!ก)
*+.)
.ก'()+,ก"
+#$4 ก/*,
ก."",, #
กก'.#
(Principle of Superposition)
24
กXBBSGTHIH"HP (Nonlinear Vibration)
กXBBกYSP (Deterministic Vibration)
""ก&)ก"/+ ) .
# *
!ก)
*+.)
.ก'()+()-,
ก"+#$4 ก /*,
""* ก/ก+3+.ก'ก3+ก
ก
/ก4 .*ก'+2ก'#//.(/
#$" 56. & )-70ก6,
*.
2ก'
25
CDกFHEYก!"FFกG
(Vibration Analysis Procedure)
กXBBRTG (Random Vibration)
26
""* ก/ก+3+.ก'ก3+ก
ก
/ก4 .*ก'""(ก'#//
.(/
27
ก.""'
6 (Mathematical Modeling)
ก#กก
$* (Derivation of Governing Equations)
ก#8
9
+กก
$* (Solution of Governing Equations)
ก#68
*(/ (Interpretation of the Results)
28
กP"XBBL#"!"E[
(Mathematical Modeling)
กYGกกHE#`!O
(Derivation of Governing Equations)
ก:"$2""*ก/ก %/+.**
/+.""'
ก+3 ,
..#
ก+6ก .""""/+)(spring )
.*'#ก/ก1*+ /+#(damped)
.*)-.#
6 /+ (mass) , 9$+
ก.กก 56
ก)
*+)
)
& (Laplace)s transform)
5*,
(Numerical method)
Dynamic System Modeling and Analysis, Hung V Vu and Ramin S. Esfandiari,
McGraw-Hill 1998
29
30
กFHEYb#!OSP
(Interpretation of the Results)
กYb#Hc#QGกกHE#`!O
(Solution of Governing Equations)
.กก
$* ""ก".""'
*
2&(/#
+5* ,
ก;ก
$*
ก;กก6 *
*
*
31
5"+.
)8
56*(/
/.*ก'
+ก
$(#
4, 32
Mathematical Model of
Motorcycle
Vibration Analysis Procedure
ก."'
*+*/
•
Single-degree of freedom model *./) b.
keq {kt , kr , ks }− equivalentstiffness.
ceq {cs , cr }− equivalentdamping constant.
meq {mr , mv , mw }− equivalent mass
r − rider ,t − tires, s −struts , v − vehicle body, w − wheels,
33
Mathematical Model of
Motorcycle
34
Mathematical Model of
Motorcycle
r − rider ,t − tires, s −struts ,v − vehicle body, w − wheels,
r − rider ,t − tires, s −struts ,v − vehicle body, w − wheels,
35
36
Mathematical Model of
Motorcycle
ก ก!"#$
Springs Elements
Mass or Inertia Elements
Damping Elements
r − rider ,t − tires, s −struts ,v − vehicle body, w − wheels,
37
38
Spring Elements
Stiffness (N/m)
Young’s modulus (N/m²)
Density (kg/m³)
Shear modulus G(N/m²)
Springs in series
Springs in parallel
).)ก6/ ""**/#+*, $ก ก+6""
Spring force
F = kx
k − spring contant or spring stiffness
x − displacement(deformation)
Potential energy in the spring :
39
U=
1 2
kx
2
40
Springs in Parallel
Springs in Series
1. Static of the system (δ st )
Equilibrium equation
W = k1δ st + k 2δ st
δ st = δ1 + δ 2
2. Equilibrium equation W = k1δ1
W = keqδ st
W = k2δ 2
where keq = k1 + k 2
3. keq for the same static deflection
W = keqδ st
k1δ1 = k 2δ 2 = keqδ st
or
Equivalent spring constant (keq ) in parallel
Equivalent spring constant (keq ) in series
keq = k1 + k 2 + k3 + ⋯ + k n
1
1 1 1
1
= + + +⋯+
keq k1 k 2 k3
kn
δ1 =
that is,
keqδ st
k1
, δ2 =
keqδ st
k2
1
1 1
= +
keq k1 k 2
41
42
Damping Elements
EX: Springs in Parallel
shear modulus G = 80 ×109 N m 2
mean coil diameter D = 20 cm
wire diameter d = 2 cm
The stiffness of helical spring is given by
(
#$ก#$/ (Viscous Damping)
#$ก.*+/#.4ก".4 (Dry
Friction or Coulomb Damping)
#$ก(+/$ #+/ (Hysteretic Damping or
Structural Damping)
)
d 4G (0.02 ) 80 ×109
=
40,000 N m
k=
3
8D 3n
8(0.2 ) 5
4
The equivalent spring constant of the suspension system is given by
keq = 3k = 3 × 40,000 = 120,000 N m
43
44
Viscous Damping
Damping
All real systems dissipate energy when they vibrate. To
account for this we must consider damping. The most simple
form of damping (from a mathematical point of view) is called
viscous damping. A viscous damper (or dashpot) produces a
force that is proportional to velocity.
Mostly a mathematically motivated form, allowing
a solution to the resulting equations of motion that predicts
reasonable (observed) amounts of energy dissipation.
Damper (c)
x
f c = −cv(t ) = −cxɺ (t )
fc
45
46
Viscous Damping
Equivalentdampingconstant (ceq ) in series
1 1 1
1
= + +⋯
ceq c1 c2
cn
Damper
Damping coefficient
Critical damping coefficient
Damping ratio
Equivalentdampingconstant (ceq ) in parallel
ceq = c1 + c2 + ⋯ + c3
47
48
Ex: Horizontal milling machine
Underdamped Motion
Overdamped Motion
Critically Damped Motion
49
Ex: Horizontal milling machine
50
Ex: Horizontal milling machine
Fs = keq x
Fsi = ki x ; i = 1,2,3,4
Fdi = ci xɺ ; i = 1,2,3,4
Fd = ceq xɺ
Fs = Fs1 + Fs 2 + Fs 3 + Fs 4
Fd = Fd1 + Fd 2 + Fd 3 + Fd 4
where
keq = k1 + k2 + k3 + k4
ceq = c1 + c2 + c3 + c4
Fs + Fd = W − total vertical force
G − center of mass , Fsi − forces acting on the springs , Fdi − forces acting on the dampers
Fs − forces acting on all the springs , Fd − forces acting on all the dampers
51
52
Newton’s second law
Conservation of Energy
Potential Energy
Kinetic Energy
Natural frequency
53

Similar documents

Oral Sessions Agenda Life Sciences I

Oral Sessions Agenda Life Sciences I Oral Session Takara, Life Sciences VI Lunch Time Oral Session Suehiro, Literature Oral Session Koubai, Management II Oral Session Hagoromo, Material Sciences and Engineering III Oral Session Nishik...

More information