usamed-09gb2s silnik servo yaskawa manual
Transcription
usamed-09gb2s silnik servo yaskawa manual
DATASHEET YASKAWA USAMED-09GB2S OTHER SYMBOLS: USAMED09GB2S, USAMED 09GB2S, USAMED-09GB2S RGB ELEKTRONIKA AGACIAK CIACIEK SPÓŁKA JAWNA Jana Dlugosza 2-6 Street 51-162 Wrocław Poland www.rgbelektronika.pl biuro@rgbelektronika.pl +48 71 325 15 05 www.rgbautomatyka.pl www.rgbautomatyka.pl www.rgbelektronika.pl YOUR PARTNER IN MAINTENANCE Repair this product with RGB ELEKTRONIKA LINEAR ENCODERS ORDER A DIAGNOSIS ∠ PLC SYSTEMS INDUSTRIAL COMPUTERS ENCODERS CNC CONTROLS SERVO AMPLIFIERS MOTORS CNC MACHINES OUR SERVICES SERVO DRIVERS POWER SUPPLIERS OPERATOR PANELS At our premises in Wrocław, we have a fully equipped servicing facility. Here we perform all the repair works and test each later sold unit. Our trained employees, equipped with a wide variety of tools and having several testing stands at their disposal, are a guarantee of the highest quality service. Buy this product at RGB AUTOMATYKA BUY ∠ D BULLETIN AC SERVO M, F, S SERIES FOR POSITIONING DRIVES CONTROL SERVOMOTOR TYPES • USAMED, USAFED, USASEM (With Incremental Encoder) SERVOPACK TYPE • CACR-PR[IIIIJBC (Rack-mounted Type) YASKAWA ....o [.-, o 0.._ v < _ M or) M coco CU _.j I"J - I..._ .u -I _, _ ---. _o _ ,... _ rrrl_ -cI ".a_ _ _LO v o _ o0,_ o _x o !4_ -_ [] _ _ nit, _ •ol.n[] _ ×_ ..9 f.._ _ __ Z -_< .. _ _ .-, _ _o._ ._ _ _ ,-,. ,,-, _ ,.,._ V _i _ "-" _ _ t_ _ _=I _ ._-_._._ _ _ x :_ _ • I _ n _. _ L_ _ ,_ _ _ ' Lr_ __ _ L_ _ .- _'- .._ _ _ .. _ _ _ -_ ad [] ,_ _ ... .. __ :_ _ ,h _:8#<._ _ _I, / ,,_ -RI D D as basic AC mechatronics for developed the most Yaskawa Servo Seriesdrive has been advanced FA and FMS. The extensive DC servo manufacturing technology accumulated through a half century of servo drive applications created and nurtured a new phase of AC servo drives, The AC servo drives consist of a flexible combination of our AC SERVOMOTOR and its controller, SERVOPACK. The AC SERVOMOTOR features a high-power rate for achieving quick response. The AC SERVOPACK type CACR-PR{IIIIiBC,_ is designed for integrated construction of Positionpack for digital control (type CPCC-PP100) and positioning AC SERVOPACK for speedcontrol (type CACR-SRIIIIIIBB). servoFordrives stable systems, control operation your achieves mechatronics our AC with high accuracy, quick response control even under adverse environmental conditions. Furthermore, these have succeeded in providing reliable, durable and easy maintenance by various display and protective functions. Some outstanding features are as follows : • High accuracy and quick response for speed control • Rack-mounted type to conserve mounting space ° Easy maintenance by a wide range of display functions •• Highly Selectablereliable driveprotective to suit thefunctions requirement • Applicable to multiaxis applications _7 158 i87-I 56 Type CACR-PR10BC Type CACR-PR30BC D 386-5 Type USAMED-03MA1 Type USAMED-09MA2 Type USAMED-06MA1 386-1 Type USAMED-44MA2 Type USAMED-20MA2 M Series AC Servo Drives for Speed Contol -- AC SERVOMOTORS and Their Controllers SERVOPACKS -- CONTENTS 1. RATINGS AND SPECIFICATIONS 1 ( 6.7 SETTING OF INTERNAL SWITCHES 36 42 1.1 M SERIES AC SERVOMOTORS 1.2 F SERIES AC SERVOMOTORS 1.3 S SERIES AC SERVOMOTORS 1 3 5 6.8 ADJUSTMENT 39 6.9 CHECK TERMINAL 41 6.10 PRECAUTIONS FOR APPLICATION 1.4 RATINGS AND SPECIFICATIONS OF SERVOPACK 7 6.11 6.12 2. TYPE DESIGNATION 8 4.1 4.2 4.3 OF OVERLOAD CHARACTERISTICS STARTING AND STOPPING TIME ALLOWABLE FREQUENCY OPERATION 12 12 12 16 23 6. 1 POWER ON AND OFF 6.2 CONFIGURATION I/O CIRCUIT 23 23 OF 6.3 PROTECTIVE CIRCUIT 31 6.4 CONFIGURATION OF POSITIONING LOOP CONTROL 33 6 5 RESOLUTION OF POSITIONING FEEDBACK PULSE 6.6 DISPLAY 35 35 45 45 in mm (inches) SERVOMOTOR: M SERIES SERVOMOTOR: F SERIES SERVOMOTOR: SSERIES SERVOPACK 57 PERIPHERAL EQUIPMENT 48 48 50 53 AI I 58 59 9.1 CHECK ITEMS BEFORE TEST RUN 9.2 TEST RUN PROCEDURES 59 17 5.4 CONNECTOR TERMINAL(1CN) FOR I/O SIGNAL 18 6. OPERATION 8. DIMENSIONS 9. TEST SUN 5.5 CONNECTOR TERMINAL(2CN)FOR OPTICAL ENCODER(PG)CONNECTION 42 7 1 RECEIVING 45 8.1 8.2 8.3 8.4 8.5 4.4 MOTOR MECHANICAL CHARACTERISTICS 14 5.1 CONNECTION DIAGRAM 16 5.2 INTERNAL BLOCK DIAGRAM 5.3 EXTERNAL TERMINALS 18 9 7 2 INSTALLATION 7.3 WIRING 46 12 5. CONFIGURATION FOR OPERATION 44 7. INSTALLATIONAND WIRING 3. LIST OF STANDARDCOMBINATION 4. CHARACTERISTICS PRECAUTIONS APPLICATION 10. 21 ADJUSTMENT 59 60 10.1 SETTING AT THE TIME OF DELIVERY 60 10.2 LIST OF CHECK TERMINALS AND POTENTIONMETER 10. 3 ADJUSTMENT 11. INSPECTION 65 PROCEDURES 66 AND MAINTENACE 11.1 ACSERVOMOTOR 11.2 SERVOPACK 67 67 12. TROUBLESHOOTING GUIDE 12.1 ACSERVOMOTOR 12.2 SERVOPACK 69 67 68 68 INDEX D Subject A C D Chapter Section No. AC SERVOMOTOR (INSPECTION AND MAINTENANCE) ............................ AC SERVOMOTOR (TROUBLESHOOTING GUIDE) .................................. ADJUSTMENT .................................................................... ADJUSTMENT (POTENTIOMETER) ................................................ ADJUSTMENT PROCEDURES ...................................................... ...... 11,1 ...... ...... 12.1 ...... .................. ...... 6.8 ........ ...... 10.3 ...... Page 67 68 60 39 66 ALLOWABLE FREQUENCY OF OPERATION ........................................ Allowable Radial Load and Thrust Load .............................................. APPLICATION ...................................................................... 4 ...... 4 ...... 6 ...... CHARACTERISTICS ................................................................ CHECK ITEMS BEFORE TEST RUN ................................................ CHECK TERMINAL ................................................................ CONFIGURATION .................................................................. CONFIGURATION OF I/O CIRCUIT ................................................ 4 9 6 5 6 CONFIGURATION 6 ...... 6.4 ...... 65 ...... 5 ...... 5.1 ........ 6.12.1 ...... 5.4.2 ...... 16 44 18 5 ...... 5 ...... 5.4 5.5 18 21 OF POSITIONING CONTROL LOOP .............................. CONNECTION Connection for DIAGRAM Reverse Motor.......................................................... Running .............................................. Connector 1CN Layout and Connection of SERVOPACK .............................. CONNECTOR CONNECTOR D) 11 12 10 6 10 TERMINAL TERMINAL (1CN) FOR I/O SIGNAL .................................. (2CN) FOR OPTICAL ENCODER (PG) CONNECTION D DIMENSIONS in mm Cinches) ...................................................... Direction of Rotation ................................................................ DISPLAY .......................................................................... E Examples of Troubleshooting for Defective Wiring or Parts .......................... Examples of Troubleshooting for Incomplete Adjustment ............................ EXTERNAL TERMINALS ............................................................ F Frequency Frequency H High Voltage Line .................................................................. Holding Brake ....................................................................... I impact Resistance ................................................................... Input Circuit ...................................................................... I/O Signal of Connector 1CN ........................................................ INSPECTION AND MAINTENANCE ................................................ Inspection during Test Run .......................................................... INSTALLATION .................................................................... INSTALLATION AND WIRING ...................................................... INTERNAL BLOCK DIAGRAM ...................................................... Internal Switch Arrangements ...................................................... L LED Indicatior (7-segment) for Troubleshooting ...................................... LIST OF CHECK TERMINALS AND POTENTIOMETER .............................. List of Switch Setting .............................................................. LIST OF STANDARD COMBINATION ................................................ Load Inertia (GD 2) .................................................................. M MOTOR MECHANICAL CHARACTERISTICS ........................................ Mechanical Spesifications (M, F and S series) ...................................... Mechanical Strength ................................................................ Minus Load ........................................................................ Multiplier Setting (M) .............................................................. N Noise Control O OPERATION ........................................................................ Operation .......................................................................... Optical Encoder (PG) Output Circuit ................................................ Output Circuit ...................................................................... Dividing (1) Setting (I/D1) Dividing (2) Setting (I/D2) ................................................ ................................................ .................................................................. -- ij- ...... 4.3 ........ 4.4.2 ...... 6.12 ...... 12 14 44 .................. ...... 9.1 ........ ...... 6.9 ........ .................. ...... 6.2 ........ 12 59 41 16 23 ........ ........ ........ 8 .................. 4 ...... 4.4.4 ...... 6 ...... 6.6 ........ 12 ...... 12 ...... 5 ...... 33 48 14 35 12.2.2 ...... 12.2.3 ...... 5.3 ........ 70 70 18 6 ...... 6 ...... 6.4.1 6.4.3 ...... ...... 33 33 6 ...... 4 ...... 6.10.3 ...... 4.4.8 ........ 42 15 4 6 5 11 9 7 7 5 6 ...... 4.4.5 ...... ...... 6.2.1 ...... ...... 5.4.3 ...... .................. ...... 9.2.3 ...... ...... 7.2 ........ .................. ...... 5.2 ........ ...... 6.7.2 ...... 15 23 20 67 59 45 45 17 38 12 10 10 3 6 ...... 12.2.1 ...... ...... 10.2 ........ ...... 10.1.1 ...... .................. ...... 6.10.2 ...... 69 65 61 9 42 ...... ...... ...... ...... ...... 4.4 ........ 4.4.3 ...... 4.4.1 ...... 6.10.1 ...... 6.4.2 ...... 14 14 14 42 33 6 ...... 6.11.1 ...... 42 4 .'• 4 4 6 6 6 9 6 6 .................. ...... 9.2.2 ...... 6.2.3 ...... 6.2.2 ...... • ..... ...... 23 59 29 28 INDEX (Cont'd) Subject OVERLOAD CHARACTERISTICS P R T .................................................... PERIPHERAL EQUIPMENT ........................................................ Potentiometer Setting ............................................................... Power Line Protection .............................................................. Power Loss ........................................................................ POWER ON AND OFF .............................................................. 4 ...... 4.1 ........ Page 12 8 10 6 7 6 ...... ...... ...... ...... ...... 8.5 ........ 10.1.2 ...... 6.11.2 ...... 7.3.3 ...... 6.1 ........ 58 64 43 47 23 PRECAUTIONS FOR APPLICATION ................................................ PRECAUTIONS OF OPERATION .................................................... Preparation for Operation ........................................................... PROTECTIVE CIRCUIT ............................................................ 6 6 9 6 ...... ...... ...... ...... 6.10 ........ 6.11 ........ 9.2.1 ...... 6.3 ........ 42 42 59 31 Rated Current and Cable Size ...................................................... RATINGS AND SPECIFICATIONS .................................................. RATING SPECIFICATIONS (F SERIES AC SERVOMOTORS) ......................... RATING SPECIFICATIONS (M SERIES AC SERVOMOTORS) ......................... RATING SPECIFICATIONS (S SERIES AC SERVOMOTORS) ......................... 7 1 1 1 1 ...... 7.3.1 ...... .................. ...... 1.2 ........ ...... 1.1 ........ ...... 1.3 ........ 46 1 3 1 5 RATINGS AND SPECIFICATIONS OF Ratings (F Series AC SERVOMOTORS) Ratings (M Series AC SERVOMOTORS) Ratings (S Series AC SERVOMOTORS) 1 1 1 1 ...... ...... ...... ...... RECEIVING RESOLUTION S (I ChapterSection No. SERVOPACK .................................. ............................................... ............................................... ............................................... ........................................................................ OF POSITIONING FEEDBACK 1.4 ........ 1.2.1 ...... 1.1.1 ...... 1.3.1 ...... 7.1 6.5 9 8 8 8 7 ...... ...... ...... ...... ...... 9.1.1 ...... 8.2 ........ 8.1 ........ 8.3 ........ 7.2.1 ...... 59 50 48 53 45 SERVOPACK(Check Items before Test Run) ........................................ SERVOPACKConnector (2CN) Terminal Layout and Connection ....................... SERVOPACK(DIMENSIONS) ........................................................ SERVOPACK(INSPECTION AND MAINTENANCE) .................................. SE RVOPACK (I nstallation) .......................................................... 9 5 8 11 7 ...... ...... ...... ...... ...... 9.1.2 ...... 5.5.2 ...... 8.4 ........ 11.2 ...... 7.2.2 ...... 59 21 57 67 46 SERVOPACK (TROU BLESHOOTING GUIDE) ........................................ SETTINGS AT THE TIME OF DELIVERY ............................................ SETTING OF INTERNAL SWITCHES ................................................ Specifications of Applicable Receptacles ............................................ Specifications of Applicable Receptacles and Cables .................................. STARTING AND STOPPING TIME .................................................. Switch Functions .................................................................. Switch Setting Procedure ............................................................ 12 10 6 5 5 4 6 6 ...... ...... ...... ...... ...... ...... ...... ...... 12.2 ...... 10.1 ...... 6.7 ........ 5.4.1 ...... 5.5.1 ...... 4.2 ........ 6.7.1 ...... 6.7.3 ...... 69 60 36 18 21 12 36 39 .................. ...... 9.2 ........ ...... 6.2.4 ...... ...... 1.2.2 ...... ...... 1.1.2 ...... 59 59 31 4 2 ................................ Servomotor (Check Items before Test Run) ........................................... SERVOMOTOR: F SERIES (DIMENSIONS) ........................................ SERVOMOTOR: M SERIES (DIMENSIONS) ........................................ SERVOMOTOR: S SERIES (DIMENSIONS) .......................................... SERVOMOTOR (Installation) ........................................................... TEST RUN .......................................................................... TEST RUN PROCEDURES .......................................................... Torque Reference Monitor and Speed Monitor [TRO-M, VTG-M] ...................... Torque-Speed Characteristics iF Series AC Servomotors) ............................ Torque-Speed Characteristics (M Series AC Servomotors) .......................... Torque-Speed Characteristics iS Series AC Servomotors) TROUBLESHOOTING GUIDE ...................................................... TYPE DESIGNATION ................................................................ ............................ 9 9 6 1 1 1 ...... 1.3.2 12 .................. 2 .................. ........ ........ 7 3 1 5 7 ...... 6 ...... PULSE ...... 45 35 6 68 8 U Use of SERVOMOTOR with Holding Magnetic Brake .................................... 6 ...... 6.12.2 ...... 44 V Vibration Vibration 4 ...... 4 ...... 4.4.7 4.4.6 ...... ...... 15 15 W WIRING ............................................................................ Wiring Precautions ........................... 7 ...... 7 ...... 7.3 ........ 7.3.2 ...... 46 47 Class .................................................................... Resistance ................................................................ ....................................... --iii- • • I • t 1. RATINGS 1.1 1.1.1 AND M SERIES AC SERVOMOTORS Ratings Time Rating: Insulation: Continuous Class F t Ambient Temperature: Ambient Humidity: 0 to +40°C 20% to 80% (non-condensing) Isolation Voltage: 1500 VAC, one minute Insulation Resistance: 500 VDC, 10MD, or more Vibration: 15 _um or below Finish in Munsell Notation: N1.5 Enclosure: Excitation: Permanent Mounting: Flange mounted Totally-enclosed, self-cooled (Equivalent to IP-55 exclusive shaft opening) Drive Method: I I SPECIFICATIONS Table 1.1 Ratings Rated Torque* Continuous Max Torque* Max Torque* drive of M Series AC SERVOMOTORS D- 03M[_]1106M[:]1 0.310.6 (0.4) I (0.8) 2.8 I 5.7 (25) I (50) 2.9 I 5.9 (26) I (52) kW (HP) N.m (Ib.in) N.m (Ib.in) Rated Output" Instantaneous and Specifications Direct magnet 09M[:]2 0.9 (1.2) 8.6 (76) 8.8 (78) 12M[:]2 1.2 (1.6) 11.5 (102) 11.8 (104) 20M[]]2 2.0 (2.7) 19.1 (169) 21.6 (191) 30M[:]2144M[:]2 3.014.4 (4.1) I (6.0) 28.4 I 41.9 (252) I (372) 32.3 I 46.1 (286) I (408) (171) 19.3 (248) 28.0 (390) 44.0 (564) I (807) 63.7 91.1 11.7 18.8 (Ib.in) N.m (63) 7.2 I (125) 14.1 Rated Current* A 3.0 I Rated Speed* r/min Instantaneous Max Speed* r/min Torque Constant N. m/A (lb.in/A) 1.01 (8.9) 1.04 (9.2) 1.21 (10.7) 1.02 (9.0) kg.m2x10 -4 Moment of lnertia JM(=GD2/4) (ib.in.s2xl0_3) 13.5 (12.0) 24.3 (21.5) 36.7 (32.5) 66.8 (59.2) 110 (97.2) 143 (126.7) 240 (212.6) 5.8 7.6 26 I 33 1000 2000 1500 1.07 (9.5) 1.1 5 (10.2) 13.6 (11.8) Inertia Power Time Rate* Constant ms kW/s 8.3 6.1 5.9 13.3 4.6 20.3 6.9 19.7 5.2 33.2 4.1 57.0 4.0 74.0 Inductive Time Constant ms 4.2 5.4 6.5 _ 10.4 12.9 15.3 16.2 'Values when winding SERVOMOTOR temperature is combined is 20"C. Shown with SERVOPACK are normal GYP) and the armature values above. Notes: 1. j]_-}in type designation (pulsesJrev) of Standard: A Optional: B (5000 2. There (6000 are two • Input 100MAC, • Input 200MAC, For details, is determined optical by output pulses as follows; pulsesTrev) pulses/rev), types refer encoder of D (4000 power supply pulsesJrev) units for output 90VDC (OPR tO9F) output 90MDC (OPR 109A) to Par. 8.5, "PERIPHERAL brake. EQUIPMENT." -- 1 -- 1.1.2 Torque-Speed Characteristics dl • TYPEUSAMED-03M _1ooot _i_ .1t • TYPEUSAMED-20M _,oo4 ° A_ _ . HI =1ooo_'_ ........ _ _1ooo _,ooC_-__o _1 _oo_ / Aili ._iii_ _,_OOlo _, _,oooi _:_ ,-I,I L?._.II, /;it 0 2 4 6 8 RMS TORQUE (N-m) 0 20 40 60 RMS TORQUE (Ib.in) 0 • TYPE USAMED-06M 3 6 9 12 RMS TORQUE (N.m) 0 2'5 50 75 100 125 RMS TORQUE(Ib.in) 0 12 16 0 RMS TORQUE (N.m) 50 O __'°" 20 40 60 RMS TORQUE (lb.}n) 0 c_ 200 400 600 RMS TORQUE(Ib-in) ................ _oo 80 0 RMS TORQUE (N-m) l 200 400 600 8001000 RMS TORQUE (Ib.in) • TYPE USAMKD-60M _c 2500_ 10 20 RMS TORQUE (N .m) 20 40 60 RMS TORQUE (N'm) 2_oo 100 150 • TYPE USAMED-12M = 2500_ ¢ _,_oo_ _\ -_ • TYPEUSAMED-44M 2_oo_ _°°_ 8 100 200 300 400 RMS TORQUE(Ib.in) _ _ 2_oo _1ooo t _ -_ _" 4 0 _°°°_ • TYPE USAMED-09M 0 10 20 30 40 RMS TORQUE (N .m) • TYPEUSAMED-30M _2_oo_ __oo ........ I _1_°°I _,_ _1 _1_°°i L 0 q c 250C 50 100 150 200 250 RMS TORQUE (Ib-in) 0 ] 25 50 75 100 RMS TORQUE (N .m) / _J II _c 2500 200 400 600 8001000 RMS TORQUE {Ib.in) A: CONTINUOUS B: INTERMITTENT POWER SUPPLY: DUTY ZONE DUTY ZONE 200V ¢ -- 2 -- D D 1.2 F SERIES AC SERVOMOTORS Time 1.2.1 Rating: Ratings Continuous Ambient Temperature" Insulation: Ambient Humidity: Class F 0 to +40°C 20-_ to 80% (non-condensing) isolation Voltage: 1500 VAC, one minute Insulation Resistance: 500 VDC, 10MQ, or more Vibration: 15 ,urn or below Finish in Munsell Notation: Nl.5 Enclosure: Excitation: Permanent Mounting: Flange Totally-enclosed', (Equivalent to IP-55 self-cooled exclusive shaft opening) Drive Method: Table Item 1.2 Ratings and Specifications ----... 02F[-}1 ........ 03F[-]1 Motor TypeUSAFEDkW 0.15 0.3 (HP) (0.2) (0.4) Rated Output* magnet mounted Direct drive of F Series AC SERVOMOTORS 05F[-]1 0.45 (0.6) 113F[-]2 I 1.3 I (1.8) 120F[-}2 I 1.8 I (2.4) I 30F[-]2 ' 2.9 I (3.9) I ] I I 1.0 (8.7) 2.0 (17) (25) 1(48)1(74)1(102)1(165) 28.4 (252) N.m (Ib.in) N.rn (Ib.in) 1.1 (10) 2.9 (26) 2.2 (19) 5,7 (51) 2.9 (26) 8.9 (79) I 11.8 J 22.5 I (104) I (200) I 34.0 I 54.1 I (301) I (479) 37.2 (330) 76.2 (675) Rated Current* A 3.0 3.0 3.816.219.7 I 15 I 20 30 Rated Speed* r/rain Instantaneous Max Speed* r/min Torque Constant N.m/A (Ib-in/A) Torque* Continuous Max Torque* Instantaneous Max Torque* 5.4 I 5.9 I (52) I 15.2 I (135) 8.3 I 8.8 I (78) I 24.7 I (219) 11.5 18.6 44F[-]2 4.4 (6.0) N,m (Ib.in) Rated 2.8 109F[-]1 I 0.85 I (1.2) I 1500 2500 kg. m2xl0 -4 ' Momentof InertiaJM(=GD2/4) (Ib-in .s2x 10 -3) 0.36 (3.2) 0.71 (6.3) 0.81 (7.1) 0.92 (8.2) 0.92 (8.2) 0.82 (7.3) 0.98 (8,7) 1.01 (9.0) 1.3 (1.1) 2.0 (1.8) 13.5 (12.0) 24.3 (21.5) 36.7 (32.5) 66.8 (59.2) 110 (97.2) 143 (1 26.7) Power Rate* kW/s 7.4 18.3 6.0 12 18.9 19.7 31.5 57.0 Inertia Time Constant ms 4.5 2.5 8.3 5.7 4.7 6.8 5.1 4.1 Inductive Time Constant ms 3.4 4.3 4.2 5.5 6,4 10.4 13.0 15.2 'Values when winding SERVOMOTOR temperature is combined is 20°C. Shown with SERVOPACK are normal(TYP) and the armature values above. Notes: l. ii n type designation is determined by output (pulsesTrev) of optical encoder as follows; Standard: Optional: A (6000 B (5000 pulsesJrev) pulses fray), D (4000 pulsesTrev) 2. There are two types of power supply units for • Input 100MAC, output 90VDC (OPR 109F) • Input 200MAC. For details, refer pulses output to Par. brake. 90VDC (OPR 109 A) 8.5. "PERIPHERAL EQUIPMENT." -- 3-- 1.2.2 Torque-Speed Characteristics • • TYPE USAFED-02F _ 1000__ 0 _ 2 RMS TORQUE(N-m) • TYPE USAFED-13F ,02oooo 12o _sJ1000_ 0 _0 20 0 2 4 RMS TORQUE (N .m) Air: B o_t_J_a 10001 0 _ 0 _620 RMS TORQUE (Ib-in) • TYPE USAFED-03F _iooo_ _n_1000[ so All B _1 1 0 _0_01_020'0250 RMS TORQUE (N.m) RMS TORQUE(Ib.in) • TYPEUSAFED-20F I oooi- ___ _ioooi_!_I _ll 0 I II _ I ooo _ _ i_ii_,_ ,LII '''°_ 20 40 60 RMS TORQUE (Ib.in) • TYPEUSAFED-O5F _il 0 _ 10 20 30 RMS TORQUE (N-m) 100 200 300 RMS TORQUE (Ib-in) • TYPEUSAFED-30F c 2500 .... / 0 2 4 6 8 RMS TORQUE(N,m) 0 20 40 60 80 RMS TORQUE(Ib.in) • TYPEUSAFED-09F I0 ° _ 10 15 RMS TORQUE (N'm) 0 20 40 60 RMS TORQUE (N.m) 0 100200300 400500 RMS TORQUE(Ib.in) • TYPEUSAFED-44F 0 3_0 6_0 9_0 12(3 150 RMS TORQUE(qb.in) 0 20 40 60 80 RMS TORQUE (N-m) | i o,oool,..... Ii 0 200 400 600 RMS TORQUE(Ib.in) A: CONTINUOUS DUTY ZONE B: INTERMITTENT DUTY ZONE POWER SUPPLY: 200V i -- 4 -- D 1.3 S SERIES 1.3.1 AC SERVOMOTORS Ratings Time Rating: Insulation: Isolation Finish in Munsell Coass -05A[-]2) F (Types USASEM-08A[_]I, -15AE]I, -30A[-]I) Excitation: Permanent 1500 VAC, Mounting: Flange Enclosure: Ambient D D I minute 500 VDC, Totally-enc]osed, Temperature: 10M_ or more Drive 15 /_m or Method: below Notation: N1,5 magnet mounted Direct drive self-cooled 0 to D D one Vibration: 20% to 80% (non-condensing) B (Types Resistance: USASEM-03A[-]2, Humidity: Class Voltage: Insulation Ambient Continuous +40°C Table 1.3 Ratings and Specifications Ite_ SASEM'_ of S Series AC SERVOMOTORS 02A[-]2 ..... 03A[-]2 05A[]2 08A[-]1 15A[-il 30A[-]1 RatedOutput* W (HP) 154 (0.2) 308 (0.4) 462 (0.6) 771 (1.1) 1540 (2.1) 3080 (4.2) Rated Torque* Nm (Ib.in) 0.49 (4.3) 0,98 (8.7) 1.47 (13) 2.45 (22) 4.90 (43) 9.80 (87) Continuous N-m (Ib-in) 0.57 (5.0) 1.18 (10) 1.67 (15) 3.33 (30) 6.17 (55) 12.2 (108) Instantaneous Rated Current* Max Torque* (Ib •in) N. A m (13) 1.47 2.1 (26) 2.94 3.0 (36) 4.02 4.2 (65) 7.35 5.3 (122) 13.7 10.4 (257) 29.0 19.9 Rated Speed* r/min 3000 r/min 4000 Max Torque* Instantaneous Max Speed* Torque Constant t N-m/A (lb. in. A) .kg.m2xlO -4 Moment of InertiaJM(=GD2/4) (ib.in.s2x 10_3) 0.247 (2.19) 0.13 (0.11 ) 0.35 (3.10) 0,51 (0,45) 0.37 (3.25) 0.75 (0.67) 0.51 (4.49) 2.85 (2.53) 0.50 (4.43) 3.3 (2.88) 0.524 (4.64) 5.74 (5.09) Power Rate* kW/s 18.5 18.9 28.9 21 74 167 Inertia Time Constantf Inductive Time Constant t ms 1.8 1.5 2.2 2.7 1.8 3.1 1.9 6.2 0.7 13 0.4 26 • Values when ]00%:. Values _" Values 20*(3. when Values SERVOMOTOR is combined shown are normal with (TYP) SERVOMOTOR is combined shown are normal SERVOPACK and the armature winding temperature is the armature winding temperature is values. with (TYP) SERVOPACK and values. Notes: 1, Ei in type designation is determined by output AC Servomotor Type USASEM- 2. There pulses (pulses/ray) of optical 02A, 03A, 05A encoder as follows; 08A, 15A, 30A Standard (pulses/rev) E 1500 C 2500 Optional (pulses/rev) C F 2500 1000 E F 1500 1000 are two types of power supply units for • Input ]00V/kC, output 90VDC tOP 840]002-2) • Input 200VAC, output 90VDC tOP 840]002- For details, refer to Par. 8.5, "PERIPHERAL brake. ]) EQUIPMENT" -- 5 -- 1.3.2 Torque-Speed Characteristics • • TYPE USASEM-02A • TYPE USASEM-08A 0.... 3ooo_ _i_ _oo_ _3ooc _3_ A_! ,ooc _ooo _oooL _i_ _ _,ooc I 0.5 1.0 1.5 RMS TORQUE (N-m) 2.0 0 5 10 RMS TORQUE (Ib.in) 15 _°°°ri_ II I I 11 2 4 6 RMS TORQUE(N.m) I4oo _ 200(_ • __, oo ,ooc 8 0 20 40 60 RMS TORQUE(Ib-in) 80 I 0 10 20 RMS TORQUE (Ib.in) _°°°r_ I;tI _io0o_ _,ooo_ 30 • TYPE USASEM-O5A I ,ooo _°°°r_!_/I/] __ooo RMS TORQUE(N .m) 0 5 10 15 RMS TORQUE (N .m) 20 0 50 100 150 RMS TORQUE(Ib.in) • TYPE USASEM-30A I J J oo,00o 0 _:ift ,ooo_i--- I1I _,_,,_ _ _ B 0 , _3oo_ • TYPE USASEM-15A _oool _1 A _;I / -- ,ooo,:_:,_._: _'_; ..... .... ,ooo_ _2000_- I! _ /A _\ _ I! " '°°°k i_i I/ • TYPE USASEM-03A _ooo I BA_ i!_i I/ _'2000I _, !_"1 II J °° ,oo0 1 2 3 4 RMS TORQUE (N.m) 5 0 _ooo_ 10 20 30 RMS TORQUE(Ib.in) I 40 a II 'i!k _ II _=000_ 0 :_;_ I_I , 10 20 RMS TORQUE(N.m) i HI III 30 ooo Ill 0 100 200 ; RMS TORQUE(Ib.in) A: CONTINUOUS B: INTERMITTENT POWER SUPPLY: 300 DUTY ZONE DUTY ZONE 200V t --6 -- 1.4 RATINGS AND SPECIFICATIONS D D D OF SERVOPACK Table 1.4 SERVOPACK Type CACR- Max Motor Output Applicable Optical PR038C PR05BC PR078C PR10BC Pal 5BC PR20BC PR30BC kW 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.4 (HP) (0.4) (0.67) (1 34) (2.01) (2.7) (4.1) (6.0) A: AC 03MA kW Output 0,3 (HP) Rated (B: 5000 putses/rev. D: 4000 pulses/rev) 06MA 09MA 12MA 20MA 30MA 0.6 0.9 12 3.0 3.0 44MA 4.4 (1.2) (27) (4.1) (6.0) (0.4) - (0.8) (1.2) Speed PRO3BC3AM -- PRO76C3AM PRIOBC3AM PR15BC3AM PR2OBC3AM PR3OBC3AM PR44BC3AM Arms 3.0 - 5,8 7.6 11.7 188 26.0 33.0 Arms 73 - 13,9 16.6 28.0 42.0 56,5 70.0 121.5 183.5 334 550 715 1200 (107.5) (162.5) (296) (486) (633.5) (1063) 44FA r/min 1000 Type CACR- Continuous Output Max Output Current Current Allowable kg. m 2X 10-4 JL (=GD_/4) 67.5 (lb. in. S2X 1 0 -3 ) Applicable Optical (60) - Encoder A: Type USAFED- 02FA 03FA 05FA 6000 pulses/rev (B: 5000 pulses/rev. -- 2,0FA 30FA 0,65 13 18 2.9 4.4 (1.8) (2.4) (3.9) (6.0) 0 15 0.3 0.45 SERVOMOTOR Output (HP) (0,2) (0.4) (0.6) - (1.2) PRO5BC3AF .-- PRIOI3C3AF Continuous r/min Max Output PRO3BC3AF Current Current Allowable PR15BC3AF PR2OBC3AF PR3OBC3AF PR44BC3AF Arms 3.0 3.0 3.8 - 6.2 9.7 15.0 20.0 30.0 Arms 85 6.5 11.0 - 17,0 275 42.0 56.5 77.0 6.5 10.3 67.5 121.5 183.5 334 550 715 (5.75) (9) {60) (107.6) (162.5) (296) (486) {633.6) 02AE 03AE 05AE - kg'm2XlO JL (=GD_/4) 0b'in" Applicable 1500 Type CACROutput Opticat -4 S2X 10 -_) - Encoder C: Type USASEMAC kW O.16 SERVOMOTOR Output (HP) (O.2) SERVOPACK Rated Type Speed CACR- r/min 0.3 2.1 3.0 Max Output Arms 6.0 Allowable kg-m 2 X 10 TM JL (:GD_/4) (Ib.in. s2 XIO -_ ) 1500 pulses/rev. - (0.6) 10OO pulses/rev) 15AC 30AC 0.77 1.54 3.08 (1.1) (21) - PR158C3CS - 3000 PR1OBC3CS - F: 08AC - ,ROGBCSES.Y4' PRO3BC3ES PRO5BC3ES Arms 2500 pulses (E : 0.46 (0.4) ContinuousOutput Current Current 4000 pulses/rev) 13FA kW SERVOPACK D: 09FA AC Rated Speed .-_) 03 6000 pulses/rev - PR448C SERVOMOTOR SERVOPACK u. (0.94) Encoder Type USAMED- .c. Ratings and Specifications of SERVOPACK (4.2) - PR308C3CS - 4.3 - 5;3 10.4 - 19.9 - 8.5 11.0 - 15.6 28.0 - 56.5 - 0.65 2.55 3.75 14,25 16.5 (0.55) (2.25) (3.35) (14.4) 28.7 - (12.65) Power Main Circuit* Three-phase 200 to 230 VAC + - lo 15 % 50/60 Hz Supply Control Circuit Single-phase 200 to 230 VAC _ + _5_ lo % 50/60 Hz Control Method Transistorized - (25.45) - PWM Control ._o _o Feedback •_ Ambient Optical encoder (A: 6000 pulses/rev, B: ¢_ o Storage Temperature "_ 0D Ambient 5000 pulses/rev. C: Temperature_ and Storage Rack mounted Reference Pulse Reference Pulse Frequency co Control Signal Output Signal 7.0 (I6) 7.0 (16) Sign 4- pulse Servo 7.0 (16) 4- 12 V/4- ON. error counter clear, reference pulse Power supply, c .-r Regenerative =- Applicable ambient 5 V level selection block positioning reference input, housed (reference pulse in input selection). error counter detection. in (non-contact Up to 5 times Torque monitor: Speed monitor: temperature pulse train inpul 12.5 (28) available) P drive, overflow, alarm reset, forward/reverse servo ready, servo alarm. MCCB trip, heatsink overheat, dynamic undervoltage, brake) not this exceed value, 230stepV a 4- 1 0 %transformer down (253 V). Ifis the re- a panel, the inside temperature must net motor inertia 3.OV:t: 5% 10%at at1OOOr/min. rated r/rain (M, F series}, 4.Ok/± t' When Par. 6. load 10. exceed range. -- 7 -- inertia 2. "Load(GDInertial' 2) exceeds 2.Or± applicable 5% at 1OOO_/min(S range, be sure series} to refer run stop. MCC8 trip. Built-in Load Inertia T should exceed (CW/CCW 12.5 (28) 0 to 100 kpps max completion, Built Resistor Output voltage should available 12.5 (28) alarm, status, lag pulse, encode¢ (A. B and C phase) pulse indications. Brake quired. tWhen 7.0 (16) Overvoltage, overload, ovefcurrent, overrun, open phase error, regeneration Irouble, CPU error, overflow. ,= * voltage Supply train input. Encoder (A, B and C phase) pulse, overload. TG ON. Indication Monitor 7.0 (16) fin: Protection Dynamic 1000 pulses/rev) 90 % or less (non-condensing) kg (Ib) "_ m o 1500 3ulses/rev. F: -- 20"C to + 85°C Humidity ApproxMass .= 4000 pulses/rev. E: 0 to -F 55°C Mounting Structure o 2500 pulses/rev. D: to A/O 2 TYPE DESIGNATION • AC SERVOMOTOR • USAFED- 05FA 1 ;-:;-; L_J L_J oPPOSiTE ORIVE E.D gg RVOMOTO SPETIFICATION • Blank: Standard (Without Holding • E: With Holding Brake M Series--03to 30M F Series--05 to 44F • B: With Holding Brake M Series--44M S Series--03to 30S SERIES • AM: M Series • AF : F Series • AS : S Series ENCLOSURE • E: Totally-enclosed, Self-cooled Type _ • D: Ferrite DRIVE END SPECIFICATION • Blank: Standard • O: Standard (With Brake) • K: With Keyway • S; With Shaft Seal • M: Rare Earth • T: MAGNET TYPE • MOTOR OUTPUT (Table 2. 1 ) DESIGN REVISION ORDER (A, B, C.... ) Brake) With Keyway & Shaft Seal • SHAFT TYPE • • 1: • 2: Tapered Straight DETECTOR Table (Table 2.3) 2.1 Motor Output • SERVOPACK M B CACR- PR05BC3A AC SERVOPACK CONTROL PR: Control MOTOR OUTPUT (Table 2.2) APPLICATION B: - 05 J TYPE Positioning 02 03 JI ........ M, F, S Series Series F -0.3 kW (0.4 HP) -- 06 08 0.6 kW --(0.8 HP) 09 0.9 kW (1.2HP) 12 13 1.2kW(I.6HP) -- 3: Series 0.45kW(0.6HP) 0.46kW(0.6HP, 0.85 kW(1.2HP) -- -1.3kW(1.8HP) --- -- I II -0.77kW(1.1 HP) 15 -- 20 2.0 kW (2.7 HP) 1.8 kW (2.4 HP) -- 30 44 3.0kW (4.1HP) 4.4 kW (6.0 HP) 2.9kW(3.9HP) 4.4 kW(6.0 HP) 3.0kW(4.2HP) 1.5kW(2.1 HP) II Table 2.2 • M Series F Series Motor Output 0.15kW(0.2HP) 200V, Input Power Supply, Pulse Train Input. DETECTOR (Table2.3) APPLICABLE MOTOR SERIES S 0.i5kW(0.2HP) 0.3kW(0.4HP) --- DESIGN REVISION ORDER(A, B,C'-') INPUT FORM Series 0.15kW(0.2HP) 0.3 kW(0.4 HP) 03 0.3 kW(0.4 HP) 05 07 10 -0.6kW(0,8HP) 0.9kW(1.2HP) 0.3 kW(0.4 HP) S Series 0;i5kW(0.2HP) 0.3kW(0.4HP) • 0.45kW(0,EHP) 0.46kW(0.EHP) --0.85kW(1.2HP) 0.77kW(1.1HP) • M: M Series 15 1.2kW(1.EHP) 1.3kW(1.8HP) •F: • S: F Series SSeries 20 2.0kW(2,7HP) 1.8kW(2.4HP) 30 3.0 kW(4,1 HP) 2.9 kW(3.9 HP) 44 4.4 kW(6,0HP) 4.4 kW(6.0HP) Table Models M Series Standard pulses/rev A 6000 F Series A 6000 • S Series E C --8 -- 1.5kW(2.1HP) -3'.0 kW(4.2H P) 2.3 B Optional pulses/rev 5000 D Remarks 4000 B 5000 D 4000 1500 C 2500 F 1000 02A, 2500 E 1500 F 1000 08A, 15A, 30A I 03A, 05A 3. LIST OF STANDARD t I t t t Table 3. 1 COMBINATION Combination of SERVOPACK, AC SERVOMOTORS and Assocated Units • M SERIES AC SERVOMOTOR Optical SERVOPACK Type CACR-- Type Power Capacity* per SERVOPACK kVA Current Capacity per MCCB or Fuse A 0+65 5 PR03BC3AM PR03BC3BM PR03BC3DM USAMED--03MA1 USAMED--03MB1 USAMED--03MD1 Encoder pulses/rev 6000 5000 4000 PR07BC3AM PR07BC3BM PR07BC3DM USAMED--06MA1 USAMED--06MB1 USAMED--O6MD1 6000 5000 4000 PR10BC3AM PRIOBC3BM PR10BC3DM PR15BC3AM PR15BC3BM PR15BC3DM USAMED--09MA2 USAMED--O9MB2 USAMED--09MD2 USAMED--12MA2 USAMED--12MB2 USAMED--12MD2 6000 5000 4000 6000 5000 4000 PR20BC3AM PR2OBC3BM USAMED--20MA2 USAMED--2OMB2 6000 5000 4.1 12 PR30BC3AM PR20BC3DM PR30BC3BM PR30BC3DM USAMED--30MA2 USAMED--20MD2 USAMED--30MB2 USAMED--30MD2 6000 4000 5000 4000 6.0 18 PR44BC3AM PR44BC3BM PR44BC3DM USAMED--44MA2 USAMED--44MB2 USAMED--44MD2 6000 5000 4000 8.0 24 PR03BC3AF PR03BC3BF PR03BC3DF USAFED--02FA1 USAFED--02FB1 USAFED--O2FD1 6000 5000 4000 PR03BC3BF PR03BC3DF PR038C3AF PR05BC3AF PR05BC3BF PR05BC3DF PR10BC3AF PR10BC3BF PR10BC3DF USAFED--03FB1 USAFED--O3FD1 USAFED--O3FA1 USAFED--05FA1 USAFED--O5FB1 USAFED--05FD1 USAFED--09FA1 USAFED--09FB1 . _ USAFED--09FD1 5000 4000 6000 6000 5000 4000 6000 5000 4000 PR15BC3AF PR15BC3BF PR15BC3DF USAFED--13FA2 USAFED--13FB2 USAFED-- 13FD2 6000, 5000 4000 PR20BC3AF PR2OBC3BF USAFED--2OFA2 USAFED--2OFB2 6000 5000 PR30BC3AF PR20BC3DF PR30BC3BF PR30BC3DF PR44BC3AF PR44BC3BF PR44BC3DF USAFED--30FA2 USAFED--20FD2 USAFED--30FB2 USAFED--30FD2 USAFED--44FA2 USAFED--44FB2 USAFED--44FD2 6000 4000 5000 4000 6000 5000 4000 PR03BC3CS-y41 PR03BC3ES-Y41 USASEM--O2AC2 USASEM--02AE2 2500 1500 PR03BC3FS-Y41 PR03BC3CS PR03BC3ES PR03BC3FS PR05BC3CS PR05BC3ES PR05BC3FS USASEM--02AF2 USASEM--03AC2 USASEM--03AE2 USASEM--03AF2 USASEM--O5AC2 USASEM--05AE2 USASEM--05AF2 1000 2500 1500 1000 2500 1500 1000 PR10BC3CS PR10BC3ES PR10BC3FS USASEM--O8AC1 USASEM--08AE1 USASEM--08AF1 2500 1500 1000 PR15BC3CS USASEM-- 15AC1 2500 PR15BC3FS PR15BC3FS PR30BC3CS PR30BC3ES PR30BC3FS USASEM-- 15AF1 USASEM--15AE1 USASEM--30AC1 USASEM'3OAE1 USASEM--30AF1 1000 1500 2500 1500 ' 1000 1.5 Recommended Noise Filter t Applicable Noise Filter 8 2.1 6 _ 3.1 10 Good _ _ Poor • Type Specifications Power ON/OFF Switch LF-- 3--phase 305 200 VAC class. 5 A L_'-r 3--phase Yaskawa 310 200 VAC class. 10 A type HI--15E2 LF-315 3--phase 200 VAC class. 15 A rated 30 A or equfvatent LF-- 3--phase 315 200 VAC class.15 A LF-- 3--phase 320 LF-330 200 VAC class,20 A 3--phase 200 VAC class. 30 A LF-- 3--phase 340 200 VAC class. 40 A 305 LF-- 200 VAC class. 5 A 3--phase Yaskawa type HI--18E rated 35 A or equivalent • F SERIES 1.1 5 _ Yaskawa HI--15E= rated 30 A or equivalent _r 2.1 8 3.1 Good LF-315 3--phase 200 VAC class.15 A 10 LF-315 3--phase 200 VAC class.15 A 4.1 12 LF-320 3--phase 200 VAC class. 20 A 6.0 18 LF-330 3--phase 200 VAC class. 30 A 8.0 24 LF-340 3--phase 200 VAC class, 40 A LF-305 3--phase 200 VAC class.5 A LF-- 3--phase 305 200 VAC class, 5 A LF-315 3--phase 200 VAC class. 15 A o_ Poor Yaskawa type , HI-- 18E rated 35 A or equivalent • S SERIES 0.65 5 1.1 5 _ Good 2.1 8 _ 3.1 10 6,0 18 • Values at rated load. tIMade by Tokin Corp. -- 9 -- LF-- Poor 315 LF-330 • Yaskawa type HI--15E= rated 30 A or equivalent 3--phase 200 VAC class, 15 A 3--phase 200 VAC class. 30 A Yaskawa type HI--18E rated 35 A or equivalent Table 3.2 Specifications of AC SERVOMOTORS and Detectors • MSERIES • ACSERVOMOTOR SERVOPACK Type CACR-PR03BC3&M PRO3BC38M PR03BC3DM PR078C3AM PR07BC3BM PR07BC3DM PR10BC3AM PR10BC3BM PR10BC3DM PR15BC3AM PR15BC3BM PR15BC3DM PR20BC3AM PR20BC3BM PR20BC3DM Type USAMED--03MA1 USAMED--03MB1 USAMED--03MD1 USAMED--06MA1 USAMED--O6MB1 USAMED--O6MD1 USAMED--09MA2 USAMED--09MB2 USAMED--09MD2 USAMED--12MA2 USAMED-12M82 USAMED--12MD2 USAMED--2OMA2 USAMED--20MB2 USAMED--20MD2 Optical Encoder pulses/rev 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 PR.30BC3AM USAMED--30MA2 6000 PR30BC3BM USAMED--30MB2 5000 PR3OBC3DM USAMED--3OMD24000 PR44BC3AM USAMED--44MA2 6000 PR44BC3BM USAMED--44MB2 5000 PR44BC3DM USAMED--44MD2 4000 11 Detector Receptacle Type L--type Plug Straight Plug Cable Clamp MS 3102A18 --10P MS 3108B18 --10S MS 3106B18 --10S MS 3057 --IOA MS 3102A22 --22P MS 3108B22 --22S MS 3106B22 --22S MS 3057 --12A MS 3102A32 --17P MS 3108B32 I --17S MS 3106B32 --17S MS 3057 --20A MS 3102A14S 2P MS 3108B14S --2S MS 3106814S --2S MS 3057 --6A MS 3102A18 --lOP MS 3108B18 --10S MS 3106818 --10S MS 3057 --10A MS 3102A22 --22P MS 3108B22 --22S MS 3106B22 --22S MS 3057 -1 2A MS 3102A18 --tOP MS 3108B18 --10S -- Receptacle Type MS 3102A20 --29P L--type Plug MS 3108B20 --29S Straight Plug Cable Clamp MS 3106B20 --29S MS 3057 --12A m I • F SERIES PR03BC3AF PR03BC38F USAFED--O2FA1 USAFED--02FB1 6000 5000 PR03BC3DF PR03BC3AF PR03BC3BF PR03BC3DF PR05BC3AF USAFED--O2FD1 USAFED--O3FA1 USAFED--03FB1 USAFED--03FD1 USAFED--O5FA1 4000 6000 5000 4000 6000 PR05BC3BFUSAFED--05FB1 PR05BC3DF USAFED--05FD1 PR10BC3AF USAFED--09FA1 PR10BC3BF USAFED--O9FB1 PR10BC3DF USAFED--09FD1 5000 4000 6000 5000 4000 PR15BC3AF USAFED-13FA2 PR15BC3BF USAFED-- 1 3FB2 PR15BC3DF USAFED-- t 3FD2 PR20BC3AF USAFED--20FA2 PR20BC3BF USAFED--20FB2 PR20BC3DFUSAFED--20FD2 PR30BC3AF USAFED--30FA2 PR3OBC3BF USAFED--30FB2 PR30BC3DF USAFED--30FD2 PR44BC3AF USAFED--44FA2 PR44BC3BF USAFED--44FB2 PR44BC3DF USAFED--44FD2 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 I MS 3102A20 --29P MS 3108820 --29S MS 3106820 --29S MS 3057 --12A | ° • S SERIES PR03BC3CS-Y41 PR03BC3ES-Y41 P£038C3FS-Y41 PR03BC3CS PR03BC3ES PR03BC3FS PR05BC3CS USASEM--O2AC2 USASEM--O2AE2 USASEM--02AF2 USASEM--03AC2 USASEM--03AE2 USASEM--03AF2 USASEM--05AC2 2500 1500 1000 2500 1500 1000 2500 PR05BC3ES PR05BC3FS PR10BC3CS PR10BC3ES PR10BC3FS PR15BC3CS PR158C3ES PR15BC3FS PR30BC3CS PR30BC3ES USASEM--05AE2 USASEM--O5AF2 USASEM--08AC1 USASEM--08AE1 USASEM--08AF1 USASEM--15AC1 USASEM--15AE1 USASEM--15AF1 USASEM--30AC1 USASEM--30AE1 1500 1000 2500 1500 1000 2500 1500 1000 2500 1500 MS 3057 --t0A MS 3102A20 --29P MS 3102A20 --4P MS 3108B20 --4S -- PR30BC3FS USASEM--3OAF1 1000 MS 3108820 --29S -- MS 3057 --12A MS 3057 --12A i_ Note: When plugs or clamps are required, contact your YASKAWA representative. The following connections are provided: soldered type (type MS) and solderless type (type JA). --10-- D D ' . ! i D ! i Table • M SERIES 3.3 Specifications of Holding Brake AC SERVOMOTOR Holdinc Brake SERVOPACK Type CACR-- Type Optical Encoder pulses/rev PR03BC3AM PR03BC3BM PR03BC3BM PR07BC3AM PR07BC3BM PR07BC3DM PR10BC3AM PR10BC3BM PR10BC3DM PR15BC3AM PR15BC3BM PR15BC3DM PR20BC3AM USAMED--03MA1 USAMED--O3MB1 USAMED--03MD1 USAMED--06MA1 USAMED--06MB1 USAMED--06MD1 USAMED--09MA2 USAMED--09MB2 USAMED--O9MD2 USAMED--12MA2 USAMED-- 12MB2 USAMED--12MD2 USAMED--20MA2 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 PR20BC3DM PR30BC3AM PR30BC3BM PR30BC3DM PR44BC3AM PR20BC3BM PR44BC3BM PR44BC3DM USAMED--20MD2 USAMED--30MA2 USAMED--30MB2 USAMED--30MD2 USAMED--44MA2 USAMED-- 20MB2 USAMED--44MB2 USAMED--44MD2 4000 6000 5000 4000 6000 5000 4000 USAFED--02FA1 USAFED--02FB1 USAFED--O2FD1 USAFED--O3FA1 USAFED--O3FB1 USAFED--03FD1 USAFED--O5FA1 USAFED--O5FB1 USAFED--05FD1 USAFED--09FA1 USAFED--09FB1 USAFEO--09FD1 USAFED--13FA2 USAFED--13FB2 USAFED--13FD2 USAFED--20FA2 USAFED--20FB2 USAFEB--20FB2 USAFEB--30FA2 USAFEO--3OFB2 USAFED--30FD2 USAFED--44FA2 USAFED--44FB2 USAFED--44FD2 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 6000 5000 4000 PR03BC3CS-Y41 PR03BC3ES-Y41 PR03BC3FS-Y41 PR03BC3CS PR03BC3ES PRO3BC3FS PR05BC3CS PR05BC3ES PR05BC3FS PR10BC3CS PR10BC3ES PR10BC3FS USASEM--02AC2 USASEM--02AE2 USASEM--02AF2 USASEM--03AC2 USASEM--03AE2 USASEM--O3AF2 USASEM--05AC2 USASEM--05AE2 USASEM--O5AF2 USASEM--O8AC1 USASEM--08AE1 USASEM--08AF1 2500 1500 1000 2500 1500 1000 2500 1500 1000 2500 1500 1000 PR15BC3CS PR15BC3ES PRI5BC3FS PR3OBC3CS USASEM--15AC1 USASEM-- 15AE1 USASEM--15AF1 USASEM--30AC1 2500 1500 1000 2500 PR3OBC3FS PR3OBC3ES USASEM--3OAF1 USASEM--3OAE1 1000 1500 . Receptacle Type L--type Plu9 Straight Plu9 Cable Clamp MS3102A20 --15P MS3108B20 --15S MS3106B20 --15S MS3057 --12A MS3102A24 MS3108B24 MS3106B24 MS3057 -- 10P.... -- 10S - 10S - 16A MS3102A14S --6P MS3108B14S --6S MS3106B14S --6S MC3057 --6A MS3102A20 --15P MS3108B20 --15S MS3106B20 --15S MS3057 --12A MS3102A24 --10P MS3108B24 --10S MS3106B24 --10S MS3057 --16A • F SERIES PR03BC3AF PR03BC3BF PR03BC3DF PR03BC3AF PRO3BC3BF PR03BC3DF PR05BC3AF PRO6BC3BF PRO5BC3DF PR10BC3AF PR10BC3BF PR10BC3DF PR15BC3AF PR15BC3BF PR15BC3BF PR20BC3AF PR20BC3BF PR2OBC3DF PR30BC3AF PR30BC3BF PR30BC3DF PR44BC3AF PR44BC3BF PR44BC3DF • S SERIES MS3102A18 --12P MS3108B18 --12S MS3057 --10A MS3102A20 MS3108B20 MS3057 --17P --17S --12A --11 -- 4. CHARACTERISTICS Where, N_ : 4. 1 OVERLOADCHARACTERISTICS The overload protective circuit built in SERVOPACK prevents the motor and SERVOPACK from overloading and restricts the allowable conduction time of SERVOPACK. (See Fig. 4.1.) The overload detection by the hot start conditions rature of 55°C and cannot is the overload characteristics the SERVOPACK is running and thermally saturated. at the rated Torque rated current Accel/decel Accel/decel (Accel/decel the motor /3 = IL /IR : IL: (A) current Load current Current equivalent to 'load (Load current /3 times the current) (A) 1000 t X_I_ by the SERVOMOTOR ,0 conditions operation. 200 must Current 4.2 STARTINGAND STOPPINGTIME N_ (JM + JL ) (ms) Kt'IR'(a-fl) "/Formula) 4-1 Time: N,(JM + JL) Kt.l_.(a%8) (ms) the and varies depending 60 m+ F cycles/min whendL= I JM×m, by the The allowable frequency of operation varies depending on the load conditions, motor running time and the operating conditions. Typical examples are shown below. See Par. 4.2, "Starting Starting Time: x and for satisfactory contact your YASKAWA representative. • Allowable frequency of operation restricted Servomotor The starting time and stopping time of SERVOMOTOR under a constant load is shown by the formula below. Viscous or friction torque of the motor is disregarded, If= 104.7 SERVOPACK, considered on the motor types, Capacity, JL , acceleration/ deceleration current values, and motor speed. If the frequency of operation exceeds 60 times/ min when JL = 0 before the rated speed is reached, or if it exceeds Stopping and be sistor in the SERVOPACK, 300 Allowable Conduction of Servopack. 5< t SERVOPACK The the allowable frequency in of the operation is restricted by heat generated regenerative re- MOTOR RATED CURRENT (%) = 104. 7 =T,ME •The Allowable frequency of operation restricted is byrestricted the allowablefrequency of operation _;_:_ _ tr _ _I t rated 4. 3 ALLOWABLEFREQUENCYOF OPERATION : Fig. 4.1 torque motor Fig. 4. 2 Timing Chart of Motor Armature Current and Speed (Constant Load) 1 = TIME _ 2100 constant constant OTO. , ', T'MEIS_ = lb. in/A) current current a times rated, current) (A) ..MATU.E CU..ENT I OPERATING • : Moment of load inertia (kg'cmZ=lb'in'sZxl0-3) constant of motor (N'm/A Ip : load (r/min) JL (= GD_/4) I,: Motor a = lp/IR : when speed " Moment of motor inertia (kg.cm z =lb.in.szxl0 -3) NOTE Hot start motor JM (-GDZ/4) Kt : le.vel is set precisely at an ambient tempebe changed. Rated and Stopping Time" for symbols. • When the motor repeats rated-speed being at standstill (Fig. 4.3). \/Formula) 4-2 operation Cycle value time(T)of motor should armature be determined RMS current than the motor rated current: T> IP2 (tr+tf)+l_ts (s) --]2-- and that isso lower I I I I I t Where cycle time(T) is determined, Ip, tr, tf satisfying the formula above, be specified, I_1 ARMATURE MOTOR _1_! _ values (Reference) should The formulas (4-1 to 4-5)the are changed to the calculatingmethod using internationalsystem of units. For reference only, the traditional formulas are shown _TIME I=,..t, ,' t_ =_I_ _t I ' ; ' CURRENT _S4_k' I Zd#:;_\, MOTOR} SPEED I = _ I _ ' ¢I | zl Formula , _ TIME 4-1 4-2 Fig. 4.3 Timing Chart of Motor Armature Current and Speed .(Restricted by SERVOMOTOR) The timing and speed frequency follows : chart of the motor armature current is as shown in Fig. q.q. The allowable of operation "n" can be calculated as n= 286.5 x NR K -_t_ t • +I. J L ) (_ - -_ /y2) t I _._" _.,_ _ _I _':'_;:_ - -I--[ CURRENT / ' I_,_!I --4 i ,, I_1 " " ,Formula, (' 4- 3 _ _,_1 --3 _! t _ TIME . ' , J - TIME Fig_ 4.4 Timing Chart of Motor Armature Current and Speed The motor remainsat standstill etweencyclesof accel/deceP_ ) without continuous rated speed brunning. When • the motor accelerates, runs at constant speed, and decelerates in a continuing cycle without being at standstill (Fig. 4.5). The timing and speed frequency as follows. chart of the motor armature current is as shown in Fig.q.5. The allowable of operation "n" can be calculated n= 286.5 x N, Kt (-JM• +I. J-_ " ) ( a1 ;P_) \/Formula,_ 4-4 " (times/min) MOTOR ARMATURE CURRENT I _<_ I , , i SPEED MOTOR I " , I _,_,_, ..J -- TIME _ T_ME i I I Fig. 4.5 Timing Chart of Motor Armature Current and Speed The motor accelerates, runs at constant speed, and'_ decelerates in a continuing cycle without being at | standstill. ) Starting time : tr = 26.8x 10_x Stopping time : tf= 26.8x10_x N,(GD_+GD_)Kt.I,(ot_fl) [ms] NR(GD_+GDZ)[ms] Kt.b(_+#) /P: Accel/decel (Accel/decel current current _times the motor rated current) (A) # = Idl, : Load current constant (times/min) ARMATURES'---MOTOR Table 4.1 Traditional Formula N, : Rated motor speed (r/min) GD_: Moment of motor inertia (kg-cm2= Ib.in.s2×10-3) GD#: Moment of load inertia (kg.cm2= Ib-in.s2x103) K,: Torque constant of motor (kg-cm/A = Ib.in/A) b: Motor ratedcurrent(A) a = I#b : Accel/decel current constant • When the motor remains at standstill between cycles of acceleration and deceleration without continuous rated speed running (Fig. 4.4). SPEED in Table 4.I. l -- | 3 -- 4-3 IL:Currentequivatenttoloadtorque (Load current # times the motor rated current) (A) Kt.b n =1.12X106XN_(GD_+GD_)X(1/_-/_2/a3 ) [times/min] Kt.IR 4-4 n=1.12x106XNR(GDE+GD_)X(ll_-f121a)[timeslmin ] 4.4 MOTOR 4.4.1 MECHANICAL Mechanical can maximum Tables show 4.1 to 4.3 SERVOMOTOR Table 4.1 4.4.2 Allowable 4.4.4 Strength AC SERVOMOTORS rated momentary to AC CHARACTERISTICS carry up torque allowable to 300% of the at output shaft. loads AC SERVOMOTORS rotate counterclockwise (CCW_ I when viewed from the drive end when motor and detector leads are connected as shown below. according M Series Allowable Radial Load ]nd Thrust Load Radial Load and Thrust Load 386-5 ii__ Allowable Load = N (Ib) Allowable Thrust Load N ([b) 03MA1 490(110) 98( 22)t 06MA1 09MA2 12MA2 490(110) 686 (154) 1470(330) 98( 22) t 343(77) 490(110) (1) 20MA2 30MA2 44MA2 1470(330) 1470(330) 1764(397) 490(110) 490 (110) 588(132) (a) Radial I Fig. 4.6 Allowable andThrust Radial Load* Load N (Ib) 147(33) 147(33) 490(11 0) 490(110) 686(1 54) 1470(331 ) 1470(331 ) 1470(331 ) USAFED02F[-] 03F[_-] 05Ft.! 09F[-] 13F[_-] 20F [__ 30F [_-! 44F [-] Table 4.3 Motor • M,F Allowable Thrust Load N (Ib) 49( 11)t 49( 11)t 98(22) _ 98(22) _ 343(77) 490(110) 490(110) 490(110) S Series Allowable Connector 02At-! 03A[_-] 78.4(18) 245 (55) 05A[_-] 08A[_-] 245 (55) 392 (88) Series Phase U _ C B D PhaseW Phase V Frame ground Color of Lead Red Allowable Thrust Load N (Ib) 39.2(9) 98 (22) (Types • 1 Applicable Phase U White Phase V Blue PhaseW Green Frame ground USASEM-03A to 30A) • 98 (22) 147 (33) _ A PhaseU C B O Phase W Phase V Frame ground Specifications (M, F and S series) Table 4.4 Mechanical Accuracy • S Series (Type USASEM-02A) 30At_] 686 (154) 196 (44) •Maximumvaluesof the loadapplyingto the shaft extension. 15A[_-] 490 (110) 147 (33) tDo not apply the exceedingload becausemotor cannotbe rotated. Mechanical receptacle A Radial Load Allowable Radial Load* N (Ib) USASEM- Specifications for Standard _ and Thrust Load Motor Type AC SERVOMOTOR SERVOMOTORS F Series Allowable Radial Load Motor Type 4.4.3 of Rotation types. Motor Type USAMED- Table 4.2 Direction (b) Specifications (T.I.R.)t perpendicular Flange surface to shaft _) concentric to shaft ® Flange diameter Shaft run out (_ I .... n nA Reference i_1 0.04 0.02 (0.04)'_ Detector receptacle in mm Diagram F-'_r_, _:J-_L _ A Channel A output K Channel U output _ B Channel A output L Channel -U output D C E Channel B- output Channel B output Channel Z output N M P Channel V output Channel V output Channel W output tT.I.R. (Total Indicator Reading) F Channel Z output R Channel W output _Accuray formotortypeUSAMED-44MA2. G H 0V + 5VDC S T - J Frame ground -- - --14-- AI II D (2) Brake Connector for SERVOMOTOR with to -44) 4.4.5 Impact Resistance When mounted horizontally and exposed shock impulses, the motor can withstand impacts with impact acceleration of 50G to vertical up to two (Fig. 4.7). Brake terminal B • F Series (Types Phase V c Q A Phase U D Ground USAFED-02 D and F VERTICAL oE -- Color of Lead J - - -03) Fig. 4.7 Jill Lr HORIZONTAL Impact Phase W A precision D A E B F Frame ground PhaseU Brake terminal Phase V Brake terminal drive and of AC SERVOMOTOR. taken to protect the shaft from that could damage the NOTE detector. 4.4.6 Applicable Color of Lead Red PhaseU Black White Phase V Black Applicable detector is mounted on the opposite- @ Phase W Green when mounted horizontally, vibration ( vertical, lateral, [ VERTICAL \ Frame Ground AXIAL ] [' Phase _/ C A Phase W PhaseU 4.4.7 D E Brake terminal Vibration of the motor running 15 /zm or below (Fig.4.9) F Frame ground Vibration Class Fig. 4.8 USASEM-08A • JA_ g B O the motor can withstand axial) of 2.5G (Fig. 4.8). Brake POSITION Types Care should be directly impacts Vibration Resistance LATERAL Blue Resistance C • S Series USASEM-02A) (Type D D Specifications • M, F Series (Types USAFED-05 VibrationResistance at rated speed is FOR CHECKING VIBRATION to 30A) Phase V C Phase W A U D Phase E Brake terminal F Frame ground -_ ]__ ]] Fig. 4. 9 Vibration 4.4.8 Holding Checking Brake SERVOMOTORS with Holding Magnetic Brake" since AC SERVOMOTORS with brake is used when the • operation is held. Turn -- 15-- 0n/off according to Par. 6.12.2, "Use of 5. CONFIGURATION 5. 1 CONNECTION DIAGRAM POWER SUPPLY +10 200 TO 230V_15 50/60Hz % F+ .O,SEF,LTER It/ 6_ , __O 6Ry --L. OFF_-____-O 1MC C I_(_1SERVO 1 MC _ _ TROUBLE INDICATION I MAGNETIC CONTACTOR FOR POWER ON/OFF (See Tables 3.1 to 3.3) Be sure to fit a surge suppressing device to both the magnetic contactor and relay. _ SUP SERVOPACK TYPE CACR-PR[Z] [_]BC SUPPLIED BYUSER. SIGN SIGNAL -1 , L _ Must be securely grouoded. SIGN1 -_llP REFERENCE _c:zFOOV l PULSE SIGNAL ..._v -[ SERVO ON AT IRy ON Ip 0V S-ON _ 2_o--_ 1_ ' Use relays highly reliabl ei__n 3 E N-OT !ip relays or equivalent, or arrange c°ntact(Yaskawa Bestact _ in two contact parallel connec- I tion for low level). PG-A PHASE PULSE (DIVIDING OUTPUT) :'" PULSI OV 'L o 1" Ip IBY i--o 2 ov po T _v - " LEAD LENGTH: _6 20 METERSOR LESS _417 YASKAWA CONNECTINGDRAWING CABLE: NO. DE8400093 _2 PAD w_PAD 0V PBO wcPBO 0V PCO _=PCO 0V PG-B PHASE PULSE (DIVIDING OUTPUT) PG-C PHASE PULSE OVI (SUPPLIED BY USER.) _F_I--I> COIN - OVER- YZ- NO. DP8409123 OR Be sure to perform terminal treatment Y4 of shielded cable. i _$0 1"-d i_....... _ J', y+i .......o • ALM-- }_._9 GROUNDING i_ 8 ! _- : ' ....... u _+ Connect the output relay surge absorbing diode, with the correct polarity. (If connection is wrong, output transistor is damaged). Fig. 5. 1 Example of ConnectionDiagramof SERVOPACKwith a SERVOMOTORand Peripherals -- 16-- I i --17-- 5. 3 EXTERNAL TERMINALS Table 5.1 termin6.ls shows the specifications for 'SERVOPACK. Table 5.1 • External Terminal Symbol 5.4 CONNECTOR TERMINAL (1CN) FOR I/0 SIGNAL of external 5.4.1 Terminals for SERVOPACK Table Description Three-phase ® _) (_) AC input 50/60 (_) (_) @) Motor connection Connects terminal O to motor terminal A, (_ to B and _ to C. Control input Single-phase 50/60 Hz (_) (_) 5.2 of Applicable Specifications power 200 to 230 VAC Connector Type '_ usedin SERVOPACK + 10 % -15 ' Hz. MR-50RMA (Right angle 50 P) 200 to 230 VAC +10 o/ - Ground Connects to motor terminal Must be sec'urely grounded. Regenerative resistor External connection required. Receptacles of Applicable SERVOPACK Name Main-circuit (_) O Specifications I/O Receptacles for Signal Applicable Receptacle Type Soldered Caulking Type Type Manufacturer Honda Tsushin Co., Ltd. MR-50F t MRP50F01 Case MR-50Lt *Use connector•type MR-50RMA made by Honda Tsushin Co• 15/o, tAttached to SERVOPACK when shipping• D. not normally ,ds q 5.4.2 Conhector of SERVOPACK 1CN Layout and Connection The terminal layout of the SERVOPACK input/output signal connectors (1CN) is shown in Table 5.3. The external connection essing are shown in Fi 9. Table 5.3 Connector 1 CN Layout of and 5.3 proc- 15 18 2 3 4 5 6 7 8 9 10 11 OV OV OV OV 0V OV -- S-OI_ 0V OL4- OL-- OV for PULS 0V for PULS OV CL. for INH _ Servo ON Input 0V for S-ON 19 20 21 22 23 24 25 26 27 PCO *PCO CL P-CON 0V N-OT 0V PULS2 OVER+ OVER- rGON+ TGON- P Drive 0V Rvs. 0V Second Ref. Overflow for N-OT Pulse Input Output 43 44 PULS1 SIGN1 PGOutput First Ref. First Ref. Clear (Phase Signal C) Pulse Input Input Sign Input Input 37 38 39 40 33 34 35 36 PAO *PAO PBO *PBO PG Signal PG signal Output (Phase A) Output (Phase B) *PULSI: ALM+ _,LM¢ Driver Line Input of PULS1 Servo Alarm Output Overload Output for Inhb. P---"--_ONInput 41 42 12 13 14 ALRES INH OV Alarm Reset Input 28 16 17• TRG-M VTG-M OV FG Pulse Ref. Speed for Ground Ref. 0V Torque 0V Frame Block -- for Monitol Monitor TRQ-M (InterInput ALRE_ Outpu! Output VTG-M ruption 29 45 30 31 32 TGON Signal Out)ut 46 47 48 49 50 MCB- FG *SIGN1 P-OT 0V SIGN2 COIN+ COIN- S-RDY+ S-RDY- MCB+ Driver Line Fwd. 0V Second Ref. Positioning Servo MCCB Trip Frame Ground for P-OT Sign Input Completion Output Ready Output Signal Output (Interruption) Input of SIGN 1 Inhb. Input --18-- 8 I SERVOPACK 1 OV for PG Output Signal / external signal on page-18. i t l 2O0TO 230V -15 POWER SUPPL L O_ II 50/6OHz I _'°.SM MOTOR _, OPTICAl. ENCODEI SIGN SIGNAL H: FORWARD (STANDARD) REF.PULSE 1- (MAIN) (MAIN) _ -I_j !__ (AUX.) REF.PULSE SIGNAL "_ -I_ CLEARSIGNAL (AUX.) _ _] _ _ PULS2 _ SIGNAL PULS1 _'= _ 10_ REVERSE OPENCOLLECTOR +12V INH 0V CL " H" FOR3NARD RESETAT ON SERVOALARM _ _ !_ SERVO ON AT ON P DRIVE [--o c,-- _ _ P-CO-'_N-_4 _ -- SPEEDAMPL. CONTROLAT ON REVERSE RUNNING Ir _ _i_ N-OT _ FORWARD RUNNINGINHIBIT -- _ _'_ P-OT _'PAO 0: PHASEC --<_ POSITION 1 COMPLI- _--J_4 T,ON t _;_ OVERFLOW SERVO READY • _,-___ _.._._r_ _ _ _I_*PAO , -_ PRO _= MCCBTRIP TG ON ,_ TORQUE MONITOR -- FOWARDRUNNINGINHIBITAT OFF -- _5 _P_ *PRO PG OUTPUT LINE DRIVER 6 _ Pl*PCO PCO_9o _ COIN44OV COIN-- _5 _ r 7',I L__ AT POSITION COMPLETION ON OVER+ _;O _; I] : AT ERRORCOUNTER ON S-RDY4- ,r "-_ OVERFLOW L_'C= NORMAL) I ATABNORMAL(13TYPE) OFF ATNORMAL ON I lOOmA 30VDC, (Max.) OVERS-RDY-- ALMALM4MCB4MCBOk+ OL-- OVERLOAD REVERSERUNNINGINHIBIT AT OFF _ _ , r_ o ALARM _N - S-ON PHASEB ._) REF. PULSE INHIBIT OR INPUT SWITCHING AT L(AT L SIGN 2.AND PULS 2 INPUT ARE EFFECTIVE.) I ; [--0(_ _ _ PHASEA--<_[_ ' _v) SIGNs_SIGNAL I/O HING_--I.-o_0__ t_'_ ALRES SIGN2 ALARM SET ,NH,BIT ' AT SERVO (MAIN POWER READY ON. _ . TGON-ITGON- I ON L_IG _. ',1 ,,, AT MAIN CIRCUIT PROTECTER TRIP ON "I_11 _ II LY AT Servopack OVERLOAD OFF _ .._ ,i, AT 1% OR MORE OF MOTOR MAX. ON SPEED TRQ-M VTG-M t Fig. 5.3 I/O of Signals --19-- TORQUE MONITOR ±3.0V/RATEDTORQUE± 10% SPEED MONITOR _ : Twisted cable. .--L_ ±2.OV/1000r/min SERIES i4.0V/1000r/min ±5%:FOR ±5%:FOR S M,FSERIES Note: and Connector 1CN the V power The 24 user must s.op.Iv provide 5.4.3 I/O Signals of Connect.or 1CN Table 5.4 Signal Name Connector 1 CN No. dl Input Signals of Connector Function 1CN 1 Description Upon inputting this signal, base block of main circuit transistor is released, and motor is servo locked. SERVOPACKis made ready to receive reference pulse input, Upon inputting this signal, control mode of speed amplifier is switched from PI (proportional-integral) drive to P(proportional) drive. S--ON 1CN--8 Servo ON P--CON 1CN--24 Speed amplitierpr0portionaldrivereference N--OT 1CN--26 P--OT 1CN--41 Reverse running prohibit Forward running prohibit ALRES 1CN--12 SIGN 1 1CN-22 PULS 1 1CN--21 SIGN 2 1CN-43 (aux.) PULS 2 1CN--28 (aux.) This signal resets the alarm status. Check the alarm contents before this signal is turned ON. These signals are reference pulse inputs. The following input forms are available. • Sign +pulse train input. • CW/CCW pulse train input etc. These signals are auxiliary reference pulse inputs. The following input forms are available. • Sign + pulse train input, • CW/CCW pulse train input etc. Clear Reference pulse input switching This signal is error counter clear input. This signal makes the auxiliary reference pulse input effective by blocking of the main reference pulse input signal. Alarm reset Reference (main) Reference {main) sign Reference sign INH 1CN--23 1CN--33 input pulse Reference C--L In the case of linear drive, etc., connect limit switch signal according to the run direction. These signals are "closed" during normal run. When limit switch is tripped, it becomes "open." input input, pulse input Table 5.5 Signal Name Connector 1CN No. Output Signals of Connector 1CN Function COIN 1CN-45(45) Position OVER 1CN-29(30) Overflow ALM 1CN-38(39) Servo alarm S--RDY 1CN-46(47) Servo ready MCB lCN-48(49) MCCB trip OL lCN-10(11) Overload TGON Motor run 1CN-31(32) detection PAO * PAO PBO * PBO PCO PCO 1CN-33 1CN-34 1CN-35 CN-36 CN-19 1CN-20 TRQ--M 1CN-15 Torque monitor VTG--M 1CN-16 Speed monitor PG-phase completion detection Description Turns ON when number of lag pulses in error counter reaches the setting value or less. Turns ON when lag pulses become double the number of lag pulses of the error counter setting bits. Turns OFF when falut is detected. For details, refer to Table 6. 11. "Fault Detection Function." Turns ON when main power supply ON. and these are no servo alarm conditions. I Turns ON when MCCB trips. Turns OFF when overload is detected. Refer to Fig. 6.2 "Overload characteristics." Turns ON when motor speed exceeds • M Series 2Or/min 4-10% • FSeries 25r/min 4-10% • S Series 40r/min 4-10% the following speeds A PG-phase B PG-phase 19 Pulse after frequency division is output line driver(TI MC 3487). To be received by line receiver {TI 76175}. C (-I-3.OV/rated torque) 4- 10%. output voltage -I-gv max, outputcurrent 1mAmax M. F Series (+4.OV/1OOOr/m n) 4-5%. S Series (4-2.OV/10OOr/min)+5%. output current 1 mA max -- 20 -- 1 5. 5 D D CONNECTOR TERMINAL (2CN) FOR OPTICAL ENCODER(PG) CONNECTION 5.5.1 Specifications of Applicable Receptacles Cables (Table 5.6) Table ConnectorType* used in SERVOPACK MR-20RMA, right angle 20P *Made caulking • {Attached Specifications Applicable Manufacturer Soldered Honda i-sushin Co.,Ltd. by Honda tAttached 5.6 Tsushin to each and of Applicable MRP-20F01 _'The types), to SERVOPACK (soldered and cables If required, shown when Cables Connection Caulking Type MR_20F _ receptacle and Receptacle Type Type Co., Ltd. applicable Receptacles .Case t Cable_ MR-20L_ listed in Table purchase in Table 5.7 in units DP8409123 or DE8400093 and available of standard on request. length as 5.7. shipping. I Table 5.7 Details of Specifications Connection Yaskawa Drawing Soldered of Applicable Type Caulking DP 8409123 Cables NOTE 1. When applicable cables listed in Table 5.7 are used, allowable wiring distance between SERVOPACKand motor is a maximum of 20 meters. Type DE 8400093 No. 2. The cable applied Manufacturer Approx Specifications Fujikura Cable Co. Double, KQVV-SW AWG 22 x 3 C AWG 26 x 6 P For Soldered able on order KQVV-SB Type ,, For Caulkin, is avail- Yaskawa representative. If wiring distance is 20 m or more, contact your Type _ SERVOPACK Connector (2CN) 5.5.2 Layoutand Internal A 1 Red 1 Blue- Composition and Lead Color A2 Black 2 I Yellow- , Aa Green yellow" 3I _vrhe,e2-.,I Yellowa, White/blue ] d 65 1 White- ...... P 6o V PurpleWhite Blue-White Brown PU encoder is shown method of 2CN 5.q arid 5.5. Layout Table Connection 5.8 of Connector SERVOPACK2 CN 2 3 PGOV 8 CableTWisted Terminal • PGOV I 9 10 PU PV 4 PG5V I 5 PG5V 11 t PV I 12 = PW 6 7 PG5V DIR 13 _ PW B4 orangeWhite/orange 7 [ YellowBrown 14 20 .B5 PurpleWhite/purple 8 ' GreenBrown PC FG 9 RedBrown 10 PurpleBrown GreyB s White/grey Yaskawa Standard Specifications distance No. DP8409179). (2CN) for connecting the optical in Table 5. 8, and the connection and the optical encoder, in Figs. - B 2 Green-White/yell°w B 3 White/green drawing AWG 26 x 10 P i D for 50 m wiring (Yaskawa Standard lengths: 5m, 10m, 20m Terminal ends are not provided (with connectors). -- 21-- 5.5.2 SERVOPACKConnector (2CN) Terminal )PTICAL ENCODER S_" t !:"_s _ i_G_ B Layout 0.2 mm 2 and Connection SERVOPACK BLUE PA =PB PB PHASEB GREEN WHITE/GREEN PC _'PC WHITE/BLUE ORANGE I WHITE/ORANGE * PA PU PHASE C OUTPUT LINE DRIVER MC 3487t PV GREY WHITE/GREY I RED PW I I I I I ':_ I I !_-S BLACK I _ LiNE RECEIVER SN75115 t PV WHITE/PURPLE 0.5mm 2 t ,.--, _P_HASE A. WHITE/YELLOW YELLOW PURPLE (Cont'd) PGBV ,_ _ mm2 GREEN/YELLOW I 0.5ram =CABLE /- ,_._, : Twisted shielded cable. DPB409123 • _Made by Texas Instruments Inc. Note: Connector specifications of optical encoders are as follows. Connector_Type MS3102A20-29P (Receptacle) Accessory (not attached)Type MS3108B20-29S (Angle plug) Type MS3057-12A (Cable clamp) Fig. 5.4 Soldered Type Connector 2CN Connection and 1CN Output (when using Connection Cable DP8401923) OPTICAL ENCODER , _ -,,0.2 ram2 SERVOPACK PA ,kPA I P I i I I I I t P r PHASE Processing - A PHASE ,, PB =PB PC _,PC PHASE C OUTPUT LINE DRIVER MC 34871| I I I P I LINE RECEIVER SN75115 t PV PV. PW PW I P P I | 0V , _} I Twisted shielded cable. CABLE DE8400093 // Fig. 5.5 +Made .; -- by Texas Instruments Inc. Note: Connector specifications are as follows. ,-v, of: optical encoder Connector--Type MS3102A20-29P (Receptacle) Accessory (not attached) -- Type MS3108B20-29S (Angle plug) Type MS3057-12A (Cable clamp) Caulking Type Connector 2CN Connection and 1CN Output Processing (when using Connection Cabl e DE8400093) -22- ,_1 q D D • 6. OPERATION 6. 1 POWER ON AND Arrange the sequence so that the power is simultaneously supplied to the main circuit (R.S.T) and the control circuit (r,t), or supplied to the control circuit first, then the main circuit {Figs. 6.1 and 6.2). POWER oFFPOW, ER ON 6Ry If the control indicating the OFF. circuit is turned OFF, the kind of servo alarm also 1MC 1MCCB When • the power is turned ON, a servo alarm signal continues for approximately 1 second (normally 200 to 300ms) to initialize the SERVOPACK. 2SUP THREE-PHASE -_o 200 TO 230 VAC "_o (50/60Hz) Hold the main-circuit approximately 1 second. 24VDC+6Ry POWEROFFPOW_ERON6Ry 1MC power ON However, signal for this is un- the control power is always turned ON. because necessaryin the sequencein Fig.6.2, • Since SERVOPACK is of a capacitor input type, large recharging current flows •when the main circuit power is turned ON (recharging time: 0.hs). If the power is turned ON and OFF frequently, the recharging-current limit resistor may be degraded and a malfunction may occur. Fig. 6.1 Connection Example for Simultaneous Control Power ON/OFF REEP.ASE } Do not i turn the power ON or OFF frequently. 0,oro ower o. or turn _ I • l suP. 2suP: _S _._. Surge LED goes • When power is supplied to the power ON/OFF sequence shown in Fig. 6.1, the normal signal is set (6Ry is turned ON) in the control circuit after a maximum delay of 1 second. 1SUP D2TH0 To230VAC----o 1MCCB o--,:._ D Make PRECAUTIONS sequence to assure that the main-circuit power FORCONNECTIONS will be cut OFF by servo alarm signal, OFF Sorvo o. switch to avoid transient troubles. ,__ SERVOPACKRVOPACK _ 6. 2 CONFIGURATION OF I/0 CIRCUIT :_._,j _] N absorber CRh0500BA or equivalent (made 6.2.1 Input Circuit (1) Servo ON [S-ON] This drive circuit circuit is used of the to turn • ON the main SERVOPACK. When power the sig- by Okaya ElectriclndustriesCo.,Ltd.) 1D: Flywheeldiode (topreventspikeof 6Ry) Fig. 6.2 Connection Example for Main-cir(_uit Power ON/OFF nal the of the circuit motor cannot applied during coast to a stop. is not input(Servo be driven. If this motor running, the OFF), signal is motor will NOTE Arrange the sequence so that the power is simultaneously cut (including momentary power failure) (Fig. 6.1), or the power to the main circuit is cut first, then the control circuit (Fig. 6.2). The order is the reverse of the power ON sequence. Precautions for connections in Figs. 6.1 and 6.2 are as follows. Before turning the "Servo-ON" resulting from (2) Proportional power ON or OFF, switch to avoid transient current. drive reference This circuit switches PI drive to P drive. the circuit speed turn OFF troubles [P-CON] amplifier from Normally, motor repeats vibration by onepulse response with Servo locked (motor stop) status. However, this vibration can be decreased by P drive reference ON. For attaching load at Servo locked, this decreases under P drive. circuit cannot be used because -- 23 -- Servo rigidity 6.2.1 Input Circuit (Cont'd) (3) Forward These 'running viewed reverse current tor and reverse (a) running prohibit [P-oT, N-OT] circuits are used to stop the forward of the motor (counterclockwise when from the drive end of the motor) and running. These circuits prohibit output to drive the motor. Therefore, the too- will be free running at prohibit input Main input SIGN' 1(*SIGN (i) Reference open. ' Sign + pulse (4) 1CN- (_) Alarm reset This signal signal cleared. and (_) turned After checking alarm reset signal is and (ii) . The are mode (_ can and be (_) selected . Refer by to train pulse pulse Voltage pulse with 90" phase difference train level and timing of voltage levels of available +12V and +5V levels. Set the alarm status. error ON, While counter also this Table 6.1 is +12V more, ON) under Servo OFF status. If this signal is turned ON at no alarm status, clear operation, is executed for error counter. +5V 6.3 shows input circuit (1) to Reference reference reference by switch Pulse Voltage Voltage Level alarm contents, turn ON the by snapping action (10 /_s or Fig. mode pulses SL20. [ALRES] resets is " CW/CCW prevention circuit 1CN- (_) and (_ 1), q The following input setting of SW 20-(_), Table 6.2. NOTE overtravel connect 1 (*PULS i)] pulse • Two-phase When the not used. [PULS (4) For details, (iii) Input Level Setting SL 20 Setting 1o 1 _ refer to Table 2 3 2 3 o • 1 6.4. above. ,+12V +12V I , ,' Lf r-_- 22kfl -_'_ L T _' are available. For driving the line driver, connect the reversal output to *SIGN 1 and *PULS 1, respectively. Set the voltage level to _ 0V _12v0V SERVOPACK Fig. 6.3 + 5 V. SIDE 9 input Circuit (1) Drive by relay contact or transistor (collector open or with +12V pull-up resistor). For relay contact, use high reliable contact relay for low level (12V, 5mA). (5) Input Reference There are input: • Main • two input Auxiliary Pulse types of modes for .- (SIGN 1, PULS 1) 2, PULS input(SIGN circuit Fig. 6.4 shows the configuration of input circuit. For output type of drive side, open collector, with pull-up resistor or line driver reference pulse 2) -- 24 -- t I t Reference Pulse Mode Input Pin No. Sign + Pulses Forward Reverse Running Table 6. 2Running Reference Pulse Mode Reference of Motor Reference of Motor 1CN-@) 1CN-(_ _ I "H" [ 90" 90" Phase Difference 2-phase Pulses* (1,2 or 4 Times) 1CN-(_) 1CN-(_ CW Pulses+ 1CN-(_ CCW Pulses 1CN-_ * The multiplier input, [--L.J'--L_J_ "L" 90" _ _'t--t __ F --1 r-q I 1 F_L "L" -- O O X 1 O O q 2-phase pulse "L" _ Circles in SW20 show the positions for installing the setting plugs on the pins. 1"Defines the method of counting the input pulse waves in Servopack. difference 2-phase pulses when phase A = phase B = f(pps). Table 6.3 shows the forward running reference for 90" phase Table 6.3 Multiplier Counting Method of Reference Content of Pulse Counting Counts only the leading (1CN-(_)). edge of phase-A PHASE A,,-_,--I-----1l--q SERVOPACK FI X 1 PHASE B(1"22) COUNTING I I'll PULSES Counts the leading input (1CN-(_). and trailing PHASE A,,-_,,_[_'I X2 PHASEB(1o22) D r-l edges _ i [--I Pulse of SERVOPACK pulse 1--1 I-I i--L rl of phase tlppsl [Nr/min*] A pulse l---q _ Reference Pulse Frequency of SERVOPACK input _ _ r-_ 2 × t lppsl [2 x Nr/min] SERVOPACK n n I-I I1 13FI I-L COUNTING PULSES --J _ _ Counts the leading and trailing edges of phase A pulse input (1CN-@)) and phase B pulse input (1CN-@)I X 4 PHASEAll-21)J PHASEe,1-22) | | F----'t r_ F'_ _ COUNTING SERVOPACK PULSES * Motor speed -- 25 -- _ _ O ×2 © o ×4 o o --- _ can be set for 90" phase difference, Input SW20_. Multiplier1. O (_ (_) 4 X f(pps) [4 x Nr/rnin] O 6.2.1 Input Circuit (Cont'd) Table 6.4 Applicable Voltage Level and Timing Item Voltage Electrical Specifications Level of Signal Sign 1 4- Pulse + 12V H Level Level L 4- 5 V H Level Level L 4- 10.8V Level 4- 4.2 V to 4- 5 V Level 0Vto PULSE t3 t4_-,_J (SIGN Jr- PULSE Signal) • 100 Max kpps Reference to 4- 12V 0 V to 4- 1.2 V SON Input Frequency: I ,---.,4 h, t2_; 0.1 ,us t3, t7 _ 0.1 ,uS t4. t5, tE> 5 ps tl tL_ _ PHASE _ Signal Mode (Phase A + Phase B) • Max Reference Frequency: SIGN: H-- ® REFERENCE REFERENCE L -- (_) REFERENCE r _ 5,us r _--x 100 _ 50% t2 PHASE A_ 90 ° Phase Difference 2-phase Pulse 4- 5 V level or 4- 12 V level is set by internal switch SW20. +0.8V [ ® REFERENCE J l_ Reference Pulse Remarks /__,_-__E ,_J___.. /_._ I _ I PHA_ e L _ Multiplier Mode is set by the internal switch SW20. _ • Max rerence frequency: x 1 : 100kpps 100 kpps OREFERENCE _OREFERENCE PHASE B : 90 ° AHEAD OF PHASE A r tl, t2<0.1,us "_"× 100=50% PHASE B-_90 ° BEHIND PHASE A X 2: 50kpps X 4 : 25 kpps ,_ q t_ CCW_ CCW Pulses CW Pulses 4- cw • 100 Max kpps Reference _ _ / 0 REFERENCE Frequency: F_ t t_.t2_0.1,us t_> 5,us Note: Maximum reference frequency is 200 k.._J r'_ k_/ /-_ k_ _) REFERENCE t3 -- r__ 5,uS r _-x 100 < 50% kpps. SL20 +5V 1 '+ 12V/; 2 3 r ..... "1 L____°'J -'- +12V 5V ['in LTJ f t'. --" _.>..... Servopock SIDE Fig. 6.4 Input Circuit -- 26 -- (2) I D D | D (iV} Other functions (6) Clear Signal (CL) The effective logic of reference pulse mode is H lavel in Table 6.2. The effective logic can be changed to L level by SW 40-(_) and (_). Short pin Logic • Short OFF on SW 40-(_ and in Table 6.2 is effective. pin ON on SW 40-(_) and Logic in Where Table the is reversed indivividually. follows • 6•2 effective logic CN forward Voltage running Auxiliary input [PuLs (i) Reference pulse mode Reference Reference Pulse Mode Sign + Pulses 90" Phase Difference 2-phase level +I2V/+5V Table of reference can 6 6 be Voltage switched at SL 10. Level Setting Voltage Level pulse pins as SL10. I + 12 V 2 3 2 3 o o I _ +5V (b) pulses when 2, Logic reversion + Effective logic-(_)is can turned be reversed pin of SW40 OFF. 1 CN SIGN - _ 2] (e) in Table 6.5. by setting of Derivative Multiplier -x 1 × 2 CW/CCW Pulse Train signal executed turning when ON, setting • Setting pin of SW40 -(_ ON • Differential action OFF: General action (always SW 20 @ O (_) O _) O O O O O setting action clear can be •counter are always -(_is turned ON. zero. However, Pulse Mode Setting Input when Setting pin of SW40-(_ ON: Clear at L OFF: Clear at H input During action (_) and(_) as shown modes can ' be selected Table 6.5 level - _input (b) SW20 - _), The three Voltage (_): set the setting pins correspond (Example) mode" Reference SW40 -(_)" pulse setting pin Sign OFF SW40 - @) : setting pin ON is (a) 1 CN -_input • SW40-(_)_1 Motor is L. (_: is reversed. individually, The short • SW40-(_)_ Normally, set the clear signal to 'H.' If 'L i is set, the contents of error counter become zero and positioning loop will be ineffective. signal turning C_SIGNAL o o differential pin of SW40 contents clear of during error clear ON) I n O H ERROR COUNTER CLEAR (ii) Voltage level and timing of The voltage level is +12V(fixed). the same as Table 6.4. (iii) Input Fig. 6.5 reference pulse The timing is circuit The configuration of input circuit is the same as Fig. 6.3. However, input filter constant differs from it. Driving by line driver cannot be accomplished. Reverse function of effective logic is not available, (d) Note for • When the Defferential Action of Clear Signal clear clear signal signal usage is turned on when ap- plying the reference pulse, 'the contents of error counter become zero. However, when applying the feed foward compensation, speed command voltage by feedfoward compensation• is Output• • When the lag pulses feedback motor shaft is rotated at serve OFF, are given to the error center by pulse. In this case, be sure to turn clear signal. ON the Servo ON signal afterturningon the -- 27 -- I 6.2.1 Input Circuit • When the ON signal, For clear and reverse (Cont'd) 6.2.2 Output There quence: alarm, tion, circuits clear signal is used with the Servo connect as shown in Fig. 6.6. signal, set the voltage level to +12V, the logic and clear by H. seven output circuits for each seposition completion, overflow, servo servo ready, MCCB trip, overload detecand motor run detection. •These output are non-contact output• Voltage and current In this way, ON or clear Servo error state counter at Servo is utilized OFF. Circuit are specifications • Applied The --o CN-23 in CN-8 power power. r--- ! _ voltage 6.7. of Output supply• It is set +12V is settings common. of CL Therefore to +12V level, level and vice pulse input INH versa• switching Normally, set the Main reference auxiliary reference reference pulse pulse L setting signal• of Voltage Refer to (b) Logic Effective pin of • Setting 6N: OFF: is a recommended shown separate to use +24V Servopack _• ,.w-"TFIANSISTOR PHOTO-COUPLER r_ _ signal if signal and CL is Fig. pulse input input signal [I--N-R] input to is closed is effective 6.7 Output Circuit also Position "L." and by completion completion contents of error signal signal -(_, (_),(_ and(_. [COIN] is counter turned are setting values. As internal to +7 pulses or ±63 pulses Signal is used to advance The position completion level Table _ FLY-WHEELDIODE _'_ (BE SURETO CONNECT |_ CORRECTPOLARITY) position (a) circuit needs V M ON and Clear Signals level are in Reference output mA Sequential Operation of (1) (7) VDC circuit OUTPUT._RELAY 24V signal at the 100 CN-9 6.6 Servo voltage signal < (Ip) construction Fig. ;ervopack SIDE • The INH follows: (Vmax)<30 current ' Fig. as by • Operational SERVOON are I when internal setting values, ll can be set. This the sequence• width is set at SW10 (See Table this setting must correspond to error counter bits (bit numbers verter). (See Table 6•8.) 6.6• ON within 6.7.) the of I However, number of D/A con- reversion logic can SW 40 - (_ pin Input Input of is be reversed turned SW40 switching switching when Table setting ON. 6.7 Position Completion Width Position Completion Width Setting -(_ (Pulses) at H at L Setting i_ 1 SW 10 . (_ -+ I + 2 --+3 O ---+4 0 -+5 (_) (_ O O O O (_ 0 0 -+6 0 _--t--7 0 _+ 63 Table Bit Numbers of D/A Converter -- 6.8 Position Completion (Pulses) 9 --+2 10 11 -+3 --+4 12 -+5 Width 9 28 -J Bit numbers of D/A converter are set at SW10 - (_ and are determined (_). (See according Table 6.9) to These conditionbit numbers of applied motor or machine or applied condition of reference pulse. The smaller the setting bit numbers, the higher the position loop gain becomes. Table 6.9 ' Setting of Bit Numbers of D/A 9 Signal Circuit form • Two-phase pulse with (Phases A and B) 90" pulse O © (2) Output 11 (_) Output circuit line driver Original pointis pulse (Phase output. C) nection, see Fig. 6.8. detecting signal [OVERI circuit and receiver difference 10 12 (2) Overflow Optical Encoder (PG)Output [PAD, $ PAD, PBO, $ PBO, PCO, $ PCO] Phases A, B and C (original point) signals for the optical encoder, PG are output. The output signal specifications are as follows= (1) Converter SWl0 Bit Numbers of D/A Converter 6.2.3 circuit For con- PHASE A LINE This signal is turned ON when lag pulses of error counter reach two times or more the setting bit number of D/A converter. If overflow is detected, SERVOPACK becomes Serve OFF mode abruptly and coasts to a stop. :c PHASE (3) Serve alarm [ALM] PHASE +EV RECEIVER (11C,21C)SN75115 S FILTER "+EV -- CONDENSER (C) 100 TO 1000PF PHASEC OUTPUT any occurs, the inIf This trouble signalmonitors alarmpower state drive of 13 circuit types. the SERVOPACK goes OFF. For detailsof alarm contents, see Par. 6.3(2). MC3487 LINEDRIVER --0V (4) Serve ready 0V [S-RDY] SERVOPACK After control turned ON, alarm. (5) power and main circuit this signal is turned MCCB trip [MCB] Overload • Fig. 6. 8 turned protector detection on when trips. the (3) Output off when overload of For details, see Par. When motor speed average lowing speed, after 1 or turned on. • F series S series motor= motor; +20r/min +25r/rain +40r/rain I s -1 (7) Motor run detection [TGON] " motor= phase FORWARD A PHASE " M series Output Circuit and Receiver Circuit [OVER] is turned is detected. 6.3.(3). • CIRCUIT SERVOPACK PHASE This signal SERVOPACK RECEIVER (SUPPLIED BY CUSTOMER) power are ON with no P-T : Twisted cable This signal is built-in circuit (6) +5v PHASE +10% or ;1:10%or +10% or I---I PHASE J A -_ F---L_ r_ c for 5ms exceeds fol' 2 ms, this signal is RUNNING F---1 y--_90" Note: Phase point Fig. 6.9 more more more D -- 29 -- RUNNING _ Y"_90" I PHASE.J--_[I B t C (original REVERSE PHASE c pulse) is synchronized Output Phase I V r_ with t phase A. 6.2.3 Encoder (PG) PCO, Output* PCO] Circuit (Cont'd) [PAD, *Optical PAD, PBO, * PBO, (ORIGINAL PHASEC POINT) (4) Pulse resolution PHASE A The pulse frequency of the PG can be further divided into 1/N (N=I to 60) or 2/N(N=2 to 64) by using the divider in the SERVOPACK. The PHASE phase relation is the Set the pulse frequency ing to Table 6.10. same as in (3), dividing ratio above. accord- Table 6.10 2 3 4 5 O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O 0 O O O O O © 0 0 0 0 I,0O 0 O O O O O O 0 0 O 0 0 0 O 10 O 0 O O O O O O 0 O O O O O O O O O O O O O 6 7 O 0 0 0 0 0 0 0 0 0 0 0 0 O O O 0 0 0 0 0 0 0 0 0 0 © O O O O O! O O 0 O 0 0 O 0 O O O O O O O O 8 B _ _ q Fig. 6.10 I_! "7 _ I _1 F _ _L Output Waveform I DIVIDING FREQUENCY PULSE J DIVIDING RATIO:l/2 PULSE I DIVIDINGFREQUEN RATIO: 1/3 _ of Optical Encoder AI 1 Setting of PG Pulse Frequency SW2 1 J _ PHASE A PHASE FREQUENCY "7 PULSE RATIO: 1/1 _ B_fL_fU_f_ PHASES PHASEA be able divide the The pulses dividing of the ratio optical must encoder. For toexample, in an optical encoder of 5000 pulses/rev, 1/3, 116, or 1/7 cannot be used. The dividing output is Lnput to positioning control circuit as a positioning feedback pulse. For details, see Par. 6.4. Fig. 6.10 shows the optical encoder output waveform under the dividing pulse frequency, The C-phase (original point) pulse has the same pulse width of dividing ratio 1/1 as PG dividing. • I_ Dividing Ratio Pulse Frequency Dividing Output (pulses/rev) PG PulseFrequency DividingRatio (l/N) PG=6000 PG=5000 PG=4000 PG=2500 PG=1500 1/1 1/2 1/3 1/4 1/5 1/6 1/8 1/10 1/12 1/15 1/16 1/20 1/24 1/25 1/30 1/40 1/48 1/50 1/60 6000 3000 2000 1500 1200 1000 750 600 500 400 375 300 250 240 200 150 125 120 1O0 5000 2500 -1250 1000 -625 500 ---250 ....... 200 ..... 125 ........ 100 ..... 4000 2000 -1000 800 -500 400 --250 200 2500 1250 -625 500 -.... 250 --..... 125 1500 750 500 375 300 250 160 100 60 50 2/2 2/3 2/4 2/5 2/6 2/8 2/10 2/12 2/15 2/16 2/20 2/24 2/25 2/30 2/40 2/48 2/50 2/60 6000 4000 3000 2400 2000 1500 1200 1000 800 750 600 500 480 400 300 250 240 200 5000 ..... 2500 2000 ..... 1250 1000 ..... ...... -500 ...... 400 ...... 250 ....... 200 4000 2500 2000 1600 1250 1000 1000 800 625 500 ...... -- 30 -- 100 150 125 100 1000 500 -250 200 -125 100 --- 75 50 40 • -- ..... 80 500 400 PG=1000 • • 1 25 50 30 25 1500 1000 750 600 500 -300 250 200 20 • • • • • .... 250 320 200 200 125 160 100 150 125 120 1O0 75 60 50 - -1000 -500 400 -250 200 --125 100 -80 -50 40 -- • 6.2.4 Torque Reference [TRO-M, VTG-M] and Speed Monitor 6.3 (i) Dynamic • Speed monitor output (ICN-16): M,F series--±4.0V +5%/1000r/min S series--±2.0V +5%/1000r/min TORQUE brake function • Servo ON command is opened, • Main power is tuned off. supply or Normally, this dynamic brake is not applied while the motor stops, but can be made operational by switching built-in switch (SW 4-5) from OFF to ON. Full scale ±imA (both swing) ammeter. Use ammeter of DCF-6 or DCF-12F or equivalent made by Toyo Instrument 1CN-1t CIRCUIT SERVOPACK incorporates a dynamic brake for emergency stop. This brake operateswhen: • Alarm (fault detection) occurs, .or • Torque monitor output (ICN-15): ±3.0V ±10%]rated torque Instrument: PROTECTIVE SERVOPACK provides functions to protect the body and motor from malfunctions• Motor output is used for monitoring torque and speed at motor running. When an instrument is connected to measure torque and speed, make the connection as shown in Fig. 6.11, using a DC ammeter of full scale +ImA (both swing)• D D Monitor Table 6.11 Trouble Detecting Functions (2) Trouble detecting functions Trouble Detection CO., Ltd. METER REFERENCE MONITOR 47_ IVR 1R METER Overcu rrent Overcurrent flow in the main circuit (at 1.2 times min. inst max current.) Circuit Circuit SPEED MONITOR -- 47£_ 2VR 3R Trip _, 0v Protector protecter tripped Regeneration Trouble Regenerative circuit not activated in SERVOPACK. Overvoltage Excessively high DC voltage main circuit (approx 420V.) Overspeed Excessively large speed reference input. SERVOPACK SIDE 1CNNotes: 1. Torque reference monitor increases output error in range of motor rated speed or more. 2. 1R to 4R, IVR, 2VR are selected by full-scale setting. (Select IR=2R, 3R=4R. IVR and 2VR is for fine adjustment.) Fig. 6.11 Connection Voltage Drop with Monitor Output D Overload condition SERVOPACK. Overheat HeatSink (Overheat approx 85°C min.) of heatsink A/D Element error on the printed board of SERVOPACK. of motor Open Phase Any one phase power supply. Overrun Prevention Wrong wiring signal line. CPU Error Any error of CPU Over -- LOW DC voltage in the main circuit after power ON. (150V or less.) Overload Error 31 -- Flow in the open of motor and circuit in three-phase circuit or PG Lag pulses of error counter i'each two times or more the setting bit number of D/A converter. 6. 3 PROTECTIVE i3) Overload Fig. level CIRCUlT(Cont'd) (OL)detection (5) level 6.12 shows the setting of overload at 100% rated motor current. Protective circuit operation An alarm signal indicates some trouble• Check the cause and correct the trouble, and restart the operation. Before checking the cause, turn OFF the power to the main circuit to avoid danger• Apply the sequence so that the alarm signal turns OFF only the main circuit ((_, (_) ,(._ ), as shown in Figs. 6.1 and 6.2. This allows rapid reaction in the event of a malfunction. detection aE •"qB If the power to the control circuit (Q, (_)) is simultaneously turned OFF, this also turns OFF the LED in the SERVOPACK indicating the cause of the alarm signal. ,000 CAUTION When an alarm signal cuts off only the main circuit, set the speed reference to OFF before supplying power to the main circuit to resume the operation. OPERATING TIME (S) 10o . To reset the servo alarm, depress the (blue pushbutton switch) alarm release [ALRES] signal of input signals on the printed circuit board in the SERVOPACK. See Par. 6• 2.1. (4). (6) Resetting servo alarm If [_or [] is on (e.g•, SERVOPACK is over loaded or the heat sink is overheated), the reset alarm is not immediate and occurs a few minutes later. o 2100 20O RATED CURRENT MOTOR Fig. 6.12 3OO q (7) LED (%) Overload Characteristics trouble Table 614 indications LED Trouble Indications (7-segment, Red) Indication (4) Servo If any activate, goes off, condition alarm output [ALM+, trouble detection the power drive circuits in circuit in the 7-segment and a servo LEDs alarm indicate signal Detection Output Signals ALM-] Table 6.11 SERVOPACK operation istheoutput. [--_ Base current not interrupted (normal operation). [_ Base currentpower is interrupted Servopack circuit. in -- I ,qg Overcurrent Circuit protecter tripped NOTE . Regeneration trouble and overflow among LED trouble indications are displayed in common. But these troubles are distinguished by other LED indications. (See Par. 6.6.) • If overflow is detected, SERVOPACK abruptly becomes Servo OFF mode and the motor coasts to a stop. Batched servo alarm output and LED trouble indications are executed after waiting approximately 0.5 second after alarm occurs. If main circuit power is cut off within 0.5 second after overflow occurs, servo alarm outputs and LED trouble indications are ineffective. -- 32 -- I-_ Regeneration trouble,overflowWhen a pro- i_ Overvoltage r_ Overspeed _ Voltage _ Overload _ [-_ Heat sink overheat A/D error _ Open phase i_1 Overrun prevention i---1 CPU error drop tection circuit in SERVOPACK functions, power drive Servo circuit is base-blocked, This blockstatus released is by "RESET" operation. alarm output I_ 1 6. 4 CONFIGURATION OF POSITIONING = N•.P N _ x _--<= 100 kHz Note: 1/D : M : fPG(1): Ratio of frequency Multiplier (M=I ... i PULSE FORM SETTING dividing (1) ofterfrequencydividing fPG(1) _ 100 kHz M=2 M=4 fPG(1) fPG(1) (1) <= 50 kHz <= 25 kHz ACServo MOTOR POWER AMPLIFIER REFERENCE D D _.'PG(2) CONTROL LOOP Fig• 6.13 shows basic block diagram of •positioning control loop. The reference pulse frequency is i00 kpps (max). Therefore, feedback pulse frequency of error counter input should be 100 kpps or below. Where encoder resolution is P (pulse/rev) and revolution range is N (r/min), set the frequency dividing (1) and multiplier mode so that the following formula is formed. RESOLUTION OF FEEDBACK PULSE M'P OR D, "D= Frequency Frequency referring 6.4.2 PG P pulse/rev Dividing (1) Setting (I/D,) dividing (i) is set 1 'II PGOUTPUTPULSE: -_, P pulse/rev Basic Block Diagram of Positioning Control Loop Fig. 6.13 6.4.1 i FREQUENCY FREQUENCY DIVIDING(2) MULT1PUER DIVIDING(1 ) at 6.4.3 SW2-(_)to(_, (I) to Table 6.10. " Multiplier Setting (M) Frequency Where the Dividing (2) Setting (I/D=) frequency dividing ratio = 1: If the frequency dividing (2) function not used, turn off SW40 - (_) (noinstallation of setting plug). is Where the be made: to Multiplier mode can be set at i, 2 or 4 multiplier. (See Table 6.13.) According to multiplier modes, output frequency of frequency (2) dividing below• Frequency dividing ratio k (o<k<l) is obtained by the formula below, when the following data Multiplier x 1 x 2 × 4 (1) should mode be Output dividing ..... ..... ..... the following values frequency of (I) [fPG(1)] 100 kHz 50 kHz 25 kHz or frequency are given • Load max. max. max. frequency from the displacement • Displacement /_ mm/pulse Multiplier Mode Setting Multiplier Mode (_) Q) (_) Xl 0 0 0 x2 x4 0 0 0 0 k ::Multiplicr -- 33 -- motor pulse is i'evolution=/_Lmm (lowest pulses Z_L/_ O<k-- -n x /_ SW30 setting specifications: per per • Number of output revolution= n pulses Table 6.13 dividing of <I (.1, 2, 4-) setting PG per unit)= motor Frequency Dividing (2) Setting (I/D2) (Conrd) (3) decimal ON switch Calculate point. -(_)(install SW40 setting data the setting of frequency example: Where frequency k = 0.95768726, NOTE positioning accuracy is influenced value of the frequency dividing k. Calculate it to at least 8 digits the Setting dividing (a) _ (FFSW. n) .-1 =8388608x0.95768726=8033663.011 (b) Round out decimals larger than wise disregard them and convert dividing ratio data is set by 1 to 6. rotary k =__5_2=1°-$' 2_3 of [8388608 ion. [_ _.-t- ] FFSW-2 FFSW-5 +163X9 ...... FFSW.4( ¢=_ _ • +164xA ...... FFSW-5| ,4 , +16"x7 ......FFSW.6.J [_ ['_-t- ] FFSW-3 FFSW-6 +16_x5 ......FFSW-3L x k] into binary • D _'o-I" ) FFSW-I =1 xF ......... FFSW-1"1 +16X7 ....... FFSW-2| (FFSW,n) value 0.5 or otherthe result dividing g the I into hexadecimal form. (c) 8033663 = (7A957F) HEX _ frequency FFSW ratio v [8388608xk]=I×(.FFSW-I Data)+16 X(FFSW-2 Data)+162(256) X(FFSW-3 Data)+163 (4896) X(FFSW-4 Data)+164 (65536) X(FFSW-5 Data)+165 X(FFSW-6 Data) _ D t_ ,o_. I FFSW4 (1048576) each scale of FFSW-1 to 6 according to datum (0 to 15) shown in Table 6.14. 6.14 Frequency FFSW-1 to 6 Dividing Setting List Note: Operation of frequency dividing (2) is 100kHz maximum. Where the frequency dividing (2) function is used, set Dz as the formula below. P N D--'Fxy_ < 50 kHz The multipiied formula below. data M (1.2 or 4) should M.P D, x <100 k_z be meet the I Scale of FFSW 0 0 2 3 2 3 4 4 5 6 5 6 1 • 1 7 7 8 9 8 9" 30 11 A B 12 13 C D 14 E 15 F t -- 34 -- . 6.5 RESOLUTION OF POSITIONING FEEDBACK PULSE Table 6.15 shows resolution of positioning encoder for AC SERVOMOTOR and combined encoder at maximum speed. The standard encoder is set to maximum speed. If operating resolution is reduced, resolution of positioning encoder can be increased according to the set frequency dividing (See Par. 6.4.) Table 6.15 AC SERVOMOTOR Rated Max Series Speed Speed r/min r/min Resolution Combined Encoder pulse/rev D D D D M 1000 F 6.6 2000 1500 "S DISPLAY 2500 3000 4000 of Positioning Encoder Output Frequency kHz Control panel o [-M-_ : Main At Rated Speed At Max Speed (1) (2) 6000 5000 100 83.3 200 166.7 1/ 6 1/5 -- 2 2 4000 66.7 133.3 1/4 - 2 6000 150 250 1/6 - 2 5000 125 208.3 1/5 - 2 4000 1O0 166.7 1/4 - 2 2500 125 166.7 1/5 - 2 1000 50 66.7 1/2 - 2 1500 75 1/3 - 2 100 *The voltage (200VDC or []_]_] to_ _--G_: 0 _ I CLMP : Lag pulse of error counter (See Table 6.17.) Positioning completion 2000 2000 1000 and I [] "-, REVERSE !! ""--.. I ........ J Setting bit numbers of D/A converter (See Table 6.16.) *: Overflow of error counter of Positioning Encoder pu'lse/rev D/A more) *: D/A converter output is clamped (saturation). Resolution FORWARD in Servopack is normal. normal. [A][]_C-] : PG-phase A, phase B [frequency dividing (2)output] and phase C (origin pulse) [DAIltDA2[: relation of _ power (+5v) in SERVOPACK is circuit Frequency Dividing Multiplier Mode There are the following LED indications other than the 7-segment LED indications on the E_]: Encoder (Standard) =e l OVER Fig.6.14 • [-C-L--M-_lights when lag pulses reach setting bit numbers of D /A converter. • _lights reach two bit numbers when lag pulses times the setting of D/A converter. and the time, motor anwill alarm coast occurs to a At this stop at Servo OFF mode. The error counter will be cleared.. -- 35 -- 6. 6 DISPLAY(Cont'd) Table 6.16 Setting Setting Table 6.17 Bit Numbers Setting Bit Numbers of D/A Converter of D/A Converter LED Display Bit Numbers 9 10 11 • 12 Note: The mark•shows 6.7 SETTING 6.7.1 Lag Pulse Numbers 9 D (E)/2 11 2 X D(_) 12 4 x D(e) AI 1 Note: Calculate the lag )ulse number using table 6.17. Because the relationship of lag pulse numbers(_) and total values D at error display LED lighting differ according to setting bit numbers of DIA converter. • that LED lights, OF INTERNAL Lag Pulse Numbers of Error Counter SWITCHES Switch Functions The switches board. 3P switch: below SLI, (See Setting pin: Rotary switch: SL2, Table are on the SLI0 to 6.18.) SL1 I to SW40 FFSW6 6.4.3.) Table 3P Switch circuit SL40 SWI to SW4, SW10 (See Table 6.19.) FFSWI to (See par. control 6.18 3P Switch Functions Function Variable range of positioning adjustable volume. SL2 I List ! UserSetting loop gain Not possible - Notpossible SL10 Voltage level switching C-'-L inputs. SL20 Voltage level switching of PULS l and SIGN 1 inputs. 5V OI O23-12V SL30 Feedfoward circuit filter time constand Not possible SL40 of INH and 4- 5V/4-12V - switching possible : Notpossible , -- 36 -I D Table 6.19 Setting Pin. Function 1 Selection of 2 AC SERVOMOTOR " - Type 3 User Setting Setting Pin Functions List Setting Function Pin• 1 Bit numbers setting 2 of D/A converter See Table 6.20 4 Settingandpositioning completion lag i3ulse SWIO5 width SWl 5 6 Selection of -(_ombined encoder 7 (PG) Gain compensation of 7 D/A converter output 8 8 1 1 D . SW2 3 Settingof . PG frequency 4 dividing ratio r Frequency I 5 Ldividing (1)J 6 See Table 6.7. 6 See Table 6.21 2 . See Table 6.9. 3 4 " User Setting see Table 6.10 For setting method, see Par. 6.4 Switching of speed amJifierautomaticP/PIcontrol 2 of reference pulse Input formsetting 3 (maininput) ON: Not possible OFF: Possible ON: Not possible OFF: Possible SeeTable6.2 4 SW20 7 Input from setting reference pulse • 5 of (auxiliaryinput) 6 See Table 6.5. 7 8 Spare -- -- Not possible -- Notpossible 8 2 2 See Fig. 6.15 3 PI constant • 4 setting of speed amplifier SW3 " 5 ["Normally, retain _ I the position preset I _at the factory. ,/ SW30 6 3 4 Parameter setting for speed amlifier 5 automaticP/PI control Not possible 6 f/V filter of 7 speed feedback Settingof 7 multiplier mode ON: 1.2ms OFF: 0.1ms See Table 6.13. 8 D D 8 Mode switch 1 ON: Without OFF: With 1 2 3 SW4 4 2 Setting effective Settingof motorcharacteristics and SERVOPACK function 3 logic Do not adjust. ON H level effective OFF: L level effective input signal ON: L level effective OFF H leveleffective PULS t inputsignal SING1 ON' L active OFF H active ON: L active 4 5 input signal Clear form setting of 5 error counter 6 6 7 7 8 Spare - SW40 INH input signal BIAS compensation function Note: SWIO0 is sparefor settin, pin storage. -- 37 -- ON: Possible OFF: Not possible - Frequenay dividing 8 function OFF H active ON :Differential action OFF: General active Notpossible (2) ON : Possible OFF: Notpossible 6.7.1 SwitchFunctions(Cont'.d) ® --olo Table 6.20 Selection of AC SERVOMOTOR Type SW1 (_ (_) (J_2) r'--I 6.6 M£2 .-_o I1-_ 0.033,uF _ II-- I 0.033,uF 0.22_F M Series O F Series O S Series Note: This setting may Table differ 6.21 from other j (_ 0 0 4000 0 25oo 500 0 0 0 1000 0 0 Fig. 6.15 / 0 0 0 0 0 0 i PGFREOUENcYFI_ _ , JSJECT'ONI D,V,O,NG(,> I / I21OOI--CL |LOGIC L°l iTr_-____ 7 EFFECTIVE r_-i ! SL20 _---aASFE__8 SELEC3]ON __ISELECTION SW2 RATIO L _ SW40 PULSE INPUT M CFV SeriSr_ _ i_[]_1_] SW3 SL40 pINEXACT GAIN 161oo1 TERM'NALS PI Constant ® IN-B CHECK B-'_ i_4 PC 5V(__:7_ "_ -- Speed Amplifier t 5V 12V 5V 12V IV [_ F_VR CAPACffOR I _ I VB 13 f/V TIME INTEGRALPamI°I3 _ V RII CNI3_] t CONSTANT MODE SWI4C_vRI0 [_]-] MOTOR _] ;GLEcTION_ SWlO ] D/A I_l M [_ 12 __ 2}_ CN 14 L -v_ [% ] _JAUX l[_ 1 I_r SWl00 v u I'IP-' CONTROL m--co .... MULTIPLIER _[]_]] S_.]Z_D/A SPARE _-1 SL30 BIT NUMBERsSW4 COINWIDTH GAIN SW.30 E 118 MODE . s..... 'L_J3 (FOR SETTING PIN STORAGE) qml NVR2. _ [-g]VB__k__J vB_ -- 1 0.022,uF Arrangements CNil,, BIAS 0.01/_F IF-- 0 Switch SL10 IF-- (SW3- (_) to (_) (_ VR _ l_/ SW 1 0 --1 -----1 LOOP _ of Encoder (PG) _) 1 O (J1) motors. 6000 5ooo Internal __3 O standard Selection EncoderResolution pulses/rev 6.7.2 O O 1 C 8 8 TMI TM2 Fig. 6.16 ["_ VR18 NVB" ] (]_ [VR14 Internal Switch Arrangements SERVOPACK Type CACR-PR [-][-_]BC3 r-]r-n -- 38 -- I D 6.7.3 Switch setting Ifprocedures Setting Procedure required, alteration below. is using reset •Select reference pulse input from, effective logic and voltage level. Select effective logic of control signal (C-L.I-N-H)and voltage level. SW20-O to® SW 40 - (_) and (_) SL20 SW40-@and@ SL10 Determine of input reference pulse frequency and operating speed range. Calculate output frequency of encoder (PG). D 1 SW2"(!) Set frequency drividing(1 ) and (2), and multiplier made. to O sw30-(_ to® FFSW1toFFSW6 SW40-_) •Set bitnumbers D of D/A converter, sw 1O-C)and_) width• Set positioning completion lag pulse SW 10-_)to_) Select AC SERVOMOTOR type. SWl -C) to (_) Completion of internal switch settings. • Fig. 6.17 6.8 Procedure for Switch Settings ADJUSTMENT There are seven potentiometers on the SERVOPACK panel: IN-B, CFV, BIAS , LOOP, ZERO, CUR and PG5V. Normally, where adjustment is required depending on the use, readjust the IN-B and LOOP. The adjustment of CFV and BIAS is used to compensate for high speed positioning. Table 6.22 shows potentiometer adjustment. D -- 39 -- 6. 8 ADJUSTMENT (Cont'd) a ,qm Table Potentiometer 6.22 VR1(IN-B) Functions Adjustment VR3 (ZERO) Position Loop Gain Adjustment To increase gain, CW. Potentiometer turn How to Adjust Speed Amplifier Adjustment VR5 (CUR) Zero Compensate the following condition with zero adjustment. • Where the positioning completion signal is Starting Current Adjustment Turning _ CCW decreases the peak value of starting current. _ has been preset fully CWat the factory. output unbalanced. • Where the vibration of one pluse response is large at servo lock. VTG 1 Characteristics 0 OUTPUT ,_,,'SPEED X °X-'NP°T GAIN 2 OPTIMUM 3 SMALLGAIN Potentiometer Maximum outputvoltageof speed amplifiervaries, VR6 (LOOP) Functions VR15 (BIAS) Speed Loop Gain Adjustment To increase gain. turn. CW. How to Adjust Speed Reference Compensation VR16 (CFV) Bias VR21 (PG5V) Voltage Adjustment PG 4- 5 V Power To increase bias compensation voltage, turn _ CW. Adds feed forward compensation to increase the apparent Kpvalue If compensation is excessive, the motor and to improve the response. 5.25V at the factory Turning _ CW will hunt. To prevent hunting, CCW. Speed Reference Feed Forward Compensation i of Voltage adjustment for PG power. _ has been preset at increases the compensation. turn If compensation is excessive, the motor will hunt. Characteristics BIASVOLTAGE -- 40 -- Turning _ CW increases the voltage. If the influence of voltage drop occurs due to long voltage. Do not PG, set increase _ to wiring the 6V or above. • 1 D 6.9 CHECK The check functions Do not irrelevant TERMINAL terminal are shown saturate arrangement the panel in Table 6.23. the check terminal with or extraneous on CIRCUITBOARD substance. PULS SIGN COIN PA CFV C-AJ PB PC B-AJ is shown in Fig. 6.18. The check GND I_ teminal Fig. 6.18 IN-B O_ VTG o o JPV T-M O o ] PW IU IV o o o ] PG5V o JGND Check PU Terminal Arrangement D D D Table 6.23 Check Terminal Symbol Functios Functions PULS Reference pulse PULS1 (or CW pulse train, two-phase SIGN (main input) signal SIGN1 (or CCW pulse train, two-phase pulse) CFV Reference pulse f/V converter C-AJ B-AJ Speed reference feed forward compensation voltage. Speed reference BIAS compensation voltage. IN-B Speed reference(D/A pulse) output. converter output voltage): Notes: 1. Optical encoder(PG) input signal • Waveform at motor forward running. approx. 4- 6V/full bit. PA* __ ; PB * VTG Speed feedback signal • M, F series 4- 4V/1000 T-M Torque reference signal: IU (Phase-U) Motor current Type 03 05 07 10 IV (Phase-V) Motor current [V/A] 0.4 0.24 0.20 0.16 COIN Positioning completion PA PB monitor ° S series r/min 4- 2V/1000 r/min signal; COIN *Two-phase pulse with 90" phase difference. 15 20 0.08 Phase-B pulse 44 0.04 t Synchronizing One generationwith per PA. motor turning. • Waveform at motor forwardrunning. 2. Pole sensor input signal. PV i input. Phase-C pulse input. PU Phase-U pulse input, Pole sensor input signal. 30 at L. PhaseApulseinput. Opticalencoder(PG) input signal. I _ ' ' [i,,: Pw ', I Phase-V pulse input, Phase-W ; ' ' i ' , ; ; t-t-mi :,,', r pulse input. CURRENT __,_,. 0 PG5V Opticalencoder(PG) GND Signal power supply voltage: ;I 3. The motorgenerating_torque conversion by torque reference monitor signal is largeat high-speedrange. Compute the precise data by motor current measurement. MOTOR PW ', ' PC+ 4- 3.0V/100% PC PV I 4-5V. MOTOR OV. GENERATING Ip /--f- -- 41 -- TORQUE X TORQUE CONSTANT 6• 10 PRECAUTIONS 6. I0.1 Minus FOR APPLICATION made so that the power is supplied and cut through the primary or secondary side of the transformer• Single-phase 100V class power supply should not Load The motor is rotated by the load; it is impossible to apply brake(regenerative brake) against this rotation and achieve continuous running. be Example: 6.11.1 Driving a motor to lower objects no counterweight) Since SERVOPACK has short time regenerative brake capability (corresponding to the motor stopping time) for application to a minus load, contact • your YASKAWA representative, 6. I0.2 Load Inertia PRECAUTIONS Noise noise)may somewiring or grounding incorporates CPU. This noise as much of the applicable AC SERVOMOTOR• If the allowable inertia is exceeded, an overvoltage alarm may as possible, and grounding wiring be given during deceleration. take the followingactions: • Slow down the deceleration (I) For tative, 6. I0.3 the details, maximum contact High Voltage If the this to the inertia SERVOPACK in the main switched, requires wiring and provision to prevent interference. To reduce switching noise • Decrease JL converted five times Control the effect oz--_-or-_-t r di d....tswltchmg times occur depending on the method. The The allowable load inertia motor shaft must be within OF OPERATION SERVOPACK uses is a power transistor circuit. When these transistors are (JL) occurs, curve• your YASKAWA the Grounding . Motor speed. recommended method is shown in Fig. 6.19. (Fig.6 method frame of 19) •I grounding When the motor is at the machinedvside and grounded through the frame, Cf _ current flows from the PWM power through the floating capacity of the motor• To prevent this effect of current, motor ground terminal (_ (motor frame) should be connected to terminal _ of SREVOPACK. (Terminal _ of SERVOPACK should be directly grounded.) represen- Line If the supply voltage is 400/440 V, the voltage must be dropped three-phase, 400/440V to 200 V by using a power transformer. Table 6.26 shows the transformer selection. Connection should be q used• 6. 11 (with .,m q i i TYPE CACR-PR W _}.5 mm i OR 2CN _ORECASE tCN • OPERATING SEQUENCE I (_ RELAY 3.5 mm2 • USER SIGNAL GENERATING MORE CIRCUIT I I. P___ OR MORE P -- 3.5 mm2 ORE LEAD OF 3.5 mm2 OR MORE CASE PANEL = Notes:: Twisted GROUNDING ONE POINT GROUNDING cable 1. Use wires of 3.5ram 2 or more for grounding copper wire). 2. Connect line filters observing the precautions to the case (preferably flat-woven Win 6. 1 9 asshown in (2) ,"Noise -- 42 -- filter installation" --'_" r4 nllndlnn _rv_.._..._ Method D When (2) Noise noise filter filters installation are installed to prevent noise from the power line, the block type must be used. The recommended noise filters are shown in Table 6.25. The power supply to peripherals also needs output line or other signal (b) in Do the not same bundleductthe ground _ noise filters. _ -L------_] I NOTE If the noise filter connection is wrong, the effect decreases greatly. Observing the i_recautions, carefully connect them as shown in Figs. 6.20 lines or run them lead with the filter I _ ! :_ _=_ _. to 6.23. "_ BOX BOX POOR .Table 6.25 SERVOPACK Type CACR- Recommended Applicable Noise Filter PR05BC _ PR07BC _ PR15BC 200 VAC class, 5 A Three-phase LF-310 Three-phase 200VAC class, 10A LF-315 200 VAC class, 15 A LF-320 PR30BC PR10BC _CORRECT LF-330 Note: Noise filter made by Tokin (c) LF-305 _ WRONG Filter RecommendedNoise Filter Type Specifications PR20BC PR44BC.. : D Noise LF-340 D Separate bundle or Connect the or the ground Three-phase 200 VAC class, 20 A Three-phase 200VAC class, 30A Three-phase _ lead SHIELDED THICK,,. _ AND GROUND SHORT singly to the box "_ .__ 200 VAC class,40 A Three-phase *Equipment BOX POOR Corp. the input and output leads. run them in the same duct. ground panel. E:_ (d) (a) GOOD Fig. 6. 21 Do not BOX Fig. 6.22 GOOD: ' " If the control panel contains the filter, connect the filter ground and the equipment ground to the base of the control unit. z *Equipment i L so×i SASE Fig. 6. 23 SEPARATE POOR GOOD :Fig. 6.20 / CIRCUITS 6.11.2 Power Line Protection The SERVOPACK is operated through the commercialpower line (200V). To prevent power line accidents due to groundipg error, contact error, or to protect the system from a fire, circuit breakers(MCCB) or fuses must be installed according to the number of SERVOPACKS used { Table 6.26). ' A quick-melting fuse cannot be used, because the SERVOPACK uses a capacitor-input power supply and the charging current might inadvertently melt such a fuse. -- 43 -- 6.11.2 Power Line Table Protection (Cont'd) 6.12.2 Magnetic 6.26 Power Supply Capacity MCCB or Fuse Capacity SERVOPACK Type CACRPR03BC Power Capacity* per SERVOPACK 0.65 kVA Use of Servomotor Brake with A1 Holding and Current Capacity per MCCB or Fuse 5A I When SERVOMOTOR is used, use the OFF signals. The released by current with holding magnetic brake following timing for ON and holding magnetic brake is condition. PR05BC 1.1kVA 5A ON PR07BC 1.5 kVA 8A HOLDINGMAGNETIC PR10BC 2.1kVA 8A BRAKE _..s MIN *1 PR15BC PR20BC 3.1 kVA 4.1kVA 10 A 12A PR30BC 6.0kVA 18A REFERENCE PULSE APPLIED i I t I I OFF I BRAKERELEASE OFF REFERENCE PULSE INPUT ON PR44BC 8.0 kVA 24 A "Values at rated load. Note: For ground fault interruptor, specify the high-speed type. The time delay type is not adopted 6. 12 6.12.1 If the normal SERVOON machine forward _ I _ It I MOTORROTAT,ON / \i APPLICATION Connection I OFF_---: t,*3 -_ for Reverse construction reference is Motor requires used for that the reverse "1 release Input speed reference 0.1s input. or more after reference has been "2 (Do Applynotbrake use case, change of required. For dividing output B-phase. Note: Turn Servo lock approximately PG connection is not reference, frequency SERVOPACK forwards Fig. SHORTED I_ (0V OF 6.25 the brake the after brake the motor to decelerate has stopped the motor.) completely. •3 "t" shows a delay time greater time(10ms} of one relay. and _CN2-1 9 ,2 Running motor running and the normal reverse reference for forward running, short circuit across CN2-1 and CN2-7 of connector 2CN for the PG. In this motor forward from OFF= than the operating on SW4- (_) (installation of setting status after Servo OFF is held 200 ms. Holding Magnetic Brake ON-OFF plug). during I Timing PG) _ Fig. 6.24 1 -- 44 -- D D D 7. INSTALLATION 7.1 RECEIVING AND This motor has been put through at the factory before shipment• however, check stringent tests After unpacking, for the following. • The output shaft can be hand-rotated freely. However, the brake-mounted motor does not rotate since it is shipped with the shaft locked• • Fastening bolts and screws are not loose• If any part of the motor is damaged or lost, immediately contact your YASKAWA representative giving full details and nameplate data. 7.2 Before Storage Temperature: Humidity: 20% (4) Load to 80% 0°to +40°C -20°to +80°C RH(non-condensing) coupling True alignment of motor and driven machine is essential to prevent vibration, reduced bearing and coupling life, or shaft and bearing failures. Use flexible coupling Alignment should be made Fi9. 7•2. with direct drive• in accordance with ® be installed either hori® mounting Wipe anticorrosive paint on shaft flange surface with a cloth before m°t°r conditions Temperature: INSTALLATION AC SERVOMOTOR can zontally or vertically. (1) (3) Environmental Ambient • Its nameplate ratings meet your requirements• • It has sustained no damage while in transit• t° the driven machine" See extension connecting and the. Fig" ANTICORROSIVE 7" I " PAINT (_) Measure the gap between a straightedge and coupling halves at four equidistant points of the coupling. The each reading should not exceed 0.03 mm. ® Align the shafts. ® Measure the gap between the coupling faces at four equidistant points around the coupling rim with a thickness gage. The maximum variation between any two readings should not exceed 0,03 ram. D i sive water or oil droplets, protect the motor with if the AC SERVOMOTOR is subject to excesa cover. The motor can withstand a small amount of splashed water or oil. WIRING Fig. 7.2 386-5 Fig. 7. 1 Anticorrosive Paint to be Removed (5) the motor under the following conditions. • Indoors • Free from liquids • Ambient • Clean corrosive temperature: and • Accessible cleaning and/or explosive gases or -I0 to +40°C dry for inspection maintenance bearing Avoid both thrust and shaft. If unavoidable, in Tables 4.1 to 4.3. (2) Location Use Allowable Alignment and -45 -- of Coupling load radial never loads to the motor exceed the values 7.2.2 (i) SERVOPACK 7• 3 Iz_stallation The (2) 7.3.1 SERVOPACK mounted type type CACR-PR[:][:]BC is a rack- as standard. a panel: • Keep the ambienttemperature at 55°C or below. • When installed in installed near around are absorbing Select water, hot or metallic air, high particles• exist long opera- conditions: with minimum exposure humidity, to oil, excessive dust (3) MountingDirection Mount the SERVOPACK unit vertically on the wall with main terminals being at the bottom to take ad'vantage of natural air convection. ( See Fig, .7.3(a).) Instal] it with setscrews tightened at four mounting holes in the unit bace. To change to base-mounted type, change the support Mounting position screws ofas baseshown supportin Fig. are I I _ 7.2 UPPORT '_ l VENTILATION of SERVOPACK Mounting Connector Ground -- 10 5.8 7.6 12 18 24 • 11.7 18.8 26.0 33.0 0.5 1OOmA DC max 46 -- Cable Size of SERVOPACK Cable Size mm2 PR PR IPR IPR PR 20BC30BC44BC PR PR PR 03BC05BC07BC10BC15BC j_ MainCircuit R. S. ] HIV 2.0 or more HIV 3.5 HIV HIV PowerInput or more 5.5 5.5 On Motor U, V. W HIV2.0 or more HIV3.5 or more more°rOrmore Une Control Connection Signal Connector ControlI/O Line PGSignal Fig. 7.3 3.8 Recommended _T_ External Terminal Off (b) Base-mountedType 8 2CN 100mADCmax(50OmADCfor powerlineonly) _u_ = PowerInput (a) Rack-mountedType 6 Line PGSignal Connector Ground f ] t VENTILATION. 5 1CN 7.3(b). attached ,.-I Rated Current ControlI/O Signal Off Connector Table WALL _ • l bear the of 40 °C• I to the SERVOPACK. WALL cables Can temperature cables. _T_. Rated Current A (Effective Current) _ PR PR PR PR PR PR PR PR s_,_ \93BC 958C 97BC I08C 15BC 20BC 30BC 44BC MainCircuit PowerInput R,S,T 2 On Motor Une Connection U.V.W 3.0 Control Power Input_ r. t present: atmospheric a location External Terminal material. Avoid locations where corrosive gases since it may cause extensive damage over use. Especially vulnerable are switching tions of contactors and relays. • Unfavorable q SERVOPACK Table 7.1 • If subjected to vibration: Mount the unit on shock gases and Cable Size source: Keep the ambienttemperature below 55°C. • If corrosive Rated Current so that a bundle of three rated current at an ambient Table 7.3 lists the type of aroundSERVOPACK a heat ,din Tables and cable 7.2 show current, 7. Iand sizes external of the term'inals, Dower• unit rated and SERVOPACK, respectively. Select the type and size of cables to meet ambient conditions and current capacity/. The cable size is calculated Location • When WIRING r. t HIV 1.25 or more 1CN • Core must be 0.2 mm2 or more ° Tin-plated soft-copper twisted cable * Two-core twistedshiledcable 2CN * Finished cabledimension:16diaor lessfor1CN. --L-_ HIV 2.0 or 11diaor more lessfor2CN Table7.3 Cable D D D D Type of Lead (R .F .I) (4) Remedy for Radio Frequency Interference SERVOPACK is not provided with protection from radio frequency interference. If the controller is adversely affected by radio waves, connect a noise filter to the power Supply. Allowable Conductor Temperature Vinyl Cable (PVC) 600 V Vinyl Cable (IV) 60 SpecialHeat-Resistant Cable(HIV) Notes: 75 (5) The extremely excessive 1 For main circuits, use cables of 600 V or more. 2. Where cables are bundled or run through a duct (unplasticized polyvinyl chloride conduit or metalic conduit), select the larger cable size than listed considering the current drop rate of the cables. 3. Where the ambient (panel inside) temperature is high (40"C to 7. 3. 3 6O•C).useheat-resistant cables. 7.3.2 Wiring SERVOPACK 1, and signal is a device for speed control of 3000: level of several milli-volts or less. ground resistance one point. ground the Table 7.4 solenoid is shown in line, cable should 100 fl or less). Make sure If the motor and machine a surge Power Loss A Current Circuit W Main PR03BC PR05BC 3.0 3.8 20 40 PR07BC 5.8 60 PR10BC PR15BC 7.6 11.7 70 80 20 heavy PR20BC 18.8 100 40 200 to ground at are insulated, PR44BC 33.0 100 370 be as 3due ground (groundtake to noise, suppressing .210 Resistance Circuit W W W Regenerative Control Total 90 110 10 140 60 150 160 Note: The regenerative resistor causes power loss when the motor is decelerated, but is negligible if the motor is not started and stopped motor. to mount Power Loss at Rated Output CACRType PR30BC frequently. 26.0 • Place noise filters, SERVOPACK and I/O reference as near as possible to each other. sure of SERVOPACK 3ERVOPACK Output is a maximum of 3 m for referand a maximum of 20 m for PG Use the shortest possible length. as possible to provide Class (3) To prevent malfunction the following precautions: • Make loss Precautions Cable length ence input lines feedback lines. For Power Loss The power Table 7.4. wiring• The following precautions should be taken when (1) For signal lines and PG feedback lines, use twisted cables or multi-core shielded twisted-pair cables(Yaskawa Drawing No. DP8409123 or DE8400093). (2) signal line uses cables whose cores are fine (0.2 to 0.3 mm )• Avoid using force which may damage these cables. circuit coils. • Run the power line and signal line, keeping the distance to 30 cm or more; do not run them in the same duct or in a bundle. into the relay, electromagnetic contact, and • When the same power is used for SERVOPACK, as for an electric welder or electrical discharge machine or when a high-frequency noise source is present in the vicinity, use filters in the power and input circuits. -- 47 -- 160 80 300 8. DIMENSIONS in mm (inches) 8. 1 SERVOMOTOR: M SERIES (1) Standard [ Taper Shaft ", T L LL LM =_' : KB2 MOTOR CONNECTOR ] OPTICALENCODER\ Drawing 1 _ I LI_ ] LC _ _ ..,,= 61 i J 4-_LZ [Straight Shaft] L LL LM MOTOR CONNECTOR -LT _; LE __i OPTICALENCOO_R_ ' TAPER1/10 I.-I_[ ' co_c.. Drawing 2" - Detail of Shaft Extension _ , _____ __ KB1 _ L_ 4-¢LZ * For USAMED-44MA2, 0.04 (0.001 6). tOnly for USAMED-09MA2. Detail of Shaft Extension 1 AC SERVOMOTOR Type Dwg No. USAMED-03MAI* 1 USAMED-06MAI* 1 USAMED-09MA2* USAMED- 12MA2* L LL LM 318 260 214 58 (10.236 (8.425) 2 406 (15.°_4) 348 (13._01 (ll.302 SV.@) 2 (13. 78) 350 (10.669 271 USAMED-30MA2 USAMED-44MA2 2 (19.409) 493 (I_,299) 414 (14.016) 356 2 725 (2_543) 615 (24.213 557 (21.929) 1 USAMED-09MA2* USAMED-12MA2* 2 2 USAMED-20MA2 USAMED-30MA2 2 2 USAMED-44MA2 2 S 181 110 ] (4.331) } Q See Drawing 1. Approx Mass kg (lb) 8.5 (_9) 13 (m)' IE Flange _KL1 KL2KL3KL4 LA LB 176 (69. 29) (9.173) 250 (9.843) 322 (12.677) 171 (9,134) Surface LC LE LG LH LZ O 233 (7,126) (6,732) 79 I_) 58 i3.m Shaft Extension Type No. USAMED-03MAI* 1 46 (1.811) 213 408 m._)oo.669) 329 271 (16._1 USAMED-06MAI* (2.Z83] (8, 386) 2 KB1 KB2 124 (4.882) (12,52) Dwg LT 261 203 157 ) (10. 276) (7. 992) (6.181 USAMED-20MA2 AC SERVOMOTOR LR (4,409) 112 (3.661) 93 (6.614) 168 158 (6. 22) (5.709) 145 (4. 110 -o.o_ 331-o.oo,a,) 0 137 110 202 175 200 114.3-o.o_ (7.9s3) (a89) (7.874) (4.5-00.000984) 130 (5.118) 6 (0. ?.36) 12 (0.472) 165 9 (6,496) (0, 354) 232 o 229 (..un 290 ¢9.o_6) (12.362) 314 (14.764) 375 124 (5.394)' (4.331) 482 (18.976) 587 (23.11) (4.8¢_) 150 (5.906} lO0 {3.937) -(9.252) 235 3.2 18 230 13.5 (0.126) (o.7o9) (9.055) (0.53l} q 165 (6.496) Motor Connector Types Receptacle 180 (7.o87) Optical Encoder Connector Types L-typePlug StraightPlug] CableClamp Receptacle L-type Plug Straight Plug CableClaml MS 3102A 18 MS 3108B 18 MS 3106B 18 -10P -10S -10S MS 3057 -10A z2_to. (o.__:._,,) 40 .. STS>20• (44) 22 (4s) as_o, (1.378"o° "_) 76 (z._) 29 (64) MS 3162A 22 MS31_ B 22 MS 31C6B 22 -22P -22 S -22 S 41 (90) MS 3057 -12 A 422o,6 110 (] _-_oo_) (4._n 66 MS 3C57 -16 h (14s) MS 3102A 32 MS 3108B 32 MS 3106B 32 -17 P -17 S -17 S MS3102A2£MS3108B20MS3106B20 -29P -29 S -29 S MS3057 -12A • Not providedwith an eyebolt. Notes : 1. Opticalencoder(6000 pulses/ray) is usedas a detector. 2. Vibration: 15/tin or below. 3.- Plug and clamp are not attachedfor receptacleconnection. II -- 48 -- (2) With Brake D D : ]Taper Shaft ] Drawing LT 1 _ _ i I_ % iiii " DETECTOR SIDE Shaft ]_ - Straight ' MOTOR S_DE (BUILT-IN HOLDING pDetail of--,TA.ER..O Shaft Extension o 4-_LZ BRAKE) LLL ,..K% Drawing 2 'I_'[_F '_ 03MAIOE* 1 LL LM LR LT u _ MOTOR SIDE KB2 KB3 L KB1 *Only for USAMED-O9MA2OE 4-_LZ KL1 IE 316 258 214 (12.441)_ 10.157) (8.425) LR I \.-- \ DETECTOR ACSERVOMOTOR Dwg Type USAMED- No. LC_. KL2 KL3 LA Flange Surface LC LE LGiLH LB Shaft Extension S Q LZ 233 (9.173) 362 304 260 21 28 06MA1OE* 1 09MA2OE* 2 44 116 279 158 (BUILT-IN113 93 BRAKE) 147 145 110-°¢o_130 6 12 Detail 165 of 9Shaft (_'n SIDE HOLDING Extension a._o2) 14.2_,_.(11.969)(10.236) (z.283) (I.TJ_) (4.567) (10.9_4) (6.220) -(4.449) (3.o9|) (_78"/) (5.70s) (4.331_°oom) (5.|ta) (0.236) ((0.47z) (6.4o9) (0.354) 22-_.m 40 452 _15312} 394 ([3.780) 350 369 (0.866.._°_.) 0.575) (17.795) (14.528) 12MA2OE 2 426 347 292 (16,772) ,(13,O91) (II.4o9) I 490 411 58 311 12.244) 356 79 55 165 375 220 124 143 110 171 20MA2OE 2 419291) (16.18D1(14.016)(3.110) (2.165) (6,496) (14.764) (8.661) (4.8_) (5.630) (4.331) (6:r_) 30MA2OE 2 571 492 437 (22.480)-,(19370) (17._ ACSERVOMOTOR Dwg Approx Mass 200 114.3-_ (7.8?4) (4.5 180 3.2 18 230 13.5 35%0°' _°ooo_) (;'.os'/) (0.126) (0.7o9) (9.o95) (0.531) (1.378+_°°¢_) 76 (z.o92) 456 (17.953) Brake Torque Connector Types for Motor and Brake Optical Encoder Connector Types Receptacle L-type Plug Straight Plug Cable Clamp Receptacle L-type Plug Straisht Plug I CableClamp 11.5 03MAIOE* 1 (zb) IS kg(aa) (Ib) 23 (51) 30 (66) 37 (el) 49 (1o8) 06MAIOE* 1 Type USAMED- No. 09MA20E* 2 12MA20E 2 20MA20E 30MA20E 2 2 * Not provided Notes : 1. Optical 2. Vibration: with encoder (6000 MS3108B20 -15S MS 3057 -12A -29 P 35.28 MS3102A24 (3,zs) -I0P MS31(_B24 MS3106B24 -I0S -I0S 3. 4. pulses/rev) is used as a detector. Plug and clamp are not attached for Power supply for brake is 90 VDC. 5. For type -29 S -29 S -12 A MS 3057 -16A USAMED-44MA20E. contact receptacle your connection. YASKAWA representative. 15 ,urn or below. Shaft with Extension Keyway Both and SERVOMOTORS with brake have except for extensions of Straight without the same Shaft brake dimen- shaft extension. are. shown below • ACSERVOMOTOR TypeUSAMED- _ With Brake 03MA2K 03MA2KE 06MA2K 06MA2KE 09MA2K 09MA2KE 12MA2K i2MA2KE 20MA2K 20MA2KE 30MA2K 44MA2K 30MA2KE 44MA2KE (4._11 11o : . D w[___ _ *Only for USAMED-03MA2[:] to-09MA2[:] Shaft LR Without Brake LR LE MS3106B20 -15S MS3102A20MS3108B20MS3106B20 MS 3057 an eyebolt. (3) sions Shaft 5.88 MS310_A20 (_.,i -15P N'm(lb'in) -- 49 -- LE S Q Extension QK 19--_*Ol3 o 58 6 (0. 748 -o._,,) (2.283) (0,236) (1.378+_ _) (1.654-_) 42 -:o,. 5 3 6 (O. 805 35% -_t.) "°' (o. lze) 3. 2 U 40 25 (o.=971 (o.m) (1.57S) (0.9_4) 22 Ao,, (3.n) 79 T 3. 5 W 5 (o.l_) 6 (o.z36) 10.138) (o.236) (z_e) 76 (z.3_) 6o (o.31s) 8 (o.1971 5 (o.3_) I0 I4.3311 11o : (a._31 90 I (0.4_) 12 8.2. SERVOMOTOR: F SERIES (1) Standard I Taper Shaft Drawing 1 I L MOTOR i LL CONNECTOR OPTICAL ENCODER XjI'LT LR i LM KB2 i CONNECTOR \N" ' _ TypesUSAFED-02FA1, TypesUSAFED-05FA1, and -03FA1 and-09FA1 LC I ¢4 LR ,5 8/ ............. " '- i-' iy [Straight YMOP'OIj" )AP R 4-_LZ Detail of Shaft , r8 LR , f.-, o.?,N h_ TAPER t,tO Extension Shaft] Drawing 2 MOTOR L LL = CONNECTOR -LT OPTICAL ENCODER _ _ . " CONNECTOR _ = KBt l - LR LM KB2 ;- I : LC • _,_L_ =_ I j I L - _, _E (8o_.'(15) * Only for USAFED-13FA2 , [ Detail of Shaft Extension 4-_LZ ACSERVOMOTOR Dwg Type USAFEDNo. 02FA1 1 03FAI 1 05FAI* 1 09FAI* I 13FA2" 2 20FA2* 2 30FA2 2 44FA2 2 AC SERVOMOTOR Dwg L LL LM LR LT KB1 KB2 IE KL1 KL2 KL3 KL4 LA Flange Surface LC LE LB LG LH LZ 190 153 113 89.5 132 (7_o) (_a) (4._9) 37 40 (3._4) (5"1_) 236 199 159 (].45-/) (].5-/5) 135.5 178 (9.Z_Sl) (-/.s3s) (6.260) (5.335) ('/.IX)l) 261 203 157 124 124 (10,276)(7.992) (6.181) (4-882) (6.929) 76 89 126 139 100 80 _o°.o_ (2.992) (3503) (4.g61) (5.472) (3.93-/) (3.150 -o_x)l° 18) °K) 4 7 120 6.6 (3.543) (0.15-/) (0.276) (4.724) (0.260) 318 260 214 58 (lZ_Z) (lO.Z_) (_.42s) (_) 406 348 (11.8_) 302 (15,984)(13.7Ol) 350 271 213 03.78) (10.669)(a386) 46 181 233 (1_11) (-/.1z6) (s.13-/) -250 322 (9.843)(12.677) 112 93 (4.409) (_1) 168 158 145 (_e14) (5"zz) (5"xm 110 _o._ 0 (4.331 -_01_) 130 6 12 (5"118)(o.236) (0_) 408 329 271 79 (1_) (_z_) 00._) (3.m (19,409)05,299)(14.016) 58 (z_) 137 (_) 202 (-/._) 114.3 _o°_ 0 ( 4.5 -o.ooco_) 180 3.2 18 230 13.5 (7.(_7) (0.126) (0.709) (9X)55) (0,531) 493 414 Shaft 356 Extension Type USAFED-; No. S Q 02FAI 1 11.5 15 03FA1 1 05FAI* 09FAI* 1 1 13FA2" 2 20FA2* 2 30FA2 44FA2 2 2 171 232 (6.732) (9.134) 229 29o (9_10 (11,4_n 124 (12.326)(14,-/64) 314 375 110 (4._) 175 (_} 200 (-/_4) ¢o_91) (49) -2 S 8.5 21 28 (_9) (o_) (1.1_) 13 MS 3102A 18 (29) -10 P -_, 40 2o (0.8622 __.,)(,.sn) (,4) 22 (_s) 35 +_ 76 29 MS 3102A 22 (1.378 +_) (z_z) (64) -22 P 41 (_o) 165 9 (6.4_) (0-._._) (4_sz) i Approx Motor Connector Types Mass kg (lb) Receptacle L-type Plug IStraight Plug Cable Clamp 3.5 (0) MS 3102 A 14 S VIS31($ B 14 S MS 3106 B 14 S MS 3057 (0.4sa) q -2 S -2 S -6 A MS 31_ B 18 -I0 S MS 3106B 18 -I0 S MS 3057 -10 A MS 31_ B 22 -22 S MS 3106B 22 -22 S MS 3_57 -12 A Optical Receptacle MS 3102A 20 -29 P L-type Encoder Plug MS 3108B 20 -29 S Types Straight Plug Cable Clamp MS 3106B 20 -29 S MS 3057 -12 A • Not provided with an eyebolt. Notes : 1. Optical encoder (6000 pulses/rev) is used as a detector. 2. Vibration: 15/_m or below. 3. Plug and clamp are not attached for receptacle connection. t -- 50 -- (2) With [Taper Brake Shaft ] L L, _ LLT, Drawing 1 LM _I I _ _-_ DETECTOR MOTOR/ SIDE SIDE HOLDING_ BRAKE (90VDC) LE- _5_;256) o%._ i I: "_ 4-_,LZ TAPER 1/10 Detail of Shaft Extension D I Straight ShaftJ L LL I_T Ill Drawing LM ,_ V 2 ._ ._ .L_.I KB3 LC KB_ _! L_0315)- .-I _o_.7, -- I I P'_I'-'ZI_ ='--_" _ 4-_LZ Detail of Shaft Extension I LT _ _, _ -- .KB2KB3 _- 3 I _I._I._F i L LL LM r Drawing . C) ilt DETECTOR MOTORSIDE SIDE (BUILT-INHOLDINGBRAKE) Shaft LR 2s I.__'°_°_ ' t :i I I Straight , . . KB1 LC = (0.315) LR Q "x __l_C.__ __ DETECTOR MOTOR SIDE SIDE (BUILT-IN HOLDING BRAKE) D -- 51 -- _ L___ * Only _ for USAFED-13FA20E 4-_LZ Detail of Shaft Extension 8. 2 SERVOMOTOR: F SERIES (Cont'd) Dwg AC SERVOMOTOR Type USAFED02FA10E No. 1 03FA10E 1 05FA10E* 1• Flange L LL 236 199 (9.291)(7_) LM LR 159 (_z6o) 37 LT 40 2861249 209 0.45_) il5_) (n_o) (9_) (6`zzs) 316 (Ia157} 258 {6`125) 214 (12-441) KB1 KB2 KB3 178 24 !(7_o8) IE 1 2 362 304 260 58 44 116 279 158 (14_) (n._gl (1o._5 cz.zs3)(1.7_) (4._) ClO._) (6`z_) 452 (15.512) 394 (13.780 350 369 (17.780) [14.5_) 20FA20E 2 426 1347 (16.772) (13.561) 292 (llAg65 30FA20E 2 490 i 411 356 44FA20E 2 AC SERVOMOTOR Dwg Type USAFED- No. LA 76 89 154 100 -- LB 80 (_z_) (x_75 (3.150 113 93 147 145 110 (4._9) (a._l) (5.7_) (_Tm) (4.331 Sur|ace LC ',[_, 90 Sha[t LE LG LH LZ 4 7 120 6.6 -_,,,) (xu_) I¢1575 (_v65 (4.7z45(a_o5 -_ -_) 130 6 12 165 (6.XlS)(o.z_) (o.4_) (6._) Extension S See Drawing 9 (o_) _ (0.8 [ Q - _ t2) 1. 14o (1.575) 311 (12244) 79 (3.110) 55 (5165) 165 (6.496) 571 492 (17.205) 437 (22.485(1937) Approx Mass lug (lb) KL3 (2.scz) (_5 13FA20E* (16.1815 (14_)16) KL2 (o.sa5)i228 (6`976) 233 (9.173) 09FAIOE* (19291) KLI 375 (14.7645 220 124 {6.661) 143 (4_8_) (6.630) 110 (4.331) 171 200 (6.732) (7.8745 ( 114.3 4.5 -_ -_) 180 (7_) 3.2 (al_) 18 230 (a7m) (o._) 13.5 35 *_ (o.sal) (1.378 +_==') 76 (_gqz) 455 (17.953) Brake Torque N'm(lb.in) Connector Receptacle Types L-type for Motor Plug and Brake Straight Plug Optical Cable Clamp Receptacle Encoder L-type Plug Connector Types Straight Plug Cable Clamp 4.4 02FA10E 1 03FA10E 1 05FA10E* 1 09FA10E* 1 13FA20E* 2 20FA20E 30FA20E 2 2 44FA20E 2 (m) 5 Or5 (2s) 15 11.5 (za5 23 (515 30 (_5 37 (s15 49 0o_) 0.98 (s.7) MS 3102 A 14 S MS 3108 B 14 S MS 3106 B 14 S -6 P -6 S -6 S MS 3057 - 6 A 5.88 (S_l) MS 3102 A 20 -15 P MS 3108 B 20 MS 3106 B 20 -15 S -15 S MS 3057 -12 A 5.88 OlZS) MS 3102 A 24 -10 P MS 3108 B 24 MS 3106 B 24 -10 S -10 S MS 3057 -16 A * Not provided with an eyebolt. Notes : 1. Optical encoder (6000 pulses/rev) is used as a detector. 2. Vibration: 15 ,urn or below. MS 3102 A 20 MS 3108 B 20 MS 31(36 B 20 -29 P -29 S -29 S MS 3057 -12 A 3. Plug and clamp are not attached for receptacle connection. 4. Power supply for brake is 90 VDC. t (3) Shaft with Extension of Straight Shaft Keyway ACSERVOMOTORTypeUSAMEDWithout Brake With Both SERVOMOTORS and without brake havewith thebrakesame dimensions except for shaft ex- 02FA2K 02FA2KE 03FA2K 03FA2KE tension. 05FA2K 05FA2KE 09FA2K 09FA2KE 13FA2K 13FA2KE 20FA2K 20FA2KE 50FA2K 30FA2K E 44FA2K 44FA2KE shown Shaft below LE extensions are : * [ LR 37 (1.4s7) and 03FA2[_] to 13FA2[_] -- 52 -- 4 S Q QK 14 2,, 25 15 (_1s7) (0.551 -_,=) (o._) (o.s91) 19 -h,_ 58 (2-283) 6 (0.236) (0.748 -_=) 40 (1575) 79 3.2 T 5 U 3 ' W 5 (0.197) (0.I18) (0.197) _5 _o.1_5 (o_._5 25 (0.984) (0.8226 __,,) (_n) *5.5mm (0.217 in.) for USAFED-02FA2[:] 8mm (0.315 in.) for USAFED-05FA2_:] Shaft Extension LE Brake 35 +_' 76 60 (oJzO (1.378 +_) (2._5 (z._) 8 5 10 (o.31_) (o.197) (o_) t 8.3 D (1) SERVOMOTOR: S SERIES - [Straight ShaftI • Types " LI_ LM /.J: _ LL Standard 39 (1.535) USASEM-02AEZ(Note 1), _" _[_]_; !+'_--= ' I@l , AC Servomotor L LL 164.5 134.5 (6.4"16) (5.295) LM 95.5 (3*760) 178.5 148.5 109.5 03AE2 OSAE2 D I--t tl°_,l . Surface Shaft Flange Type USASEM02AE2 (_.ozT) (5.846) 200.5 170.5 131.5 (7.893) (6.712) (4.311) (5.177) LR 30 KBI 72.5 KL1 LA 80 (1.181) (Z854) -- (3.15_} 30 79 145 90 (i.18i) (3,11) (0,7(_} (3,543) 30 101 145 90 (l.lSl) (3,976) ,_" LG" _ -03AE2,-05AE2 (Note 1) (5.708) LB 50 __,=_ (1.969 LC 65 -_o=o) (3.543) (2.756 -_Joi2) 70 -g0=, (2.756 _o°=,,) Extension LE 3 LG 6 LH 90 (0"118) (0.Z36) (3543) (0"197) 80 3 8 105 6 (3,15) (0.118) (0.315) (4.134) 80 3 8 105 (.?*659) 70-_ _ 4-_LZ (3.15) (0.118) (0,3|5) LZ 5 S 8 (O.315 -_,,, -_) (3.3) 14 -_o. (0"0,36} 6 (4.134) Approx Mass k_ (Ib) 1.5 (0236) (0.5512 2.7 __ (5.08) 14 _o (O.5512 3.3 -_.¢_) (7.Z_) Notes : . 1. Drawout construction of Type USASEM-O2AE2 is waterproof gland method. Therefore, connector part differs from figure above. For details, request another dimensions to YASKAWA representative. 2. Optical encoder (1500 pulses/rev) is used as a detector. 3. Vibration: 15,urn or below. 4. Plug and clamp are not attached for receptacle connection. _'. I Taper Shaft I • Types USASEM-08AC1, LT =15AC1, LM LL KB2 KB1 • -30AC1 . jLR._ OPTICAL ENCODER _ r LL LM 08AC1 257-'199 15AC1 317.5259.5203. LT _148J 50.5 (10,118 (7.835) "(5.84; 56 (12.5) (10,217', (0.013)'[Z_5) 30AC1 366 296 240 (14.41) (11._ (9.45) LR KBI KLI KL2 LA 58 150 (1588) (Z_3) 56 (Z_6) 58 115 170 ' j LBFlange LC Surface LE LG 130 110-?,....... 120 3 10 LW Q QK QA 18 28 25 (6.1) 165 {6.55E (6.969) (0`413) (7.71) 70 206 205 165 200 (8.11) i(&071) (6.4_6) (7.874 (4.330_-_,_H.,[:,) 114.32:,.... ( 4.5 12 (0`118) (0.236) (0,472) (6.4_) 180 -',L,.v*) 6 (7.09} 6 (0,23_ 18 Detailof Shaft Extension 9 130 ll0-'J ..... 18 (0,354) (0.70_ (1,102) 230 13.5 (0.70_8) (_0_) 28 20 (0`531) (0,7_) 25 Shaft X S Extension V P 12 (0`354) (0.709) (1. i02) (0`_4) 9 USASEM-15AC1 LR TAPER1/IO LZ (4.724) (0.118) (0`394) 145 I 155 166.5 177 163 r Type LH (4.527) (6.683) (5.906) (S.118) (4.33_-',',.,.,,:,) [Z283) (2.756) and -30AC1 Types USASEM-O8AC1, LR . 4-_ LZ D _,CSERVOMOTOR TypeUSASEM- L LC _] 10.3 (0.472) (0.406) 12 36 32 21 (0.63) 10.3 (0`984) (0'472) {0`_6) (1.417) 16 19 MI0 (0._) P1.25 21 Mt0 (0,748) (0.8L_7) P1.25[ 14 12.! 22 24 M12 1.259) (0,551} (0.492) (0,866) (0.945) Pl._5; U W T 4.3-',',, 5 5 (0.1693-',',.,*_) 5.8-_., (0._83-'J.,._) 6.6-=[, (0._So___,x=.) (0.197) (0.1_) 5 5 (0.1W) (0'19"/) 6 6 (0.236) (0,236) Notes : 1. Optical encoder (2500 pulses/rev) is used as a detector. 2. Vibration: 15 ,_m or below. 3. Hexagon socket head bolts should be used to mount the motor. 4. Plug and clamp are not attached for receptacle connection. 5. Dimensions of the keyway are based on JIS (Japanese Industrial Standard) B1301 "Sunk keys and Their Corresponding keyways (close keys)." AC SERVOMOTOR! Approx Mass Type USASEMk(f (lb) 03AE2 2.7 (,08) Motor Receptacle MS 3102A18 L-type Connector Plug MS 3108B Types Straight 18 Optical Plug MS 3106B Cable Clamp Receptacle Encoder L=type Plug Connector Straight Types Plug Cable Clamp 18 (7.28) D 05AE2 0SAC1 15AC1 30AC1 3,3 5.8 (lzs) 11 (u._) 24 (s_.9) -10 P -10 S MS 3102 A 20 -4 P MS 3108 B 20 -4 S -10 S MS 3057-10 MS 3106 B 20 -4 S A MS 3102 A 20 -29 MS 3057-12 Note: When plugs or clamps are required, contact your YASKAWA representative. connections are provided: soldered type MS and solderless type JA. -- 53 -- A The following P MS 3108 B 20 -29 S MS 3106 B 20: MS 3057-12A -29 S 8.(2)3 SERVOMOTOR: With Brake • Types S SERIES USASEML02AE2OB(No -03AE2OB, [Straight (Conrd) te -4: _ I ,;.,¢ I), ___._.2._ -05AE2OB _ Shaft} ' "¢_ i[ _oz! '*'1 _ _:: :- °'3'' _1_1_ I -- (Note.t, L_TI lI .l _ OPTIC ENCODER MAGNET(C BRAKE(NON'EXCITATION OPERATION TYPE), POWER SUPPLY 90VOC 4"#6 (4"_K) 2361 _ AC SERVOMOTOR LL LM KL 02AE20B 228 (8.976) 198 (7.7_6) 137 (5,394) 72.5 (2*854) MSB/ 90-10 0.016 (0.0144 × 10"=) 03AE2OB (9.488) 241 (8307) 211 (5.906) 150 (3,110) 79 MSB / 90-10 (0.0144 0.016 x lO-') (8.680) 0.98 3.5 (7.7) 05AE2OB 263 (ltk3S4) 233 (9.173) 172 (6.772) 101 (3,976) MSB / 90-20 0.016 (0.0144 x l0 -=) 1.764 (15.623) 4.1 (9.0) Type USASEM- Notes: 1. Drawout I I Taper Shaft I Type construction of Type is waterproof 0.98 (8.680) 2.2 (4.9) I 3. Vibration: 15,urn or below. 4. Plug and clamp are not attached for receptacle connection. 5. Power supply for brake is 90VDC. - 30AC IOB L Types USASEM-08ACIOB, and -3OACl OB i LL LR.I 2o USASEM-O2AE20B gland method. Thei'efbre, connector part differs from figure above. For details, request another dimensions to YASKAWA representative, 2. Optical encoder (1500 pulses/rev) is used as a detector. I USASEM iOB, - 15AC lOB, • Types -08AC Magnetic Brake Approx Inertia Static Fricti_ Torque Mass kg.m2Xl0 -4 (Ib.in.s2' N-m (]b.in) kg (Ib) L ' " Type USASEM-1 LR I±I:°_'=IAI eta7 LW I _ I _ ' 5AC10B LC l _ , Q'-_" 0_ ' OA I I O w View a-a ENCODER. MAGNETIC BRAKE(NON'EXCITATION OPERATION TYPE1, POWER SUPPLY 90VDC _C SERVOMOTOR Type USASEM- 08AC1OB L LL 305 {12. C_8) 15ACIOB 377.5 30AC1OB 247 (9.724) TAPER1/10 Detail LM LR 146 58 KB1 115 KL1 170 (5.748) (2.253) (4.527) (6,693) 150 (5.906) Flange Surface LA LB 130 LC 110-o°_ (5.118) 120 (4.3308-o°.c01a) 155 (6,1) 28 (0.709) 25 (1.102) 12 (0.984) 10. 3 (0.472) (5.71) (4,3308-o0.cma) (5.118) (0.236) (0.472) (6.496) (0.354) (0,709) (1.102) (0.984) (0.472) (0,406) 165 (0.496) 200 (7.874) ( 114.3-o°._o 4.5 -o°.om_s) 180 (7.(_7) 6 (0.236) 18 (0.709) 230 (9.055) 13. 5 (0.531) 20 (0.788) 36 (1.417) 32 (1.259) 14 (0.551) 12. 5 (0.492) 21 (0.827) M10 P1.25 19 21 lO (0.748) (0.827) PM1.25 30ACIOB 22 (0.866) 24 (0.945) M12 P1.25 W T 4.3-o°., (0.1693_°o._) 5 (0.197) 5 (0.197) 7 (15,5) SCFB/90-30 0.54 (0.4751x10 5. 8-g., (0.2283_0°._) 5 5 (0.197) (0.197) 12. 5 (27.6) SCFB [ 90-60 0.67 (0.5949x10-') 6.6 -o°., (0.2598_o°.eoag) 6 (0.236) 25.5 (56.2) SCFB / 90-12C 0.67 (0.5949x10-') Notes: 1. Optical encoder (2500 pulses/rev) is used as a detector. 2. Vibration: 15 ,um or below. AC SERVOMOTOR USASEM- 03AE20B, 05AE20B 08ACIOB, 15ACIOB, Connector Receptacle 30ACIOB 6 (0.236) 25 (0.406) (6.413) U 28 X 205 (8.071) Approx Mass kg (Ib) 18 1 QA (6.969) 16 (0.63) 9 18 QK 206 tall) 15AC1OB 165 Q 166.5 (6.555) 08ACIOB 12 9 (0.354) LW 70 (2.756) P 6 10 (0.394) LZ 58 Extension 130 LH (2.283) V 11O-g.o_ 3 (0.118) Shaft Extension LG 362 (14.252) S 145 (4.724) LE 319. 5 197.5 (7.776) Shaft 163 Extension (12.578) 240 (9.449) 177 KL2 of Shaft 432 (17.008) USASEM- Type TAPER1/_o 4"_LZ (14.862) AC SERVOMOTOR Type ^_[ [-PI,_,=_I 12 Magnetic Brake Specifications Inertia StaticFdctionTorque _g.mz X10-4 (lb'in's z) N .re (Ib'in) Type -= ) 10.3 Voltage VDC 2.94 -(26) 90 5.88 (52) 90 11.76 (104) 90 3. Plug and clamp are not attached for receptacle connection. 4. Dimensions of the keyway are based on JIS (Japanese Industrial Standard) B1301 "Sunk keys and Their Corresponding keyways (Close keys)." Types L-type for Motor Plug -4- Brake Cable Clamp 'Detector Connector .Receptacle L-type Plug Types 'Cable Clamp MS 3102 -12 PA 18 MS 3108 -12 SB 18 MS-103057 A MS 3102 A 20 MS 3108 B 20 MS 3057 MS -17P 3102 A 20 MS 3108 -17SB 20 MS-12A 3057 -29 P -29 S -12 A -- 54 q (3) Shaft Extension SERVOMOTOR dimension L. of Straight Shaft proper is the same dimensions as standard SERVOMOTOR See Par. 8.3 (i). Details of shaft extension are shown • With brake Type USASEM-08AC2OB • With brake Type USASEM-1 in below: S series (L)418 (16.457) (11299) ._ I ,o2 lro_o_ (4) Shaft SERVOMOTOR for • With brake Type USASEM-3OAC2OB 5AC2OB (L)365.5 (14.390). (L)287 except Extension of proper _lo_og _1 _/__ Straight is the L of type USASEM-08AC2KE_-] shaft extension are shown • Types USASEM-O3AE2K, Types USASEM-O3AE2KB, D Shaft same or below. with Keyway dimensions higher o° is the as stanard SERVOMOTOR different dimensions. -05AE2K* -05AE2KBt in S series, See Par. • Type USASEM-08AC2K* Type USASEM-O8AC2KBt _ (L)245.5 (9.665) _ "_ .30(1.181o,_ _._ . 3(01181 5(0.197) (0197) • Type USASEM-1 5AC2K* Type USASEM-15AC2KBt • Type USASEM-3OAC2K ° Type USASEM-3OAC2KBT (L)305.5 (12.928) _ (L)352 (13.858)_ : 610.236)_6_6_6_6_6_6_6_6_ 45 _ 5612.205)1 i[(1_757 _o,_ 46(1.8111 _ 12(0.4_ . 6__(0236) • Without brake t With brake -- 55 -- 8.3 but (i). dimensions Details of 8. 3 SERVOMOTOR: S SERIES (5) Shaft Extension Seal (Cont'd) • of Straight Shaft with Shaft (6) Shaft Extension of Straight Shaft withKeyway and ShaftSeal SERVOMOTOR proper is the same dimensions as standard SERVOMOTOR in S series. See Par. 8.3 (I). Details of shaft extension are shown below : • Without brake Types USASEM-03AE2S _18) SERVOMOTOR proper is the same dimensions as standard SERVOMOTOR in S series. See Par. 8.3 (I). Details of shaft extension are shown below : • Without brake Types USASEM-03AE2T,-05AE2T -05AE2S 1 OIL SEAL _.,_11 SB14287(NOK) _I F1 (0.551) SSB14287(NOK) _ OIL SEAt: 4°!. 5(0.197) - (7) Shaft Extension of Taper Shaft with Shaft Seal SERVOMOTOR proper is the same dimensions as standard SERVOMOTOR in S series. See Par. 8.3 (1). Details of shaft extension are shown below • • Without brake Type USASEM-08AC1S 28 9 * Without brake Type USASEM-15AC1S 18(0.7n-q)l rt;182) 11">(0.472) 18(0.7091 (1'1q_ (0"472) O,L SEA, _ mlSl TAPE.II,O - .5 (0.19: _ (n _a'p) TAPER 1/10 5(0.197)_:_ _ " 20(0.788__(0.551)36 °'2s_'_("o'" S Ir'__l_'_ cB163oT(.oK, 4.3(0.169)_ • Without brake " Type USASEM-30AC1S 5(0.197, 5(0"197)_z:: _ 5.8(0.228) I -- O,L SEA, I\_'-_-" s.22388 _I_,TAPERI/IO 6(0.236 )-e,! _ _' 6(0236). "T 6.6(0.260) 56 -- J 8.4 SERVOPACK (1) Types CAM-PFtO3BC to 15BC 1CN CONNECTOR EXTERNAL TERMINAL 11 P. CONNECTION SCREW M4 50P* DLwqckCACR-PR;_[78CL:I / 2CN CONNECTOR (2) Types CACR-PR20BC MASS: 7.0 kg (16 lb) to 44BC 1CN CONNECTOR EXTiRNAL ’ TERMINAL 12P CONNECTION SCREW M4 APPROX 2OP* 2CN’ CONNECTOR 5OP* 2OP* APPROX ‘.tiade by Honda Tsushin Co. +Including mounting flange thickness. - 57 - MASS: 12.5 kg (26 lb) 8.5 PERIPHERAL Power Supply for Brake According to the or S series. (a) supply motor, unit select for either M/F M and F series * Input 100 VAC, output 90 VDC (OPR109 * Input 200 VAC, output 90 VDC (OPR109A) Circuit l Power EQUIPMENT series (b) Power supply unit for S series . Input 100 VAC, 90 VDC (DP8401002-2) * Input 200 VAC, 90 VDC (DP8401002-1) F) Note: Although opening and closing the brake power supply circuit is possible from either the AC side or DC side, it is usually safer to open and close from the AC side. Since the brake coil may be damaged due to surge voltage when opened or closed from AC side, always insert a surge suppressor near the brake coil. Diagram Type OPRlO9F SWITCH Circuit Diagram BRAKE 0 PROTECTIVE ELEMENT l SWITCH __. DIODE Ll n DIODE Type OPRl09A 1-- - -_ PROTECTIVE ELEMENT Notes : 1. Do not short between output terminals 3 and 4. 2. Switch (between terminals 5 and 6) conditions are as follows: * Contact capacity five to ten times as large as rated current. l Contact for direct current. 3. Use the fuse on input or output side to protect the power unit. - 58 - 1 T 9. TEST RUN Before test any deficient run, y . check the following. * When a Servo ON the power circuit and the motor is Correct 9.2.2 9.1 CHECK 9.1.1 ITEMS BEFORE TEST RUN Before test run, check the following. run is performed after long storage, “INSPECTION AND MAINTENANCE”. * Connection connection, . Bolts to machines and grounding and nuts . For motors damaged B 9.1.2 with and are * Setting switches are specifications for the and optical encoder. . Voltage seals, properly the correctly applicable wiring leads or inserted supply supplied * The erence 9.2 is to set are into turned are is ON), operates Operation operation is on. is possible only * Increase the speed reference from 0 V, then the motor speed proportional to the fuse * When motor from the rotates drive reference forward end -output while Servo ON voltage gradually will rotate at a reference voltage. voltage is (counterclockwise shaft) positive, the viewed (Fig. 9.1). not to satisfy SERVOMOTOR if is servo 200 to 230V 200V is used, to 200V through speed reference should circuit is short-circuited. the firmly connectthe connectors. OFF SERVOPACK be OV ) alarm T:t%. Fig. 9. 1 Motor 1 Preparation Power (speed ref- 9. 2. 3 The the for Operation should not be applied to it is necessary to start connected to the motor, system is ready for time. ON the power green is ms correctly light: supplied, and q m Inspection following test run. during items * Unusual vibration . Abnormal noise * Excessive temperature If any abnormality actions according to the load and machine result in overload. * After checking items in Par. 9.1, turn ON the When the power ON sequence is power supply. correct, according to Par. 6.1, the power is turned ON by depressing the POWER pushbutton for approximately 1 second. * When following Forward Running the a TEST RUN PROCEDURES During test run, loads the SERVOMOTOR. If with the driven machine confirm that the driven emergency stop at any (1) seals lubricated. input (contact SERVOPACK to run. test 11, devices, wiring, are correct. If a voltage line other than voltage should be dropped power transformer. 9.2. the Par. is SERVOPACK * The power outputs. B or If see tightened. shaft motor is . Connection and ed to terminals D The signal SERVOMOTOR signal in the ready the . I - 59 - Test Run should be checked for during rise is found, Par. 12. At may not fit take corrective a test operation, well at first and 10. ADJUSTMENT 10.1 SETTINGS AT THE TIME OF DELIVERY Table 10. 1 Standard Setting Specifications Standard Item Input Reference Specifications Sign Form + pulse + 12v train Pulse Voltage Level Effective Active Logic at L level CL Voltage Control Signal + Level Effective 12v Active Logic at L level im Voltage Frequency Dividing Frequency Dividing (1)’ Frequency Dividing (2) Converter Positioning 12v l/2 to I/6 l/l A Multiplier D/A + Level Bit x2 Mode 11 and Number* Completion i (COIN) *These data differs from motor series. Note: Operating speed range is made frequency dividing setting for maximum speed. If the resolution for positioning encoder is required to heighten, change the setting of frequency dividing (1). (2) and multiplier mode. Table 10. 2 3P Switch Standard Switch sL40* ‘No setting Setting pin - 60 - Setting 12 7 pulses bits 10.1.1 List of Switch The SERVOPACK (1) M Series Setting has been factory-adjusted Table 10. 3 as follows: Standard Applicable Adjustment and Setting SERVOMOTOR SE1WOPACK Adjustmc tnt Max Output Resolution Speed Current for Positioning Setting A Encoder L SERVOPACK Type CACRPRO3 PRO7 PRl 0 PR15 BC3AM PR20 PR30 PR44 03MAl 06MAl 09MA2 12MA2 20MA2 30MA2 44MA2 PRO3 PRO7 PRl 0 PR15 BCSBM PR20 PR30 PR44 03MBl 06M81 09MB2 12MB2 20MB2 30MB2 44MB2 PRO3 PRO7 PRl 0 PR15 BC3DM PR20 PR30 PR44 03MD2 06MD2 09MD2 12MD2 20MD2 30MD2 44MD2 Table 10.4 Specifications 6000 3.0 5.8 7.6 11.7 18.8 26.0 33.0 7.3 13.9 16.6 28.0 42.0 56.5 70.0 5000 3.0 5.8 7.6 11.7 18.8 26.0 33.0 7.3 13.9 16.6 28.0 42.0 56.5 70.0 3.0 5.8 7.6 11.7 18.8 26.0 33.0 7.3 13.9 16.6 28.0 42.0 56.5 70.0 Standard Factory-adjusted Switch 2000 r/min at 66.7 kpps reference pulses 2000 pulses/rev Positions 12345679 SERVOPACK Type CACRPR03BC3GM to PR44BC3L:IM SW1 0 Optical Encoder pulses/rev 6000 SW30 Reference Pulse Input From Setting 12345678 SW40 Multiplier.’ Mode Settingt 12345678 Effective Logic Setting of Control Signal t 12345678 12345678 5000 4000 I *Spare plug t For other functions, SW20 Number of D/A Bit, COIN Settingt - see Table I 1 Notes : 1. is spare for setting - SW100 .._ 6.19. 2. iii -61 - is A, B or D I pin storage. 10.1.1 (2) List of Switch Setting (Cont’d) F series Table 10. 5 Standard Adjustment and Setting Specifications Al SERVOPACK Type CACRPRO3 PRO5 PRlO PR15 PR20 PR30 PR44 Type USAFED02FAl BC3AF 02FBl. 03FBl 05FBl 09FBl 13FB2 2OFB2 3OFB2 44FB2 PRO3 PRO5 PRlO PR15 PR20 PR30 PR44 02FDl. 03FDl 05FDl 09FDl 13FD2 2OFD2 3OFD2 44FD2 BC3DF I Optical Encoder pulses/rev Type PROBBCBAF to PR44BC3AF - PROBBCBBF to PR44BC3BF - SERVOPACK CACR- 5000 1 - 4000 Optical Encoder pulses/rev Type PR 03 BC3I:i to PR44BC3:::F 3.0 3.8 6.2 9.7 15.0 20.0 30.0 6000 5000 8.5 1 1 .o 17.0 27.6 42.0 56.5 77.0 4000 3.0 3.8 6.2 9.7 15.0 20.0 30.0 8.5 11.0 17.0 27.6 42.0 56.5 77.0 1 Table 10. 6 Standard I Factory-adjusted SW2 SW1 Motor Combined Type, PG Setting Number of D/A COIN for 12345678* I 1 2500 r/mln at 83.3 kpps reference oulses Positions Speed Condition SW4 LOOP Setting Motor Characteristics, jervopack Function Setting 12345678 c 00d000Q bo6; oooc2 SW 30 SW 20 Bit, Reference Input Form Setting+ Pulse Setting+ I _.- _ ~.~ 2000 pulses/rev 12345678* I see Table 6.19.~-- Resolution Positioning Encoder t SW 40 Effective Multiplier Mode Setting’ Notes : _ _ _ ~_ - 62 - 1 SW100 is L:I is_ A, B 2. I spare for setting or D. I pin Logic of Control F _ _~ m*.Swre plug t For &eiftiniztions, ?nt SW3 Frequency Dividingt I) Setting SW10 _ Switch Adjustmf Speed Setting 8.5 1 1 .o 17.0 27.6 42.0 56.5 77.0 t 3.0 3.8 6.2 9.7 15.0 20.0 30.0 12345678 6000 PR03BC3DF to PR44BC3DF -. 03FAl 05FAl 09FAl 13FAl 20FAl 30FA2 44FA2 PRO3 PRO5 PRl 0 PA1 5 BC3BF PR20 PR30 PR44 SERVOPACK CACR- SEI WOPACK Max Output Current A Storage. Setting Signal + (3) S series Table 10. 7 APP SERVOPACK Type CACW TYPO USASEM- PR03BC3CSY41 PRO3 PRO5 PRlO BC3CS PR15 PR30 b2AC2 03AC2 05AC2 08AC 1 Standard :able’SERVOM Optical Encoder pulses/rev Adjustment and Setting 5i-OR Specifications SERVqPACKAdjustment Max Output Speed Current Setting A Rated Current A 2500 15ACl 30AC 1 2.1 3.0 4.2 5.3 10.4 19.9 6.0 8.5 1 1 .o 15.6 28.0 56.5 PR03BC3ESY41 PRO3 PRO5 PRlO BC3ES PR15 PR30 02AE2 03AE2 05AE2 08AEl 15AEl 30AEl 1500 2.1 3.0 4.2 5.3 10.4 19.9 6.0 8.5 1 1 .o. 15.6 28.0 56.5 PR03BC3FSY41 PRO3 PRO5 PRlO BCSFS PR15 PR30 02AF2 03AF2 05AF2 08AFl 15AFl 30AFl 1000 2.1 3.0 4.2 5.3 10.4 19.9 6.0 8.5 1 1 .o 15.6 28.0 56.5 Table 10. 8 Standard Factory-adjusted SW1 Optical Encoder (PG) Motor Type, pulses/rev Combined PG Setting SERVOPACK Type CPCR- Switch 4000 r/ml” at 66.7 kpps reference pulses SW3 Frequency Dividing( I) Setting Speed Loop Condition Setting PROBBC PROSBC to Resolution Positioning Encoder 1 oop pulses/rev Positions SW2 PROBBC3CS for SW4 Motor Characteristics, Satvopack Function Setting PRlOBC PR30BC3CS PROBBCBES to PR3OBCSES 12345678* PROBBCBFS to PR30BC3FS I SERVOPACKType CPCRPR03BC3ZS Optical Encoder (F3p_\ -I pulses/rev 2500 SW10 SW20 ,,,( UCJmber of D/A Bit, Reference Pulse COIN Setting1 1 Input Form Setting 12345678 1 12345678 Multiplier Mode Setting 1 12345678 PR30BC3ZS 1000 *Spare plug functions, Notes : 1. SW see Table 6.19. 100 is spare 2. [I1 is C, E or F. - 63 - for setting 1 Effective Logic Setting of Control Signal 1 12345678 1500 to 7 For other SW 40 SW30 pin storage. 1.0.1.2 Potentiometer Setting The factory-adiusted potentiometer on the panel is shown in Table ootentiometer adjustment method, positions 10.9. For see Table i0.23. Table Serie: SERVOPACk Tvpe CACR- L 10. 9 Standard Factory-adjusted Position Loop Gain Adjustment Speed Amplifier Zero Adjustment Starting Current Adjustment m ~ m VRI M PR03BC3 to PR44BC3 Potemtiometer Speed Loop Gain Adjustment (Loop1 VR5 VR3 VR6 Positions Speed Reference Bias C ompensation Speed Reference F eed Foward C :ompensation m (CFVI VR15 VR16 Voltage Adjustment Df PG+5V Power (PGSV] VR21 ::3 Ibl 7 Iz! 2 to 5/10 F PR05BC3 to PR44BC3::: ‘::3 F PR03BC3 to PR30BC3 ::: Z; . ::3: ; 5/10 0 to 5/10 lO/lO O/l 0 O/l 0 + 5.25V F A S ---T 0 to 4/10 f Notes : 1. In the Table For example. above, i L:l/L:lshows indicates approximate 7/l scale I 2. The potentiometers other than list, ed in the Table above are provided for the SERVOPACK. Do not 1;smper with these potentiometers except for a special case as they have been preset at the factory. of potentiometer. 0 scale. - 64 - 10.2 LIST OF CHECK TERMINALS POTENTIOMETER AND Table tions . panel. and funcSERVOPACK 10.10 lists For check check terminals terminals on the Table Equipment Symbol I . I Signal Name ^. Table 10.11 lists potentiometer inside SERVOPACK. These potentiometers have been adjusted at the factory. (Potentiometers should not be tampered with. 1 10.10 List of Cheak Terminals Description 1 Phase A oulse is 1 PA and PB are two-ohase with 90’ ohase difference. each motor rotation: in synchronization with PA PC occurs once for Waveform at motor forward rotation PG Input signals forward 2 - 3 VT0 Monitors the motor 4 T-Mon Monitors the reference Unused m Torque 7 a V-sin I 2 IV 3 AKIN 4 AU 5 ‘AV 6 AW 7 osc2 a m - SG rotation reference speed +4.0VDC/lOOOr/min. (M. F Series), f3.OVDC/lC0% to +B.OVDC/ 100% k2.0 Series). VOLTA,GE/, Monitors phase waveform. +2.0VDC/lOOOr/min(S toque T V sin * Frequency varies depending on speed. .Am plitude varies depending on torque. A \’ ov I unus& Phase V current monitor. (V/A) Main power ON Phase U current output monitor. Phase V current output monitor. Phase W current output monitor. Carrier frequency (trrangle pulse) signal. amplification 0.4 0.24 0.20 0.16 0.08 0.04 339 TO 350~ amplification ;tp;G” vA~,/~ ;;.; g ;;:I; amplification Sianal OV 1 1 D/A 1 Error 2 1 BIAS 1 Soeed counter D/A converter reference 3 PH-A 4 PH-B 5 T4 6 T24 Clock Srgnal 1 Servo-ON Frequency dividing(I) 1 7 1 S-ON 1 6 1 SG 1 Signal OV 1 OV 1 Signal OV output output bias comoensation PG-A phase pulse PG-B phase pulse LSI for error counter LSI for frequency sianal (analog (Servo ON at L) signal level OV) Notes : 1. For check terminals on SERVOPACK panel. see Table 6. 24. P.The check terminals allow oscilloscope connection for measurement. Frequency dividing(Z) PULSE signal output SIGN signal dividing(Z) 3. During measurement, do not short the adjacent two check terminals. as the connected elements may be destroyed by this. 4.m check terminal is for we only by the manufacturer. merit wim it. - 65 - Do not make any measure 10.3 ADJUSTivlEbJT PROCEDURES Fig. 10.1 shows waveforms check teminals. Table 10.12 ment method of SERVOPACK. at the respective shows gain adjust- PULSl REFERENCE PULSES SIGN1 Fig. IO. 1 Table 10. 12 Check Terminal Servo Gain Item Overshoot @Turn m the position 9 Turn gain. Follow-up To short response the is positioning bad. time furthe Apply using l l *Monitor by inverting + Applv (at Adjust l panel) the CW to increase gain. the compensation the If m too high, l gain compensation FOLLOW-I TIME4AG the polarity. - 66 - using gradually. or lLoopl gain motor vibrates. IS If the variable range of m IS small, change the D/A converter bit. For example, where the D/A converter bit is changed from 10 bits to 9 bits, gain becomes two times. l If m l and ing effectively, If the follow-up time-lag of m IS too large. feed forward compensation IS meffectwe. bias the Remarks to increase the feedfoward m the on to Adiust CW loop at Normal Potentiometer CCW to decrease loop gain. m Turn m position l Note: -i-L- Adjustment How occurs. Waveform l l Set the to ON. settmg Turn (IN-B] gain, and set w/lo@ to Readjust the m IS not perfdrm function- as fdllbwing: pin of SWIO-,@I CCW to decrease the the setting pin of OFF. gain using m D 11. 11.1 INSPECTION AND MAINTENANCE AC SERVOMOTOR The AC SERVOMOTOR has no movable wearing parts (e.g. :brushes), so simple daily inspection is Sufficient. The inspection schedule for the motor is shown in Table 1 1.1. Table Inspection Item Inspection Schedule Frequency Inspection Operation Daily Touch by hand. Noise Exterior Daily Aurally As required Clean with dry cloth or compressed Insulation Resistance Annually Make sure that it is more than 10MI'I by measuring with a 500V megger after disconnecting the motor from the controller. Shaft Seal Every 5000 hours If worn or damaged, ing the motor from Total Inspection Every 20,000 Contact and hours SERVOPACK The SERVOPACK that dust no special maintenance is required. and tighten screws periodically. is of contactless construction so Remove | I for Motors Vibration Cleaning 11.2 11.1 Do not disassemble the motor. should become necessary, contact representative. -- 67 -- your air. replace after disconnectthe driven machine. YASKAWA representative. If disassembly your YASKAWA 12. TROUBLESHOOTING GUIDE 12.1 d AC SERVOMOTOR WARNING Corrective actions in _ should be performed after turning OFF the power. Table 12.1 Trouble Troubleshooting Guide for AC SERVOMOTOR Cause Voltage Corrective Actions Measure voltage across motor terminals U, V, and W with a tester and correct to rated value. below rated d Motor does Loose connection Tighten connection. I Wrong wiring Correct wiring. Overload Reduce load or use a larger motor. not start. / Motor Unstable operation Motor overheats. Unusual noise Measure voltageWhen across motor replace terminals U, V, and with a tester. correct, motor. defective ___ W / I ___,_._ Excessive iambient temperature. Reduce below 40 °C. Motor dirty Clean motor surface. Overload Reduce load or use a larger motor. Motor loosely mounted Tighten foundation bolts, Motor misaligned Realign with driven machine. Balance coupling.' Coupling Noisy out of balance Check bearings. alignment, loading contact your YASKAWA Vibration of driven machine -- 68 -- Contact the machine J q of bearing, rePresentative. manufacturer. lubrication and .[ i I 12.2 12.2.1 SERVOPACK LED Indication (7osegment) for Table LED _] Detection Overcurrent Troubleshooting 12.2 LED Lighting Condition [_ protector tripped for Troubleshooting Probable Cause Corrective Actions Goes ON when power is supplied to the control circuit. • Defective control circuit board (1 PWB). • Replace Goes ON when power is supplied to the main circuit and servo power is turned ON. • MCCB does not trip. • Defective circuit. • Defective module. current • Replace the SERVOPACK. Goes supplied to the ON mainwhen circuitpower and is servo power is turned ON. • MCCB trips. •• Defective Defective module. motor grounding main circuit transistor the main circuit, Circuit Indication feedback main circuit the SERVOPACK. transistor o • Replace Replace the the motor. SERVOPACK. module. Goes ON when the motor starts or slows down. Goes ON when power is supplied to • Incomplete (1 PWB) VR8 • adj.ustment. Defective main circuit transistor Goes ON when power is supplied to the control circuit. • Defective control (1 PWB). the Goesmain ON circuit, when power is supplied to module. • diode Defective main circuit • Replace the -SERVOPACK. board • Replace the SERVOPACK. thyristor- • Replace the SERVOPACK. circuit in the SERVOPACK. _] Goes ON when power is supplied to the control circuit. • Defective control (1 PWB). Regener- • GoesON approximate • Defective ative trouble, Overflow ond after power is supplied to the main circuit. • Goes ON when reference pulse is input. trips. •• MCCB Regenerativeresistordisconnection. • Motor vibrates at lock status, • Overload • Servo gain is too low. •• Check the wiring leads and joints Check and replacethe regenerativeresistor. (Replacethe SERVOPACK) • Ajust the Servo gain. • Check the wiring. • Slowing up or down. Goes ON when the motor starts or slows down. • Load inertia JL(GD2)too large. • Check the inertia of the machine with the value converted to the Over- 0.5 to 1 sec- circuit regenerative board. • Replace the SERVOPACK. transistor. • Replace voltage • Defective -_ Over- When the reference is inpu L the • Motor connection motor • Optical encoder runs fast and [] goes ON. speed Voltage drop _1 Overload • The reference large, Goes main the ON when circuit, power is supplied to ° Defective control (1 PWB). Goes ON during ° Operation operation. • When is turned power OFF toand the then control turned circuit ON again, the operation starts. again, Heat [_ sink overheat [] or [] goes ON again. starts. ' When reset later, the operation The motor rotates, but the torque is unavailabe. When power to the control circuit is turned OFF and then turned ON again, the Operation starts, but the torque is still uhavailable. error. • Correct input voltage • diode Defectivemodule. main motorshaft. • Replace the SERVOPACK. circuit. connection Goes ON when power is supplied to the control circuit. Goes ON during operation. • When power to the control circuit is turned OFF and then turned ON D regenerative circuit A, B,C, and U, Vand 2CN. • Check correct Wwith pulses in phase too • Decrease the reference input frequency. • Correct the setting of PG frequency dividing. board with 105% to 130% more of the rated load. • Fan has stopped. • Temperature around or • Replace the SERVOPACK. • Replace the SERVOPACK. • Check and correct the load (may be overload). • Check the fan. (SR20, 30, 44, 60) the Servopack exceeds 55oC. • Motor circuit error connection, such as U--,V, V-,W, W--,U or single-phase connection. -- 69 -- the motor connection. error. thyristor- circuit the SERVOPACK. • Decrease the temperature below overheated.) 55°C (The heat sink may be • Correct the connection. 12.2.1 LED Indication (7-segment) for Troubleshooting Table LED Detection -_ A/D error [_ 12.2 LED Indication Open phase [_ Overrun prevention 12.2.2 Examples Probable Cause Corrective Actions • (1PWB). Defective control circuit board • Replace the SERVOPACK. Goes ON during operation. • Faulty internal elements. • Resume after reset operation. • Defective internal elements. • Replace the SERVOPACK. Goes ON when power is supplied ° Defective control circuit board • Replace the SERVOPACK. to theON control Goes when circuit. power is supplied to the main circuit, (1 PWB). • Poor connection power supply, • Check and correct connection. Goes ON when power is supplied to the control circuit. • Defective control circuit board (1 PWB). ° Replace the SERVOPACK. The motor starts momentarily, then [] goes ON. • Motor connection error. • Optical encoder connection error, ° Correct the motor connection. • Check and correct pulses in phases A, B, C, U, V and W with 2CN. of Troubleshooting 12.3 for Defective Example Wiring to 3-phase for Defective Wiring The reference is input, but the motor does not run. of Troubleshooting Table 12.4 Trouble CorrectiveActions • Main circuit wiring (such as motor grounding) ° Correct the wiring. • Voltage across ®, (_, and (_. ° LED [_ and_ ON • Check the AC power supply circuit. • Trouble LED OFF • If LEDs are on, check the cause. • Reference pulse • Clear signal, alarm for Incomplete Examples release signal input, Adjustment of Troubleshooting for Incomplete Adjustment Cause CorrectiveActions • Speed loop gain or position loop gain is too high. • Turn _ or _ to decrease the gain. • Overshoot is too large at motor • Starting or stopping current • Turn _ is saturating • Position loop gain is too high. • Apply the reference pulse slowed up or down. • Position loop gain is too low. • Load is large. • Turn _ CW. • Apply the reference pulse slowed up or down. • Alarm by overflow occurs. 1 • (_heek the wiring of reference input. • Motor vibrates when the power supply is turned on or when the motor is running. starting and stopping, q or Parts CheckItems after Power the or Parts of Troubleshooting Trouble MCCB trips immediately On and Servo On. Examples 1 (Cont'd) to the ON control Goes whencircuit. power is supplied Table 12.2.3 i for Troubleshooting Lighting Condition CPU error r_ (Cont'd) -- 70 -- CCW CCW. l D i.o_} -- 71 -- AC SERVO DRIVES M, F, S SERIES FOR POSITIONING CONTROL.. SERVOMOTOR TYPES " USAMED, USAFED, USASEM • (With Incremental Encoder) SERVOPACK TYPE " CACR-PR[::::iB'C (Rack-mounted Type) t TOKYO OFFICE Ohtemachi Bldg, 1-6-10htemachi, Chiyoda-ku, Tokyo, 100 Japan Phone (03) 3284-9111 Telex YASKAWA J33530 Fax (03) 3284-9034 SEOUL OFFICE Seoul Center Bldg, 91-1, So Kong-Oong, Chung-ku, Seoul, Korea Phone (02) 776-7844 Fax (02) 753-2639 TAIPEI OFFICE Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan Phone (02) 563-0010, -7732 Fax (02) 567-4677 YASKAWA ELECTRIC AMERICA, INC. : SUBSIDIARY Chicago-Corporate Headquarters 2942 MacArthur Blvd. Northbrook, Illinois 60062-2028, USA. Phone (708) 291-2340 Fax (708) 498-2430 Chicago-Technical Center 3160 MacArthur Blvd. Northbrook, Illinois 60062-1917, U.S.A. Phone (708) 291-0411 Fax (708)291-1028 Los Angeles Office 5626 Corporate Avenue Cypress, CA 90630 U.S.A. Phone (714) 828-9692 Telex (230) 678396 YASKAWAUS TSTN Fax (714) 828-1165 New Jersey Office Riverdale One, 44 Route 23 North, Suite 5 Riverdale, NJ 07457-1619 Phone (201) 835-9512 Fax (201) 835-9511 YASKAWA ELECTRIC EUROPE GmbH. :'SUBSIDIARY Niederh6chst&dter Stra/_e 73, 61476 Kronberg-Oberh_chstadt, Germany Phone (06173) 938-0 Telex 415.660 YASE D Fax (06_173)68421 YASKAWA ELEI'RICO DO 8RASIL COMERCIO LTDA. : SUBSIDIARY Rua Conde Do Pinhal 8-5°, Andar Sala 51 CEP 01501=S_o Paulo-SP, Brasil Phone (011) 35-1911 Fax (011) 37-7375 YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. CPF Bldg, 79 Robinson Road No. 13-05, Singapore 0106 Phone 2217530 Telex (87) 24890 YASKAWA RS Fax (65) 224-5854 ,din I YASKAWAELECTRICCORPORATION YASKAWA I TSE-S800-2.4E Ouetoongoingproductmodificationimprovement, datasubjecttochangewithoutnotice. (_ Printed in Japan July 1993 87-11 1Wl 587-158