Memories general view - Moodle
Transcription
Memories general view - Moodle
Memories Microelectronic for System On Chip R. Beuchat LAP-EPFL rene.beuchat@epfl.ch 1998-2015 R.Beuchat / Memories 1 General classification of electronic memories Volatile Memories Non-volatile Memories Static RAM (RAM/SRAM) ROM PROM EPROM EEPROM Flash EPROM E lectrically E rasable P rogrammable R ead O nly M emory S tatic S ynchronous Dynamic RAM (DRAM/SDRAM, DDR) NVRAM D ynamic NonVolatile RAM R andom A ccess M emory MRAM Magnetoresistive RAM S ynchronous D ual D ata R ate Z-RAM (Zero transistor) 1998-2015 R.Beuchat / Memories 3 Objectives Understanding of the different kinds of memories on the market Understanding the internal architecture of memories Understanding of the access protocol to control them 1998-2015 R.Beuchat / Memories 4 Memory Model Random Access Memory : at Address DATA Address 0x00 0000 0000 0110 1101 0x01 0000 0001 0100 0101 0000 0010 0010 1111 0000 0011 1101 0101 0000 0100 0110 1001 . . . . . . . . 0111 1011 0x7F 1998-2015 Data: Content 1010 1101 0111 1100 0011 1000 0111 1101 1100 0101 0111 1110 1010 1001 0111 1111 0111 1010 R.Beuchat / Memories Write Read 5 Content Non Volatile Memories Volatiles Memories : Static Volatiles Memories : Dynamic Asynchronous Synchronous Dual Data Rate RamBus Evolution / Market 1998-2015 R.Beuchat / Memories 6 Non Volatile Memories 1998-2015 R.Beuchat / Memories 7 Non-volatile Memories Non-volatile Memories Content will NOT BE LOST when Power is turn Off Content is NOT changeable or at the price of special manipulation or programming algorithm 1998-2015 R.Beuchat / Memories 8 Non-volatile Memories Non-volatile Memories ROM Content write at factory PROM Programmable ONE time by user EPROM Programmable by user and Erasable by UltraViolet light (window) !! Need to be removed from board to a UV eraser !! Need specific programming equipment OTP (One time Programmable) same technology but, without window not erasable EEPROM Electrically Erasable no windows, can be programmed in situ (on board) but high price Flash EPROM Erasable and programmable on board by block (page) USED on (almost) every device NOW 1998-2015 R.Beuchat / Memories 9 Flash EPROM basic Used a floating gate to memorized the information Erasable/Writable by page Density Mirror bit technology to memorize 2-4 bits per memory cell 1998-2015 http://www.spansion.com/flash_memory_technology/index.html R.Beuchat / Memories 10 Flash EPROM conventional (Spansion/Amd) 1998-2015 R.Beuchat / Memories 11 Flash EPROM conventional (Spansion/Amd) 1998-2015 R.Beuchat / Memories 12 Flash EPROM MirrorBit technology to memorize 2-4 bits per memory cell toward 1Gb memory chip Ex.: new Spansion memories 1998-2015 R.Beuchat / Memories 13 Flash EPROM parallel (symbol) Typical signals 1998-2015 R.Beuchat / Memories 14 Flash EPROM serial (symbol) http://www.spansion.com/products/S30MS-P.html No address Serial access to the data Command to address a specific data 1998-2015 R.Beuchat / Memories 15 Flash EPROM Programming need a specific algorithm to be implemented by specific software on the microprocessor using the memory In programming process, the data bus in reading cycle provide STATUS information 1998-2015 R.Beuchat / Memories 16 Flash EPROM Read timing 1998-2015 R.Beuchat / Memories 17 Flash EPROM Read timing, page mode 1998-2015 R.Beuchat / Memories 18 Flash EPROM (Programming timing) 1998-2015 R.Beuchat / Memories 19 Flash EPROM (Erase) 1998-2015 R.Beuchat / Memories 20 Flash EPROM Programming by specific algorithms, proprietary or CFI (Compact Flash Interface) 1998-2015 R.Beuchat / Memories 21 Flash EPROM (status information) 1998-2015 R.Beuchat / Memories 22 Flash EPROM serial (symbol) Big array to memorize the information Transfer to a read/write area Serial (consecutive) access in this area 1998-2015 R.Beuchat / Memories 23 Flash EPROM serial (read access) 1998-2015 R.Beuchat / Memories 24 Flash EPROM serial (column read access) 1998-2015 R.Beuchat / Memories 25 Flash EPROM serial 1bit SPI 1998-2015 R.Beuchat / Memories 26 Flash EPROM serial 1bit SPI Serial transfer line : Synchronous Peripheral Interface Transfers are done by command/data on SO, SI line Synchronously with SCK (Clock) when CS* activated 1998-2015 R.Beuchat / Memories 27 MRAM Magneto resistive random access memory Use electrical field to change Magnetic direction 0, 1 value Same interface as SRAM (x16) 4 Mb (256kx16) Freescale 2Mb (128kx16) 1Mb (64kx16) 35ns TSOP-44 http://www.freescale.com/files/memory/doc/fact_sheet/ BRMRAMSLSCLTRL.pdf 1998-2015 R.Beuchat / Memories 28 MRAM Announced to be the replacement of SRAM/Flash/DRAM !! Not today We can dream Today : 35 ns access cycle (not bad, DDR : few ns) 4 Mb (too small, SDRAM Gb : factor of 1000!) No refresh (very nice) Could replace medium SRAM/Flash 1998-2015 R.Beuchat / Memories 29 MRAM NVE http://www.nve.com/mrampapers.php A lot of research in this area 1998-2015 R.Beuchat / Memories 30 Volatile Memories Static Memories 1998-2015 R.Beuchat / Memories 31 RAM memories classification (RAM: Static Dynamic RAM Asynchronous SRAM Synchronous Ram Flow Through Pipeline SyncBurst Flow-through Pipelined Late Write Latched Pipelined ZBT, NoBL QDR Cache Tag memory 1998-2015 Random Access Memory) DRAM Nibble mode Static Column Mode Page Mode Fast Page Mode (FPM) EDRAM Extended Data Out (EDO) VRAM DRAM synchronous R.Beuchat / Memories SDRAM SLDRAM SGRAM DDR-I, DDR-II SDRAM DDR SGRAM RamBus RDRAM 32 Asynchronous RAM Address Address Bus Data Bus Control Bus /CS: Selection /Wr: Write Access /OE: Read Access (Output Enable) CS Wr OE Adr. /CS /Wr /OE Data 1998-2015 Data (x4, x8) R.Beuchat / Memories 33 RAM inside A bit of static memory: 5-6 Transistors/bit of memory Here Address mean that it is the validated address of the bit to write : • Address and CS and WR 1998-2015 R.Beuchat / Memories 34 Asynchronous RAM x16 Address Bus Data Bus Control Bus Address /CS: Selection /Wr: Write Access /OE: Read Access (Output Enable) /BHE: Byte High Enable /BLE: Byte Low Enable CS Wr OE BHE BLE Available size 512k x 16 Access time ~50-70 ns Data (x16) 1998-2015 R.Beuchat / Memories 35 Asynchronous RAM x16 Byte access with: /BHE(15..0) /BLE (7..0) Example Cypress IDT 71V416 Follow the Gate Logic… 1998-2015 R.Beuchat / Memories 36 Synchronous static Memory Clk synchronization access All signals timing referenced by Clk edge Less timing to validate State machine design Main use in cache memory Version : Flow-through Pipeline Read-Write Cycle : Asymmetric Symmetric ZBT Zero Bus Turnaround, NoBL, No Bus Latency 1998-2015 R.Beuchat / Memories 37 SRAM Pipeline/Flow through "High performance", Clk 250MHz 72Mbits (x16, x18, x36, x38, x72, data bus size) 3.3V, 2.5V power supply Access time from Clk data 3.5ns Burst Mode (/ADV actif) Interlaced (/LBO = H) Linear (/LBO=L) Write Global Write Separated, global Enable TQFP 100 pins (x18, x36), BGA (x36, x72) Power down, pin ZZ Address Register Data Input Register Data Output Register (pipeline) on some devices 1998-2015 R.Beuchat / Memories 38 Synchronous SRAM Flow-Through Ex: 32kx32 IDT 71V433 CLK Clock Input Input A14-A0 Address Inputs Input Synchronous /CE CS0, /CS1 Chip Enable Chips Selects Input Input Synchronous Synchronous /OE Output Enable Input Asynchronous /GW /BWE /BW1-/BW4 Global Write Enable Byte Write Enable Individual Byte Write Selects Input Input Input Synchronous Synchronous Synchronous /ADV /ADSC /ADSP /LBO Burst Address Advance Address Status (Cache Controller) Address Status (Processor) Linear / Interleaved Burst Order Input Input Input Input Synchronous Synchronous Synchronous DC I/O31-I/O0 Data Input/Output I/O Synchronous ZZ Sleep Mode Input Asynchronous 1998-2015 R.Beuchat / Memories 39 Synchronous SRAM Flow-Through Ex: 32kx32 IDT71V433 1998-2015 R.Beuchat / Memories 40 Synchronous SRAM Pipeline Ex: 32kx32 IDT71V432 Cache Ram Clock 100MHz 1998-2015 R.Beuchat / Memories Pentium, PowerPC 41 Synchronous SRAM Flow-Through Processor access 1998-2015 R.Beuchat / Memories Cache ctrl access 42 Synchronous SRAM Flow-Through 1998-2015 (Burst Read, IDT 71V433) R.Beuchat / Memories 43 Synchronous SRAM Flow-Through (Burst Write, IDT71V433) 1998-2015 R.Beuchat / Memories 44 Synchronous SRAM Flow-Through (IDT 71V433) 1998-2015 R.Beuchat / Memories 45 SRAM Pipeline Ex: IDT71V432 32kx32 Cache Ram Clock 100MHz (Read/Write) 1998-2015 R.Beuchat / Memories 46 SRAM Pipeline Ex: IDT71V432 32kx32 Cache Ram Clock 100MHz, read 1998-2015 R.Beuchat / Memories 47 SRAM SyncBurst Idem SRAM synchrone Mode Burst Pipeline/Flow-through Data at the same time than the address in write cycle Data 2 or 1 clock after the address in writing cycle 1998-2015 R.Beuchat / Memories 48 SRAM ZBT, NoBL ZBT : Zero Bus Turnaround NoBL : No Bus Latency Same delay for read and write : Flow-through Pipeline 1 clk 2 clk Manufacturer proprietary name, Same function, same package Compatible 1998-2015 R.Beuchat / Memories 49 SRAM ZBT, NoBL Flow Through 1998-2015 Pipeline R.Beuchat / Memories 50 SRAM ZBT Pin A16..0 Address Inputs Input Synchronous /CE1, CE2, /CE2 Three Chip Enables Input Synchronous /OE Output Enable Input Asynchronous R/W Read / Write Signal Input Synchronous /CEN Clock Enable Input Synchronous /BW1, /BW2, /BW3, /BW4 Byte Write Selects Input Synchronous CLK Clock Input N/A ADV//LD Advance burst address / Load new address Input Synchronous /LBO Linear / Interleaved Burst Order Input Static I/O0-I/O31, I/OP1-I/OP4 Data Input / Output I/O Synchronous VDD 3.3V Power Supply Static VSS Ground Supply Static 1998-2015 R.Beuchat / Memories 51 SRAM ZBT Flow-through Pipeline 1998-2015 R.Beuchat / Memories 52 SRAM ZBT pipeline vs SRAM pipeline 1998-2015 R.Beuchat / Memories 53 QDR Quad Data Rate 2 Clk C and K Data transfers on each clock edge Data Bus: In / Out separated 2 Address Bus 1998-2015 R.Beuchat / Memories 54 QDR Quad Data Rate 1998-2015 R.Beuchat / Memories 55 Volatile Memories Dynamic Memories 1998-2015 R.Beuchat / Memories 56 DRAM (asynchronous basic memory) Main characteristics: Dynamic Memory Rom/Column Organization Control signals: /RAS, /CAS, /WR, (/OE) Burst access possibilities: Nibble mode Static Column Mode Page Mode Fast Page Mode (FPM) Extended Data Out (EDO) 1998-2015 R.Beuchat / Memories 57 DRAM Memorization elements All acceded on a row at the same time Power consummation 1998-2015 R.Beuchat / Memories 58 DRAM multiplexed Addresses: Row/Column 1998-2015 R.Beuchat / Memories 59 DRAM multiplexed Addresses: Row/Column 1998-2015 R.Beuchat / Memories 60 DRAM Data Bus : Separated In/Out Bi-directional 1998-2015 R.Beuchat / Memories 61 DRAM Memories controller Processor interface : Address multiplexer 1998-2015 R.Beuchat / Memories 62 DRAM, circuits multiples Control signals organization on a memory module Ex: 32 bits data bus width, with parity 1998-2015 R.Beuchat / Memories 63 DRAM read access 1998-2015 R.Beuchat / Memories 64 DRAM write access 1998-2015 R.Beuchat / Memories 65 DRAM late write 1998-2015 R.Beuchat / Memories 66 DRAM Read-Modify-Write 1998-2015 R.Beuchat / Memories 67 DRAM Precharge time Between 2 access there is the recovery time The vertical (column) lines are precharge to an intermediate voltage When access to the memory is done, the driver is less stressed to transfer the high/low logical level This take time !! ~30-50 ns 1998-2015 R.Beuchat / Memories 68 DRAM Refresh The memory need to be refreshed to maintain its content Particular Cycles : RAS only CAS before RAS Hidden refresh 1998-2015 R.Beuchat / Memories 69 DRAM Refresh 1998-2015 R.Beuchat / Memories 70 DRAM Refresh 1998-2015 R.Beuchat / Memories 71 DRAM Refresh 1998-2015 R.Beuchat / Memories 72 DRAM Accès multiples, page Page mode 1998-2015 R.Beuchat / Memories 73 DRAM Accès multiples, nibble Nibble mode 1998-2015 R.Beuchat / Memories 74 DRAM Accès multiples, static column Static column mode 1998-2015 R.Beuchat / Memories 75 DRAM Accès multiples, static column Static column mode 1998-2015 R.Beuchat / Memories 76 DRAM Accès multiples, EDO EDO 1998-2015 R.Beuchat / Memories 77 VRAM (Video RAM) Asynchronous Dynamic Memory Added "Serial Register" Transfer between Dynamic array and serial line Independent serial transfers 1998-2015 R.Beuchat / Memories 78 VRAM (Video RAM) Ex: 1998-2015 First VRAM 64k x 4, 4 serial bits R.Beuchat / Memories 79 VRAM (Video RAM) simple model 1998-2015 R.Beuchat / Memories 80 VRAM parallel register+counter+mux 1998-2015 R.Beuchat / Memories 81 VRAM parallel register+counter+mux The serial register is build from a parallel register the full content of the selected line (Row) is transferred in a large register During the column phase, the address is transferred in a counter: the start address of the line The counter select a multiplexer, thus the parallel register is transform in a serial register! 1998-2015 R.Beuchat / Memories 82 SDRAM Synchronous Dynamic RAM 1998-2015 R.Beuchat / Memories 83 SDRAM (Synchronous DRAM) synchronous DRAM Memories 16 Mbits..256 Mbits x4, x8, x16, x32 3.3V, 2.5V 1.8V Clk 200MHz 2 Banks / 4 Banks PC100 SDRAM standard Command ACTIVE to send with the Row and Bank address Read, Write Command with Column address Concurrent Precharge between 2 banks 1998-2015 R.Beuchat / Memories 84 SDRAM Clock to synchronized every signals Internal Pipeline New column address possible in every transfer cycle Internal banks available to shadow the precharge Self-refresh (Self-Refresh command ) 1998-2015 R.Beuchat / Memories 85 SDRAM Bank0 Bank1 1998-2015 R.Beuchat / Memories 86 SDRAM 1998-2015 R.Beuchat / Memories 87 SDRAM 1998-2015 R.Beuchat / Memories 88 SDRAM Cas Latency (CL) Read cycle 1998-2015 R.Beuchat / Memories 89 SDRAM Write data with command CL=3 1998-2015 R.Beuchat / Memories 90 SDRAM CL=2 1998-2015 R.Beuchat / Memories 91 SDRAM 4 banks ex: IS42S32800B Nb row (12) ≠ Nb Column(9) 4 banks x32 bits width (4x8bits) 256 Mbits : 4 x 2M x 32 Masked by DQM<3..0> 1998-2015 R.Beuchat / Memories 92 SDRAM 4 banks ex: IS42S32800B See the full documentation For all specific timings relationships http://www.issi.com/pdf/42S32800B.pdf 1998-2015 R.Beuchat / Memories 93 Module DIMM SDRAM Module DIMM 100-Pin Bus x32 Synchronous SDRAM Memory 1998-2015 R.Beuchat / Memories 94 SDRAM (x32, x36) 1998-2015 R.Beuchat / Memories 95 SDRAM (x64, x72) 1998-2015 R.Beuchat / Memories 96 PC100 SDRAM DIMM Dual In Line Memory module Specification from Intel for DIMM 100MHz EEPROM memory on the module for the specification of the DIMM SPD : Serial Presence detect Specification for memory from 64Mbytes to 1024 Mbytes (1GBytes) Module without buffer Module with register to be used with up to 36 chips Old specification (historical) 1998-2015 R.Beuchat / Memories 97 SGRAM Synchronous Graphic RAM 128kx32, 256kx32, 512kx32 Synchronous Double banque Burst 1, 2, 4, 8 ou pleine page Block Write, Write par bit Auto precharge, auto refresh 3.3V 1998-2015 R.Beuchat / Memories 98 SGRAM Synchronous Graphic RAM 1998-2015 R.Beuchat / Memories 99 SGRAM 1998-2015 R.Beuchat / Memories 100 SGRAM 1998-2015 R.Beuchat / Memories 101 Graphics Memory GDDR Features 1998-2015 2.2V +/-0.1V VDD/VDDQ power supply supports 900 / 800MHz 2.0V VDD/ VDDQ wide range min/max power supply supports 700MHz 1.8V VDD/ VDDQ wide range min/max power supply supports 500 / 600MHz Single ended READ Strobe (RDQS) per byte Single ended WRITE Strobe (WDQS) per byte Internal, pipelined double-data-rate (DDR) architecture; two data accesses per clock cycle Calibrated output driver Differential clock inputs (CK and CK#) Commands entered on each positive CK edge RDQS edge-aligned with data for READ; with WDQScenter-aligned with data for WRITE Eight internal banks for concurrent operation Data mask (DM) for masking WRITE data 4n prefetch Programmable burst lengths: 4, 8 32ms, 8K-cycle auto refresh Auto precharge option Auto Refresh and Self Refresh Modes 1.8V Pseudo Open Drain I/O Concurrent Auto Precharge support tRAS lockout support, Active Termination support Programmable Write latency(1, 2, 3, 4, 5, 6) Boundary Scan Feature for connectivity test(refer to JEDEC std., not in this version of Specifications) R.Beuchat / Memories 102 Graphics Memory 1998-2015 R.Beuchat / Memories 103 DDR Dual Data Rate http://wccftech.com/micron-compete-samsung-16-nm-dram/ 1998-2015 R.Beuchat / Memories 104 DDR Dual Data Rate DDR-I PC1600 = DDR 200MHz Data-rate (100 Clk x 2) 1.6Gb/Sec PC2100 = DDR 266MHz Data-rate (133 Clk x 2) 2.1Gb/Sec PC2400 = DDR 300MHz Date-rate (150 Clk x 2) 2.4Gb/Sec PC2700 = DDR 333MHz Data-rate (166 Clk x 2) 2.7Gb/Sec PC3000 = DDR 366MHz Data-rate (183 Clk x 2) 3.0Gb/Sec PC3200 = DDR 400MHz Data-rate (200 Clk x 2) 3.2Gb/Sec DDR-II PC4300 = DDR 533MHz Data-rate (266 Clk x 2) 4.3Gb/Sec 1998-2015 R.Beuchat / Memories 105 Clock in Synchronous DRAM SDRAM Clock: rising edge only DDR Clock: both edge internal bus size = 2* external internal f = 1/2 *ext. f DDR2 Clock: both edge internal bus size = 4* external internal f = 1/4 *ext. f 1998-2015 R.Beuchat / Memories 106 DDR Clock use SDRAM / DDR are synchronous DRAM SDRAM are working on rising-edge only DDR are working on both edge of the clk for the burst data transfer on the same row of a bank They are external clk and internal clk Internal bus width can is growing with new generation 1998-2015 R.Beuchat / Memories 107 Clk SDRAM http://www.elpida.com/pdfs/E0437E40.pdf 1998-2015 R.Beuchat / Memories 108 Clk DDR http://www.elpida.com/pdfs/E0437E40.pdf 1998-2015 R.Beuchat / Memories 109 Clk DDR2 http://www.elpida.com/pdfs/E0437E40.pdf 1998-2015 R.Beuchat / Memories 110 DDR Dual Data Rate Synchronization for data transfers : DQs Burst transfer on 2 edges of DQs Synchronization with DQs : DQs provided by the memory controller in write cycle DQs provided by the memory in read cycle DQs propagate in the same direction as data DDR : power supply 2.5V DDR-II : power supply 1.8V, ODT (On Die Termination) DDR-III : power supply 1.5V, ODT Data bus termination Vtt = Valim/2 1998-2015 R.Beuchat / Memories 112 DDR Dual Data Rate 1998-2015 R.Beuchat / Memories 113 DDR signaling http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 114 DDR signaling http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 115 DDR signaling The SSTL_2 input receiver is typically a differential pair common source amplifier. This receiver provides better gain and bandwidth, and the variation in threshold voltage is much tighter, since the threshold voltage offset is determined by identical size and technology transistors in a differential pair configuration. The result is that smaller input signal swings can be used reliably. Many variations and enhancements to this input receiver topology are in use today. http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 116 DDR signaling Double terminated output Single terminated output http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 117 DDR signaling VRef divider and filter http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 118 VTT PCB http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 119 VTT PCB ML6554 Bus terminator Power http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 1998-2015 R.Beuchat / Memories 120 VTT PCB ML6554 Bus terminator Power 1A – 3A !! ~55°C 1998-2015 R.Beuchat / Memories http://www.fairchildsemi.com/ms/MS/MS-6500.pdf 121 DDR Dual Data Rate 1998-2015 R.Beuchat / Memories 122 DDR/RamBus comparison Memory name Clock speed 100MHz Voltage PC100 Type name . PC133 . PC1600 3.3v DDR clock speed . Data Bus & Bandwidth 64-bit, 0.8GB/s 133MHz 3.3v . 64-bit, 1.05B/s DDR200 100MHz 2.5v 200MHz 64-bit, 1.6GB/s PC2100 DDR266 133MHz 2.5v 266MHz 64-bit, 2.1GB/s PC2700 DDR333 166MHz 2.5v 333MHz 64-bit, 2.7GB/s PC3200 DDR400 200MHz 2.5v 400MHz 64-bit, 3.2GB/s PC4200 DDR533 266MHz 2.5v 533MHz 64-bit, 4.2GB/s RDRAM PC800 RDRAM PC1066 RDRAM PC1200 400 400MHz . . 16-bit, 1.6GB/s 533 533MHz . . 16-bit, 2.1GB/s 600 600MHz . . 16-bit, 2.4GB/s 1998-2015 R.Beuchat / Memories 123 SLDRAM (Synchronous Link DRAM ) SLD4M18DR400 4Mx18 (75Mbits) 400MHz rate 800MB/s peak 8 internal banks Burst 4 or 8 Protocol paquet oriented 2 data clock 1 command clock Programmable Delay Read/Wite 2.5V Configuration Register 1998-2015 R.Beuchat / Memories 124 SLDRAM 1998-2015 R.Beuchat / Memories 125 RamBus RDRAM (1989...) 1998-2015 R.Beuchat / Memories 127 RamBus RDRAM 1998-2015 R.Beuchat / Memories 128 RamBus RDRAM 1998-2015 R.Beuchat / Memories 129 RamBus RDRAM 1998-2015 R.Beuchat / Memories 130 RamBus RDRAM 1998-2015 R.Beuchat / Memories 131 RamBus RDRAM 1998-2015 R.Beuchat / Memories 132 RamBus RDRAM 1998-2015 R.Beuchat / Memories 133 RamBus RDRAM 1998-2015 R.Beuchat / Memories 134 RamBus RDRAM 1998-2015 R.Beuchat / Memories 137 RamBus RDRAM 1998-2015 R.Beuchat / Memories 138 RamBus RDRAM 1998-2015 R.Beuchat / Memories 139 RamBus RDRAM 1998-2015 R.Beuchat / Memories 140 RamBus RDRAM 1998-2015 R.Beuchat / Memories 142 RamBus RDRAM 1998-2015 R.Beuchat / Memories 143 RamBus RDRAM 1998-2015 R.Beuchat / Memories 144 RamBus RDRAM 1998-2015 R.Beuchat / Memories 148 RamBus RDRAM 1998-2015 R.Beuchat / Memories 150 RamBus RDRAM 1998-2015 R.Beuchat / Memories 152 RamBus RDRAM 1998-2015 R.Beuchat / Memories 153 Rambus 1998-2015 R.Beuchat / Memories 154 RamBus RDRAM 1998-2015 R.Beuchat / Memories 155 RamBus RDRAM 1998-2015 R.Beuchat / Memories 156 RamBus RDRAM 1998-2015 R.Beuchat / Memories 157 RamBus RDRAM 1998-2015 R.Beuchat / Memories 158 RamBus RDRAM 1998-2015 R.Beuchat / Memories 159 RamBus RDRAM 1998-2015 R.Beuchat / Memories 160 RamBus RDRAM 1998-2015 R.Beuchat / Memories 161 RamBus RDRAM 1998-2015 R.Beuchat / Memories 162 RamBus 1998-2015 R.Beuchat / Memories 163 RamBus 1998-2015 R.Beuchat / Memories 164 RamBus 1998-2015 R.Beuchat / Memories 165 RamBus 1998-2015 R.Beuchat / Memories 166 RamBus 1998-2015 R.Beuchat / Memories 167 RamBus 1998-2015 R.Beuchat / Memories 168 RamBus 1998-2015 R.Beuchat / Memories 169 RamBus 1998-2015 R.Beuchat / Memories 170 RamBus 1998-2015 R.Beuchat / Memories 171 RamBus 1998-2015 R.Beuchat / Memories 172 RamBus 1998-2015 R.Beuchat / Memories 173 RamBus 1998-2015 R.Beuchat / Memories 174 RamBus 1998-2015 R.Beuchat / Memories 175 RamBus 1998-2015 R.Beuchat / Memories 176 RamBus 1998-2015 R.Beuchat / Memories 177 RamBus 1998-2015 R.Beuchat / Memories 185 Some reference Flash: www.cs.washington.edu/homes/diorio/Publications/ CoAuthConfPapers/PaulHasler/Floatgate_dev.pdf www.amd.com www.fujistu.com www.spansion.com www.spansion.com/flash_memory_technology/43704A -Spansion-MirrorBit-Quad-Whitepaper.pdf www.rambus.com www.rambus.com/us/products/rdram/documentation/datasheets.html www.hynix.com www.elpida.com www.issi.com www.issi.com/pdf/42S32800B.pdf 1998-2015 R.Beuchat / Memories 186 Dynamics Memory Evolution 1998-2015 R.Beuchat / Memories 187 Kind of memories for group of applications Computing Memory DDR3 SDRAM DDR2 SDRAM 1Gb 512Mb | 1Gb | 2Gb DDR SDRAM 128Mb | 256Mb | 512Mb DDR2 SDRAM DDR SDRAM SDR SDRAM 256Mb | 512Mb | 1Gb 128Mb | 256Mb | 512Mb 64Mb | 128Mb | 256Mb Consumer Memory UBDIMM UBDIMM | FBDIMM | VLP RDIMM | RDIMM | SODIMM UBDIMM | RDIMM | SODIMM Graphics Memory GDDR SDRAM 256Mb | 512Mb DDR2 SDRAM 256Mb | 512Mb GDDR3 SDRAM 256Mb | 512Mb Mobile Memory Mobile SDR Mobile DDR PSRAM 256Mb | 512Mb 256Mb | 512Mb Small Block Large Block 128Mb | 256Mb | 512Mb | 1Gb 1Gb | 2Gb | 4Gb | 8Gb | 16Gb | 32Gb NAND Flash 1998-2015 R.Beuchat / Memories 188 Computing Memory 16Mb 32Mb 64Mb 128Mb 256Mb 512Mb DDR3 1G 2G 4G 8G 16G 32G X X X X X DDR2 X DDR X X X X X X X X X X X X Consumer Memory DDR2 DDR SDRAM X X Graphics Memory GDDR5 GDDR4 GDDR3 X X GDDR2 X X GDDR X X SDR X X DDR X X X X Mobile Memory PSRAM X X X NAND Flash Small Block X Large Block 1998-2015 X X R.Beuchat / Memories 189 Computing Memory DDR3 COMPONENT : 1Gb MODULE : UBDIMM DDR2 COMPONENT : 512Mb | 1Gb | 2Gb MODULE : UBDIMM | FBDIMM | VLP RDIMM | RDIMM | SODIMM DDR COMPONENT : 128Mb | 256Mb | 512Mb MODULE : UBDIMM | RDIMM | SODIMM 1998-2015 R.Beuchat / Memories 190 Consumer Memory 16Mb 64Mb 128Mb 256Mb 512Mb 1Gb x8 SDR DDR X16 3.3V TSOP FBGA X16 x16 x16 x32 x32 x32 x8 x8 x8 x16 x16 x16 x8 x8 x8 x16 x16 x16 2.5V TSOP FBGA x32 DDR2 1.8V TSOP FBGA http://www.hynix.com/gl/products/consumer.jsp?menuNo=1&m=2&s=0 Nov. 2007 1998-2015 R.Beuchat / Memories 191 Graphics Memory 256Mb GDDR GDDR2 GDDR3 GDDR4 512Mb x16 1Gb Fréq. Bank Pack. Voltage 200300MHz 4 TSOPII (66p.) 2.5V x16 x16 300600MHz 4 FBGA (84b.) 1.8V – 2V x32 x32 500MHz1.2GHz 4/8 FBGA (136b.) 1.8V – 2V x32 1.1GHz1.6GHz 8 FBGA (136b.) 1.8V – 2V GDDR5 1998-2015 R.Beuchat / Memories 192 Memories used http://www.elpida.com/en/products/trend.html 1998-2015 R.Beuchat / Memories 193 Memories used http://www.elpida.com/en/products/trend.html 1998-2015 R.Beuchat / Memories 194 Memories used http://www.elpida.com/en/products/trend.html 1998-2015 R.Beuchat / Memories 195 Last New : GDDR5 Hynix Introduces Industry's First 1Gb GDDR5 DRAM DATE 2007/11/15 Seoul, November 15, 2007 - Hynix Semiconductor Inc., (‘Hynix’ or ‘the Company’, www.hynix.com) today introduced the industry’s first 1 Gigabit GDDR5 Graphics DRAM. GDDR, Graphics Double Data Rate, is an ultra high speed Graphics DRAM that processes graphic data in electronic devices such as personal computer and game consoles. As high definition digital media players market continues to expand, demand for high-speed and high density GDDR products is rapidly increasing. The industry’s first 1Gb GDDR5 from Hynix is also the fastest and highest density graphics memory available. It operates at 5Gbps bandwidth and processes up to 20 Gigabytes of data per second with a 32-bit I/O, ideal in applications with high definition video and cinematic and photo-realistic graphics content. A bandwidth of 20 Gigabytes per second offered by the Hynix 1Gb GDDR5 can process more than 20 hours of DVD quality video. The newly introduced GDDR5 is built on the company’s leading edge 66nanometer process technology and designed to minimize power consumption. In addition to its small form factor and power saving characteristics, Hynix’s GDDR5 features time delay adjustments, error correction and jitter control technology enabling more robust system designs. The fifth generation graphics memory GDDR5 improves data processing speed by more than two times than that of GDDR3, the current mainstream graphics DRAM device. With its improved speed and power characteristics, GDDR5 is projected to succeed GDDR3 and dominate the graphics DRAM market from the 2nd half of 2008. Hynix plans to start mass production of GDDR5 in the first half of next year to meet the increasing demand for high performance graphics DRAM. http://www.hynix.com 1998-2015 R.Beuchat / Memories 207 Elpida- DDR2 TOKYO, JAPAN, November 7, 2007 – Elpida Memory, Inc. (Elpida), Japan's leading global supplier of Dynamic Random Access Memory (DRAM), announced today that it has completed development of a 1-Gigabit DDR2 SDRAM based on new 65nm process technology. The 65nm process allows Elpida to create the world's smallest chip products. "The new 65nm process and our own storehouse of design technology have made it possible for the 1Gigabit DDR2 SDRAM to become the world's smallest chip," said Hideki Gomi, Officer of Process Technology. "Given the imminent transition from 512Megabit to 1-Gigabit products, Elpida is now geared up to produce high-performance 1-Gigabit DRAMs at lower cost," he added. http://www.elpida.com/en/news/2007/11-07.html 1998-2015 R.Beuchat / Memories 208 Elpida - XDR ELPIDA INTRODUCES THE WORLD'S FASTEST DRAM BASED ON THE RAMBUS XDR MEMORY ARCHITECTURE 4.8GHz XDR DRAM achieves 6x performance increase over industrystandard DDR2 DRAMs TOKYO, Japan and LOS ALTOS, Calif., October 4, 2007 – Elpida Memory, Inc. (Elpida) (Tokyo Stock Exchange Code 6665), Japan's leading global supplier of Dynamic Random Access Memory (DRAM) and Rambus Inc. (Nasdaq: RMBS), one of the world's premier technology licensing companies specializing in highspeed chip architectures, today introduced the industry's fastest DRAM, the 512 Megabit (Mb), 4.8GHz XDR™ DRAM, based on Rambus' XDR memory architecture. This latest addition to the XDR DRAM family provides an industry-leading data transfer rate of 9.6 Gigabytes per second (GB/s) with a single device, making it an ideal choice for high-performance, high-volume applications such as high-definition televisions (HDTV), gaming consoles, PCs, servers and workstations. http://www.elpida.com/en/news/2007/10-04.html#page_top 1998-2015 R.Beuchat / Memories 209 Elpida - XDR Features of XDR DRAM Highest pin bandwidth 4.8/4.0/3.2Gbps Octal Data Rate (ODR) signaling 4.8/4.0/3.2GHz data rate, octuple the data transfer rate of 600/500/400MHz system clock Bi-directional differential RSL (DRSL) Flexible read / write bandwidth allocation Minimum pin count On-chip termination Reduced system cost and routing complexity Highest sustained bandwidth per DRAM device 9.6GB/s (4.8E), 8.0GB/s (4.0D), 6.4GB/s (3.2A, 3.2B, 3.2C) peak data transfer rate 8 banks: Bank-interleaved transactions at full bandwidth Dynamic request scheduling Early-read-after-write support for maximum efficiency Zero overhead refresh 1.8V VDD Small-swing I/O signaling (DRSL) (200mV) Power-down self-refresh support 104-ball FBGA 15.18mm x 14.56mm Ball-pitch 1.27mm / 0.8mm Low power Package 1998-2015 R.Beuchat / Memories 210 Elpida – XDR internal 1998-2015 R.Beuchat / Memories 212 Exercices Search some explanation for specifics topics on SDRAM/DDR: Prepare un small presentation (10'/groupe) 2 students/group Ppt presentation (or similar) 1 hour to prepare Objective: You are able to search and found particularities of memories and present it. 1998-2015 R.Beuchat / Memories 213 Exercises XDR bus transfers and connection DDR / DDR2 / DDR3 main differences DDR2 / DDR3 DDR4 evolution GDDR3 architecture and capability DDR package evolution chips and modules Precharge and Bank on DDR Access on DDR3 Write-Read-Write access on DDR / DDR2 / DDR3 Read-Write-Read access on DDR3 ODT on DDR2 vs ODT on DDR3 NAND/NOR Flash difference What's new with GDDR5 ? What are FRAM, MRAM, PRAM memory ? 1998-2015 R.Beuchat / Memories 214