Ceramic Materials

Transcription

Ceramic Materials
Material Science I
Ceramic Materials
F. Filser & L.J. Gauckler
ETH-Zürich, Departement Materials
frank.filser@mat.ethz.ch
WS 2006-07
Ceramics: Introduction
1
Material Science I
Persons in Charge of this Lecture
• I. Akartuna,
HCI G 538, phone 36842, ilke.akartuna@mat.ethz.ch
F. Krauss
HCI G 538, phone 3 68 34, franziska.krauss@mat.ethz.ch
• Dr. F. Filser,
HCI G 529, phone 26435, frank.filser@mat.ethz.ch
• Prof. Dr. L.J. Gauckler
HCI G 535, phone 25646, ludwig.gauckler@mat.ethz.ch
• Dipl.-Ing. J. Kübler
EMPA Dübendorf, phone 044 823 4223,
jakob.kuebler@empa.ch
Ceramics: Introduction
2
Material Science I
Overview & preliminary schedule
Jan 8, 07
Introduction on ceramic materials, technology,
applications
Jan 15, 07 Crystal structures of ceramic materials
Jan 22, 07 Potential well of bonding and physical properties &
Examples of Structural ceramic materials
Jan 29, 07 Examples of structural ceramic materials
Feb 2, 07
Ceramics: Introduction
term finish
3
Material Science I
Overview & preliminary schedule
Mar 19, 07 term starts
Mar 20, 07 Glass
Mar 27, 07 Toughness (JK)
Apr 03, 07 Strength & Weibull statistics (JK)
Apr 10, 07 Subcritical crack growth, SPT-Diagrams (JK)
Apr 17, 07 Proof-testing, creep, thermical properties (JK)
Apr 24, 07 polymer part (Prof. D. Schlüter)
Jun 22, 07 term finish
Ceramics: Introduction
4
Material Science I
Documentation
Visit our homepage @
http://ceramics.ethz.ch
-> education
-> courses
-> Materialwissenschaft I und II
Ceramics: Introduction
5
Material Science I
Sources of Information - ETH Bib -NEBIS
http://www.ethbib.ethz.ch/
http://www.nebis.ch/
Ceramics: Introduction
6
Material Science I
Recommended Reading
• Askeland & Phulé: Science and Engineering of Materials,
2003
• Barsoum MW: Fundamentals of Ceramics. IoP Publishing,
2003
• diverse CEN ISO Standards (look at slides)
• Y.-M. Chiang, D. Birnie, D. Kingery, Physical Ceramics,
Principles für Ceramic Science and Engineering, Wiley,
1997.
• G. Kostorz (ed), High-Tech Ceramics: Viewpoints and
Perspectives. Academic Press, 1989. (Chapter 5, 59-101).
Ceramics: Introduction
7
Material Science I
Recommended Reading
• Munz, D., Fett, T.: Ceramics, Mechanical Properties, Failure
Behaviour, Materials Selection, Springer, 1999.
• David Richerson, Modern Ceramic Engineering, Ed. 2,
Dekker, 1992.
• Saito Shinroku, Fine Ceramics, Elsevier, 1988.
• Verband der Keramischen Industrie e.V, Brevieral Technical
Ceramics, ISBN 3-924158-77-0, Fahner Verlag, 2004. (partly
on the internet available)
• Ichinose Wataru, Introduction to Fine Ceramics, Wiley, 1987.
Ceramics: Introduction
8
Material Science I
Recommended Reading
Chapter IV: Examples of Structural Ceramic Materials
• Bevieral Technical Ceramics,
• Silicon-Based Structural Ceramics (Ceramic Transactions),
Stephen C. Danforth (Editor), Brian W. Sheldon, American
Ceramic Society, 2003,
• Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo
(Editor), M. Yoshimura (Editor), Kluwer Academic
Publishers, 1990
• Zirconia and Zirconia Ceramics. Second Edition, Stevens, R,
Magnesium Elektron Ltd., 1986, pp. 51, 1986
• Stabilization of the tetragonal structure in zirconia
microcrystals, RC Garvie - The Journal of Physical
Chemistry, 1978
Ceramics: Introduction
9
Material Science I
Recommended Reading
Chapter IV: Examples of Structural Ceramics Materials
• Phase relationships in the zirconia-yttria system, HGM Scott
- Journal of Materials Science, 1975 - Springer
• Thommy Ekström and Mats Nygren, SiAION Ceramics J Am
Cer Soc Volume 75 Page 259 - February 1992
• "Formation of beta -Si3N4 solid solutions in the system Si, Al,
O, N by reaction sintering--sintering of an Si3N4 , AlN, Al2
O3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica
(Florence). Vol. 33, no. N-2, pp. 18-22. 1980.
• Alumina: Processing, Properties, and Applications, Dorre, E;
Hubner, H, SpringerVerlag, 1984, pp. 329, 1984 9.
Ceramics: Introduction
10
Material Science I
Sources of Information – Journals (in general )
• Journal of the American Ceramic Society
(J. Am. Ceram. Soc.)
• Bulletin of the American Ceramic Society
(Bull. Am. Ceram. Soc.)
• Journal of the European Ceramic Society
(J. Eur. Ceram. Soc.)
• Journal of Materials Science (J. Mat. Sci.)
• Journal of Materials Research (J. Mat. Res.)
Ceramics: Introduction
11
Material Science I
Introduction on ceramic materials,
technology, applications
Ceramics: Introduction
12
Material Science I
History of ceramic materials
Nitrides
Ferrites
Titanates
Oxide ceramics
Europaen
Porcelain
Silicon Carbide
Steatites
Greek Vases
Earthenware (Steingut**)
Fire-proof pottery
Potter’s
wheel
Porcelain
Ceramic pots (7000 BC)
Stoneware (Steinzeug*)
Earthenware
-3000
-2000
-1000
0
1700
2000
Ceramics: Introduction
**): porous, low firing temp (900 -1200°C)
*): dense, high firing temp (>1200°C)
13
Material Science I
Ceramic in the Past
Giant beaker, Erle
4 000 BC
Ceramics: Introduction
Closed Furnace
Stilt houses in Unteruhldingen, Bodensee
14
Material Science I
Egyptian wall relief
Rechmuir
(1450 BC)
ceramic for
metallurgy
Ceramics: Introduction
15
Material Science I
Greek Vase, red on black decor
Ceramics: Introduction
16
Material Science I
Chinese Porcelain
14th century
18th century
19th century
Porcelain imports of the east indian company from china to europe:
1600 – 1800: > 3 000 000 pieces
anual dividends: up to 750% pa on the invested money
Ceramics: Introduction
17
Material Science I
Europaen imports of chinese porcelain
1600 - 1800 AD , in 1000 pieces
Ceramics: Introduction
18
Material Science I
Europaen Porcelain
August der Starke
(1670 - 1733)
Ceramics: Introduction
Ehrenfried Walter
von Tschirnhaus
(1652 - 1708)
19
Material Science I
Europaen Porcelain
Quartz
20
80
60
40
Steingut
Steinzeug
40
60
20
80
Dental ceramics
techn. porcelain
Hard porcelain
Feldspar
Ceramics: Introduction
20
40
60
80
Clay
Kaolin
20
Material Science I
nuclear
technical
thermical
optical
chemical &
biological
mechanical
Property
electrical and
magnetical
elektr. insulation
piezoelectrical
ferroelectrical
semiconductor
magnetical
temperature
resist.
n- absorption
radiation resist.
corrosion resist.
heat
- conductor
- insulator
- storage
translucency
controllable
refraction index
Surface activity
Corrosionresist.
compatibility
strength (T)
hardness
wear resistency
Application
Function
High-performance / hightech Ceramics
substrates
sensors
condenser / capacitor
oscillators
igniting elements
high-temp. conductor
„low-temp.“ PTC cond.
superconductors
batteries
fuel
shielding
storage contain.
heat exchanger
heat shields
insulation
heat storage
Na-vapor lamp
IR-window
Laser material
Light switch
Cat-Carriers
Filters
DeNOx-Cat.
Gas-Sensors
Elektrods
Implantats
Cutting bits
bearings
seals
Engine
components
Ceramics: Introduction
21
Material Science I
Function
electrical &
magnetical
nuclear
technical
Material
High-performance / high-tech Ceramics
Al2O3
AlN
BeO
BaTiO3
SrTiO3
PZT
SiC
ZnO-Bi2O3
YBa2Cu3O7
U2O5
TiO2
NiO
β - Al2O3
ZrO2
Li3N
UO2
PuO2
C
SiC
B4C
BN
Al2O3
Glass
Ceramics: Introduction
thermical
optical
SiO2
MgO
Si3N4
Faser
SiC
Mg2SiO4
3 Al2O3 2SiO2
Al2O3
MgO
Mg Al2O3
Y2O3 / ThO2
PLZT
chemical &
biological
mechanical
Cordierit
Al2O3
ZrO2
MgO
Mg2SiO4
SiC
ZrO2
B4C
BN
Al2O3
Si3N4
ZnO
Fe2O3
SnO2
MgCr2O4-TiO2
Fe2ZnO4
Fe2NiO4
Titanate
TiB2
22
Material Science I
Funktion
Elektrisch &
magnetisch
Nukleartechnisch
Eigenschaft
elektr. Isolation
piezoelektrisch
ferroelektrisch
Halbleiter
Magnetisch
Temperaturbest.
n-Absorption
Strahlenbest.
Korrosionsbest.
Wärme
- leitung
- dämmung
- speicherung
Transluzenz
Oberflächenaktiv Festigkeit (T)
Steuerbarer
Korrosionsbest.
Härte
Brechungsindex Verträglichkeit
verschleissfest
Anwendung
High-performance / high-tech Ceramics
Substrate
Sensoren
Kondensatoren
Oszillatoren
Zündelemente
Heissleiter
Kaltleiter
Supraleiter
Batterien
Brennstoffzellen
Brennstoff
Abschirmung
Endlagerung
Wärmetauscher
Hitzeschilder
Isolation
Wärmespeicher
Na-Dampflampe
IR-Fenster
Lasermaterial
Lichtschalter
Ceramics: Introduction
thermisch
optisch
Chemisch &
biologisch
Kat-Träger
Filter
DeNOx-Kat.
Gas-Sensoren
Elektroden
Implantate
mechanisch
Schneidwerkst.
Gleitlager
Dichtungen
Motorenteile
23
Material Science I
Engineering Ceramics Today:
electronics
Ceramics: Introduction
24
Material Science I
Requirements for substrate materials
Property
Requirement at…
… Condition
Heat conductivity (λ)
< 100 W/mK …
…RoomTemperature
(RT)
Thermal Expansion Coeff. (α)
3 - 4 x 10-6/K …
…RT – 200°C
Electrical Resistance (ρ)
> 1014 Ωcm …
…RT
Rel. permittivity (εr)
<4…
…1Mhz
Dielectric loss (δ)
< 10-3 …
…1Mhz
Bend strength (σ)
> 500 MN/m2 …
…3 P bend strength
Ceramics: Introduction
25
Material Science I
Electrical Condenser: Principle
+ +
+ +++
- -
- - - -
+ +++
- - - -
+ +++
+ +++
+ +++
+ +++
+ +++
+ +++
- - - -- - - + + +
+ + +
+
+
- - - - - - - - - -
- - - - - - - - - -
- big distance
- small area
- no dielectric
- small distance
- large area
- no dielectric
- big distance
- large area
- with dielectric
low
storage capacity
higher
storage capacity
80’000 x higher
storage capacity
Ceramics: Introduction
26
Material Science I
Condenser: prinziple types
fixed capacitor
Ceramics: Introduction
trimming capacitor
feedthrough
capacitor
27
Material Science I
Condenser/Capacitor device: buildup
soldering tag
ceramic dielectric
electrode
Ceramics: Introduction
nickel layer
contact
28
Material Science I
Capacitor: Production technology
Ceramics: Introduction
29
Material Science I
Piezo ceramics as electro-mechanical transformer
F
mechanical →
electrical
F
electrical →
mechanical
Ceramics: Introduction
30
Material Science I
Piezo ceramics as electro-mechanical transformer
mechanical →
electrical
elektrical →
mechanical
Ceramics: Introduction
31
Material Science I
Positioning by piezo-ceramics
http://www.physikinstrumente.de/products/index.
php
PZT = PbZrTiO3
A B O3
Ceramics: Introduction
32
Material Science I
Piezo-ceramics: Applications
Ceramics: Introduction
33
Material Science I
Applications of oxide ceramic materials
OXIDE
APPLICATION
Metallic
ReO3, RuO, Li2TiO3
electrode, circuits / conductors
Piezo-ceramic
Pb (Zr,Ti)O3
sensor, actuator
Pyro-ceramic
(Pb,La)(Zr,Ti)O3
sensor
PTC “low temp.”
conductors
BaTiO3 + doping
heat element, switch,
temperature compensator
NTC “high temp.”
conductors
Fe2O3, NiO, FeCr2O4, La, Sr,
CoO3
temperature sensors
IOC Ionic
conductors
ZrO2(Y2O3), Al2O3
battery, oxygen sensor,
ph-meter, solid oxide fuel cell
HTC Super
conductors
YBa2Cu3O4
sensor etc.
Ceramics: Introduction
34
Material Science I
Communication Technology
Piezo - Microphons
Ceramics: Introduction
Optical Fibres
35
Material Science I
Sensors & sensor‘s integration
Ceramics: Introduction
36
Material Science I
Nanoscale & Microscale
C-nanotube
quantum dot
field emitter
atom
0.1
Ceramics: Introduction
molecule
1.0
10
transistor
nm
100
1,000
10,000
ceramic
powder
37
Material Science I
Filling of Capilaries
5 μm
Si wafer with photoresist structures
Pouring with PDMS
Cutting edges, placing PDMS on glass
substrate and infiltrating capillaries with
suspension
Capillary flow of suspension
Removing of PDMS,
sintering.
Ceramics: Introduction
38
Material Science I
Multi–walled Vanadium Oxide Nanotubes
F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper,
J. Am. Chem. Soc., 121 [36] 8324–8331 (1999)
50 nm
Ceramics: Introduction
20 nm
39
Material Science I
Aligned Vanadium Oxide Nanotubes
1.5 μm
15 μm
Ceramics: Introduction
40
Material Science I
Nose
Ceramics: Introduction
41
Material Science I
Sensor
„smart“ mikrosensor-array
with doted CeO2
„nano“-structures on
CeO2ss
1-2 nm
[Co]
[Cu]
Co/Fe/NiO
CeO2
detection of:
• hydrocarbons
• COx
• NOx
...
Ceramics: Introduction
storage media
42
Material Science I
SnO2-4-Point Contact
10μm
Ceramics: Introduction
43
Material Science I
H2 Sensor Response
Ceramics: Introduction
44
Material Science I
Fuel Cell Principle
Luft
Cathode
Electrolyte
Anode
H2 + CO
Ceramics: Introduction
H2O + CO2
45
Material Science I
Fuel Cell
Ceramics: Introduction
46
Material Science I
Fuel Cell: Sulzer HEXIS
HEXIS = Heat EXchanger Integrated Stack
cell stack
air
storage
natural gas
water
heating
Speicher
Ceramics: Introduction
exhaust
47
Material Science I
HT Superalconductor: Current Limiter Device
Protection of distributions and
transmission systems against
overcurrents and -voltages.
Fault current
Limited
current
Normal
current
Prototype
Ceramics: Introduction
48
Material Science I
Bi-2212 Superconductor on Ag substrate
Ceramics: Introduction
49
Material Science I
Funktion
Elektrisch &
magnetisch
Nukleartechnisch
thermisch
Eigenschaft
elektr. Isolation
piezoelektrisch
ferroelektrisch
Halbleiter
Magnetisch
Temperaturbest.
n-Absorption
Strahlenbest.
Korrosionsbest.
Wärme
- leitung
- dämmung
- speicherung
Transluzenz
OberflächenaktivFestigkeit (T)
Steuerbarer
Korrosionsbest. Härte
Brechungsindex Verträglichkeit verschleissfest
Anwendung
High-performance / high-tech Ceramics
Substrate
Sensoren
Kondensatoren
Oszillatoren
Zündelemente
Heissleiter
Kaltleiter
Supraleiter
Batterien
Brennstoffzellen
Brennstoff
Abschirmung
Endlagerung
Wärmetauscher
Hitzeschilder
Isolation
Wärmespeicher
Na-Dampflampe
IR-Fenster
Lasermaterial
Lichtschalter
Ceramics: Introduction
optisch
Chemisch & mechanisch
biologisch
Kat-Träger
Filter
DeNOx-Kat.
Gas-Sensoren
Elektroden
Implantate
Schneidwerkst.
Gleitlager
Dichtungen
Motorenteile
50
Material Science I
Porous Structur: Foamed Ceramic
Ceramics: Introduction
51
Material Science I
Hightech Ceramics - Chemical Application:
catalysts &
filters
loaded
clean
Ceramics: Introduction
52
Material Science I
Hightech Ceramics: medical appliccation
Ceramics: Introduction
53
Material Science I
Hip Joint Implants
Polymer Abrasion
20 000x
http://www.swri.org/3pubs/ttoday/fall/implant.htm
Ceramics: Introduction
54
Material Science I
Hip Joints Implants
M-M
0.2
M-P
C-C
0.1
natural joint
0
operating time
wear in arbitray units
friction coefficient
K-K: Ceramic-Ceramic
M-P: Metal-PE
M-M: Metal-Metal
M-P
2
1
0
M-M
C-C
operating time
Bioceramics
Materials-Properties-Applications
A. Ravioglioli, A. Krajewski (ed.)
chapman & Hall, London, 1992
Ceramics: Introduction
55
Material Science I
Hüftgelenk-Implantate
acetabulum:
(socket)
polyethylen
or ceramic material
ball:
metall or ceramic mat.
(head)
Ceramics: Introduction
shaft:
metall (coated)
bone cement:
polymethylmethacrylate
(PMMA)
56
Material Science I
Hip Joint Implant
metal / polymer
ceramic / polymer
ceramic / ceramic
Ceramics: Introduction
57
Material Science I
Knee Implants
http://www.totaljoint.com/kneerplc.html
Ceramics: Introduction
58
Material Science I
Tooth Crowns and Bridges
metal framework and ceramic veneer
Ceramics: Introduction
59
Load Bearing Capacity of Bridges
z
y
p
x
elastic
elastic
B
B
A
B
B
A
Material Science I
Dental ceramics
Toughness [MPa m1/2]
Zirconia
10
High-Tech
Keramik
8
Glass-infiltrated
A2O3
6
In-Ceram
mit 30%
ZrO2
In-Ceram
Porcelain
(Vita-Celay)
Alumina
Empress2
Dicor MGC
In-Ceram
Glass Ceramic
4
2
MK II
IPS
Empress
Omega
0
0
200
400
600
800
1000
Bendstrength [MPa]
Ceramics: Introduction
61
Material Science I
Clinical Evaluation
Ceramics: Introduction
62
Klinische Erprobung
(Courtesy of University of Zurich
Material Science I
Funktion
Nukleartechnisch
thermisch
elektr. Isolation
piezoelektrisch
ferroelektrisch
Halbleiter
Magnetisch
Temperaturbest.
n-Absorption
Strahlenbest.
Korrosionsbest.
Wärme
- leitung
- dämmung
- speicherung
Transluzenz
Oberflächenaktiv Festigkeit (T)
Steuerbarer
Korrosionsbest. Härte
Brechungsindex Verträglichkeit
verschleissfest
Substrate
Sensoren
Kondensatoren
Oszillatoren
Zündelemente
Heissleiter
Kaltleiter
Supraleiter
Batterien
Brennstoffzellen
Brennstoff
Abschirmung
Endlagerung
Wärmetauscher
Hitzeschilder
Isolation
Wärmespeicher
Na-Dampflampe
IR-Fenster
Lasermaterial
Lichtschalter
Anwendung
Elektrisch &
magnetisch
Eigenschaft
Hochleistungskeramik
Ceramics: Introduction
optisch
Chemisch & mechanisch
biologisch
Kat-Träger
Filter
DeNOx-Kat.
Gas-Sensoren
Elektroden
Implantate
Schneidwerkst.
Gleitlager
Dichtungen
Motorenteile
64
Material Science I
Strength of Ceramic Components
3
High Speed
Steel
Strength (GPa)
hardmetal
2
ZrO2
superalloy
Si3N4
1
glass ceramic
refractory
0
1850
fiber
composite
Al2O3
earthenware/
porcelain
SiC
1900
1950 1960 1970 1980 1990 2000
Year
Ceramics: Introduction
65
Material Science I
brittle failure
martensic phase transformation of ZrO2
Crack is stoped
by
martensic
transformation
Ceramics: Introduction
66
Material Science I
Hightech Ceramics:
Struktural Applictions
Ceramics: Introduction
67
Material Science I
Hardness of ceramic materials
Ceramics: Introduction
68
Material Science I
Mechanical properties through hierarchical and
nanoscale integration of phases
Ilhan A. Aksay, Princeton University
Ceramics: Introduction
69
Material Science I
hardness & wear resistance
Cutting Bits
PKD
CBN
nitride
ceramic
oxide
ceramic
cermets
coated hardmetal
uncoated hardmetall
fine-grained
hardmetall
coated HSS
uncoated HSS
Bendstrength & Toughness
Ceramics: Introduction
70
Material Science I
Failure Energy (J/m2)
Fibre Composite Materials
Failure in monolithischem and fibre-reinforced SiC
Fibrereinfored
SiC
10 000
7 500
5 000
failure
F
2 500
sintered SiC
0
0
1
2
3
4
5
6
Crack length (mm)
Ceramics: Introduction
71
Material Science I
Fabrication of SiC – fibres from polymers
Si
Si
N
Compounds
with Desired
Elements
N Si
Polycarbosilazane
s
Si
B
Si
B
Si
n
C
C
C
N
C
N
Si
n
N
Monomeric
Units
“Single
Source
Precursors“
Si
C
Si
N Si
B
n
Polyborocarbosilazanes
after J.Bill, F.Aldinger, Z.Metallk., 87, 1996,
827
Ceramics: Introduction
72
Material Science I
SiC fibers: high strength at high temperatures
Rupture strength behavior for various high-performance SiC fibers at 1400 °C in air.
SA, Tyranno SA fiber from UBE Industries (polycrystaline SiC fiber with small amount of Aluminium);
Hi-Nic. S, Hi-Nicalon Type S fiber from Nippon Carbon.
Ceramics: Introduction
73
Material Science I
Ceramic Materials
• high melting temperature
• high hardness
• high strength
•
•
•
•
•
Ceramics: Introduction
electrical, magnetical properties
ferroelektrical properties
optical properties
catalytical properties
biological properties
74
Material Science I
Ceramic materials: their future
• communication technology
• electronic application
• medical application
• energy technology
• machining technology
Ceramics: Introduction
75
Material Science I
Ceramics: Introduction
76
Material Science I
Ersatz
Ceramics: Introduction
77
Material Science I
Classification of Ceramic Materials
Ceramics: Introduction
78
Material Science I
Working principle of
Me-Oxide Semiconductor - Sensors
Model of inter-grain potential
barrier (in the absence of gases)
Ceramics: Introduction
Model of inter-grain potential barrier
(in the presence of gases)
79