Shape Optimization of an ORC Radial Turbine Nozzle
Transcription
Shape Optimization of an ORC Radial Turbine Nozzle
SHAPE OPTIMIZATION OF AN ORC RADIAL TURBINE NOZZLE D. Pasquale, A. Ghidoni & S. Rebay Università degli Studi di Brescia, Dipartimento di Ingegneria Meccanica e Industriale, Via Branze 38, 25123 Brescia, Italy Delft - September 22th − 23th , 2010 Outline 1 Introduction ORC Turbine Objectives Tri-O-Gen Design 2 Methodology Optimization Algorithm 3 Results Optimization Strategies Comparison Optimized Results Outline 1 Introduction ORC Turbine Objectives Tri-O-Gen Design 2 Methodology Optimization Algorithm 3 Results Optimization Strategies Comparison Optimized Results Outline 1 Introduction ORC Turbine Objectives Tri-O-Gen Design 2 Methodology Optimization Algorithm 3 Results Optimization Strategies Comparison Optimized Results Introduction Methodology Results ORC Turbine Objectives Tri-O-Gen Design Small Power Output ORC Turbine (< 500kWe ) High molecular-weight fluids (e.g. Toluene) Expansion: I real gas effects I high pressure ratio I high volume ratio I low specific enthalpy drop Challenging Design: I small-size turbomachinery I moderate/high rotational speed I few stages Intensive use of CFD to design high-efficiency and optimized turbines D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results ORC Turbine Objectives Tri-O-Gen Design Objectives General Geometry Parameterization I development of a generic blade shape parameterization suitable for radial and axial supersonic geometries General Optimization Procedure I development of an efficient, effective and fully automated optimization procedure I comparison of different optimization strategies in terms of convergence rate Test Case I improve the performance of the original Tri-O-Gen stator in terms of flow uniformity and shock losses D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results ORC Turbine Objectives Tri-O-Gen Design Tri-O-Gen Original Stator Design Turbine Features I I I one stage radial inflow turbine (' 150kWe ) high expansion ratio β ' 62 low degree of reaction Mach number I I highly tangential flow high Mach number D. Pasquale, A. Ghidoni & S. Rebay Total Pressure I I strong shock wave flow dis-uniformity Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Algorithm Optimization Algorithm Genetic Algorithm Off-line trained Metamodel D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Algorithm Objective Function Definition Minimization of one objective function sum of three non-concurrent contributions: ϕ = ϕM + ϕα + ϕP0loss Mach number deviation v q 2 u1P M −M u q cj Mj j Mtollmix u j=1 ϕM = t q P 1 q j=1 cj M j Flow angle deviation v q 2 u1P α −α u q cj Mj jαtolltrg u j=1 ϕα = t q P 1 q j=1 Total pressure losses cj Mj ϕP0loss = 1−P0 mix P0 toll where: αtrg = 106[◦ ] αtoll = 1[◦ ] and q is the number of grid nodes at the outlet bound Mtoll = 0.025 P0toll = 0.05 Original TriOgen Design Performance ϕdes = 2.035 + 1.761 + 3.533 = 7.329 D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Algorithm Geometry Generation B-Spline Curves B(u) = n X Ni (u)Pi y i=1 I cubic curves I C 2 continuous at the junctions I chordal parametrization x δ α prmx y Thr Thθ β x D. Pasquale, A. Ghidoni & S. Rebay Design Variables I throat angle and position (δ, Thr , Thθ ) I trailing edge aperture angle (α) I trailing edge discharge angle (β) I 1 d.o.f. for each free control point (prmx ) of 2 curves (diverging part) Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Algorithm Grid generation and CFD solver adMesh I fully automated 2D unstructured mesh generator I hybrid anysotropic elements I based on the advancing-Delaunnay algorithm zFlow I hybrid Finite Element (FE)/Finite Volume (FV) RANS solver I linked to FluidProp, a fluid library for thermodynamic and transport properties calculation using state of the art physical models D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Algorithm CFD Solution an Example Grids I 2D unstructured grid with local refinements I three different spacing: very coarse (' 2000 cells) coarse (' 5000 cells) fine (' 35000 cells) Flow Solver I inviscid flow (2D Euler equations) I accurate toluene thermodynamic properties (Lemmon - Span EOS) Bounday Conditions: I total inlet pressure and temperature I static backpressure (β ' 58) D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Algorithm Optimization Strategy Off-Line Trained Metamodel Design Of Experiment Nexus I Latin HyperCube allocation I correlation based on entropy formulation Kriging I I commercial multi-disciplinary and multi-objective optimisation framework several gradient-based and evolutionary algorithms available I constant, linear and quadratic base functions I Gaussian and exponential interpolating functions Artificial Neural Network I several metamodels available I one and two layers I GUI and batch-mode I five to twenty neurons I early-stopping technique D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Strategies Comparison Optimized Results Optimization Strategies Comparison GA vs MetaModels 8 Test Case GA 1 ANN 2L10N 3 ANN 2L10N 1 KRG qd exp 1 KRG qd exp I coarse grid I 10 design variables (throat with 2 d.o.f) ϕ 1 Metamodel (ϕ) or 3 Metamodels ( ϕM , ϕα , ϕP0loss ) 6 5 4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 CFD Calls KRIGING ANN 8 8 1 ANN 1L10N 1 ANN 2L5N 1 ANN 2L10N 3 ANN 1L10N 3 ANN 2L5N 3 ANN 2L10N 6 5 4 1 KRG cn exp 1 KRG ln exp 1 KRG qd exp 1 KRG qd gau 3 KRG qd exp 3 KRG qd gau 7 ϕ 7 ϕ I 7 6 5 0 40 80 120 160 200 CFD Calls D. Pasquale, A. Ghidoni & S. Rebay 4 0 40 80 120 160 CFD Calls Shape Optimization of an ORC Radial Turbine Nozzle 200 Introduction Methodology Results Optimization Strategies Comparison Optimized Results Optimized Results: Fixed Throat 8 design variables found after 102 CFD simulations ϕ = 0.912 + 1.476 + 3.143 = 5.531 2.85 1.00 Original Optimized Original Optimized Original Optimized -102 2.80 0.95 -104 α P0/Pref 0.90 M 2.75 -106 2.70 0.85 -108 2.65 2.60 1.0 0.5 0.0 -0.5 -1.0 -110 1.0 0.80 0.5 θ/θpitch 0.0 -0.5 θ/θpitch D. Pasquale, A. Ghidoni & S. Rebay -1.0 0.75 1.0 0.5 0.0 θ/θpitch Shape Optimization of an ORC Radial Turbine Nozzle -0.5 -1.0 Introduction Methodology Results Optimization Strategies Comparison Optimized Results Optimized Results: Throat with 1 d.o.f. (r ) 9 design variables found after 125 CFD simulations ϕ = 0.947 + 1.196 + 1.266 = 3.409 2.85 1.00 Original Optimized Original Optimized -102 2.80 0.95 -104 α P0/Pref 0.90 M 2.75 -106 2.70 0.85 -108 2.65 0.80 Original Optimized 2.60 1.0 0.5 0.0 -0.5 -1.0 -110 1.0 0.5 θ/θpitch 0.0 -0.5 θ/θpitch D. Pasquale, A. Ghidoni & S. Rebay -1.0 0.75 1.0 0.5 0.0 θ/θpitch Shape Optimization of an ORC Radial Turbine Nozzle -0.5 -1.0 Introduction Methodology Results Optimization Strategies Comparison Optimized Results Optimized Results: Throat with 2 d.o.f. (r , θ) 10 design variables found after 278 CFD simulations ϕ = 0.944 + 1.043 + 1.271 = 3.258 2.85 1.00 Original Optimized Original Optimized -102 2.80 0.95 -104 α P0/Pref 0.90 M 2.75 -106 2.70 0.85 -108 2.65 0.80 Original Optimized 2.60 1.0 0.5 0.0 -0.5 -1.0 -110 1.0 0.5 θ/θpitch 0.0 -0.5 θ/θpitch D. Pasquale, A. Ghidoni & S. Rebay -1.0 0.75 1.0 0.5 0.0 θ/θpitch Shape Optimization of an ORC Radial Turbine Nozzle -0.5 -1.0 Introduction Methodology Results Optimization Strategies Comparison Optimized Results Preliminary Results: Half Number of Blades 10 design variables found after 205 CFD simulations ϕ = 0.961 + 1.217 + 0.934 = 3.112 2.85 1.00 Original Optimized Original Optimized -102 2.80 0.95 -104 α P0/Pref 0.90 M 2.75 -106 2.70 0.85 -108 2.65 0.80 Original Optimized 2.60 1.0 0.5 0.0 -0.5 -1.0 -110 1.0 0.5 θ/θpitch 0.0 -0.5 θ/θpitch D. Pasquale, A. Ghidoni & S. Rebay -1.0 0.75 1.0 0.5 0.0 θ/θpitch Shape Optimization of an ORC Radial Turbine Nozzle -0.5 -1.0 Introduction Methodology Results Optimization Strategies Comparison Optimized Results Optimized Results: Summary Objective Function Design Original Thfix Th1dof Th2dof Th2dof, Z 2 ϕM 2.035 0.912 0.947 0.944 0.961 % −55.2 −53.5 −53.6 −52.8 % ϕα 1.761 1.476 1.196 1.043 1.217 % ϕP0 ϕ −16.2 −32.1 −40.8 −30.9 3.533 3.143 1.266 1.271 0.934 −11.0 −64.2 −64.0 −73.6 7.329 5.531 3.409 3.258 3.112 Downstream Mixed Flow Parameters Design M Original Thfix Th1dof Th2dof Th2dof, Z 2.726 2.747 2.781 2.781 2.788 2 % +0.77 +2.02 +2.02 +2.27 % loss α [◦ ] −106.15 −106.50 −106.50 −106.46 −106.47 D. Pasquale, A. Ghidoni & S. Rebay % −0.33 −0.33 −0.29 −0.30 P0 % 0.8234 0.8429 +2.37 0.9369 +13.78 0.9365 +13.74 0.9532 +15.76 Shape Optimization of an ORC Radial Turbine Nozzle −24.5 −53.5 −55.5 −57.5 Introduction Methodology Results Optimization Strategies Comparison Optimized Results Conclusions Achieved so far I general blade parameterization based on B-Spline curves I comparison of a standard Genetic Algorithm optimization with respect to off-line trained Metamodels I real turbine nozzle shape optimization based on Euler equations and real gas equation of state I comparison of selected geometries with respect to the original design Future development I extension to turbulent flows I extension to Multi-Objective Optimization I extension to three-dimensional geometries I further investigation for more efficient optimization algorithm (e.g. Hierarchical, Metamodel-Assisted Evolutionary Algorithms) D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle Introduction Methodology Results Optimization Strategies Comparison Optimized Results THANK YOU ALL! D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle