AxisVM 11
Transcription
AxisVM 11
Verification Examples 2012 AxisVM 11 Verification Examples 2 Linear static .............................................................................................................3 Supported bar with concentrated loads. .......................................................................................................................4 Thermally loaded bar structure.....................................................................................................................................5 Continously supported beam with constant distributed load.........................................................................................6 External prestessed beam...........................................................................................................................................9 Periodically supported infinite membrane wall with constant distributed load. ...........................................................11 Clamped beam examination with plane stress elements............................................................................................13 Clamped thin square plate..........................................................................................................................................16 Plate with fixed support and constant distributed load................................................................................................18 Annular plate. .............................................................................................................................................................19 All edges simply supported plate with partial distributed load. ...................................................................................21 Clamped plate with linear distributed load..................................................................................................................23 Hemisphere displacement. .........................................................................................................................................25 Nonlinear static......................................................................................................27 3D beam structure......................................................................................................................................................28 Plate with fixed end and bending moment..................................................................................................................30 Dynamic.................................................................................................................33 Deep simply supported beam.....................................................................................................................................34 Clamped thin rhombic plate........................................................................................................................................37 Cantilevered thin square plate....................................................................................................................................39 Cantilevered tapered membrane. ...............................................................................................................................42 Flat grillages. ..............................................................................................................................................................45 Stability ..................................................................................................................49 Simply supported beam..............................................................................................................................................50 Simply supported beam..............................................................................................................................................52 Design ...................................................................................................................53 N-M interaction curve of cross-section EC2, EN 1992-1-1:2004. ...............................................................................54 RC beam deflection according to EC2, EN 1992-1-1:2004. .......................................................................................55 Required steel reinforcement of RC plate according to EC2, EN 1992-1-1:2004……………………………...………..57 Interaction check of beam under biaxial bending EC3, EN 1993-1-1:2005…………………………...………………….59 Interaction check of beam under normal force, bending and shear force EC3, EN 1993-1-1:2005…………………...61 Buckling resistance of simply supported I beam EC3, EN 1993-1-1:2005…….…………………………………………63 Buckling resistance of simply supported T beam EC3, EN 1993-1-1:2005……………………………………………....65 Buckling of a hollow cross-section beam EC3, EN 1993-1-1:2005…………………………………………………….….67 Lateral torsional buckling of a beam EC3, EN 1993-1-1:2005……………………………………………………………..71 Interaction check of beam in section class 4. EC3, EN 1993-1-1:2005, EN 1993-1-5:2006………………………...…77 Earth-quake design using response-spectrum method. ……………………………………………………..………80 AxisVM 11 Verification Examples Linear static 3 AxisVM 11 Verification Examples 4 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam1.axs Thema Supported bar with concentrated loads. Analysis Type Geometry Linear analysis. Side view Section Area = 1,0 m 2 Loads Axial direction forces P1 = -200 N, P2 = 100 N, P3 = -40 N Boundary Conditions Material Properties Element types Mesh Fix ends, at R1 and R5. E = 20000 kN / cm ν = 0,3 Beam element Target R1 , R5 support forces 2 Results Theory AxisVM % R 1 [N] -22,00 -22,00 0,00 R5 [N] 118,00 118,00 0,00 AxisVM 11 Verification Examples 5 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam2.axs Thema Thermally loaded bar structure. Analysis Type Geometry Linear analysis. Side view Sections: -4 2 Steel: AS = π x 10 m -4 2 Copper: AC = π x 10 m Loads Boundary Conditions Material Properties Element types Target P = -12 kN (Point load) Temperature rise of 10 °C in the structure after assembly. The upper end of bars are fixed. Steel: ES = 20700 kN / cm , ν = 0,3 , αS = 1,2 x 10 °C 2 -5 Copper: EC = 11040 kN / cm , ν = 0,3 , αC = 1,7 x 10 °C 2 -5 -1 -1 Beam element Smax in the three bars. Results Theory AxisVM % Steel Smax [MPa] 23824000 23847900 0,10 Cooper Smax [MPa] 7185300 7198908 0,19 AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam3.axs Thema Continously supported beam with point loads. Analysis Type Geometry Linear analysis. Side view (Section width = 1,00 m, height1 = 0,30 m, height2 = 0,60 m) Loads P1= -300 kN, P2= -1250 kN, P3= -800 kN, P4= -450 kN Boundary Conditions Elastic supported. From A to D is Kz = 25000 kN/m/m. From D to F is Kz = 15000 kN/m/m. 2 E = 3000 kN/cm ν = 0,3 Three node beam element. Shear deformation is taken into account. Material Properties Element types Target Results ez, My, Vz, Rz Diagram ez Diagram My Results 6 AxisVM 11 Verification Examples 7 Diagram Vz Diagram R Reference AxisVM e [%] eA [m] 0,006 0,006 0,00 eB [m] 0,009 0,009 0,00 eC [m] 0,014 0,014 0,00 eD [m] 0,015 0,015 0,00 eE [m] 0,015 0,015 0,00 eF [m] 0,013 0,013 0,00 Reference AxisVM e [%] 0,0 0,2 0,00 MC [KNm] MD [KNm] ME [KNm] 88,5 636,2 87,1 630,8 -1,58 -0,85 332,8 164,2 330,1 163,0 -0,81 -0,73 MF [KNm] 0,0 0,4 0,00 MA [KNm] MB [KNm] AxisVM 11 Verification Examples 8 Results VA [KN] VB [KN] VC [KN] VD [KN] VE [KN] VF [KN] Reference AxisVM e [%] 0,0 0,1 0,00 112,1 646,8 113,1 647,2 0,89 0,06 335,0 267,8 334,9 267,5 -0,03 -0,11 0,0 -0,1 0,00 Reference AxisVM e [%] 2 145,7 154,0 5,70 2 219,5 219,4 -0,05 2 343,8 346,0 0,64 2 386,9 386,4 -0,13 2 224,5 224,7 0,09 2 201,2 200,8 -0,20 RA [KN/m ] RB [KN/m ] RC [KN/m ] RD [KN/m ] RE [KN/m ] RF [KN/m ] AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam4.axs Thema External prestessed beam. Analysis Type Geometry Linear analysis. Side view Loads p = -50 kN /m distributed load Length change = -6,52E-3 at beam 5-6 Boundary Conditions eY = eZ = = 0 at node 1 eX = eY = eZ = 0 at node 4 Material Properties E = 2,1E11 N / m 2 4 Beam 1-5, 5-6, 6-4 A = 4,5E-3 m Iz= 0,2E-5 m 2 4 Truss 2-5, 3-6 A = 3,48E-3 m Iz= 0,2E-5 m 2 4 Beam 1-4 A = 1,1516E-2 m Iz= 2,174E-4 m 2 Mesh Element types Three node beam element, 1-5, 5-6, 6-4, 1-4 (shear deformation is taken into account) Truss element 2-5, 3-6 Target NX at beam 6-7 My,max at beam 2-3 ez at node 2 9 AxisVM 11 Verification Examples 10 Results 2 3 5 6 2,000 4,000 4 0,600 1 2,000 8,000 Z X Diagram ez ROBOT V6® AxisVM % Nx [kN] 584,56 584,80 0,04 My [kNm] 49,26 -0,5421 49,60 -0,5469 0,68 0,89 ez [mm] AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plane1.axs Thema Periodically supported infinite membrane wall with constant distributed load. Analysis Type Geometry Linear analysis. Side view (thickness = 20,0 cm) Loads p = 200 kN / m Boundary Conditions Material Properties Element types Mesh vertical support at every 4,0 m support length is 0,4 m E = 880 kN / cm ν = 0,16 Parabolic quadrilateral membrane (plane stress) Target Sxx at 1-10 nodes (1-5 at middle, 6-10 at support) 2 11 AxisVM 11 Verification Examples 12 Results Node Analytical [kN/cm2 ] AxisVM [kN/cm2 ] % 1 2 3 4 5 6 7 8 9 10 0,1313 0,0399 -0,0093 -0,0412 -0,1073 -0,9317 0,0401 0,0465 0,0538 0,1249 0,1312 0,0395 -0,0095 -0,0413 -0,1071 -0,9175 0,0426 0,0469 0,0538 0,1247 -0,08 -1,00 2,15 0,24 -0,19 -1,52 6,23 0,86 0,00 -0,16 Reference: Dr. Bölcskey Elemér – Dr. Orosz Árpád: Vasbeton szerkezetek Faltartók, Lemezek, Tárolók AxisVM 11 Verification Examples 13 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plane2.axs Thema Clamped beam examination with plane stress elements. Analysis Type Geometry Linear analysis. Side view Loads p = -25 kN/m Boundary Conditions Material Properties Element types Mesh Both ends built-in. 2 E = 880 kN / cm ν=0 Parabolic quadrilateral membrane (plane stress) 0,375 1 0,500 Clamped edge C 3,000 Z X Side view 0,250 AxisVM 11 Verification Examples Target 14 τxy, max at section C Results Diagram τxy 5,14 791,56 Z Y 5,28 Diagram τxy at section C AxisVM 11 Verification Examples V = 65,625 kN ( from beam theory ) S y' = 0,0078125 m 3 b = 0,25 m I y = 0,00260416 m 4 τ xy = V ⋅ S y' b⋅Iy = AxisVM result 65,625 ⋅ 0,0078125 = 787 ,5 kN / m 2 0,25 ⋅ 0,00260416 τ xy = 791,6 kN / m2 Difference = +0,52 % AxisVM result V = ∑ n xy = 65,34 kN Difference = +0,43 % 15 AxisVM 11 Verification Examples 16 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate1.axs Thema Clamped thin square plate. Analysis Type Geometry Linear analysis. Top view (thickness = 5,0 cm) Loads P = -10 kN (at the middle of the plate) Boundary Conditions Material Properties Element types Mesh eX = ez = eZ = fiX = fiY = fiZ = 0 along all edges 2 4,000 E = 20000 kN / cm ν = 0,3 Plate element (Parabolic quadrilateral, heterosis) 4,000 Y X Target Displacement of middle of the plate AxisVM 11 Verification Examples 17 Results -0,001 -0,006 -0,006 -0,012 -0,022 -0,019 -0,012 -0,043 -0,024 -0,043 -0,019 -0,084 -0,065 -0,024 -0,026 -0,065 -0,026 -0,081 -0,024 -0,087 -0,019 -0,006 -0,001 -0,022 -0,337 -0,337 -0,237 -0,084 -0,187 -0,125 -0,065 -0,012 -0,125 -0,237 -0,019 -0,024 -0,337 -0,156 -0,081 -0,006 -0,084 -0,043 -0,012 -0,187 -0,125 -0,065 -0,019 -0,337 -0,257 -0,125 -0,043 -0,006 -0,257 -0,307 -0,257 -0,156 -0,001 -0,022 -0,156 -0,237 -0,168 -0,065 -0,043 -0,043 -0,168 -0,257 -0,081 -0,006 -0,065 -0,168 -0,237 -0,168 -0,012 -0,081 -0,187 -0,156 -0,019 -0,087 -0,156 -0,087 -0,026 -0,012 -0,125 -0,081 -0,026 -0,024 -0,087 -0,125 -0,307 -0,237 -0,307 -0,383 -0,383 -0,337 -0,257 -0,237 -0,156 -0,168 -0,081 -0,087 -0,024 -0,026 -0,383 -0,337 -0,087 -0,168 -0,026 -0,257 -0,383 -0,337 -0,337 -0,156 -0,081 -0,237 -0,307 -0,257 -0,024 -0,168 -0,237 -0,187 -0,087 -0,125 -0,156 -0,065 -0,125 -0,081 -0,019 -0,026 -0,084 -0,065 -0,043 -0,024 -0,043 -0,012 -0,019 -0,022 -0,012 -0,006 -0,006 -0,257 -0,168 -0,087 -0,026 -0,001 Z X Y Displacements Mode Mesh Book1 1 2 3 4 5 2x2 4x4 8x8 12x12 16x16 0,402 0,416 0,394 0,387 0,385 Timoshenko2 AxisVM 0,38 0,420 0,369 0,381 0,383 0,383 Diff1 [%] Diff2 [%] 4,48 -11,30 -3,30 -1,03 -0,52 10,53 -2,89 0,26 0,79 0,79 References: 1.) The Finite Element Method (Fourth Edition) Volume 2. /O.C. Zienkiewicz and R.L. Taylor/ McGraw-Hill Book Company 1991 London 2.) Result of analytical solution of Timoshenko Convergency 15,00 10,00 Displacements 5,00 Diff1 [%] 0,00 1 2 3 -5,00 -10,00 -15,00 Mesh density 4 5 Diff2 [%] AxisVM 11 Verification Examples 18 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate2_1.axs Thema Plate with fixed support and constant distributed load. Analysis Type Geometry Linear analysis. Top view Loads Boundary Conditions Material Properties Element types Mesh Target Results (thickness = 15,0 cm) 2 P = -5 kN / m eX = eY = eZ = fiX = fiY = fiZ = 0 along all edges 2 E = 990 kN/cm ν = 0,16 Parabolic triangle plate element Maximal eZ (found at Node1) and maximal mx (found at Node2) Component eZ,max [mm] mx,max [kNm/m] Nastran® AxisVM % -1,613 3,060 -1,593 3,059 -1,24 -0,03 AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate3.axs Thema Annular plate. Analysis Type Geometry Linear analysis. Top view (thickness = 22,0 cm) Loads Edge load: Q = 100 kN / m 2 Distributed load: q = 100 kN / m Boundary Conditions Material Properties Element types 2 E = 880 kN / cm ν = 0,3 Plate element (parabolic quadrilateral, heterosis) 19 AxisVM 11 Verification Examples 20 Mesh 3,000 1,000 4,000 Y X Target Smax, emax Results Model Theory Smax [kN/cm2] AxisVM Smax [kN/cm2] % a.) b.) c.) d.) e.) f.) g.) h.) 2,82 6,88 14,22 1,33 2,35 9,88 4,79 7,86 2,78 6,76 14,10 1,33 2,25 9,88 4,76 7,86 -1,42 -1,74 -0,84 0,00 -4,26 0,00 -0,63 0,00 Model Theory emax [mm] AxisVM emax [mm] % a.) b.) c.) d.) e.) f.) g.) h.) 77,68 226,76 355,17 23,28 44,26 123,19 112,14 126,83 76,10 220,84 352,89 23,42 44,50 123,17 111,94 126,81 -2,03 -2,61 -0,64 0,60 0,54 -0,02 -0,18 -0,02 Reference: S. Timoshenko and S. Woinowsky-Krieger: Theory of Plates And Shells AxisVM 11 Verification Examples 21 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate4.axs Thema All edges simply supported plate with partial distributed load. Analysis Type Geometry Linear analysis. Top view (thickness = 22,0 cm) 2 Distributed load: q = -10 kN / m (middle of the plate at 2,0 x 2,0 m area) Boundary Conditions Material Properties Element types Mesh a.) eX = eY = eZ = 0 along all edges (soft support) b.) eX = eY = eZ = 0 along all edges ϕ = 0 perpendicular the edges (hard support) 2 E = 880 kN / cm ν = 0,3 Plate element (Heterosis) 10,000 Loads 5,000 Y X AxisVM 11 Verification Examples Target mx, max, my, max Results a.) 22 Moment mx, max [kNm/m] Theory AxisVM % 7,24 7,34 1,38 my, max [kNm/m] 5,32 5,39 1,32 Moment mx, max [kNm/m] Theory AxisVM % 7,24 7,28 0,55 my, max [kNm/m] 5,32 5,35 0,56 b.) Reference: S. Timoshenko and S. Woinowsky-Krieger: Theory of Plates And Shells AxisVM 11 Verification Examples 23 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate5.axs Thema Clamped plate with linear distributed load. Analysis Type Geometry Linear analysis. Top view (thickness = 22,0 cm) 2 Loads Distributed load: q = -10 kN / m Boundary Conditions eX = eY = eZ = fiX = fiY= fiZ = 0 along all edges Material Properties E = 880 kN / cm ν = 0,3 Element types Mesh Plate element (Heterosis) 2 3 1 4 10,000 Y X 2 10,000 q AxisVM 11 Verification Examples Target 24 mx, my Results Results mx, 1 [kNm/m] my, 1 [kNm/m] mx, 2 [kNm/m] mx, 3 [kNm/m] my, 4 [kNm/m] Theory AxisVM % 11,50 11,50 33,40 17,90 25,70 11,48 11,48 33,23 17,83 25,53 -0,17 -0,17 -0,51 -0,39 -0,66 Reference: S. Timoshenko and S. Woinowsky-Krieger: Theory of Plates And Shells AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: hemisphere.axs Thema Hemisphere displacement. Analysis Type Geometry Linear analysis. Hemisphere (Axonometric view) t = 0,04 m Loads Point load P = 2,0 kN C 2,0 kN 2,0 kN A B Z X Y 25 AxisVM 11 Verification Examples Boundary Conditions eX = eY = eZ = 0 at A eX = eY = eZ = 0 at B Material Properties E = 6825 kN / cm ν = 0,3 Element types Shell element 1.) guadrilateral parabolic 2.) triangle parabolic ex at point A Target 26 2 Results e x [m] Theory 0,185 AxisVM quadrilateral AxisVM triangle 0,185 0,182 e [%] 0,00 -1,62 AxisVM 11 Verification Examples Nonlinear static 27 AxisVM 11 Verification Examples 28 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: nonlin1.axs 3D beam structure. Analysis Type Geometry Geometrical nonlinear analysis. Fy =-300,00 kN Fz =-600,00 kN 3,000 m 1,732 m Thema 1,732 m Fy =-300,00 kN Fz =-600,00 kN Node1 Beam1 Y 1,732 m 3,000 m X D Fz =-600,00 kN A C Z Z Y Loads Boundary Conditions Material Properties CrossSection Properties Element types Target 4,000 m B X X Py = -300 kN Pz = -600 kN eX = eY = eZ = 0 at A, B, C and D S 275 2 E = 21000 kN / cm ν = 0,3 HEA 300 2 4 4 4 Ax = 112.56 cm ; Ix = 85.3 cm ; Iy = 18268.0 cm ; Iz = 6309.6 cm Beam eX, eY, eZ, at Node1 Nx, Vy, Vz, Tx, My, Mz of Beam1 at Node1 1,732 m AxisVM 11 Verification Examples Results 29 Comparison with the results obtained using Nastran V4 ® Component Nastran AxisVM % eX [mm] eY [mm] eZ [mm] Nx [kN] Vy [kN] Vx [kN] Tx [kNm] My [kNm] Mz [kNm] 17,898 -75,702 -42,623 -283,15 -28,09 -106,57 -4,57 -519,00 148,94 17,881 -75,663 -42,597 -283,25 -28,10 -106,48 -4,57 -518,74 148,91 -0,09 -0,05 -0,06 0,04 0,04 -0,08 0,00 -0,05 -0,02 AxisVM 11 Verification Examples 30 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: nonlin2.axs Thema Plate with fixed end and bending moment. Analysis Type Geometry Geometrical nonlinear analysis. 1,0 m Edge1 Edge2 12,0 m Z Y X Loads Boundary Conditions Material Properties Cross Section Properties Element types Mz = 2600 kNm (2x1300 Nm) acting on Edge2 eX = eY = eZ = fiX = fiY = fiZ = 0 along Edge1 2 E = 20000 N / mm ν=0 Plate thickness: 150 mm Rib on Edge2: circular D = 500 mm (for distributing load to the mid-side-node) Parabolic quadrilateral shell (heterosis) Rib on Edge2 for distributing load to the mid-side-node AxisVM 11 Verification Examples Target 31 ϕZ at Edge2 Results 5,5502 rad 1,0 m Edge1 Edge2 12,0 m Z Y X Theoretical results based on the differential equation of the flexible beam: M M l plate I plate E plate → ϕ z = I plate E plate ϕ z = κ ⋅ l plate a b 3 1 ⋅ 0.15 3 I plate = = = 2.8125 ⋅10 −4 12 12 E plate = 2 ⋅1010 N m 2 κ = l plate = 12 m M = 2.6 ⋅10 6 Nm ϕz = 2.6 ⋅10 6 ⋅12 = 5.5467 rad 2.8125 ⋅10 −4 ⋅ 2 ⋅ 1010 Comparison the AxisVM result with the theoretical one: Component fiZ [rad] Theory AxisVM % 5,5467 5,5502 0,06 AxisVM 11 Verification Examples BLANK 32 AxisVM 11 Verification Examples Dynamic 33 AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam1.axs Thema Deep simply supported beam. Analysis Type Geometry Dynamic analysis. Beam (Axonometric view) Cross section (square 2,0 m x 2,0 m) Loads Self-weight Boundary Conditions eX = eY = eZ = fiX = 0 at A eY = eZ = 0 at B Material Properties E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m Element types Target Three node beam element (shear deformation is taken into account) 2 First 7 mode shapes 34 AxisVM 11 Verification Examples 35 Results Mode 1: f = 43,16 Hz Mode 2: f = 43,16 Hz Mode 3: f = 124,01 Hz Mode 4: f = 152,50 Hz Mode 5: f = 152,50 Hz Mode 6: f = 293,55 Hz Mode 7: f = 293,55 Hz AxisVM 11 Verification Examples Results 36 Comparison with NAFEMS example Mode 1 2 3 4 5 6 7 NAFEMS (Hz) AxisVM (Hz) % 42,65 42,65 125,00 148,31 148,31 284,55 284,55 43,16 43,16 124,01 152,50 152,50 293,55 293,55 -1,20 -1,20 0,79 -2,83 -2,83 -3,16 -3,16 AxisVM 11 Verification Examples 37 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam2.axs Thema Clamped thin rhombic plate. Analysis Type Geometry Dynamic analysis. Top view of plane (thickness = 5,0 cm) Loads Self-weight Boundary Conditions eX = eY = fiZ = 0 at all nodes (ie: eX, eY, fiZ constained at all nodes) eZ = fiX = fiY = 0 along the 4 edges Material Properties E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m Element types Mesh Parabolic quadrilateral shell element (heterosis) 10 ,0 00 2 10,000 Y X AxisVM 11 Verification Examples Target 38 First 6 mode shapes Results Mode 1: f = 8,02 Hz eR eR 0,506 0,470 0,433 0,397 0,361 0,325 0,289 0,253 0,217 0,181 0,144 0,108 0,072 0,036 0 0,463 0,429 0,396 0,363 0,330 0,297 0,264 0,231 0,198 0,165 0,132 0,099 0,066 0,033 0 Mode 2: f = 13,02 Hz eR eR 0,520 0,483 0,446 0,409 0,486 0,451 0,416 0,382 0,347 0,312 0,278 0,243 0,208 0,174 0,139 0,104 0,069 0,035 0 Mode 3: f = 18,41 Hz eR 0,372 0,335 0,297 0,260 0,223 0,186 0,149 0,112 0,074 0,037 0 Mode 4: f = 19,33 Hz 0,498 0,462 0,427 0,391 0,356 0,320 0,284 0,249 0,213 0,178 0,142 0,107 0,071 0,036 0 Mode 5: f = 24,62 Hz Results 0,449 0,417 0,385 0,353 0,321 0,289 0,257 0,225 0,192 0,160 0,128 0,096 0,064 0,032 0 Mode 6: f = 28,24 Hz Comparison with NAFEMS example Mode 1 2 3 4 5 6 eR NAFEMS (Hz) AxisVM (Hz) % 7,94 12,84 17,94 19,13 24,01 27,92 8,02 13,02 18,41 19,33 24,62 28,24 1,01 1,40 2,62 1,05 2,54 1,15 AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam3.axs Thema Cantilevered thin square plate. Analysis Type Geometry Dynamic analysis. Top view (thickness = 5,0 cm) Loads Self-weight Boundary Conditions Material Properties eX = eY = eZ = fiX = fiY = fiZ = 0 along y-axis Element types Mesh E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m 2 Parabolic quadrilateral shell element (heterosis). 39 AxisVM 11 Verification Examples Target First 5 mode shapes Results Mode 1: f = 0,42 Hz Mode 3: f = 2,53 Hz Mode 5: f = 3,68 Hz 40 AxisVM 11 Verification Examples 41 Mode 2: f = 1,02 Hz Mode 4: f = 3,22 Hz Comparison with NAFEMS example Mode 1 2 3 4 5 NAFEMS (Hz) AxisVM (Hz) % 0,421 1,029 2,580 3,310 3,750 0,420 1,020 2,530 3,220 3,680 -0,24 -0,87 -1,94 -2,72 -1,87 AxisVM 11 Verification Examples 42 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam4.axs Thema Cantilevered tapered membrane. Analysis Type Geometry Dynamic analysis. Side view (thickness = 10,0 cm) Loads Self-weight Boundary Conditions eZ = 0 at all nodes (ie: eZ constained at all nodes) eX = eY = 0 along y-axis Material Properties E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m Element types Mesh Parabolic quadrilateral membrane (plane stress) 1,000 5,000 2 10,000 Y X AxisVM 11 Verification Examples Target 43 First 4 mode shapes Results 1,000 5,000 10,000 Y X 1,000 5,000 Mode 1: f = 44,33 Hz 10,000 Y X Mode 2: f = 128,36 Hz AxisVM 11 Verification Examples 1,000 5,000 44 10,000 Y X 1,000 5,000 Mode 3: f = 162,48 Hz 10,000 Y X Mode 4: f = 241,22 Hz Results Comparison with NAFEMS example Mode 1 2 3 4 NAFEMS (Hz) AxisVM (Hz) % 44,62 130,03 162,70 246,05 44,33 128,36 162,48 241,22 -0,65 -1,28 -0,14 -1,96 AxisVM 11 Verification Examples 45 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam5.axs Thema Flat grillages. Analysis Type Geometry Dynamic analysis. Top view Loads Self-weight Boundary Conditions Material Properties eX = eY = eZ = 0 at the ends (simple supported beams) 2 A = 0,004 m 4 Ix = 2,5E-5 m 4 Iy = Iz = 1,25E-5 m Three node beam element (shear deformation is taken into account) 1,000 0,500 4,500 1,000 Element types Mesh 2 2,000 Cross Section E = 20000 kN / cm 2 G = 7690 kN / cm ν = 0,3 3 ρ = 7860 kg / m 1,500 Y X 1,500 1,500 1,000 0,500 AxisVM 11 Verification Examples Target 46 First 3 mode shapes 1,679 1,879 1,605 1,638 1,586 1,035 1,241 1,114 Results ZY X 1,938 2,254 0,856 -1,837 -2,065 -1,813 2,040 Mode 1: f = 16,90 Hz Z Y X ZY X Mode 3: f = 51,76 Hz -1,845 -1,992 2,040 1,585 -1,130 1,721 -1,620 -1,581 -1,667 Mode 2: f = 20,64 Hz AxisVM 11 Verification Examples Mode 1 2 3 47 Reference AxisVM (Hz) % 16,85 20,21 53,30 16,90 20,64 51,76 0,30 2,13 -2,89 Reference: C.T.F. ROSS: Finite Element Methods In Engineering Science AxisVM 11 Verification Examples BLANK 48 AxisVM 11 Verification Examples Stability 49 AxisVM 11 Verification Examples 50 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: buckling1.axs Thema Simply supported beam. Analysis Type Geometry Buckling analysis. Front view 2 2 7 3 20,0 6 S 1 1 8 5 9 z y 4 1,0 G 10,0 4 4 6 Cross section (Iz =168,3 cm , It =12,18 cm , Iw =16667 cm ) Loads Boundary Conditions Material Properties Element types Mesh Bending moment at both ends of beam MA = 1,0 kNm, MB = -1,0 kNm eX = eY = eZ = 0 at A eX = eY = eZ = 0 at B kz = kw = 1 2 E = 20600 kN / cm ν = 0,3 2 G = 7923 kg / m Parabolic quadrilateral shell element (heterosis) AxisVM 11 Verification Examples Target 51 Mcr = ? (for lateral torsional buckling) Results Analytical solution M cr = M cr = π 2 ⋅ E ⋅ IZ L2 IW L2 ⋅ G ⋅ I t + 2 IZ π ⋅ E ⋅ IZ π 2 ⋅ 20600 ⋅ 168,3 16667 2002 AxisVM result Mcr = 125,3 kNm Difference +0,6% 168,3 + 2002 ⋅ 7923 ⋅ 12,18 = 12451 kNcm = 124,51 kNm π 2 ⋅ 20600 ⋅ 168,3 AxisVM 11 Verification Examples 52 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: buckling2.axs Thema Simply supported beam. Analysis Type Geometry Buckling analysis. Front view (L = 1,0 m) 1 2 5 S 1 2 G 10,0 5 S 1 2 10,0 2 G 3 3 4 4 12,0 30,0 z y z y Section A1 Section A2 Cross-sections Loads P = -1,0 kN at point B. Boundary Conditions eX = eY = eZ = 0 at A eY = eZ = 0 at B Material Properties E = 20000 kN / cm ν = 0,3 Element types Target Beam element 2 Pcr = ? (for inplane buckling) Results P cr [kN] Theory AxisVM e [%] 3,340 3,337 -0,09 AxisVM 11 Verification Examples Design 53 AxisVM 11 Verification Examples 54 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: RC column1.axs Thema N-M interaction curve of cross-section (EN 1992-1-1:2004). Analysis Type Geometry Linear static analysis+design. 2φ20 3φ28 Section: 300x400 mm Covering: 40 mm Loads Boundary Conditions Material Properties Target Results Concrete: 2 fcd=14,2 N/mm ec1=0,002 ecu=0,0035 (parabola-constans σ-ε diagram) Steel: 2 fsd=348 N/mm esu=0,015 Compare the program results with with hand calculation at keypoints of M-N interaction curve. N 1 2 6 5 3 4 1 2 3 4 5 6 N [kN] -2561 -1221 0 +861 0 -362 M [kNm] +61 +211 +70 -61 -190 -211 M(N) AxisVM +61,4 +209,7 +70,5 -61,4 -191,2 -209,7 Reference: Dr. Kollár L. P., Vasbetonszerkezetek I. Műegyetemi kiadó e% +0,7 -0,6 +0,7 +0,7 +0,6 -0,6 AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam1.axs Thema RC beam deflection according to EC2, EN 1992-1-1:2004. Analysis Type Geometry Material nonlinear analysis. q = 17 kN/m L = 5,60 m Side view 2φ20 35 cm covering = 3 cm β = 0,5 4φ20 25 cm Section Loads q = 17 kN /m distributed load Boundary Conditions Material Properties Simply supported beam. Element types Target Concrete: C25/30, ϕ = 2,1 Steel: B500B Parabolic quadrilateral plate element (Heterosis) ez, max 55 AxisVM 11 Verification Examples 56 Z X Diagram ez Aproximate calculation: e = ζ ⋅ e II + (1 − ζ ) ⋅ e I = 20,06 _ mm where, eI is the deflection which was calculated with the uncracked inertia moment eII is the deflection which was calculated with the cracked inertia moment σ ζ = 1 − β ⋅ sr σs 2 Calculation with integral of κ: e = 19,82 mm Calculation with AxisVM: e = 19,03 mm (different -4,0%) -0,002 -5,239 -10,101 -14,242 -17,393 -19,360 -20,029 -19,360 -17,393 -14,242 -10,101 -5,239 -0,002 Results AxisVM 11 Verification Examples 57 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam2.axs Thema Required steel reinforcement of RC plate according to EC2, EN 1992-1-1:2004. Analysis Type Geometry Linear analysis. Szabvány : Eurocode Eset : ST1 50 kN 4,0 Y X Side view Cross-section Loads Pz = -50 kN point load Boundary Conditions Material Properties Element types Mesh Clamped cantilever plate. Concrete: C25/30 Steel: B500A Parabolic quadrilateral plate element (heterosis) Szabvány : Eurocode Eset : ST1 1,0 4,0 Clamped edge Y X Top view AxisVM 11 Verification Examples Target 58 AXT steel reinforcement along x direction at the top of the support Results Lineáris számítás Szabvány : Eurocode Eset : ST1 E (W) : 1,09E-11 E (P) : 1,09E-11 E (ER) : 8,49E-13 Komp. : axf [mm2 /m] 1,0 4,0 Clamped edge ST1, axf: 2093 mm2 /m Z Y X Diagram AXT Calculation according to EC2: 500 = 435 N / mm 2 1,15 f cd = 25 = 16,6 N / mm2 1,5 ξc 0 = c ⋅ ε cu ⋅ ES 0,85 ⋅ 0,0035 ⋅ 20000 = = 0,54 ε cu ⋅ ES + f yd 0,0035 ⋅ 20000 + 435 f yd = d = 300 – 53 = 247 mm x M sd = M Rd = b ⋅ xc ⋅ f cd d − c = 200 kNm 2 439 > h xc = 55 ξc = xc 55 = = 0,22 < ξ c 0 = 0,54 Steel reinforcement is yielding d 247 AS = b ⋅ xc ⋅ f cd 55 ⋅1000 ⋅16,6 = = 2099 mm 2 f yd 435 Calculation with AxisVM: AXT = 2093 mm2 / m Different = -0,3 % AxisVM 11 Verification Examples 59 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_10 Plastic biaxial bending interaction.axs Thema Interaction check of simply supported beam under biaxial bending (EN 1993-1-1). Analysis Type Geometry Steel Design h = 270 mm b = 135 mm tf = 10 mm tw = 7 mm l = 6000 mm 2 A = 45,95 cm 3 W y,pl = 484,1 cm 3 W z,pl = 97 cm IPE270 cross section Loads qy = 1,5 kN/m qz = 20,4 kN/m Boundary Conditions ex = ey = ez = 0 at A ey = ez = 0 at B Material Properties S 235 2 E = 21000 kN/cm ν = 0,3 AxisVM 11 Verification Examples Element types Target Beam element Results Analytical solution in the following book: 60 Interaction check taking into account plastic resistances Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.10., page 28. Analitical solution AxisVM e[%] My,Ed [kNm] 91,8 91,8 - Mz,Ed [kNm] 6,75 6,75 - Mpl,y,Rd [kNm] 113,74 113,76 +0,02 Mpl,z,Rd [kNm] 22,78 22,79 +0,04 α 2 2 - β 1 1 - capacity ratio [-] 0,948 0,947 -0,11 AxisVM 11 Verification Examples 61 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_12 _MNV_Interaction.axs Thema Analysis Type Geometry Interaction check of simply supported beam under normal force, bending and shear force. (EN 1993-1-1, EN 1993-1-5) Steel Design h = 200 mm b = 200 mm tf = 15 mm tw = 9 mm l = 1400 mm 2 A = 78,1 cm 2 Av = 24,83 cm 3 Iy = 5696 cm 3 W y,pl = 643 cm IPE270 cross section Loads Fz = 300 kN at thirds of beam N = 500 kN at B Boundary Conditions ex = ey = ez = 0 at A ey = ez = 0 at B Material Properties S 235 2 E = 21000 kN/cm ν = 0,3 Element types Beam element Target Interaction check of axial force, shear force and bending moment. AxisVM 11 Verification Examples Results 62 Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.12., page 31-33. Analytical solution AxisVM results e[%] NEd [kN] 500 500 - Vz,Ed [kN] 300 300 - My,Ed [kNm] 140 140 - Npl,Rd [kN] 2148 2148 - capacity ratio [-] 0,233 0,233 - Vpl,z,Rd [kN] 394,2 394,5 +0,08 capacity ratio [-] 0,761 0,761 - Mpl,y,Rd [kNm] 176,8 176,7 -0,06 capacity ratio [-] 0,792 0,792 - Ρ 0,273 0,271 -0,73 MV,Rd [kNm] 163,96 163,93 -0,02 N 0,233 0,233 - A 0,232 0,232 - MNV,Rd [kNm] 142,2 142,2 - capacity ratio [-] 0,985 0,984 -0,10 Pure compression Pure shear Pure bending Interaction check AxisVM 11 Verification Examples 63 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_15 Központosan nyomott rúd - I szelvény.axs Thema Buckling resistance of simply supported beam (EN 1993-1-1). Analysis Type Geometry Steel Design h = 300 mm b = 250 mm tf = 14 mm tw = 8 mm l = 4500 mm 2 A = 94 cm 4 Iy = 19065,8cm 4 Iz = 3647,1 cm iy = 14,1 cm iz = 6,2 cm “I” cross section, symmetric about y and z axis Loads Boundary Conditions Material Properties Element types Target Normal force at point A NA= -1,0 kN ey = 0 at A ex = ey = ez = φx = φz = 0 at B kz = kw = 1 S 235 2 E = 21000 kN / cm ν = 0,3 Beam element Buckling resistance Nb,Rd = ? AxisVM 11 Verification Examples Results 64 Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.15., P. 37-39. Analytical solution AxisVM e[%] [-] * 0,673 0,673 - [-] 0,771 0,769 -0,26 Χy [-] * 0,8004 0,7989 -0,19 Χz [-] 0,6810 0,6815 +0,07 Nb,Rd [kN] 1504,3 1505,3 +0,07 λy λz AxisVM 11 Verification Examples 65 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_21 Központosan nyomott rúd - T szelvény.axs Thema Buckling resistance of simply supported beam (EN 1993-1-1). Analysis Type Geometry Steel Design h = 180 mm b = 250 mm tf = 16 mm tw = 16 mm l = 3000 mm 2 A = 68,8 cm 4 Iy = 2394,25cm 4 Iz = 2089,48 cm 4 Ics= 58,71 cm 6 Iw = 1108,0 cm iy = 5,90 cm iz = 5,51 cm Loads Boundary Conditions Material Properties Element types Target Welded “T” section, symmetric to z but not y Normal force at point A NA= -1,0 kN ey = 0 at A ex = ey = ez = φx = 0 at B kz = kw = 1 S 235 2 E = 21000 kN/cm ν = 0,3 Beam element Buckling resistance Nb,Rd = ? AxisVM 11 Verification Examples Results 66 Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.21., P. 47-49. Analitical solution AxisVM e[%] zs [cm] 49,0 49,0 - zw [cm] 4,10 4,04 -1,46 iw [cm] * 9,05 9,03 -0,22 [-] 0,542 0,542 - Χy [-] 0,8204 0,8195 -0,11 Nb,Rd,1 [kN] 1326,4 1325,0 -0,11 [-] * 0,667 0,667 - Χz [-] * 0,7432 0,7446 +0,19 Nb,Rd,2 [kN] * 1201,6 1203,9 +0,19 λy λz * hidden partial results, Axis does not show them among the steel desing results AxisVM 11 Verification Examples 67 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: Külpontosan nyomott rúd - RHS szelvény.axs Topic Buckling of a hollow cross-section beam (EN 1993-1-1). Analysis Type Geometry Steel Design h = 150 mm b = 100 mm tf = 10 mm tw = 10 mm L = 4,000 m 2 A = 43,41 cm 4 Iy = 1209,8 cm 4 Iz = 635,7 cm iy = 52,8 mm iz = 38,3 mm 3 W el,y = 161,3 cm 3 W el,z = 127,1 cm 3 W pl,y = 205,6 cm 3 W pl,z = 154,6 cm RHS 150x100x10,0 cross section (hot rolled) Loads Boundary Conditions Material Properties Element types Steel Design Parameters Target Bending moment at both ends of beam and axial force NEd,C = 200 kN MEd,A = MEd,B = 20 kNm ex = ey = ez = 0, warping free at A ey = ez = 0, warping free at B S 275 2 E = 21000 kN / cm ν = 0,3 Beam element Buckling length: Ly = L Lz = L Lw = L Check for interaction of compression and bending. AxisVM 11 Verification Examples Results 68 Analytical solution: Section class: 1. Compression – flexural buckling 2 2 π E Iy π 21000 ⋅ 1209,8 N cr, y = = = 1567,2 kN 2 Ky L 400 2 2 π E I z π 21000 ⋅ 635,7 N cr,z = = = 823,5 kN 2 Kz L 400 N pl,Rd = A ⋅ f y = 43,41 ⋅ 27,5 = 1193,8 kN λy = λz = N pl N cry N pl N crz = = 1193,8 1567,16 1193,8 823,48 = 0,8728 = 1,2040 imperfection factor based on buckling curve “a” (hot rolled RHS section): α y = α z = 0,21 φ= 1 + α ⋅ (λ - 0.2) + λ 2 χ := 2 1 φ + φ 2 - λ2 χ y = 0,7516 χ z = 0,5275 N b,Rd = χ y A fy γ1 = 2 2 0,5275 ⋅ 43,41 cm ⋅ 27,5 kN/cm 1,0 = 629,72 kN > N Ed, x = 200 kN Bending – lateral torsional buckling Wpl,y f y 205,6 cm 3 ⋅ 27,5 kN/cm 2 M pl,Rd, y = = = 56,54 kNm > M Ed = 10 kNm γ1 1,0 C1 = 1,000 k = k w =1 z 2 π E Iz M cr = C1 2 (kL) kz kw 2 I w (kL) 2 G I t + = 2 Iz π E I z kN 2 4 π 21000 ⋅ 635,7cm cm 2 M cr = 1,0 ⋅ 2 (400 cm) M cr = 977,41 kNm kN 2 4 (400 cm) ⋅ 8077 ⋅ 1436,2 cm 766 cm cm 2 + 4 kN 2 4 635,7 cm π ⋅ 21000 ⋅ 635,7 cm cm 2 6 AxisVM 11 Verification Examples Wy f y λ LT = M cr λLT > 0,2 3 2 205,6 cm ⋅ 27,5 kN/cm = 977,41 kNm 69 = 0,2405 torsional buckling may occur α LT = 0,76 φ= 1+α (λ - 0.2) + λ LT 2 LT 2 χ LT := M LT b, Rd 1 2 φ + φ - λ LT 2 = 0,5443 = 0,9684 = χ LT ⋅ M = 0,9684 ⋅ 56,54kNm = 54,76kNm pl , Rd , y Interaction of bending and buckling 2 2 N Rk = A ⋅ f y = 43,41 cm ⋅ 27,5 kN/cm = 1193,8 kN M y,Rk = M pl,Rd, y = 56,54kNm Equivalent uniform moment factors according to EN 1993-1-1 Annex B, Table B.3.: φ = 1,0 C my = 0,6 + 0,4φ = 1,0 > 0,4 For members susceptible to torsional deformations the interaction factors may be calculated according to EN 1993-1-1 Annex B, Table B.2.: N Ed < C my 1 + 0,8 χ y N Rk /γ M1 χ y N Rk /γ M1 200 200 k yy = 1,0 1 + (0,87 - 0,2) ⋅ < 1,0 1 + 0,8 ⋅ 0,7531 ⋅ 1193,78 /1,0 0,7531 ⋅ 1193,78 /1,0 k yy = C my 1 + (λ LT - 0,2) N Ed k yy = min (1,149 ; 1,178) = 1,149 k zy = 1 − 0,1 ⋅ λ N Ed,x N Ed,x 0,1 z ⋅ ≥ 1 − ⋅ C − 0,25 χ z N /γ C − 0,25 χ z N /γ Rk M1 Rk M1 mLT mLT k zy = 1 − 200 200 0,1 ⋅ 1,2040 0,1 ⋅ ≥1− ⋅ 1,0 − 0, 25 0,5275 ⋅ 1193,78 /1,0 1,0 − 0, 25 0,5275 ⋅ 1193,78 /1,0 k zy = max (0,9490 ; 0,9577) = 0,9577 AxisVM 11 Verification Examples N Ed χ y ⋅N Rk /γ M1 = 200 0,7516 ⋅ 1193,78 N Ed 200 0,5275 ⋅ 1193,78 M y,Ed χ y ⋅ M y,Rk /γ M1 + 1,149 ⋅ + k zy χ z ⋅ N Rk /γ M1 = + k yy 20 0,9684 ⋅ 56,54 M y,Ed M y,Rk /γ M1 + 0,9577 ⋅ 70 = = 0,6426 = 20 0,9684 ⋅ 56,54 = 0,6674 Analytical solution AxisVM e [%] NRk = Npl,Rd [kN] 1193,8 1193,9 - λ y [-] 0,873 0,870 -0,3 λz [-] 1,204 1,201 -0,2 Χy [-] 0,7516 0,7516 - Χz [-] 0,5275 0,5274 - Nb,Rd [kN] 629,7 629,7 - Mc,Rd = Mpl,Rd [kNm] 56,54 56,54 - C1 1,000 1,000 - Mcr [kNm] 977,41 977,40 - λ LT [-] 0,2405 0,2405 - ΧLT [-] 0,9684 0,9684 - Mb,Rd [kNm] 54,76 54,57 -0,3 Cmy [-] 1,0 1,0 - kyy [-] 1,149 1,150 - kzy [-] 0,9577 0,9577 - Interaction capacity ratio 1 [-] 0,643 0,643 - Interaction capacity ratio 2 [-] 0,667 0,667 - AxisVM 11 Verification Examples 71 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_26 Külpontosan nyomott rúd - I szelvény.axs Thema Lateral torsional buckling of a beam (EN 1993-1-1). Analysis Type Geometry Steel Design h = 171 mm b = 180 mm tf = 6 mm tw = 9,5 mm L = 4,000 m 2 A = 45,26 cm 4 Iy = 2510,7 cm 4 Iz = 924,6 cm iy = 74 mm iz = 45 mm 3 W el,y = 293,7 cm 3 W el,z = 102,7 cm 3 W pl,y = 324,9 cm 3 W pl,z = 156,5 cm Iw = 58932 cm 4 It = 15 cm HEA180 Loads Boundary Conditions Material Properties Element types Axial force at B: Nx = -280 kN Point load in y direction at the thirds of the beam: Fy = 5 kN Distributed load in z direction: qz = 4,5 kNm ex = ey = ez = 0, warping free at A ey = ez = 0, warping free at B S 235 2 E = 21000 kN / cm ν = 0,3 Beam element 6 AxisVM 11 Verification Examples Steel Design Parameters 72 The elastic critical load factor is: αcr = 4,28 As αcr = 4,28 < 15 II. order analysis is required. For this, the beam element needs to be meshed. Divison of the beam element into 4. Buckling length: Ly = L Lz = L LT buckling length: Lw = L Target Buckling check for interaction of axial force and bi-axial bending. Results Internal forces from the second order analysis NEd,x = 280 kN MEd,y = 9,84 kNm MEd,z = 8,81 kNm VEd,y = 6,50 kN VEd,z = 9,61 kN AxisVM 11 Verification Examples 73 Analytical solution: Section class: 1. Normal force 2 N cr,y = N cr,z = π E Iy = Ky L π 2 E Iz 2 21000 ⋅ 2510,7 400 π 2 21000 ⋅ 924,6 = Kz L π 400 = 3252,3 kN = 1197,7 kN N pl,Rd = A ⋅ f y = 45,26 ⋅ 23,5 = 1063,6 kN λ = y λ = z N pl N cry N pl N crz = 1063,6 = 1063,6 3252,3 1197,7 = 0,5719 = 0,9424 based on buckling curve “b” in y direction and “c” in z direction: χ y = 0,8508 χ z = 0,5741 χ y A fy N b,Rd,1 = N b,Rd,2 = γ1 χz A fy γ1 = = 2 2 0,8508 ⋅ 45,26cm ⋅ 23,5kN/cm = 904,92 kN > N Ed,x = 280 kN 1,0 2 2 0,5741 ⋅ 45,26cm ⋅ 23,5kN/cm 1,0 = 610,62 kN > N Ed,x = 280 kN Bending M pl,Rd, y = M pl,Rd,z = Wpl,y f y γ1 Wpl,z f y γ1 = = 3 2 324,9 cm ⋅ 23,5 kN/cm 1,0 3 2 156,5 cm ⋅ 23,5 kN/cm 1,0 = 76,35 kNm > M Ed, y = 9,84 kNm = 36,78 kNm > M Ed,z = 8,81 kNm Calculation of the critical moment: C1 = 1,132 (due to the My moment diagram) 2 π E Iz M cr = C1 2 (kL) M cr = 1,132 2 k z I w (kL) 2 G I t + = 2 k w Iz π E Iz 2 2 4 π 21000 kN/cm ⋅ 924,6 cm 2 (400 cm) M cr = 174,1 kNm 58932 cm 924,6 cm 6 4 + 2 2 4 (400 cm) ⋅ 8077 kN/cm ⋅ 15 cm 2 2 4 π ⋅ 21000 kN/cm ⋅ 924,6 cm AxisVM 11 Verification Examples 74 For rolled section, the following procedure may be used to determine the reduction factor (EN 1993-1-1,Paragraph 6.3.2.3.): Wy f y λ LT = φ= M cr 1+α (λ LT 174,10 kNm - 0.4) + 0.75 ⋅ λ b, Rd 1 2 φ + φ - 0.75 ⋅ λ LT = 0,6622 2 LT 2 χ LT := M LT 3 2 324,9 cm ⋅ 23,5 kN/cm = = 0,7090 = 0,8881 2 = χ LT ⋅ M = 0,8881 ⋅ 76,35kNm = 67,81kNm pl , Rd , y Interaction of axial force and bi-axial bending N Rk = N pl,Rd = 1063,6 kN M y,Rk = M pl,Rd, y = 76,35 kNm M z, Rk = M pl,Rd, z = 36,78 kNm Equivalent uniform moment factors according to EN 1993-1-1 Annex B, Table B.3.: ψ = 0, α = 0 in both directions C my =C mLT = 0,95 + 0,05α = 0,95 C mz = 0,90 + 0,10α = 0,90 k yy = C my 1 + (λ - 0,2) y (distributed load) (concentrated load) N Ed,x ≤ C my 1 + 0,8 χ y N Rk /γ M1 χ y N Rk /γ M1 N Ed,x k yy = 0,95 ⋅ 1 + (0,5719 - 0,2) ⋅ 280 ≤ 0,95 ⋅ 1 + 0,8 ⋅ 0,8508 ⋅ 1063,6 /1,0 0,8508 ⋅ 1063,6 /1,0 280 k yy = min (1,0593 ; 1,1851) = 1,0593 k zy = 1 − 0,1 ⋅ λ N Ed,x N Ed,x 0,1 z ⋅ ≥ 1 − ⋅ C − 0,25 χ z N /γ C − 0, 25 χ z N /γ Rk M1 Rk M1 mLT mLT k zy = 1 − 280 280 0,1 ⋅ 0,9424 0,1 ⋅ ≥1− ⋅ 0,95 − 0,25 0,5741 ⋅ 1063,6 /1,0 0,95 − 0, 25 0,5741 ⋅ 1063,6 /1,0 k zy = max (0,9383 ; 0,9345) = 0,9383 AxisVM 11 Verification Examples k zz = C 75 N Ed,x 1 + (2 ⋅ λ - 0,6) ≤ C mz mz z χ z N Rk /γ M1 k zz = 0,90 1 + (2 ⋅ 0,9424 - 0,6) N Ed,x 1 + 1,4 χ z N Rk /γ M1 280 ≤ 0,90 1 + 1,4 0,5741 ⋅ 1063,6 /1,0 0,5741 ⋅ 1063,6 /1,0 280 k zz = min (1,4303 ; 1,478) = 1,4303 k yz = 0,6 k zz = 0,8582 N Ed,x + k yy χ y ⋅N Rk /γ M1 = 280 0,8508 ⋅ 1063,6 N Ed,x χ z ⋅ N Rk /γ M1 = 0,5741 ⋅ 1063,6 χ ⋅ M y,Rk /γ M1 LT + 1,0593 ⋅ + k zy 280 M y,Ed 9,84 0,8881 ⋅ 76,35 + 0,8582 ⋅ M y,Ed χ ⋅ M y,Rk /γ M1 LT + 0,9383 ⋅ 9,84 0,8881 ⋅ 76,35 + k yz k zz M z,Ed M z,Rk /γ M1 8,81 36,78 = 0,3094 + 0,1537 + 0,2056 = 0,6687 M z,Ed M z,Rk /γ M1 + 1,4303 ⋅ 8,81 36,78 = = = 0, 4586 + 0,1362 + 0,3426 = 0,9374 AxisVM 11 Verification Examples * 76 Analytical solution AxisVM e [%] Npl,Rd [kN] 1063,6 1063,6 - Ncr,y [kN] 3252,3 3252,4 - Ncr,z [kN] 1197,7 1197,7 - λy, rel [-] 0,5719 0,5719 - λz, rel [-] 0,9424 0,9424 - Χy [-] 0,8508 0,8509 - Χz [-] 0,5741 0,5741 - Mpl,Rd,y [kNm] 76,35 76,36 - Mpl,Rd,z [kNm] 36,78 36,78 - C1 [-] 1,132 1,125 -0,6* Mcr [kNm] 174,1 173,0 -0,63 λLT, rel [-] 0,6622 0,6644 +0,3 ΧLT [-] 0,8881 0,8887 +0,1 Mb,Rd [kNm] 67,81 67,73 -0,1 Cmy = CmLt [-] 0,95 0,95 - Cmz [-] 0,90 0,95 +5,5** kyy 1,0593 1,0593 - kzz 1,4303 1,5096 +5,5*** kyz 0,8582 0,9058 +5,5*** kzy 0,9383 0,9383 - Interaction capacity ratio 1 0,6687 0,6801 +1,7*** Interaction capacity ratio 2 0,9374 0,9564 +2,0*** AxisVM calculates this factor using a closed form expression, while in the hand calculation C1 was derived from a table. The effect of this on the final result -4 (efficiency) is 10 , thus on the safe side. ** See EC3 Annex B, Table B.3: the difference is due to the fact, that AxisVM calculates the equivalent uniform moment factor (Cmy, Cmz, CmLT) for both uniform load and concentrated load, and then takes the higher value. The effect on the final result (efficiency) is +1~2%. *** the difference is due to the different Cmz value AxisVM 11 Verification Examples 77 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: Double-symmetric I - Class 4.axs Thema Interaction check of beam in section class 4 (EN 1993-1-1, EN 1993-1-5) Analysis Type Geometry Steel Design h = 1124 mm tw = 8 mm b = 320 mm tf = 12 mm L = 8,000 m 2 A = 164,8 cm 4 Iy = 326159,4 cm 3 W el,y = 5803,6 cm Double-symmetric welded I shape Loads Boundary Conditions Material Properties Element types Target Axial force at B: N Ed,C = 700 kN Distributed load in z direction: qz = 162,5 kNm The internal forces in the mid-section: MEd,y = 1300 kNm, NEd,x = - 700 kN ex = ey = ez = 0 at A ey = ez = 0 at B S 355 2 E = 21000 kN / cm ε=0,81 ν = 0,3 Beam element Check the strength capacity ratios for axial force, bending and interaction. AxisVM 11 Verification Examples Results 78 Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.4., P. 14-16. Exercise 3.6., P. 19-21. Exercise 3.13., P. 34. Analytical solution AxisVM e [%] 0,43 0,43 - 0,831 0,858 +3,1 0,931 0,910 -2,3 140,0 142,0 +1,4 4 4 - 2,957 2,975 +0,6 0,313 0,311 -0,6 340,8 342,4 +0,5 99,98 97,46 -2,6 3549 3460 +2,6 0,2 0,2 - 0,43 0,43 - 0,831 0,858 +3,1 0,931 0,910 -2,3 139,95 142,0 +1,4 -0,969 -0,959 +1,0 23,09 22,84 -1,1 1,231 1,245 +1,1 0,739 0,731 -1,1 408,6 410,4 +0,4 5131 4976 -3,1 1821,5 1766,5 -3,1 0,71 0,74 +4,1 0,91 0,94 +3,3 Uniform compression Uniform bending Small differences occur because AxisVM does not take into account welding when calculating the effective section sizes. AxisVM 11 Verification Examples 79 AxisVM 11 Verification Examples 80 Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: Earthquake-01-EC.axs Thema Earth-quake design using response-spectrum method. Analysis Type Geometry Linear frequency analysis with 5 modes. Linear static analysis. C ode : Euroco de C ase : FR + 5,0 00 90,0° 5,1 96 6,000 90,0° 30,0° 7,000 Y X Top view 4,000 3,500 C ode : Eurocode C ase : F R + Z X Front view 8,0 00 AxisVM 11 Verification Examples 81 Code : Eurocode Case : ST1 All nodal masses are Mx=My=Mz =100000 kg All beams 60x40 cm Inertia about vertical axis is multiplied by 1000. Node D All columns 60x40 cm Column B Column A Support C All supports are constrained in all directions. eX=eY=eZ=fiX=fiY=fiZ=0 Z Y X Perspective view Section beams: 60x40 cm Ax=2400 cm2 Ay=2000 cm2 Az=2000 cm2 Ix=751200 cm4 Iy=720000 cm2 Iz=320000000 cm4 Section columns: 60x40 cm Ax=2400 cm2 Ay=2000 cm2 Az=2000 cm2 Ix=751200 cm4 Iy=720000 cm2 Iz=320000 cm4 Loads Nodal masses on eight nodes. Mx=My=Mz=100000 kg Model self-weight is excluded. Spectrum for X and Y direction of seismic action: T[s] Sd 1 2 3 4 5 0 0,2000 0,6000 1,3000 3,0000 1,150 2,156 2,156 0,995 0,300 6 4,0000 ... 0,300 ... S d [m/s 2 ] 2,156 1,150 0,709 0,300 2,0000 Boundary Conditions Nodes at the columns bottom ends are constrained in all directions. eX=eY=eZ=fiX=fiY=fiZ=0 Material Properties C25/30 E=3050 kN/cm2 ν =0,2 ρ = 0 T[s] AxisVM 11 Verification Examples Element types Target Results 82 Three node straight prismatic beam element. Shear deformation is taken into account. Compare the model results with SAP2000 v6.13 results. The results are combined for all modes and all direction of spectral acceleration. CQC combination are used for modes in each direction of acceleration. SRSS combination are used for combination of directions. Period times of first 5 modes Mode T[s] SAP2000 1 0,7450 2 0,7099 3 0,3601 4 0,2314 5 0,2054 T[s] AxisVM 0,7450 0,7099 0,3601 0,2314 0,2054 Modal participating mass ratios in X and Y directions Mode Difference εX εX % SAP2000 AxisVM 1 0,5719 0,5719 0 2 0,3650 0,3650 0 3 0 0 0 4 0,0460 0,0460 0 5 0,0170 0,0170 0 Summ 1,0000 1,0000 0 Difference [%] 0 0 0 0 0 εY SAP2000 0,3153 0,4761 0,1261 0,0131 0,0562 0,9868 Internal forces at the bottom end of Column A and Column B Column A Column A Difference Column B SAP2000 AxisVM % SAP2000 Nx [kN] 315,11 315,15 +0,01 557,26 Vy [kN] 280,34 280,34 0 232,88 Vz [kN] 253,49 253,49 0 412,04 Tx [kNm] 34,42 34,41 -0,03 34,47 My [kNm] 625,13 625,12 -0,002 1038,74 Mz [kNm] 612,31 612,31 0 553,41 εY AxisVM 0,3154 0,4760 0,1261 0,0131 0,0562 0,9868 Difference % +0,03 -0,02 0 0 0 0 Column B AxisVM 557,29 232,88 412,04 34,46 1038,70 553,41 Difference % +0,005 0 0 -0,03 -0,004 0 Support forces of Support C Support C SAP2000 Rx [kN] 280,34 Ry [kN] 253,49 Rz [kN] 315,11 Rxx [kNm] 625,13 Ryy [kNm] 612,31 Rzz [kNm] 34,42 Support C AxisVM 280,34 253,49 315,15 625,12 612,31 34,41 Difference % 0 0 +0,01 -0,002 0 -0,03 Displacements of Node D Node D SAP2000 eX [mm] 33,521 eY [mm] 19,944 eZ [mm] 0,229 0,00133 ϕX [rad] 0,00106 ϕY [rad] 0,00257 ϕZ [rad] Node D AxisVM 33,521 19,945 0,229 0,00133 0,00106 0,00257 Difference % 0 +0,005 0 0 0 0 AxisVM 11 Verification Examples Normal forces: 83 AxisVM 11 Verification Examples Bending moments: 84 AxisVM 11 Verification Examples 85 AxisVM 11 Verification Examples Displacements: 86