bogner jens
Transcription
bogner jens
Surface Tension and Wetting with the Free Surface Lattice Boltzmann Method (FSLBM) ■ ■ Simon Bogner, Jens Harting1 and Ulrich Rüde Chair for System Simulation (LSS), University of Erlangen-Nürnberg, Germany 1 Technical University Eindhoven, Netherlands Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 1 Outline ■ Free Surface Lattice Boltzmann Method ■ LBM and Free Boundaries Interface Tracking (Volume of Fluid) Comparison of 3 surface tension models: a) FD: Finite Differences (Brackbill et al. 1992) b) TRI: Triangulation (Pohl 2007, Donath 2010) c) LSQR: Least Squares Reconstruction (Renardy 2002, Popinet 2009) ■ Numerical Experiments ■ Equilibrium Bubble Sessile Drop (Wetting) Conclusion Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 2 Section I The Free Surface Lattice Boltzmann Method (FSLBM) Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 3 Ingredients of the FSLBM ■ 3 Ingredients: 1) Lattice Boltzmann Equation Solve incompressible Navier-Stokes in the fluid subdomain 2) Interface Tracking VOF indicator function to represent and advect the interface (sharp interface; thickness ) 3) Coupling of 1) and 2) Free surface boundary conditions at the free boundary Advection of according to LBE (streaming step) Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 4 Ingredients of the FSLBM ■ 3 Ingredients: 1) Lattice Boltzmann Equation Solve incompressible Navier-Stokes in the fluid subdomain 2) Interface Tracking VOF indicator function to represent and advect the interface (sharp interface; thickness ) 3) Coupling of 1) and 2) Free surface boundary conditions at the free boundary Advection of according to LBE (stream step) Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 5 Interface Tracking ■ Volume of Fluid (VOF) indicator function Hirt, Nichols (1981) is the volume fraction of fluid within the control volume of cell fluid cells: Cell types: interface cells: gas cells (inactive): Advection of according to flow Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 6 Coupling ■ Coupling of VOF with LBM Free surface boundary condition Most important is the boundary value for the pressure ➔ ➔ ■ static gas pressure Laplace pressure due to surface tension Laplace Pressure Requires numerical estimate of interface curvature surface tension curvature Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 7 Section II Curvature Computation (for surface tension and wetting) Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 8 Method a) ■ a) Finite Differences (FD) Brackbill et al. (1992) Interface normal: Interface curvature: Boundary conditions (wetting) Fluid-solid interface ➔ At contact line, the interface normal must satisfy ➔ Normal of solid wall Normal to contact line, tangential to solid wall Ideal equilibrium contact angle (controls wettability of solid wall) Warning: Involves finite differences of non-smooth Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) !! 9 Method a) ■ a) Finite Differences (FD) Brackbill et al. (1992) Interface normal: Interface curvature: finite differences for 2nd order derivative Boundary conditions (wetting) Fluid-solid interface ➔ At contact line, the interface normal must satisfy ➔ Normal of solid wall Normal to contact line, tangential to solid wall Ideal equilibrium contact angle (controls wettability of solid wall) Warning: Involves finite differences of non-smooth Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) !! 10 Method b) ■ b) Triangulation (TRI) Pohl (2007) Two steps: Piecewise Linear Interface (Re-) Construction (PLIC) ➔ Curvature from triangulation ➔ ■ PLIC: Piecewise Linear Interface Construction For each interface cell with define satisfying I.e., the plane cuts off exactly of the unit volume centered around Scardovelli, Zaleski (1999) Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) . 11 Method b) ■ b) Triangulation (TRI) Pohl (2007) Two steps: Piecewise Linear Interface (Re-) Construction (PLIC) ➔ Curvature from triangulation ➔ ■ Curvature from triangulation For each interface cell: Triangulate surface points in 3x3x3 neighborhood ➔ Obtain “triangle fan” ➔ Estimate curvature of triangle fan ➔ Taubin (1995) 's algorithm for curvature of polyhedral meshes! Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 12 Method b) ■ b) Triangulation (TRI) Pohl (2007) Two steps: Piecewise Linear Interface (Re-) Construction (PLIC) ➔ Curvature from triangulation ➔ ■ Curvature from triangulation For each interface cell: Triangulate surface points in 3x3x3 neighborhood ➔ Obtain “triangle fan” ➔ Estimate curvature of triangle fan ➔ Taubin (1995) 's algorithm for curvature of polyhedral meshes! Boundary Conditions (wetting): Rather complex, cf. Donath (2011) ➔ Involves modification of triangle fans at solid walls. ➔ Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 13 Method c) ■ c) Least Squares Approximation (LSQR) Two Steps: PLIC: obtain surface points ➔ LSQR: Fit quadratic function through surface points. ➔ ■ LSQR ansatz (in 3x3x3 neighborhood) Model function Minimize: Curvature: Cf. Renardy et al. (2002), Popinet (2009) Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 14 Method c) ■ Boundary conditions (wetting): Model function Minimize: Boundary conditions: ■ ➔ Interface normal in contact point is (as before!) ➔ Constrain the optimization problem in contact point Solve constrained LSQR problem. Contact points: Intersect PLIC - segment with obstacle Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 15 Section III Numerical Experiment Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 16 Equilibrium Bubble ■ Spherical bubble test case: Expected: Laplace pressure in balance → vanishing velocity field Setup for Bubble radius ➔ Fluid density ➔ Fluid viscosity ➔ Surface tension ➔ Time step dt=1e-4 ➔ Space step 1/96, 1/128, 1/160, 1/192 ➔ Top/bottom boundaries: noslip ➔ Other boundaries: periodic ➔ Evaluation: “spurious” velocity field Average of velocity magnitude ➔ Maximum of velocity magnitude ➔ Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 17 Spurious Currents ■ Errors in the curvature computation... Spurious velocities of FD-approach Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 18 Evaluation of Equilibrium Bubble ■ Spherical Bubble Comparison of different methods The accuracy of TRI and LSQR documents the importance of surface reconstruction For LSQR, : Spurious currents are of the order of machine precision. Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 19 Sessile Droplets ■ Boundary Conditions of Wetting Prescribe ideal contact angles Setup: Droplet radius: R = 5 l.u. ➔ At t=0, drop is slightly touching solid wall ➔ For t >> 0, drop will assume equilibrium shape ➔ Equilibrium contact angle wall: 30° … 150° ➔ Evaluate: ➔ Equilibrium height of drop Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 20 Evaluation of Droplet Height Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 24 Evaluation of Droplet Height (cont.) ■ ■ ■ ■ First: Horizontal plane Same test-case with 45° inclined plane (step towards arbitrary geometries) Extreme → max. Error LSQR overestimates wettability Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 25 Section IV Conclusion Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 26 Conclusion ■ Surface tension is critical ■ Curvature estimation best with “ geometric reconstruction” methods (TRI, LSQR) Non-smooth indicator → Problems with finite differences → not accurate enough for capillary flows LSQR: Function fitting / optimization approach Wetting ~ Boundary condition interface LSQR: Optimization with constraint (contact normal) ■ ■ TRI: fast (performant) but difficult for wetting LSQR: slow (involves linear system) ■ Outlook: Dynamic Behavior Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 27 Literature (1) Chen, Doolen. 1998. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 30/329-364 (2) Benzi, Succi, Vergassola. 1992. The Lattice Boltzmann Equation: Theory and Applications. Physical Reports 222(3) / 145-197 (3) Körner, Thies, Hofmann, Thürey, Rüde. 2005. Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. J. Stat. Phys. 121(1) / 179-196 (4) Hirt, Nichols. 1981. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comp. Phys. 39 / 201-225 (5) Ginzburg, Steiner. 2003. Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comp. Phys. 185 / 61-99 (6) Brackbill, Kothe, and Zemach. 1992. A continuum method for modeling surface tension. Journal of Computational Physics, 100 / 335–354. (7) Harvie, Davidson, Rudman. 2006. An analysis of parasitic current generation in volume of fluid simulations. Applied Mathematical Modelling,30(10):1056 – 1066 (8) Pohl. 2007. High Performance Simulation of Free Surface Flows Using the Lattice Boltzmann Method. PhD thesis, University of ErlangenNuremberg (9) Renardy and M. Renardy. 2002. Prost: A parabolic reconstruction of surface tension for the volume-of-fluid method. Journal of Computational Physics, 183:400–421 (10) Scardovelli, Zaleski. 1999. DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW. Annu. Rev. Fluid Mech. 1999. 31:567–603 (11) Taubin. 1995. Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation. In: Proceedings of the Fifth International Conference on Computer Vision, S. 902–905 (12) Donath. 2011. Wetting Models for a Parallel High-Performance Free Surface Lattice Boltzmann Method. PhD thesis, University of ErlangenNuremberg (13) Popinet. 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics 228 / 5838-5866 Simon Bogner, Ulrich Rüde (Universität Erlangen-Nürnberg), Jens Harting (TU Eindhoven) 28