Ceramic Materials
Transcription
Ceramic Materials
Material Science I Ceramic Materials F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials frank.filser@mat.ethz.ch WS 2006-07 Ceramics: Introduction 1 Material Science I Persons in Charge of this Lecture • I. Akartuna, HCI G 538, phone 36842, ilke.akartuna@mat.ethz.ch F. Krauss HCI G 538, phone 3 68 34, franziska.krauss@mat.ethz.ch • Dr. F. Filser, HCI G 529, phone 26435, frank.filser@mat.ethz.ch • Prof. Dr. L.J. Gauckler HCI G 535, phone 25646, ludwig.gauckler@mat.ethz.ch • Dipl.-Ing. J. Kübler EMPA Dübendorf, phone 044 823 4223, jakob.kuebler@empa.ch Ceramics: Introduction 2 Material Science I Overview & preliminary schedule Jan 8, 07 Introduction on ceramic materials, technology, applications Jan 15, 07 Crystal structures of ceramic materials Jan 22, 07 Potential well of bonding and physical properties & Examples of Structural ceramic materials Jan 29, 07 Examples of structural ceramic materials Feb 2, 07 Ceramics: Introduction term finish 3 Material Science I Overview & preliminary schedule Mar 19, 07 term starts Mar 20, 07 Glass Mar 27, 07 Toughness (JK) Apr 03, 07 Strength & Weibull statistics (JK) Apr 10, 07 Subcritical crack growth, SPT-Diagrams (JK) Apr 17, 07 Proof-testing, creep, thermical properties (JK) Apr 24, 07 polymer part (Prof. D. Schlüter) Jun 22, 07 term finish Ceramics: Introduction 4 Material Science I Documentation Visit our homepage @ http://ceramics.ethz.ch -> education -> courses -> Materialwissenschaft I und II Ceramics: Introduction 5 Material Science I Sources of Information - ETH Bib -NEBIS http://www.ethbib.ethz.ch/ http://www.nebis.ch/ Ceramics: Introduction 6 Material Science I Recommended Reading • Askeland & Phulé: Science and Engineering of Materials, 2003 • Barsoum MW: Fundamentals of Ceramics. IoP Publishing, 2003 • diverse CEN ISO Standards (look at slides) • Y.-M. Chiang, D. Birnie, D. Kingery, Physical Ceramics, Principles für Ceramic Science and Engineering, Wiley, 1997. • G. Kostorz (ed), High-Tech Ceramics: Viewpoints and Perspectives. Academic Press, 1989. (Chapter 5, 59-101). Ceramics: Introduction 7 Material Science I Recommended Reading • Munz, D., Fett, T.: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, Springer, 1999. • David Richerson, Modern Ceramic Engineering, Ed. 2, Dekker, 1992. • Saito Shinroku, Fine Ceramics, Elsevier, 1988. • Verband der Keramischen Industrie e.V, Brevieral Technical Ceramics, ISBN 3-924158-77-0, Fahner Verlag, 2004. (partly on the internet available) • Ichinose Wataru, Introduction to Fine Ceramics, Wiley, 1987. Ceramics: Introduction 8 Material Science I Recommended Reading Chapter IV: Examples of Structural Ceramic Materials • Bevieral Technical Ceramics, • Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003, • Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 • Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986 • Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie - The Journal of Physical Chemistry, 1978 Ceramics: Introduction 9 Material Science I Recommended Reading Chapter IV: Examples of Structural Ceramics Materials • Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975 - Springer • Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992 • "Formation of beta -Si3N4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si3N4 , AlN, Al2 O3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980. • Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, SpringerVerlag, 1984, pp. 329, 1984 9. Ceramics: Introduction 10 Material Science I Sources of Information – Journals (in general ) • Journal of the American Ceramic Society (J. Am. Ceram. Soc.) • Bulletin of the American Ceramic Society (Bull. Am. Ceram. Soc.) • Journal of the European Ceramic Society (J. Eur. Ceram. Soc.) • Journal of Materials Science (J. Mat. Sci.) • Journal of Materials Research (J. Mat. Res.) Ceramics: Introduction 11 Material Science I Introduction on ceramic materials, technology, applications Ceramics: Introduction 12 Material Science I History of ceramic materials Nitrides Ferrites Titanates Oxide ceramics Europaen Porcelain Silicon Carbide Steatites Greek Vases Earthenware (Steingut**) Fire-proof pottery Potter’s wheel Porcelain Ceramic pots (7000 BC) Stoneware (Steinzeug*) Earthenware -3000 -2000 -1000 0 1700 2000 Ceramics: Introduction **): porous, low firing temp (900 -1200°C) *): dense, high firing temp (>1200°C) 13 Material Science I Ceramic in the Past Giant beaker, Erle 4 000 BC Ceramics: Introduction Closed Furnace Stilt houses in Unteruhldingen, Bodensee 14 Material Science I Egyptian wall relief Rechmuir (1450 BC) ceramic for metallurgy Ceramics: Introduction 15 Material Science I Greek Vase, red on black decor Ceramics: Introduction 16 Material Science I Chinese Porcelain 14th century 18th century 19th century Porcelain imports of the east indian company from china to europe: 1600 – 1800: > 3 000 000 pieces anual dividends: up to 750% pa on the invested money Ceramics: Introduction 17 Material Science I Europaen imports of chinese porcelain 1600 - 1800 AD , in 1000 pieces Ceramics: Introduction 18 Material Science I Europaen Porcelain August der Starke (1670 - 1733) Ceramics: Introduction Ehrenfried Walter von Tschirnhaus (1652 - 1708) 19 Material Science I Europaen Porcelain Quartz 20 80 60 40 Steingut Steinzeug 40 60 20 80 Dental ceramics techn. porcelain Hard porcelain Feldspar Ceramics: Introduction 20 40 60 80 Clay Kaolin 20 Material Science I nuclear technical thermical optical chemical & biological mechanical Property electrical and magnetical elektr. insulation piezoelectrical ferroelectrical semiconductor magnetical temperature resist. n- absorption radiation resist. corrosion resist. heat - conductor - insulator - storage translucency controllable refraction index Surface activity Corrosionresist. compatibility strength (T) hardness wear resistency Application Function High-performance / hightech Ceramics substrates sensors condenser / capacitor oscillators igniting elements high-temp. conductor „low-temp.“ PTC cond. superconductors batteries fuel shielding storage contain. heat exchanger heat shields insulation heat storage Na-vapor lamp IR-window Laser material Light switch Cat-Carriers Filters DeNOx-Cat. Gas-Sensors Elektrods Implantats Cutting bits bearings seals Engine components Ceramics: Introduction 21 Material Science I Function electrical & magnetical nuclear technical Material High-performance / high-tech Ceramics Al2O3 AlN BeO BaTiO3 SrTiO3 PZT SiC ZnO-Bi2O3 YBa2Cu3O7 U2O5 TiO2 NiO β - Al2O3 ZrO2 Li3N UO2 PuO2 C SiC B4C BN Al2O3 Glass Ceramics: Introduction thermical optical SiO2 MgO Si3N4 Faser SiC Mg2SiO4 3 Al2O3 2SiO2 Al2O3 MgO Mg Al2O3 Y2O3 / ThO2 PLZT chemical & biological mechanical Cordierit Al2O3 ZrO2 MgO Mg2SiO4 SiC ZrO2 B4C BN Al2O3 Si3N4 ZnO Fe2O3 SnO2 MgCr2O4-TiO2 Fe2ZnO4 Fe2NiO4 Titanate TiB2 22 Material Science I Funktion Elektrisch & magnetisch Nukleartechnisch Eigenschaft elektr. Isolation piezoelektrisch ferroelektrisch Halbleiter Magnetisch Temperaturbest. n-Absorption Strahlenbest. Korrosionsbest. Wärme - leitung - dämmung - speicherung Transluzenz Oberflächenaktiv Festigkeit (T) Steuerbarer Korrosionsbest. Härte Brechungsindex Verträglichkeit verschleissfest Anwendung High-performance / high-tech Ceramics Substrate Sensoren Kondensatoren Oszillatoren Zündelemente Heissleiter Kaltleiter Supraleiter Batterien Brennstoffzellen Brennstoff Abschirmung Endlagerung Wärmetauscher Hitzeschilder Isolation Wärmespeicher Na-Dampflampe IR-Fenster Lasermaterial Lichtschalter Ceramics: Introduction thermisch optisch Chemisch & biologisch Kat-Träger Filter DeNOx-Kat. Gas-Sensoren Elektroden Implantate mechanisch Schneidwerkst. Gleitlager Dichtungen Motorenteile 23 Material Science I Engineering Ceramics Today: electronics Ceramics: Introduction 24 Material Science I Requirements for substrate materials Property Requirement at… … Condition Heat conductivity (λ) < 100 W/mK … …RoomTemperature (RT) Thermal Expansion Coeff. (α) 3 - 4 x 10-6/K … …RT – 200°C Electrical Resistance (ρ) > 1014 Ωcm … …RT Rel. permittivity (εr) <4… …1Mhz Dielectric loss (δ) < 10-3 … …1Mhz Bend strength (σ) > 500 MN/m2 … …3 P bend strength Ceramics: Introduction 25 Material Science I Electrical Condenser: Principle + + + +++ - - - - - - + +++ - - - - + +++ + +++ + +++ + +++ + +++ + +++ - - - -- - - + + + + + + + + - - - - - - - - - - - - - - - - - - - - - big distance - small area - no dielectric - small distance - large area - no dielectric - big distance - large area - with dielectric low storage capacity higher storage capacity 80’000 x higher storage capacity Ceramics: Introduction 26 Material Science I Condenser: prinziple types fixed capacitor Ceramics: Introduction trimming capacitor feedthrough capacitor 27 Material Science I Condenser/Capacitor device: buildup soldering tag ceramic dielectric electrode Ceramics: Introduction nickel layer contact 28 Material Science I Capacitor: Production technology Ceramics: Introduction 29 Material Science I Piezo ceramics as electro-mechanical transformer F mechanical → electrical F electrical → mechanical Ceramics: Introduction 30 Material Science I Piezo ceramics as electro-mechanical transformer mechanical → electrical elektrical → mechanical Ceramics: Introduction 31 Material Science I Positioning by piezo-ceramics http://www.physikinstrumente.de/products/index. php PZT = PbZrTiO3 A B O3 Ceramics: Introduction 32 Material Science I Piezo-ceramics: Applications Ceramics: Introduction 33 Material Science I Applications of oxide ceramic materials OXIDE APPLICATION Metallic ReO3, RuO, Li2TiO3 electrode, circuits / conductors Piezo-ceramic Pb (Zr,Ti)O3 sensor, actuator Pyro-ceramic (Pb,La)(Zr,Ti)O3 sensor PTC “low temp.” conductors BaTiO3 + doping heat element, switch, temperature compensator NTC “high temp.” conductors Fe2O3, NiO, FeCr2O4, La, Sr, CoO3 temperature sensors IOC Ionic conductors ZrO2(Y2O3), Al2O3 battery, oxygen sensor, ph-meter, solid oxide fuel cell HTC Super conductors YBa2Cu3O4 sensor etc. Ceramics: Introduction 34 Material Science I Communication Technology Piezo - Microphons Ceramics: Introduction Optical Fibres 35 Material Science I Sensors & sensor‘s integration Ceramics: Introduction 36 Material Science I Nanoscale & Microscale C-nanotube quantum dot field emitter atom 0.1 Ceramics: Introduction molecule 1.0 10 transistor nm 100 1,000 10,000 ceramic powder 37 Material Science I Filling of Capilaries 5 μm Si wafer with photoresist structures Pouring with PDMS Cutting edges, placing PDMS on glass substrate and infiltrating capillaries with suspension Capillary flow of suspension Removing of PDMS, sintering. Ceramics: Introduction 38 Material Science I Multi–walled Vanadium Oxide Nanotubes F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper, J. Am. Chem. Soc., 121 [36] 8324–8331 (1999) 50 nm Ceramics: Introduction 20 nm 39 Material Science I Aligned Vanadium Oxide Nanotubes 1.5 μm 15 μm Ceramics: Introduction 40 Material Science I Nose Ceramics: Introduction 41 Material Science I Sensor „smart“ mikrosensor-array with doted CeO2 „nano“-structures on CeO2ss 1-2 nm [Co] [Cu] Co/Fe/NiO CeO2 detection of: • hydrocarbons • COx • NOx ... Ceramics: Introduction storage media 42 Material Science I SnO2-4-Point Contact 10μm Ceramics: Introduction 43 Material Science I H2 Sensor Response Ceramics: Introduction 44 Material Science I Fuel Cell Principle Luft Cathode Electrolyte Anode H2 + CO Ceramics: Introduction H2O + CO2 45 Material Science I Fuel Cell Ceramics: Introduction 46 Material Science I Fuel Cell: Sulzer HEXIS HEXIS = Heat EXchanger Integrated Stack cell stack air storage natural gas water heating Speicher Ceramics: Introduction exhaust 47 Material Science I HT Superalconductor: Current Limiter Device Protection of distributions and transmission systems against overcurrents and -voltages. Fault current Limited current Normal current Prototype Ceramics: Introduction 48 Material Science I Bi-2212 Superconductor on Ag substrate Ceramics: Introduction 49 Material Science I Funktion Elektrisch & magnetisch Nukleartechnisch thermisch Eigenschaft elektr. Isolation piezoelektrisch ferroelektrisch Halbleiter Magnetisch Temperaturbest. n-Absorption Strahlenbest. Korrosionsbest. Wärme - leitung - dämmung - speicherung Transluzenz OberflächenaktivFestigkeit (T) Steuerbarer Korrosionsbest. Härte Brechungsindex Verträglichkeit verschleissfest Anwendung High-performance / high-tech Ceramics Substrate Sensoren Kondensatoren Oszillatoren Zündelemente Heissleiter Kaltleiter Supraleiter Batterien Brennstoffzellen Brennstoff Abschirmung Endlagerung Wärmetauscher Hitzeschilder Isolation Wärmespeicher Na-Dampflampe IR-Fenster Lasermaterial Lichtschalter Ceramics: Introduction optisch Chemisch & mechanisch biologisch Kat-Träger Filter DeNOx-Kat. Gas-Sensoren Elektroden Implantate Schneidwerkst. Gleitlager Dichtungen Motorenteile 50 Material Science I Porous Structur: Foamed Ceramic Ceramics: Introduction 51 Material Science I Hightech Ceramics - Chemical Application: catalysts & filters loaded clean Ceramics: Introduction 52 Material Science I Hightech Ceramics: medical appliccation Ceramics: Introduction 53 Material Science I Hip Joint Implants Polymer Abrasion 20 000x http://www.swri.org/3pubs/ttoday/fall/implant.htm Ceramics: Introduction 54 Material Science I Hip Joints Implants M-M 0.2 M-P C-C 0.1 natural joint 0 operating time wear in arbitray units friction coefficient K-K: Ceramic-Ceramic M-P: Metal-PE M-M: Metal-Metal M-P 2 1 0 M-M C-C operating time Bioceramics Materials-Properties-Applications A. Ravioglioli, A. Krajewski (ed.) chapman & Hall, London, 1992 Ceramics: Introduction 55 Material Science I Hüftgelenk-Implantate acetabulum: (socket) polyethylen or ceramic material ball: metall or ceramic mat. (head) Ceramics: Introduction shaft: metall (coated) bone cement: polymethylmethacrylate (PMMA) 56 Material Science I Hip Joint Implant metal / polymer ceramic / polymer ceramic / ceramic Ceramics: Introduction 57 Material Science I Knee Implants http://www.totaljoint.com/kneerplc.html Ceramics: Introduction 58 Material Science I Tooth Crowns and Bridges metal framework and ceramic veneer Ceramics: Introduction 59 Load Bearing Capacity of Bridges z y p x elastic elastic B B A B B A Material Science I Dental ceramics Toughness [MPa m1/2] Zirconia 10 High-Tech Keramik 8 Glass-infiltrated A2O3 6 In-Ceram mit 30% ZrO2 In-Ceram Porcelain (Vita-Celay) Alumina Empress2 Dicor MGC In-Ceram Glass Ceramic 4 2 MK II IPS Empress Omega 0 0 200 400 600 800 1000 Bendstrength [MPa] Ceramics: Introduction 61 Material Science I Clinical Evaluation Ceramics: Introduction 62 Klinische Erprobung (Courtesy of University of Zurich Material Science I Funktion Nukleartechnisch thermisch elektr. Isolation piezoelektrisch ferroelektrisch Halbleiter Magnetisch Temperaturbest. n-Absorption Strahlenbest. Korrosionsbest. Wärme - leitung - dämmung - speicherung Transluzenz Oberflächenaktiv Festigkeit (T) Steuerbarer Korrosionsbest. Härte Brechungsindex Verträglichkeit verschleissfest Substrate Sensoren Kondensatoren Oszillatoren Zündelemente Heissleiter Kaltleiter Supraleiter Batterien Brennstoffzellen Brennstoff Abschirmung Endlagerung Wärmetauscher Hitzeschilder Isolation Wärmespeicher Na-Dampflampe IR-Fenster Lasermaterial Lichtschalter Anwendung Elektrisch & magnetisch Eigenschaft Hochleistungskeramik Ceramics: Introduction optisch Chemisch & mechanisch biologisch Kat-Träger Filter DeNOx-Kat. Gas-Sensoren Elektroden Implantate Schneidwerkst. Gleitlager Dichtungen Motorenteile 64 Material Science I Strength of Ceramic Components 3 High Speed Steel Strength (GPa) hardmetal 2 ZrO2 superalloy Si3N4 1 glass ceramic refractory 0 1850 fiber composite Al2O3 earthenware/ porcelain SiC 1900 1950 1960 1970 1980 1990 2000 Year Ceramics: Introduction 65 Material Science I brittle failure martensic phase transformation of ZrO2 Crack is stoped by martensic transformation Ceramics: Introduction 66 Material Science I Hightech Ceramics: Struktural Applictions Ceramics: Introduction 67 Material Science I Hardness of ceramic materials Ceramics: Introduction 68 Material Science I Mechanical properties through hierarchical and nanoscale integration of phases Ilhan A. Aksay, Princeton University Ceramics: Introduction 69 Material Science I hardness & wear resistance Cutting Bits PKD CBN nitride ceramic oxide ceramic cermets coated hardmetal uncoated hardmetall fine-grained hardmetall coated HSS uncoated HSS Bendstrength & Toughness Ceramics: Introduction 70 Material Science I Failure Energy (J/m2) Fibre Composite Materials Failure in monolithischem and fibre-reinforced SiC Fibrereinfored SiC 10 000 7 500 5 000 failure F 2 500 sintered SiC 0 0 1 2 3 4 5 6 Crack length (mm) Ceramics: Introduction 71 Material Science I Fabrication of SiC – fibres from polymers Si Si N Compounds with Desired Elements N Si Polycarbosilazane s Si B Si B Si n C C C N C N Si n N Monomeric Units “Single Source Precursors“ Si C Si N Si B n Polyborocarbosilazanes after J.Bill, F.Aldinger, Z.Metallk., 87, 1996, 827 Ceramics: Introduction 72 Material Science I SiC fibers: high strength at high temperatures Rupture strength behavior for various high-performance SiC fibers at 1400 °C in air. SA, Tyranno SA fiber from UBE Industries (polycrystaline SiC fiber with small amount of Aluminium); Hi-Nic. S, Hi-Nicalon Type S fiber from Nippon Carbon. Ceramics: Introduction 73 Material Science I Ceramic Materials • high melting temperature • high hardness • high strength • • • • • Ceramics: Introduction electrical, magnetical properties ferroelektrical properties optical properties catalytical properties biological properties 74 Material Science I Ceramic materials: their future • communication technology • electronic application • medical application • energy technology • machining technology Ceramics: Introduction 75 Material Science I Ceramics: Introduction 76 Material Science I Ersatz Ceramics: Introduction 77 Material Science I Classification of Ceramic Materials Ceramics: Introduction 78 Material Science I Working principle of Me-Oxide Semiconductor - Sensors Model of inter-grain potential barrier (in the absence of gases) Ceramics: Introduction Model of inter-grain potential barrier (in the presence of gases) 79