Visualization Background and Theory
Transcription
Visualization Background and Theory
Visualization Theory MiriamButt&Dominik Sacha LingVis:VisualAnalytics forLinguistics DGfS2016|24.-26.2.2016 For More Detailed Information • IDVbook • CoversallimportantInfoVis aspects • Goodstartingpoint • AlsousedinourInfoVis lectures 2 Contents • Introduction • DataFoundations • KeyAspectsofVisualization • DesigningVisualizations • InteractiveInformationVisualization 3 4 Introduction Introduction – Goals for Visualization • Presentation(Communication) • Startingpoint:factstobepresentedarefixedapriori • Process:choiceofappropriatepresentationtechniques • Result:high-qualityvisualizationofthedatatopresentfacts • ConfirmatoryAnalysis • Startingpoint:hypothesesaboutthedata • Process:goal-orientedexaminationofthehypotheses • Result:visualizationofdatatoconfirmorrejectthehypotheses • ExploratoryAnalysis • Startingpoint:nohypothesesaboutthedata • Process:interactive,usuallyundirectedsearchforstructures,trends • Result:visualizationofdatatoleadtohypothesesaboutthedata 5 6 Introduction – Steps for Visualizing Data DataType Questions Requirements Preprocessing Design Pro/Cons Find outwhatkind ofdatayouhave. Which questions shallbeansweredbythedata? Deriverequirementsfromthesetasks. Preprocessdata(missing data,outliers, transformations,…). Consider theprosandconsofdifferentvisualization techniques (effectiveness, familiarity…) Designavisualization system. Introduction – Steps for Visualizing Data - Pipeline “ReferenceModel forInformation Visualization” S.Card,J.Mackinlay,andB.Shneiderman. 1999.ReadingsinInformationVisualization:UsingVision toThink.Chapter1. 7 8 Data Foundations 9 Data Foundations – Data Types Ordinal Nominal • • Noquantitativerelationship betweencategories Classificationwithout ordering • • Attributescanberankordered Distancesbetweenvalues donothaveanymeaning à Nointrinsicorder à Orderedinasequence e.g.sports, nationality e.g.placesorderedbynoise References:C.Ware.2012.InformationVisualization:PerceptionforDesign.Chapter1. Numeric • • • Attributescanberankordered Distancesbetweenvalues haveameaning Mathematicaloperationsare possible e.g.heightof aperson Data Preprocessing – Real World Data is Dirty, What’s Wrong? UniqueID Gender Age Smoking Habits Time 323 0 21 0 1h 40s 435 1 34 2 1h 55s 123 0 3 90min 352 1 25 0 1h 43s 674 1 25 1 0,4day 865 0 18 3 1h 50s 341 X 41 2 1h 33s 10 11 Data Foundations – Preprocessing • DataCleaning • MissingValues • Noise… • Normalization • Commonscale(0-1) • E.g.,colormapping • Segmentation • Dividedatainmeaningfulparts • DataReduction • Sampling • Dim.Reduction Ø Bigpartofourdailywork! Ø Methodshavetobeappliedcarefully Ø Analystsneedstoknowwhichtechniqueshavebeenapplied!(LossofInformation) Data Foundations – Linear vs. Logarithmic Normalization 12 Data Foundations – Logarithmic Normalization AdvantagesandDisadvantages? 13 Data Foundations – Practically Speaking • Thinkcarefullyaboutappropriatepreprocessingmethods • Considerdatatype,class,tasksanddataquality • “Tailordatatotheanalysisgoals” • Keeptrackandcommunicatewhichpreprocessings havebeenapplied andconsidertheirimpactsonthefinaldataproduct • Poorlydesignedpreprocessings maycreateartificialpatternsinthe dataleadingtowrongconclusionsoranalysisresults 14 15 Key Aspects of Visualization Visualization Basics • Perceptual/Pre-AttentiveProcessing • Certainlowlevelvisualaspectsarerecognizedbeforeconscious awareness • GestaltLaws • Thetendency toperceive elementsasbelongingtoagroup,basedoncertain visualproperties • VisualVariables • Thedifferentvisualaspectsthatcanbeusedtoencode information Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 16 Preattentive Processing • Perception of visual features managed by the low-levelvisual machinery • Extremely fast:<200msec (the eyes take >200msec to initiate movement)=>processed inparallel 17 Preattentive Processing (color) http://www.idvbook.com/ 18 Preattentive Processing (shape) http://www.idvbook.com/ 19 20 Serial Processing http://www.idvbook.com/ • Finding the red circle requires serial processing • Thered circle is aconjuctive target (composed of non-unique features) • Demo:http://www.csc.ncsu.edu/faculty/healey/PP/index.html Gestalt Laws Perceptual laws about how we group visual objects together to formvisual entities. 1. Lawof Proximity 2. Lawof Similarity 3. Lawof Connectedness 4. Lawof Continuity 5. Lawof Symmetry 6. Lawof Closure and CommonRegion 7. Lawof Figure and Ground 21 Gestalt Laws - Proximity Closeobjectsareperceptuallygrouped. ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 22 Gestalt Laws - Similarity Similarobjectsareperceptuallygrouped. ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 23 Gestalt Laws - Connectedness • • • Connectedobjectsareperceptually grouped. Canbemorepowerful thanproximity, color, sizeorshape. Usedinnode–link diagrams ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 24 Gestalt Laws - Continuity Itiseasiertoconstructvisualobjects outofvisualelementsifthe connection issmooth andcontinuous. Lineswithabruptchangesindirection arehardertoread. ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 25 Gestalt Laws - Symmetry • • powerful organization principle symmetricformsbuild avisual whole ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 26 Gestalt Laws – Closure and Common Region Wepreferperceptualsolutions withclosedcontours. Weseearing behind a rectangleratherthanabroken ring. ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 27 Gestalt Laws – Closure and Common Region Eulerdiagramtousing color andtexturetohighlight contours. ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 28 Gestalt Laws – Figure and Ground • • • • figure:objectlike, perceivedtobein theforeground. ground:whateverliesbehind the figure. fundamental toidentify objects. allGestaltlawscontribute tocreatea figure ColinWare,InformationVisualization:Perception for Design,MorganKaufmann 29 30 Some more examples you might know Closure https://de.wikipedia.org/wiki/WWF#/media/Fil e:WWF _Logo.svg Figure Ground https://en.wikipedia.org/wiki/Finder_%28software%29#/medi a/File:Mac_Finder_icon_%28OS_X_Yosemite%29.png Proximity,Closure https://de.wikipedia.org/wiki/IBM#/media/File:IBM_logo.svg Marks and Visual Variables JacquesBertin: • Amark is"somethingthatisvisibleandcanbeused...toshow relationshipswithinsetsofdata" • Visualvariables are"thedifferentwaysthatamarkcanbevaried" Reference: S.Carpendale.2003.Considering VisualVariablesasaBasisforVisualization.Researchreport2001-693-16, DepartmentofComputer Science,UniversityofCalgary. Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 31 The Eight Visual Variables 1. 2. 3. 4. 5. 6. 7. 8. Position Mark/Shape Size(Length,AreaandVolume) Brightness Color Orientation Texture Motion 32 The Eight Visual Variables - Position 33 The Eight Visual Variables – Shape/Mark Severalexamplesofdifferentmarksorglyphsthatcanbeused. http://www.idvbook.com/ 34 The Eight Visual Variables – Shape/Mark Thisvisualizationusesshapestodistinguish betweendifferent cartypesinaplot comparing highwayMPG andhorsepower.Clustersareclearlyvisible, aswellassomeoutliers. 35 The Eight Visual Variables – Size (Length, Area and Volume) Examplesizestoencodedata. http://www.idvbook.com/ 36 The Eight Visual Variables – Size (Length, Area and Volume) Thisisavisualizationofthe1993carmodelsdataset,showingenginesizeversusfueltankcapacity. Sizeismappedtomaximumpricecharged. 37 The Eight Visual Variables – Brightness Brightnessscaleformappingvaluestothedisplay. http://www.idvbook.com/ 38 The Eight Visual Variables – Brightness Anothervisualizationofthe1993carmodelsdataset,thistimeillustratingtheuseofbrightnessto conveycarwidth(thedarkerthepoints,thewiderthevehicle). 39 40 The Eight Visual Variables – Color standardlineargrayscale rainbow heated bluetocyan bluetoyellow http://www.idvbook.com/ The Eight Visual Variables – Color Avisualizationofthe1993carmodels,showingtheuseofcolortodisplaythecar’slength.Here lengthisalsoassociatedwiththey-axisandisplottedagainstwheelbase.Inthisfigure,blue indicatesashorterlength,whileyellowindicatesalongerlength. 41 42 The Eight Visual Variables – Color saturation hue Microsofthue/saturationcolor selector. http://www.idvbook.com/ The Eight Visual Variables – Orientation Exampleorientationsofarepresentationgraphic,wherethelowestvaluemapstothemarkpointingupward andincreasingvaluesrotatethemarkinaclockwiserotation. http://www.idvbook.com/ 43 The Eight Visual Variables – Orientation Samplevisualizationofthe1993carmodelsdatasetdepictingusinghighwaymilesper-gallon versusfueltankcapacity(position)withtheadditionaldatavariable,midrangeprice,usedtoadjust markorientation. 44 The Eight Visual Variables – Texture Sixpossible exampletexturesthatcouldbeusedtoidentifydifferent datavalues. http://www.idvbook.com/ 45 The Eight Visual Variables – Texture Examplevisualizationusingtexturetoprovideadditionalinformationaboutthe1993carmodels dataset,showingtherelationshipbetweenwheelbaseversushorsepower(position)asrelatedto cartypes,depictedbydifferenttextures. 46 The Eight Visual Variables – Motion • Canbeassociatedwithanyoftheothervisualvariables Example:Gapminder 47 48 Designing Visualizations Characteristics of Visual Variables • Selective:IsXdifferentfromtheothers? • Associative:IsXliketheothers? • Order:IsXmore/greater/bigger/…thanY? • Quantitative:HowmuchisthedifferencebetweenXandY? • Length:Howmanydifferentcategoriescanwerepresentwiththis variableforatask? Reference:Summaryof: S.Carpendale.2003.Considering VisualVariablesasaBasisforVisualization.Researchreport2001-693-16, DepartmentofComputer Science,UniversityofCalgary. Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 49 Characteristics of Visual Variables Reference:Summaryof: S.Carpendale.2003.Considering VisualVariablesasaBasisforVisualization.Researchreport2001-693-16, DepartmentofComputer Science,UniversityofCalgary. Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 50 Using Visual Variables - Practically Speaking • Don'tuseorderedvariablesfornominaldata • Usepositionforthemostimportantinformation • Manylengthsare~5— alimitingfactor • Forquantity,use(vertical)position,length,size,brightness, saturation • Formanydistinctions:usesize,shapeorbrightness • Redundantencodingmay makefeatureseasiertointerpret Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 51 Color– Some Notes Colorispowerful,buttherearespecialconsiderations • Hueisnominal,butcanbegiven(cultural)orderings(e.g. temperature,elevation) • Affectiveconnotationsofcolorvaryacrosscultures • Dependingonwhoyourusersare,youmayneedtodesignfor colorblindnessorlow-vision Allowinguserstosetcolors/colorschemesisthemostflexible. Resource: SimDaltonism:colorblindness simulator forOSX (Thereothertools, andforother platforms) Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 52 Color - Some Guidelines • Uselighter,lesssaturatedcolorsforlargerareas • Usedarker,moresaturatedcolorsforsmallerareasandlines • Forordinaldata,usedarkerandmoresaturatedforhighervalues(e.g. heatmap) • Color(hue)lengthis~6-10,sowithmorecategories,colormaynotbe anappropriatevisualvariable. • Saturationhasalengthof~3 • Ensurealuminancecontrastof3:1fortext. Resource: ColorBrewer Reference:Slidesprovided byChrisCuly (http://ling.uni-konstanz.de/pages/home/butt/main/material/esslli14-vis/CuC_slides/reveal-based/theory.html#/title) 53 54 Heatmap Example Exampledatashowsconcurrent usersessions overtime, takenfrom adevelopment environment. http://bl.ocks.org/tjdecke/5558084 ColorBrewer ColorBrewer 55 http://colorbrewer2.org/ More Advanced - ColorCat Colormaps forCombined AnalysisTasks. https://github.com/SebastianMittelstaedt/ColorCAT S.Mittelstädt,D.Jäckle,F.StoffelandD.A.Keim.ColorCAT: GuidedDesignofColormaps forCombined Analysis Tasks.Eurographics Conferenceon Visualization(EuroVis) - ShortPapers,TheEurographics Association, DOI:10.2312/eurovisshort.20151135, 2015. 56 Designing Visualizations • Visualizationshelp: • • • • Todescribesomestructure,patternsoranomalyinthedata. Toexploreandanalyzelargedatasets. Tomakeeffectiveuseoftheinformationoverflow. Tocommunicateinformationtopeople. • Visualizationcandistortthe“truth”! 57 Designing Visualizations • Expressiveness:Visualization presents allthe information and only the information. • Effectiveness:Visualization is effective when it can be interpreted accurately and quickly and when it can be rendered inacost-effective manner. 58 59 How to Visualize Badly Pooruseofabarchart. Betteruseofascatterplot. http://www.idvbook.com 60 Interaction Interactive Analysis Process with Visualizations • Shneiderman's "InformationSeekingMantra" “Overviewfirst.ZoomandFilter.DetailsonDemand” • Keim's VisualAnalyticsMantra “Analyzefirst,showtheimportant,zoom,filter andanalyzefurther,detailsondemand” References: B.Shneiderman. 1996.Theeyeshaveit:Ataskbydatatypetaxonomyforinformation visualizations.Proceedings ofthe1996IEEESympoium onVisual Languages,VL'96. D.A.Keim,F.Mansmann, J.Schneidewind, andH.Ziegler.2006.Challenges invisualdataanalysis.Proceedings oftheconferenceonInformation Visualization, IV'06. 61 Interaction Types • Select:marksomethingasinteresting • Explore:showmesomethingelse • Reconfigure:showmeadifferentarrangement[sametype] • Encode:showmeadifferentrepresentation[differenttype] • Abstract/Elaborate:showmelessormoredetail • Filter:showmesomethingconditionally • Connect:Showmerelateditems • Someotherthings:history,annotate,extract References: J.S.Yi,Y.A.Kange,J.T.Sasko,J.A.Jacko.2007.Towardadeeperunderstandingoftheroleofinteractionininformationvisualization.IEEETransactionsonVisualizationandComputer Graphics.13:6 B.Shneiderman.1996.Theeyeshaveit:Ataskby datatypetaxonomyforinformationvisualizations.Proceedingsofthe1996IEEESympoium on VisualLanguages,VL'96. 62 Interaction – Select Example https://www.google.de/maps/ 63 Interaction - Explore Example https://www.google.de/maps/ 64 Interaction - Reconfigure https://bost.ocks.org/mike/miserables/ http://mbostock.github.io/d3/talk/20111116/bundle.html Example Example 65 Interaction - Encode http://www.infocaptor.com/ Example 66 Interaction – Abstract/Elaborate http://mbostock.github.io/d3/talk/20111018/tree.html Example 67 Interaction – Filter http://shiny.rstudio.com/gallery/movie-explorer.html Example 68 Interaction – Connect http://mbostock.github.io/d3/talk/20111116/iris-splom.html Example Example http://mbostock.github.io/d3/talk/20111116/bundle.html 69 Many Design Alternatives! – Checkout Existing Visualizations • http://textvis.lnu.se/ • https://github.com/mbostock/d 3/wiki/Gallery 70 71 THANK YOU! Questions? Computer Formoreinformation aboutour work pleasecontact DominikSacha Tel.+49753188-4046 dominik.sacha@uni-konstanz.de http://vis.uni-konstanz.de/ Human Visualization Action Hypothesis Data Knowledge Model Finding Exploration Loop Insight Verification Loop Knowledge Generation Loop