Air
Transcription
Air
Gasification of biomass Lecture no. L3-1 Dr hab. inż. Marek Ściążko Prof. nadzw. Copyright-MS-2013 1 Technologies and products of thermo-chemical biomass conversion PROCESS PRODUCT CONVERSION MARKET Heat Combustion Heat Boiler Gasification Gas Turbine Pyrolysis Bio-oil Engine storage Power Chemicals Fuels Hydrogen Copyright-MS-2013 2 Potential Biomass Gasifier Feedstocks Copyright-MS-2013 3 Gasifier Classification Copyright-MS-2013 4 BIOMASS GASIFICATION TECHNOLOGIES Biomass Biomass gas Gas Pyrolysis C + CO2 = 2CO C + H2O = CO + H2 C + O2 = CO2 4H + O2 = 2H2O Pyrolysis C + O2 = CO2 4H + O2 = 2H2O Gasification Combustion C + CO2 = 2CO C + H2O = CO + H2 Air Air Combustion Gasification Ash Ash COUNTER CURRENT/ UPDRAFT CO-CURRENT/ DOWNDRAFT Cyclone Cyclone Cyclone Gas Ash Biomass Ash Biomass Air Steam Air Steam Ash BUBBLING FLUIDISED BED (BFB) CIRCULATING FLUIDISED BED (CFB) Copyright-MS-2013 5 Fixed bed biomass gasiefiers Biomass Gas BIOMASA Drying Pyrolysis Gasification Combustion BIOMASA Biomass GAZ SUSZENIE SUSZENIE PIROLIZA PIROLIZA ZGAZOWANIE UTLENIANIE POWIETRZE Air UTLENIANIE POPIÓŁ Ash POWIETRZE Air A) ZGAZOWANIE POPIÓŁ Ash Drying Pyrolysis Combustion Gasification GAZ Gas B) Copyright-MS-2013 6 Fluid bed reactors features Biomass Process gas Ideal radial gas mixing Oxygen (Air) Steam Copyright-MS-2013 Ideal radial and axial gas mixing 7 Gasification steps Copyright-MS-2013 8 Gasification reactions Copyright-MS-2013 9 Evaluation of reactors’ characteristics PARAMETERS Reaction temperature [C] Gas temperature [C] Throughput [t/h] Electric power [MWe] Up-draft 1000 250 10 1 - 10 Tars content Particulates v. high av. high Mixing intensity Limits for particle size Moisture content Fuel flexibility low some any no effect Scaling up Process control limited medium Conversion efficiency Thermal efficiency v. good v. good FIXED BED FLUID BED Down-draft Cross flow Bubbling Circulating 1000 900 850 850 800 900 800 850 0.5 1 10 50 0.1 - 5 0.1 - 2 1 - 20 2 - 100 GAS CHARACTERISTIC v. low v. high medium low medium high v. high v. high FEEDSTOCK REQUIRAMENTS low low good v. good some some specific specific limited limited limited limited low effect low effect strong strong DEVELOPMENT POTENTIAL low low good v. good medium low v. good v. good EFFECTIVITY v. good low good v. good v. good good good v. good Copyright-MS-2013 10 Syngas Contaminants Copyright-MS-2013 11 GASIFIER CHARACTERISTICS Parameter Fuel -moisture content (%) -ash content (%, daf) -size (mm) Gas - temperature (oC) LHV (kJ/mn3) tar content (g/ mn3) particulates (g/ 3 mn ) composition (% v/v.) H2 CO CO2 CH4 Max commercial capacity (forecast) (MWth) Scale-up ability • • • • Downdraft Updraft CFB < 25 <6 20-100 < 60 <25 5-100 800 4-6 0,01-6 0,1-8 200-400 4-6 10-150 0,1-3 850 5-6,5 2-30 8-100 15-21 10-22 11-13 1-5 10-14 15-20 8-10 2-3 15-22 13-15 13-15 2-4 1 10 100 poor good v. good < 25 <25 <20 P.Quaak, H.Knoef, H.Stassen, ENERGY FROM BIOMASS, A Review of Combustion and Gasification Technologies; World Bank Technical Paper No. 422, Energy Series, 1999 H.E.M. Stassen, H.A.M. Knoef, SMALL SCALE GASIFICATION SYSTEMS, Biomass Technology Group BV, The Netherlands P. Hasler*, Th. Nussbaumer, GAS CLEANING FOR IC ENGINE APPLICATIONS FROM FIXED BED BIOMASS GASIFICATION, Biomass and Bioenergy 16 (1999) 385±395 Copyright-MS-2013 A.V. Bridgwater, Fuel 1995, 74 (5), 631. 12 Composition of biomass derived syngas Copyright-MS-2013 13 Pilot scale tests EKOD gasification reactor - construction and process description 1 – gas generator 2 - lock 3 – transport and feeding system 4 – ash removing system 5 – gas pipeline 6 – air installations 7 - burner Technology: Power: Fuel: granulation: fixed bed, updraft reactor 2,5-3,5 MWt Waste Biomass > 300 mm Gasification agent: Air Copyright-MS-2013 14 Pilot scale tests Stand for gasification tests Fuel (biomass) Air 3 T 3 P 3 V 3 A pressure temperature flow composition 6 T Gas Boiler Air separator 1 A Gasifier 1 V PTVA- 6 P 3 V 3 A combustion gases 5 V 2 T 2 P 2 V 4 T 4 P 4 V Ash Dust Ash Copyright-MS-2013 15 Pilot scale tests Fuel characteristics Feedstock Form of the fuel LHV, MJ/kg Volatile matter % w/w, Ash % w/w Ultimate analysis, % w/w. Moisture % w/w C H O N Waste wood Irregular fuel pieces up to 30 cm 17,6 79,6 0,4 7,5 48,7 5,9 37,4 0,1 Wood chips Wood chips 3-5 cm 16,1 71,9 0,4 15 44,1 5,2 35,3 0,05 Fiber and chipboard Irregular fuel pieces up to 30 cm 15,6 69,0 0,5 15 42,9 5 35,8 0,8 Tyres / wood mixture Irregular fuel pieces up to 30 cm 25,6 68,2 2,7 8 63,1 4,8 20,5 0,1 Copyright-MS-2013 16 Pilot scale tests Results: gasification reactor t, Fuel flow rate Air/fuel ratio Gas flow rate (dry) Gas LHV (dry) Cold gas efficiency oC kg/h kg/kg mn3/kgfuel kJ/mn3 % Waste wood 760 490 2,1 2,5 5660 80 Wood chips 685 580 1,9 2,3 5200 75 Fiber and chipboard 685 680 1,8 2,2 4770 68 Tyres / wood mixture 690 360 2,1 2,4 9250 86 Feedstock Copyright-MS-2013 17 Gas composition Copyright-MS-2013 18 Pilot scale tests Results: gasification reactor- boiler Feedstock pollutant Emission Standard Waste wood Wood chips Fiber and chipboard Tyres / wood mixture 76 341 338 50 - Bellow detection level 39 173 293 400 NO2, mg/mn3 209 212 625 341,3 400 Pył, mg/mn3 54 58 230 284 100 CO, mg/mn3 SO2, mg/mn 3 Copyright-MS-2013 19 Pilot scale tests Results: comparison with literature 25 150 co-current counter current 20 Ecod Ecod (biomass) 15 10 5 0 LHV (MJ/Nm3) Tar (g/Nm3) particulates (g/Nm3) H2 (% vol.) Copyright-MS-2013 CO (% vol.) CO2 (% vol.) CH4 (% vol.) 20 Simulation of the process 60 60 A) B) 50 50 H2 30 CO2 O2 20 %obj CO H2 40 CH4 CH4 CO 30 CO2 O2 20 N2 N2 H2O 10 10 0 Free Gibbs enthalpy minimization. Composition of generated gas: CO, CO2, O2, H2, CH4, H20, N2. Temperature of the process: 750oC Feedstock properties: waste wood 0 1,0 1,5 2,0 2,5 0,5 Vp/m pal [m n3/kg] 1,0 1,5 2,0 2,5 Vp/m pal [m n3/kg] Chemcad software (Chemstations Inc.) 80 6000 70 calculation experiment LHV, calculation LHV, experiments 60 50 59,3 4712 4700 53,8 4000 40 3000 30 20 10 5000 7,4 2000 18,5 18,9 16,2 8,4 8,6 3,2 4,4 LHV, kJ/m3 0,5 % vol %obj. 40 1000 0 0 H2 CH4 CO CO2 N2+O2 LHV compound Copyright-MS-2013 21 Start up: 2005 WOOG CHIPS GASIFICATION – 5 MWth Raw wood Wood chips Wood cutter PELLETS Copyright-MS-2013 22 Wood chips gasification Current state Furniture production plant Holzwerk, Drygały Poland (waste wood) Lubuski Tannery Plant, Leszno Górne, Poland (tanning wastes) Enpal (Słubice, Poland) – wood chips ICPC, ZAMER, Modern Technologies and Filtration drying installation of wood waste for the pellets production Parameter Gasification agent Thermal output Gas temperature Fuel (wood chips) Water kontent LHV granulation Copyright-MS-2013 Unit value - air MWth 3-5 oC <800 % GJ/Mg mm < 20 > 14 6-40 23 Process gas Air Fuel: Wood chips Gasifier Moisture content: 20% LHV: 14 GJ/Mg Combustion chamber Flue gas Copyright-MS-2013 Capacity: 1500 kg/godz Wood chips THERMAL CAPACITY 5 MWt 24 Process instrumentation and control template Copyright-MS-2013 25 Visualization of gasifier performance Copyright-MS-2013 26 Gas combustion chamber Copyright-MS-2013 27 Coal – biomass co-firing systems Indirect co-firing B) A) BOILER flue gases biomass High flexibility in arranging and integrating the main components into existing plants BOILER BIOMASS Now pretreatment of biomass is needed – low gas quality is sufficient for co-firing COMBUSTION CHAMBER Gas could be fed to the boiler without cooling and cleaning D) C) BOILER gas biomass BIOMASS PULVERIZER GASIFICATION REACTOR BOILER No slag formation in the boiler (most important issue in case of direct co-firing) Favorable effects on power plant emissions (CO2 - biomass, NOx reburning effect) No severe modifications of the existing coal fired boiler • • • • T. Nussbaumer, Combustion and co-combustion of biomass, “12th Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection”, Amsterdam, 2002. G. Moritz, J. Tauschitz, Mitverbrennung von Biomasse in Kohlekraftwerken. Conference „Bois-Energie, Mulhouse, France, 2001 Energetische Nutzung biogener (Ersatz-)Brennstoffe durch Vergasung und emissionsoptimierte Einspeisung mittels Gasfeuerung in (Dampf-) Kesselanlagen und Ofenprozessen. Konzeptpapier, Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT, November 2002. A. Mory, J. Tauschitz, Holz Energie 1999, 4, 37. Copyright-MS-2013 28 Future development Small scale CHP systems • Tars • Particulates biomass • Alkali metals • Sulfur, chlorine Gasification Contami nant Examples Particula Ash tes Tars Refractory aromatics Gas cleaning Power and heat production Problems Erosion, emission Clog filters, deposit Copyright-MS-2013 internally, Cleanup method Filtration, scrubbing Tar cracking, tar 29 removal Gas quality required IMURITIES CONTENT [g/m3] Ash Nitrogen (NH3+HCN) Sulphur (H2S+COS) Alkalis Chlorine (HCl) Tars Heavy metals 1.33 0.47 0.01 0.1 0.1 0.15 0 REQUIRAMENTS GAS QUALITY REQU. LHV [MJ/m3] Particulates [mg/m3] Tars [mg/m3] Alkali metals [ppm] BOILER ENGINE GT X >4 >4 X 5 - 50 5-7 X < 0.5 <0.1 X 1-2 0.2 - 1 Max concentration of CO for FC – 100 ppm Copyright-MS-2013 30 Gas treatment methods EXTERNAL THERMAL CRACKING INTERNAL THERMAL CRACKING ULTRA-HIGH TEMPERATURE GASIFICATION Biomass Process gas Oxygen (Air) Steam EXTERNAL CATALYTIC CRACKING INTERNAL CATALYTIC CRACKING CAT PHYSICAL TAR SEPARATION QUE CAT Waste water Copyright-MS-2013 31 Technology options dilemma -scale effect ELECTRICAL POWER 1 MM t/a TECHNOLOGY OPTIONS 700 MM $ METHANOL Plant capacity H2 SNG MOTOR FUELS Copyright-MS-2013 6 MM t/a 2000 MM $ 32 Indirect biomass gasification – prospect for efficient hydrogen production Oxygen Tlen Acronym: PYROSYN Char +SHC SOLID HEAT CARRIER SEPARATION Biomss DRYING PYROLYSIS SHC+CFBR CONVERSION GAS CLEANING Heat carrier Process gas Heat FLUID BED COMBUSTION BLOCK DIAGRAM - BIOMASS PYROLYSIS WITH SOLID HEAT CARRIER FOR SYNTHESIS GAS Air Copyright-MS-2013 33 Summary EKOD fixed bed gasifier is characterized by relatively high conversion efficiency. Depending on used feedstock, the efficiency was in range 68-86 % (cold gas efficiency). Produced gas was characterized by relatively high calorific value (4800 – 9200 kJ/mn3) and low tar content (400 – 3000 mg/mn3). Operation experiences confirm the flexibility and reliability of the construction and readiness for commercial applications particularly for heat generation in stand alone boilers or in existing co-fired units. Possible further development direction comprises small scale CHP. It needs to develop tars free gasification systems. This option gives the opportunity for broad application in heat and power generation industry. Biomass gasification and related syngas production for chemical synthesis or hydrogen production still needs new technology options. Copyright-MS-2013 34