European Union Risk Assessment Report

Transcription

European Union Risk Assessment Report
UNITED
NATIONS
RC
UNEP/FAO/RC/CRC.10/INF/10
Rotterdam Convention on the Prior
Informed Consent Procedure for
Certain Hazardous Chemicals and
Pesticides in International Trade
Distr.: General
18 July 2014
English only
Chemical Review Committee
Tenth meeting
Rome, 22–24 October 2014
Item 4 (c) (ii) of the provisional agenda
Technical work: review of notifications of final regulatory action:
short-chained chlorinated paraffins
Short-chained chlorinated paraffins: supporting documentation
provided by Norway
Note by the Secretariat
As referred to in document UNEP/FAO/RC/CRC.10/6, the annex to the present note sets out
documentation received from Norway to support its notification of final regulatory action for shortchained chlorinated paraffins. The present note, including its annex, has not been formally edited.

Reissued for technical reasons on 29 September 2014.

UNEP/FAO/RC/CRC.10/1.
290914
UNEP/FAO/RC/CRC.10/INF/10
Annex
Short-chained chlorinated paraffins: supporting documentation
provided by Norway
List of documents
1.
European Chemicals Bureau (2000). European Union Risk Assessment Report, alkanes, C10-13,
chloro, CAS No.: 85535-84-8, EINECS No.: 287-476. 1st Priority List, Volume 4. European
Commission, EUR 19010 EN.
2.
OSPAR Commission (2009). Background Document on short chain chlorinated paraffins.
Hazardous Substances Series.
3.
OSPAR Commission (2001). Draft OSPAR Background Document on Short Chain Chlorinated
Paraffins. ASMO 01/6/10 – HSC 01/5/6-E.
4.
Norwegian Pollution Control Authority (SFT) (1999). Kortkjedete høyklorerte paraffiner.
Materialstrømsanalyse. (Short-chain highly chlorinated paraffins. Material Flow Analysis). SFT
TA-1689/99, Rapport 99/24. (A cover page with a summary in English and first 4 pages of the
document in Norwegian only).
5.
Norwegian Pollution Control Authority (SFT) (1996). Overvåking av Hvaler-Singlefjorden og
munningen av Iddefjorden 1990-1994. Miljøgifter i organismer. (Monitoring of environmental
chemicals in organisms in fjord and coastal area 1990-1994, toxicants in organisms). SFT
3443-96, Rapport 651/96. (In Norwegian only).
6.
Norwegian Pollution Control Authority (SFT) (2001). Halogenerte organiske miljøgifter og
kvikksølv i norsk ferskvannsfisk, 1995-1999 (Halogenated organic environmental chemicals and
mercury in Norwegian freshwater fish, 1995-1999). SFT 4402-01, Rapport 827/01. (In
Norwegian only).
7.
Norwegian Pollution Control Authority (SFT) (2002). Kartlegging av bromerte flammehemmere
og klorerte parafiner (Screening of brominated flame retardants and chlorinated paraffins). SFT
TA-1924/2002, Rapport 866/02. (In Norwegian only).
8.
Borgen, A. R., Schlabach, M., Mariussen, E. (2003). Screening of Chlorinated Paraffins in
Norway. Organohalogen Compounds, Volume 60, pages 331-334.
9.
Norwegian legal regulation relating to short-chained chlorinated paraffins, FOR-2000-12-131544 (2000). Forskrift om kortkjedete klorparaffiner (With unofficial translation into English).
Note by Norway
The OSPAR report was in an early draft version in 2001/2002 so both the published report
(OSPAR-p00397 SCCP update) and the early draft (OSPAR Draft report SCCP 2001) are
attached. Within this report monitoring data from Norway are included.
The report from SFT (SFT TA-1689/99, Rapport 99/24) “Short-chain highly chlorinated
paraffins. Material Flow Analysis” is in Norwegian with only a short summary in English, for
this report only the first pages are attached so you could see the length and content of the
report.
In addition some reports on monitoring in Norway is attached, unfortunately those are all in
Norwegian:
(a) SFT 3443-96, Rapport 651/96: “Monitoring of environmental chemicals in organisms
in fjord and coastal area 1990-1994”;
(b) SFT 4402-01, Rapport 827/01: “Halogenated organic environmental chemicals and
mercury in Norwegian freshwater fish, 1995-1999”;
(c) SFT TA-1924/2002, Rapport 866/02: “Screening of brominated flame retardants and
chlorinated paraffins”. This report was not published before the notification, but the
results and contents of this report were known. Results from this report was later used
in the attached publication, Screening of Chlorinated Paraffins in Norway,
Organohalogen Compounds, Volume 60, Pages 331-334 (2003).
2
CL-NA-19010-EN-C
European Union Risk Assessment Report
alkanes, C10-13, chloro
CAS No.: 85535-84-8 EINECS No.: 287-476-5
Series: 1st Priority List
Volume: 4
European
Chemicals
Bureau
Existing Substances
European Union
Risk Assessment Report
CAS No.: 85535-84-8
EINECS No.: 287-476-5
alkanes, C10-13, chloro
European Union Risk Assessment Report
alkanes, C10-13, chloro
European Commission - Joint Research Centre
Institute for Health and Consumer Protection
European Chemicals Bureau (ECB)
European Chemicals Bureau
14
The mission of the JRC is to provide customer-driven scientific and technical support
for the conception, development, implementation and monitoring of EU policies. As a
service of the European Commission, the JRC functions as a reference centre of
science and technology for the Union. Close to the policy-making process, it serves the
common interest of the Member States, while being independent of special interests,
private or national.
Institute for Health and
Consumer Protection
Price (excluding VAT) in Luxembourg: EUR 14.50
CAS: 85535-84-8
EC: 287-476-5
OFFICE FOR OFFICIAL PUBLICATIONS
OF THE EUROPEAN COMMUNITIES
L – 2985 Luxembourg
PL-1
4
1st Priority List
Volume:
4
EUROPEAN COMMISSION
JOINT RESEARCH CENTRE
EUR 19010 EN
European Union Risk Assessment Report
ALKANES, C10-13, CHLOROCAS-No.: 85535-84-8
EINECS-No: 287-476-5
RISK ASSESSMENT
LEGAL NOTICE
Neither the European Commission nor any person
Acting on behalf of the Commission is responsible for the use which might
be made of the following information
A great deal of additional information on the European Union
Is available on the Internet.
It can be accessed through the Europa Server
(http://europa.eu.int).
Cataloguing data can be found at the end of this publication
Luxembourg: Office for Official Publications of the European Communities, 2000
ISBN 92-828-8451-1
© European Communities, 2000
Reproduction is authorised provided the source is acknowledged.
Printed in Italy
ALKANES, C10-13, CHLOROCAS-No.: 85535-84-8
EINECS-No: 287-476-5
RISK ASSESSMENT
Final report, October 1999
United Kingdom
The rapporteur for the risk evaluation of C10-13 chloroalkanes is the Environment Agency and the Health &
Safety Executive acting jointly. The Rapporteur retains responsibility for the risk evaluation and subsequently for
the contents of this report.
The scientific work on the environmental part was prepared by the Building Research Establishment (BRE), by
order of the Rapporteur.
Contact point:
Environment:
Environment Agency
Chemicals Assessment Unit, Ecotoxicology & Hazardous
Substances National Centre
Isis House, Howbery Park
Wallingford
Oxfordshire OX10 8BD
UK
Human health:
Health & Safety Executive
New & Existing Substances Section, Chemical
Authorisation & Evaluation Unit
Magdalen House, Stanley Precinct
Bootle
Merseyside L20 3QZ
UK
Date of Last Literature Search :
Review of report by MS Technical Experts finalised:
Final report:
1996
September, 1997
October, 1999
Foreword
We are pleased to present this Risk Assessment Report which is the result of in-depth work
carried out by experts in one Member State, working in co-operation with their counterparts in
the other Member States, the Commission Services, Industry and public interest groups.
The Risk Assessment was carried out in accordance with Council Regulation (EEC) 793/931
on the evaluation and control of the risks of “existing” substances. “Existing” substances are
chemical substances in use within the European Community before September 1981 and listed
in the European Inventory of Existing Commercial Chemical Substances. Regulation 793/93
provides a systematic framework for the evaluation of the risks to human health and the
environment of these substances if they are produced or imported into the Community in
volumes above 10 tonnes per year.
There are four overall stages in the Regulation for reducing the risks: data collection, priority
setting, risk assessment and risk reduction. Data provided by Industry are used by Member
States and the Commission services to determine the priority of the substances which need to
be assessed. For each substance on a priority list, a Member State volunteers to act as
“Rapporteur”, undertaking the in-depth Risk Assessment and recommending a strategy to
limit the risks of exposure to the substance, if necessary.
The methods for carrying out an in-depth Risk Assessment at Community level are laid down
in Commission Regulation (EC) 1488/942, which is supported by a technical guidance
document3. Normally, the “Rapporteur” and individual companies producing, importing
and/or using the chemicals work closely together to develop a draft Risk Assessment Report,
which is then presented at a Meeting of Member State technical experts for endorsement. The
Risk Assessment Report is then peer-reviewed by the Scientific Committee on Toxicity,
Ecotoxicity and the Environment (CSTEE) which gives its opinion to the European
Commission on the quality of the risk assessment.
If a Risk Assessment Report concludes that measures to reduce the risks of exposure to the
substances are needed, beyond any measures which may already be in place, the next step in
the process is for the “Rapporteur” to develop a proposal for a strategy to limit those risks.
The Risk Assessment Report is also presented to the Organisation for Economic Co-operation
and Development as a contribution to the Chapter 19, Agenda 21 goals for evaluating
chemicals, agreed at the United Nations Conference on Environment and Development, held
in Rio de Janeiro in 1992.
This Risk Assessment improves our knowledge about the risks to human health and the
environment from exposure to chemicals. We hope you will agree that the results of this indepth study and intensive co-operation will make a worthwhile contribution to the Community
objective of reducing the risks from exposure to chemicals overall.
H.J. Allgeier
Director-General
Joint Research Centre
J. Currie
Director-General
Environment, Nuclear Safety and Civil Protection
1
O.J. No L 084 , 05/04/199 p.0001 – 0075
O.J. No L 161, 29/06/1994 p. 0003 –0011
3
Technical Guidance Document, Part I – V, ISBN 92-827-801 [1234]
2
V
0
OVERALL RESULTS OF THE RISK ASSESSMENT
CAS-No.
85535-84-8
EINECS-No. 287-476-5
IUPAC name Alkanes, C10-13, chloro
(x)
i) There is a need for further information and/or testing.
This conclusion applies to the sediment and soil compartment for production of short chain
length chlorinated paraffins (sediment only), formulation and use of metal working fluids and
leather finishing products, use in rubber formulations (sediment only), and also at the regional
level. The requirements are:
For soil
- firstly, better information on releases to this compartment to revise the PEC
(monitoring data for soil near to sources of release could be useful).
- if the revised PECs do not remove the concern, the PNEC could be revised
through toxicity testing on soil-dwelling organisms. The test strategy could
be based on the tests recommended in the Technical Guidance Document
(currently a plant test involving exposure via soil; a test with an annelid; and
a test with microorganisms).
For sediment - firstly, better information on releases to this compartment to revise the PEC
(monitoring data for sediment near to sources of release could be useful).
- if the revised PECs do not remove the concern, the PNEC could be revised
through toxicity testing on sediment-dwelling organisms. The test strategy
could include firstly a long-term Chironomid test; secondly a long-term
Oligochaete test; and finally a long-term test with Gammarus or Hyalella
(all using spiked sediment).
The risk reduction measures recommended as a result of the assessment of aquatic risks from
metal working and leather finishing will also (either directly or indirectly) have some effect on
the PECs for sediment and soil. Any further information and/or testing requirements should
therefore await the outcome of these risk reduction measures on releases to the environment.1
(x)
ii) There is at present no need for further information and/or testing or for risk
reduction measures beyond those which are being applied already.
This applies to the assessment of
- atmospheric risks;
- risks to waste water treatment plants from production and all uses of short chain length
chlorinated paraffins;
- the risk of secondary poisoning arising from production, formulation of metal working
fluids and use in rubber formulations, paints and sealing compounds and textile
applications;
1
See Appendix D
VII
- aquatic, sediment and terrestrial risks from use in sealants, backcoating of textiles and
paints;
- aquatic and terrestrial risks from use in rubber formulations and from production sites
(using site specific data); and
- aquatic risks at the regional level.
This conclusion also applies to the assessment of the risk to human health through
occupational exposure, consumer exposure, and exposure via environmental routes.
(x)
iii) There is a need for limiting the risks; risk reduction measures which are already
being applied shall be taken into account.
A risk to aquatic organisms exists arising from the local emission of short chain length
chlorinated paraffins from metal working and leather finishing applications, and also from the
formulation of products for these uses. This conclusion also applies to secondary poisoning
arising from formulation and use in leather finishing, and use in metal working applications.
VIII
CONTENTS
1 GENERAL SUBSTANCE INFORMATION .................................................................................................6
1.1 IDENTIFICATION OF THE SUBSTANCE...........................................................................................6
1.2 PURITY/IMPURITIES, ADDITIVES.....................................................................................................6
1.2.1 Purity .................................................................................................................................................6
1.2.2 Additives............................................................................................................................................7
1.3 PHYSICO-CHEMICAL PROPERTIES ............................................................................................
1.3.1 Physical state (at ntp) ....................................................................................................................
1.3.2 Melting point ................................................................................................................................
1.3.3 Boiling point.................................................................................................................................
1.3.4 Relative density ............................................................................................................................
1.3.5 Vapour pressure............................................................................................................................
1.3.6 Solubility ......................................................................................................................................
1.3.7 Partition coefficient ......................................................................................................................
1.3.8 Flash point ....................................................................................................................................
1.3.9 Autoflammability..........................................................................................................................
1.3.10 Explosivity........................................................................................................................
1.3.11 Oxidising properties..........................................................................................................
7
8
8
9
9
9
9
9
10
10
10
10
1.4 CLASSIFICATION .............................................................................................................................. 10
1.4.1 Current classification .................................................................................................................... 10
1.4.2 Proposal of rapporteur .................................................................................................................. 10
2 GENERAL INFORMATION ON EXPOSURE........................................................................................ 11
2.1 PRODUCTION ..................................................................................................................................... 11
2.2 USE ........................................................................................................................................................
2.2.1 Metal cutting/working fluids.........................................................................................................
2.2.2 Rubber industry ............................................................................................................................
2.2.3 Paint industry................................................................................................................................
2.2.4 Sealing compounds.......................................................................................................................
2.2.5 Leather industry............................................................................................................................
2.2.6 Textile industry.............................................................................................................................
11
12
13
13
13
14
14
2.3 EXPOSURE CONTROL...................................................................................................................... 15
3 ENVIRONMENT ........................................................................................................................................ 16
3.1 EXPOSURE ASSESSMENT ...............................................................................................................
3.1.0 General discussion........................................................................................................................
3.1.0.1 Releases from production ...............................................................................................
3.1.0.2 Releases from use ...........................................................................................................
3.1.0.2.1 Use in metal working and extreme pressure lubricating fluids........................
3.1.0.2.2 Use as a flame retardant in rubber formulations..............................................
3.1.0.2.3 Use as a plasticiser in paints and sealing compounds......................................
3.1.0.2.4 Use in leather applications ..............................................................................
3.1.0.2.5 Use as a flame retardant in textile applications ...............................................
3.1.0.3 Summary of release estimates .........................................................................................
3.1.0.4 Degradation ....................................................................................................................
3.1.0.4.1 Abiotic degradation ........................................................................................
3.1.0.4.2 Biodegradation................................................................................................
3.1.0.5 Accumulation..................................................................................................................
3.1.0.6 Environmental distribution .............................................................................................
3.1.1 Aquatic compartment....................................................................................................................
16
16
16
17
17
20
20
21
23
23
24
24
24
27
29
30
1
3.1.1.1 Calculation of PEClocal ....................................................................................................
3.1.1.2 Calculation of PECregional and PECcontinental ........................................................................
3.1.1.3 Levels of short chain length chlorinated paraffins in water and sediment........................
3.1.1.3.1 Levels in water.................................................................................................
3.1.1.3.2 Levels in sediments..........................................................................................
Terrestrial compartment................................................................................................................
Atmosphere...................................................................................................................................
Non compartment specific exposure relevant to the food chain ...................................................
3.1.4.1 Predicted concentrations ...............................................................................................
3.1.4.2 Measured levels ...............................................................................................................
3.1.4.2.1 Levels in aquatic organisms .............................................................................
3.1.4.2.2 Levels in other biota ........................................................................................
Summary of exposure estimates for short chain length chlorinated paraffins ..............................
30
32
34
37
43
47
48
49
49
50
50
52
54
3.2 EFFECTS ASSESSMENT: HAZARD IDENTIFICATION AND DOSE (CONCENTRATION) RESPONSE (EFFECT) ASSESSMENT...............................................................................................
3.2.1 Aquatic compartment (incl. sediment)..........................................................................................
3.2.1.1 Fish .................................................................................................................................
3.2.1.2 Aquatic invertebrates ......................................................................................................
3.2.1.3 Algae...............................................................................................................................
3.2.1.4 Microorganisms ..............................................................................................................
3.2.1.5 Predicted no effect concentration (PNEC) for the aquatic compartment ........................
3.2.1.6 Predicted no effect concentration (PNEC) for sediment-dwelling organisms.................
3.2.2 Terrestrial compartment ...............................................................................................................
3.2.3 Atmosphere...................................................................................................................................
3.2.4 Non compartment specific effects relevant to the food chain (secondary poisoning)...................
3.2.4.1 Bioaccumulation .............................................................................................................
3.2.4.2 Avian toxicity .................................................................................................................
3.2.4.3 Mammalian toxicity ........................................................................................................
3.2.4.4 Predicted no effect concentration (PNEC) for secondary poisoning...............................
57
57
57
59
62
63
64
65
65
66
66
66
66
68
68
3.3 RISK CHARACTERISATION ...........................................................................................................
3.3.1 Aquatic compartment (incl. sediment)..........................................................................................
3.3.1.1 Water ..............................................................................................................................
3.3.1.2 Sediment .........................................................................................................................
3.3.2 Terrestrial compartment ...............................................................................................................
3.3.3 Atmosphere...................................................................................................................................
3.3.4 Non compartment specific effects relevant to the food chain (secondary poisoning)...................
69
69
69
70
72
73
74
3.1.2
3.1.3
3.1.4
3.1.5
4 HUMAN HEALTH...................................................................................................................................... 76
4.1 HUMAN HEALTH (TOXICITY) ......................................................................................................
4.1.1 Exposure assessment ...................................................................................................................
4.1.1.0 General discussion ..........................................................................................................
4.1.1.1 Occupational exposure....................................................................................................
4.1.1.1.1 General discussion ..........................................................................................
4.1.1.1.2 Manufacture....................................................................................................
4.1.1.1.3 Formulation.....................................................................................................
4.1.1.1.4 Use of formulations.........................................................................................
4.1.1.1.5 Summary of occupational exposure ................................................................
4.1.1.2 Consumer exposure.........................................................................................................
4.1.1.2.1 Leather treatment ............................................................................................
4.1.1.2.2 Use in textiles..................................................................................................
4.1.1.2.3 Use in metal working fluids available to consumers .......................................
4.1.1.2.4 Use in paints, sealants and adhesives available to consumers .........................
4.1.1.2.5 Use in rubber products ....................................................................................
4.1.1.2.6 Summary of consumer exposure .....................................................................
4.1.1.3 Indirect exposure via the environment ............................................................................
2
76
76
76
76
76
77
78
79
82
82
82
83
84
84
85
85
85
4.1.2 Effects assessment: Hazard identification and dose (concentration) - response (effect) assessment 89
4.1.2.1 Toxico-kinetics, metabolism and distribution ................................................................. 89
4.1.2.1.1 Studies in animals ........................................................................................... 89
4.1.2.1.2 Studies in humans ........................................................................................... 91
4.1.2.1.3 Summary of toxicokinetics.............................................................................. 91
4.1.2.2 Acute Toxicity ................................................................................................................ 92
4.1.2.2.1 Studies in animals ........................................................................................... 92
4.1.2.2.2 Studies in humans ........................................................................................... 93
4.1.2.2.3 Summary of single exposure studies ............................................................... 93
4.1.2.3 Irritation .......................................................................................................................... 94
4.1.2.3.1 Studies in animals ........................................................................................... 94
4.1.2.3.2 Studies in humans ........................................................................................... 96
4.1.2.3.3 Summary of irritation ...................................................................................... 97
4.1.2.4 Corrosivity ...................................................................................................................... 97
4.1.2.5 Sensitisation.................................................................................................................... 97
4.1.2.5.1 Studies in animals ........................................................................................... 97
4.1.2.5.2 Studies in humans ........................................................................................... 98
4.1.2.5.3 Summary of sensitisation ................................................................................ 99
4.1.2.6 Repeated dose toxicity .................................................................................................... 99
4.1.2.6.1 Studies in animals ........................................................................................... 99
4.1.2.6.2 Studies in humans ........................................................................................... 103
4.1.2.6.3 Studies on mechanisms of toxicity .................................................................. 103
4.1.2.6.4 Summary of repeated exposure studies........................................................... 107
4.1.2.7 Mutagenicity ................................................................................................................... 108
4.1.2.7.1 In vitro studies................................................................................................. 108
4.1.2.7.2 In vivo studies ................................................................................................. 109
4.1.2.7.3 Studies in humans ........................................................................................... 110
4.1.2.7.4 Summary of mutagenicity ............................................................................... 110
4.1.2.8 Carcinogenicity............................................................................................................... 110
4.1.2.8.1 Studies in animals ........................................................................................... 110
4.1.2.8.2 Studies in humans ........................................................................................... 113
4.1.2.8.3 Discussion at Technical Meetings and by the Specialised Experts ................. 113
4.1.2.8.4 Summary of carcinogenicity............................................................................ 114
4.1.2.9 Toxicity for reproduction................................................................................................ 115
4.1.2.9.1 Studies in animals ........................................................................................... 115
4.1.2.9.2 Studies in humans ........................................................................................... 116
4.1.2.9.3 Summary of toxicity for reproduction ............................................................. 116
4.1.3 Risk characterisation.................................................................................................................... 116
4.1.3.0 General aspects ............................................................................................................... 116
4.1.3.1 Workers .......................................................................................................................... 118
4.1.3.1.1 Introduction..................................................................................................... 118
4.1.3.1.2 Risk characterisation for workers.................................................................... 120
4.1.3.2 Consumers ...................................................................................................................... 121
4.1.3.2.1 Introduction .................................................................................................... 121
4.1.3.2.2 Risk characterisation for consumers ............................................................... 122
4.1.3.3 Man exposed indirectly via the environment .................................................................. 123
4.1.3.3.1 Introduction .................................................................................................... 123
4.1.3.3.2 Risk characterisation for man exposed indirectly via the environment........... 123
4.1.3.4 Combined exposure ........................................................................................................ 124
4.2 HUMAN HEALTH (PHYSICO CHEMICAL PROPERTIES) ...................................................... 124
5 RESULTS ..................................................................................................................................................... 125
5.1 INTRODUCTION ................................................................................................................................ 125
5.2 ENVIRONMENT ................................................................................................................................. 125
3
5.3 HUMAN HEALTH............................................................................................................................... 126
5.3.1 Risk to workers............................................................................................................................. 127
5.3.2 Risk to consumers......................................................................................................................... 127
5.4 MAN EXPOSED INDIRECTLY VIA THE ENVIRONMENT........................................................ 127
5.5 HUMAN HEALTH (PHYSICO CHEMICAL PROPERTIES) ....................................................... 128
6 REFERENCES............................................................................................................................................. 129
GLOSSARY ..................................................................................................................................................... 135
EUSES Calculations can be viewed as part of the report at the website of the European Chemicals Bureau:
http://ecb.ei.jrc.it
IUCLID Data Sheet can be viewed as part of the report at the website of the European Chemicals
Bureau:http://ecb.ei.jrc.it
Appendix A Quality of aquatic toxicity tests ................................................................................................ 138
Appendix B EUSES modelling....................................................................................................................... 148
Appendix C Results of Koc determination for short chain length chlorinated paraffins........................ 149
Appendix D Effect of proposed risk reduction measures on the conclusions of the environmental Risk
Assessment................................................................................................................................. 153
Annex to Appendix D: Vapour Pressure Estimates ..................................................................................... 162
TABLES
Table 1.1
Table 1.2
Table 2.1
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Theoretical chlorine content of some short chain length chlorinated paraffins .............................................. 7
Physico-chemical properties of some short chain length chlorinated paraffins.............................................. 8
Use of short chain length chlorinated paraffins in Western Europe in 1994.................................................. 11
Total losses for a large and small machine shop using oil-based cutting fluids............................................ 19
Summary of release estimates ............................................................................................................... 24
Results of BOD experiments using acclimated and non-acclimated microbial populations............................. 26
Environmental distribution short chain length chlorinated paraffins using generic level III fugacity model ....... 30
Summary of regional and continental modelling in EUSES ........................................................................ 34
Levels of short and intermediate chain length chlorinated paraffins in the United Kingdom in 1986 ............... 38
Levels of short chain length chlorinated paraffins in surface water in Germany ............................................ 38
Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in marine waters 39
Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in fresh and other
non-marine waters remote from industry ................................................................................................. 40
Table 3.10 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in waters in
industrialised areas............................................................................................................................... 41
Table 3.11 Levels of short chain length chlorinated paraffins near to a production site................................................. 42
Table 3.12 Levels of short chain length chlorinated paraffins in sediments from Germany............................................ 44
Table 3.13 Concentration of combined short and intermediate chain length chlorinated (C10-20) in marine sediments ...... 45
Table 3.14 Concentration of combined short and intermediate chain length chlorinated paraffins(C10-20) in fresh and other
non-marine waters remote from industry ................................................................................................ 45
Table 3.15 Concentration of combined short and intermediate chain length chlorinated paraffins(C10-20) in sediments and
industrualised areas............................................................................................................................. 46
Table 3.16 Estimated concentrations of short chain length chlorinated paraffins in food ............................................... 49
Table 3.17. Concentration of combined short and intermediate chain length chlorinated paraffins(C10-20) in aquatic organism 51
4
Table 3.18
Table 3.19
Table 3.20
Table 3.21
Table 3.22
Table 3.23
Table 3.24
Table 3.25
Table 3.26
Table 3.27
Table 3.27
Table 3.28
Table 3.29
Table 3.30
Table 3.31
Table 3.32
Table 3.33
Table 3.34
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table A
Table B
Table C
Table D
Table E
Table F
Concentrations of chlorinated paraffins in pooled samples from in and around Sweden............................... 51
Concentration of combined short and intermediate chain length chlorinated paraffins(C10-20) in seabirds'eggs....... 53
Concentration of combined short and intermediate chain length chlorinated paraffins(C10-20) in birds ............ 53
Concentration of combined short and intermediate chain length chlorinated paraffins(C10-20) in human foodstuff.. 53
Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in sheep from
areas near to and remote from a chlorinated paraffins production plant ..................................................... 54
Concentrations of chlorinated paraffins in pooled samples from in and around Sweden............................... 54
Summary of predicted environmental concentrations from the local scenario for use in the risk assessment.. 55
Summary of the predicted environmental concentration/doses from thethe regional and continental scenarios
for risk assessment .............................................................................................................................. 56
Toxicity of short chain length chlorinated paraffins to fish.......................................................................... 58
Toxicity of short chain length chlorinated paraffins to Daphnia magna........................................................ 60
continued Toxicity of short chain length chlorinated paraffins to Daphnia magna ....................................... 61
Toxicity of short chain length chlorinated paraffins to other aquatic invertebrates ........................................ 62
Toxicity of short chain length chlorinated paraffins to algae....................................................................... 63
Toxicity of short chain length chlorinated paraffins to microorganisms........................................................ 64
PEC/PNEC ratios for the aquatic compartment........................................................................................ 69
PEC/PNEC ratios for the sediment compartment ..................................................................................... 71
PEC/PNEC ratios for the terrestrial compartment..................................................................................... 72
PEC/PNEC ratios for secondary poisoning.............................................................................................. 75
Data to be used for risk assessment....................................................................................................... 82
Information to be used in the risk assessment ......................................................................................... 85
Estimated concentrations of short chain length chlorinated paraffins in food and human intake media .......... 86
Estimated human intake from various sources......................................................................................... 87
Inhalation and dermal exposures and doses and total systemic doses for themanufacture and use of short
chian length chlorinated paraffins ......................................................................................................... 119
Total systemic doses, NOAELs and margins of safety for the manufacture and use of short chain length
chlorinated paraffins............................................................................................................................ 120
Inhalation and dermal exposures and doses and total systemic doses for consumers exposed to short chain
length chlorinated paraffins ...................................................................................................................122
Total systemic doses, NOAELs and margins of safety for consumers exposed to short chain length
chlorinated paraffins........................................................................................................................... 122
PECs, PNECs and PEC/PNECs for sediment and the terrestrial compartment .......................................... 152
Effects of proposed risk reduction measures on release estimates........................................................... 155
Effects of proposed marketing and use restrictions on PECregional ............................................................. 156
Partition coefficients for short chain clorinated paraffinl ........................................................................... 156
Effects of measured K0c value on PECregional .......................................................................................... 157
Summary of changes to PEC/Pnec ratiosl .............................................................................................. 160
5
1
1.1
GENERAL SUBSTANCE INFORMATION
IDENTIFICATION OF THE SUBSTANCE
CAS No:
EINECS No:
IUPAC Name:
Molecular formula:
Structural formula:
Molecular weight:
Synonyms:
85535-84-8
287-476-5
Alkanes, C10-13, chloro
CxH(2x-y+2)Cly, where x=10-13 and y=1-13
CxH(2x-y+2)Cly
320-500
alkanes, chlorinated; alkanes (C10-13), chloro-(50-70%);
alkanes (C10-12), chloro-(60%);
chlorinated alkanes, chlorinated paraffins; chloroalkanes;
chlorocarbons; polychlorinated alkanes; paraffins-chlorinated.
There is a range of commercially available C10-13 chlorinated paraffins, commonly referred to
as short chain length chlorinated paraffins. They are usually mixtures of different carbon chain
lengths and different degrees of chlorination, although all have a common structure in that no
secondary carbon atom carries more than one chlorine (Willis et al., 1994). Two other groups
of chlorinated paraffins are made commercially. These are known as “mid, medium or
intermediate chain length” (typically C14-17) and “long chain length” (typically C20-30). This
assessment is concerned only with the short chain length (C10-13) chlorinated paraffins but
some information on the other types is included when it is considered to be useful and relevant
to the assessment.
1.2
PURITY/IMPURITIES, ADDITIVES
1.2.1
Purity
Table 1.1 shows the theoretical % weight chlorine content of several compounds. The amount
of chlorine present in the commercial products is usually expressed as a percentage by
weight (% wt), but since this refers to a mixture of carbon chain length products it is not
possible to identify exactly which compounds are present in the mixture, although Table 1.1
can be used as a guide. Wherever possible in this report, the actual carbon chain length (or
range of carbon chain lengths) and the degree of chlorination will be given.
Commercial products contain complex mixtures of isomers and standard analytical methods
do not permit separation and identification of these. Work by Könnecke and Hahn (1962)
provides a basis for estimating the distribution of chlorine content in any given product
(though the work was actually carried out with C26 chlorinates). This gives a prediction of
approximately 80% of the isomers present lying within ±10% of the stated average chlorine
content, or 90% within ±15%. Thus, in a short chain length 50% wt chlorine content product,
there is likely to be only around 5% of mono- and dichloro isomers present (with a
corresponding low percentage of highly chlorinated material) (ICI, 1995).
6
CHAPTER 1. GENERAL SUBSTANCE INFORMATION
Table 1.1 Theoretical chlorine content of some short chain length chlorinated paraffins
Formula
% Cl
by weight
Formula
% Cl
by weight
Formula
% Cl
by weight
C10H21Cl
20.1
C11H19Cl5
54.0
C10H20Cl2
33.6
C11H16Cl8
65.7
C13H27Cl
16.2
C10H18Cl4
50.7
C11H13Cl11
72.9
C13H26Cl2
28.1
C10H16Cl6
61.0
C13H24Cl4
44.1
C10H14Cl8
67.9
C12H25Cl
17.4
C13H20Cl8
61.7
C10H12Cl10
72.9
C12H24Cl2
29.7
C13H18Cl10
67.1
C12H20Cl6
56.5
C13H16Cl12
71.2
C13H14Cl13
73.1
C11H23Cl
18.6
C12H16Cl10
68.9
C11H22Cl2
31.6
C12H14Cl12
72.9
Any impurities in commercial chlorinated paraffins are likely to be related to those present in
the n-paraffin feedstocks, in which the major non-paraffinic impurity is a small proportion of
aromatics, generally in the range 50-100 ppm. However, there is some evidence that the
reaction does not favour chlorination of aromatics. No specific methods are available for
detection of possible impurities and chlorinated paraffins are generally not amenable to
analysis by techniques such as gas chromatography (ICI, 1995).
1.2.2
Additives
Various stabilisers are often added to commercial chlorinated paraffin products in order to
improve the thermal stability or light stability. An example of a stabiliser for a short chain
length chlorinated paraffin would be epoxidised vegetable oil (typical concentration <0.5%).
1.3
PHYSICO-CHEMICAL PROPERTIES
The physical and chemical properties of the C10-13 chlorinated paraffins are determined by the
chlorine content (typically 49-70% for commercial substances). There are a wide number of
possible chlorinated paraffins (of different chain length, degrees of chlorination and position
of the chlorine atoms along the carbon chain) present in any given commercial product. Thus,
care has to be taken when interpreting some of the physico-chemical data. Increasing chlorine
leads to an increase in viscosity and a decrease in volatility. The C10-13 chlorinated paraffins
are relatively inert substances, which are resistant to chemical attack and are hydrolytically
stable. They possess good thermal stability. However if held at high temperatures (>200oC) for
long periods they will darken and release detectable quantities of hydrogen chloride (Hoechst
AG, 1990).
The physico-chemical properties are discussed below and summarised in Table 1.2.
7
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 1.2 Physico-chemical properties of some short chain length chlorinated paraffins
Property
Physical state at ntp
Pour point
Boiling point
(at ntp)
Density
(at 25oC)
Vapour pressure
(at 40oC)
Water solubility
(at 20oC)
Log octanol-water
partition coefficient
Flash point
Chlorine content
(% wt)
Value
49-70
-
49
-30.5oC
70
+20.5oC
>200oC
49-70
1.2-1.6 g/cm3
52-70
1.3-1.6 g/cm3
50
0.021 Pa
59
0.15-0.47 mg/l
49
4.39-6.93
60
63
4.48-7.38
5.85-7.14a
5.47-7.30
70
5.68-8.69
71
5.37-8.01
50
166oC
56
202oC
Remarks
clear to yellowish liquid
commercial mixtures – no distinct melting point
decomposition with release of hydrogen chloride
with partial hydrolysis
measured by a high performance thin layer
chromatography method except which was measured
by a slow stirring method
closed cup
Autoflammability
not stated
Explosivity
not explosive
Oxidising properties
1.3.1
decomposes with liberation of hydrogen chloride
above 200 ° C
none
Physical state (at ntp)
Short chain length chlorinated paraffins are clear or yellowish mobile to highly viscous oily
liquids with only a faint odour.
1.3.2
Melting point
Commercial mixtures do not have a distinct melting point. Pour points can be quoted for these
materials which are more appropriate. IUCLID presents a pour point range of -30.5oC to
+20oC for a chlorine content of approximately 49% to 70% respectively (Hoechst AG, 1990).
8
CHAPTER 1. GENERAL SUBSTANCE INFORMATION
1.3.3
Boiling point
The boiling point can be considered to be >200oC at ntp, above which decomposition with
release of hydrogen chloride occurs.
1.3.4
Relative density
IUCLID presents densities ranging from 1.18 to 1.55-1.59 g/cm3 for chlorine contents between
49% and 71% (Hoechst AG, 1990).
1.3.5
Vapour pressure
For a chlorine content of 50%, the vapour pressure has been measured at 0.0213 Pa at 40oC.
No data is available for higher chlorine contents.
1.3.6
Solubility
Short chain length chlorinated paraffins are practically insoluble in water. IUCLID presents data
for solubility after exposure to water for 6 months, which was estimated to be 0.15-0.47 mg/l
(for a chlorine content of 59%). However, these results may have been affected by partial
hydrolysis of the chlorinated paraffin (Madeley and Gillings, 1983).
They are highly soluble in chlorinated solvents, aromatic hydrocarbons, esters, ketones and
ethers, moderately soluble in aliphatic hydrocarbons and slightly soluble in lower alcohols.
1.3.7
Partition coefficient
Renberg et al. (1980) determined the octanol-water partition coefficients for a range of short
chain length chlorinated paraffins. The partition coefficients were determined by a high
performance thin layer chromatography (HPTLC) method. The range quoted reflects the
different HPTLC retention times, and hence octanol-water partition coefficients of the
various components of the mixtures. The partition coefficients determined (log values) were
4.39-6.93 (C10-13, 49% wt Cl), 4.48-7.38 (C11.5, 60% wt Cl), 5.47-7.30 (C10-13, 63% wt Cl),
5.68-8.69 (C10-13, 70% wt Cl) and 5.37-8.01 (C10-13, 71% Cl).
Sijm and Sinnige (1995) determined the octanol-water partition coefficient of a C10-13, 60% Cl
chlorinated paraffin using a "slow-stirring" method at 25oC. The chlorinated paraffin was
dissolved in octanol (at concentrations of 25 or 50 µg/l) and was stirred with water for up to 7
days. The log Kow values determined for the individual components of the commercial
chlorinated paraffin were determined in the range 5.85 to 7.14, which are in good agreement
with the values determined by Renberg et al. (1980).
An alternative calculated range for log octanol-water partition coefficient of 6.0->6 for
C10H21Cl - C10Cl22 was presented by Hoechst AG (1990). The partition coefficients are
relatively crude but within the range of the measured values reported by Renberg et al.
9
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
1.3.8
FINAL REPORT, OCTOBER 1999
Flash point
IUCLID presents a flash point of 166oC (closed cup) for a product containing 50% chlorine,
with a value of 202oC for a product containing 56% chlorine. Higher chlorine content products
all have flash points above 200oC.
1.3.9
Autoflammability
Decomposition starts to occur above 200oC with liberation of hydrogen chloride.
1.3.10
Explosivity
Not explosive.
1.3.11
Oxidising properties
No oxidising properties.
1.4
CLASSIFICATION
1.4.1
Current classification
Short chain length chlorinated paraffins are classified as a dangerous substance within the
meaning of Directive 67/548/EEC. The classification is:
Carcinogen Category 3: R40, with the symbol Xn; and
Dangerous for the Environment, with the symbol N
They are assigned the risk phrases:
R40
- Possible risk of irreversible effects, and
R50/53 - Very toxic to aquatic organisms, may cause long-term adverse effects in
the aquatic environment.
1.4.2
Proposal of rapporteur
The rapporteur agrees with the current classification.
10
.
2
GENERAL INFORMATION ON EXPOSURE
2.1
PRODUCTION
Short chain length chlorinated paraffins are currently manufactured by two companies in the
EU under a variety of trade names. According to IUCLID, there were five producers in the
EU in 1992/3. Based on Euro-Chlor figures, the total EU production volume is now
≤15,000 tonnes/year (Euro-Chlor, 1995).
Chlorinated paraffins are manufactured by adding chlorine gas into the starting paraffin
fraction at a temperature of 80-100oC without a solvent. No catalysts are necessary in the
reaction although visible light is often used to initiate the reaction. The reaction gives out heat
and so the reactor must be cooled. Both batch and continuous processes can be used but batch
processes are generally preferred since this allows accurate specification of the different
grades to be achieved (Ullmann, 1986).
Short chain length chlorinated paraffins are transported from production sites to formulators'
premises in road tankers and in drums.
2.2
USE
The main uses of short chain length chlorinated paraffins are in metal working fluids, sealants,
as flame retardants in rubbers and textiles, in leather processing and in paints and coatings.
A breakdown of the uses of short chain length chlorinated paraffins in Western Europe for
1994 is given in Table 2.1 (Euro-Chlor, 1995).
Table 2.1 Use of short chain length chlorinated paraffins in Western Europe in 1994
Application
Quantity used
(tonnes/year)
Percentage of total use
Metal working
9,380
71.02%
Rubber
1,310
9.91%
Paints
1,150
8.71%
Sealants
695
5.26%
Leather
390
2.95%
Textiles
183
1.40%
Others
100
0.75%
13,208
100%
Total
Metal working fluids account for the bulk of short chain chlorinated paraffin use in Europe
(approximately 71% of total use), followed by flame retardant use in rubber (approximately
10%) and use in paints (approximately 9%). The other minor uses (approximately 10% in
total) include use in leather finishing, sealants and textiles. It has also been reported that
chlorinated paraffins (possibly including short chain length) are sometimes used as extreme
pressure additives in greases, although the quantities involved are likely to be small.
11
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
There is a general decline in the amounts of short chain length chlorinated paraffins used
within Europe, particularly in the metal working and leather areas (for instance, in Germany
an overall reduction in their use in metal working fluids of around 50% has occurred (ICI,
1995) and their use has practically been discontinued in water-oil emulsions (BUA, 1992).
In Sweden the use of all chlorinated paraffins in metal working fluids has been reduced by
80% overall (a 95% reduction in water-oil emulsions (i.e. 160 tonnes in 1986 and 8.5 tonnes
in 1993) and a 75% reduction in straight oil based cutting fluids (i.e. 520 tonnes in 1986 and
130 tonnes in 1993) between 1986 and 1993 and is expected to reduce further. More than 80%
of the chlorinated paraffins used in emulsion cutting fluids and at least 20% of the chlorinated
paraffins used in straight oil applications were short chain length highly chlorinated paraffins.
Uses in some areas, notably the flame retardant/plasticiser uses of short chain length
chlorinated paraffins, may increase in future as newer applications are exploited (Stenhammar
and Björndal, 1994).
Further information on use of short chain chlorinated paraffins has been obtained from
product registers from certain countries. For Sweden in 1995, 104 tonnes were used as fire
retardants additives, 116 tonnes in metal cutting fluids, 107 tonnes as a plasticiser in rubber
products, with smaller amounts (1-3 tonnes) in paints/varnishes and lubricants, etc. In
Norway, the annual consumption of short chain length chlorinated paraffins is thought to be
35 tonnes/year, with the main use being as a flame retardant (18 tonnes/year) and surface
active agent (17 tonnes/year). There is no reported use or import of short chain length
chlorinated paraffins in the Czech Republic. In Switzerland, short chain length chlorinated
paraffins are not used in consumer products.
2.2.1
Metal cutting/working fluids
The major use of short chain length chlorinated paraffins (typically 49-69% wt chlorine
content) is as an extreme pressure additive in metal working fluids. These fluids are used in a
variety of engineering and metal working operations such as drilling, machining/cutting,
drawing and stamping. The chlorinated paraffins are blended with other additives including
corrosion inhibitors, emulsifiers, biocides and surface active agents. Approximately 80% of
short chain chlorinated paraffins are used in straight oil applications (in solution in a
hydrocarbon) and 20% in soluble oil emulsions (dispersed in water). The chlorinated paraffin
content of the straight oil metal working fluid usually ranges from 2 to 10% (typically 5%),
but can be up to 80% or more for some speciality applications. When used in emulsions, a
concentrate containing typically 15% chlorinated paraffin in oil is used, which will be
emulsified with water to give an emulsion typically containing 5% oil (hence the chlorinated
paraffin content would be 0.75% in the emulsion).
Chlorinated paraffins improve the pressure-accepting capacity of emulsified and nonemulsified metal working fluids. The chlorinated paraffins are thought to work by liberating
hydrogen chloride as the metal surface heats up. This leads to the formation of metal
chlorides. The metal chlorides have a good lubricating and parting effect and so help prevent
the welding together of the metal parts under the high pressures and temperatures involved. In
general, the efficiency of the metal working fluid increases as the chlorine content of the
chlorinated paraffin increases.
12
CHAPTER 2. GENERAL INFORMATION ON EXPOSURE
.
According to 1995 Euro-Chlor figures (RPA, 1996), the United Kingdom (32.3% of total use),
France (29.9% of total use), Italy (14.8% of total use), Germany (12.8% of total use) and
Spain (4.8% of total use) are the largest users of short chain length chlorinated paraffins in
metal cutting fluids in the EU, although most other EU countries appear to use them in
small amounts. The total EU usage in metal working fluids for 1995 was thought to be
around 8,500 tonnes/year, similar to the figure for 1994 given in Table 2.1.
2.2.2
Rubber industry
Due to their fire retarding properties, the highly chlorinated (typically 63-71% wt Cl) short
chain length chlorinated paraffins find use in rubber formulations. In general, they are used in
a proportion of 1-10% in conjunction with other flame retarding additives such as antimony
trioxide and aluminium hydroxide.
The major use of short chain length chlorinated paraffins in this area appears to be in high
density conveyor belts, along with other technical products such as hoses and gaskets. The
belts are mainly used in the coal mining industry. The life of the belts is around 10 years and
used belts are increasingly being recycled by reduction to powder and subsequent formation of
belts, mats, building materials, etc.
2.2.3
Paint industry
Chlorinated paraffins are used as plasticisers in paints and other coating systems. They can
also be used to improve the water resistance, chemical resistance and the nonflammability of
paints. The paints are mostly solvent based and are used mainly in industrial/specialist
applications such as marine primer paints, fire retardant paints and paints for roadmarkings.
Generally, compounds of moderate chlorine content (e.g. 60-65% wt Cl) seem to be used.
They are used at proportions of 1-10% in paints based on resins such as chlorinated rubber,
vinyl copolymers and acrylics. Actual formulations for paints are not commonly available but
the published information indicates that a 10% total chlorinated paraffin content is typical for
most paint types. The main types of chlorinated paraffins used in paints are the longer-chain
grades, but some short chain length chlorinated paraffins are used, mainly in acrylic base
coatings (Bowerman, 1971; Eckhardt and Grimm, 1967; Allsebrook, 1972).
2.2.4
Sealing compounds
Short chain length chlorinated paraffins can be used as additives in sealing compounds (e.g.
polysulphide, polyurethane, acrylic and other polymer sealants/adhesives) for use in building,
automotive and industrial applications. They act as plasticisers in order to achieve the desired
hardness and elasticity. They can also impart flame resistant properties to the sealant. The
leachability and volatility of short chain length chlorinated paraffins over the lifetime of the
sealant (typically 20 years) is reported to be low.
The short chain length compounds used appear to have chlorine contents in the range 56-65% wt.
13
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
2.2.5
FINAL REPORT, OCTOBER 1999
Leather industry
Short chain length chlorinated paraffins are reported to be used in the leather industry as fat
liquoring agents. They show better adhesion to the animal skin than natural oils, with
similar fattening and softening properties. They also impart better washability to the
leather than natural oils. They are usually applied to the moist dressed leather in the form of a
10-30% emulsion or are added to sulphated or sulphonated oil or synthetic emulsifying
agents. The chlorinated paraffins used generally have a low chlorine content (20-40% wt Cl)
(BUA, 1992).
Short chain length chlorinated paraffins are not used in significant quantities in the
leather industry in the United Kingdom, Scandinavia/Denmark, Spain or France. When
chlorinated paraffins are used in fat liquoring in these countries, they tend to be of longer
chain lengths and/or as the sulphochlorinated paraffin. The use of chlorinated paraffins
and sulphochlorinated paraffins in this area appears to be decreasing in most countries.
In the United Kingdom, the only use of short chain length chlorinated paraffins identified
(1-2 tonne/year) is to produce a surface sheen to certain types of suede slippers.
In a recent survey of the European leather finishing industry (EC, 1996), sulphonated
chlorinated paraffins were identified as being used in fat liquoring processes. However, it
was also stated that as a result of concerns over the release of adsorbable organic halogens
it is possible that chlorinated fat liquoring products will be replaced by other products.
2.2.6
Textile industry
The highly chlorinated short chain length chlorinated paraffins can be used in the
production of flame-resistant, water repellent and rot-preventing textile finishes.
Applications for such finishes include sail cloths, industrial protective clothing, lorry
tarpaulins, etc. The major historical use of chlorinated paraffins was in military tenting,
but it is believed that they are no longer used in this application in the EU.
Information provided by the Chlorinated Paraffins Sector Group of Euro-Chlor indicate
that current usage of short chain length chlorinated paraffins in textiles in the EU is very
low, with the majority being used in back coating of textiles (the short chain length
chlorinated paraffin is applied to the textile in a polymer matrix), with smaller amounts
being used in other textile treatments. In 1994, 183 tonnes of short chain length chlorinated
paraffins were used in the EU in textile applications (see Table 2.1). This figure was broken
down between 163 tonnes/year used in backcoating operations and 20 tonnes in other textile
treatments (e.g. waterproofing). Figures for 1995 indicate that a total of 37 tonnes were used
in the EU: 32 tonnes in backcoating and 5 tonnes in other treatments.
14
CHAPTER 2. GENERAL INFORMATION ON EXPOSURE
.
2.3
EXPOSURE CONTROL
The main route of potential worker exposure that exists during manufacture, formulation
and use of C10-13 chlorinated paraffins is via skin contact. Exposure via skin contact can
be controlled by the decontamination of equipment where appropriate and by use of
personal protective equipment (PPE). Most users require the use of PPE such as gloves,
coveralls, boots and safety goggles to be routinely worn.
Exposure to vapour is generally considered insignificant due to the low vapour pressures
involved. However, there is a potential for significant inhalation exposure to C10-13 chlorinated
paraffins during the formulation of hot melt adhesives and in the use of metal working
fluids. Local exhaust ventilation can be used to control inhalation exposure in the hot
melt adhesive manufacturing sector. In the metal working sector, inhalation exposure to
mists/aerosols of metal working fluids can be controlled by using anti-mist additives in
the formulation and by enclosing the workpiece using splash guards.
15
3
ENVIRONMENT
3.1
EXPOSURE ASSESSMENT
3.1.0
General discussion
In the assessment, releases to the environment are considered in various scenarios. These are
explained more fully in the Technical Guidance Document. The local environment is
considered to be the environment near to a site of release (e.g. a production or processing site).
The regional environment is taken to represent a highly industrialised area (size is 200 km by
200 km with 20 million inhabitants) and it is assumed that 10% of the European production or
use takes place in this area. The continental environment is the size of the EU and is generally
used to obtain "background" concentrations of the substance.
3.1.0.1
Releases from production
It is known that in the United Kingdom production of chlorinated paraffins is carried out in a
batch process (Willis et al., 1994). This is to enable close control of reaction conditions to be
maintained in order to achieve accurate specification of the different grades. Proposals for
emission factors from production in batch processes (Main Category Ic) are given in Appendix
1 of the Technical Guidance Document. For short chain length chlorinated paraffins the
release fractions are 0 to air, 0.003 (i.e. 0.3%) to waste water and 0.0001 (i.e. 0.01%) to soil.
Mukherjee (1990) reported that the loss of total chlorinated paraffins during production was
about 0.1 g/kg (0.01%). The loss is mainly to air, probably as dust for the solid products.
However, given the physico-chemical properties of the substance, it is likely that any
substance present in air will be adsorbed onto particles which may settle out of the air and
eventually enter waste water. It will be assumed that this emission factor is applicable to the
production of short chain length chlorinated paraffins throughout the EU and that emissions
will be mainly to wastewater (it should be noted that use of the release factor given in the
Technical Guidance Document would lead to a larger release to water, and hence a higher
PEC).
Information provided on a German production plant indicates that losses to waste water only
occur during the manufacture of solid (i.e. long chain length, C20-30, chlorinated paraffins and
that the total loss of all chlorinated paraffins to waste water was around 1 kg/year. However, it
was also estimated that around 250 kg/year of chlorinated paraffins were released to air (as
dust and vapour) in Germany in 1990 (BUA, 1992).
Assuming the maximum likely production at any one site is 10,000 tonnes, the following
(local) release estimate can be made using the following emission scenario:
Release factor
= 0.01%
Quantity of chlorinated paraffin produced at 1 site = 10,000 tonnes/year
Quantity released at 1 site
= 1 tonne/year
= 3.33 kg/day (assuming 300
days production)
Note that if the Technical Guidance Default release figure of 0.3% is used, the daily
release at a production site would be 100 kg/day.
16
CHAPTER 3. ENVIRONMENT
By a similar argument, assuming that a total of 15,000 tonnes/year are made within the EU,
the quantity released in the EU would be 1.5 tonnes/year or (45 tonnes/year using the
Technical Guidance Default release figure).
Information provided by the two current producers in the EU indicate that the maximum
releases of short chain length chlorinated paraffin to waste water are much lower than the
figures estimated here and are likely to be less than 9.9-26.7 kg/year.
3.1.0.2
Releases from use
3.1.0.2.1
Use in metal working and extreme pressure lubricating fluids
Formulation
Information on the blending and formulation of metal working fluids in the United Kingdom
has been obtained (UCD, 1995). Blending is frequently carried out in a batch process. Usually
the additives are added to the base oil either by meter from a bulk storage tank or directly
either in neat form or diluted with the base oil. Solid additives which are soluble in the base
oil are almost always pre-dissolved in a small quantity of the oil before adding to the blend.
Many additives are difficult to handle due to their high viscosity. Such additives may be
pre-heated prior to blending. The blending vessels are normally mixed using paddle mixers or
jet mixers but other methods such as air sparging, pulse-air mixing, high shear mixing and
passing the fluid through a convoluted chamber to induce turbulence are sometimes used.
It has been estimated that the highest likely loss of lubricant at a formulation site would
typically be in the region of 1%, with a maximum of 2%. Of this, the greatest amount would
be controlled losses, for instance off-specification material that could not be re-used. This
would be collected and sent for disposal. Another possible source of loss would be residues in
drums sent for recycling. Losses to the atmosphere may occur from pre-heating and blending
but are thought to be very low, typically 16 kg of lubricant/year for an average size blending
plant (this figure refers to the release of all lubricants, not just metal cutting fluids containing
chlorinated paraffins). Typical losses of the lubricant blend to waste water are thought to be
around 0.25%. This figure is derived from information on the discharge consents for oil for
blending sites in the United Kingdom (UCD, 1995).
Assuming that 9,380 tonnes/year of short chain length chlorinated paraffins are used in the EU
in metal cutting fluids, then the release to waste water at the formulation stage can be
estimated as 23.45 tonnes/year. Similarly, the release in the regional model would be around
2.35 tonnes/year (assuming a total usage of 938 tonnes). In the United Kingdom there are
thought to be 6 large lubricant blending plants for all types of lubricants. Assuming that each
plant produced cutting fluids containing short chain length chlorinated paraffins (there is
evidence to suggest that most formulators do or have used short chain length chlorinated
paraffins (RPA, 1996), the quantity of chlorinated paraffins used at any one site can be
estimated as a sixth of that estimated in a country/regional model (i.e. 156 tonnes/year).
Thus the release of short chain length chlorinated paraffins at any one site can be estimated as
391 kg/year, or 1.3 kg/day over 300 days. In addition, there may be some release at sites where
drums are recycled/cleaned, however, it is currently not possible to quantify this.
17
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Use
Appendix 3 of the Technical Guidance Document provides some emission scenarios for the
release of lubricant additives from water-based fluids but does not give any guidance as to
the release from use in oil-based fluids, the major use of short chain length chlorinated
paraffins. Appendix 1 (Table A3.7) of the Technical Guidance document gives release
figures to waste water for metal working fluid additives of 18.5% from oil-based fluids and
31.6% from water based fluids.
The releases of short chain length chlorinated paraffins from metal working fluids have
been discussed in a recent report from Canada (Government of Canada, 1993). It was
thought that the majority of the short chain chlorinated paraffins used had chlorine contents
in the range 50-60% wt. Release to the environment was thought to occur from disposal of
used drums, carry-off from work pieces and disposal of spent fluid. No information was
reported on the releases from drum disposal/recycling but it was thought that it would be
small.
Using data obtained by the United States Environmental Protection Agency from the
Chlorinated Paraffins Industry Association, losses due to carry-off from work pieces were
estimated to be 2.5 kg/site/year for a small user (100 l capacity) and 2,500 kg/site/year for a
large user (95,000 l capacity) (Government of Canada, 1993). [It is not clear whether these
figures refer to short chain length chlorinated paraffin, total chlorinated paraffin or total
fluid - as a worst case approach it will be assumed that they refer to the short chain length
chlorinated paraffin. This is then consistent with short chain length chlorinated paraffins
making up around 5% by weight (see Section 2.2.1) of the metal working fluid (i.e. 95,000 l
of cutting fluid would contain around 5,000 kg of short chain length chlorinated paraffin),
and a loss rate of 50%]. Release to water from the disposal of spent chlorinated paraffin
baths was estimated to vary between 12 to 1,500 kg/site/year, with 90% of the sites being
near to the lower end of the range (again, it is not clear if these figures refer to chlorinated
paraffin or total fluid).
Information on the use of and release from metal working fluids in the United Kingdom
has also been obtained (UCD, 1995). Losses of cutting fluid, and hence any additive are
dependent on the type of equipment available for separating the fluid from the swarf. In
the United Kingdom it is thought that around 40% of the metal working activity is carried
out in large machine shops with sophisticated swarf treatment, 30% in medium sized
machine shops with basic swarf treatment and remaining 30% in small machine shops
with no swarf treatment. Little information is available on the size distributions in other
EU countries, although the distribution in Spain is thought to be similar to the UK and in
Italy the proportion of large machine shops is slightly higher (60% in large machine
shops, 30% in medium machine shops and 10% in small machine shops) (RPA, 1996).
The estimated annual losses of cutting fluid, based on the replacement rates are thought to
be near 50% for a large machine shop, 75% from a medium sized machine shop and 100%
from a small machine shop. Not all of this loss, however, is released to water.
A breakdown of the total losses for a large and small machine shop using oil-based cutting
fluids are shown in Table 3.1.
18
CHAPTER 3. ENVIRONMENT
Table 3.1 Total losses for a large and small machine shop using oil-based cutting fluids
Large facility with
swarf reprocessing
Misting/evaporation
Overalls
Leaks
Dragout/swarf
Internal reprocessing
External reprocessing
2%
1%
1%
27%
3%
1%
2%
1%
10%
Total losses
48%
Dragout/workpiece
to air
to water
to water*
incinerated
to landfill
to water
chemical waste
to water*
reused/discarded
as waste oil
Small facility
-no swarf reprocessing
2%
2%
3%
81%
9%
1%
2%
to air
to water
to water*
incinerated
to landfill
to water
chemical waste
100%
*These losses may be further minimised by collecting the cutting fluid for re-use
As can be seen from the figures, the losses to waste water from a large and small machine
shop can be as low as 4% and 6% respectively. However some of the other losses have the
potential for entering waste water. For instance although misting/evaporation losses are
initially to air, these have the potential to settle within the facility and reach waste water as a
result of cleaning of equipment, etc. The losses due to external reprocessing of spent cutting
fluid are due to line flushing, etc. In a well controlled facility this will be collected and re-used
or discarded as waste oil, however, in less well controlled facilities there remains the
possibility that this could be discharged to waste water. The major losses of metal cutting
fluids are associated with the swarf. It is thought that the vast majority (90%) of the swarf
produced (and adhering cutting fluid) is melted for re-use, thus the cutting fluid and any
additive will be destroyed by this process. In some situations, the swarf may undergo solvent
cleaning prior to melting, and so some short chain length chlorinated could end up in waste
solvent at such sites. The remaining 10% of swarf is thought to be disposed of to landfill. The
final source of loss is due to dragout of the cutting fluid on the work piece. This is generally
removed by either alkaline washing or solvent washing and it is thought that in both cases the
remaining cutting fluid is distributed between emission to water and chemical waste. In a
worst case it could be assumed that all this dragout loss occurs to waste water. From the above
discussion it can be estimated that a worst case loss from a metal finishing facility could be in
the region of 18%. The situation with emulsifiable cutting fluids is similar, with estimated
emissions to water of between 5 and 13% taking the best and worst case assumptions as
above. In addition, it is expected that around 3% of the total amount used will end up in
landfill as a result of swarf disposal.
It is thought that a typical large scale metal working plant in the United Kingdom would
contain about 50,000 litres of cutting oil. This size will be used as the basis of the local
emission scenario. PECs in water will be calculated based on what is thought to be a low
emission of 4%/year and a worst case figure of 18%/year (this figure is also consistent with
the default figure given in Appendix 3 of the Technical Guidance Document). Assuming that
the short chain length chlorinated paraffin makes up around 5% of the cutting fluid, then
50,000 litres of cutting fluid would contain around 2,500 kg of short chain length chlorinated
paraffin. Thus the possible emissions from a large metal finishing plant to water can be
estimated as 100 kg/year or 450 kg/year of short chain length chlorinated paraffin. Assuming
use on 300 days/year these emissions are equivalent to 0.33 kg/day or 1.5 kg/day. These
emission estimates are based on an average chlorinated paraffin content of 5% in the cutting
19
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
fluid. Much higher contents may be used for some applications (up to 80% chlorinated
paraffin content) and so emissions from some facilities may be higher than the figures
estimated here.
An EU wide release of short chain length chlorinated paraffins from use in metal working fluids
of 1,688 tonnes/year can be estimated by assuming an EU consumption of 9,380 tonnes/year in
this application and a release of 18% of use. Similarly, the release in the regional model would
be around 169 tonnes/year (assuming total usage of 938 tonnes/year). Again, assuming use on
300 days/year, the releases are equivalent to 563 kg/day in the regional model and 5,627 kg/day
in the EU. In addition, it can be estimated that, in the EU, around 281 tonnes/year of short
chain length chlorinated paraffins will be disposed of to landfill as a result of swarf disposal.
3.1.0.2.2
Use as a flame retardant in rubber formulations
A recent report from Canada gave Swedish estimates of the release of chlorinated paraffins
from use as a flame retardant as <0.001% of that used (Government of Canada, 1993).
If it is assumed that 1,310 tonnes/year are used in the EU or 131 tonnes/year in a region in
rubber formulations, the following local and regional emission estimates can be obtained:
Amount used in regional model
Percentage released
No of days of operation
Amount released in regional model
Number of sites of release
Amount released/site (local model)
= 131 tonnes/year
= 0.001%
= 300/year
= <1.3 kg/year = <0.004 kg/day
=1
= <0.004 kg/day
Similarly, assuming a total EU usage in rubber formulations of 1,310 tonnes gives an EU wide
release of <0.04 kg/day.
3.1.0.2.3
Use as a plasticiser in paints and sealing compounds
It is thought that around 1,150 tonnes/year of short chain length chlorinated paraffins are used
in paints in the EU. A slightly smaller amount (695 tonnes/year) are thought to be used in
sealants in the EU. A recent report from Canada estimated that release of chlorinated paraffins
from formulation and use in paints would be minimal (Government of Canada, 1993).
Since the chlorinated paraffins are incorporated into the final finish, they may eventually be
released by leaching/volatilisation from the paint. However, the low vapour pressures of
chlorinated paraffins mean that volatilisation from the finished painted surface is likely to be
low and the low water solubility means that leaching from the paint during use is likely to be
minimal. Further, for some applications such as marine paints, the chlorinated paraffincontaining paint is used as a primer (Bowerman, 1971) and is subsequently covered with a top
coat of a different type, thus further minimising the possibility of leaching. Release of
chlorinated paraffins from disposal of painted articles is also likely to be low as high
temperature incineration is likely to destroy the chlorinated paraffins, and leaching from
landfill is likely to be low due to the high adsorption of the chemicals onto soil.
20
CHAPTER 3. ENVIRONMENT
Release from use in sealing compounds is likely to be minimal due to the same arguments
given above for paints. No default release factors are currently available in the Technical
Guidance Document for this use.
3.1.0.2.4
Use in leather applications
The situation over the use of short chain chlorinated paraffins in leather finishing in the EU is
very confused. It is not clear if they are sulphonated before use or are used as fat liquoring
agents in mixtures with sulphonated compounds. The following scenarios cover the possible
uses, although recent information indicates that Scenario B is more realistic of the actual use
in the EU (i.e. short chain chlorinated paraffins are not thought to be sulphonated before use in
the EU). However, in terms of the risk assessment, the actual releases to the environment
estimated for the two Scenarios are similar and would lead to similar conclusions.
Scenario A
There is some confusion over whether short chain length chlorinated paraffins are sulphonated
before use in leather applications. The current information available indicates that this is not
the case and that Scenario B is more representative of the actual use. However, this scenario
covers this possible use and will assume that the chlorinated paraffin is changed during the
reaction and that release of the parent chlorinated paraffin during leather processing is likely to
be minimal. The main source of release to the environment could be due to the sulphonation
process. A worst case scenario can be derived using the default release factors given in the
Technical Guidance Document (Industry Category 7: Leather processing industry, Formulation),
assuming that all 390 tonnes of short chain length chlorinated paraffins are sulphonated in the
EU, with 10% in a region.
Amount of short chain length chlorinated
paraffins used/amount of sulphonated
compounds produced used in region
= 39 tonnes/year
Release fraction to air
= 0.00001 (Table A1.1, Default –see below)
Release fraction to water
= 0.02 (Table A2.1)
Fraction produced at one site
= 0.9 (Table B2.4)
Number of days of release
= 35 (Table B2.9)
Amount released/site (local model)
= 0.01 kg/day to air and 20 kg/day to waste water
Amount released in region
= 0.39 kg/year to air and 780 kg/year to waste water
Amount released in EU
= 3.9 kg/year to air and 7,800 kg/year to waste water
The default release fraction to air for this substance is given as 0.0025 in Table A2.1 of the
Technical Guidance Document. This is derived for substances with vapour pressures <10 Pa at
25oC. The actual vapour pressure for short chain length chlorinated paraffins is much less than
this (0.0213 Pa at 40oC) and so the release fraction given in Table A2.1 is likely to be much
too high. The default release fraction to air of 0.00001 from Table A1.1(Production) is used
instead since this is derived for substances with low vapour pressures.
Scenario B
Industry sources have indicated that short chain length chlorinated paraffins are actually be
used as mixtures with sulphonated compounds or other fat liquoring chemicals (natural oils).
21
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
The sulphonated compounds are not thought to be derived from short chain length chlorinated
paraffins. In this scenario, releases of short chain length chlorinated paraffins could occur
during the formulation and processing (use in leather finishing) steps. In the absence of any other
information it will be assumed that the actual products used are 50:50 mixtures of short chain
length chlorinated paraffins and other compounds. Thus, if 390 tonnes/year of short chain
length chlorinated paraffins are used in the EU each year, this would give the total amount of
product (50:50 mixture) used of around 780 tonnes/year, with 10% of this i.e. 78 tonnes being
used in a region.
The releases from the formulation step can be estimated using the release estimates given in
the Technical Guidance Document for (Industry Category 7: Leather processing industry,
Formulation):
Amount of 50:50 product produced in region
Release fraction to air
Release fraction to water
Fraction produced at one site
Number of days of release
Amount of short chain length chlorinated paraffin
released/site (local model)
Amount released in region
Amount released in EU
= 78 tonnes/year
= 0.00001 (Table A1.1, Default)
= 0.02 (Table A2.1)
= 0.8 (Table B2.4)
= 25 (Table B2.9)
= 0.012 kg/day to air and 25 kg/day
to waste water
= 0.39 kg/year to air and 780 kg/year to
waste water
= 3.9 kg/year to air and 7,800 kg/year to
waste water
Recent data provided by industry indicate that short chain chlorinated paraffins are formulated
by blending with natural oils and that the amount of short chain length chlorinated paraffin
formulated in the EU has fallen from the 390 tonnes/year reported in 1994 but the amount
formulated on a large site is of the same order, but slightly larger than the above estimate.
The release from processing (use) of the 50:50 mixture can be estimated from the Technical
Guidance Document as follows:
Amount of 50:50 product used in region
Release fraction to air
Release fraction to water
= 78 tonnes/year
= 0.001 (Table A3.6)
= 0.05 (Table A3.6, MC 2 – inclusion
into/onto matrix
Fraction used at one site
= 0.6 (Table B3.4)
Number of days of release
= 47 (Table B2.9)
Amount of short chain length chlorinated paraffin = 0.5 kg/day to air and 25 kg/day to waste
released/site (local model)
water
Amount released in region
= 39 kg/year to air and 1,950 kg/year to
waste water
Amount released in EU
= 390 kg/year to air and 19, 500 kg/year to
waste water
Recent information collected as part of the risk reduction study (RPA, 1997) for this use have
indicated that short chain chlorinated paraffins may comprise around 20% of the fat
liquoring mix and that around 95-99% of the chlorinated paraffin is taken up by the leather,
22
CHAPTER 3. ENVIRONMENT
leaving 1-5% in the waste washings (the default calculation above assumes a 5% release to
waste water). The same report also indicates that the actual use in the EU is currently around
100-150 tonnes/year. If these figures are used in the default calculations as above, the
amount of fat liquoring agent used in the EU containing 20% short chain chlorinated
paraffin is up to 750 tonnes/year. Thus the amount used in a region is 75 tonnes/year
containing 20% chlorinated paraffin. The local releases estimated using this new data would
be around 40% of those estimated above based on the 1994 data. This would no alter the
overall conclusions for this use.
3.1.0.2.5
Use as a flame retardant in textile applications
No information was provided as to the amount of short chain chlorinated paraffins released
from textile applications. It is thought that 183 tonnes/year (163 tonnes/year in backcoating
and 20 tonnes/year in other uses) of short chain length chlorinated paraffins were used in
textile applications in the EU in 1994, but this had fallen to 37 (32 tonnes/year in backcoating
and 5 tonnes/year for other uses) in 1995.
In backcoating, the short chain length chlorinated paraffin is applied to the back of the
material in a viscous polymer latex, which is then cured, usually by heating to 130-140oC for a
few seconds to drive off water. Once cured, the additive is incorporated in a polymer matrix
which should minimise losses due to volatilisation and leaching.
Losses to the environment during the backcoating process are thought to be very low, mainly
associated with the cleaning out of the formulation vessels and the application machinery. The
losses from these operations are likely to be mainly in the form of a polymer containing the
chlorinated paraffin and is likely to be collected for disposal rather than sent to sewer, which
should minimise the actual release of chlorinated paraffin to the environment.
Little information is available on the other uses of short chain length chlorinated paraffins,
although it is thought that for some applications the chlorinated paraffin is applied in
emulsion form and so releases could be to water. However, the quantities involved (around
5 tonnes/year) are small.
3.1.0.3
Summary of release estimates
The release estimates are summarised in Table 3.2.
The actual estimates are subject to a very large uncertainty due to the many assumptions that
have been made. However, based on the above assumptions, the largest releases on a EU wide
basis are associated with metal working applications. Releases from other uses on a regional
and continental basis are much less significant.
It should also be noted that the release from production is based on a release rate of 1,000 or
30,000 kg/year to waste water. Information provided by the EU producers indicate that the
actual emissions to waste water are much lower than the figures used.
23
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.2 Summary of release estimates
Source
Amount
released/site
(local model)
Amount released in
region
Amount Released in
EU
Main
compartment to
which release
occurs
Production
(default)
3.33 or
100 kg/day
1,000 or
30,000 kg/year
1,500 or
45,000 kg/year
Water
Production
(site specific information)
<0.089 kg/day
<26.7 kg/year
<36.6 kg/year
Water
Metal working -formulation
1.3 kg/day
2,345 kg/year
23,450 kg/year
Water
Metal working – use
0.33 kg/day or
1.5 kg/day
169 tonnes/year
1,688 tonnes/year
Water
Rubber formulations
<0.004 kg/day
<1.2 kg/year
<12 kg/year
Air/soil/water
Paints and sealing
compounds
negligible
negligible
negligible
Leather formulation
(Scenario A)
0.01 kg/day
20 kg/day
0.39 kg/year
780 kg/year
3.9 kg/year
7,800 kg/year
Air
Water
Leather formulation
(Scenario B)
0.012 kg/day
25 kg/day
0.39 kg/year
780 kg/year
3.9 kg/year
7,800 kg/year
Air
Water
Leather use
(Scenario B)
0.5 kg/day
25 kg/day
39 kg/year
1,950 kg/year
390 kg/year
19,500 kg/year
Air
Water
Textile applications
negligible
negligible
negligible
39.39 kg/year
204.1 tonnes/year
393.9 kg/year
1,784 tonnes/year
Total
(for EUSES model)
3.1.0.4
Degradation
3.1.0.4.1
Abiotic degradation
Air
Water
Second order reaction rate constants have been calculated for C10-13, 49-71% wt Cl,
chlorinated paraffins as 2.2-8.2 · 10-12 cm3 molecule-1 s-1 for reaction with hydroxyl radicals.
Assuming an atmospheric concentration of hydroxyl radicals of 5 · 105 molecules/cm3, allows
atmospheric half-lives of 1.9-7.2 days to be estimated (Hoechst AG, 1988 and 1991).
3.1.0.4.2
Biodegradation
The biodegradability of a C10-12, 58% wt Cl, chlorinated paraffin has been tested in the OECD
Guideline 301C, Modified MITI I Test. The substance was tested at concentrations of 20 and
100 mg/l using a sludge concentration of 30 mg/l. No oxygen uptake, as measured in a
manomeric biological oxygen demand (BOD) apparatus, was observed over a 28 day period.
Analysis for residual chlorinated paraffin in the test vessels showed that 98% of the
chlorinated paraffin initially added remained, confirming that no biodegradation had taken
place (Street et al., 1983). Therefore, the substance is not readily biodegradable. However, it
24
CHAPTER 3. ENVIRONMENT
should be noted that the concentrations tested are well above the apparent solubility of the
substance.
A C10-12, 58% wt Cl, chlorinated paraffin has been tested in the OECD Guideline 302B,
Inherent biodegradability: Modified Zahn-Wellens Test. Degradation was followed by
monitoring CO2 evolution over 28 days at 22±1oC and comparing this to the theoretical
amount of CO2 that would be evolved, assuming complete biodegradation. The chlorinated
paraffin was tested at concentrations of 50 mg C/l (≡137.4 mg/l) and 25 mg C/l (≡68.7 mg/l)
and the initial activated sludge concentration was 200 mg/l. The degradation seen during the
28 day period was 7.4% and 16% at the two concentrations respectively. Therefore, the
substance is not inherently biodegradable. However, it should be noted that the
concentrations tested are well above the apparent solubility of the substance. The high
concentration was shown not to have any effect on the biodegradation of aniline, indicating
that the chlorinated paraffin was not toxic to the microorganisms present (Mather et al., 1983).
The same C10-12, 58% wt Cl chlorinated paraffin has also been tested in a modified OECD
Guideline 303A Coupled Units test. In this case, the commercial chlorinated paraffin was
mixed with a 14C-labelled chlorinated n-undecane (59.1% wt Cl) and this was continuously
added to the units as an emulsion. The units had a hydraulic retention time of 6 hours and the
initial chlorinated paraffin concentration was 10 mg/l. The units were initially seeded with
secondary effluent (0.1% vol/vol) and were operated for 51 days (33 days were allowed for
establishment of equilibrium conditions). The chlorinated paraffin was found to have no effect
on DOC removal within the system, indicating that it was not toxic at the concentration used.
The mean concentration (determined by radioactivity measurements) of chlorinated paraffin in
the effluent was 0.7 mg/l, indicating an equilibrium removal of 93%. The removal was mainly
by adsorption onto the sludge (mean concentration found on sludge was 68,000 mg/kg). It was
thought that the chlorinated paraffin found in the effluent was associated with the suspended
matter (Street and Madeley, 1983).
Madeley and Birtley (1980) found that under aerobic conditions, microorganisms previously
acclimated to specific chlorinated paraffins showed a greater ability to degrade the compounds
than non-acclimated microorganisms. In the first series of experiments, microorganisms were
obtained from soil near to a chlorinated paraffin production plant. The microorganisms were
acclimatised to chlorinated paraffins (concentration 20-50 mg/l as an emulsion) in shake
flasks over an 8 week period. The biodegradation of the chlorinated paraffins was then
studied over a 25 day period using BOD tests (chlorinated paraffin concentration 2-20 mg/l).
The second set of biodegradation experiments were carried out in a similar way using nonacclimated microorganisms from the effluent of a laboratory activated sludge unit treating
domestic waste. The results of the experiment, expressed as BOD (g O2/g chlorinated paraffin)
are shown in Table 3.3 (for comparison, the theoretical oxygen demand (ThOD) for
C11H20Cl4 (48% Cl) can be calculated as 1.63 g O2/g chlorinated paraffin). As can be seen
from the results, only the 49% wt Cl short chain length chlorinated paraffin exerted an
appreciable BOD.
25
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.3 Results of BOD experiments using acclimated and non-acclimated microbial populations
Chlorinated paraffin
C10-13, 49% wt Cl
C10-13, 60% wt Cl
C10-13, 70% wt Cl
Type of
inoculum
BOD (g O2/g chlorinated paraffin)
5 day
10 day
15 day
20 day
25 day
NA
0.02
0.08
0.12
0.20
0.29
A
0.25
0.46
0.55
0.65
1.02
NA
/
/
/
/
/
A
/
/
/
/
/
NA
/
/
/
/
/
A
/
/
/
/
/
NA = non-acclimated microorganisms
A = acclimated microorganisms
Omori et al. (1987) studied the biodegradation of C12, 63% wt Cl chlorinated paraffin
using a variety of microbial cultures. Degradation was studied by monitoring the release
of chloride ion from the chlorinated paraffin. Firstly the degradation of the chlorinated
paraffin was studied using resting cell cultures of Pseudomonas aeruginosa,
Achromobacter delmarvae, A. cycloclastes, Micrococcus sp. and Corynebacterium
hydrocarboclastus grown on glycerol and incubated for 24 hours at 30oC. These bacteria
had been shown to dechlorinate 1-chlorohexadecane as well as some other mono- and
dichlorinated alkanes. Little or no dechlorination of the C12, 63% wt chlorinated paraffin
was seen using these bacteria. Dechlorination of the chlorinated paraffin was shown to occur
using bacterial strains isolated from soil (using enrichment cultures with n-hexadecane as
sole carbon source). In these experiments, the isolated bacteria were incubated for 48 hours
at 30oC with the chlorinated paraffin and n-hexadecane. The highest degree of
dechlorination was achieved using a mixed culture of 4 strains of bacteria isolated from soil.
Around 21% dechlorination, as measured by chloride ion release, was observed after 36
hours incubation of the chlorinated paraffin and n-hexadecane (Omori et al., 1987). These
results show that dechlorination of short chain length chlorinated paraffins may occur in a
cometabolic process.
It can be concluded from the biodegradation results that short chain chlorinated paraffins
with low chlorine contents (e.g. <50% wt Cl) may biodegrade slowly in the environment,
particularly in the presence of adapted microorganisms. Certain bacteria have also been
shown to dechlorinate short chain chlorinated paraffins with high chlorine contents in a
cometabolic process and so under certain conditions, biodegradation of these compounds
might also be expected to occur slowly in the environment.
No information on the anaerobic biodegradation of short chain length chlorinated paraffins
is available.
26
CHAPTER 3. ENVIRONMENT
3.1.0.5
Accumulation
Short chain length chlorinated paraffins have been shown to bioconcentrate to a large extent in
fish and molluscs.
Madeley and Maddock (1983a) exposed rainbow trout (Oncorhynchus mykiss) to
measured concentrations of 0.033, 0.1, 1.07 and 3.05 mg/l of a C10-12, 58% wt Cl for 60
days. The concentrations were determined by means of a 14C-labelled chlorinated n-undecane
(59.1% wt Cl, radiolabelled in the 6 position) mixed into the commercial product. In addition,
parent compound analysis was also undertaken at various times during the test. Whole body
bioconcentration factors (BCFs) of 1,173-7,816 were determined based on radioactivity
measurements in the fish and BCFs of 574-7,273 were determined based on the parent
compound analysis. The BCFs were found to increase with decreasing exposure concentration
(this might be explained by the fact that two of the exposure concentrations are above the
solubility for chlorinated paraffins) (Madeley and Maddock, 1983a).
Madeley and Maddock (1983b), again using rainbow trout (Oncorhynchus mykiss), found high
levels of accumulation in the liver and viscera after exposure to measured concentrations of
3.1 and 14.3 µg/l of a short chain length (C10-12), 58% chlorinated paraffin. Exposure was for
168 days at 12oC using a flow-through system. The bioconcentration was measured by means
of a 14C-labelled chlorinated n-undecane (59.1% wt Cl, radiolabelled in the 6 position) mixed
into the commercial product. Lower bioconcentration factors were observed in the flesh
(BCF=1,300-1,600) as compared to liver (2,800-16,000) and viscera (11,700-15,500) and the
whole fish BCF was estimated to be 3,600-5,300. These bioconcentration factors were based
on the amount of 14C-labelled material present in the various organs. A limited number of
parent compound analyses were also carried out at various times during the tests, and these
indicated that some of the 14C-label present in the liver and viscera may not have been the
parent chlorinated paraffin. Therefore, these measured BCFs are likely to represent maximum
values. During depuration (168 days), the following half-lives were determined for the
chlorinated paraffin: liver 9.9-11.6 days; viscera 23.1-23.9 days; flesh 16.5-17.3 days; and
whole body 18.7-19.8 days. The relatively short half-life observed in the liver is believed to be
indicative of rapid metabolism and excretion of the test substance. On days 63-70 of
depuration, fish previously exposed to chlorinated paraffins refused to feed and developed
behavioural abnormalities. Deaths occurred in both groups previously exposed to chlorinated
paraffins and all fish previously exposed to 14.3 µg/l died by day 70 of depuration. In the lower
exposure group all abnormal effects ceased after day 70 of depuration. Although no explanation
could be found for these events, there were no effects seen at this time or any other time in the
control populations and the presence of disease or parasites was eliminated as a possible cause.
Bengtsson et al. (1979) studied the uptake and accumulation of several short chain length
chlorinated paraffins by bleak (Alburnus alburnus). The fish were exposed to 125 µg/l of a
chlorinated paraffin (C10-13, 49% wt Cl; C10-13, 59% wt Cl; C10-13, 71% wt Cl) in brackish
water (7o/oo) for 14 days at 10oC under semi-static conditions (renewed every 2nd or 3rd
day). After exposure, the depuration of the chlorinated paraffins was studied for an
additional 7 days. The concentration of chlorinated paraffin in the fish was measured by a
neutron activation analysis method that determines the total amount of chlorine present (later
unpublished work using a mass spectrometry based method specific for chlorinated paraffins
showed good agreement with these concentrations (Bengtsson and Baumann-Ofstad, 1982).
All three chlorinated paraffins were taken up by the fish but uptake was greatest for the lower
chlorinated grades over the 14 day exposure period (whole body BCFs of around 800-1,000
27
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
can be estimated from the data for the 49% wt Cl and 59% wt Cl compounds, whereas the
BCF was around 200 for the 71% wt Cl compound). High levels of chlorinated paraffin were
still detected in the fish after the 7 day depuration period.
The uptake and accumulation of short chain length chlorinated paraffins by bleak (Alburnus
alburnus) has also been studied via food (Bengtsson and Baumann-Ofstad (1982). The fish
were exposed for 91 days to either a C10-13, 49% wt Cl chlorinated paraffin at 590, 2,500 and
5,800 µg/g food or a C10-13, 71% wt Cl chlorinated paraffin at 3,180 µg/g food. Analysis
(using the neutron activation analysis method above) of whole fish bodies was carried out
during the exposure period and also during a 316 day depuration period. The 49% wt Cl
compound was found to be readily accumulated during the first 56 days of exposure and a
direct correlation was found between the amount of chlorinated paraffin in food and the
amount in fish tissues. During the next two weeks of exposure, fish in the two lower exposure
groups showed a steep increase in the chlorinated paraffin tissue concentration, while tissue
levels in the high dose group remained constant. This effect was thought to be due to
experimental variation. It was estimated that at 91 days, around 45% of the 590 µg/g food
dose, 10% of the 2,500 µg/g food dose and 5% of the 5,800 µg/g food dose had been
accumulated by the fish, indicating that uptake becomes less efficient and/or metabolism more
effective with increasing concentration. After exposure ceased, elimination of this compound
from fish tissues was found to be rapid. In the case of the 71% wt Cl compound, uptake by the
fish was found to be similar to the 2,500 µg/g food dose of the 49% wt Cl compound, with
around 6% of the total dose being accumulated. However, the tissue concentration of the
71% wt Cl compound was found to remain fairly constant throughout the 316 day depuration
period, indicating very slow elimination.
A similar experiment has been reported by Lombardo et al. (1975) with fingerling
rainbow trout (Oncorhynchus mykiss). The trout were fed a diet containing 10 mg/kg food of
a C12, 60% chlorinated paraffin for 82 days. The amount of food given was maintained at 4%
of the fish body weight during the study. The concentration of chlorinated paraffin in the fish
was found to increase during the study, reaching a level of 1.1 mg/kg tissue (18 mg/kg fat)
when the study was terminated. It was thought that equilibrium had not been reached by the
end of the experiment.
Another dietary accumulation study with rainbow trout (Oncorhynchus mykiss) has recently
been reported (Fisk et al., 1996). In this study, trout (initial weights 2-7 g) were fed 14C-labelled
chlorinated paraffin (either C12, 56% Cl or C12, 69% Cl) spiked onto food. The experiment
consisted of a 40 day exposure period followed by a 160 day depuration period. The daily
feeding rate was 1.5% of the mean body weight and two exposure concentrations for each
substance were used (26 and 242 ng/g food for the 56% Cl compound and 21 and 222 ng/g
food for the 69% Cl compound). At these feeding rates, neither compound was found to have
any negative effect on the growth of juvenile rainbow trout. Accumulation was observed for
both compounds but steady state was not reached after the 40 day exposure period.
Biomagnification factors of 0.60-0.93 for the 56% Cl compound and 1.76-2.15 for the 69% Cl
compound were determined based on the rates of uptake and depuration. The assimilation
efficiencies were 20.7-25.3% for the 56% Cl compound and 34.1-37.6% for the 69%
compound. The carcass was found to contain the highest amounts of the 14C assimilated and the
whole body half-lives were determined as 39-77 days for the 56% Cl compound and 77-87 days
for the 69% Cl compound. On day 40 of the uptake period and day 20 of the depuration period
HPLC analysis was carried out to try to determine if the species present was chlorinated
28
CHAPTER 3. ENVIRONMENT
paraffin. There was evidence for considerable metabolism of the 56% Cl compound at day 40
of uptake, and the chromatographic profile for both compounds was found to be markedly
different from analytical standards at day 20 of depuration, indicating metabolic transformation.
Very high BCFs have been determined for a C10-12, 58% wt Cl chlorinated paraffin in common
mussels (Mytilus edulis). The chlorinated paraffin was mixed with a 14C-labelled chlorinated
n-undecane (59.1% Cl, 14C-labelled in the 6 position) and concentrations were determined by
measurement of radioactivity (both water and mussel). Some parent compound analyses were
also carried out at various times during the experiment and the concentrations obtained agreed
with those obtained from the 14C radioactivity measurements. Mussels were exposed to the
chlorinated paraffin at a concentration of 2.35 µg/l for 147 days followed by 98 days
depuration or a concentration of 10.1 µg/l for 91 days followed by 84 days depuration using a
flow-through system. Accumulation of the chlorinated paraffin was found to be greatest in the
digestive gland, with BCFs being measured as 226,400 and 104,000 at the low and high
exposure concentrations respectively. Whole mussel BCFs were determined as 40,900 and
24,800 at the low and high exposure concentrations respectively. All tissues expelled the test
compound at a similar rate, with half-lives for the whole mussel being calculated as 9.2-9.9 days
for the high exposure group and 13.1-19.8 days for the low exposure group. The high
exposure concentration (10.1 µg/l) was found to cause a significant number of deaths during
the test; 33% of the original 130 exposed mussels died either during the exposure period
(23%) or depuration period (10%). Mortalities at the low exposure concentration were not
significantly different from controls (Madeley et al., 1983a). Similarly high BCFs (5,78525,952) have also been measured in mussels after 60 days exposure to a 58% wt Cl short chain
length chlorinated paraffin at concentrations of 0.013-0.93 mg/l (Madeley and Thompson, 1983).
3.1.0.6
Environmental distribution
The potential environmental distribution of short chain chlorinated paraffins in the
environment has been studied using a generic level III fugacity model. The model used was a
four compartment model (FUGMOD version 1, Jan 1992 - developed by Mackay) that has
been circulated for use within the OECD HPV program. The model was run using the default
settings in the model.
The following chemical specific information was used as input data:
Melting point
Molecular weight
Vapour pressure
Water solubility
Log Kow
Half-life in air
Half-life in soil
Half-life in water
Half-life in sediment
Amount of chemical
-
-30oC
377 g/mole (for C12H20Cl6)
0.0213 Pa (at 40oC)
0.47 g/m3
6.0
173 hours (7.2 days)
1· 1011 hours (not degraded)
1· 1011 hours (not degraded)
1· 1011 hours (not degraded)
1,000 kg/hour (nominal value)
It should be noted that since short chain length chlorinated paraffins are complex mixtures,
individual components of the mixture may have different physico-chemical properties than
used here and so may be expected to distribute slightly differently in the environment.
29
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
The results of the modelling are shown in Table 3.5.
Table 3.5 Environmental distribution short chain length chlorinated paraffins using generic level III fugacity model
Compartment
Release:
100% to air
Release:
100% to water
Release:
100% to soil
Release:
20% to air
80% to water
Air
0.11%
0.05%
<0.001%
0.07%
Water
0.02%
1.16%
0.005%
0.80%
Sediment
0.8%
53.5%
0.23%
36.6%
Soil
99.0%
45.3%
99.8%
62.5%
As can be seen from the results of the modelling exercise, once released into the environment,
short chain length chlorinated paraffins are expected to distribute mainly onto the soil and
sediment phases. The results also show that if the substance is mainly released to air or
water, then transfer to the soil (probably by wet or dry deposition or direct adsorption) and
sediment (by direct adsorption from water) is likely to occur. This is also born out in the
measured levels and the PECs calculated in the following sections.
It should also be noted that despite the high adsorbability of the substance onto soil and
sediment, a small but not insignificant fraction is predicted to distribute into water and air.
This means that short chain length chlorinated paraffins may be slightly mobile in the
environment and so a small fraction of the release may be transported over a wide area away
from sources of release.
3.1.1
Aquatic compartment
3.1.1.1
Calculation of PEC local
Using the emission data given in Table 3.2 for the estimated amounts released at a site, it is
possible to estimate a PEC for surface water for each use by assuming that the amount
released/site is released to wastewater and this enters a wastewater treatment plant with an
inflow of 2,000 m3/day of water. It is assumed that no biodegradation or volatilisation
occurs during sewage treatment but it will be assumed that removal during sewage
treatment is 93% by adsorption onto sludge, based on the result of the Coupled Units Test
described in Section 3.1.0.6. This is in line with the estimates given in the Technical
Guidance Document for non-degradable chemicals of low volatility with log Kow in the
range 5 to 6 (estimated % to sludge 86-91%). The final assumption in calculation of the
PEC for water is that the effluent from the sewage treatment plant is diluted by a factor of
10 on entering the surface water.
30
CHAPTER 3. ENVIRONMENT
The PECs estimated are shown below:
Production (default)
Metal working (formulation)
Metal working (use)
Rubber formulations
Paints and sealing compounds
Leather (formulation: scenario A)
Leather (formulation: scenario B)
Leather (use: scenario B)
Textile applications
-
PEC = 11.6 µg/l or 350 µg/l
PEC = 4.6 µg/l
PEC = 1.2 µg/l or 5.3 µg/l
PEC = <0.014 µg/l
PEC = negligible
PEC = 70 µg/l
PEC = 87.5 µg/l
PEC = 87.5 µg/l
PEC = negligible
The final stage in estimating the PEClocal is to model adsorption of the substance to sediment
in the receiving water. This is particularly important for highly lipophilic chemicals such as
the chlorinated paraffins. Using the equation given in the Technical Guidance Document for
risk assessment:
PEClocal (water) = PEC/(1+Kp(susp) · Csusp)
where
PEC = concentration of chemical from wastewater treatment plant
Kp(susp) = suspended matter - water partition coefficient (l/kg)
Csusp = concentration of suspended matter in the river (=1.5 · 10-5 kg/l)
Since no measured Kp(susp) is available for short chain length chlorinated paraffins, it has to be
estimated using the octanol-water partition coefficient using the following equation:
Kp(susp) = Koc · foc = Koc · 0.1
where foc is the fraction of organic carbon in suspended matter (=10%) and Koc is the
soil organic carbon - water partition coefficient.
According to the Technical Guidance Document, the Koc value for halogenated hydrophobic
chemicals can be estimated from: log Koc = 0.81 log Kow + 0.10
Using log Kow = 6 as being typical for short chain length chlorinated paraffins, Kp(susp)= 9,120 l/kg.
The PECregional(water) has been estimated as 0.33 µg/l using EUSES (see Section 3.1.1.2) and
has been included in the following estimated values of PEClocal (water):
Production (default)
Metal working (formulation)
Metal working (use)
Rubber formulations
Paints and sealing compounds
Leather (formulation: scenario A)
Leather (formulation: scenario B)
Leather (use: scenario B)
Textile applications
-
PEClocal(water)
PEClocal(water)
PEClocal(water)
PEClocal(water)
PEClocal(water)
PEClocal(water)
PEClocal(water)
PEClocal(water)
PEClocal(water)
= 10.5 µg/l or 308 µg/l
= 4.3 µg/l
= 1.4 µg/l or 5.0 µg/l
= <0.34 µg/l
= negligible
= 62 µg/l
= 77 µg/l
= 77 µg/l
= negligible
31
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
The PEClocal (sediment) can then be estimated from the sediment-water partition coefficient
using the equation:
PEClocal (sediment) = Ksusp-water/ Psusp · PEClocal(water) · 1000
where Ksusp-water = suspended matter - water partition coefficient = 2,281 m3/m3, based on a
log Kow of 6
Psusp = bulk density of suspended matter = 1,150 kg/m3
The following PEClocal (sediment) can be estimated:
Production (default)
Metal working (formulation)
Metal working (use)
Rubber formulations
Paints and sealing
compounds
Leather (formulation: scenario A)
Leather (formulation: scenario B)
Leather (use: scenario B)
Textile applications
-
PEClocal(sediment)
PEClocal(sediment)
PEClocal(sediment)
PEClocal(sediment)
PEClocal(sediment)
= 20.8 or 611 mg/kg wet wt
= 8.5 mg/kg wet wt
= 2.8 or 9.9 mg/kg wet wt
= <0.67 mg/kg wet wt
= negligible
-
PEClocal(sediment)
PEClocal(sediment)
PEClocal(sediment)
PEClocal(sediment)
= 123 mg/kg wet wt
= 153 mg/kg wet wt
= 153 mg/kg wet wt
= negligible
Information is available on releases from the two current production sites in the EU. Using
this data, the following site specific maximum PEClocals are derived for production:
PEClocal(water)
= < 0.028 (+ PECregional)
= <0.36 µg/l
and < 0.097 µg/l (+ PECregional) = <0.43 µg/l
PEClocal(sediment) = <707 and <844 µg/kg wet wt
These values are much lower than the estimated PECregional for water (0.33 µg/l) and so the
concentrations near to production sites can be expected to be dominated by regional sources
rather than the small emissions from the production site.
Recently, a measured log Koc value of around 5.3 (Koc = 199,500 l/kg) has been determined
for a C10- and C13-paraffin with around 55% wt Cl content (Thompson et al., 1998). Appendix
C considers the effect of this value on the calculated PECs and the overall conclusions of the
risk assessment.
3.1.1.2
Calculation of PECregional and PECcontinental
The calculation of PECs on a regional and continental scale can be done using the EUSES
model. The quantities used as inputs into the model were the total amount released in regional
model (as described in the Technical Guidance Document) and the total amount released in
the EU (continental model). Details of the estimated releases used in the model are given in
Table 3.2 (in the model a 70% connection rate to waste water treatment plants was assumed
and the regional releases were subtracted from the total EU release to give the amount released
in the continental model as recommended in the Technical Guidance Document). The higher
default release from production was used in the model, and it was assumed that there was one
large production plant within the region.
32
CHAPTER 3. ENVIRONMENT
In order to run the program, it was assumed that the chemical had the formula C12H20Cl6
(56.5% Cl) and that the predicted behaviour of this chemical would be representative of the
group as a whole. Ideally, it would be useful to run the model for a range of short chain length
chlorinated paraffins, however, there are insufficient physico-chemical data available for
individual chlorinated paraffins to allow this to be undertaken meaningfully. Also, since short
chain length chlorinated paraffins are complex mixtures, individual components of the
mixture may behave differently in the environment than predicted here. The data used in the
modelling and a summary of the results of the modelling are shown in Table 3.5. A full
printout of the model is given as Appendix B.
In the model, the predicted groundwater (pore water) concentrations are higher than the
surface water concentrations, which leads to the drinking water concentrations being higher
than the surface water concentrations. The reason for this appears to be the high
concentrations estimated in the soil compartments due to the spreading of sewage sludge
containing short chain length chlorinated paraffins. High concentrations in the soil lead to
relatively high soil pore water concentrations. EUSES then relates these to the groundwater
and hence drinking water concentrations. However, it is thought that short chain length
chlorinated paraffins are likely to be fairly immobile in soil due to their high octanol-water
partition coefficients and so are unlikely to be present at significant concentrations in
groundwater. Therefore, the actual groundwater and drinking water concentrations are thought
to be negligible.
33
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.5 Summary of regional and continental modelling in EUSES
Regional model
Continental model
Amount released to wastewater (kg/day)
392.0
3,028
Amount released to surface water (kg/day)
168.4
1,298
Amount released to air (kg/day)
0.108
0.97
1.2·10-5
4.6 ·10-6
Concentration in surface water (dissolved) (µ g/l)
0.33
0.033
Concentration in sediment (mg/kg wet wt)
1.16
0.115
Concentration in pore water (µ g/l)
6.7
0.59
Concentration in natural/ industrial soil (mg/kg wet wt)
11.5
4.57
Concentration in agricultural soil (mg/kg wet wt)
10.8
0.95
Concentration in drinking water (µ g/l)
6.7
Concentration in fish (µ g/kg wet wt)
2.600
Concentration in air (mg/m3)
Concentration in root of plants (mg/kg)
48
Concentration in leaves of plant/grass (mg/kg)
0.0108
Concentration in meat (mg/kg wet wt)
0.154
Concentration in milk (mg/kg wet wt)
0.0486
Concentration in earthworms (mg/kg wet wt)
268
Molecular formula
C12H20Cl6 (56.5% Cl)
Molecular weight
377
Vapour pressure
0.0213 Pa (at 40oC)
Log Kow
6
Fish BCF
7,816 l/kg
Water solubility
470 µ g/l
3.1.1.3
Levels of short chain length chlorinated paraffins in water and
sediment
Several studies have been undertaken to measure the levels of chlorinated paraffins in water
and sediment. However, the analyses are complicated by the fact that there are a wide number
of possible chlorinated paraffins (of different chain length, degrees of chlorination and
position of the chlorine atoms along the carbon chain) present in any given commercial
product. Thus, care has to be taken when comparing the results of one survey with those of
another, since different reference compounds may have been used and hence different
chemical species may have been measured. The main analytical methods used are critically
discussed in the following paragraphs. The methods have been referred to by the author names
that appear in the subsequent sections on environmental levels. Of those available, the
methods of Ballschmiter, 1994 and Murray et al., 1987 are similar and are considered to be
the best methods currently available for specifically measuring short chain length chlorinated
paraffins. The results from all the methods used are dependent to some extent on the
substance(s) used as reference.
34
CHAPTER 3. ENVIRONMENT
Campbell and McConnell, 1980
This method combines solvent extraction/partition, column chromatography and finally TLC
with argentation. Quantitation is by visual comparison of the intensity of the TLC ‘spot’ with
those from standards. The intensity of the spot is chlorine dependent and so, in order to err on the
high side of the possible concentration, a low chlorine content paraffin e.g. 42-45% wt Cl, is used
as reference. Also, the method is relatively insensitive to chemical structure and cannot distinguish
between short chain length (C10-13) and intermediate chain length (C14-20) chlorinated paraffins.
This method, therefore, is likely to detect all short chain length chlorinated paraffins present in
a sample, but may overestimate the concentration.
Murray et al., 1987a and b
This method is based on a gas chromatography/mass spectrometry (GC/MS) method using
negative chemical ionisation (NCI). The analysis is carried out by monitoring selected mass
ranges of the mass spectrum for ions indicative of chlorinated paraffins. The mass ranges
scanned for short chain length chlorinated paraffins are 324-329, 359-364, 367-372 and
393-401 amu. The commercial product, Paroil 1160 (C10-12, 50-60% Cl), was used as
reference material. This method is reasonably specific for short chain length chlorinated
paraffins, but will only identify the components which give rise to ions in the mass
spectrometer in the ranges scanned. Therefore, this method may underestimate the actual
concentrations slightly.
Ballschmiter, 1994
This method also uses gas chromatography/mass spectrometry with negative chemical
ionisation. In this case the following masses were monitored in the mass spectrum: 361 and
363 (C11H18Cl6, 59% Cl), 375 and 377 (C12H20Cl6, 56% Cl), 395 and 397 (C11H17Cl7, 63%).
Hordaflex LC60 (C10-13, 62% Cl) was used as reference. Again, this method may
underestimate the actual concentration slightly. This method was used for the results obtained
in 1994 and is reasonably specific for short chain length chlorinated paraffins. The 1987 data
reported for some areas of Germany were apparently obtained using a different analytical
method, involving a hydrogenation/dehydrochlorination step (similar to ICI, 1992), however
few other details are available.
Jansson et al., 1993
This method is based on GC/MS with NCI. The method does not appear to distinguish
between chlorinated paraffins of different chain length and uses Dechlorane as an internal
standard and several unspecified commercial chlorinated paraffin products as reference
compounds. The method can probably be considered to give an approximation of the
concentration of total (i.e. short, intermediate and long chain length) chlorinated paraffins
present in a sample.
35
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Environment Agency Japan, 1991
Very few experimental details are given. It is probably based on a GC/MS technique, but no
indication is given as to what types of chlorinated paraffin were measured. Again, the method
can probably be considered to give an approximation of the concentration of total chlorinated
paraffins present in a sample.
ICI, 1992
This method uses on-column reduction of the chlorinated paraffins to the parent hydrocarbon
using palladium/hydrogen, followed by quantification using gas chromatography. Calibration
uses known mixtures of paraffins or chlorinated paraffins. Preliminary work-up of samples
involved separation of water and suspended solids, then extraction and cleanup of each phase
followed by gel permeation separation of the chlorinated paraffin components. The method
takes no allowance for chlorine content and an average value of 50% is assumed for
calibration purposes, thus the method may slightly underestimate the chlorinated paraffin
concentration if high chlorine content material is present.
Greenpeace, 1995
The method used is similar to the ICI, 1992 method above. On-column reduction to the parent
hydrocarbon was used, followed by GC/MS quantification of the parent hydrocarbon. A range
of alkanes between C10 and C24 were used as external standards and an average chlorine
content of 50% was assumed for the chlorinated paraffins to allow quantification. The method
could apparently distinguish between individual chlorinated paraffins with different carbon
chain lengths, thus the concentration of C10, C11, C12 and C13 chlorinated paraffins could be
determined separately. Again, this method ma slightly underestimate the chlorinated paraffin
concentration if high chlorine content material is present.
Rieger and Ballschmiter, 1995
Sample clean-up using a silica-gel column was employed. Hordaflex 60 (C10-13, 62% Cl) was
used as a standard. Analysis was carried out using GC-ECD and GC-MS with negative chemical
ionisation. The following masses were monitored in the analysis: 326 and 327 (C11H19Cl5); 361
and 363 (C11H18Cl6); 375 and 377 (C12H20Cl6); 395 and 397 (C11H17Cl7). The method is
similar to that used by Ballschmiter (1994) and Murray et al. (1987a and b).
Stern et al., 1997 and Tomy et al., 1997
Analysis was carried out by high resolution gas chromatography electron capture negative ion
high resolution mass spectrometry (HRGC-ECNI-HRMS). Selected ion chromatograms were
obtained by monitoring ions in the [M-Cl]- ion clusters corresponding to the following
formula groups: C10 (Cl5-10), C11 (Cl5-10), C12 (Cl6-10) and C13 (Cl7-9). The profiles of these
formula groups obtained were used for quantitation against a standard by applying correction
factors to the most abundant formula group found to account for differences in the distribution
of the formula groups found in the samples compared with the samples. Again, the results
obtained are dependent on the standard used.
36
CHAPTER 3. ENVIRONMENT
As can be seen from the above discussion, there are potential problems with all the methods
used. Most of the methods are likely to provide a rough estimate of the concentration of short
chain chlorinated paraffin, although some methods may not detect all the short chain length
chlorinated paraffins present in a sample. Thus they should all be treated as giving
approximate concentrations.
3.1.1.3.1
Levels in water
Short chain length chlorinated paraffins are likely to adsorb strongly onto suspended
sediments. When interpreting the measured levels of chlorinated paraffins in water it is
important to try to distinguish between levels that refer to chlorinated paraffins in the
dissolved phase and those that refer to chlorinated paraffin adsorbed onto suspended matter. In
most cases, little or no information is given about the sampling method used and so it is
assumed that these levels refer to the ‘total’ concentration (i.e. dissolved + adsorbed) in water.
Analysis of short chain length chlorinated paraffins has been carried out at several locations in
the United Kingdom in the summer of 1986 (ICI, 1992). The results are shown in Table 3.6,
along with the levels on the intermediate chain length chlorinated paraffins. The levels of
intermediate chain length chlorinated paraffins found are included here to enable some
conclusions to be drawn about the likely concentrations of short chain length chlorinated
paraffins in the measurements included later in this section (Tables 3.8-3.10).
As can be seen from Table 3.6, the short chain length chlorinated paraffins were found in just
over half the samples at concentrations ranging between 0.12 and 1.45 µg/l. Intermediate
chain length chlorinated paraffins were detected more frequently, with measured
concentrations in the range 0.62-3.75 µg/l. The majority of the samples appear to have been
collected in urban/industrial areas.
Levels of short chain length chlorinated paraffins have been measured at several sites in
Germany and the results are shown in Table 3.7 (Ballschmiter, 1994). The levels measured in
1987 are similar to those found in the United Kingdom in 1986, however the levels measured
in Germany in 1994 are generally lower. It is possible that the lower levels reflect a reduction
of the emissions into the environment in Germany as a result of the reduction in use in metal
working fluids (it is thought that a 50% reduction may have occurred, with a major decrease in
their use in water-based emulsions: see Section 2.2). It should be born in mind that a different
method of analysis was used for the two sets of measurements.
37
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.6 Levels of short and intermediate chain length chlorinated paraffins in the United Kingdom
in 1986 (ICI, 1992)
Location
Concentration (µg/l)
Short chain (C10-13)
Intermediate chain (C14-17)
Derwent Reservoir
1.46
River Trent, Newark
0.86
Trent Mersey Canal
0.62
River Derwent, Derby
0.64
Walton on Trent
0.41
1.07
River Ouse, Goole
0.94
River Don, Rotherham
0.72
1.13
River Aire/Ouse
0.12
1.13
River Ouse, York
0.46
1.36
River Cover, Wilton
0.19
0.84
River Ure, Mickley
1.46
River Trent, Gainsborough
0.65
2.49
River Trent, Burton
1.45
2.46
River Rother
2.11
River Trent, Humber
0.29
3.75
Hull Docks
0.71
2.69
Table 3.7 Levels of short chain length chlorinated paraffins in surface water in Germany (Ballschmiter, 1994)
Location
Concentration (µg/l)
1987
River Lech at Augsburg
0.05
River Lech at Gersthofen
(upstream from a chlorinated paraffin production plant)
0.50
0.075
River Lech at langweid
(downstream from a chlorinated paraffin production plant)
0.60
0.10
River Lech at Rain
38
1994
0.12
River Danube at Marxheim
(downstream from the mouth of the River Lech)
1.2
0.06
River Danube at Marxheim
(upstream from the mouth of the River Lech)
1.2
0.06
CHAPTER 3. ENVIRONMENT
Levels of total short and intermediate chain length chlorinated paraffins have been measured
in marine and fresh waters remote from industry and fresh waters in industrialised areas in
the United Kingdom (Campbell and McConnell, 1980). These results are shown in Tables 3.8 to
3.10. As these levels refer to total chlorinated paraffin in the C10-20 range, it is not possible to say
anything definite about the likely amounts of C10-13 chlorinated paraffins present. However,
analysing the results reported in Table 3.6, it can be seen that the C10-13 chlorinated paraffins
make up around 1/4 to 1/3 of the combined total for short and intermediate chain length
chlorinated paraffins in those samples. Therefore, if the same approximate distribution
applies to the data in Tables 3.8 to 3.10, the likely concentrations of the short chain length
chlorinated paraffins in these samples can be inferred.
Table 3.8 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in marine waters (Campbell and McConnell, 1980)
Location
Concentration of C10-20 chlorinated paraffins (µg/l)
Irish Sea: Site a
1.0
Irish Sea: Site b
0.5
Irish Sea: Site c
0.5
Irish Sea: Site d
0.5
Irish Sea: Site e
ND
Irish Sea: Site f
ND
Barmouth Harbour
0.5
Menai Straights (Caernarvon)
0.5
Tremadoc Bay (Llandanwg)
ND
North Minch: Ardmair
0.5
North Minch: Port Bùn á Ghlinne
ND
North Minch: Port of Ness
0.5
Goile Chròic (Lewis)
0.5
Sound of Taransay (Harris)
4.0
Sound of Arisaig
1.0
North Sea: N55o 5.7' W1o 9.3'
ND
North Sea: N57o 26.2' W1o 17.0'
ND
North Sea: N57o 56.5' W1o 22.0'
ND
ND = not detected (detection limit = 0.5 µ g/l)
39
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.9 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in fresh and other non-marine waters remote from industry (Campbell and McConnell,1980)
Location
River Banwy, Llangadfan
0.5
River Lea, Welwyn
ND*
River Lea, Batford
ND*
River Clwyd, Ruthin
ND
Bala Lake
1.0
River Dee, Corwen
ND
River Wnion, Merioneth
0.5
Firth of Lorne, Ganevan
0.5
Loch Linnhe, Corran Narrows
ND
Firth of Clyde, Ashcraig
ND
Firth of Clyde, Girvan
0.5
An Garbh Allt
0.5
Five drinking water reservoirs,
Manchester area
ND
ND = not detected (detection limit = 0.5 µ g/l)
ND* = not detected (detection limit 1.0 µ g/l)
40
Concentration of C10-20 chlorinated paraffins (µg/l)
CHAPTER 3. ENVIRONMENT
Table 3.10 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in
waters in industrialised areas (Campbell and McConnell,1980)
Location
Concentration of C10-20 chlorinated paraffin (µg/l)
River Aire, Leeds
2.0
River Aire, Woodlesford
2.0
River Ouse, Boothberry edge
1-2
River Trent, West Bromwich
1-2
River Trent, Walton-upon-Trent
2-3
River Trent, Swarkestone
1-2
River Trent, Newark
4.0
River Trent, Gainsborough
2.0
River Trent, confluence with Humber
6.0
Humber Estuary, Hull
1-2
Humber Estuary, Grimsby
3.0
Mersey Estuary, New Brighton
3.0
Mersey Estuary, Liverpool Pier Head
4.0
River Thames, Oxford
2.0
River Thames, Sanford
1-2
Wyre Estuary
ND-1.5
River Tees, Low Dinsdale
ND
River Tees, North Gare breakwater
0.5
River Tees, Middlesbrough
ND
ND =
not detected (detection limit = 0.5 µ g/l)
The concentration of C10-20 chlorinated paraffins in marine waters are in the range 0.5-4 µg/l.
Around half the samples contained detectable amounts of chlorinated paraffins. By inference,
the levels of the short chain length chlorinated paraffins are probably in the range 0.1-1 µg/l.
In the fresh and other non-marine water samples from areas remote from industry, the
C 10-20 chlorinated paraffins were detected in just under half the samples in the range 0.5 1 µg/l.This corresponds to probable short chain length chlorinated paraffin concentrations of
0.1- 0.3 µg/l.
In the surface waters in industrialised areas, the levels of C10-20 chlorinated paraffins are
higher than those found in marine and remote waters, and the frequency of detection is also
higher. The levels measured for the combined short and intermediate chain length chlorinated
41
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
paraffins are in the range 0.5-6.0 µg/l. This corresponds to probable short chain length
chlorinated paraffin concentrations in the range 0.1-2 µg/l. Although it is not clear if any of
the samples were taken near to sources of discharge of chlorinated paraffins e.g. metal
working operations, textile production, leather production, etc., it is thought that the Wyre
Estuary did receive chlorinated paraffin production plant effluent at the time of sampling.
Murray et al. (1987a and b) reported the results of monitoring studies carried out near to a
chlorinated paraffin manufacturing site in the US. The effluent from the plant, after
undergoing physical treatment, was discharged into Sugar Creek, via a surface impoundment
lagoon and small ditch. The results are shown in Table 3.11.
Table 3.11 Levels of short chain length chlorinated paraffins near to a production site
Location
Concentration (µg/l)
Surface lagoon near to its effluent to ditch
Trace (0.1-0.5) (dissolved)1
3.3 (particulate)2
Surface lagoon near to influent from plant
0.25-0.51 (dissolved)1
2.8 (particulate)2
Middle of surface lagoon
0.39-0.57 (dissolved)1
2.3 (particulate)2
Ditch, immediately above point of discharge into
Sugar Creek
Trace (0.1-0.5) (dissolved)1
2.3 (particulate)2
Sugar Creek, upstream of discharge
Not detected (<0.05) (dissolved)1
Trace (0.05-0.17) (particulate)2
Sugar Creek, just upstream of discharge
Not detected (<0.05) (dissolved)1
0.27-0.30 (particulate)2
Sugar Creek, just downstream of discharge
Not detected (<0.05) (dissolved)1
0.20-0.23 (particulate)2
Sugar Creek, downstream of discharge
Not detected (<0.05) (dissolved)1
Trace (0.05-0.17) (particulate)2
1 Dissolved
- concentration in dissolved phase
- concentration in suspended particulate phase (>0.45 µ m)
2 Particulate
As can be seen from Table 3.11, the highest concentrations of short chain length chlorinated
paraffins are found in the surface impoundment lagoon. The concentration in the river are
generally in the range 0.05-0.3 µg/l, which is consistent with the levels found in other surveys.
It should also be noted that in this study, the majority of the chlorinated paraffin in solution
was associated with the suspended particulate matter (>0.45 µm).
A similar study was also undertaken by Murray et al. (1987a and b) near to a metal working
facility that was thought to use lubricating oils containing chlorinated paraffins. Due to
analytical interferences, it was not possible to detect chlorinated paraffins in surface water at
the site using metal working fluids. However, levels of short chain length (C10-12) chlorinated
paraffins of 8.1 µg/l were detected in process wastestreams inside the plant.
42
CHAPTER 3. ENVIRONMENT
Surveys of levels of chlorinated paraffins (unspecified chain length) in surface waters have
been carried out at numerous sites in Japan in 1979 and 1980. Chlorinated paraffins were
notdetected (detection limit 10 µg/l) in any of the 51 samples taken in 1979 or any of the 120
samples taken in 1980 (Environment Agency Japan, 1991).
A study of the inputs of short chain length chlorinated paraffins to a sewage treatment plant
in Germany has been published (Rieger and Ballschmiter, 1995). The sewage treatment
plant processed 100,000 m3/day of municipal, industrial and mixed waste water. Short chain
length chlorinated paraffins were found in all samples taken with levels in two sewage
sludge samples of 65 mg/kg dry weight for a 1991 sample and 47 mg/kg dry weight for a
1993 sample. In order to try to identify the source of the short chain length chlorinated
paraffins, various samples of sewer films (organic/microbial layers formed on the inside of
sewer pipes) were analysed and the levels found indicated that metal working activity was
the major source of the short chain length chlorinated paraffins in the plant. Water samples
taken from upstream and downstream of the plant had short chain length chlorinated
paraffin levels of 80 and 73 ng/l respectively, and a tributary river upstream of the area had
a short chain length chlorinated paraffin content of 32 ng/l.
Bearing in mind the possible limitations of the analytical methods used, there is reasonably
good agreement between the levels of short chain length chlorinated paraffins found in
surface water in the different surveys. It can then be concluded that measured concentrations
of short chain chlorinated paraffins are 0.05-0.3 µg/l in waters in areas remote from industry
and 0.1-2 µg/l in areas close to industry. These levels are also reasonably consistent with the
PECs for surface waters estimated using EUSES in the regional (0.33 µg/l) and continental
scenarios (0.033 µg/l). It should also be born in mind that, for many of the measurements, it
is not clear if the reported levels refer to the concentration in the dissolved phase or to total
(i.e. dissolved phase + particulate phase).
The 1994 German levels are generally lower than the other measured levels. This might be
explained if there has been a recent reduction in production of short chain length chlorinated
paraffins (since the use in certain applications in Germany has reduced). The measured levels
are, however, in reasonable agreement with the concentration predicted using the regional and
continental scenarios (for instance the highest level measured in 1994 of 0.12 µg/l is similar
to the predicted concentration of 0.33 µg/l from the regional model) and so can be assumed
to be approaching the background level.
3.1.1.3.2
Levels in sediments
The levels of short chain length chlorinated paraffins have been determined in several
sediments in Germany (Ballschmiter, 1994). The results are shown in Table 3.12. Short
chain length chlorinated paraffins have been detected in a wide range of locations at
concentrations up to 80 µg/kg dry weight. The concentrations found near to the chlorinated
paraffin production site have reduced from those found in 1987. A similar trend was also
seen in the water levels (see Table 3.9).
43
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.12 Levels of short chain length chlorinated paraffins in sediments from Germany
Location
Concentration (µg/kg dry weight)
1987
1994
10 (0-5 cm depth)
6 (5-12 cm depth)
Bodensee (middle)
River Rhein (141 km) at Rheinfelden
38
River Rhein (152 km) at Rheinfelden, upper layer
53
River Rhein (152 km) at Rheinfelden, lower layer
26
River Rhein (853.8 km), near German-Dutch border
83
River Rhein (863.8 km), near German-Dutch border
75
River Main (16.2 km)
50
River Main (at Griesheim)
25
River Main (55 km)
26
Outer Alster, Hamburg
36
River Elbe, Hamburg (610 km)
17
River Elbe, Hamburg (629.9 km)
25
River Lech, upstream from chlorinated paraffin production plant
400
<5
River Lech, downstream from chlorinated paraffinp production plant
700
70
Hamburg Harbour (610 km)
17
Another level of C10-13 chlorinated paraffins in sediment from Germany has been reported.
This was from the River Danube, downstream of the confluence with the River Lech. The
level of C10-13 chlorinated paraffin found was 300 µg/kg dry weight. The concentration in
water at the same site was around 1.2 µg/l (BUA, 1992).
The levels of combined short and intermediate chain length chlorinated paraffins have been
measured in several types of sediment, often from the same areas where the levels in water
were measured (Campbell and McConnell, 1980). The results of these analyses are shown in
Tables 3.13 to 3.15.
44
CHAPTER 3. ENVIRONMENT
Table 3.13 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in marine sediments (Campbell and McConnell, 1980)
Location
Concentration of C10-20 chlorinated paraffins (µg/kg)
Irish Sea: Site a
100
Irish Sea: Site b
ND
Irish Sea: Site c
NM
Irish Sea: Site d
100
Irish Sea: Site e
ND
Irish Sea: Site f
ND
Barmouth Harbour
500
Menai Straights (Caernarvon)
ND
Tremadoc Bay (Llandanwg)
ND
North Minch: Ardmair
ND
North Minch: Port Bùn á Ghlinne
ND
North Minch: Port of Ness
ND
Goile Chròic (Lewis)
ND
Sound of Taransay (Harris)
ND
Sound of Arisaig
ND
North Sea: N55o 5.7' W1o 9.3'
ND
North Sea: N57o 26.2' W1o 17.0'
ND
North Sea: N57o 56.5' W1o 22.0'
50
ND = not detected (detection limit = 50 µ g/kg)
NM = not measured
Table 3.14 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in fresh and other non-marine sediments remote from industry (Campbell and McConnell, 1980)
Location
River Banwy, Llangadfan
Concentration of
C10-20 chlorinated paraffins (µg/kg)
ND
River Lea, Batford
1,000
River Clwyd, Ruthin
ND
River Dee, Corwen
300
River Wnion, Merioneth
ND
Five drinking water reservoirs, Manchester area
ND*
ND = not detected (detection limit = 50 µ g/kg)
ND*= not detected (detection limit = 250 µ g/kg)
45
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.15 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in sediments in industrialised areas (Campbell and McConnell, 1980)
Location
Concentration of C10-20 chlorinated paraffin (µg/kg)
River Aire, Leeds
10,000
River Ouse, Goole
2,000
River Trent, West Bromwich
6,000
River Trent, Walton-upon-Trent
1,000
River Trent, Swarkestone
14,000
River Trent, Newark
8,000
River Trent, Gainsborough
3,000
Humber Estuary, Hull
2,000
Humber Estuary, Stone Creek
2,000
Mersey Estuary, New Brighton
3,000
Mersey Estuary, Liverpool Pier Head
8,000
River Thames, Sanford
1,000
Wyre Estuary
ND-1,600
Mersey Estuary, 14 sediment samples
ND
River Tees, Low Dinsdale
300
River Tees, North Gare breakwater
50
River Tees, Middlesbrough
15,000
ND = not detected (detection limit = 50 µ g/kg)
The highest levels (up to 15 mg/kg) of combined short and intermediate chain length
chlorinated paraffins have been found in sediments from industrialised areas, but they have
also been detected in several samples from remote areas. The sediment levels in industrial
areas are generally around 1,000 times the levels found in water in the same area. When
considering the levels data, it should be borne in mind that the detection limit for sediment
(50 µg/kg) is approximately 100 times that for water (0.5 µg/l) in these experiments.
Short and intermediate chain length (C10-20) chlorinated paraffins have been detected at levels
between 4,000 and 10,000 µg/kg in sewage sludge from the Liverpool area but levels were
below the detection limit (50 µg/kg) in sewage sludge from the Manchester area (Campbell
and McConnell, 1980).
Chlorinated paraffins (no information given as to type or chain length) were found in 24 out of
51 sediment samples from Japan in 1979 at levels of 600-10,000 µg/kg. In a similar survey
for 1980, chlorinated paraffins were found in 31 out of 120 sediment samples at levels of
500-8,500 µg/kg. For both sets of analyses, the detection limit was 500 µg/kg (Environment
Agency Japan, 1991).
46
CHAPTER 3. ENVIRONMENT
Murray et al. (1987a and b) reported the results of monitoring studies carried out near to a
chlorinated paraffin manufacturing site and an industry using metal working fluids in the
United States. Short chain length (C10-12, 50-60% Cl) chlorinated paraffins were detected at
levels up to 40,000 µg/kg dry weight in sediment from an impoundment lagoon at the
production site. Much lower levels (1.5-7.3 µg/kg) were detected in stream sediments
downstream from the site. Due to analytical interferences, it was not possible to detect
chlorinated paraffins at the site using metal working fluids.
Recently, Greenpeace (1995) published levels of total chlorinated paraffins in mud samples
from Rotterdam Harbour, Hamburg Harbour and from mud flats at Kaiser Wilhelm Koog and
Den Helder. The total levels measured ranged between 25 and 125 µg/kg and the average
chlorine content was thought to be around 50%. Short chain length chlorinated paraffins were
found to account for 12-38% of the total chlorinated paraffins present (the estimated
concentration of short chain length chlorinated paraffins is between 3 and 47.5 µg/kg).
Levels of short chain chlorinated paraffins in surface sediments in lakes from mid-latitude Canada
and the Arctic have recently been reported. Here, the levels found were 176 µg/kg dry weight in
Lake Winnipeg (level in surface water in a Red River flowing into the Lake was 16-55 ng/l),
18 µg/kg in Lake Nipigon, 275 µg/kg in Lake Fox and 4.5 µg/kg in Lake Hazon (Arctic) (Tomy et
al., 1997).
There are few sediment levels measured for short chain length chlorinated paraffins alone.
The sediment levels measured for the combined short and intermediate chain length
chlorinated paraffins are reasonably consistent with the sediment levels predicted for
C 10-13 chlorinated paraffins in the regional (1,160 µg/kg wet wt) and continental (115 µg/kg
wet wt) scenarios. Higher levels of C10-13 chlorinated paraffins were predicted in some of
the local scenarios (2.8-611 mg/kg) but it is not clear if any of the measurements from
industrial areas were taken in the same regions as which most of the PEClocals refer. However,
it is thought that the Wyre Estuary did receive effluent from a chlorinated paraffin production
plant at the time of the survey.
The results of the survey of short chain length chlorinated paraffins from Germany indicate
that the current sediment levels in that country (typically 10-80 µg/kg dry weight) may be
lower than levels found in the past. However, the measured levels are in good agreement with
those predicted using the continental scenario (115 µg/kg) and so can be assumed to be
approaching the background concentration.
3.1.2
Terrestrial compartment
Predicted concentrations of short chain length chlorinated paraffins in soil have been
calculated using EUSES (see Section 3.1.1.2). The concentrations obtained in the regional
model were 11.5 µg/kg wet wt in natural/industrial soil and 10.8 mg/kg wet wt in agricultural
soil. Similarly the levels calculated using the continental model were 4.6 µg/kg wet wt in
natural/industrial soil and 0.95 mg/kg wet wt in agricultural soil respectively. The high level
predicted in agricultural soil is mainly due to the assumption that high levels of chlorinated
paraffins will be present in sewage sludge applied to the soil.
Short chain length chlorinated paraffins have been measured at levels of 47-65 mg/kg dry
weight in sewage sludge from a waste water treatment plant in Germany that received both
47
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
industrial and domestic wastewater (see Section 3.1.1.3) and so may represent a "regional"
environment. Using the values outlined in the Technical Guidance Document (i.e. dry sludge
application rates of 0.5 kg/m2 for agricultural land, a mixing depth of 0.2 m and a soil bulk
density of 1,700 kg/m3), the maximum likely concentration resulting in soil from a single application
of sewage sludge containing 65 mg/kg dry weight of chlorinated paraffin is 0.10 mg/kg wet weight.
High levels of short chain chlorinated paraffins will also be expected in agricultural soil in the
local scenario due to application of sewage sludge from a local sewage treatment plant. Using
EUSES (see Section 3.1.1.2), the following concentrations in agricultural soil were estimated,
averaged over 30 days (the same values are obtained if the average over 180 days is taken; the
levels estimated for grass land are around 3-5 times lower than these values (see Appendix B).
Production (default)
Metal working (formulation)
Metal working (use)
Rubber formulations
Paints and sealing compounds
Leather (formulation: scenario A)
Leather (formulation: scenario B)
Leather (use: scenario B)
Textile applications
-
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
PEClocal (soil)
= 51.5 or 1,550 mg/kg wet wt
= 20.1 mg/kg wet wt
= 5.1 or 23.2 mg/kg wet wt
= <0.073 mg/kg wet wt
= negligible
= 310 mg/kg wet wt
= 385 mg/kg wet wt
= 385 mg/kg wet wt
= negligible
The PEClocal(soil) for production was estimated using the default release factors (giving a
release of 1,000 or 30,000 kg/year to waste water). Information provided on the two
production sites in the EU indicate that the maximum actual release from the sites is of the
order of <26.7 kg/year and that no sewage sludge is spread onto land from the sites. Therefore,
the resulting PEClocal(soil) based on site specific information is practically zero.
No measured data appear to exist on levels of short chain length chlorinated paraffins in soil.
The above PECs are calculated using a Koc value of 91,200 l/kg estimated from a log Kow of 6
using the methods outlined in the Technical Guidance Document. Recently, a measured Koc
value of 199,500 l/kg has been determined for a C10- and C13-paraffin with around 55% wt Cl
content (Thompson et al., 1998). Appendix C considers the effect of this value on the
calculated PECs and the overall conclusions of the risk assessment.
3.1.3
Atmosphere
Predicted concentrations of short chain length chlorinated paraffins in air have been calculated
using EUSES for the local, regional and continental scenarios (see Section 3.1.1.2). The
estimated regional air concentration is 11.6 ng/m3. It is thought that direct emissions of
chlorinated paraffin vapour to the atmosphere from local sources are likely to be very low
(most emissions will be to water), therefore the PEClocal (air) is likely to be very low. The
predicted concentrations in air from EUSES are <2.79 ng/m3 for most local scenarios, which
are lower than the regional background concentration of 11.6 ng/m3. The one exception to this
is the leather use (scenario B), where a direct releases to air give an estimated concentration
during an emission event of 138 ng/m3 and an annual average PEClocal (air) of 17.8 ng/m3. In
the regional and continental model, very little direct input into the atmosphere was assumed and so
the levels reflect the small, but measurable volatility of the substance (see also Section 3.1.0.7).
No measured data appear to exist on the air levels of short chain length chlorinated paraffins.
48
CHAPTER 3. ENVIRONMENT
3.1.4
Non compartment specific exposure relevant to the food chain
3.1.4.1
Predicted concentrations
Predicted concentrations of short chain length chlorinated paraffins have been calculated in
the local, regional and United Kingdom scenarios for various parts of the food chain using
EUSES (see Section 3.1.1.2) and these are reproduced in Table 3.16.
There is considerable uncertainty inherent in the approach EUSES takes for estimating the
concentrations of substances with high log Kow values in various parts of the food chain. For
instance, the concentrations estimated in drinking water are very high, frequently close to or
above the water solubility of the substance, and are much higher than the levels
predicted/found in surface waters. This is because in EUSES the drinking water
concentrations are taken as the soil pore water concentrations. For highly lipophilic substances
such as short chain length chlorinated paraffins, very high concentrations in soil are predicted
due to application of sewage sludge containing the substance. This leads to high estimated soil
pore water concentrations, which in turn also leads to very high concentrations in plant roots
(the estimated plant root - pore water partition coefficient for short chain chlorinated paraffins
is around 7,200 kg/l) and hence other parts of the food chain related to plant concentrations,
e.g. leaves, meat and milk.
Table 3.16 Estimated concentrations of short chain length chlorinated paraffins in food
Scenario
Estimated concentration
Drinking
water
0.032 or
0.96 mg/la
Fish
Plant roots
Plant leaves
Meat
Milk
68.5 or
1,980 mg/kga
229 or
6,870 mg/kga
0.013 or
0.085 mg/kga
0.30 or
8.51 mg/kga
0.095 or
2.69 mg/kga
Metal working
(formulation)
0.013 mg/l
28.3 mg/kg
89.3 mg/kg
0.011 mg/kg
0.128 mg/kg
0.041 mg/kg
Metal working
(use)
0.003 or
0.014 mg/l
9.12 or
32.5 mg/kg
22.7 or
103.3 mg/kg
0.011 or
0.011 mg/kg
0.046 or
0.209 mg/kg
0.014 or
0.064 mg/kg
Rubber formulations
<0.09 µ g/l
<2.68 mg/kg
<0.33 mg/kg
<0.010 mg/kg
<0.018 mg/kg
<0.006 mg/kg
Paints and sealing
compounds
negligible
negligible
negligible
negligible
negligible
negligible
Leather
(formulation: scenario A)
0.19 mg/l
48.9 mg/kg
1,380 mg/kg
0.026 mg/kg
1.72 mg/kg
0.55 mg/kg
Leather
(formulation: scenario B)
0.24 mg/l
79.7 mg/kg
1,710 mg/kg
0.045 mg/kg
2.16 mg/kg
0.68 mg/kg
Leather
(use: scenario B)
0.24 mg/l
79.7 mg/kg
1,710 mg/kg
0.045 mg/kg
2.16 mg/kg
0.68 mg/kg
Textile applications
negligible
negligible
negligible
negligible
negligible
negligible
6.7 µ g/l
2.6 mg/kg
48 mg/kg
0.011 mg/kg
0.154 mg/kg
0.049 mg/kg
Production
(default)a
Regional
aSite
specific information from production sites indicates that no significant route to soil exists (i.e. no sewage sludge is spread on
land) and so the concentrations in drinking water (i.e. groundwater), plants, meat and milk will not be significant. The site specific
concentration in fish is around 3 mg/kg
49
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
For the secondary poisoning scenario, the concentrations in fish and earthworms are used.
These have been estimated for various local sources using EUSES. The concentrations derived
assume 50% of the exposure is from local sources and 50% is from regional sources.
The estimated concentrations for predators are shown below:
Production (default)
- PEC(fish)
PEC(earthworm)
Metal working (formulation)
- PEC(fish)
PEC(earthworm)
Metal working (use)
- PEC(fish)
PEC(earthworm)
Rubber formulations
- PEC(fish)
PEC(earthworm)
Paints and sealing compounds
- PEC
Leather (formulation: scenario A) - PEC(fish)
PEC(earthworm)
Leather (formulation: scenario B) - PEC(fish)
PEC(earthworm)
Leather (use: scenario B)
- PEC(fish)
PEC(earthworm)
Textile applications
- PEC
= 35.6 or 991 mg/kg wet wt
= 773 or 19,300 mg/kg wet wt
= 15.5 mg/kg wet wt
= 383 mg/kg wet wt
= 5.9 or 17.6 mg/kg wet wt
= 197 or 422 mg/kg wet wt
= <2.64 mg/kg wet wt
= <135 mg/kg wet wt
= negligible
= 25.7 mg/kg wet wt
= 3,980 mg/kg wet wt
= 41.2 mg/kg wet wt
= 4,910 mg/kg wet wt
= 41.2 mg/kg wet wt
= 4,910 mg/kg wet wt
= negligible
Very high concentrations are estimated in earthworms. It is possible that the equations used in
the Technical Guidance Document/EUSES to estimate the earthworm bioconcentration factor
(BCF = 24.8 kg/kg) are not applicable to this substance, which has a high log Kow value. The
concentrations obtained by such an approach may be unrealistic, for instance an earthworm
concentration of 19,300 mg/kg is equivalent to the earthworm consisting of 1.9% by weight of
chlorinated paraffin. For this reason, the earthworm food chain will not be considered further
in the assessment.
As seen in Section 3.1.1.1., the site specific emission data for production does not lead to
concentrations in the receiving water significantly above the PECregional, thus the PEC(fish)
will be the same as the regional value.
3.1.4.2
Measured levels
3.1.4.2.1
Levels in aquatic organisms
Levels of combined short and intermediate chain length chlorinated paraffins (i.e. C10-20)
have been measured in seal, marine shellfish and salt and freshwater fish from around the
United Kingdom (Campbell and McConnell, 1980). The results of the analyses are shown in
Table 3.17.
50
CHAPTER 3. ENVIRONMENT
Table 3.17 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in aquatic organisms
(Campbell and McConnell, 1980)
Species
No. of specimens
Concentration of
C10-20 chlorinated paraffin
Mean (µg/kg)
Range (µg/kg)
Plaice
Pleuronectes platessa
6
30
ND-200
Pouting
Trisopterus luscus
4
100
ND-200
Mussel
Mytilus edulis
9
3,250
100-12,000
Pike
Esox lucius
2
25
ND-50
Grey seal (liver and blubber)
Halichoerus grypus
4
75
40-100
ND = not detected (detection limit = 50 µ g/kg)
In a survey of 108 fish samples from Japan, chlorinated paraffins (of unspecified type) were
not found in any of the samples at levels above the detection limit of 500 µg/kg (Environment
Agency Japan, 1991).
Jansson et al. (1993) reported the occurrence of chlorinated paraffins (of unspecified chain
length, with 6-16 chlorine atoms/molecule) at levels of 570-1,600 µg/kg lipid in fish and 130280 µg/kg lipid in seal from in and around Sweden. The results are shown in Table 3.18.
Table 3.18 Concentrations of chlorinated paraffins in pooled samples from in and around Sweden (Jansson et al., 1993)
Sample
Number of
samples
Location/date
Lipid
content
Concentration*
(µg/kg lipid)
Whitefish muscle
35
Lake Storvindeln, Lapland, 1986
0.66%
1,000
Arctic char muscle
15
Lake Vättern, Central Sweden, 1987
5.3%
570
Herring muscle
100
Bothnian Sea, 1986
5.4%
1,400
Herring muscle
60
Baltic proper, 1987
4.4%
1,500
Herring muscle
100
Skagerrak, 1987
3.2%
1,600
Ringed seal blubber
7
Kongsfjorden, Svalbard, 1981
88%
130
Grey seal blubber
8
Baltic Sea, 1979-85
74%
280
*Refers
to chlorinated paraffins with 6-16 chlorine atoms and so may contain chlorinated paraffins otthan C10-13
Levels of short chain length chlorinated paraffins in marine mammals from various regions of
the Arctic have recently been reported (Stern, 1997). The levels found were: beluga (western
Greenland) 199 µg/kg wet wt; beluga (Mackenzie Delta) 206 µg/kg wet wt; seal (Ellesmere
Island) 526 µg/kg wet wt; walrus (western Greenland) 426 µg/kg wet wt.
51
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Beluga from the St Lawrence River estuary had levels of 785 µg/kg wet wt. In the same study,
short chain length chlorinated paraffins, at levels of 10.6-16.5 ng/g lipid (mean 12.8 ng/g lipid)
were detected in 3 samples of human milk taken from women living in settlements along the
Hudson Strait.
Murray et al. (1987a) reported the results of monitoring of chlorinated paraffin levels in
mussels (Unionidae sp.) collected downstream of a chlorinated paraffin manufacturing site in
the United States. The level of short chain length (C10-12) chlorinated paraffin detected was
280 µg/kg compared with 7-22 µg/kg upstream of the discharge.
Little information appears to be available on the levels of short chain length chlorinated
paraffins alone in aquatic organisms. The levels of C10-20 chlorinated paraffins measured in
fish range between <50-200 µg/kg. Mussels from the Wyre Estuary, which was thought to
receive chlorinated paraffin plant effluent at the time of the survey, contain around 1,000 µg/kg
of C10-20 chlorinated paraffin in general and 6,000-12,000 µg/kg close to the effluent discharge.
The levels measured in the organisms are generally close to those in sediments below the water
in which they live. However, the levels in sediments are approximately 100-1,000 times those in
water, indicating that bioconcentration in biota appears to be taking place. Although it is not
possible to say what fraction the C10-13 chlorinated paraffins make to the total C10-20 levels
measured in this study, it is known that the C10-13 chlorinated paraffins are more bioaccumulative
than the longer chain chlorinated paraffins (Willis et al., 1994) and so may make up the major
fraction of these measured levels.
Levels of total (C10-C24) chlorinated paraffins in food, fish and marine animals have recently
been reported (Greenpeace, 1995). The levels measured (on a fat weight basis) were 271 µg/kg
in mackerel, 62 µg/kg in fish oil (herring), 98 µg/kg in margarine containing fish oil, 16-114 µg/kg
in common porpoise, 963 µg/kg in fin whale, 69 µg/kg in pork, 74 µg/kg in cows milk and
45 µg/kg in human breast milk. The average chlorine content of the chlorinated paraffins
detected was thought to be around 33%. Short chain length chlorinated paraffins were thought
to make up a very small percentage of the total in mackerel, fish oil, porpoise and fin whale,
around 7% in human milk, 11.5% in margarine, 21% in cows milk and 30% in pork.
The predicted concentrations in fish using the regional model is 2,600 µg/kg wet weight,
which is higher than levels generally found in the environment. The predicted concentrations
in fish in most of the local scenarios are much higher than the measured levels but it is not
clear if the measured levels are representative of the local scenarios considered. In the case of
the measured levels in mussels, it is clear that the levels are much higher near to the potential
source of discharge.
3.1.4.2.2
Levels in other biota
Levels of combined short and intermediate chain length chlorinated paraffins (C10-20) have
been measured in several parts of the food chain in the United Kingdom (Campbell and
McConnell, 1980). The results of the analyses are shown in Tables 3.19 to 3.22. As can be
seen from Tables 3.19 to 3.22, short and intermediate chain length chlorinated paraffins have
been detected in birds, eggs and human foodstuffs in the United Kingdom. They have also
been detected in sheep near to a chlorinated paraffin production site. Although it is not
possible to say what fraction the C10-13 chlorinated paraffins make to the total C10-20 levels
52
CHAPTER 3. ENVIRONMENT
reported, it is known that the C10-13 chlorinated paraffins are more bioaccumulative than the
longer chain chlorinated paraffins (Willis et al., 1994) and so may make up the major fraction
of these measured levels.
Jansson et al. (1993) reported levels of chlorinated paraffins (of unspecified chain carbon
length, with 6-16 chlorine atoms/molecule) of 2,900 µg/kg lipid in rabbit muscle, 4,400 µg/kg
lipid in moose muscle, 140 µg/kg in reindeer suet and 530 µg/kg in osprey muscle in pooled
samples from in and around Sweden. The results are shown in Table 3.23.
Table 3.19 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in
seabirds' eggs (Campbell and McConnell, 1980)
Concentration (µg/kg)
No of eggs containing C10-20 chlorinated paraffins
Not detected (<50 µ g/kg)
7
50
3
100
3
200
5
300
1
400
2
600
1
>600 (=2,000 µ g/kg)
1
Table 3.20 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in birds (Campbell and McConnell, 1980)
Species
Organ
Concentration of C10-20 chlorinated paraffins
(µg/kg wet weight)
Heron (Ardea cinerea)
Liver
100-1,200
Guillemot (Uria aalge)
Liver
100-1,100
Herring gull (Larus argentatus)
Liver
200-900
Table 3.21 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20)
in human foodstuff (Campbell and McConnell, 1980)
Foodstuff class
No of samples analysed*
Average concentration of
C10-20 chlorinated paraffins (µg/kg)
Dairy products
13
300
Vegetable oils and derivatives
6
150
Fruit and vegetables
16
5
Beverages
6
ND
ND = not detected (detection limit = 50 µ g/kg)
in approximately 70% of samples analysed
*Detected
53
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.22 Concentration of combined short and intermediate chain length chlorinated paraffins (C10-20) in sheep
from areas near to and remote from a chlorinated paraffin production plant (Campbell and McConnell, 1980)
Organ analysed
Average concentration of C10-20
chlorinated paraffin (µg/kg)
liver, brain, kidney, mesenteric fat
ND
heart
ND
liver
200
lung
ND
mesenteric fat
50
kidney
50
perinephritic fat
ND
Location of sheep
Remote from industry
Close to a chlorinated paraffin
production plant
ND = not detected (detection limit = 50 µ g/kg)
Table 3.23 Concentrations of chlorinated paraffins in pooled samples from in and around Sweden
(Jansson et al., 1993)
Sample
Number of
samples
Location/date
Lipid
content
Concentration *
(µg/kg lipid)
Rabbit muscle
15
Revingehed, Skåne, 1986
1.1%
2,900
Moose muscle
13
Grimsö, Västtmanland, 1985-86
2.0%
4,400
Reindeer suet
31
Ottsjö, Jämtland, 1986
56%
140
Osprey muscle
35
Sweden, 1982-1986
4.0%
530
*Refers to chlorinated paraffins with 6-16 chlorine atoms and so may contain chlorinated paraffins other than C10-13
Although it is not possible to compare directly the levels predicted by EUSES (see Section
3.1.4.1) with the measured levels, it can be seen that the levels predicted by EUSES in milk
and meat in the regional scenario are reasonably consistent with the measured levels found in
the environment.
3.1.5
Summary of exposure estimates for short chain length chlorinated
paraffins
Tables 3.24 and 3.25 summarise the predicted concentrations in various media that will be
used in the risk assessment.
54
CHAPTER 3. ENVIRONMENT
Table 3.24 Summary of predicted environmental concentrations from the local scenario for use in the risk assessment
Media
Release source
PEClocal
Comments
Surface water
Production (default)
Production (site specific)
10.5 or 308 µ g/l
<0.36 and <0.43 µ g/l
Used for assessment of effects on
aquatic organisms
Metal working (formulation)
4.3 µ g/l
Metal working (use)
1.4 or 5.0 µ g/l
Rubber formulations
<0.34 µ g/l
Paints and sealing compounds
negligible
Leather (formulation: scenario A)
62 µ g/l
Leather (formulation: scenario B)
77 µ g/l
Leather (use: scenario B)
77 µ g/l
Textile applications
negligible
Production (default)
Production (site specific)
20.8 or 611 mg/kg
<0.71 and <0.84 mg/kg
Metal working (formulation)
8.5 mg/kg
Metal working (use)
2.8 or 9.9 mg/kg
Rubber formulations
<0.67 mg/kg
Paints and sealing compounds
negligible
Leather (formulation: scenario A)
123 mg/kg
Leather (formulation: scenario B)
153 mg/kg
Leather (use: scenario B)
153 mg/kg
Textile applications
negligible
Production (default)
51.5 or 1,550 mg/kg
negligible
Sediment
Agricultural soil
Used for assessment of effects on
sediment dwelling organisms
Used for assessment of effects on
terrestrial organisms
Production (site specific)
Metal working (formulation)
20.1 mg/kg
Metal working (use)
5.1 or 23.2 mg/kg
Rubber formulations
<0.073 mg/kg
Paints and sealing compounds
negligible
Leather (formulation: scenario A)
310 mg/kg
Leather (formulation: scenario B)
385 mg/kg
Leather (use: scenario B)
385 mg/kg
Textile applications
negligible
55
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.25 Summary of the predicted environmental concentration/doses from the regional and continental scenarios for
risk assessment
Media
Predicted concentration/dose
in regional scenario
PECregional
Predicted concentration/dose
in continental scenario
PECcontinental
Surface water
0.33 µ g/l
0.033 µ g/l
Assessment of effects on
aquatic organisms
Air
12 ng/m3
4.6 ng/m3
Assessment of effects on
mammals by inhalation
Sediment
1.16 mg/kg
0.12 mg/kg
Assessment of effects on
sediment dwelling organisms
Fish
2,600 µ g/kg
-
Assessment of effects on
fish-eating birds/mammals
through diet
Agricultural soil
Natural/industrial soil
10.8 mg/kg
11.5 µ g/kg
0.95 mg/kg
4.6 µ g/kg
Assessment of effects on
terrestrial organisms
Comments
From the preceding sections, it can be seen that the majority of the predicted environmental
concentrations obtained in the regional and continental scenarios are consistent with the
measured data. There are some problems in interpreting the measured levels, due mainly to the
difficulties in analysing for short chain length chlorinated paraffins. As a result, the predicted
concentrations from the models will be used for risk assessment, as they are consistent with,
and representative of, most of the measured data.
There are not enough data available referring to the local emission scenarios to make any
judgement on the validity of the estimated PEClocals. In the absence of any further information,
the predicted PEClocals will be used for the risk assessment. It should be noted that the releases
to the regional and continental scenarios, which fit the measured data quite well, were
estimated using very similar methods to the emissions used in the local scenario.
It should also be noted that in countries where the use of short chain length chlorinated
paraffins has reduced in recent years (e.g. Germany, particularly in water-based metal working
fluids: see Section 2.2) the measured levels in water and sediment appear to be lower than in
previous years. In these cases, the measurements are reasonably consistent with the predicted
concentrations in the regional and continental model (i.e. background concentrations).
Further, the emission of short chain length chlorinated paraffin to waste water from actual
production plants are much lower than the default estimates given above. PEClocals derived
from site specific data will be taken into account in the assessment. For use in leather, it is
thought that Scenario B is most representative of the actual use of short chain length
chlorinated paraffins and will be used in the assessment. Similar conclusions would be
obtained from Scenario A.
56
CHAPTER 3. ENVIRONMENT
3.2
EFFECTS ASSESSMENT: HAZARD IDENTIFICATION AND
DOSE (CONCENTRATION) - RESPONSE (EFFECT) ASSESSMENT
3.2.1
Aquatic compartment (incl. sediment)
A large number of aquatic toxicity studies have been carried out using short chain length
chlorinated paraffins. The toxicity information in the assessment is generally of good quality
and it is certainly all of sufficient quality for risk assessment, given that the substance is of
fairly low solubility and so is difficult to test. Many of these studies, particularly the long term
studies, have been carried out according to GLP. Further details on the test methods used and
an assessment of the reliability of the data is given in Appendix A.
3.2.1.1
Fish
The toxicity of short chain length chlorinated paraffins to fish is summarised in Table 3.25.
Short chain length chlorinated paraffins appear to be of low acute toxicity to fish with 48 and
96 hour LC50s in excess of 100 mg/l. However, it should be noted that such values are well in
excess of the solubility of this group of compounds. Chronic toxicity values include a 60 day
LC50 at 0.34 mg/l and no observed effect concentrations of <0.040 and 0.28 mg/l for rainbow
trout and sheepshead minnow respectively.
During fourteen day exposures to 125 µ g/l of short chain length paraffins (C10-13, 49% Cl;
C10-13, 59% Cl; C10-13, 71% Cl) behavioural effects including sluggish movements, lack of
shoaling and abnormal posture were noted in the bleak Alburnus alburnus. These effects were
reversible after two days in clean brackish water (Bengtsson et al., 1979).
Madeley and Maddock (1983a) assessed the toxicity of chlorinated paraffin compounds to the
rainbow trout Oncorhynchus mykiss. A 58% chlorinated short chain length (C10-12) paraffin
was used at mean measured concentrations of 0.033, 0.1, 0.35, 1.07 and 3.05 mg/l. Significant
mortality was observed in the highest three concentrations. LT50s (median lethal times) were
calculated for these three concentrations as 44.7, 31.0 and 30.4 days respectively. Madeley and
Maddock (1983b) exposed rainbow trout to the same chlorinated paraffin as part of a
bioconcentration study for 168 days at concentrations of 3.1 and 14.3 µg/l followed by a 105 day
depuration period. By day 70 of the depuration period all trout previously exposed to 14.3 µg/l
and 50% of those exposed to 3.1 µg/l had died. No explanation (e.g. presence of disease or
parasite) could be found for these events seen in the bioconcentration test.
Hill and Maddock (1983a) found that hatchability and survival of larvae of the sheepshead
minnow Cyprinodon variegatus was unaffected by 28 day exposure to measured
concentrations of 54.8, 22.1, 6.4, 4.1 and 2.4 µg/l of a 58% chlorinated short chain length
n-paraffin. The results of this study reveal that all concentrations tested elicited a significant
increase in larval growth compared to the acetone control. In a second study, sheepshead
minnow larvae were exposed to 620.5, 279.7, 161.8, 71.0 and 36.2 µg/l of the same
chlorinated paraffin for 32 days. In this study, larvae from the highest exposure group were
significantly smaller than those from the acetone control; however, at lower exposure
concentrations (71.0 and 36.2 µg/l) larvae were significantly larger than controls. The highest
no observed effect concentration (NOEC) in this study was 279.7 µg/l. No effect on survival
or hatchability was observed (Hill and Maddock, 1983b).
57
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.26 Toxicity of short chain length chlorinated paraffins to fish
Species
Chlorinated
paraffin
Test
type
Comments
Temp.
(° C)
Duration
Toxicity
endpoint (mg/l)
Reference
Bleak
Alburnus
alburnus
C10-13, 49% wt Cl
Static
Acetone as
cosolvent
10
96 hour
LC50 >5,000
Linden et al.
(1979)
(estuarine)
C10-13, 56% wt Cl
Static
Acetone as
cosolvent
10
96 hour
LC50 >10,000
Linden et al.
(1979)
C10-13, 63% wt Cl
Static
Acetone as
cosolvent
10
96 hour
LC50 >5,000
Linden et al.
(1979)
C11.5, 70% wt Cl
Static
Acetone as
cosolvent
10
96 hour
LC50 >10,000
Linden et al.
(1979)
C10-13, 71% wt Cl
Static
Acetone as
cosolvent
10
96 hour
LC50 >5,000
Linden et al.
(1979)
Channel
catfish
Ictalurus
punctatus
C10-12, 58% wt Cl
Static
20
96 hour
LC50 >300
Howard et
al. (1975)2
Bluegill
Lepomis
macrochirus
C10-12, 58% wt Cl
Static
20
96 hour
LC50 >300
Howard et
al. (1975)2
Golden orfe
Leuciscus idus
C10-13, 52% wt Cl
Static
48 hour
LC50 >500
Hoechst
(1977)
C10-13, 56% wt Cl
Static
48 hour
LC50 >500
Hoechst
(1977)
C10-13, 58% wt Cl
Static
48 hour
LC50 >500
Hoechst
(1977)
C10-13, 62% wt Cl
Static
48 hour
LC50 >500
Hoechst
(1977)
C10-13, 70% wt Cl
Static
48 hour
LC50 >500
Hoechst
(1976)
Fathead
minnow
Pimephales
promelas
C10-12, 58% wt Cl
Static
20
96 hour
LC50 >100
Howard et
al. (1975)2
Rainbow trout
Oncorhynchus
mykiss
C10-12, 58% wt Cl
Static
10
96 hour
LC50 >300
Howard et
al. (1975)2
C10-12, 58% wt Cl
Flow
10
15-20 day
NOEC <0.0401
Howard et
al. (1975)2
C10-12, 58% wt Cl
Flow
Acetone as
cosolvent
60 day
LC50 = 0.34
Madeley and
Maddock
(1983a)
C10-12, 58% wt Cl
Flow
Acetone as
cosolvent;
salinity =
25‰
32 day
NOEC = 0.28
Hill and
Maddock
(1983b)
Sheepshead
minnow
Cyprinodon
variegatus
1Sublethal
effects observed at 0.040 mg/l (progressive loss of motor function leading to immobilisation
also available in Johnson an Finley (1980)
2Information
58
25
CHAPTER 3.ENVIRONMENT
3.2.1.2
Aquatic invertebrates
The toxicity of short chain length chlorinated paraffins to Daphnia magna and other aquatic
invertebrates is summarised in Tables 3.27 and 3.28. Twenty four hour EC50s for daphnids
range from 0.3 to 11.1 mg/l with acute no observed effect concentrations ranging from 0.06 to
2 mg/l. There appears to be no clear pattern with regard to the effects of the carrier substance
or the degree of chlorination on the acute toxicity of short chain length paraffins to D. magna. In
21 day tests EC50s ranged from 0.101 to 0.228 mg/l; NOECs ranged from 0.005 to 0.05 mg/l.
The NOEC of 0.005 mg/l for the 58% chlorinated short chain length paraffin means that this
species is the most sensitive aquatic species tested.
The second instar of the midge Chironomus tentans was exposed to a C10-12, 58% chlorinated
paraffin at levels ranging from 18 to 162 µg/l for 48 hours. This caused no adverse effects on
the test organism. The use of this paraffin over the whole 49 day life cycle at concentrations of
61 to 394 µg/l also gave no significant response except in halting adult emergence at 121 and
394 µg/l. This led to a maximum acceptable toxicant concentration (MATC) for this paraffin
of between 78 and 121 µg/l, with a geometric estimated value for the MATC of 97 µg/l. The
NOEC for this study is 61 µg/l (E & G Bionomics, 1983).
Thompson and Madeley (1983d) studied the toxicity of a 58% chlorinated short chain length
paraffin to the mysid shrimp Mysidopsis bahia and found the 96 hour LC50 to be between 14.1
and 15.5 µg/l, with the lowest concentration causing a significant mortality at 13.7 µg/l. The
chronic toxicity of this compound was studied in 28 day exposures to concentrations of 0.6,
1.2, 2.4, 3.8 and 7.3 µg/l. Significant mortalities were observed in some of the groups during
the test but these were not treatment related. There was no treatment-related effect on
reproductive rate (offspring per female) or growth over the 28 day test period. A no effect
level was determined as 7.3 µg/l.
Madeley and Thompson (1983) studied the toxicity of the 58% chlorinated short chain length
paraffin (C10-14) to the mussel Mytilus edulis over a period of 60 days. Tests were carried out
at measured concentrations of 0.013, 0.044, 0.071, 0.13 and 0.93 mg/l (nominal
concentrations were 0.018, 0.056, 0.1, 0.32 and 3.2 mg/l). There was significant mortality at
0.071, 0.13 and 0.93 mg/l with LT50s of 59.3, 39.7 and 26.7 days for the three exposure
concentrations respectively. There was no significant mortality observed at concentrations of
0.013 and 0.044 mg/l; reductions in filtration rate were reported but these were not measured
quantitatively. The 60-day LC50 was estimated to be 0.074 mg/l based on measured
concentrations.
A further study on mussels Mytilus edulis using a 58% chlorinated short chain length chlorinated
paraffin has been carried out by Thompson and Shillabeer (1993). The study was carried out
as a follow up to a bioaccumulation study and only two exposure concentrations were used.
Groups of 30 mussels were exposed to measured concentrations of 2.3 µg/l or 9.3 µg/l in
seawater for 12 weeks in a flow-through system. No mortalities were seen in any of the
exposure groups or controls, but growth (as assessed by increase in shell length and tissue
weight) was significantly reduced in the group exposed to 9.3 µg/l. No significant effects were
seen in the group exposed to 2.3 µg/l.
59
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.27 Toxicity of short chain length chlorinated paraffins to Daphnia magna
Chlorinated
paraffin
Test
Conditions
C10-13, 20% wt Cl
With emulsifier
(stabilised)
C10-13, 56% wt Cl
Acetone as cosolvent
(stabilised)
Temp.
(° C)
Toxicity endpoint
(mg/l)
Reference
21 day
NOEC = 0.05
EC50 = 0.228
Huels AG (1986)
21
24 hour
NOEC = 0.1
EC50 = 0.44
Huels AG (1984)
With emulsifier
(stabilised)
21
24 hour
NOEC = 0.13
EC50 = 0.45
Huels AG (1984)
With emulsifier
(unstabilised)
21
24 hour
NOEC <0.1
EC50 = 0.55
Huels AG (1984)
Acetone as cosolvent
(unstabilised)
21
24 hour
NOEC = 0.1
EC50 = 0.7
Huels AG (1984)
With emulsifier
(unstabilised)
21
24 hour
NOEC = 0.13
EC50 = 0.82
Huels AG (1984)
Acetone as cosolvent
(stabilised)
21
24 hour
NOEC = 2
EC50 = 11
Huels AG (1984)
Acetone as cosolvent
(unstabilised)
21
24 hour
NOEC <0.3
EC50 = 11.1
Huels AG (1984)
21 day
NOEC = 0.05
EC50 = 0.137
Huels AG (1984)
With emulsifier
(unstablised)
C10-12, 58% wt Cl
With emulsifier
21
24 hour
NOEC = 0.5
EC50 = 1.9
Huels AG (1984)
Acetone as cosolvent
21
24 hour
NOEC = 0.5
EC50 = 1.9
Huels AG (1984)
20
48 hour
EC50 = 0.53
Thompson and
Madeley (1983a)
Flow-through test
20
72 hour
EC50 = 0.024
Thompson and
Madeley (1983a)
Flow-through test
20
96 hour
EC50 = 0.018
Thompson and
Madeley (1983a)
Flow-through test
20
5 day
EC50 = 0.014
Thompson and
Madeley (1983a)
21 day
EC0 = 0.03
EC50 = 0.124
Huels AG (1986)
21 day
NOEC = 0.005
EC0 = 0.0089
Thompson and
Madeley (1983a)
With emulsifier
Flow-through test
Table 3.27 continued overleaf
60
Duration
20
CHAPTER 3.ENVIRONMENT
Table 3.27 continued Toxicity of short chain length chlorinated paraffins to Daphnia magna
Chlorinated
paraffin
Test
Conditions
Temp.
(° C)
Duration
C10-13, 60% wt Cl
With emulsifier
(stabilised)
21
24 hour
NOEC = 0.06
EC50 = 0.51
Huels AG (1984)
Acetone as cosolvent
(stabilised)
21
24 hour
NOEC = 0.1
EC50 = 0.7
Huels AG (1984)
With emulsifier (unstabilised)
21
24 hour
NOEC = 1.0
EC50 = 4.0
Huels AG (1984)
Acetone as cosolvent
(unstabilised)
21
24 hour
NOEC = 0.5
EC50 = 0.95
Huels AG (1984)
21 day
NOEC <0.05
EC50 = 0.101
Huels AG (1986)
With emulsifier (unstabilised)
C10-13, 61% wt Cl
Toxicity endpoint
(mg/l)
Reference
With emulsifier
(stabilised)
21
24 hour
NOEC <0.1
EC50 = 0.51
Huels AG (1984)
Acetone as cosolvent
(stabilised)
21
24 hour
NOEC = 0.1
EC50 = 3
Huels AG (1984)
With emulsifier
(unstabilised)
21
24 hour
NOEC = 0.1
EC50 = 1.02
Huels AG (1984)
Acetone as cosolvent
(unstabilised)
21
24 hour
NOEC <0.3
EC50 = 0.3
Huels AG (1984)
21 day
NOEC = 0.02
EC50 = 0.104
Huels AG (1986)
With emulsifier
(unstabilised)
EC50s are based on immobilisation; static tests unless stated otherwise
61
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.28 Toxicity of short chain length chlorinated paraffins to other aquatic invertebrates
Species
Chlorinated
paraffin
Comments
Temp.
(° C)
Duration
Toxicity endpoint
(mg/l)
Reference
midge
Chironomus
tentans
C10-12, 58% wt Cl
Acetone
(unstabilised)
21-23
48 hour
NOEC > 0.162
E&G
Bionomics
(1983)
C10-12, 58% wt Cl
acetone
(unstabilised)
21-23
49 day
NOEC = 0.061
E&G
Bionomics
(1983)
C10-12, 58% wt Cl
acetone
(unstabilised);
25
96 hour
LC50 = 0.014
Thompson
and Madeley
(1983d)
25
28 day
NOEC = 0.007
Thompson
and Madeley
(1983d)
15
60 day
LC50 = 0.074
Madeley and
Thompson
(1983)
15
12 weeks
Effects on growth
seen at 0.0093
Thompson
and Shillabeer
(1983)
mysid shrimp
Mysidopsis
bahia
salinity = 20‰
C10-12, 58% wt Cl
mussel
Mytilus edulis
C10-12, 58% wt Cl
C10-12, 58% wt Cl
acetone
(unstabilised);
salinity = 20‰
acetone
(unstabilised);
salinity ~35‰
acetone
(unstabilised);
salinity ~34 ‰
The mysid shrimp test was a flow-through test (salinity = 20o/oo);
MATC = Maximum Acceptable Toxicant Concentration
3.2.1.3
Algae
The toxicity of short chain length chlorinated paraffins to algae is summarised in Table 3.29.
Ninety-six hour EC50s range from 0.043 to 3.7 mg/l with the marine alga Skeletonema
costatum appearing to be more sensitive to short chain length paraffins than the freshwater alga
Selenastrum capricornutum. A NOEC of 12.1 µg/l was reported in the study on S. costatum. It
should be noted that the EC50 values given for Selenastrum exceeded the highest mean
measured concentrations of the test substance; they are, therefore, extrapolated values.
Further, the toxic effects seen with the marine alga were transient, with no effects being seen
at any concentration after 7 days exposure.
62
CHAPTER 3.ENVIRONMENT
Table 3.29 Toxicity of short chain length chlorinated paraffins to algae
Species
Selenastrum
capricornutum
Skeletonema
costatum
Chlorinated
paraffin
Comments
Temp.
(° C)
Duration
Toxicity endpoint
(mg/l)
Reference
C10-12, 58% wt Cl
Cell density by
particle count
24
96 hour
EC50 = 3.7*
Thompson and
Madeley (1983b)
C10-12, 58% wt Cl
Cell density by
particle count
24
7 day
EC50 = 1.6*
Thompson and
Madeley (1983b)
C10-12, 58% wt Cl
Cell density by
particle count
24
10 day
NOEC = 0.39
Thompson and
Madeley (1983b)
C10-12, 58% wt Cl
Cell density by
particle count
24
10 day
EC50 = 1.3*
Thompson and
Madeley (1983b)
C10-12, 58% wt Cl
Cell density by
absorbance;
salinity = 30.5‰
20
96 hour
EC50 = 0.056
Thompson and
Madeley (1983c)
C10-12, 58% wt Cl
Cell density by
particle count;
salinity = 30.5‰
20
96 hour
EC50 = 0.043
Thompson and
Madeley (1983c)
C10-12, 58% wt Cl
salinity = 30.5‰
20
96 hour
NOEC = 0.012
Thompson and
Madeley (1983c)
C10-12, 58% wt Cl
Growth rate;
salinity = 30.5‰
20
48 hour
EC50 = 0.032
Thompson and
Madeley (1983c)
*These EC50 values exceeded the highest mean measured concentrations of the test substance employed in the study (1.2 mg/l).
This was considered the maximum that could be tested due to the low solubility of the test substance
3.2.1.4
Microorganisms
The toxicity of short chain length chlorinated paraffins to microorganisms is shown in
Table 3.30. Short chain length chlorinated paraffins appear to be of low toxicity to the
microorganisms tested. In anaerobic microorganisms, Madeley et al. (1983b) used
measurements of gas production and its inhibition to assess the toxicity of a short chain length
C10-12, 58% chlorinated paraffin to the anaerobic sludge digestion process. This study showed
that significant (>10%) inhibition of gas production occurred when chlorinated paraffin
concentrations of 3.2, 5.6 and 10% on digester volatile suspended solids were employed.
These effects were observed on the first 3 to 4 days of the experiment, after which, gas
production recovered to normal levels until day 10 when the study was terminated. It was
concluded that the compound tested caused transient partial inhibition of gas production with
rapid recovery and no longer-term effects.
63
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 3.30 Toxicity of short chain length chlorinated paraffins to microorganisms
Source of microorganisms
Chlorinated
paraffin
Effect
Reference
Anaerobic activated sludge
C10-12, 58% wt Cl
Toxic* at concentrations of >32,000 mg/l
over 24 hours
Madeley et al. (1983b)
Anaerobic bacteria from a domestic
wastewater treatment plant
C10-13, 52% wt Cl
Toxic at 5,000 mg/l over 24 hours
Hoechst AG (1977)
Anaerobic bacteria from a domestic
wastewater treatment plant
C10-13, 56% wt Cl
Toxic at 1,700 mg/l over 24 hours
Hoechst AG (1977)
Anaerobic bacteria from a domestic
wastewater treatment plant
C10-13, 58% wt Cl
Toxic at 2,500 mg/l over 24 hours
Hoechst AG (1977)
Anaerobic bacteria from a domestic
wastewater treatment plant
C10-13, 62% wt Cl
Toxic at 2,000 mg/l over 24 hours
Hoechst AG (1977)
Anaerobic bacteria from a domestic
wastewater treatment plant
C10-13, 70% wt Cl
Toxic at 600 mg/l over 24 hours
Hoechst AG (1976)
*Inhibition of gas production
3.2.1.5
Predicted no effect concentration (PNEC) for the aquatic compartment
There is a complete ‘base set’ of acute toxicity data for short chain length chlorinated
paraffins, i.e. there are short term L(E)C50 studies from each of three trophic levels (fish,
Daphnia and algae). There are reported no observed effect concentrations (NOEC) for fish,
Daphnia and algae. Therefore, the PNEC is derived from the most sensitive NOEC from the
daphnid studies with an assessment factor of 10.
The most sensitive NOEC was from a 21 day multi-generation study on Daphnia magna using
the 58% chlorinated short chain paraffin (C10-12). The study was scrutinised carefully and
although there was a problem with one of the three control groups it was decided that the
study was still valid. The 21 day NOEC was 0.005 mg/l and applying an assessment factor of
10 to this value gives a PNEC of 0.5 µg/l for the aquatic compartment.
In addition to the freshwater toxicity data, several marine/estuarine data are also available.
There were NOECs available for fish (sheepshead minnow), invertebrate (mysid shrimp) and
algae. The shrimp NOEC was the most sensitive at 0.007 mg/l. Thus the marine data is similar
to the freshwater data in that invertebrates appear to be the most sensitive species. If similar
assessment factors to those used for freshwater organisms are applied (assessment factor of
10), this would lead to a tentative PNEC for the marine/estuarine subcompartment of 0.7 µg/l.
There are toxicity data available for anaerobic bacteria from a domestic wastewater treatment
plant. Applying an assessment factor of 100 to the lowest toxic concentration of 600 mg/l,
gives a PNECmicroorganisms of 6 mg/l.
64
CHAPTER 3.ENVIRONMENT
3.2.1.6
Predicted no effect concentration (PNEC) for sediment-dwelling
organisms
There are no studies available on sediment-dwelling organisms exposed via sediment
(information is available on midge Chironomus tentans, but exposure was via water only).
In the absence of any ecotoxicological data for sediment-dwelling organisms, the PNEC may
provisionally be calculated using the equilibrium partitioning method from the PNEC for
aquatic organisms and the sediment/water partition coefficient.
PNECsed
= Ksed-water / Psusp · PNECaquatic organisms · 1000
where Ksusp-water = sediment - water partition coefficient = 2,281 m3/m3 (log Kow = 6).
Psed
= bulk density of wet sediment = 1,300 kg/m3
This gives a tentative PNEC of 0.88 mg/kg wet weight for the sediment compartment.
However, the ingestion of the sediment-bound substance by sediment-dwelling organisms may
not be sufficiently explained by this relationship for substances with a log Kow greater than 5.
The Technical Guidance Document suggests that in such cases the PEC/PNEC ratio is
increased by a factor of 10.
3.2.2
Terrestrial compartment
There are no studies available on plants, earthworms or other soil-dwelling organisms. In the
absence of any ecotoxicological data for soil-dwelling organisms, the PNEC may
provisionally be calculated using the equilibrium partitioning method with the PNEC for
aquatic organisms and the soil/water partition coefficient.
PNECsoil = Ksoil-water /Psoil · PNECaquatic organisms · 1000
where Ksoil-water = soil - water partition coefficient = 2,736 m3/m3 for a log Kow of 6.
Psoil = density of soil = 1,700 kg/m3
However, the ingestion of the soil-bound substance by soil-dwelling organisms may not be
sufficiently explained by this relationship for substances with a log Kow greater than 5. The
Technical Guidance Document suggests that the PEC/PNEC ratio is increased by a factor of
10 to take account of ingestion.
The reported log Kow for short chain length chlorinated paraffins range from 4.39-8.69 and so
the equilibrium partitioning method is not really applicable to these substances. However, in
the absence of any other data a tentative PNEC for soil can be calculated assuming a Ksoil-water
of 2,736 m3/m3. This gives a PNEC for soil of 0.80 mg/kg wet weight.
It must be borne in mind that data obtained for aquatic organisms cannot replace data for
terrestrial organisms because the effects on aquatic species can only be considered as effects
on soil-dwelling organisms which are exposed exclusively to the interstitial water of the soil.
65
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
3.2.3
FINAL REPORT, OCTOBER 1999
Atmosphere
Direct emissions of chlorinated paraffins to the atmosphere are likely to be very low. Predicted
levels reflect the small but measurable volatility of this group of substances. Therefore, neither
biotic nor abiotic effects are likely because of the limited release and low volatility of
chlorinated short chain paraffins.
Short chain length chlorinated paraffins have been raised as a concern with regard to long
range atmospheric transport. This is currently being discussed within the appropriate
international fora.
3.2.4
Non compartment specific effects relevant to the food chain (secondary
poisoning)
3.2.4.1
Bioaccumulation
Reported log Kow ranging from 4.39 to 8.69 indicate a high potential for bioaccumulation.
High bioconcentration factors (ranging from 1,000 to 50,000 for whole body, with high values
for individual tissues) have been reported with a variety of freshwater and marine organisms.
Chlorinated paraffins were taken up rapidly; uptake may be slower at the higher end of the
chlorination range.
Most studies report moderate loss of bioaccumulated chlorinated paraffins on return to ‘clean’
water. Depuration half-lives have been reported at between 9 and 20 days. A single study
suggests that 71% chlorinated compounds may be retained longer. It has been suggested that
more rapid depuration from the liver, as compared to whole body, is indicative of metabolism
and excretion.
3.2.4.2
Avian toxicity
A good quality avian reproduction study using Mallard ducks has been carried out with a
C10-12, 58% Cl chlorinated paraffin. The study was carried out to GLP and was based on the
Mallard Reproduction Test (August 1982) of the EPA Environmental Effects Test Guidelines
(EPA 560/6-82-002). This method appears to correspond with the OECD 206 Avian
Reproduction Test (April 1984 version), with a few minor variations.
The study was a 22 week feeding study, including a 9 week pre-egg-laying period without
photostimulation, a 3 week pre-egg-laying period with photostimulation and a 10 week egglaying period with photostimulation. The principle of the test is that adult birds are fed a diet
containing the test substance over a period not less than 20 weeks. Birds are induced (by
photoperiod manipulation) to lay eggs. Eggs are collected over a 10 week period and the
young are observed for 14 days (note the young are not fed with the test substance). Mortality
of adults, egg production, cracked eggs, egg shell thickness, viability, hatchability and effects
on young birds are all compared to controls.
The test concentrations used were nominally 28, 166 and 1000 ppm (mg/kg) in diet. The mean
measured concentrations were found to be 29, 168 and 954 ppm. Twenty pairs of adults were
used at each concentration and as control.
66
CHAPTER 3.ENVIRONMENT
A large number of endpoints are looked at in the study and can be summarised under various
headings:
Appearance and mortality
Only one bird in the 166 ppm group died during the test. This was attributed to egg yolk
peritonitis and was not thought to be related to the test substance. All other adults (controls
and exposed) appeared normal in appearance and behaviour.
All surviving hatchlings were normal in appearance and behaviour during the 14-day post
hatch period.
A small number of hatchlings did not survive the 14-day observation period. The incidence of
mortalities were 3/567 (0.5%), 6/493 (1.2 %), 6/529 (1.1%) and 12/427 (2.8%) in the control,
28, 166 and 1,000 ppm groups respectively. These are normal for this type of test (the OECD
Guideline gives the expected survival rate to be between 94-99%).
Adult body weight and food consumption
No significant difference in adult body weight was seen between exposed groups and control.
A statistical analysis of food consumption generally revealed no significant difference
between control and exposed groups. A statistically significant increase in food consumption
was seen during week 17 in the 28 ppm group. This was not considered to be of biological
importance as a similar increase was not seen at other time periods or in other groups.
Egg, hatching and hatchling parameters
A slight, but statistically significant, decrease (by 0.020 mm) in the mean egg shell thickness
was noted in the 1,000 ppm group. The biological significance of this is questionable since the
mean egg shell thickness in the 1,000 ppm group (0.355 mm) was still in the range of normal
values given in the OECD guidelines (0.35-0.39 mm), and no increase in cracked eggs was
seen at this dose.
No significant difference in the number of eggs laid, number of cracked eggs or mean egg
weight was seen in any treatment group when compared with controls.
A decrease of approximately 10% in 14-day embryo viability over the 10 week egg-laying
period was seen in the 1,000 ppm group when compared to controls. Although this decrease
was not statistically significantly over the 10 week period, decreases at two weekly intervals
(weeks 3 and weeks 6) during the 10 weeks were statistically significant when compared to
controls. The decrease resulted from substantially lower viability of embryos in just 3 out of
the twenty pairs, rather than a generally lower viability throughout the 20 pens. The
conclusions of the authors of the report was that this reduced viability was treatment related
and may represent an effect on reproductive performance.
No statistically significant differences in the number of live 21-day embryos, hatchlings or
14-day old survivors were seen in any treatment group. Body weights of hatchlings at day 0
and day 14 were not statistically different from controls in any treatment group.
67
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Gross pathology
No changes that were treatment related were noted. Most changes were of a type that are
thought to occur normally in Mallard ducks at the end of a controlled reproduction study.
From the above, it can be seen that slight effects on reproduction may have been seen at
1,000 ppm in diet. Therefore the NOAEL is 166 ppm in diet (166 mg/kg food).
3.2.4.3
Mammalian toxicity
The following is a brief summary of the relevant mammalian toxicity from the Human Health
Assessment (Section 4 - consult that section for full details and discussion):
Single exposure studies: No oral LD50 available. Some signs of systemic toxicity at doses up
to 13 g/kg in rats and 27 g/kg in mice.
Repeated dose studies: Reduction in body weight and increases in kidney weight in rats at
doses of >100 mg/kg body weight/day over 14-90 days. In mice, general signs of toxicity over
90 days at doses >1000 mg/kg body weight/day. Main target organs (not relevant for human
health) in rats and mice are liver and thyroid. Effects on liver weight appear to occur at
concentrations of around 100 mg/kg body weight and above. In a rat 14-day feeding study,
similar effects on liver weight were seen at 900 ppm diet and above (this dose is
approximately equivalent to 100 mg/kg body weight/day).
Mutagenicity: Not mutagenic.
Carcinogenicity: In rodent studies, toxicologically significant incidence of adenomas and
carcinomas in liver and thyroid of mice. Similar effects were seen in a poor quality study in
rats. Male rats also showed an increased incidence of kidney tubular cell adenomas, thought to
be formed by a male rat specific mechanism (this effect was not seen in female rats or in mice
of either sex).
Toxicity for reproduction: No changes seen in reproductive organs of rats and mice treated for
13 weeks with up to 5,000 and 2,000 mg/kg body weight/day respectively. Developmental
effects seen in rats at doses that caused severe maternal toxicity but no effects seen at doses of
500 mg/kg body weight/day or less.
From the above summary, it can be seen that effects on laboratory rodents have been seen at
concentrations of 100 mg/kg body weight and above. Chlorinated paraffins have also been
shown to be carcinogenic in rodents. No clear no effect levels were determined in the
carcinogenicity studies, but they were all carried out at relatively high concentrations (e.g.
312 mg/kg body weight/day and above for rats and 125 mg/kg body weight/day and above for
mice) and thus fit in with the overall picture from other studies of short chain length
chlorinated paraffins causing adverse effects in mammals at concentrations of or above
100 mg/kg body weight.
3.2.4.4
Predicted no effect concentration (PNEC) for secondary poisoning
The Technical Guidance Document recommends that the NOAEL from dietary toxicity tests
with fish-eating birds or mammals are used to determine the PNECoral. The most relevant
68
CHAPTER 3.ENVIRONMENT
study for short chain length chlorinated paraffins is the Mallard reproduction study, from
which a NOAEL of 166 mg/kg in diet was obtained. The lowest level seen to cause slight
effects in this study was 1,000 mg/kg food.
The laboratory rodent data is consistent with the data obtained in birds since a dose of
100 mg/kg body weight/day in rats is approximately equal to 1,000 mg/kg food, using the
conversion factor of 10 from Appendix VIII of the Technical Guidance Document.
Since the NOAEL is from a reproductive study, the Technical Guidance Document suggests
that an indicative assessment factor of 10 can be used. Thus, the PNECoral is 16.6 mg/kg food.
3.3
RISK CHARACTERISATION
3.3.1
Aquatic compartment (incl. sediment)
3.3.1.1
Water
A PNEC of 0.5 µg/l has been derived for the freshwater aquatic compartment.
The PEClocal for fresh surface water depends on the release source. The worst case ratios are
summarised in Table 3.31.
Table 3.31 PEC/PNEC ratios for the aquatic compartment
Scenario
PEClocal Production (2 sites)
PEClocal Metal working (formulation)
PEC/PNEC ratio
<0.72- site specific
<0.86 - site specific
8.6
PEClocal Metal working (use)
2.8 or 10
PEClocal Rubber formulations
<0.68
PEClocal Paints and sealing compounds
negligible
[PEClocal Leather (formulation: scenario A)]
[124]
PEClocal Leather (formulation: scenario B)1
154
PEClocal Leather (use: scenario B)1
154
PEClocal Textile applications
negligible
PECregional
0.66
PECcontinental
0.066
1Scenario
B is more representative of the current usage in this area
The PEC/PNEC ratios indicate a significant risk to freshwater aquatic organisms from some
local sources. For use in metal working applications, the PEC has been derived assuming a 5%
chlorinated paraffin content in the cutting fluid. Higher concentrations, e.g. 10% up to 80%,
can be used in some applications, and so in some instances the PEC/PNEC ratio may be
higher than estimated here. Further information is unlikely to reduce the PEC/PNEC ratio
significantly and so risk reduction methods should be considered. A risk to the aquatic
69
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
environment is also indicated from metal working fluid formulation and leather processing
fluid formulation and use. For leather processing, very little information on how short chain
length chlorinated paraffins are used has been obtained. Several possible scenarios have been
developed based on the available data (Scenario B appears to be most realistic for use in
leather), each of which indicates a risk to the aquatic environment. Further information on
releases of short chain length chlorinated paraffins from these sources would be useful to
confirm these ratios, but based on the information available, a risk to the aquatic environment
cannot be ruled out. Site specific information for production sites indicates low concern.
The strong adsorption of short chain length chlorinated paraffins to sediment would tend to
ameliorate effects since the compounds would have reduced bioavailability to benthic
organisms. Similar considerations might suggest that the flow-through tests done on
organisms do not reflect the real situation. The demonstrated bioaccumulation of the
compounds would allow uptake and retention from low water concentrations away from point
sources. Overall it must be concluded that there is a potential risk to organisms local to release
sources, though exposure in the general environment poses a much reduced risk.
A PNEC of 6 mg/l has been derived for wastewater treatment microorganisms. According to
the Technical Guidance Document, this PNEC should be compared to the predicted
concentration in the aeration tank of a wastewater treatment plant, which should be similar to
the effluent concentration. Since a standard factor of 10 has been used for dilution of effluent
in the receiving water, then the predicted concentrations in effluent will be 10 · the predicted
concentration in surface water. For all scenarios the PEC/PNEC ratios are <1. Thus it can be
concluded that the risk to wastewater treatment plants from the production and use of short
chain length chlorinated paraffins is generally low.
Result
For the assessment of surface water for production sites (site specific data) and use in rubber
formulations, paints and sealing compounds and textile applications and the assessment of
effects on waste water treatment plants for all scenarios:
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
For formulation and use in both metal working fluids and leather finishing:
iii)
3.3.1.2
There is a need for limiting the risks; risk reduction measures which are already being
applied shall be taken into account
Sediment
There are no studies available on sediment-dwelling organisms (information is available on
the midge Chironomus tentans, but exposure was via water only). The equilibrium
partitioning method cannot be used for short chain chlorinated paraffins with log Kow values in
excess of 5. However, chlorinated paraffins partition selectively to sediment in aquatic
systems. There is no information available on the likely bioavailability of sediment bound
residues. Predicted concentrations in sediment range from <0.67 to 153 mg/kg for locally
significant sources. These concentrations would represent substantially greater exposure of
organisms if they were bioavailable. The Technical Guidance Document suggests that in order
70
CHAPTER 3.ENVIRONMENT
to take into account exposure via ingestion the PEC/PNEC ratio is increased by a factor of 10.
Using the tentative PNEC for sediment of 0.88 mg/kg, PEC/PNEC ratios of 1.4 to 1,740 can
be estimated. The ratios are summarised in Table 3.32. These indicate a risk to sediment
dwelling organisms from local sources. The PECregional for sediment of 1.16 mg/kg gives a
PEC/PNEC ratio of 13, indicating possible concern.
Table 3.32 PEC/PNEC ratios for the sediment compartment
Scenario
PEC/PNEC ratio
PEClocal Production (2 sites)
<8.1- site specific
<9.5 - site specific
PEClocal Metal working (formulation)
97
PEClocal Metal working (use)
32 or 113
PEClocal Rubber formulations
<7.6
PEClocal Paints and sealing compounds
negligible
[PEClocal Leather (formulation: scenario A)]
[1,400]
PEClocal Leather finishing (formulation: scenario B)1
1,740
PEClocal Leather finishing (use: scenario B)1
1,740
PEClocal Textile applications
negligible
PECregional
13
PECcontinental
1.4
1Scenario
B is more representative of the current usage in this area
The above PEC/PNEC ratios have been determined using a value for Koc of 91,200 estimated
from a log Kow of 6.0 using the methods outlined in the Technical Guidance document.
Recently, a measured Koc value of 199,500 l/kg has been determined for a C10- and C13-paraffin
with around 55% wt Cl content (Thompson et al., 1998). Appendix C considers the effect of
this value on the calculated PEC/PNEC ratios and shows that the same conclusions would be
reached if this measured value was used in the risk assessment.
Based on the screening assessment, it is recommended that firstly more information on
releases (particularly monitoring data near to sources of release) is needed, and then if
necessary further toxicity studies, to clarify the risk to sediment-dwelling organisms in aquatic
systems. A possible strategy for toxicity testing could be firstly a long-term Chironomid
toxicity test using spiked sediment with an assessment factor of 100 on the NOEC; secondly a
long-term Oligochaete toxicity test using spiked sediment, with an assessment factor of 50 on
the lowest NOEC; and finally a long-term test with Gammarus or Hyalella using spiked
sediment, with an assessment factor of 10 on the lowest NOEC. The risk reduction measures
recommended as a result of the assessment for surface water will also (either directly or
indirectly by lowering the PECregional) have some effect on the PECs for sediment. Therefore,
any further information gathering or testing should await the outcome of these risk reduction
measures on releases to the environment.
71
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Result
For use in paints and sealing compounds and textile applications:
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
For all other scenarios:
i)
There is a need for further information and/or testing
The need for further information and/or testing should be re-evaluated once the outcome of the
risk reduction measures recommended for surface water are known.
3.3.2
Terrestrial compartment
There are no studies available on plants, earthworms or other soil-dwelling organisms.
The equilibrium partitioning method has been used to derive a tentative PNEC for soil
organisms of 0.8 mg/kg. However, effects on aquatic species can only be considered as effects
on soil-dwelling organisms, which are exposed exclusively to the interstitial water of the soil.
The Technical Guidance Document suggests that the PEC/PNEC ratio is increased by a factor
of 10 for substances with a log Kow >5 to take into account ingestion of the soil bound substance.
PECs have been derived for agricultural soil and natural soil as 10.8 mg/kg and 11.5 µg/kg
respectively in the regional scenario. Thus the tentative PEC/PNEC ratios are 135 and 0.14 for
agricultural soil and natural soil. The PECcontinental of 0.95 mg/kg for agricultural soil would
also indicate concern. When actual sewage sludge concentrations from a German waste water
treatment plant are used (PEC = 0.10 mg/kg), the PEC/PNEC ratio is 1.3, again indicating a
risk at the regional level. High PECs, and hence PEC/PNEC ratios are also estimated for
agricultural soil in the local scenarios. The PEC/PNEC ratios estimated for agricultural soil
are summarised in Table 3.33.
Table 3.33 PEC/PNEC ratios for the terrestrial compartment
Scenario
PEC/PNEC ratio
PEClocal Production (2-sites)
negligible - site specific
PEClocal Metal working (formulation)
251
PEClocal Metal working (use)
64 or 290
PEClocal Rubber formulations
<0.92
PEClocal Paints and sealing compounds
negligible
[PEClocal Leather (formulation: scenario A)]
[3,875]
B)1
4,813
PEClocal Leather (formulation: scenario
PEClocal Leather (use: scenario B)1
PEClocal Textile applications
4,813
negligible
PECregional
135
PECcontinental
10.9
1Scenario
72
B is more representative of the current usage in this area
CHAPTER 3.ENVIRONMENT
Thus, soil organisms could be exposed to short chain length chlorinated paraffins following
application of sewage sludge to agricultural soils. There is no information available on the
bioavailability of soil-bound residues. There are also no tests on soil organisms which ingest
soil particles. It is recommended that more information on releases at a local and regional
level (particularly monitoring data near to sources of release) is needed to clarify the risk to
the terrestrial compartment. It has already been confirmed that no sewage sludge from the
two production sites in the EU is spread onto soil. If this information does not remove the
concern further toxicity studies could be performed to refine the PNEC. The following tests
are currently recommended in the Technical Guidance Document as being suitable for
development of a testing strategy for the terrestrial compartment: plant test involving
exposure via soil; test with an annelid; and a test with microorganisms. The risk reduction
measures recommended as a result of the assessment for surface water will also (either
directly or indirectly by lowering the PECregional) have some effect on the PECs for soil, as
the main route to soil is from spreading of sewage sludge. Therefore, any further
information gathering or testing should await the outcome of these risk reduction measures
on releases to the environment.
The above PEC/PNEC ratios have been determined using a value for Koc of 91,200
estimated from a log Kow of 6.0 using the methods outlined in the Technical Guidance
document. Recently, a measured Koc value of 199,500 l/kg has been determined for a C10and C13-paraffin with around 55% wt Cl content (Thompson et al., 1998). Appendix C
considers the effect of this value on the calculated PEC/PNEC ratios and shows that the
same conclusions would be reached if this measured value was used in the risk assessment.
Result
For production sites (site specific data), and use in rubber formulations, paints and sealing
compounds and textile applications:
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
For all other scenarios:
i)
There is a need for further information and/or testing
The need for further information and/or testing should be re-evaluated once the outcome of the
risk reduction measures recommended for surface water are known.
3.3.3
Atmosphere
Neither biotic nor abiotic effects are likely because of the limited atmospheric release and low
volatility of chlorinated short chain chlorinated paraffins.
Short chain length chlorinated paraffins have been raised as a concern with regard to long
range atmospheric transport. This is currently being discussed within the appropriate
international fora.
73
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Result
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
3.3.4
Non compartment specific effects relevant to the food chain (secondary
poisoning)
In Section 3.2.4, a PNEC of 16 mg/kg food was derived for the secondary poisoning scenario.
The level of short chain length chlorinated paraffins predicted in fish (PEC) is around 2.6 mg/kg
in the regional scenario. High concentrations in fish have been predicted for the local
scenarios. The PEC/PNEC ratios estimated are shown in Table 3.34. On the local scale, these
ratios have been estimated assuming that 50% of the dose comes from the local source and
50% comes from the regional sources (as suggested in the Technical Guidance Document).
Table 3.34 PEC/PNEC ratios for secondary poisoning
Scenario
PEC/PNEC ratio
PEClocal Production (2 sites)
0.16 - site specific
PEClocal Metal working (formulation)
0.96
PEClocal Metal working (use)
0.37 or 1.1
PEClocal Rubber formulations
<0.17
PEClocal Paints and sealing compounds
negligible
[PEClocal Leather (formulation: scenario A)]
[1.6]
PEClocal Leather (formulation: scenario B)1
2.6
PEClocal Leather (use scenario B)1
2.6
PEClocal Textile applications
PECregional
1Scenario
negligible
0.16
B is more representative of the current usage in this area
Based on the screening approach outlined in the Technical Guidance Document, the
PEC/PNEC ratios indicate a risk of secondary poisoning from formulation and use in leather
applications, and use in metal working (when the higher release factor is used). Risk reduction
measures for use in metal working and leather finishing applications are required based on the
aquatic assessment (see Section 3.3.1.1) and these should also reduce the risk from secondary
poisoning. The risk of secondary poisoning in birds and mammals, based on the existing
information, would appear to be low for the other scenarios considered. Short chain length
chlorinated paraffins do bioconcentrate in aquatic organisms and hence have the potential to
enter the food chain. If additional information became available indicating that they are more
toxic to mammalian or avian species than presently thought, then the risk of secondary
poisoning would have to be reassessed.
74
CHAPTER 3.ENVIRONMENT
Result
For production (site specific data), formulation of metal working fluids, and use in rubber
formulations, paints and sealing compounds and textile applications:
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
For use in metal working (using the higher release factor), and formulation and use in leather
applications:
iii)
There is a need for limiting the risks; risk reduction measures which are already being
applied shall be taken into account.
75
4
HUMAN HEALTH
4.1
HUMAN HEALTH (TOXICITY)
4.1.1
Exposure assessment
4.1.1.0
General discussion
The short chain length chlorinated paraffins are viscous non-volatile liquids and therefore skin
contact is the predominant occupational route of exposure. However, there is a potential for
significant inhalation exposure in two use areas. Although there is no information available on
the extent of absorption of short chain length chlorinated paraffins following their inhalation,
toxicokinetic data indicate that they are likely to be poorly absorbed via the dermal route.
4.1.1.1
Occupational exposure
4.1.1.1.1
General discussion
Definitions and limitations
In this document, unless otherwise stated, the term exposure is used to denote personal
exposure as measured or otherwise assessed without taking into account the attenuating effect
of any respiratory protective equipment (RPE) which might have been worn. The effect of
RPE is dealt with separately. This definition permits the effects of controls, other than RPE, to
be assessed and avoids the considerable uncertainty associated with attempting to precisely
quantify the attenuation of exposure brought about by the proper use of RPE.
Each section considers two routes of exposure, inhalation and dermal. Since there are very few
measured data, the exposures are largely predicted from the EASE (Estimation and
Assessment of Substance Exposure) model. EASE is a general purpose predictive model for
workplace exposure assessments. It is an electronic, knowledge based, expert system which is
used where measured exposure data is limited or not available. The model is in widespread
use across the European Union for the occupational exposure assessment of new and existing
substances.
All models are based upon assumptions. Their outputs are at best approximate and may be
wrong. EASE is only intended to give generalised exposure data and works best in an
exposure assessment when the relevance of the modelled data can be compared with and
evaluated against measured data. Dermal exposure is assessed by EASE as potential exposure
rate predominantly to the hands and forearms (approximately 2,000 cm2).
Overview of exposure
The sections below provide brief descriptions of the processes and sources of occupational
exposure for each industry during production, formulation and use. The short chain length
chlorinated paraffins are viscous liquids of very low volatility (paraffins with a chlorine
content of 50% have a vapour pressure of 0.0213 Pa and 0.7000 Pa at 40oC and 80oC
respectively). Skin contact is a major route of exposure. However, there is a potential for
76
CHAPTER 4. HUMAN HEALTH
inhalation exposure during the formulation of hot melt adhesives, in the use of metal workingfluids and during the spraying of paints, coatings and adhesives containing short chain length
chlorinated paraffins.
The number of persons potentially exposed to short chain length chlorinated paraffins within
the EU is expected to be in the order of one million, largely in the metal working fluids sector.
Occupational exposure limits
There are no occupational exposure limits for short chain length chlorinated paraffins.
4.1.1.1.2
Manufacture
Introduction
In the manufacture of short chain length chlorinated paraffins it is estimated that about 50-100
employees might be potentially exposed within the EU. The most volatile grades of short
chain length chlorinated paraffins (vapour pressure, 0.0213 Pa) are processed at temperatures
ranging between 25-45oC. However, the thicker grades, which are less volatile, may be kept at
up to 90oC to maintain a suitable viscosity.
Work pattern
The production of short chain length chlorinated paraffins involves the use of closed systems
and batch production methods. Exposure is therefore likely to be intermittent and may occur
during sampling, plant cleaning, filter cleaning, drumming and tanker loading operations. The
main route of potential exposure is considered to be via skin contact.
Inhalation exposure
The EASE Model predicts that airborne concentrations of substances with a vapour pressure
of less than 0.001 kPa are negligible (equivalent to an exposure of 0-0.1 ppm 8 hour TWA),
regardless of pattern of use and pattern of control. As no aerosol forming activities are
anticipated, the inhalation of short chain length chlorinated paraffins during manufacture is
considered to be insignificant.
Dermal exposure
Assuming a non-dispersive pattern of use and intermittent skin contact, the EASE Model
predicts that exposures to the hand and forearm will be in the range of 0.1-1 mg/cm2/day. In
practice, dermal exposure will be considerably reduced by the use of personal protective
equipment.
Summary
For the purposes of risk assessment, an inhalation exposure of 0.1 ppm 8 hour TWA will be
used, together with a dermal exposure of 1 mg/cm2/day.
77
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
4.1.1.1.3
FINAL REPORT, OCTOBER 1999
Formulation
Introduction
Formulation may be divided into three areas, each involving the preparation of mixtures for
further use elsewhere. The first is in the manufacture of metal working fluids, paints, sealants
and some adhesives, and fluids used for the treatment of leather or textiles. These are low
temperature mixing processes. The second is in the formulation of hot melt adhesives. The
third is in the preparation of rubber products where the rubber is mixed with other materials
before being formed into sheets. These are cut or moulded into the final product form
elsewhere. The numbers of persons potentially exposed to short chain length chlorinated
paraffins in the formulation sector is not known but is estimated to be in the region of several
thousands within the EU. The processing of short chain length chlorinated paraffins in the
various use sectors involves similar procedures. The process temperatures generally range
between 40-50oC with the exception of hot melt adhesives and rubber products where
temperatures may be in the range 180-200oC.
Work pattern
The blending of the chlorinated paraffins in all three areas generally involves the use of closed
systems and batch production methods. Exposure will therefore be intermittent and limited to
operations such as charging of mixers, sampling, plant cleaning and loading of tankers, drums
and other containers. It is standard practice within the industry to use local exhaust ventilation
on mixer charging and, where necessary, decanting points.
Inhalation exposure
The EASE Model predicts negligible airborne concentrations, equivalent to 0-0.1 ppm 8 hour
TWA inhalation exposure, from formulation processes operated at between 40-50oC.
However, in the case of hot melt adhesives and rubber products, the higher process
temperatures may result in significant airborne vapour concentrations being produced.
Assuming a non-dispersive pattern of use, with segregation of the work and the use of local
exhaust ventilation, the EASE Model predicts airborne exposures of 0.5-3 ppm 8 hr TWA.
Dermal exposure
Assuming a non-dispersive pattern of use and intermittent skin contact, the EASE Model
predicts that exposure to the hands and forearms will be in the range of 0.1-1 mg/cm2/day.
The exposures predicted above are likely to be at the high end of those experienced. In
practice, dermal exposure will be considerably reduced by the use of personal protective
equipment and the decontamination of equipment in use. Further, the inhalation exposures
arise from batch production, suggesting that the actual exposures are brief and intermittent.
Summary
For the purposes of risk assessment, inhalation exposures of 0.1 ppm 8 hour TWA (low
temperature mixing processes) 3 ppm 8 hour TWA (hot melt adhesives and rubber
formulation) and 1 mg/cm2/day (all dermal exposures) will be used.
78
CHAPTER 4. HUMAN HEALTH
4.1.1.1.4
Use of formulations
In most formulations the short chain length chlorinated paraffins constitute a small percentage
of the products in which they are used. Occupational exposure resulting from the use of the
products will therefore be moderated by their low concentration.
Metal working fluids
The number of employees potentially exposed to metal working fluids is estimated to be over
a million within the EU.
Work pattern
Metal working fluids are applied by continuous jet, spray, mist or by hand dispenser. Skin
contact occurs during preparation or draining of the fluids, handling workpieces, from
splashes during machining, changing and setting of tools and during maintenance and cleaning
of machines. In addition, inhalable aerosols or oil mist and fumes can be generated during
machine operations.
Inhalation exposure
Historical exposure data from machine shops, reported as reflecting worst case situations,
indicated exposures ranging from 0.33-3.2 mg/m3 total mist for operations such as milling,
cutting and grinding (Industry supplied data). The chlorinated paraffin content in the fluids
used in these exposure surveys ranged from 5-40%. Exposures to chlorinated paraffins were
estimated to be from 0.003-1.15 mg/m3. Exposure data from another study suggested
exposures to chlorinated paraffins ranging from 0.003-0.21 mg/m3.
Dermal exposure
There will be significant potential for skin contact. The nature of this contact, however, will
clearly depend upon the activity involved which will determine how often an item is handled and
for how long. Assuming non-dispersive use and intermittent (2-10 events per day) skin contact,
EASE predicts that exposure to the hands and forearms will be in the range of 0.1-1 mg/cm2/day.
However, the typical content of chlorinated paraffin in metal-working fluids is 2-10% which
would approximate to a dermal exposure of 0.002-0.1 mg/cm2/day. (A separate evaluation for
this activity is made for consumers, see Section 4.1.1.2).
It is important to note that, in practice, dermal exposure will be considerably attenuated by the
decontamination of equipment and the use of personal protective equipment.
Summary
For the purposes of risk assessment, an inhalation exposure of 1.15 mg/m3 8 hour TWA will
be used, together with a dermal exposure of 0.1 mg/cm2/day.
Leather and textile treatments
The number of people potentially exposed to short chain length chlorinated paraffin-based
textile and leather treatments is not known.
79
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Work pattern
Exposures would arise from handling treatment formulations and treated products and other
contact with contaminated surfaces.
Inhalation exposure
The use of these formulations at ambient or slightly raised temperatures, even in unenclosed
systems, is not expected to give rise to high airborne concentrations. The EASE Model
predicts that inhalation exposure to a substance with a vapour pressure of less than 0.001 kPa
is negligible (0-0.1 ppm), regardless of pattern of use and pattern of control. As no aerosol
forming activities are anticipated, the inhalation exposure to short chain length chlorinated
paraffins during manufacture is considered to be negligible.
Dermal exposure
The pattern of dermal exposure will be intermittent and the concentration of short chain length
chlorinated paraffins on the articles will vary depending upon the formulation. Assuming a nondispersive pattern of use and intermittent skin contact, the EASE Model predicts that exposures
to the hand and forearm will be in the range of 0.1-1 mg/cm2/day. However, it is unlikely that
the treatment formulations will contain more than 30% short chain length chlorinated
paraffins thus reducing the predicted exposure by a factor equivalent to the concentration in
the formulation; the dermal exposure will therefore be in the range 0.03-0.3 mg/cm2/day. It is
important to note that, in practice, dermal exposure will be considerably attenuated by the use
of personal protective equipment.
Summary
For the purposes of risk assessment a dermal exposure of 0.3 mg/cm2/day will be used.
Inhalation exposure is considered to be negligible.
Use of treated leather and textiles in protective clothing
The treated textile products described above may be used in industrial protective clothing and
tarpaulins. In each of these products, the short chain length chlorinated paraffins are part of a
treatment formulation applied to the cloth and the amount on the finished article is likely to be
low. Treated leathers would not be used in this kind of application.
Skin contact with some of these products would be very intermittent and in the case of
protective clothing (if so used) would be worn over other garments. For the purposes of risk
assessment, exposure by both the inhalation and dermal route may be considered to be
negligible.
Paints, adhesives and sealants
The number of people potentially exposed to short chain length chlorinated paraffins based
paints, adhesives and sealants is not known but is estimated to be in the region of thousands.
80
CHAPTER 4. HUMAN HEALTH
Work pattern
No measured data are available and there is scope for widely different use scenarios. In most
use scenarios, exposure to vapours is considered insignificant due to the very low vapour
pressure of the short chain length chlorinated paraffins. However, spraying is a common
method of applying paints, adhesives and certain types of sealant coatings (although not caulk
type sealants or grout) and this may result in significant inhalation exposure from the aerosols
formed.
Inhalation exposure
EASE predicts an 8-hour TWA inhalation exposure of 100-200 ppm if neat short chain length
chlorinated paraffins were sprayed. However, EASE assumes that the short chain length
chlorinated paraffins are true vapours; in practice they will be present as a minor constituent of
fine droplets; consequently EASE does not provide an appropriate model for this scenario.
Given the lack of comparable information on the levels of fine droplets generated in paint
spraying, there is no directly relevant data available for predicting inhalation exposure. The
next best approximation is provided by the measured data on metal working fluids, which may
be applied by continuous jet or spray, although potentially on a smaller scale than some paint
spraying equipment. Using these data as a first approximation, the concentration of total mist
in air is 3.2 mg/m3. Assuming that the formulations are unlikely to contain more than 10%
short chain length chlorinated paraffins, gives a concentration of 0.32 mg/m3.
Dermal exposure
There will also be a potential for dermal exposure to these formulations from splashing and
contact with contaminated surfaces. A worst case scenario would be for an operator carrying out
manual spraying. Assuming non-dispersive use and intermittent (2-10 events/day) skin contact,
EASE estimates dermal exposure to the hands and forearms to be in the range 0.1-1 mg/cm2/day.
As these formulations are unlikely to contain more than 10% short chain length chlorinated
paraffins, the predicted dermal exposure range will be reduced to 0.01-0.1 mg/cm2/day.
It is important to note that, in practice, dermal exposure will be considerably attenuated by the
decontamination of equipment and the use of personal protective equipment.
Summary
For the purposes of risk assessment, inhalation exposures of 0.32 mg/m3 8 hour TWA (all
spray processes) and 0.1 mg/cm2/day (all dermal exposures) will be used.
Further processing and use of rubber products
The further cutting, moulding and shaping of rubber products is unlikely to lead to significant
dermal or inhalation exposure, since the short chain length chlorinated paraffins are a minor
part of the total formulation and the amount available on the surface for dermal contact is
likely to be small. Consequently, for the purposes of risk assessment, dermal and inhalation
exposure arising from further processing of rubber products is considered to be negligible.
81
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
For the reasons stated above, for the purposes of risk assessment it is considered that dermal
and inhalation exposure resulting from use of these products will be negligible.
4.1.1.1.5
Summary of occupational exposure
Table 4.1 Data to be used for risk assessment
Scenario
Inhalation
Dermal
Duration
Concentration
Duration
Concentration
Manufacture
8-hour TWA
0.1 ppm
(2.1 mg/m3)a
8-hour day
1 mg/cm2
Formulation low
temperature
8-hour TWA
0.1 ppm
(2.1 mg/m3)
8-hour day
1 mg/cm2
Formulation high
temperature
8-hour TWA
3 ppm
(63 mg/m3)
8-hour day
1 mg/cm2
Metal working fluids
8-hour TWA
1.15 mg/m3
8-hour day
0.1 mg/cm2
Leather and textile
treatment
8-hour TWA
negligible
8-hour day
0.3 mg/cm2
Leather and textile use
8-hour TWA
negligible
8-hour day
negligible
Paints, adhesives &
sealants
8-hour TWA
0.32 mg/m3
8-hour day
0.1 mg/cm2
Rubber products,
processing and use
8-hour TWA
negligible
8-hour day
negligible
amg/m3
= ppm · Molecular Weight / 24.05526
Molecular weight is assumed to be 500 (the top end of the range) and 24.05526 l/mol is the molar volume of an ideal gas at
20° C and 1 atmosphere pressure (101325 Pa, 760mm mercury, 1.01325 bar)
4.1.1.2
Consumer exposure
Short chain length chlorinated paraffins are used in leather and textile treatments, in metal
working fluids, paints, sealants and adhesives and in plastic and rubber products. Consumer
exposure may arise from the use of treated finished products or following their application
(leather, textiles, plastics and rubber, paints, adhesives and sealants) during the application
process (paints, adhesives, sealants) and during the process of use (metal working fluids). The
potential exposure scenarios and resulting exposures are considered below. Some exposures
are clearly negligible.
4.1.1.2.1
Leather treatment
The production and use section notes that some 390 tonnes of short chain length chlorinated
paraffins are used in the leather industry. They are usually mixed with sulphonated oils but it
is unlikely that any chemical changes take place in the chlorinated paraffins as a result. They
are used to produce a surface sheen to some sorts of leather but also help to impart some tear
resistance when used in garments. Worst case exposure scenarios can be estimated as being
82
CHAPTER 4. HUMAN HEALTH
when leather garments are worn regularly. The major centres for the leather industry in Europe are
in Italy and Spain; the greater proportion of this tonnage is therefore likely to be consumed there.
Short chain length chlorinated paraffins are thought to be used infrequently (note the scenario
for slippers below) as they are relatively expensive. They are more likely to be used for more
expensive products, where flexibility and softness is more important than price (Leather
Industry Personal Communication). While a screening level exposure assessment is presented
below for leather jackets and trousers, expensive gloves would be a more likely use.
Exposure scenario for the use of chlorinated paraffins in slippers
There is a small use in the UK industry and a possibly larger use in Italy for producing a dark
surface sheen to slippers. Short chain length chlorinated paraffins are 1-2% of a 30% solution.
The leather is in the treatment for 10 minutes, just after formic acid (to make a pH of 3.5) has
fixed the dye. Owing to the short treatment period there is no absorption below the surface of
the slipper.
Assuming that the slippers weigh 1000 g there will be a maximum of 3 g of chlorinated
paraffins in the slippers. Assuming that all of this migrates out of the slippers over a period of
a year the maximum daily exposure will be less than 10 mg/day.
Exposure scenario for the use of chlorinated paraffins in coats and trousers
The maximum concentration of chlorinated paraffins in other leather goods is 1% (UK
Leather Industry, Personal Communication). Assuming that leather jackets and trousers are
worn next to the skin and weigh a total of 5 kg, there will be a maximum of 50 g of
chlorinated paraffins in the clothing. Assuming that all of this migrates out of the leather over
a period of a year, then the daily exposure will be a maximum of 50/365 = 137 mg/day.
This assumes that the leather clothing is worn continuously next to the skin, without a lining
or other garments and that the migration rate is as high as suggested. However, if the garments
are dry-cleaned, then most if not all of the chlorinated paraffins will be removed in this
procedure (Leather Industry Personal Communication). Indeed, following dry-cleaning, oils
(which are unlikely to contain chlorinated paraffins) are put back into the garments to
maintain their suppleness.
Summary
Assuming a consumer wears leather trousers and jacket next to the skin continuously then
there will be a maximum daily exposure of 137 mg/day of C10-C13 chlorinated paraffins. This
value will be taken forward to the risk characterisation section, with the proviso that it is likely
to be a large exaggeration. The use of leather slippers is unlikely to be additive.
4.1.1.2.2
Use in textiles
Short chain length chlorinated paraffins may be used in sail cloths and industrial protective
clothing and tarpaulins that could be purchased by the public. There was an historical use for
chlorinated waxes in military tenting but it is believed that they are no longer used. In each of
these products, the short chain length chlorinated paraffins are part of a treatment formulation
applied to the cloth.
83
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Consumer contact with these products would be very intermittent; where industrial protective
clothing of this type is worn it is very likely to be worn over other clothes, such that skin
contact is minimal.
For the purposes of risk assessment, exposure by both the inhalation and dermal route may be
considered to be negligible.
4.1.1.2.3
Use in metal working fluids available to consumers
Consumers may have access to (but may not necessarily use) metal working fluids containing
short chain length chlorinated paraffins, either for use with lathes at home or in voluntary
groups (for example restoring or maintaining old vehicles or engines). No precise information
is available.
Exposure scenario for use in metal working fluids
An individual working alone is unlikely to have the same degree of prolonged exposure that
would arise from a full working day, nor would they expect to be exposed to mists generated
by a number of machines working simultaneously and/or continuously. Similarly, while
voluntary groups maintain and use their own machine shops, they may not be in constant use.
Consequently, for consumers as individuals or groups, the exposure information available for
the workplace is likely to be an overestimate. The degree of overestimation is uncertain but
continuous exposure 8 hours daily for a working week is unlikely. For the purposes of risk
assessment, therefore, inhalation and dermal exposure will be treated as individual events,
averaged over a day, rather than repeated exposures.
Inhalation exposure
To take account of the factors that are likely to lead to lower exposures for consumers,
concentrations in the air will be reduced by a factor of 10 and work duration will be assumed
to be 2 hours. Using the workplace value of 1.15 mg/m3, the concentration in air is calculated
to be 0.115 mg/m3 for 2 hours. Assuming a breathing rate of 1.25 m3/hour inhalation exposure
will be 0.3 mg.
Dermal exposure
Dermal exposure will remain the same, 0.1 mg/cm2/day. Assuming the surface area of the
hands to be 2000 cm2 (assuming arm and forearm contamination in this case) this amounts to
a dermal exposure of 200 mg.
4.1.1.2.4
Use in paints, sealants and adhesives available to consumers
Short chain length chlorinated paraffins are not used in the kinds of paints, sealants or
adhesives commonly purchased by consumers. While it is plausible that consumers could
obtain the paints from the same sources as professionals, their use as industrial coatings and
the container volumes in which they are likely to be supplied suggest that this is likely to be
rare. A risk assessment for this potential source of exposure has not, therefore, been carried out.
84
CHAPTER 4. HUMAN HEALTH
Similarly, while there may be a consumer use of some of the adhesives sold containing short
chain length chlorinated paraffins, the likely short duration of their use, that they form a small
proportion of the final product and their physico-chemical properties indicates that consumer
exposure from their use, if they are so used, will be negligible.
The short chain length chlorinated paraffins are not used as solvents. They are an integral part
of the paint, adhesive or coating and have a very low vapour pressure. Consequently consumer
exposure to emissions and hence inhalation and dermal exposure can be considered to be
negligible.
4.1.1.2.5
Use in rubber products
Given the nature of the products and their paraffin content, for the purposes of risk
assessment, inhalation and dermal exposure arising from the use of finished products can be
considered to be negligible.
4.1.1.2.6
Summary of consumer exposure
Table 4.2 Information to be used in the risk assessment
Inhalation
Scenario
Duration
Dermal
Concentration
(dose)
Duration
Concentration
(dose)
Leather slippers
negligible
daily
(<10 mg)
Leather clothing
negligible
daily
(137 mg)
Textiles
negligible
Metal working fluids
per event, over
two hours
0.115 mg/m3
(0.3 mg)
negligible
per event, over
two hours
0.1 mg/cm2
(200 mg)
Paints, sealants & adhesives
negligible
negligible
Rubber products
negligible
negligible
4.1.1.3
Indirect exposure via the environment
Short chain length chlorinated paraffins have several uses that can result in releases into
surface water, for instance use in metal working fluids. Short chain length chlorinated
paraffins have been shown to bioconcentrate in aquatic organisms and have been detected in
some items of food (see Section 3.1.4). Very low levels of chlorinated paraffins are expected
to occur in air. The main source of exposure of humans via the environment is therefore likely
to be via food and, to a lesser extent, drinking water.
The EUSES model has been used to estimate various concentrations in food, air and drinking
water and from these to estimate a daily human intake figure. Some of values are reported in
Section 3.1.3 and 3.1.4 and are reproduced again here in Table 4.3.
85
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 4.3 Estimated concentrations of short chain length chlorinated paraffins in food and human intake media
Scenario
Estimated concentration
Drinking
water
Air
Fish
Plant roots
Plant leaves
Meat
Milk
Production
(default)
0.032 or
0.96 mg/l
11.6 ng/m3
68.5 or
1,980 mg/kg
229 or
6,870 mg/kg
0.013 or
0.085 mg/kg
0.30 or
8.51 mg/kg
0.095 or
2.69 mg/kg
Metal working
(formulation)
0.013 mg/l
11.6 ng/m3
28.3 mg/kg
89.3 mg/kg
0.011 mg/kg
0.128 mg/kg
0.041 mg/kg
Metal working
(use)
0.003 or
0.014 mg/l
11.6 ng/m3
9.12 or
32.5 mg/kg
22.7 or
103.3 mg/kg
0.011 or
0.011 mg/kg
0.046 or
0.209 mg/kg
0.014 or
0.064 mg/kg
Rubber
formulations
<0.09 µ g/l
11.6 ng/m3
<2.68 mg/kg
<0.33 mg/kg
<0.010 mg/kg <0.018 mg/kg <0.006 mg/kg
Paints and
sealing
compounds
negligible
negligible
negligible
negligible
negligible
negligible
negligible
Leather
(formulation:
scenario A)
0.19 mg/l
11.6 ng/m3
48.9 mg/kg
1,380 mg/kg
0.026 mg/kg
1.72 mg/kg
0.55 mg/kg
Leather
(formulation:
scenario B)
0.24 mg/l
11.6 ng/m3
79.7 mg/kg
1,710 mg/kg
0.045 mg/kg
2.16 mg/kg
0.68 mg/kg
Leather
(use: scenario B)
0.24 mg/l
17.8 ng/m3
79.7 mg/kg
1,710 mg/kg
0.045 mg/kg
2.16 mg/kg
0.68 mg/kg
Textile
applications
negligible
negligible
negligible
negligible
negligible
negligible
negligible
Regional
6.7 µ g/l
11.6 ng/m3
2.6 mg/kg
48 mg/kg
0.011 mg/kg
0.154 mg/kg
0.049 mg/kg
There is considerable uncertainty inherent in the approach EUSES takes for estimating the
concentrations of substances with high log Kow values in various parts of the food chain. For
instance, the concentrations estimated in drinking water are very high, frequently close to or
above the water solubility of the substance, and are much higher than the levels
predicted/found in surface waters. This is because in EUSES the drinking water
concentrations are taken as the soil pore water concentrations. For highly lipophilic substances
such as short chain length chlorinated paraffins, very high concentrations in soil are predicted
due to application of sewage sludge containing the substance. This leads to high estimated soil
pore water concentrations, which in turn also leads to very high concentrations in plant roots
(the estimated plant root - pore water partition coefficient for short chain chlorinated paraffins
is around 7,200 kg/l) and hence other parts of the food chain related to plant concentrations
e.g. leaves, meat and milk.
The human intake from the various routes can be estimated using the methods given in the
Technical Guidance Document using the standard defaults (adult body weight = 70 kg;
86
CHAPTER 4. HUMAN HEALTH
bioavailability inhalation = 0.75; bioavailability oral route = 1.0). The estimated figures are
shown in Table 4.4.
Table 4.4 Estimated human intake from various sources
Estimated daily human intake (mg/kg body weight/day)
Drinking
water
Inhalation
Fish
Root crops
Leaf crops
Meat
Dairy
products
Total
mg/kg
bw/day
Default intake
of crop
2 l/day
20 m3/day
Production
(default)
9.1·10-4 or
0.027
2.5·10-6
0.11 or
3.25
1.25 or
37.7
2.2·10-4 or
1.5·10-3
1.3·10-3 or
0.037
7.6·10-4 or
0.02
1.4 or
41.0
Metal working
(formulation)
3.7·10-4
2.5·10-6
0.05
0.49
1.8 · 10-4
5.5·10-4
3.2·10-4
0.54
Metal working
(use)
9.0 ·10-5 or
4·10-4
2.5·10-6
0.015 or
0.053
0.125 or
0.57
1.8·10-4
2.0·10-4 or
9.0·10-4
1.1·10-4 or
5.1·10-4
0.14
Rubber
(formulation)
<2.5·10-6
2.5·10-6
<4.4·10-3
<1.8 · 10-3
<1.8·10-4
<7.8·10-5
<4.6·10-5
<6.5·10-3
Leather
(formulation:
Scenario A)
5.5·10-3
2.5·10-6
0.08
7.56
4.4·10-4
7.4·10-4
4.4·10-4
7.65
Leather
(formulation:
Scenario B)
6.8·10-3
2.5·10-6
0.13
9.38
7.7·10-4
9.3·10-3
5.5·10-3
9.53
Leather
(use:
Scenario B)
6.8·10-3
5.1·10-6
0.13
9.38
7.7·10-4
9.3·10-3
5.5·10-3
9.53
Regional
sources
1.9·10-4
2.5·10-6
4.3·10-3
0.26
1.9·10-4
6.6·10-4
3.9·10-4
0.27
0.115 kg/day 0.384 kg/day 1.20 kg/day 0.301kg/day 0.561 kg/day
EUSES calculations and environmental emissions
In the above tables, for “Metal working - use”, the first line of the calculation represents 4%
emission into the environment from use, the second line 18%. The latter is a default
assumption, the former is based upon information gathered from a survey of the industry
(UCD 1995). The data based upon the industry survey is considered the most realistic and will
be considered further, below.
Releases from actual production sites have been estimated to be <26.7 kg/year to waste water.
The higher figures in food given in Table 4.3 for production have been estimated using the
default release figure of 30,000 kg/year to waste water. Thus, based on the actual release data
from production sites, the estimated local human intake would be around 1,100 times lower
87
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
than the figure of 41.0 mg/kg body weight estimated in Table 4.4, i.e. 0.037 mg/kg body
weight. Furthermore, one of the sites now no longer sends waste to sewage; these wastes are
now incinerated. Since the sewage - sludge - plant chain is the one which (in these
calculations) most contributes to human uptake, for this site the calculated uptake via the
environment would be further reduced.
EUSES calculations and concentrations in foodstuffs
As can be seen from Table 4.4, root crops are predicted to form the major source of human
uptake. As mentioned above, there is considerable uncertainty in the derivation of these
values. Some surveys of the levels of short chain length chlorinated paraffins in food have
been carried out and are reported in Section 3.1.4.2. In one survey (Campbell and
McConnell, 1980), the average levels of C10-20 chlorinated paraffins found in human
foodstuffs were 0.3 mg/kg in dairy products, 0.15 mg/kg in vegetable oils and derivatives,
0.005 mg/kg in fruit and vegetables and not detected (<0.05 mg/l) in drinks. In other
surveys, levels of C10-20 chlorinated paraffins in shellfish close to sources of discharge of
up to 12 mg/kg have been measured and levels of chlorinated paraffins in meat of up to
4.4 mg/kg on a fat weight basis (the sample contained ~2% fat) have been measured.
Based on these values, the maximum estimated human intake (ignoring contributions from
inhalation) is of the order of 20 µg/kg (body weight)/day, with the major contribution coming
from fish/shellfish.
The value of 20 µg/kg/day is in line with the contribution from regional sources without the
contribution from root crops (0.27-0.26 = 10 µg/kg/day) from metal working fluid formulation
without root crops (0.54-0.49 = 60 µg/kg/day) and from metal working fluid use without
root crops (0.140-0.125 = 15 µ g/kg/day). The real data above may not include a root crop
but does include data from samples taken close to a pollution source and from food
probably sourced from elsewhere. Consequently, it does not represent a diet coming only
from a polluted source. However, when root crops are removed, fish/shellfish becomes the
dominant source in human food for the EUSES calculations, as they are for calculations based
on real data.
Summary
The EUSES predictions considerably overestimate human exposure via the environment,
specifically in the predictions for root crops. However, real data clearly indicate the potential
or human uptake. The value of 20 µg/kg/day is considered to be a reasonable worst case
prediction based upon real data and will be used in the risk assessment to represent both local
and regional exposure.
88
CHAPTER 4. HUMAN HEALTH
4.1.2
Effects assessment: Hazard identification and dose (concentration) response (effect) assessment
4.1.2.1
Toxico-kinetics, metabolism and distribution
4.1.2.1.1
Studies in animals
In vivo studies
Inhalation
No studies are available.
Oral
Absorption, distribution and excretion were investigated in a study in which groups of 1 to 4
mice were treated with one of three different C12 paraffins, differing in degree of chlorination:
monochlorododecane (MCDD, 17.4% chlorinated), polychlorododecane I (PCDD I, 55.9%
chlorinated) and polychlorododecane II (PCDD II, 68.5% chlorinated) (Darnerud et al., 1982).
In the first part of the study, groups of four mice were treated by gavage with terminally
labelled-14C PCDD I or II in a fat emulsion (MCDD was not investigated is this part). Sixty two
percent of the administered radioactivity was recovered 12 hours after administration of
PCDD I; 33% as CO2 in exhaled air, and 29% in the urine. A further 5% was recovered in the
faeces. Only 12% of the administered radioactivity was recovered within 12 hours for the
greater chlorinated PCDD II; 8% as carbon dioxide in exhaled air and 4% in the urine. A further
21% was recovered in the faeces.
Distribution of the three radiolabelled chlorinated paraffins was investigated in the second part
of the study using whole-body autoradiography techniques in groups of one or two mice per
substance. Twenty four hours after administration as above, evidence of radioactivity was
apparently seen in tissues with high metabolic activity and/or high rates of cell proliferation
(e.g. the intestinal mucosa, bone marrow, brown fat, salivary glands, and thymus). The liver
showed the most evidence of radioactivity in PCDD II-treated animals. According to
qualitative judgement of the X-ray films by the authors, the evidence of accumulation of
radioactivity apparently increased with increasing degree of chlorination. However quantitative
investigations were not conducted.
In an unpublished study groups of 18 male and 18 female rats were treated with 10 or
625 mg/kg/day C10-12, 58% chlorinated paraffin, daily in the diet for 13 weeks (unpublished
reference 73, 1984). After the 13 weeks, all rats received a single oral (gavage) dose of
14
C-radiolabelled C10-12 (position of labelling not stated), 58% chlorinated paraffin, at the same
dose level as received daily in the previous weeks. Other groups of 18 males and 18 females,
which were not treated previously with chlorinated paraffin, also received a single radioactive
dose of 10 or 625 mg/kg/day C10-13, 58% chlorinated paraffin. Urine, faeces and carbon
dioxide were collected from groups of animals for either 12 hours or 7 days. Other groups
were kept for 24 or 48 hours, or 28 or 90 days at which time tissue distribution studies were
conducted. Samples of whole blood were also collected at 12, 24 and 48 hours and 7 days.
89
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Overall there was little difference in excretion between the sexes, dose levels or treatment
regimes. Faecal elimination was the principal route of excretion of radioactivity with 54-66%
of the administered radioactivity being recovered in 7 days. Most of the recovered
radioactivity was obtained within 3-4 days in the naive animals and in 2 days in the animals
pretreated for 13 weeks with chlorinated paraffin. Approximately 14% of the administered
radioactivity were recovered in the urine in 7 days and less than 1% in exhaled air as carbon
dioxide. Blood levels were proportional to dose, and the rates of decline after 7 days were
found to be similar. Tissue levels were also proportional to the administered dose and were
similar, irrespective of dosing regime, suggesting that the kinetics of absorption, distribution
and excretion of the radioactive dose was essentially linear over the range of doses tested and
that pre-dosing had no significant influence on this. The highest initial concentrations of
radioactivity were found in the liver, kidney, adipose tissue and ovaries. The concentration of
radioactivity in all tissues, including the blood, tended to be lower in the pretreated animals
than in the naive, although these differences had essentially disappeared by day 7 in males and
day 28 in females. The rate of elimination overall was noted to be "somewhat" lower for
adipose tissue.
One 90-day and two 14-day studies, which are summarised in more detail in section 4.1.2.6,
showed statistically significant increases in liver microsomal activity or levels of cytochrome
P450, amino pyrine demethylase and Lowry protein, following oral treatment (by gavage or in
the diet) of 300 mg/kg/day and above of a C10-12, 58% chlorinated paraffin (unpublished
references 72, 1983; 73, 1984 and 75, 1981).
Dermal
No studies are available on the dermal absorption of short chain length chlorinated paraffins.
However very poor dermal absorption has been demonstrated for longer chain chlorinated
paraffins. When 14C-labelled C18 (50-53% chlorinated) and C28 (47% chlorinated) chlorinated
paraffins were applied to the dorsal skin of rats, 0.7 and 0.1% of the applied radioactivity,
respectively, was absorbed as indicated by that recovered in excreta, expired air and body
tissues after 96 hours (Yang et al., 1987). Dermal absorption of short chain chlorinated
paraffins may be greater than for the longer chain, but nevertheless will be poor.
Parenteral
Three different 14C-labelled C12 paraffins, differing in degree of chlorination (17.4, 55.9 or
68.5% chlorinated) were given intravenously to groups of mice (Darnerud et al., 1982).
Results indicated that excretion in urine and as CO2 in exhaled air was inversely proportional
to the degree of chlorination. The distribution of radioactivity was similar at 4 to 24 hours as
that seen in the oral administration study. At later times, the adrenal cortex and gonads (on
days 4 to 12) and the central nervous system (on days 30-60) were selectively labelled
following treatment with the 17.4 and 55.9% chlorinated paraffins (but apparently not with the
68.5% chlorinated paraffin).
Oxidation of chlorinated paraffins by cytochrome P450 was demonstrated following intravenous
administration in groups of mice which were pretreated with P450-inducers and inhibitors,
before receiving intravenous treatments of four different radiolabelled C12 chlorinated paraffins
(Darnerud, 1984).
90
CHAPTER 4. HUMAN HEALTH
P450-inducers had very little effect on levels of 14CO2 collected in exhaled breath, while the
inhibitors caused up to 84% depletion of 14CO2 collected. It was also noted that the inhibitory
effect increased for the paraffins having an increasing degree of chlorination.
In vitro studies
Male rats were treated intraperitoneally with 0 or 1000 mg/kg/day of a C10-13, 49 or 71%
chlorinated paraffin for 4 days, after which liver microsomes were pooled and assayed for
cytochrome P450 concentrations (Nilsen and Toftgard, 1981). Increases in RLvMc P45054 (43
and 87% with the 49 and 71% chlorinated paraffins, respectively) and RLvMc P45050 (74%
with both paraffins) were observed. There was no increase in the microsomal concentrations
of RLvMc P45055. Overall, the higher chlorinated paraffin produced a 25% increase in total
microsomal P450, while the lower chlorinated paraffin produced only an 8% increase.
In another study by the same group of workers, and using the same protocol, a C10-13, 59%
chlorinated paraffin was included in the investigation (Nilsen et al., 1981). Increases in total
P450 of 18, 33 and 29% were noted with 49, 59 and 71% chlorinated paraffins respectively.
The activity of microsomal P450, epoxide hydrolase and glutathione S-transferase showed 13,
94-230 and 140% increases, respectively, in male rats which had been treated intraperitoneally
with 1000 mg/kg/day C10-13, 70% chlorinated paraffin for 5 days (Meijer et al., 1981). The
hydrolase and transferase are unlikely to be involved in the metabolism of chlorinated
paraffins and the increase in activity of these enzymes is considered to be due to enzyme
induction.
None of the above studies attempted to identify the metabolites of short chain chlorinated
paraffins.
4.1.2.1.2
Studies in humans
The only information available on the toxicokinetics of short chain length chlorinated
paraffins in humans is from an in vitro study using human skin (Scott, 1989, unpublished
reference 108, 1985). A C10-13, 56% chlorinated paraffin (Cereclor 56L) in a cutting oil was
held in contact with 12 samples of human epidermal membrane for 56 hours. To facilitate
detection of the absorbed material the sample was spiked with 14C-labelled undecane which,
according to the unpublished reference, was chlorinated to 58%. The source of skin was not
reported. Steady state absorption was reached during 23 to 54 hours, when an extremely slow
rate of absorption of 0.04 micrograms/cm2/hour was determined. Less than 0.01% of the
applied dose was absorbed during the 56 hours continuous skin contact.
4.1.2.1.3
Summary of toxicokinetics
In general there is very limited information on the toxicokinetics of short-chain chlorinated
paraffins and there is no information with respect to differing chain length and degree of
chlorination. No information is available on the toxicokinetics of these substances following
inhalation or dermal exposure in animals. However the physicochemical properties and
information on longer chain chlorinated paraffins, indicate that dermal absorption is predicted
to be minimal.
91
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
With respect to oral exposure, only limited studies on short chain chlorinated paraffins are
available. Significant absorption (up to about 60% of the administered dose) does occur
following oral administration. One study indicated that absorption is greater for short chain
chlorinated paraffins with lower chlorination states. Absorbed chlorinated paraffins have been
shown to distribute preferentially to tissues of high metabolic activity and/or high rate of cell
proliferation, following oral dosing. No attempts have been made to identify any metabolites
of chlorinated paraffins, although cytochrome P450 oxidation to CO2 has been demonstrated.
Chlorinated paraffins and/or their metabolites are excreted via exhaled air, urine and faeces,
with up to approximately 60% of the administered dose being excreted in the air and urine in
12 hours.
The only information on the toxicokinetics of short chain chlorinated paraffins in humans is
from an in vitro study which demonstrated extremely poor absorption across skin samples.
4.1.2.2
Acute Toxicity
4.1.2.2.1
Studies in animals
Inhalation
No signs of toxicity were observed in rats exposed to 3300 mg/m3 of a C12, 59% chlorinated
paraffin (Chlorowax 500C) for 1 hour (Howard et al., 1975). The information was cited in an
early review, as personal communication with industry. It has not been possible to locate the
original data or find further information on this study.
The only other information available is a very brief unpublished report on a 50% chlorinated
short chain paraffin (Cereclor 50HS); although it has not been possible to identify the specific
carbon chain length (unpublished reference 55, 1974). Slight eye and nose irritation apparently
occurred in rats exposed to 48 g/m3 paraffin vapour for 1 hour. Recovery apparently occurred
"soon" after exposure. No other details were given. Overall, little information is available on
the effects of single inhalation exposure to short chain length chlorinated paraffins. There are
indications that slight local irritant effects may occur following exposure to very high
concentrations.
Oral
No deaths occurred in groups of ten rats treated by gavage with 0.8 to 13.6 g/kg C12 paraffin
(60% chlorinated) (NTP, 1986). Animals were inactive and ataxic after dosing and showed
diarrhoea for 2-6 days after dosing. However no clear evidence of other substance-related
toxicity was observed. Macroscopic examination was not performed.
Several unpublished studies have been conducted on C10-13 paraffins which were 40 to 70%
chlorinated (unpublished references 52, 1969; 55, 1974; 57, 1966; 59, 1968; 60, 1973; 61,
1965; 62, 1971; 64, 1974). In all of these studies groups of three male and three female rats
were treated by gavage with a range of maximum doses of 4 to 13 g/kg chlorinated paraffin
containing up to 5% epoxy stabilisers with various additives. Rats were observed for 7 days
after treatment when macroscopic examinations were conducted. With the exception of one
study, no deaths occurred. The death occurred in one rat treated with 13 g/kg 63% chlorinated
paraffin (unpublished study 64, 1974). Signs of toxicity in the moribund and surviving
92
CHAPTER 4. HUMAN HEALTH
animals were also more extreme in this study and included coma, laboured breathing and
tremors. Signs of toxicity in the majority of studies occurred with the lowest doses tested,
from approximately 2 g/kg, and included piloerection, urinary incontinence and lethargy.
Recovery, when reported, was usually complete by day 7. Macroscopic examination revealed
"minimal signs of stress" in the spleen (with a 50% chlorinated paraffin, unpublished
reference 59, 1968), blotchy or pale liver with slight fatty changes and inflamed stomach (with
69 and 40% chlorinated paraffin, unpublished references 61, 1965 and 57, 1966). Overall, the
chlorinated paraffins tested were of very low oral toxicity following a single dose and the
intensity and nature of those effects that were observed were independent of degree of
chlorination.
Several or all of these studies have been summarised in a published paper which reported no
deaths in rats following a single oral dose of up to 10 g/kg C10-13 chlorinated paraffins which
were 41-50%, 51-60% or 61-70% chlorinated (Birtley et al., 1980). Signs of toxicity
were as above, although focal necrosis in the liver and cloudy swelling of some inner
cortical cells of the kidney were also reported to have been noted 14 days after dosing.
The severity of these effects was not discussed.
One unpublished study reported an LD50 value of 8.2 g/kg in rats. However the carbon chain
length and degree of chlorination of the paraffin have not as yet been identified (unpublished
reference 34, 1966).
No deaths occurred in groups of ten mice treated by gavage with 1.6 to 27 g/kg C12, 60%
chlorinated paraffin (NTP, 1986). Animals were inactive and ataxic after dosing and had
ruffled fur on days 2-6 after treatment.
Dermal
In a briefly reported, but apparently well-conducted unpublished study, groups of three rats
were treated with 2.5 ml/kg (approximately 2.8 g/kg) undiluted C10-13, 52% chlorinated paraffin
(unpublished reference 62, 1971). The substance was applied under an occlusive dressing for
24 hours. Slight erythema and slight desquamation were noted on days three and seven
respectively, after the application, but no signs of systemic toxicity were observed.
An LD50 value of 10 ml/kg (approximately 13.5 g/kg) was reported in rabbits treated with a
C12 chlorinated paraffin (Chlorowax 500C; 59% chlorinated). The information was cited in an
early review as personal communication with industry; it has not been possible to locate the
original data or find further information on this study (Howard et al., 1975).
4.1.2.2.2
Studies in humans
No information is available.
4.1.2.2.3
Summary of single exposure studies
There is no information available on the effects of acute exposure to short chain length
chlorinated paraffins in humans. However the limited information available from animal
studies clearly demonstrates that short chain length chlorinated paraffins are of very low acute
toxicity, with no toxicity occurring in rats following 1-hour exposure to a vapour or aerosol of
93
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
3300 mg/m3 or with a dermal dose of 2.8 g/kg, and some signs of systemic toxicity with oral
doses of up to 13 g/kg in rats and 27 g/kg in mice. A very high, unsubstantiated rabbit dermal
LD50 of approximately 13 g/kg has been reported. The nature and degree of effects were
independent of degree of chlorination.
4.1.2.3
Irritation
4.1.2.3.1
Studies in animals
Skin
Two unpublished but well reported skin irritation studies have been conducted according to
modern standards. In one study, 0.5 ml of undiluted C10-13, 59% chlorinated paraffin was
applied, under a semi-occlusive dressing, to the shaven skin of three rabbits for four hours
(unpublished reference, 48, 1986). The skin was examined for signs of irritation for up to 72
hours after the chlorinated paraffin had been removed. No signs of irritation occurred
throughout the test.
In the second study, 0.5 ml of C10-13, 70% chlorinated paraffin was tested as above
(unpublished reference, 49, 1983). One rabbit showed clearly defined erythema (grade 2 on a
0-4 scale score) at 48 and 72 hours. The other two animals showed "slightly noticeable"
erythema (grade 1). Very slight oedema (grade 1) was noted in two animals for up to 24 hours.
By day 7, all signs of irritation were completely resolved.
Short chain length chlorinated paraffins were also investigated in several other unpublished
studies, although these were not conducted according to modern protocols and were less well,
and often only briefly reported. All studies were conducted using rats. In most studies, six 24
hour applications of 0.1 or 0.2 ml of chlorinated paraffin was applied to shaven skin, under
occlusive dressings. Treatment periods were separated by 24-hour treatment-free periods. The
samples of chlorinated paraffin were usually undiluted but contained low percentages of epoxy
stabilisers and/or various additives.
Two studies investigated C10-13, 70% chlorinated paraffin. In the more recent study, no signs
of irritation were noted throughout the study following repeated application of the chlorinated
paraffin which contained 0.1 or 2% benzoyl peroxide initiator (unpublished reference 64,
1974). In the earlier study the chlorinated paraffin contained 1 or 2% of an epoxised vegetable
oil stabiliser with and without additives (0.1% oxalic acid or 0.05% benzotriazole)
(unpublished reference 61, 1965). Very mild to mild desquamation was only noted following
the applications of chlorinated paraffins which contained the additives. The reactions were
described as occasional, transient and inconsistent. It was not stated how many applications
were made before these reactions were seen.
Another two studies investigated the effects of three C10-13, 63% chlorinated paraffins,
containing up to 3% epoxy soya oil stabilisers or other unspecified additives (unpublished
references 64, 1974, and 60, 1965). Erythema was usually noted following 2 to 4 applications
of all three paraffins, although on one occasion erythema was noted in 1/3 animals after only
one application. The severity of the reactions were not described. Desquamation was also
noted following 3 or 4 applications and increased in severity with further treatments. In the
94
CHAPTER 4. HUMAN HEALTH
older study (with 0.7% epoxy carboxylate stabiliser) the desquamation was described as
severe following the fourth application when the study was terminated.
Several studies have been conducted using C10-13 paraffins which were 48, 50, 52 or 55%
chlorinated (unpublished references: 52, 1969; 58, 1967; 59, 1968; 62, 1971 & 64, 1974). In
most studies the paraffins contained 0.2 or 2% epoxy stabilisers. In one study with 48 or 55%
chlorinated paraffins, containing 0.2% epoxy octyl stearate stabiliser, no signs of irritation
were noted throughout the study (unpublished reference, 52, 1969). In the other studies results
were as above with mild or slight erythema to erythema and mild desquamation usually being
noted following the second or third application. In one study, testing a 52% chlorinated
paraffin with 2% epoxised octyl oleate stabiliser, erythema was noted following the first
application, although the severity of the reactions were not discussed (unpublished reference,
59, 1968). It was noted in 4/5 of the studies that the reactions did not worsen following further
applications, although in one study (testing a 52% chlorinated paraffin with unspecified
additives), slight erythema, noted after the second application worsened to severe erythema
with slight necrosis after the third, when the study was terminated (unpublished reference, 62,
1971).
An unspecified volume of a C10-13, 40% chlorinated paraffin, containing 1% epoxy soya oil
stabiliser, produced slight desquamation following the second application and mild erythema
after the third (unpublished reference 57, 1966). This condition persisted throughout the
remaining applications until the end of the study when small scattered ulcers developed.
Several or all of the above studies have been summarised in less detail in a published report
(Birtley et al., 1980).
Two unpublished studies in rats have also been conducted to investigate the potential for skin
irritation of two C10-11 chlorinated paraffins which were 49 and 60% chlorinated (unpublished
references 53, 1980; 54, 1982). The protocols were as above except that single application
tests were also conducted. No signs of irritation were noted following a single application of
the higher chlorinated paraffin, although slight desquamation was noted in 2/6 rats, three to
six hours after the treatment with the lower chlorinated paraffin. As above, both chlorinated
paraffins produced slight erythema and/or slight desquamation with repeated applications,
although neither study stated when such signs were first observed.
Two studies have also been conducted using rabbits and were reported in very brief unpublished
summaries (unpublished references 50, 1975; 51, 1975). A C10-13, 61% chlorinated paraffin and
a 50% chlorinated short chain paraffin (Cereclor 50 HS), of unspecified carbon chain length,
produced mild or a mild to moderate skin irritation, following a single occlusive application to
intact and abraded skin. It was stated that "varying degrees of erythema persisted for 72
hours". No other information was available.
In contrast to the above studies, another two unpublished studies report more severe findings.
One of these studies is a very brief summary which states that repeated occlusive application
with a 50% chlorinated short chain paraffin (Cereclor 50 HS), of unspecified carbon chain
length, resulted in moderately severe irritation with erythema, desquamation, thickening,
cracking and scabbing of the skin being observed in rats (unpublished reference 55, 1974).
The second study reported slight erythema and desquamation after one twenty four-hour
application of the test substance applied under occlusive dressings (unpublished reference, 54,
95
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
1982). Following the third application, moderately severe desquamation, intracutaneous
oedema with "extensive scratching" were reported and the study was terminated. However it
was unclear if the test substance was a chlorinated paraffin or a solvent used in chlorinated
paraffin formulations. Overall, due to uncertainties in the identification of the test substances
and considering the weight of evidence, neither of these studies is considered to be reliable
when assessing the skin irritation potential of the chlorinated paraffins under consideration.
Eye
The eye irritation potential of C10-13, 40 to 63% chlorinated paraffins has been reported in a
published study (Birtley et al., 1980), although more detailed information was obtained from
unpublished reports of the same studies. Three different C10-13 paraffins which were 63%
chlorinated and which contained either 2.5 or 2% of two different additives or 0.7% of an
epoxy stabiliser were tested in 2 studies (unpublished references 64, 1974; 62, 1973). Both
studies were conducted according to modern protocols with either 0.1 ml or "one drop" of the
paraffin being instilled into one conjunctival sac of groups of three rabbits. Similar results
were reported for all three formulations: "practically no" initial pain (2 on a 6 point scale) was
noted. Slight irritation (3 on an 8 point scale), evidenced by redness and chemosis (only noted
in the formulation containing the epoxy stabiliser) of the conjunctiva with some discharge,
lasted for 24 hours. One drop of 52% or 40% chlorinated paraffins, containing unspecified
additives or 1% epoxy stabiliser, were also tested as above (unpublished references 62, 1971,
57, 1966). With the 52% chlorinated paraffin, slight, immediate irritation was followed by
slight redness of the conjunctiva which, as above, lasted for 24 hours. With the 40%
chlorinated paraffin mild congestion was noted at 1 hour with no effects being seen at 24
hours.
A single application of a C12, 59% chlorinated paraffin (Chlorowax 500C) apparently
produced a mild redness in the eyes of 4/6 rabbits (Howard et al., 1975). However the
information was cited in an early review as personal communication with industry. It has not
been possible to locate the original data or find further information on this study.
Similar results were obtained with another two chlorinated paraffins (Cereclor 50 HS, Hoechst
64 flussig), although the carbon chain length and/or percentage chlorination of these short
chain paraffins has not been identified (unpublished references 55, 1974 & 43, 1966).
Although little information was provided, the earlier study apparently indicated the severity of
the reactions observed did not increase with up to 5 daily instillations of the chlorinated
paraffin.
4.1.2.3.2
Studies in humans
C10-13, 50 or 63% chlorinated paraffins were applied, under occlusive dressings, to the upper,
outer arm of 26 volunteers (unpublished reference 113, 1975). After 24 hours the applications
were removed and 1 hour later skin reactions were examined by two independent assessors. A
second application was made and reactions assessed after a further 24 hours contact. Mild
erythema and dryness (average scores read at the 24 and 50 hour time points, of less than 2
and 1 respectively on a 4-point scale) were recorded, which were comparable to scores in a
liquid paraffin control group.
96
CHAPTER 4. HUMAN HEALTH
A review reported industrial information obtained by personal communication that a
C 12 chlorinated paraffin (59% chlorinated) did not produce local irritation when applied to
the skin of 200 male and female subjects (Howard et al., 1975). The period of exposure and
amount of paraffin applied was apparently not known.
No information was available on the potential to produce eye irritation.
4.1.2.3.3
Summary of irritation
Limited information in humans indicates that short chain length chlorinated paraffins do not
cause skin irritation. This view is supported by the information available from studies in
animals. Two well-conducted skin irritation studies in animals indicate that C10-13, 59 and 70%
chlorinated paraffins have the potential to produce, at most, minimal skin irritation. Several
unpublished studies indicate that more pronounced irritation can occur following repeated
application of short chain length chlorinated paraffins. This has been demonstrated to be
independent of chain length and degree of chlorination and is probably due to a defatting
action.
There is no information from humans on the potential for chlorinated paraffins to cause eye
irritation. However the information from animals indicates that C10-13, 40 to 63% chlorinated
paraffins produce only mild eye irritation in rabbits.
4.1.2.4
Corrosivity
The studies in animals and humans in 4.1.2.3 indicate that short-chain chlorinated paraffins
are not corrosive to the skin or eyes.
4.1.2.5
Sensitisation
4.1.2.5.1
Studies in animals
Three unpublished studies are available which have been well-conducted according to modern
protocols and using suitable induction regimes.
One study assessed the potential of a C10-13 paraffin, which is assumed to be approximately
50% chlorinated, to produce skin sensitisation in guinea pigs using the Magnusson and
Kligman method (unpublished reference, 67, 1988). The paraffin used contained 1% stabiliser
(Edenol B 74). When challenged with undiluted chlorinated paraffin 2/20 test animals showed
marked diffuse redness at 24 hours after challenge and 1/20 showed slight redness and dryness
at 24 hours. When the same animals were challenged 1 week later with 50% chlorinated
paraffin, no skin reactions were observed. No skin reactions were observed in the control
group. The results show that the paraffin tested did not induce skin sensitisation in this study.
The other two studies also used the Magnusson and Kligman method to assess the skin
sensitisation potential of a C10-13, 56% chlorinated paraffin in guinea pigs. The chlorinated
paraffin used in the earlier study contained 1% epoxide stabiliser (Edenol D 81) and 1%
tris-nonylphenyl phosphite (unpublished reference 66, 1983). When challenged with undiluted
chlorinated paraffin 1/20 test animals showed "hardly perceptible" erythema at 24 hours after
challenge and 1/20 test and 1/10 control animals showed "clearly defined" erythema and
97
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
"slight" oedema at 72 hours. The results therefore show that the paraffin tested did not induce
skin sensitisation in this study.
The C10-13, 56% chlorinated paraffin tested in the third study contained 1% of a different
epoxide stabiliser (Rutapox CY 160) and 1% tris-nonylphenyl phosphite (unpublished
reference 65, 1984). When challenged with undiluted chlorinated paraffin 5/20 test animals
showed "clearly defined" erythema and another two showed "slight, hardly perceptible"
erythema. None of the control animals showed any evidence of a skin reaction. A second
challenge was performed two weeks after the first. On this occasion 4/20 test animals showed
"clearly defined" erythema and another four showed "slight, hardly perceptible" erythema and
slight oedema. The authors concluded that the substance tested was a sensitiser. However,
taking into account the fact that less than 30% of the test group showed a clear reaction and the
possibility that the epoxide stabiliser was responsible for producing the sensitisation reactions,
this study is not considered to provide sufficient evidence that the C10-13, 56% chlorinated
paraffin tested should be classified as a skin sensitiser.
Another three briefly reported unpublished studies have been conducted which used similar
but not modern protocols. In the first, undiluted C10-13, 52% chlorinated paraffin was applied
to the ears of 6 guinea-pigs on three successive days (unpublished reference 62, 1971). Slight
erythema was noted when challenged four days later with undiluted paraffin applied to the
animal flanks. However it was not stated how many animals showed such a reaction. It was
stated that four control animals also showed slight erythema at challenge. Despite the lack of
detail it is clear that the paraffin tested did not elicit a sensitisation response in this study. The
authors considered that the paraffin was "irritant but not a strong sensitiser". This phrase was
used in another unpublished summary when a 50% chlorinated paraffin was tested, apparently
using the same protocol (unpublished reference 55, 1974). No details were given, including
the carbon chain length of the short chain paraffin (Cereclor 50HS). The only information
given was the conclusion which stated that the substance tested was "not a strong sensitiser".
In view of use of this phrase it is impossible to draw any conclusions from this study with
respect to skin sensitising potential.
The third unpublished study to use the ear/flank protocol apparently found no signs of
erythema at challenge with up to 10 % C10-13, 50% chlorinated paraffin (unpublished reference
59, 1968). However there is no information provided in the report to indicate if the challenge
concentration was sufficient to stringently test for skin sensitisation. Therefore no conclusions
can be drawn from this study.
There is no information available on the potential for short chain length chlorinated paraffins
to produce respiratory sensitisation in animals.
4.1.2.5.2
Studies in humans
There are claims in a review cited as a personal communication that allergic reactions were
not noted in the subjects dermally treated with the C12 chlorinated paraffin (59% chlorinated)
(Howard et al., 1975). No further details were given.
In an early study on cutting fluid coolants, 134 non-exposed employees and 75 exposed
employees were patch tested with various constituents of the cutting fluids including
chlorinated paraffins (Menter et al., 1975). No positive reactions were obtained with any of
98
CHAPTER 4. HUMAN HEALTH
the constituents although the authors themselves suggested that the tests were not sufficiently
stringent.
A more recent study reported that positive skin reactions to chlorinated paraffin constituents,
were obtained in patch tests conducted on 4 employees suffering from scaly eczema, who had
had occupational exposure to cutting oils (English et al., 1986). However the paper concluded
that the reaction was due to an additive in the cutting oil, rather than to the chlorinated
paraffin.
There is no information available on respiratory sensitisation.
4.1.2.5.3
Summary of sensitisation
No conclusions can be drawn from the limited information available on skin sensitisation
in humans. However the absence of reports on skin sensitisation, despite the widespread
use of these substances, suggests that short chain length chlorinated paraffins do not have
the potential to be skin sensitisers. This conclusion is supported with the negative results
of two well-conducted skin sensitisation studies in animals which tested C10-13, 50 and
56% chlorinated paraffin. There are no data concerning the effects of varying chain length or
higher or lower chlorination states, although one would not predict an effect on sensitisation
potential.
No direct information is available from studies in humans or animals on respiratory
sensitisation. However, in view of the widespread use of these industrially important
substances, the absence of any reports suggests that short chain length chlorinated paraffins
are not respiratory sensitisers. Their unreactive nature and the lack of skin sensitisation
potential lends added support to this view.
4.1.2.6
Repeated dose toxicity
4.1.2.6.1
Studies in animals
Inhalation
No studies are available.
Oral
Studies in rats
Groups of five rats of each sex were administered 0, 469, 938, 1875, 3750 or 7500 mg/kg/day
C12, 60% chlorinated paraffin by gavage, on 12 days over a 16 day period (NTP, 1986). Three
deaths occurred in top-dose animals. All top dose animals showed diarrhoea with males and
females showing a 22% and 14% inhibition in body weight gain, respectively. Male rats
treated with 3750 mg/kg/day showed a 15% inhibition in body weight gain. Enlarged
livers were observed in 3-5 animals in every dose group apart from the females treated
with 469 mg/kg/day; however the degree of enlargement was not discussed. Histological
examinations were not conducted. The liver enlargements are likely to be due to a
physiological response to the demand for xenobiotic metabolism or peroxisome proliferation,
99
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
neither of which are considered to be of adverse health significance to humans (see
Section on Studies on Mechanisms of Toxicity). Other signs of toxicity were noted at doses
greater than 1875 mg/kg/day.
In a briefly reported, unpublished study, groups of 10 male rats were administered 0 or
approximately 5000 mg/kg/day and 10 females, 0 or approximately 2500 mg/kg/day
C 10-13, 52% chlorinated paraffin, by gavage, on 14 consecutive days (unpublished reference
62, 1971). All treated animals showed slight piloerection during the experiment and females
were "slightly" incontinent. One treated male died after nine doses. Urinalysis showed no
changes compared to controls. Evidence of slight anaemia and decreased blood clotting
capability were noted in treated males and females. Animals killed 24 hours after the final
treatment showed marked hepatocyte enlargement, apparently associated with proliferation of
smooth endoplasmic reticulum. An unspecified number of animals, killed 7 days after the final
treatment, showed similar but less marked liver changes. Three males and one female also
showed slightly increased splenic haemopoiesis. No further details were given.
Groups of five male and five female rats were treated daily, by gavage with 0, 30, 100, 300,
1000 or 3000 mg/kg/day C10-12, 58% chlorinated paraffin, for 14 days (unpublished reference
75, 1981). No treatment-related deaths occurred. Laboured breathing, decreased motor
activity, excessive lacrimation and staining around nose, mouth and anogenital region were
noted in males and females treated with 3000 mg/kg/day. Laboured breathing was also noted
in one animal treated with 1000 mg/kg/day, although this was not considered to be of
toxicological significance. Top-dose animals showed reductions in body weight gain (males:
15%, females: 20%) and food consumption (males: 13%, females: 20%), although the
decrease in body weight gain was only statistically significant for the females. Haematology
and clinical chemistry were not performed. At the end of the study, dose-related, statistically
significant increases in absolute and relative liver weights were noted in males and females
treated with 100 mg/kg/day (males only: 20% increase), 300 mg/kg/day (20-40% increases),
1000 mg/kg/day (50-80% increases) and 3000 mg/kg/day (60-150% increases). Top dose
animals also showed a reduction in relative and absolute thymus (decreases of at least 50%) and
ovary (decreases of 35% and greater) weights. The thyroid was not examined. Diffuse, mild
hepatocellular hypertrophy was noted with 1000 mg/kg/day and above, and a dose-related
increase in hepatic microsomal enzyme activity (aminopyrine demethylase) was noted in
females treated with 300 mg/kg/day and above. An increase in microsomal protein content
was also seen in top-dose females. Changes in liver histopathology and metabolic enzyme
activity appear to reflect xenobiotic metabolism and peroxisome proliferation. Other signs of
toxicity were noted at doses greater than 1000 mg/kg/day.
The C10-12, 58% chlorinated paraffin was also administered to groups of 5 male and 5 female
rats for 14 days at 0, 900, 2700, 9100 or 27300 ppm in the diet (unpublished reference 72,
1983). These dietary concentrations were calculated to correspond to daily doses of 0, 100,
300, 1000 and 3000 mg/kg/day. No deaths occurred and no clinical signs of toxicity were
noted throughout the treatment period. A marked reduction in body weight and food
consumption (approximately 50% by day 14) were observed in top dose animals, particularly
during the first week of the experiment. Haematological and clinical chemistry studies
apparently were not conducted. Statistically significant increases in absolute and relative liver
weights were noted with all treatments (100 mg/kg/day: approximately 20%, 300 mg/kg/day:
50%, 1000 mg/kg/day: 110%, 3000 mg/kg/day: 150-240%). Increases in the incidence and
degree of hepatocellular hypertrophy were also noted in all treatment groups. Liver enzyme
100
CHAPTER 4. HUMAN HEALTH
studies also showed a dose-related increase in activity or microsomal levels for all treatment
groups with statistically significant increases in protein content, aminopyrine demethylase and
cytochrome P450 occurring in females with 300 mg/kg/day and above. Male rats also showed
a statistically significant increase in cytochrome P450 with 1000 mg/kg/day and above.
Myocardial atrophy was noted in animals treated with 1000 and 3000 mg/kg/day, although this
was considered by the authors to be associated with weight loss, at least in the top dose
animals. Also this effect was not reported in any of the other studies and is therefore
considered not to be of toxicological significance in relation to chlorinated paraffins.
Atrophy of the spleen, thymus and testes in top dose animals were also considered to be
secondary to reduced food consumption. The thyroid was not examined. As above, changes
in liver histopathology and increases in enzyme activity appear to reflect xenobiotic
metabolism and peroxisome proliferation. Other signs of toxicity were noted at doses
greater than 1000 mg/kg/day.
In a 13-week study groups of ten rats of each sex were treated with 0, 313, 625, 1250, 2500 or
5000 mg/kg/day C12, 60% chlorinated paraffin, once daily by gavage, 5 days/week (NTP,
1986). No deaths occurred. Males treated with 5,000 and 2,500 mg/kg/day showed a slight
inhibition in body weight gain (12 to 11% reductions). Haematology and clinical chemistry
does not appear to have been conducted. A dose-related increase (approximately, 25, 38, 55,
100 and 100% with 313, 625, 1250, 2500 and 3000 mg/kg/day respectively) in relative liver
weights was observed for males and females. The increase was statistically significant at all
dose levels. Hepatocellular hypertrophy was noted in all top-dose animals and in 1 rat treated
with 2500 mg/kg/day. Nephropathy was also noted in all top dose males and in 3 top dose
females but was also noted in 8/10 control males, although the severity of the effect was
greater in the chlorinated paraffin-treated male animals. Interpretation of the kidney findings is
difficult. There were apparently no changes in the thyroid, thymus, heart, spleen, or any other
organ examined. The increase in liver weight reflects xenobiotic metabolism and peroxisome
proliferation. Other signs of toxicity were noted at doses greater than 1250 mg/kg/day.
In a well-conducted unpublished study, which has been summarised in a published
review (Serrone et al., 1987), groups of male and female rats were treated with 0, 10, 100
or 625 mg/kg/day C 10-12 , 58% chlorinated paraffins in the diet for 90 days (unpublished
reference 73, 1984). No deaths occurred and no clinical signs of toxicity were observed
throughout the study. Top dose males showed a slight reduction in body weight gain (9% less
than controls at the end of the study). A decrease in average daily water consumption was
observed in top dose males and females (11 and 20% respectively) with corresponding
reductions in urine volume and increases in urinary specific gravity. Statistically significant
increases in urinary total protein (up to 13%) and cholesterol (up to 54%) in top dose, and
glucose levels (up to 20%) in top and mid dose animals were also observed. No changes were
observed in haematological parameters. Slight dose-related increases in liver protein content
were noted in the treated males with corresponding increases in cytochrome P450 and
aminopyrine demethylase, particularly in top-dose males. No changes were observed in
enzyme levels or activities in the females. Statistically significant increases in relative and
absolute liver (20% and 140%) and kidney weights (10 and 30%) were noted with 100 and
625 mg/kg/day, respectively, and relative and absolute thyroid weights (approximately 32%),
with 625 mg/kg/day. Microscopic findings were noted in the top dose males and females and
included hepatocellular hypertrophy, mild nephritis (males only), brown pigmentation in the
renal tubules (females only) and thyroid hypertrophy. These liver, kidney and thyroid changes
were also noted in mid-dose males. The changes in the kidney are of doubtful toxicological
101
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
significance and as above liver weight, histopathology and enzyme changes reflect xenobiotic
metabolism and peroxisome proliferation and are not considered to be of toxicological
significance to humans. Similarly effects seen in the thyroid are not considered to be relevant
to humans (see Section on Studies on Mechanisms on Toxicity). Other signs of toxicity were
noted at doses greater than 100 mg/kg.
The above review also briefly reports a study in which groups of male and female rats were
treated with 0, 10, 100 or 625 mg/kg/day C10-12, 58% chlorinated paraffins by gavage for 90
days (Serrone et al., 1987). Findings are similar to the dietary study, that is, no deaths
occurred and no clinical signs of toxicity were observed throughout the study. Top dose males
showed a slight reduction in body weight gain and changes in water consumption were noted.
Increases in the liver and kidney weights with mid- and high-dose rats and an increase in
thyroid weight with the high-dose were reported. No quantitative details were reported for any
of these changes. Microscopic findings included hepatocellular hypertrophy in mid and highdose rats, and thyroid hypertrophy and hyperplasia with the mid- (males only) and high dose.
High incidences of trace to mild nephritis were also observed in the kidneys of males at the
mid- and high-doses and increased pigmentation in the renal tubules was noted in high-dose
females. No further details were given.
A poorly conducted 2-year study (summarised in 4.1.2.8) identified the liver, kidney, thyroid and
stomach to be the target organs when rats were treated by gavage with 312 or 625 mg/kg/day
C12, 60% chlorinated paraffin for 6 or 12 months or two years (NTP, 1986).
Studies in mice
Groups of five mice of each sex were administered 0, 938, 1875, 3750, 7500 or 15000 mg/kg
C12 chlorinated paraffin (60% chlorinated) by gavage, on 12 days over a 16 day period (NTP,
1986). Due to the large volume of material to be used, the top two doses were administered in
two treatments, 5 hours apart. All mice that received 3750, 7500 and 15000 mg/kg/day and
6/10 receiving 1875 mg/kg/day died before the end of the study. Diarrhoea was noted in all
chlorinated paraffin-treated animals apart from the lowest-dose females. Livers appeared
enlarged in treated animals which survived until the end of the study. Histological
examinations were not conducted.
This study was followed with a 13-week study (NTP, 1986). Groups of ten mice of each sex
were treated with 0, 125, 250, 500, 1000, or 2000 mg/kg/day in corn oil once daily by gavage,
5 days/week for 13 weeks. No substance-related deaths occurred although several deaths
occurred in each group due to gavage errors. Top dose males showed a slight inhibition (13%
reduction) in body weight gain by the end of the study. Relative liver weight showed dose
related increases (approximately 17, 40, 80 and 160% with 250, 500, 1000 and 2000 mg/kg/day)
which were statistically significant at doses of 250 mg/kg/day and above. The incidence of
hepatocellular hypertrophy, observed at 250 mg/kg/day and above, also increased with dose,
although the degree of these effects was not reported. Focal hepatocellular necrosis was
observed with 500 mg/kg/day and above, although severity was not discussed. There were
apparently no changes in the thyroid. The predominant processes underlying the liver effects
are likely to be xenobiotic metabolism and peroxisome proliferation. Other signs of toxicity,
were observed at doses greater than 1000 mg/kg/day.
102
CHAPTER 4. HUMAN HEALTH
A 2-year study (summarised in 4.1.2.8) identified the liver, kidney and thyroid to be the target
organs when mice were treated by gavage with 125 or 250 mg/kg/day C12, 60% chlorinated
paraffin for two years (NTP, 1986).
Dermal
No standard dermal studies are available. In a poorly reported skin irritation study, no
evidence of systemic toxicity was observed in rats which had been treated on alternate days
with up to six, 24-hour applications of 0.1 ml of a chlorinated paraffin (41-50%, 51-60% or
61-70% chlorinated) to the shorn backs, under occlusive dressings (Birtley et al., 1980). The
number of animals examined and the number of exposures were unclear.
4.1.2.6.2
Studies in humans
Although widely used in various applications there is no information available on the effects
of short chain length chlorinated paraffins alone.
4.1.2.6.3
Studies on mechanisms of toxicity
A number of studies are available which have been designed to investigate the possible
mechanisms of the toxic effects observed in animals, in order to establish their relevance to
humans.
Studies in rats
Male rats were assessed for effects in the liver following treatment by gavage with 0, 10, 50,
100, 250, 500 or 1000 mg/kg/day C10-13, 58 or 56% chlorinated paraffin for 14 days (Wyatt et
al., 1993). Livers were removed, weighed, homogenised and an assay was performed for
peroxisomal fatty acid B-oxidation, which is a marker for peroxisomal proliferation. With the
58% chlorinated paraffin, both absolute and relative liver weights showed a dose-related increase
(from 28 to 60%) with increases being statistically significant with 250 mg/kg/day and above.
Oxidase activity also showed a statistically significant increase with 250 mg/kg/day and above,
reaching an almost 3-fold increase with the top-dose. With the 56% chlorinated paraffin,
absolute and relative liver weights showed a dose-related increase (from 20 to 77%) with
increases being statistically significant with 100 mg/kg/day and above. Oxidase activity again
showed a statistically significant increase with 250 mg/kg/day and above, reaching an almost
3-fold increase with the top-dose.
Top-dose animals in this study were also assessed for effects on the thyroid, by analysing
blood samples for thyroid stimulating hormone (TSH), and total and free T3 and T4. Uridine
diphosphate glucuronosyl (UDPG) -transferase activity, a liver enzyme involved in the
excretion of T4, was measured in liver microsomes. With both chlorinated paraffins, free and
total T4 levels were decreased by 30-40% and 2-fold increases were noted in liver microsomal
UDPG-transferase activity and plasma TSH levels. There were no changes in T3 levels.
In a similar study, male and female rats were treated by gavage with 0, 313, 625 or 1000 mg/kg/day
58% chlorinated paraffin for 0, 15, 29, 57 or 91 days (Elcombe et al., 1994). The liver, thyroid
and kidney were examined histologically and as above, blood samples were analysed for total
103
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
and free T4 and TSH and liver homogenates for UDPG-transferase activity. Seven days before
sacrifice on days 29 and 91, animals were subcutaneously implanted with minipumps
containing bromodeoxyuridine. Statistically significant increases in relative liver weight, of
approximately 50 and 75% were noted with doses of 313 and 625 mg/kg/day, respectively.
These increases were noted at the first kill (15 days) and did not continue to increase further at
the later sacrifice times (absolute liver weights were not reported). Peroxisomal B-oxidation
was also noted to show a dose-related and statistically significant increase with doses of 313
and 625 mg/kg/day from day 15, and like the relative liver weights, did not continue to
increase at later sacrifice times. Liver weights and B-oxidation were apparently not recorded in
the top-dose animals. It was claimed that hepatic peroxisome proliferation was also evidenced
ultrastructurally, although no details were presented.
UDPG-transferase activity also showed a dose-related and statistically significant increase of
at least 150%, with doses of 313 and 625 mg/kg/day from day 15. As with the liver weights
and B-oxidation, the UDPG-transferase activity did not continue to increase further at the later
sacrifice times. Statistically significant decreases (up to approximately 50%) in total and free
plasma T4 were noted with 1000 mg/kg/day, at all time points. Decreases in total and free
plasma T4 were also noted with doses of 625 and 313 mg/kg/day, although these decreases
were not always statistically significant (generally only significant on days 15 and 57). With
1000 mg/kg/day, "marked" increases in plasma TSH were observed from day 8 to 15, with
non-statistically significant increases being noted at the later time points. Thyroid follicular
cell hypertrophy was also apparently noted with 313 mg/kg/day and above at all time points
and hyperplasia at days 56 and 91, although no further details were given. A statistically
significant increase in replicative DNA synthesis in thyroid cells was also noted on day 91
with 313 mg/kg/day and above.
Renal tubular eosinophilia, increasing in intensity with time, was noted from day 15 in male
rats treated with 313 and 625 mg/kg. From day 29 increasing numbers of males showed
initially focal and then multifocal areas of basophilia. No kidney effects were noted in the
female rats. Hyaline droplet formation was not confirmed by immunocytochemical techniques
(personal communication, ICI, 1995), however the response was indicative of this male rat
specific phenomenum.
Male and female rats were treated by gavage with 0 or 1000 mg/kg/day C10-13 , 56 or
58% chlorinated paraffins for 14 days (Elcombe et al., 1995). Microscopic examination of the
liver showed hepatocyte hypertrophy and proliferation of peroxisomes and smooth
endoplasmic reticulum. Morphometric analysis confirmed "marked" peroxisome proliferation
with both chlorinated paraffins, with statistically significant increases being noted in
peroxisome volume density. Absolute liver weights were not reported. Relative liver weights
and total cytochrome P450 levels showed at least 2-fold increases compare to controls and
peroxisomal B-oxidation showed 3 to 8-fold increases with the effect being greater in males.
Another two studies investigated the early changes in the liver and thyroid when male and
female rats were treated by gavage with 0 or 1000 mg/kg/day C10-13, 58% chlorinated paraffin
for 1, 2, 4, 7, 15 or 28 days (ICI Draft paper 1 and 2). Histopathological examination revealed
hepatocyte eosinophilia on day 1, which was followed by centrilobular and pan-lobular
hypertrophy which is taken to be indicative of an increase in the number of peroxisomes. The
first biochemical change to be detected was a statistically significant increase in hepatic
peroxisomal B-oxidation on day 2 in the males and day 4 in the females, which reached a
104
CHAPTER 4. HUMAN HEALTH
maximum by days 7 and 15 in the males (approximately 3-fold increase) and females
(approximately 9-fold increase) respectively. This was accompanied by a progressive increase
in absolute and relative liver weight which was small but statistically significant from day 2 in
the males and day 4 in the females (increases of approximately 10% on day 2, 60% on day 4).
Thyroid follicular cell hypertrophy was noted on day 4 in both sexes and increased with time.
In the males liver UDPG-transferase activity was consistently higher than control values from
day 2 onwards, although not statistically significant until day 4. The activity in the females
showed small non-statistically significant increases on days 4 to 15. Free and total T4 was
reduced by up to approximately 50% in both sexes throughout the study from day 1.
Reductions of approximately 30% in plasma concentrations of free and total T3 were seen in
the males, during the first 4 days of the study. T3 levels were not measured in the females. The
changes in the T4 levels noted to occur before changes in UDPG-transferase activity, may be a
reflection of the sensitivity of the respective assays used. TSH levels were elevated in males
and females throughout the study, although the increases were not always statistically
significant.
In a poorly reported intraperitoneal study, rats were administered 0 or 1000 mg/kg/day C10-13, 49,
59 or 71% chlorinated paraffin on days 1 and 4 or days 1, 4 and 6 (Nilsen et al., 1981). With
all three chlorinated paraffins, an increase in the occurrence and size of hepatocellular
cytoplasmic lipid droplets was noted. The 49% chlorinated paraffin also produced a 20 to 30%
increase in the size of the hepatocytes on days 5 and 7, a proliferation of smooth endoplasmic
reticulum, a "moderate" increase in the numbers of mitochondria and an increase in the size
and number of peroxisomes. It is not clear whether these effects, including the peroxisome
proliferation, were not noted with the higher chlorinated paraffins or if such effects were not
investigated.
Studies in mice
Male mice were assessed for effects in the liver following treatment by gavage with 0, 10, 50,
100, 250, 500 or 1000 mg/kg/day C10-13, 58 or 56% chlorinated paraffin for 14 days (Wyatt et
al., 1993). Livers were removed, weighed, homogenised and assays performed for
peroxisomal fatty acid B-oxidation. With the 58% chlorinated paraffin, absolute and
relative liver weights showed a dose-related increase, with increases (from 23 to 89%)
being statistically significant from 500 and 250 mg/kg/day, respectively. The oxidase
activity showed a statistically significant increase with 250 mg/kg/day and above,
although a non-statistically significant increase of 67% above the control value was noted
with 100 mg/kg/day. Increases in oxidase activity reached a 7-fold increase with the top dose.
With the 56% chlorinated paraffin, absolute and relative liver weights showed a dose-related
increase, with increases (from 26 to 85%) being statistically significant with 100 mg/kg/day
and above. Oxidase activity showed a statistically significant increase with 250 mg/kg/day and
above, reaching a 10-fold increase with the top-dose.
Male and female mice were treated by gavage with 0 or 1000 mg/kg/day C10-13 , 56 or
58% chlorinated paraffins for 14 days (Elcombe et al., 1995). Microscopic examination of the
liver showed hepatocyte hypertrophy and smooth endoplamsic reticulum and peroxisome
proliferation. Morphometric analysis confirmed "marked" peroxisome proliferation with both
chlorinated paraffins, with statistically significant increases being noted in peroxisome volume
density. Compared to controls, relative liver weights and total cytochrome P450 levels were
105
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
increased by 40 to 80% respectively. Absolute liver weights were not reported. Peroxisomal
B-oxidation showed 4 to 6-fold increases.
Studies in guinea-pigs
Male guinea-pigs were treated by gavage with 0, 500 or 1000 mg/kg/day 58% chlorinated paraffin
for 14 days (Elcombe et al., 1994). The liver and thyroid were examined histologically and as
above, blood samples subjected to analysis for total and free thyroxine and TSH. No effects on
thyroid homeostasis (that is, changes in thyroid hormones) were seen and no evidence of
hepatic peroxisome proliferation or renal changes were noted. Liver weights were not
reported.
Male guinea-pigs were treated by gavage with 0 or 1000 mg/kg/day C10-13, 56 or 58%
chlorinated paraffins for 14 days (Elcombe et al., 1995). No treatment-related changes were
observed by electron microscopy of the liver and morphometry showed no evidence of
peroxisome proliferation. Absolute liver weights were not reported. Relative liver weights
showed increases of 36 to 50%; however no changes in total cytochrome P450 levels or
peroxisomal B-oxidation were noted.
In a briefly reported study, guinea pigs were treated by gavage with 0, 500 or 1000 mg/kg/day
C10-13, 58% chlorinated paraffin for 14 days (ICI Draft paper 3). This study formed part of the
above study (personal communication, ICI, 1995). A statistically significant decrease in body
weight gain of approximately 12% with both doses was noted at the end of the study. No
change was noted in absolute liver weight although there was a statistically significant
increase in relative liver weight (of approximately 18% with both doses). A dose-dependent
loss of glycogen was detected in the livers of treated animals. There were no other histological
changes in the liver, thyroid or kidney. Nor were there any changes in plasma levels of T3, T4
or TSH.
Overall assessment of mechanistic studies
The results of these mechanistic studies indicate that short chain length chlorinated paraffins
produce peroxisome proliferation in rats and mice which probably underlies the liver damage
observed in some prolonged exposure studies. Peroxisome proliferation has been evidenced by
microscopy, morphometric analysis and marker enzyme activity. Fourteen-day studies in rats
and mice have indicated a no effect level for peroxisome proliferation of 100 mg/kg/day.
Although the threshold for the effect is the same in rats and mice, mice show a much greater
peroxisome proliferation with higher doses. Peroxisome proliferation was not observed in
studies in guinea pigs which are known to be insensitive to such an effect. Similarly, humans
are also recognised to be insensitive to the effects of peroxisomal proliferating agents (Bentley
et al., 1993, Ashby et al., 1994). Consequently, it can be concluded that the liver damage
observed in studies in rats and mice is not relevant to human health. The only effect on the
liver at doses below those producing peroxisome proliferation is small but statistically
significant increases in liver weight. Such increases probably reflect increases in xenobiotic
metabolism and are not considered to be of toxicological significance.
Short chain length chlorinated paraffins also cause effects in the thyroid in rats and mice but
not the guinea-pig. From the hepatic enzyme and hormone studies considered above, these
effects appear to be due to stimulation of the thyroid via negative feed back mechanisms. The
106
CHAPTER 4. HUMAN HEALTH
chain of events starts with a liver effect, namely an increase in UDPG-transferase. The UDPG
transferase activity results in an increase in excretion of T4 and a resultant decrease in plasma
T4 levels. The decrease in plasma T4 produces an increase in the release of pituitary TSH
which in turn triggers a compensatory increase in the production of T4 by the thyroid. Since T4
is continually excreted and the thyroid stimulated, the increased activity in the thyroid
eventually leads to hypertrophy, hyperplasia and as a consequence, a tendency to develop
thyroid tumours.
It is possible that the increase in UDPG-transferase activity is a direct consequence of
peroxisome proliferation or alternatively that it is triggered by the same mechanism as that
producing peroxisome proliferation. However, from the evidence available, it is not clear
whether or not the two are linked, although neither peroxisome proliferation nor thyroid
effects (including changes in plasma T4 and TSH) were seen in studies in guinea pigs at high
doses of 1000 mg/kg/day.
In addition, it has been suggested that rodents are particularly susceptible to changes in the
thyroid due to the absence of a T4-binding globulin which is present in humans and which has
a very high affinity for T4 (Dohler et al., 1979). Other binding proteins are present in rodents,
however their binding efficiency is considerably less than T4-binding globulin. In rodents, in
the absence of T4-binding globulin, more free T4 is available for metabolism and thus
excretion from the body. This would be potentiated by increased UDPG-transferase activity.
Hence humans are likely to be less susceptible to changes in plasma levels of T4 and to the
subsequent thyroid stimulation, seen in rats and mice in the studies above. Overall, taking into
account the probable mechanisms indicated above, the apparent association with the hepatic
effects observed and the difference in T4 binding between humans and rats, the effects seen in
the thyroid in rats and mice are considered unlikely to be relevant to human health.
4.1.2.6.4
Summary of repeated exposure studies
There is no information available on the effects of repeated exposure to short chain length
chlorinated paraffins in humans. No standard inhalation or dermal studies in animals are
available, although short chain length chlorinated paraffins are likely to exert minimal
systemic toxicity following dermal exposure. All available oral studies in animals were
conducted using 52 to 60% chlorinated short chain length paraffins, and therefore it is not
possible to observe directly from data whether different degrees of chlorination would alter the
toxicity.
The liver and thyroid were identified as target organs in the oral studies in rats and mice.
Small increases in liver weight are likely to be due to a response to xenobiotic metabolism
which is not of toxicological significance. Larger increases in liver weight and hepatocelluar
hypertrophy have been shown to be a reflection of peroxisome proliferation. Humans are not
susceptible to peroxisome proliferation and hence the liver effects are considered not to be
relevant to human health (Bentley et al., 1993, Ashby et al., 1994). Increases in thyroid weight
and follicular cell hypertrophy have been shown to be caused by stimulation of the thyroid via
a negative feedback mechanism, initiated by increased excretion and plasma depletion of T4.
The depletion of T4 is a result of increased liver enzyme activity (UDPG-transferase) which may
be related to peroxisome proliferation. Also humans and rodents show different T4-globulin
binding characteristics which results in humans being less susceptible to plasma T4 depletion
107
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
and hence to thyroid stimulation. Overall the thyroid effects seen in rats and mice are
considered unlikely to be relevant to human health.
Other signs of toxicity, such as reductions in body weight gain and increases in kidney weight,
were observed in several 14- and 90-day studies in rats with doses greater than 100 mg/kg/day.
In mice general signs of toxicity were observed in a 90-day study at doses greater than
1000 mg/kg/day. Therefore NOAELs, for effects which are considered to be relevant to
human health, of 100 and 1000 mg/kg/day were observed rats and mice respectively.
4.1.2.7
Mutagenicity
4.1.2.7.1
In vitro studies
Bacterial studies
In a well-conducted unpublished study a C12, 57% chlorinated paraffin, did not produce an
increase in revertants in Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537
and TA 1538, and Escherichia coli WP2uvrA, in the absence or presence of Aroclor-induced
rat liver S9 (unpublished reference 86, 1988). The chlorinated paraffin was tested up to 5000
micrograms per plate.
Negative results were also obtained in an Ames test using Salmonella typhimurium strains TA
97, TA 98, TA 100 and TA 1535, when a slightly higher chlorinated (60%) C12 paraffin was
tested up to 3333 micrograms/plate, in the presence and absence of Aroclor-induced rat or
hamster liver S9 (NTP, 1986). This study employed a 20 minute preincubation period.
However cytotoxicity was not observed and precipitation was not reported; it is possible that the
maximum concentration tested could have been increased further (up to 5000 micrograms/plate).
Similarly, a C10-13, 50% chlorinated paraffin, did not produce an increase in revertants in
Salmonella typhimurium strains TA 98, TA 100, TA 1535 and TA 1538, in the absence or
presence of Aroclor-induced rat liver S9, when tested up to 2500 micrograms per plate
(Birtley et al., 1980; unpublished study 89). As above, cytotoxicity was not observed and
precipitation was not reported and hence the maximum concentration tested could have been
increased.
Negative results were also claimed in another two unpublished Ames test studies; however
these reports were little more than statements with no experimental details and therefore their
reliability is unknown (unpublished references 90, 1989 and 94, 1977).
One unpublished study reported positive findings (unpublished reference 85, 1986). A
C 10-13 , 50% chlorinated paraffin, containing 1% epoxy stabiliser, was tested with up to 10,000
micrograms/plate, in Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537 and
TA 1538, and Eschericha coli WP2uvrA, in the absence or presence of Aroclor-induced rat
liver S9. No toxicity was observed. Dose-related increases in the number of revertants
occurred with S9 in strains TA 100 and without activation in strains TA 100 and TA 98 (with
500 micrograms/plate and above). However the increase in TA 100, in the presence of
activation was just less than two fold, and in TA 98, in the absence of activation only just
reached a two fold increase. Also the possibility that the epoxy stabiliser was responsible for
108
CHAPTER 4. HUMAN HEALTH
the increase in revertants can not be discounted. Overall it is not possible to draw firm
conclusions from this study.
Mammalian cell studies
No standard cytogenetics studies in mammalian cells are available. A well-conducted
gene-mutation (HPRT) study in Chinese hamster V79 cells, performed to modern protocols
was available (unpublished reference 92, 1987). When tested up to cytotoxic
concentrations, a C 10-13 , 56% chlorinated paraffin did not induce a significant, reproducible
increase in the number of mutant colonies, in the presence or absence of Aroclor-induced rat
liver metabolic activation.
Although not mutagenicity assays, the results of two cell transformation assays, using
BHK21/C13 cells, have been summarised here for convenience. In the first, cells were treated,
in the presence of Aroclor-induced rat liver metabolic activation, with up to toxic
concentrations of a C10-13, 50% chlorinated paraffin (Birtley et al., 1980, unpublished
reference 95, 1981 & 94, 1977). There was no evidence of an increase in cell transformation
frequency. The test was not conducted in the absence of metabolic activation mix.
In contrast, increases in transformation frequency were obtained in the presence and absence
of Aroclor-induced rat liver activation mix when cells were treated with a C12, 58% chlorinated
paraffin (Chlorowax 500C) (unpublished reference 96, 1982). Large increases (5 to 1000-fold)
in the transformation frequency were obtained at both cytotoxic and nontoxic concentrations.
The relationship between this effect and neoplastic activity of chlorinated paraffins in vivo
(see later) is not clear.
4.1.2.7.2
In vivo studies
A C10-12, 58% chlorinated paraffin was tested in a rat bone-marrow cell chromosomal
aberration study (unpublished reference 97, 1982; Serrone et al., 1987). Groups of 8 male rats
were treated with 0, 250, 750 and 2500 mg/kg/day chlorinated paraffin, by gavage, daily for
five days. Reduced body weight was noted with the mid dose and 7 deaths occurred with the
top dose. Sampling was conducted on day 6 and 100 metaphase spreads per animal were
analysed. There was no increase in the frequency of chromosomal aberrations, excluding gaps,
at 250 or 750 mg/kg/day, or in the one surviving animal treated with 2500 mg/kg/day. The
incidence of chromosomal gaps was not assessed and no other sampling times were
conducted. Cytotoxicity was not assessed and therefore there is no direct measure of whether
or not the test substance reached the target tissue. However, consideration of the
toxicokinetics of these paraffins indicates significant absorption by the oral route and the
limited distribution data available indicate distribution to the bone-marrow to be anticipated.
Therefore, it would be reasonable to conclude that a significant amount of the test substance
would have reached the target tissue in this study.
A germ cell mutagenicity study on the above chlorinated paraffin has also been conducted
(unpublished study 99, 1983; Serrone et al., 1987). Dominant lethality was assessed when
groups of 15 male rats were treated with 0, 250, 750 or 2000 mg/kg/day chlorinated paraffin,
by gavage, on five consecutive days. Two days after the final treatment, males were paired
with two females for 5 days, and after a 2-day break with another two females, until each male
had been paired with 20 females. Uterine examinations were conducted in females 15 days
109
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
after the introduction of the male. During treatment top-dose males showed a slight decrease
in body weight and mid-dose males a slight decrease in body weight gain. Mean body weights
were then comparable through out the remainder of the study. There was no difference in the
number or location of viable embryos, nonviable embryos, early resorptions or pre-implantation
losses.
4.1.2.7.3
Studies in humans
There is no information available.
4.1.2.7.4
Summary of mutagenicity
There are relatively few data available on the genotoxicity of these substances, particularly
considering the varying chain-length and degree of chlorination of the different compounds
in this family. However the limited information in bacteria indicate that short-chain 5060% chlorinated paraffins are not mutagenic in these systems. No standard in vitro cytogenetic
studies are available but a gene-mutation assay was negative for a C10-13, 56% chlorinated
paraffin. Two well-conducted in vivo studies suggest that short-chain chlorinated paraffins do
not produce mutagenicity in somatic (bone marrow) or germ cells.
Overall, the data available and a consideration of the generally unreactive nature of these
substances indicate that short chain chlorinated paraffins (as a group) are not mutagenic.
4.1.2.8
Carcinogenicity
4.1.2.8.1
Studies in animals
Inhalation
No studies are available.
Oral
Studies in rats
In a poorly-conducted study with low survival rates, groups of 50 male and 50 female F344/N
rats were administered 0, 312 or 625 mg/kg/day C12, 60% chlorinated paraffin in corn oil by
gavage, 5 days/week for 104 weeks (NTP, 1986). Additional groups of 20 male and 20 female
rats were included in each treatment group for concurrent 6- and 12-month studies (limited
pathology was performed in these shorter duration studies). In the 2 year study, all animals
were observed daily and body weights recorded at least monthly. Necropsy and complete
histopathological examinations were performed on all animals either at death, following
sacrifice when moribund, or at the end of the study, unless excessively autolysed or
cannibalised.
At the end of the 6- and 12-month studies, high-dose male rats showed a slight inhibition
(12% reduction) in body weight gain. A statistically significant, dose-related increase in
absolute and relative liver weight, of up to 124%, was observed at 6 and 12 months. The effect
110
CHAPTER 4. HUMAN HEALTH
was greater in the females but was no greater in either sex at 12 months than at 6. The increase
in liver weights was accompanied by hypertrophy of the hepatocytes. A statistically
significant, dose-related increase in absolute and relative kidney weight, of 24 to 46%, was
also observed at 6 and 12 months. As with the liver, the effect was no greater at 12 months
than at 6. The kidneys also showed a dose-related increase in the incidence and severity
(minimal to mild in controls and low-dose animals, and mild to moderate in top-dose animals)
of damage in the tubules and of interstitial inflammation. It was noted that nephropathy in the
male rats was more severe than that in the females. No other changes were observed.
In the two year study, survival of treated male animals beyond week 89 was extremely poor
with 27/50, 6/50 and 3/50 control, low- and high-dose males surviving to the end of the study.
Survival in the females was reasonable; the corresponding rates were 34/50, 23/50 and 29/50.
Mean body weights of top-dose males were at least 10% lower than controls after week 37 and
were 23% lower by the end of the study. All other body weights were similar to control
values. Clinical observation revealed no treatment-related changes until approximately week
90 when males and females of both treated groups showed non-specific signs of toxicity such
as decreased activity, pale eyes and skin, emaciation and abnormal breathing. Several high
dose females also showed distended or firm abdomens, possibly due to liver enlargement.
There were significant increases in a number of specific neoplasias in treated rats. A slight but
statistically significant increase in hepatocellular carcinomas was noted in the low dose males.
Incidence rates in control, low and high dose males which survived to the end of the study
were; 0/27, 2/6 (33%) and 0/3 respectively. Overall rates, that is, the incidence in all male rats
examined, irrespective of survival time, were 0/50, 3/50 (6%) and 2/48 (4%) respectively. The
corresponding overall rates in the females were; 0/50, 1/50 (2%) and 1/50 (2%). A statistically
significant increase in the incidence of liver neoplastic nodules was also noted in both male
and female rats, with incidence of 0/50, 10/50 (20%) and 16/48 (33%) being reported in
control, low and high dose males and in 0/50, 4/50 (8%) and 7/50 (14%) females, respectively.
Low-dose female rats showed a statistically significant increase in thyroid follicular cell
adenomas [control: 0/50, low dose: 6/50 (12%), high dose: 3/50 (6%)], while high dose
females showed a non statistically significant increase in follicular cell carcinomas [control:
0/50, low dose: 0/50, high dose: 3/50 (6%)]. The incidence in all male groups, including the
controls was 3/50 (6%). The historical incidence (from in-house data and from all NTP
studies) for follicular cellular adenomas and carcinomas is 0.8 and 0.4% respectively.
A statistically significant increase in kidney tubular cell adenomas was noted in low dose male
rats. The terminal incidence rates in control, low and high dose males surviving to the end of
the study were; 0/27, 2/6 (33%) and 0/3, respectively. Overall rates were 0/50, 7/50 (14%) and
3/49 (6%). Adenocarcinomas were also noted in 2/50 (2%) low dose males but were not noted
in high dose or control animals. There were no dose-related increases in kidney tumours in
female rats.
Male rats also showed increases in mononuclear cell leukaemia. Terminal and overall
incidence rates in control, low and high dose animals were; 3/27(11%), 2/6 (33%) and 0/3,
and 7/50 (14%), 12/50 (24%) and 14/50 (28%), respectively. The incidences in females were:
controls; 11/50 (22%), low dose: 22/50 (44%), high dose: 16/50 (32%). No significance can
be read into this pattern of results, in view of the poor survival in males and the high incidence
in all groups in the females.
111
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
High dose males also showed slight increases in the incidence of squamous cell papillomas in
the forestomach (control: 0/50, low dose: 0/50, high dose: 2/49, historical control incidence
was not given), probably a reflection of chronic irritation from repeated gavage dosing. Also
in high dose males pancreatic acinar cell carcinomas were increased (controls: 0/50, low dose:
0/50, high dose: 2/49 (4%, historical control incidence: 0.2%). Treated male rats also showed
an increase in acinar adenoma (controls: 11/50 (22%), low dose: 22/50 (44%), high dose:
15/49 (31%), historical control incidence: 4.2%). In view of the atypically high incidence in
the controls and the pattern of results seen, no significance can be read into these results.
Non-neoplastic changes were mainly observed in the liver, kidney and stomach. Minimal to
slight necrosis, focal cellular change, minimal hypertrophy and gross dilation of the blood
vessels, were noted in the livers of both treatment groups. Liver weights were not reported.
Multiple cysts were observed in the kidney cortex in low (26/49) and high (27/50) dose males
but not in controls. The incidence of kidney nephropathy was increased in females (control:
33/50, low dose: 50/50 and high dose: 48/50) but was not increased in treated males although
the severity of the nephthropathy was judged to be greater in treated males compared to
controls. Kidney weights were not reported. Males also showed a dose-related increase in the
incidence of kidney tubular cell hyperplasia (controls: 1/50, low dose: 9/50, high dose: 12/49).
Oedema and erosion of the glandular stomach and ulcers, inflammation, epithelial hyperplasia
and hyperkeratosis of the forestomach were observed in a dose-related fashion in male rats.
Hyperplasia of the parathyroid and fibrous osteodystrophy were also observed in treated
males.
Overall, this was a poor quality study which provided suggestive, but not definitive evidence
of significant carcinogenic activity in the liver, thyroid and kidney.
Studies in mice
Groups of 50 male and 50 female B6C3F1 mice were administered 0, 125 or 250 mg/kg/day
C12, 60% chlorinated paraffin in corn oil by gavage, 5 days/week for 104 weeks (NTP, 1986).
All animals were observed daily and body weights recorded at least monthly. Necropsy and
complete histopathological examinations were performed on all animals either at death,
following sacrifice when moribund, or at the end of the study, unless excessively autolysed or
cannibalised.
Survival of high dose females was significantly lower than controls after week 100. Survival
rates at the end of the study in control, low and high dose females were 35/50, 31/50 and
25/50 respectively. The corresponding rates in the males were 34/50, 30/50 and 30/50
respectively. In general, survival was adequate in this study. No significant differences were
noted in mean body weights of the treated animals compared to control animals. Treatmentrelated clinical observations were noted in males and females of both dose groups beyond
week 86 and included decreased activity, prominent backbones and abnormal breathing.
Dose-related increases in the incidence of hepatocellular carcinomas were noted in male and
female mice although the increases only reached statistical significance in the high dose
females. The overall rates in females (control, low and high) were 3/50 (6%), 4/50 (8%) and
9/50 (18%), respectively (the historical incidence for hepatocellular carcinomas in female
mice, from in-house data and from all NTP studies, is 2-3%). Overall rates in males were 11/50
(22%), 15/50 (30%) and 17/50 (34%), respectively (the historical incidence for hepatocellular
112
CHAPTER 4. HUMAN HEALTH
carcinomas in male mice, from in-house data and from all NTP studies, is 22-27%). Statistically
significant dose-related increases in the incidence of hepatocellular adenomas were also noted in
both male and female mice. Overall rates in control, low and high dose males were 11/50 (22%),
20/50 (40%) and 29/50 (58%), respectively. Corresponding rates in the females were 0/50,
18/50 (36%) and 22/50 (44%), respectively (the historical incidences for hepatocellular
adenomas in male and female mice, from in-house data and from all NTP studies, are 12 and
4%, respectively).
Female mice showed a statistically significant dose-related increase in the incidence of thyroid
follicular cell adenomas. Overall rates in control, low and high dose females were 8/50 (16%),
12/49 (24%) and 13/49 (27%), respectively. Top dose females also showed an increase in
follicular cell carcinomas: 0/50, 0/49 and 2/49 (4%) in control, low and high dose mice
respectively (the incidence of follicular cell adenomas or carcinomas combined in historical
control female mice is approximately 0.5%). There were no increases in thyroid tumour
incidence in males.
Female mice also showed a statistically significant, but not dose-related, increase in Harderian
gland carcinomas with overall rates in control, low and high dose females being 1/50 (2%),
6/50 (12%) and 2/50 (4%), respectively. The historical control incidence of Harderian gland
carcinomas in female mice is 1.9. No such effects were seen in the males. These findings are
not considered to be of significance for human health.
Male mice showed a statistically significant, dose-related increase in alveolar/bronchiolar
carcinomas with overall incidence rates in control, low and high dose males being 0/50, 3/50
(6%) and 6/50 (12%), respectively. However, the incidence of alveolar/bronchiolar
carcinomas in historical control male mice is 5.8%. An increase in adenomas did not occur.
There were no increases in lung tumour incidence in females. No significance for human
health can be read into this pattern of results.
The thyroid showed a spectrum of follicular cell lesions in all groups ranging from early
hyperplasia to multi-layered projections that extended into the lumen (overall rates: 32%, 55%
and 45% in control, low and high dose females and in 10%, 12% and 24% in males,
respectively). An increased incidence of kidney nephrosis was noted in high dose female mice.
Nonneoplastic lesions were not noted in the liver. Liver weights were not recorded.
The most significant findings in this study were the increased incidences of carcinoma and
adenoma in the thyroid in female mice and the liver in male and female mice.
Dermal
No studies are available.
4.1.2.8.2
Studies in humans
There is no information available.
4.1.2.8.3
Discussion at Technical Meetings and by the Specialised Experts
The paragraphs below outline the discussion at the Technical Meetings and present the
conclusions of the Specialised Experts. Words in square brackets [ ] have been added for
clarity.
113
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
The carcinogenicity of short chain length chlorinated paraffins was discussed at Technical
Meetings on October 1st - 3rd 1996 and February 19th - 21st 1997. Member States agreed that
the substance was not genotoxic but could not agree further on the significance of the tumours
seen nor on their relevance to man.
The Commission Group of Specialised Experts in the fields of Carcinogenicity, Mutagenicity
and Reprotoxicity met on 4th - 6th June 1997. The Specialised Experts considered the NTP
cancer bioassays to be of poor quality and that no significance should be attributed to the
slight excess of tumours seen in the lung, pancreas, stomach, [to the] leukaemia[s] or
Haderian gland. The Specialised Experts agreed that of the tumours observed, only those in
the liver, thyroid and kidney should be considered significant. Mechanisms for two of these
had been suggested [see above]. Peroxisome proliferation for the liver tumours and hormonal
imbalance for the thyroid. These mechanisms were accepted by the Specialised Experts.
[The Specialised Experts considered that] no plausible mechanism was suggested for the
kidney tumours. It had been noted that α2u globulin might be responsible, but studies had
failed to show significant levels of the protein. Other evidence had shown that there was
chronic nephropathy which might be a contributing factor in the tumour development. [The
Specialised Experts considered that] as there was still insufficient evidence to conclude a male
rat specific event, the consequences for humans could not be ruled out.
4.1.2.8.4
Summary of carcinogenicity
No information is available on studies in human populations potentially exposed to short
chain length chlorinated paraffins. The only studies available in animals investigated the
effects of a C12, 60% chlorinated paraffin.
Short chain length chlorinated paraffins are not mutagenic. In rodent carcinogenicity studies,
the chlorinated paraffin tested produced toxicologically significant, dose-related increases in
the incidence of several tumour types. Dose-related increased incidence of adenomas and
carcinomas of the liver and thyroid were observed in mice. There was an indication of similar
effects in a poor quality study in rats. These findings reflect, in the case of the liver, chronic
tissue damage caused by peroxisome proliferation and for the thyroid, long-term hormonal
stimulation. From consideration of the probable underlying mechanisms involved (see 4.1.2.6.
Repeated dose toxicity) it is likely that these carcinogenicity observations are not relevant to
human health. Male rats also showed an increased incidence of kidney tubular cell adenomas.
This was not seen in female rats or in mice of either sex. Although hyaline droplets were not
directly observed, the pattern of results in male rats is consistent with tumour formation
following kidney damage caused by hyaline droplet formation, which is a male rat-specific
phenomenon. This is suggestive that the benign tumours observed in the kidney of males rats
are not likely to be relevant for human health.
Discussion at Technical Meetings and by the Specialised Experts
There was no agreement on the significance of the tumours nor their relevance to man
between Member States. The issue was subsequently referred to the Specialised Experts. In
their view only three were considered significant and of these two were considered not to be
relevant to man. In their view, there was insufficient evidence to conclude that the kidney
114
CHAPTER 4. HUMAN HEALTH
tumours were a male rat specific event and consequently the concern for humans could not be
ruled out.
Conclusion
It is recognised that the current evidence on the mechanism underlying the development of the
kidney tumours is not definitive. Given that the short chain length chlorinated paraffins are not
genotoxic, it is considered that there would be no risk of kidney tumour development associated
with exposures lower than those required to produce chronic toxicity in this target organ. A
NOAEL for kidney toxicity in male rats has been previously identified at 100 mg/kg/day. This
value will be used in the risk assessment.
4.1.2.9
Toxicity for reproduction
4.1.2.9.1
Studies in animals
Effects on fertility
No studies specifically investigating effects on fertility are available. However in a repeat
toxicity study female rats showed a decrease of 35 to 48% in relative and absolute ovary
weight, respectively, following administration by gavage of 3000 mg/kg/day for 14 days, of a
C10-12, 58% chlorinated paraffin (unpublished reference 75, 1981). Other signs of toxicity
including a 20% decrease in body weight gain were also noted with this dose and the effect
on the ovaries is likely to be secondary to this. No changes were seen in the ovary with
1000 mg/kg/day.
No changes were seen in the seminal vesicles, prostate, testes, ovaries or uterus when rats
and mice were treated for 13 weeks with up to 5000 and 2000 mg/kg/day, respectively, of a
C12, 60% chlorinated paraffin (NTP, 1986).
Developmental studies
In a well-conducted study, rats were treated by gavage with 0, 100, 500 or 2000 mg/kg
C10-13, 58% chlorinated paraffin, on days 6 to 19 of gestation (unpublished reference 102,
1982; Serrone et al., 1987). Caesarean sections were performed on day 20. Eight of 25
pregnant rats died in the top-dose group. No deaths occurred in the other groups. General
signs of maternal toxicity, such as emaciated appearance, excessive salivation and decreased
activity, were observed in both the mid- and top-dose groups. Top-dose females also showed a
decrease (by 35%) in body weight gain. Statistically significant increases in the number of
post-implantation losses, due to both early and late resorptions, and a statistically
significant decrease in viable foetuses per dam were noted with 2000 mg/kg/day. Adactyly
and/or shortened digits were also observed in 19 foetuses from 3/15 litters examined with
2000 mg/kg/day only.
There were no changes in any developmental parameters with 500 mg/kg/day. No effects
on dams or foetuses were observed with 100 mg/kg/day. Overall, developmental effects were
only noted at concentrations causing severe maternal toxicity in rats.
In a less well-conducted study in rabbits, groups of 16 pregnant females were treated by
gavage with 0, 10, 30 or 100 mg/kg C10-12, 58% chlorinated paraffin in corn oil, on days 6 to
115
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
27 of gestation (unpublished reference 100, 1983; Serrone et al., 1987). Caesarean sections
were carried out on day 28. No maternal deaths occurred and no signs of toxicity were noted
in any of the groups. No malformations were noted at any dose level. At 100 mg/kg/day,
whole litter resorptions occurred in 2/14 pregnant dams and at 30 mg/kg/day, in 1/15. This did
not occur in the control or low dose groups. The historical control incidence for this effect was
given as 13/277, indicating that the appearance of one or two dams with whole litter
resorption in a treatment group could arise by chance alone. Consequently these observations
are considered not to provide convincing evidence of a treatment related effect. The potential
to produce developmental effects at maternally toxic doses was not assessed in this study.
The dose levels used in this study were derived from two range-finding studies (unpublished
references 103 and 104, 1982). Due to either excessive maternal toxicity or a reduction in
sample sizes in all groups, including controls (due to rabbits which aborted or were non
gravid) and a corresponding reduction in study sensitivity, it is not possible to draw any
conclusions from these studies.
4.1.2.9.2
Studies in humans
No data are available.
4.1.2.9.3
Summary of toxicity for reproduction
In relation to fertility, there is no information available in humans and there are no animal studies
specifically investigating such effects. However no changes were seen in the reproductive organs
in rats and mice treated for 13 weeks with up to 5000 and 2000 mg/kg/day, respectively, of a
C12 60% chlorinated paraffin.
In terms of developmental effects, there is no information available in humans, although in a
well-conducted study in rats a C10-13, 58% chlorinated paraffin produced developmental
effects at a dose which also caused severe maternal toxicity (2000 mg/kg), but no
developmental effects at lower doses (500 mg/kg and below). No developmental effects were
observed in a study in rabbits, although maternally toxic doses were not tested.
There is no information on short chain length chlorinated paraffins with higher and lower
chlorine content.
4.1.3
Risk characterisation
The section below, titled "General aspects" provides a brief toxicological profile of short chain
length chlorinated paraffins, identifying the lead effects and, where appropriate, identifying
NOAELs and LOAELs. The rest of the section compares this information with exposure
information for workers, consumers and man exposed via the environment. Where appropriate
Margins of Safety (MoS) are calculated.
4.1.3.0
General aspects
Very little toxicological information is available from studies in humans, although there is a
reasonable database for short chain length chlorinated paraffins as a group from animal
studies. The available animal data do not allow a direct comparison, for every toxicological
116
CHAPTER 4. HUMAN HEALTH
endpoint, of the effects of short chain length chlorinated paraffins with differing chain length
and degree of chlorination. However the information available from acute studies and skin
irritation studies indicates that the intensity and nature of effects for these endpoints are
independent of chain length and degree of chlorination.
There is very limited information on toxicokinetics. No information is available on absorption
via the inhalation route. A study in animals via the oral route indicates that significant
absorption (60%) does occur. Studies in animals (on a longer chain substance) and humans
indicate that absorption via the dermal route will be low .
For the purposes of risk assessment, when calculating the systemic dose absorption via the
inhalation route will be assumed to be 100% of the inhaled amount, via the oral route 100% of
the swallowed amount and via the dermal route 1% of the amount applied to the skin. These
are considered to be very conservative assumptions.
Assessment of the available data clearly indicates that short chain length chlorinated paraffins
are of low acute toxicity in animals. Limited information indicates that short chain length
chlorinated paraffins do not cause skin irritation in humans and in animal studies, at most,
minimal skin and mild eye irritation were reported. More pronounced skin irritation was
observed in animals following repeated exposure presumably because of defatting. No
conclusions can be drawn from the information available on skin sensitisation in humans.
However well conducted studies in animals have shown that short chain length chlorinated
paraffins do not have the potential to produce skin sensitisation. Although there is no
information on respiratory sensitisation in humans or animals, it is significant that no such
effects have been reported in humans despite their widespread use. There is no information on
the health effects in humans of repeated exposure to short chain length chlorinated paraffins.
The principal signs of toxicity in animals were effects in the liver and thyroid. However
mechanistic information has indicated that these effects are probably not relevant to human
health. NOAELs of 100 and 1000 mg/kg/day were identified in rats and mice respectively for
other signs of toxicity, such as decreased body weight gain and increased kidney weight,
which may be relevant to human health.
Short chain length chlorinated paraffins were not mutagenic in bacterial cell systems. No
standard in vitro cytogenetics studies were available but a gene-mutation assay was negative.
Well conducted in vivo studies indicate that short chain length chlorinated paraffins do not
produce mutagenicity in somatic or germ cells. Overall the evidence indicates that short chain
length chlorinated paraffins are not mutagenic.
No information is available on carcinogenicity studies in human populations potentially
exposed to exclusively short chain length chlorinated paraffins. In rodent carcinogenicity
studies, dose-related increases in the incidence of adenomas and carcinomas were observed in
the liver, thyroid and kidney. Other cancers seen were dismissed as not significant.
Consideration of the characteristic patterns in the results and the probable underlying
mechanisms involved, indicate that the findings reflect, in the case of the liver, chronic tissue
damage caused by peroxisome proliferation and for the thyroid, long term hormonal
stimulation, potentially consequent to the liver effects. Consideration of the likely underlying
mechanisms for these tumours suggests that they are not relevant to human health.
117
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
The kidney adenomas (benign) were seen exclusively in male rats. It is considered likely that
the underlying mechanism is the male rat-specific phenomenon of hyaline droplet
nephropathy, although this has not been clearly demonstrated. It is noted that Industry are
undertaking further research to address the mechanism(s) underlying the formation of kidney
tumours. The Specialised Experts concluded (see Section 4.1.2.8.3) that there was insufficient
evidence to conclude a male rat specific event and that the consequences for humans could not
be ruled out. Given that the short chain length chlorinated paraffins are not genotoxic, it is
considered that there would be no risk of kidney tumour development associated with
exposures lower than those required to produce chronic toxicity in this target organ. The
NOAEL for kidney toxicity in male rats, identified at 100 mg/kg/day will therefore be used as
the NOAEL for kidney carcinogenicity.
There are no data available in humans or animals on fertility although no changes were
seen in the reproductive organs in rats and mice treated for 13 weeks with up to 5000 and
2000 mg/kg/day, respectively, of a short chain length chlorinated paraffin. There are no data
available on developmental effects in humans. A short chain length chlorinated paraffin
produced developmental effects in rats at a dose which also caused maternal toxicity
(2000 mg/kg), but no developmental effects at lower doses (500 mg/kg and below). No
developmental effects were observed in a study in rabbits, although maternally toxic doses
were not tested. For the purposes of risk assessment, an NOAEL of 500 mg/kg/day will be
used for developmental effects.
Overall, short chain length chlorinated paraffins are of low toxicity with the principal
toxicological issue being for general non-specific toxicity following repeated exposure.
NOAELs for general toxicity of 100 and 1000 mg/kg/day were identified in rats and mice
respectively.
There are several gaps in the database, particularly with regard to differing chain length and
degree of chlorination. However, taking into account the low toxicity observed in all available
studies and the generally unreactive nature of short chain length chlorinated paraffins, it would
appear unnecessary to attempt to fill these gaps with further testing.
4.1.3.1
Workers
4.1.3.1.1
Introduction
For the purpose of risk characterisation it is assumed that good personal hygiene is practised in
the workplace and that no oral uptake of short chain length chlorinated paraffins will occur.
Short chain length chlorinated paraffins are principally used in metal working fluids, although
they are also used in textile and leather treatment formulations, paints, adhesives and certain
rubber products. They are produced in batches in closed systems, occupational exposures are
consequently intermittent, occurring during sampling, plant and filter cleaning, drumming and
tanker loading. Formulation involves a similar work pattern, but may be divided into high and
low temperature processes, the former giving rise to greater potential for inhalation exposure.
Inhalation and dermal exposures arising from production, formulation and the various uses are
presented in Table 4.5 below, summarised from Section 4.1.1.1. The exposures are largely
derived from model predictions and neither they, nor the doses calculated from them, take
account of the attenuating effects of PPE.
118
CHAPTER 4. HUMAN HEALTH
At the exposure levels presented in Table 4.5, the only effects that are likely to be of concern
are those arising from repeated exposures (doses), that is general toxicity, kidney
carcinogenicity and developmental effects. It is very unlikely that workers would be exposed
to levels likely to lead to effects from single exposure. Furthermore, as short chain length
chlorinated paraffins, have only minimal irritant effects, these are also unlikely to be
expressed, particularly if appropriate PPE is worn where dermal contact might be expected.
For the purposes of risk assessment, NOAELs can be identified for the repeated dose study
(100 mg/kg/day) and for carcinogenicity (100 mg/kg/day, based upon the NOAEL for the
repeated dose study). There is no data on fertility but no changes were seen in reproductive
organs at 5000 and 2000 mg/kg/day respectively for rats and mice. While developmental
effects were only seen at a maternally toxic dose in rats (2000 mg/kg/day) they were not seen
at lower doses (500 and 100 mg/kg/day). A NOAEL of 500 mg/kg/day will be used for
developmental effects.
In the Tables below, no attempt has been made to predict a MoS for local effects, nor for a
single route of exposure. Short chain length chlorinated paraffins are absorbed to a degree by
the inhalation and dermal routes and there is no reason to assume a route specific toxicity.
Consequently, to calculate a MoS, the NOAELs identified above are compared with a
systemic dose, summing the contributions from the two relevant routes. These calculations
assume (unless stated otherwise) 100% absorption via the oral and inhalation routes, 1% via
the dermal route, that an individual weighs 70 kg, breathes in 10 m3 of air in an 8 hour
working day and has a surface area on skin and forearms of 2000 cm2. The total systemic
doses are presented in Table 4.5, the MoS in Table 4.6.
Table 4.5 Inhalation and dermal exposures and doses and total systemic doses for the manufacture and use of short
chain length chlorinated paraffins
Scenario
a
Inhalation
Dermal
Total Systemic
Concentration
Dose mg/kg/day
Concentration
Dose mg/kg/day
Dose mg/kg/day
Manufacture
0.1 ppm (2.1 mg/m3)a
0.3
1 mg/cm2
0.29
0.6
Formulation low
temperature
0.1 ppm (2.1 mg/m3)a
0.3
1 mg/cm2
0.29
0.6
Formulation high
temperature
3 ppm (63 mg/m3)a
9
1 mg/cm2
0.29
9.3
Metal working fluids
1.15 mg/m3
0.2
0.1 mg/cm2
0.03
0.23
Leather and textile
treatment
negligible
negligible
0.3 mg/cm2
0.09
0.1
Leather and textile use
negligible
negligible
negligible
negligible
Paints, adhesives &
sealants
0.32 mg/m3
0.05
0.1 mg/cm2
0.03
0.1
Rubber products,
processing and use
negligible
negligible
negligible
negligible
negligible
mg/m3 = ppm x Molecular Weight / 24.05526
Molecular weight is assumed to be 500 (the top end of the range) and 24.05526 l/mol is the molar volume of an ideal gas at 20oC
and 1 atmosphere pressure (101325 Pa, 760mm mercury, 1.01325 bar)
119
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Table 4.6 Total systemic doses, NOAELs and margins of safety for the manufacture and use of short chain length
chlorinated paraffins
Scenario
Total Systemic
Dose mg/kg/day
NOAEL
Margin of Safety
[Repeat dose and
carcinogenicity
mg/kg/day]
NOAEL
[Developmental
effects
mg/kg/day]
Margin of
Safety
Manufacture
0.60
100
166
500
830
Formulation low
temperature
0.60
100
166
500
830
Formulation high
temperature
9.30
100
10.8
500
54
Metal working fluids
0.23
100
435
500
2175
Leather and textile
treatment
0.10
100
1000
500
5000
0.10
100
1000
500
5000
Leather and textile use
Paints, adhesives &
sealants
Rubber products,
processing and use
None of the above calculations take account of personal protective equipment, which may considerably reduce individual exposures
4.1.3.1.2
Risk characterisation for workers
The manufacture and use of short chain length chlorinated paraffins gives rise to a range of
systemic doses. At the exposure levels presented in Table 4.5, the only effects that are likely
to be of concern are those arising from repeated exposures (doses), that is general toxicity,
kidney carcinogenicity and developmental effects. When compared to the relevant NOAELs,
in all but one case, the margin of safety is well over 100. While it is important not to read too
much into simple ratios, this does suggest that, in general, the use of the substance is
appropriately controlled.
The clear exception is high temperature formulation of hot melt adhesives and rubber products
where the margin of safety is narrower. In this particular case it is important to recognise that
the high end of the EASE predictions has been used. Further, because these are batch
production processes, the time for which an individual is likely to be exposed will be
considerably reduced. If as is probable, operators are exposed for a shorter time, perhaps one
hour, the inhaled dose reduces by 7/8 and the total systemic dose to approximately 2 mg/kg/day.
Assuming an absorption of 75% of the inhaled dose would reduce the systemic dose further
still. Noting the inherent conservatism of these calculations, it is considered that the likely
exposures arising from high temperature formulation are appropriately controlled and that
there is no further cause for concern.
120
CHAPTER 4. HUMAN HEALTH
Some users of metal working fluids may use fluids with a chlorinated paraffin content of up to
80% for specific purposes. In those circumstances, assuming that the duration and other
assumptions hold true, the inhaled and dermal doses will increase to 1.6 and 0.24 mg/kg/day
respectively, and the total systemic dose to 1.84 mg/kg/day. The margins of safety then narrow
to approximately 54 and 250. These are not considered to be a cause for additional concern.
Conclusion
At the exposure levels presented, the only effects that are likely to be of concern are those
arising from repeated exposures (doses), i.e. general toxicity, kidney carcinogenicity and
developmental effects. When compared to the relevant NOAELs, in all but one case, the
margin of safety is considered to be adequate, that is at least two orders of magnitude. While it
is important not to read too much into simple ratios, this does suggest that, in general, the use
of the substance is appropriately controlled. While certain uses imply a narrower margin of
safety, these are not considered to be a cause for concern.
Result
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
4.1.3.2
Consumers
4.1.3.2.1
Introduction
Short chain length chlorinated paraffins may be used in a number of consumer products,
including leather clothing, metal working fluids and on textiles, in certain industrial paints,
sealants and adhesives and in rubber products. Aside from leather clothing and metal working
fluids, the consumer exposures are considered to be negligible. Inhalation exposure is only
considered to be significant for metal working fluids.
Inhalation and dermal exposures arising for consumers are presented in Table 4.7 below,
summarised from Section 4.1.1.2. The exposures are largely derived from simple calculations.
At the exposure levels presented in Table 4.7, the only effects that are likely to be of concern
are those arising from repeated exposures (doses), that is general toxicity, kidney
carcinogenicity and developmental effects. It is very unlikely that consumers would be
exposed to levels likely to lead to effects from single exposure, nor to irritant effects.
For the purposes of risk assessment, NOAELs can be identified for the repeated dose study
(100 mg/kg/day) and for carcinogenicity (100 mg/kg/day, based upon the NOAEL for the
repeated dose study). There is no data on fertility but no changes were seen in reproductive
organs at 5000 and 2000 mg/kg/day respectively for rats and mice. While developmental
effects were only seen at a maternally toxic dose in rats (2000 mg/kg/day) they were not seen
at lower doses (500 and 100 mg/kg/day). A NOAEL of 500 mg/kg/day will be used for
developmental effects.
In the Tables below, no attempt has been made to predict a MoS for local effects, nor for a
single route of exposure. Short chain length chlorinated paraffins are absorbed to a degree by
the inhalation and dermal routes and there is no reason to assume a route specific toxicity.
121
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Consequently, to calculate a MoS, the NOAELs identified above are compared with a
systemic dose, summing the contributions from the two relevant routes. These calculations
assume (unless stated otherwise) 100% absorption via the oral and inhalation routes, 1% via
the dermal route and that an individual weighs 70 kg. For the metal working fluids scenario,
the assumption is made that an individual breathes in 2.5 m3 of air in a 2 hour working day
and has a surface area on skin and forearms of 2000 cm2. The total systemic doses are
presented in Table 4.7, the MoSs in Table 4.8 below.
Table 4.7 Inhalation and dermal exposures and doses and total systemic doses for consumers exposed to short chain
length chlorinated paraffins
Scenario
Metal working fluids
Inhalation
Dermal
Total Systemic Dose
mg/kg/day
Concentration
Dose
mg/kg/day
Concentration
Dose
mg/kg/day
0.115 mg/m3
over 2 hours,
0.1 mg/cm2
0.03
0.03
37 mg over the body
0.02
0.02
0.004
Leather and textile use
negligible
negligible
Table 4.8 Total systemic doses, NOAELs and margins of safety for consumers exposed to short chain length
chlorinated paraffins
Scenario
NOAEL
Total Systemic
[Repeat
dose and
Dose
carcinogenicity mg/kg/day]
mg/kg/day
Margin of
Safety
NOAEL
[Developmental
effects mg/kg/day]
Margin of
Safety
Metal working fluids
0.03
100
3333
500
16,666
Leather and textile use
0.02
100
5000
500
25,000
4.1.3.2.2
Risk characterisation for consumers
At the exposure levels presented in Table 4.7, the only effects that are likely to be of concern
are those arising from repeated exposures (doses), that is general toxicity, kidney
carcinogenicity and developmental effects. When compared to the relevant NOAELs, the
margins of safety presented in Table 4.8 are well over three orders of magnitude and, given
the conservative nature of the exposure calculations, in all probability considerably more.
While it is important not to read too much into simple ratios, this does suggest that the use of
the substance poses no significant risk for consumers.
Conclusion
The use of the substance poses no significant risk for consumers.
Result
ii)
122
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
CHAPTER 4. HUMAN HEALTH
4.1.3.3
Man exposed indirectly via the environment
4.1.3.3.1
Introduction
The EUSES predictions considerably overestimate human exposure via the environment,
specifically in the predictions for root crops. However, real data clearly indicate the potential
for human uptake. The value of 20 µg/kg/day (assuming 100% adsorption via the oral and
inhalation routes) is considered to be a reasonable worst case prediction based upon real data
and will be used in the risk assessment to represent both local and regional exposure.
At this dose level, the only effects that are likely to be of concern are those arising from
repeated exposures (doses), that is general toxicity, kidney carcinogenicity and developmental
effects. It is very unlikely that man exposed via the environment would be exposed to levels
likely to lead to effects from single exposure, nor to irritant effects.
For the purposes of risk assessment, NOAELs can be identified for the repeated dose study
(100 mg/kg/day) and for carcinogenicity (100 mg/kg/day, based upon the NOAEL for the
repeated dose study). There are no data on fertility but no changes were seen in reproductive
organs at 5000 and 2000 mg/kg/day respectively for rats and mice. While developmental
effects were only seen at a maternally toxic dose in rats (2000 mg/kg/day) they were not seen
at lower doses (500 and 100 mg/kg/day). A NOAEL of 500 mg/kg/day will be used for
developmental effects.
In comparing the exposure and effects data, no attempt has been made to predict MoS for
local effects, nor for a single route of exposure. Short chain length chlorinated paraffins are
absorbed to a degree by the inhalation and oral routes and there is no reason to assume a route
specific toxicity. Consequently, to calculate MoS, the NOAELs identified above are compared
with a systemic dose, summing the contributions from the two relevant routes.
4.1.3.3.2
Risk characterisation for man exposed indirectly via the environment
At the predicted level of exposure, the Margins of Safety are 5000 and 25000 for repeat
dose/carcinogenicity and developmental effects respectively. While it is important not to read
too much into simple ratios, this does suggest that the use of the substance poses no
significant risk for man exposed via the environment.
Conclusion
There is no significant risk to man exposed via the environment.
Result
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
123
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
4.1.3.4
FINAL REPORT, OCTOBER 1999
Combined exposure
During occupational exposure to short chain length chlorinated paraffins, the highest
potential uptake is estimated to occur during their formulation in hot melt adhesives (up to
9.3 mg/kg/day). An individual formulating hot melt adhesives may also be exposed as a
consumer (0.02 mg/kg/day) and via the environment (0.02 mg/kg/day). A combined uptake
of up to 9.3 mg/kg/day is therefore estimated for a very conservative worst case situation.
Other occupational sources of exposure contribute to much lower systemic doses. This
indicates that the risk from combined exposure is low.
Result
ii)
4.2
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
HUMAN HEALTH (PHYSICO CHEMICAL PROPERTIES)
(risk assessment concerning the properties listed in Annex IIA of Regulation 1488/94)
Short chain length chlorinated paraffins have a very low vapour pressure, no explosive or
oxidising properties and are not flammable. The flash point is in excess of 150 °C. Therefore
it can be concluded that there is no concern for human health arising out of the physicochemical properties.
124
5
RESULTS
5.1
INTRODUCTION
Short chain length chlorinated paraffins are viscous liquids of very low volatility. They are
principally used in metal working fluids, although they are also used in textile and leather
treatment formulations, paints, sealants and certain rubber products. They are produced in
batches in closed systems.
5.2
ENVIRONMENT
The use of short chain length chlorinated paraffins in sealants, rubber, backcoating of textiles
and paints is not thought to present a risk to the environment. Secondary poisoning is not
thought to be of concern, except for leather treatment formulation and use and possibly for use
in metal finishing. No risks to the function of sewage treatment plants were identified from
either production or any use. For the atmospheric compartment, neither biotic or abiotic
effects are considered likely to occur as a result of production or any use. Short chain length
chlorinated paraffins have been raised as a possible concern with regard to long range
atmospheric transport. This area is currently being discussed within the appropriate
international fora.
The use of short chain length chlorinated paraffins in metal working fluids and in leather
finishing has been found to present a risk to aquatic organisms in surface water due to local
exposures. Possible risks to sediment-dwelling organisms were identified as a result of
production of short chain length chlorinated paraffins, formulation and use of metal cutting
fluids and formulation and use of leather finishing products, use in rubber formulations, and at
a regional level. There is a possible risk to soil-dwelling organisms in agricultural soils at a
local level (for metal working fluid formulation and use, and leather finishing formulation and
use) and at a regional level due to spreading of sewage sludge. Further information for the soil
and sediment compartments could be gathered to clarify the risk. However, risk reduction
methods should be considered for metal working since further information (either exposure or
aquatic toxicity) is unlikely to change significantly the PEC/PNEC ratios calculated for
aquatic organisms. Based on the available data, a risk to aquatic organisms cannot be excluded
for leather finishing applications either and so risk reduction measures should also be
considered for this use.
Results
(x)
i) There is a need for further information and/or testing.
The PECs and PNECs for the sediment and soil compartments can all be revised. For soil,
better information on releases of short chain length chlorinated paraffins to this compartment
would revise the PEC. Monitoring data for soil and sediment near to sources of release would
also be useful in this respect. Finally, since the PNECs for soil and sediment are based on the
equilibrium partitioning method, the PNECs could be revised through toxicity testing on
sediment- and soil-dwelling organisms if the revision of the PECs does not remove the
concern. For sediment, the basis for any further toxicity testing could be firstly a long-term
Chironomid test; secondly a long-term Oligochaetes test; and finally a long-term test with
125
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Gammarus or Hyalella (all using spiked sediment). For soil, the test strategy could be based
on the tests recommended in the Technical Guidance Document (currently a plant test
involving exposure via soil; a test with an annelid; and a test with microorganisms).
The risk reduction measures recommended as a result of the assessment of aquatic effects
from metal working and leather finishing will also (either directly or indirectly) have some
effect on the PECs for sediment and soil. Any further information and/or testing requirements
should therefore await the outcome of these risk reduction measures on releases to the
environment.∗
(x)
ii) There is at present no need for further information and/or testing or for risk
reduction measures beyond those which are being applied already.
This applies to the assessment of
- atmospheric risks;
- risks to waste water treatment plants from production and all uses of short chain length
chlorinated paraffins;
- the risk of secondary poisoning arising from production, formulation of metal working
fluids and use in rubber formulations, paints and sealing compounds and textile
applications;
- aquatic, sediment and terrestrial risks from use in sealants, backcoating of textiles and
paints;
- aquatic and terrestrial risks from use in rubber formulations and from production sites
(using site specific data); and
- aquatic risks at the regional level.
(x)
iii) There is a need for limiting the risks; risk reduction measures which are already
being applied shall be taken into account.
A risk to aquatic organisms exists arising from the local emission of short chain length
chlorinated paraffins from metal working applications and leather finishing and from the
formulation of products for these uses. This conclusion also applies to secondary poisoning
arising from formulation and use in leather finishing, and use in metal working applications.
5.3
HUMAN HEALTH
Assessment of the available data clearly indicates that short chain length chlorinated paraffins
are of low acute toxicity in animals. Limited information indicates that they do not cause skin
irritation in humans and in animal studies, at most, minimal skin and mild eye irritation.
Overall the evidence indicates that they are not mutagenic.
Kidney adenomas (benign) were seen exclusively in male rats. It is considered likely that the
underlying mechanism is the male rat-specific phenomenon of hyaline droplet nephropathy,
although this has not been clearly demonstrated. The Commissioned Group of Specialised
Experts concluded that there was insufficient evidence to conclude a male rat specific event
and that the consequences for humans could not be ruled out. Given that the short chain length
chlorinated paraffins are not genotoxic, it is considered that there would be no risk of kidney
∗
See Appendix D
126
CHAPTER 5. RESULTS
tumour development associated with exposures lower than those required to produce chronic
toxicity in this target organ.
A short chain length chlorinated paraffin produced developmental effects in rats at a dose
which also caused maternal toxicity.
5.3.1
Risk to workers
At the exposure levels calculated, the only effects that are likely to be of concern are those
arising from repeated exposures (doses), that is general toxicity, kidney carcinogenicity and
developmental effects. When compared to the relevant NOAELs, in all but one case, the
margin of safety is considered to be adequate, that is at least two orders of magnitude. While it
is important not to read too much into simple ratios, this does suggest that, in general, the use
of the substance is appropriately controlled. While certain uses imply a narrower margin of
safety, these are not considered to be a cause for concern.
Result
(x)
5.3.2
ii) There is at present no need for further information and/or testing or for risk
reduction measures beyond those which are being applied already.
Risk to consumers
At the exposure levels calculated, the only effects that are likely to be of concern are those
arising from repeated exposures (doses), that is general toxicity, kidney carcinogenicity and
developmental effects. When compared to the relevant NOAELs, the margins of safety are
well over three orders of magnitude and, given the conservative nature of the exposure
calculations, in all probability considerably more. While it is important not to read too much
into simple ratios, this suggests that the use of the substance poses no significant risk for
consumers.
Result
(x)
5.4
ii) There is at present no need for further information and/or testing or for risk
reduction measures beyond those which are being applied already.
MAN EXPOSED INDIRECTLY VIA THE ENVIRONMENT
At the predicted level of exposure, the Margins of Safety are three and six orders of magnitude
for repeat dose/carcinogenicity and developmental effects respectively. While it is important
not to read too much into simple ratios, this does suggest that the use of the substance poses
no significant risk for man exposed via the environment.
Result
(x)
ii) There is at present no need for further information and/or testing or for risk
reduction measures beyond those which are being applied already.
127
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
5.5
FINAL REPORT, OCTOBER 1999
HUMAN HEALTH (PHYSICO CHEMICAL PROPERTIES)
There are no risks from physico chemical properties arising out of the use of SCCPs.
Overall risk assessment conclusion for Human Health (Physico chemical properties):
Result
(x)
128
ii) There is at present no need for further information and/or testing or for risk
reduction measures beyond those which are being applied already.
6
REFERENCES
Allesbrook W. E. (1972). Fire retardant paints - the state of the art. Paint Manufacture, 42, 40-44.
Ashby J., Brady A., et al. (1994). Mechanistically-based human hazard assessment of peroxisome proliferatorinduced hepatocarcinogenesis. Human Experimental Toxicol., 13, Suppl 2.
Ballschmiter K. (1994). Bestimmung von kurtz- und mittelkettigen chloroparaffinen in Wasser- und
Sedimentproben aus Oberflächenwässern. Universität Ulm. Abt. Analytische Chemie und Umweltchemie, 10
May, 1994.
Bengtsson B. E. and Baumann Ofstad E. (1982). Long-term studies on uptake and elimination of some
chlorinated paraffins in the bleak Alburnus alburnus. Ambio, 11, 38-40.
Bengtsson B. E., Svanberg O. and Lindén O. (1979). Structure related uptake and elimination of some
chlorinated paraffins in bleaks Alburnus alburnus. Ambio, 8, 121-122.
Bentley P., Calder I., et al. (1993). Hepatic peroxisome proliferation in rodents and its significance for humans.
Food Chem. Toxicol., 1993, 31 (11), 857-907.
Birtley R. D. N., Conning D. M. et al. (1980). The toxicological effects of chlorinated paraffins in mammals.
Toxicol. Appl. Pharmacol., 54, 514-525.
Bowerman D. F. (1971). Marine paints based on chlorinated rubber. Paint Manufacture, 41, 20-22.
Bucher J. R., Alison R. H. et al. (1987). Comparative toxicity and carcinogenicity of two chlorinated paraffins in
F344/N rats and B6C3F1 mice. Fund. Appl. Toxicol., 9, 454-468.
BUA (1992). Chlorparaffine (Paraffinwachse und Kohlenwasserstoffwachse, chloriert). BUA-Stoffbericht 93,
Beratergremium für umweltrelevante Altstoffe (BUA) der Gesellschaft Deutscher Chemiker, July 1992.
Campbell I. and McConnell G. (1980). Chlorinated paraffins and the environment. 1. Environmental occurrence.
Environ. Sci. Technol., 9, 1209-1214.
Darnerud P. O. (1984). Chlorinated Paraffins : Effects of some microsomal enzyme inducers and inhibitors on the
degradation of 1-14C-chlorododecanes to 14CO2 in mice. Acta-Pharmacol. Toxicol., 55 (2), 110-115.
Darnerud P. O., Biessmann A. and Brandt I. (1982). Metabolic fate of chlorinated paraffins: Degree of
chlorination of 1-14C-chlorododecanes in relation to degradation and excretion in mice. Arch. Toxicol., 50, 217226.
Dohler K-D., Wong C. C. and von zur Muhlen A. (1979). The rat as model for the study of drug effects on
thyroid function: consideration of methodological problems. Pharmacol. Therapeutics, 5, 305-318.
E & G Bionomics (1983). Acute and chronic toxicity of a chlorinated paraffin to the midge Chironomus tentans.
United States Environmental Protection Agency Document # 88-8300549
EC (1996). Technical and Economic Study on the Reduction (Based on the Best Technology Available) of
Industrial Emissions (Water, Air and Solid Wastes) from Tanneries. Final Report. European Commission
92/013868/LR/SH.
Eckhardt H. and Grimm G. (1967). Chlorparaffine in anstrichmitteln. Farbe und Lack, 73, 36-41.
Elcombe C. R., Watson S. C., et al. (1994). ICI Poster. Chlorinated paraffins (CP): Mechanisms of
carcinogenesis.
Elcombe C. R., Bars R. G., et al. (1995). Draft Paper, accepted for publication by Xenobiotica. Hepatic effects of
chlorinated paraffins in mice, rats and guinea-pigs: species differences and implications for hepatocarcinogenicity.
129
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Environment Agency Japan (1991). Chemicals in the Environment. Report on Environmental Survey and
Wildlife Monitoring of Chemicals in F.Y. 1988 and 1989. Office of Health Studies, Department of
Environmental Health, Environment Agency Japan, 1991.
Eriksson P. and Kihlstrom J-E. (1985). Disturbance of motor performance and thermoregulation in mice given
two commercial chlorinated paraffins. Bull. Environ. Contam. Toxicol., 43, 205-209.
Euro-Chlor (1995). As reported in letter from ICI dated 12/7/95.
Fisk A. T., Cymbalisty C. D., Bergman Å. and Muir D. C. G. (1996). Dietary accumulation of C12- and C16chlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem., 15, 1775-1782.
Government of Canada (1993). Canadian Environmental Protection Act. Priority Substances List Assessment
Report. Chlorinated Paraffins. Government of Canada, Environment Canada, Health and Welfare Canada.
Greenpeace (1995). Greenpeace Zur Sache: Chlorparaffine. May 1995.
Hill R. W. and Maddock B. G. (1983a). Effect of a chlorinated paraffin on embryos and larvae of the sheepshead
minnow Cyprinodon variegatus - study 1. ICI Confidential report BL/B/2326.
Hill R. W. and Maddock B. G. (1983b). Effect of a chlorinated paraffin on embryos and larvae of the sheepshead
minnow Cyprinodon variegatus - study 2. ICI Confidential report BL/B/2327.
Hoechst AG (1976). Unveroeffentlichte Untersuchung (19.05.1976).
Hoechst AG (1977). Unveroeffentlichte Untersuchung (28.11.1977).
Hoechst AG (1988) and (1991). TA-Luft classification substantialtion by the UCV Department, 20.05.1988 and
18.06.1991.
Hoechst AG (1990). Produktinformation Chlorparaffine (July 1990).
Howard P. H., Santodonato J. and Saxena J. (1975). Investigation of Selected Potential Environmental
Contaminants: Chlorinated Paraffins. United States Environmental Protection Agency, Report EPA-560/2-75007.
Huels AG (1984). Unveroeffentlichte Untersuchung Daphnien.
Huels AG (1986). Unveroeffentlichte Untersuchung Daphnien.
IARC (1990). Vol. 48, 55-72
ICI (1989a). Unveroeffentlichte Untersuchung.
ICI (1992). Personal Communication. As reported in Willis et al. (1994).
ICI (1994). HEDSET data.
ICI (1995). Personal Communication, 12th June 1995.
ICI Draft Paper 1, Chlorinated paraffins: Early time course of thyroid related events in male rats.
ICI Draft Paper 2, Time course of events in the liver and thyroid of female F344 rats.
ICI Draft Paper 3, Chlorinated paraffins: A study to determine the early events occurring in the liver, kidney and
thyroid of male guinea-pigs following daily gavage with Chlorowax 500C.
Jansson B., Andersson R., Asplund L., Litzén K., Nylund K., Sellström U., Uvemo U-B., Wahlberg C.,
Wideqvist U., Odsjö T. and Olsson M. (1993). Chlorinated and brominated persistent organic compounds in
biological samples from the environment. Environ. Toxicol. Chem., 12, 1163-1174.
130
CHAPTER 6. REFERENCES
Johnson W. W. and Finley M. T. (1980). Handbook of Acute Toxicity of Chemicals to Fish and Aquatic
Invertebrates. Summaries of Toxicity Tests Conducted at Columbia National Fisheries Research Laboratory,
1965-78. United States Department of the Interior Fish and Wildlife Service, Resource Publication 137,
Washington DC.
Könnecke H. G. and Hahn P. (1962). Chlorination of alkanes. I. Chromatographic separation of chloroalkanes
derived in the chlorination of hexacotane. J. Prakt. Chem., 16, 37-41.
Lindén E., Bengtsson B. E., Svanberg O. and Sundström G. (1979). The acute toxicity of 78 chemicals and
pesticide formulations against two brackish water organisms, the bleak Alburnus alburnus and the harpacticoid
Nitocra spinipes. Chemosphere, 11/12, 843-851.
Lombardo P., Dennison J. L. and Johnson W. W. (1975). Bioaccumulation of chlorinated paraffin in fish fed
Chlorowax 500C. J. Assoc. Off. Anal. Chem., 58, 707-710.
Madeley J. R. and Birtley R. D. N. (1980). Chlorinated paraffins and the environment. 2. Aquatic and avian
toxicology. Environ. Sci. Technol., 14, 1215-1221.
Madeley J. R. and Gillings E. (1983). The determination of the Solubility of four Chlorinated Paraffins in Water.
ICI Confidential Report BL/B/2301.
Madeley J. R. and Maddock B. G. (1983a). Toxicity of a chlorinated paraffin over 60 days. (iv) Chlorinated
paraffin - 58% chlorination of short chain length n-paraffins. ICI Confidential Report BL/B/2291.
Madeley J. R. and Maddock B. G. (1983b). The bioconcentration of a chlorinated paraffin in the tissues and
organs of rainbow trout (Salmo gairdneri). ICI Confidential Report BL/B/2310.
Madeley J. R. and Thompson R. S. (1983). Toxicity of chlorinated paraffins to mussels (Mytilus edulis) over 60
days. (iv) Chlorinated paraffin - 58% chlorination of short chain length n-paraffins. ICI Confidential Report
BL/B/2291.
Madeley J. R., Thompson R. S. and Brown D. (1983a). The bioconcentration of a chlorinated paraffin by the
common mussel (Mytilus edulis). ICI Confidential Report BL/B/2351.
Madeley J. R., Windeatt A. J. and Street J. R. (1983b). Assessment of the toxicity of a chlorinated paraffin to the
anaerobic sludge digestion process. ICI Confidential report BL/B/2253.
Mather J. I., Street J. R. and Madeley J. R. (1983). Assessment of the inherent biodegradability of a chlorinated
paraffin, under aerobic conditions, by a method developed from OECD Test Guideline 302B. ICI Confidential
Report BL/B/2298.
Meijer J., Rundgren M., et al. (1981). Effects of chlorinated paraffins on some drug-metabolising enzymes in rat
liver and in the Ames test. Adv. Experiment. Med. Biol., 136, 821-828.
Menter P., Harrison W., et al. (1975). Patch testing of coolant fractions. J. Occupational Med., 17 (9), 565-568.
Mukherjee A. B. (1990). The use of chlorinated paraffins and their possible effects in the environment. National
Board of Waters and the Environment, Helsinki, Finland.
Murray T., Frankenberry M., Steele D. H. and Heath R. G. (1987a). Chlorinated paraffins: A report on the
findings from two field studies, Sugar Creek, Ohio, Tinkers Creek, Ohio. Volume 1, Technical report. United
States Environmental Protection Agency Report EPA 560/5-87-012.
Murray T., Frankenberry M., Steele D. H., and Heath R. G. (1987b). Chlorinated paraffins: A report on the
findings from two field studies, Sugar Creek, Ohio, Tinkers Creek, Ohio. Volume 2. Appendix D. The Quality
Assurance Project Plan. United States Environmental Protection Agency Report EPA 560/5/87-012.
Nilsen O. G. and Toftgard R. (1981). Effects of polychlorinated terphenyls and paraffins on rat liver microsomal
cytochrome P-450 and in vitro metabolic activities. Arch. Toxicol., 47, 1-11.
131
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Nilsen O. G., Toftgard R. and Glaumann H. (1981). Effects of chlorinated paraffins on rat liver microsomal
activities and morphology. Arch. Toxicol., 49 (1), 1-13.
NTP (1986). National Toxicology Program, Technical Report Series, No. 308. Toxicology and carcinogenesis
studies of chlorinated paraffins (C12, 60% chlorine) (CAS No. 63449-39-8) in F344/N rats and B6C3F1 mice
(gavage studies).
Omori T., Kimura T. and Kodama T. (1987). Bacterial cometabolic degradation of chlorinated paraffins. Appl.
Microbiol. Biotechnol., 25, 553-557.
Renberg L., Sundström G. and Sundh-Nygård K. (1980). Partition coefficients of organic chemicals derived from
reversed phase thin layer chromatography. Evaluation of methods and application on phosphate esters,
polychlorinated paraffins and some PCB-substitutes. Chemosphere, 9, 683-691.
Rieger R. and Ballschmiter K. (1995). Semivolatile organic compounds - polychlorinated dibenzo-p-dioxins
(PCDD), dibenzofurans (PCDF), biphenyls (PCB), hexachlorobenzene (HCB), 4,4'-DDE and chlorinated
paraffins (CP) - as markers in sewer films. Fresenius j. Anal. Chem., 352, 715-724.
RPA (1996). Risk-benefit analysis on the use of short chain length chlorinated paraffins in cutting fluids in the
metalworking industry. Risk and Policy Analysts Limited, August 1996.
RPA (1997). Risk-benefit analysis on the use of short-chain chlorinated paraffins in leather processing. Stage 1
report. Risk and Policy Analysts Limited, October 1997.
Scott R. C. (1989). In vitro absorption of some chlorinated paraffins through human skin. Arch. Toxicol., 63,
425-426.
Serrone D. M., Birtley R. D. N. et al., (1987). Summaries of toxicological data. Toxicology of chlorinated
paraffins. Food Chem. Toxicol., 25, (7), 553-562.
Sijm D. T. H. M. and Sinnige T. L. (1995). Experimental octanol/water partition coefficients of chlorinated
paraffins. Chemosphere, 31, 4427-4435.
Stenhammar S. and Björndal H. (1994). Chloroparaffins in Metal Working. Status Report No 4372. Swedish
Environmental Protection Agency in cooperation with the National Chemicals Inspectorate.
Stern G. A., Tomy G. T., Muir D. C. G., Westmore J. B., Dewailly E., and Rosenberg B. (1997). Polychlorinated
n-alkanes in aquatic biota and human milk. Convention on Long-range Transboundary Air Pollution. Working
Group on Strategies (Twenty-first session, 16-20 June 1997). Informed in-session document No.2.
Street J. R. and Madeley J. R. (1983). Assessment of the fate of a chlorinated paraffin during aerobic treatment
by a modification of OECD Test Guideline 303A. ICI Confidential Report BL/B/2308.
Street J. R., Windeatt A. J. and Madeley J. R. (1983). Assessment of the ready biodegradability of a chlorinated
paraffin by OECD method 301C. ICI Confidential Report BL/B/2208.
Thompson R. S. and Madeley J. R. (1983a). The acute and chronic toxicity of a chlorinated paraffin to Daphnia
magna. ICI Confidential report BL/B/2358.
Thompson R. S. and Madeley J. R. (1983b). Toxicity of a chlorinated paraffin to the green alga Selenastrum
capricornutum. ICI Confidential report BL/B/2321.
Thompson R. S. and Madeley J. R. (1983c). Toxicity of a chlorinated paraffin to the marine alga Skeletonema
costatum. ICI Confidential report BL/B/2328.
Thompson R. S. and Madeley J. R. (1983d). The acute and chronic toxicity of a chlorinated paraffin to the mysid
shrimp Mysidopsis bahia. ICI Confidential report BL/B/2373.
132
CHAPTER 6. REFERENCES
Thompson R. S. and Shillabeer N. (1983). Effect of a chlorinated paraffin on the growth of mussels (Mytilus
edulis). ICI Confidential report BL/B/2331.
Tomy G. T., Stern G. A., Muir D. C. G., Lockhart L. and Westmore J. (1997). Occurrence of polychloro-nalkanes in Canadian mid-latitude and Arctic lake sediments. Convention on Long-range Transboundary Air
Pollution. Working Group on Strategies (Twenty-first session, 16-20 June 1997). Informed in-session document
No.2.
UCD (1995). Use Category Document - Lubricants. Draft, February 1995.
Ullmann (1986). Ullmann's Encyclopaedia of Industrial Chemistry. Volume A6, Chlorinated Hydrocarbons. VCH
Verlagsgesellschaft mbH, D-6940 Weinheim.
UNECE (1996). Review of risk characterisation information on selected persistent organic pollutants. Presented
by the United Kingdom. UNECE Convention on LRTAP Preparatory Working Group on Persistent Organic
Pollutants, 4th Session, 21-23 October 1996, Ottawa, Canada.
Unpublished Report 34, Hoechst AG, 66.0053, 1966
Unpublished Report 42, Hoechst AG, 53.0047, 1953
Unpublished Report 48, Hoechst AG, 86.1105, 1986
Unpublished Report 49, Hoechst AG, 83.0444, 1983
Unpublished Report 50, ICI Study Number CTL Z0813, 20.10.75, 1975
Unpublished Report 51, ICI Study Number CTL Z0812, 20.10.75, 1975
Unpublished Report 52, ICI Report CTL/T/691, 10.03.69, 1969
Unpublished Report 53, ICI Report CTL/T/1431, 13.05.80, 1980
Unpublished Report 54, ICI Report CTL/T/1737, 28.01.82, 1982
Unpublished Report 55, ICI Study Number CTL Z0548, 03.12.74, 1974
Unpublished Report 56, ICI Report CTL/T/521, 25.05.66, 1966
Unpublished Report 57, ICI Report CTL/T/524, 02.06.66, 1966
Unpublished Report 58, ICI Report CTL/T/618, 11.09.67, 1967
Unpublished Report 59, ICI Report CTL/T/635, 09.01.68, 1968
Unpublished Report 60, ICI Report CTL/T/938, 01.08.73, 1973
Unpublished Report 61, Report ICI CTL/T/464, 22.06.65, 1965
Unpublished Report 62, ICI Report CLT/T/831, 11.08.71, 1971
Unpublished Report 64, ICI Report CLT/T/962, 01.12.74, 1974
Unpublished Report 65, Hoechst AG, Unpublished study, 84.0458, 1984
Unpublished Report 66, Hoechst AG, Unpublished study, 83.0573, 1983
Unpublished Report 67, Huels AG, Report No. 1335 (HOE 91.0180), 1988
133
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
Unpublished Report 68, ICI Report CLT/T/524, 18.09,78, 1978
Unpublished Report 72, ICI Report CTL/C/1235, 06.12.83, 1983
Unpublished Report 73, ICI Report CLT/C/1255, 28.03.84, 1984
Unpublished Report 75, ICI Report CTL/C/1111, 11.12.81, 1981
Unpublished Report 85, Hoechst AG, Unpublished study, 86.1078, 1986
Unpublished Report 86, Hoechst AG, Unpublished study, 88.0099, 1988
Unpublished Report 89, ICI Report CLT/P/617
Unpublished Report 90, ICI Report CTL/L/2647, 26.05.89, 1989
Unpublished Report 92, Hoechst AG, Unpublished study, 87.1719, 1987
Unpublished Report 94, ICI Study Number, CTL Z1264, (SR761Z6), 23.11.77, 1977
Unpublished Report 95, ICI Report CTL/P/621, 13.02.81, 1981
Unpublished Report 96, ICI Report CTL/C/1123, 14.04.82, 1982
Unpublished Report 97, IRDC Report Nr, 438-013, (HOE 83.0575), 1982
Unpublished Report 99, IRDC Report Nr, 438-0011, (HOE 84.0033), 1983
Unpublished Report 100, IRDC Report Nr, 438-031, 1983
Unpublished Report 101, ICI Report CTL/C/1284, 1.11.84, 1984
Unpublished Report 102, ICI Report CTL/C/1171, 10.09.82, 1982
Unpublished Report 103, ICI Report CTL/C/1140, 20.04.82, 1982
Unpublished Report 104, ICI Report CTL/C/1142, 19.04.82, 1982
Unpublished Report 105, ICI Report CTL/C/118, 17.03,82, 1982
Unpublished Report 108, ICI Report CTL/L/912, 09.07.85, 1985
Unpublished Report 113, REF1, ICI Report CTL/C/577, 12.6.75, 1975
Wania F. and Mackay D. (1996). Tracking the distribution of persistent organic pollutants. Environ. Sci.
Technol., 30, 390A-396A.
Willis B., Crookes M. J., Diment J. and Dobson S. D. (1994). Environmental hazard assessment: chlorinated
paraffins. TSD/19. Building Research Establishment, Garston, Watford, United Kingdom.
Wyatt I., Coutts C. T. and Elcombe C. R. (1993). The effect of chlorinated paraffins on hepatic enzymes and
thyroid hormones. Toxicology, 77, 81-90.
Yang J. J., Roy T. A. et al. (1987). Percutaneous and oral absorption of chlorinated paraffins in the rat. Toxicol.
Ind. Health, 3 (3), 405-412.
134
GLOSSARY
Standard term /
Abbreviation
Explanation/Remarks and Alternative Abbreviation(s)
Ann.
Annex
AF
assessment factor
BCF
bioconcentration factor
bw
body weight / Bw, b.w.
°C
degrees Celsius (centigrade)
CAS
Chemical Abstract System
CEC
Commission of the European Communities
CEN
European Committee for Normalisation
CEPE
European Committee for Paints and Inks
d
day(s)
d.wt
dry weight / dw
DG
Directorate General
DT50
period required for 50 percent dissipation
(define method of estimation)
DT50lab
period required for 50 percent dissipation
under laboratory conditions
(define method of estimation)
DT90
period required for 90 percent dissipation
(define method of estimation)
DT90field
period required for 90 percent dissipation under field conditions
(define method of estimation)
EC
European Communities
EC
European Commission
EC50
median effective concentration
EEC
European Economic Community
EINECS
European Inventory of Existing Commercial Chemical Substances
EU
European Union
EUSES
European Union System for the Evaluation of Substances
foc
organic carbon factor (compartment depending)
g
gram(s)
135
EU RISK ASSESSMENT – ALKANES, C10-13, CHLORO-
FINAL REPORT, OCTOBER 1999
gw
gram weight
GLP
good laboratory practice
h
hour(s)
ha
Hectares / h
HPLC
high pressure liquid chromatography
IARC
International Agency for Research on Cancer
C50
median immobilisation concentration or median inhibitory
concentration 1 / explained by a footnote if necessary
ISO
International Standards Organisation
IUPAC
International Union for Pure Applied Chemistry
kg
kilogram(s)
kPa
kilo Pascals
Koc
organic carbon adsorption coefficient
Kow
octanol-water partition coefficient
Kp
solid-water partitioning coefficient of suspended matter
l
litre(s)
log
logarithm to the basis 10
L(E)C50
lethal concentration, median
m
Meter
µg
microgram(s)
mg
milligram(s)
MOS
margins of safety
NOAEL
no observed adverse effect level
NOEC
no observed effect concentration
NOEL
no observed effect level
OECD
Organisation for Economic Co-operation and Development
OJ
Official Journal
pH
potential hydrogen -logarithm (to the base 10) of he hydrogen ion
concentration {H+}
pKa
-logarithm (to the base 10) of the acid dissociation constant
pKb
-logarithm (to the base 10) of the base dissociation constant
Pa
Pascal unit(s)
PEC
predicted environmental concentration
136
GLOSSARY
PNEC(s)
predicted no effect concentration(s)
PNECwater
predicted no effect concentration in water
(Q)SAR
quantitative structure activity relation
STP
sewage treatment plant
TGD
Technical Guidance Document4
UV
ultraviolet region of spectrum
UVCB
Unknown or Variable composition, Complex reaction
products or Biological material
v/v
volume per volume ratio
w/w
weight per weight ratio
4
Commission of the European Communities, 1996. Technical Guidance Documents in Support of the
Commission Directive 93/67/EEC on risk assessment for new substances and the Commission Regulation (EC)
No 1488/94 on risk assessment for existing substances. Commission of the European Communities, Brussels,
Belgium. ISBN 92-827-801[1234]
137
Appendix A
Quality of aquatic toxicity tests
All of the studies for which experimental detail are available are adequate for risk assessment.
Where possible, the method used has been related to the nearest equivalent OECD test
method. However, several of the studies appear to have been generated for submission to the
US EPA using methods for which there is no OECD equivalent.
It should be noted that in many studies, every effort has been made to try to test the
chlorinated paraffin meaningfully at the highest concentration possible. This has involved the
use of co-solvents (usually acetone or emulsifiers). EG and G Bionomics found that stable
solutions of chlorinated paraffins of 300-500 µg/l could be maintained in test solutions
containing 0.5 ml/l of acetone. This is confirmed in the many tests carried out by ICI, where
difficulties in maintaining concentrations (i.e. a suspension was formed) above c.a. 500 µg/l is
frequently reported. This has not significantly affected the overall conclusions from these
tests, since effects were often seen at much lower concentrations, where a true solution could
be maintained.
The majority of these tests use acetone as cosolvent (generally at concentrations of 100-500 µl/l).
In all cases acetone controls were run, but in some experiments differences were seen in some
endpoints between acetone controls and controls, possibly due to growth of microorganisms in
the acetone controls, as has been seen in some studies. The OECD test guidelines generally
recommend that the co-solvent should be less than 100 µg/l if possible. This has made it
difficult in some tests to separate out effects caused by the chlorinated paraffins from that
caused by acetone e.g. increased growth of some invertebrates may be attributed to the
presence of acetone.
Despite the inherent difficulties in testing these substances of low water solubility, it is clear
that a number of effects are occurring at low chlorinated paraffin concentrations and that the
tests available are of as good a quality as would be expected for a difficult substance of this
type.
With regard to the acute tests, especially the fish ones, no effects were seen at concentrations
way in excess of the compounds solubility. This does not necessarily invalidate the tests, it
just makes it difficult to assess the concentration the organisms were actually exposed to. The
results from these test are useful, in that they show that effects on fish are not likely to occur
from short-term exposure. It would not be possible to carry out a short-term fish test (e.g. 96
hour) that showed effects at concentrations less than the water solubility since the substance is
not toxic to fish at those concentrations over a short time period. These short-term results are
consistent with the onset of effects seen in the long-term studies.
138
Fish tests
Lindén E, Bengtsson B-E, Svanberg O and Sundström G. The acute toxicity of 78
chemicals and pesticide formulations against two brackish water organisms, the Bleak
(Alburnus alburnus) and the Harpacticoid (Nitocra spinipes). Chemosphere, 1979, 11/12,
843-851.
Test method
These tests were carried out by the Brackish Water Toxicology Laboratory (Swedish
Environment Protection Board) using a method that has been developed and tested by
the laboratory (may have taken part in an ISO ring test - not clear). No information on
GLP.
Procedure
10 Fish exposed at each concentration under static conditions for 96 hours. No aeration
was carried out during test. No analytical monitoring for test substance. Substance
added as solution in acetone. Concentration of acetone never exceeded 0.5 ml/l.
Comments
The LC50 values were all greater than the water solubility of the substance. The test
appears to be reliable.
Hoechst AG (1976 and 1977). Unpublished tests with Golden Orfe.
Test method
No details were given. The results were presented as a summary only. No information
on GLP.
Procedure
No details given. The chlorinated paraffins appear to have been added directly to the
test solution rather than via a stock solution (presumably to test as high a concentration
as possible). Possibly a 48-hour test.
Comments
Due to few experimental details the results should be considered to be less reliable.
However, the LC50s reported were all greater than the water solubility and so are
consistent with all the other short term fish tests.
139
Howard P H, Santodonato J and Saxena J. Investigation of selected potential
environmental contaminants: Chlorinated paraffins. United States Environmental
Protection Agency Report EPA 560/2-75-007
Test method
No details given. The results are quoted from a personal communication from W W
Johnson of the Fish-Pesticide Research Lab. Columbia, Missouri . This same data was
reported in “Handbook of Acute Toxicity of Chemicals to Fish and Aquatic
Invertebrates. W W Johnson and M T Finley. United States Department of the Interior
Fish and Wildlife Service, Resource Publication 137, Washington D.C., 1980”. Most
probably an EPA method was used. No information on GLP.
Procedure
No details given. Both short (static) and long-term (flow-through) tests reported.
Comments
Due to few experimental details the results should be considered less reliable.
However, the short term LC50s reported were all greater than the water solubility and
so are consistent with all the other short term fish tests.
Madeley J R and Maddock B G (1983). Toxicity of a chlorinated paraffin to rainbow
trout over 60 days. ICI Report BL/B/2203.
Test method
This was initially a toxicity/bioaccumulation screening study to see if any effects
occurred. It was later extended (further concentrations tested) in order to obtain a LC50.
The study was carried out to GLP.
Procedure
Groups of 30 fish (no replicates) exposed initially to three concentrations of
chlorinated paraffin (measured as 0.1, 0.32 and 1.07 mg/l) plus control plus acetone
control (acetone concentration 500 µl/l) for 60 days. Later, two additional
concentrations tested (0.033 mg/l and 3.05 mg/l). A flow-through system was used. As
well as mortality, effects on the fish behaviour were assessed.
Comments
The highest concentration tested was thought to be present as a suspension. It was
found that fish died in small numbers over an extended time period in most test
solutions. No concentration caused 100% mortality but there were only three survivors
after 60 days at the highest exposure concentration. The fish developed a series of
visible sub-lethal effects before death occurred. Death may have occurred due to
starvation as a result of reduced feeding activity caused by exposure to the chlorinated
140
paraffin. Smaller fish were generally found to die earlier than larger fish, and this may
explain to some extent the apparently erratic dose-response seen in the test, i.e.
mortality was found to be higher at 0.033 mg/l than 0.1 mg/l but more small fish were
present in the lower concentration group. The actual LC50 values are therefore likely to
be relatively imprecise, however the test is useful in that it shows that important sublethal effects do occur at relatively low concentrations (starting at around 0.033 mg/l).
The test, overall, is probably less reliable (in terms of determining LC50) but does
provide useful information.
Hill R W and Maddock B G (1983). Effect of a chlorinated paraffin on embryos and
larvae of the sheepshead minnow (Cyprinodon variegatus) - study 1. ICI Report
BL/B/2326.
Test method
28-day embryo larval test with sheepshead minnow. No protocol number given. but
may be an EPA method. Carried out to GLP.
Procedure
40 Embryos (<36 hour) exposed to 5 concentrations (2.4, 4.1, 6.4, 22.1 and 54.8 µg/l;
measured values) plus control plus acetone control (acetone concentrations 500 µl/l)
using a flow-through system. Replicate tanks were used. Total exposure was 28 days.
Comments
No effects on hatchability and survival of larvae were seen. Length and larval weight
were determined at 28 days. There were significant differences in the lengths of the
control animals when compared with the acetone control animals. This was not seen in
the weights. The animals exposed to chlorinated paraffins were all significantly longer
and heavier than the acetone control. Thus no biologically important effects were seen
in this test. The test is probably reliable (small problem with control versus solvent
control animals).
Hill R W and Maddock B G (1983). Effect of a chlorinated paraffin on embryos and
larvae of the sheepshead minnow (Cyprinodon variegatus) - study 2. ICI Report
BL/B/2327.
Test method
32-day embryo larval test with sheepshead minnow. No protocol number given. but
may be an EPA method. Carried out to GLP.
Procedure
The procedure was the same as study 1 above except that higher concentrations were
tested (measured as 36.2, 71.0, 161.8, 279,7 and 620.5 µg/l) and the test was carried
out for 32 days (i.e. the larvae, once hatched, were exposed for a full 28 days).
141
Comments
No effects were seen on hatchability or survival of larvae. Again, the length and weight
of control larvae were significantly different (larger) than the acetone control animals.
The chlorinated paraffin treated larvae were significantly larger than the acetone
control at 36.2 and 71.0 µg/l but were significantly reduced at 620.5 µg/l. Thus the
NOEC is 279.7 µg/l. The study is probably reliable, but again problems were seen in
the acetone controls.
Invertebrate tests
Hüls AG (1984)
Test method
Used method DIN 38412 Teil 11. This is given as one of the standard procedures in
the references to OECD 202 and so is probably equivalent. No information on GLP.
Test procedure
Static 24 hour tests using either acetone cosolvent (no concentration given) or an
emulsifier. Generally 5-8 test concentrations used. A reference substance K2Cr2O7 was
used in each test (LC50 was always between 0.9 and 1.9 mg/l). Very few other details
were given. No information on whether measured or nominal concentrations were
used.
Comments
It is unclear if controls and solvent controls were used as well as the reference
substance. In some tests with acetone as cosolvent there appears to have been problems
maintaining the test concentration at typically 1 mg/l and above. The experiments with
emulsifier did not seem to suffer from this problem. The LC50 values appear to have
been calculated by linear regression, assuming a linear dose-response curve. Given the
problems in some tests in maintaining the high test concentrations, the LOEC/NOEC
can be considered reliable and the actual value of the LC50 can be less reliable.
Hüls AG (1986)
Test method
Reported in IUCLID as being to Directive 84/449/EEC, C.2. No information on GLP.
Test procedure
21-day Study. No other data
142
Comments
Results only have been provided. At present the results should be considered as less
reliable based on a lack of detail.
EG and G Bionomics. The acute and chronic toxicity of a chlorinated paraffin to midges
(Chironomus tentans). EG and G Bionomics, Aquatic Toxicology Laboratory, Wareham,
Massachusetts, June 1983.
Test method
EG and G Bionomics test protocols were use. No information on GLP. The long-term
test exposed eggs through to larvae through to adults.
Procedure
A 48-hour static test and a 49 day flow-through test were used. In the acute test, twenty
11-day old larvae were exposed to 5 chlorinated paraffin concentrations (4 replicates at
each concentration (5 larvae per replicate) plus control plus solvent control). Stock
chlorinated paraffin solution made up in acetone and maximum concentration of
acetone of 0.5 ml/l was used in solvent control. No aeration was carried out during the
test. Results based on measured concentrations.
The long-term test was carried out using static and a flow-through system at a
replacement rate of 8 aquarium volumes/day. The flow-through test vessels contained
sediment to a depth of 0.6 cm. Five exposure concentrations were used, along with
control and solvent control (maximum acetone concentration of 0.041 ml/l). Each
exposure concentration was conducted in quadruplicate. The midges used for the test
were received as eggs. The eggs (approximately 447-720) were placed in 40 ml of each
chlorinated paraffin solution and the % hatch of these eggs was determined after 3
days. 100 larvae of each treatment were then transferred to the flow-through vessel of
the same treatment (25 per replicate), which was operated under static conditions for
the first 48 hours exposure to allow the midges to settle and construct dwelling tubes,
and then the experiment was run under flow-through conditions. The solutions were
inspected daily for emergence of adults. All adults from each treatment were
transferred to beakers containing 50 ml of the chlorinated paraffin solution (static
conditions). The first 5 egg masses then obtained from each treatment were counted,
incubated in 50 ml of test solution and the % hatch was determined. Again measured
concentrations were obtained.
Comments
The short term test appears to be reliable.
In the long term test, there were problems in maintaining the highest concentration of
chlorinated paraffin tested (chlorinated paraffin was seen floating on top of the test
solution). This may have resulted in some contamination of the lower concentrations.
This problem was rectified by day 19 of the test and the results are based on measured
concentrations over the whole test period. There also appear to have been some
143
problems with dissolved oxygen at the higher chlorinated paraffin concentrations. This
was thought to have been due to the presence of increasing amounts of acetone. The
highest concentration had a dissolved oxygen concentration of 4.8 mg/l (54% of
saturation) which was claimed to be in excess of the oxygen requirements of the
organism. The test is probably reliable.
Thompson R S and Madeley J R (1983). The acute and chronic toxicity of a chlorinated
paraffin to Daphnia magna. ICI Report BL/B/235.
Test method
Not test method was identified in the report. The study incorporates a static 48-hour
acute test (similar to OECD 202), a 14-day semi-static test (used as a rangefinding
study for the 21-day test) and a 21-day flow-through test (similar to OECD 202). The
tests were carried out to GLP.
Procedure
The tests appear to follow closely the OECD protocols. The concentrations of
chlorinated paraffins were verified by measurement. Stock solutions were made up in
acetone and controls and solvent controls were carried out.
Comments
The lowest NOEC from the 21-day study was used in the risk assessment to define the
PNEC.
The acute study is reliable.
Several end-points were monitored during the 21-day study and there may have been
an effect on one of these endpoints (total offspring/parent) in one control (effects not
seen in a duplicate control). Significant effects were seen in the test solutions on
other endpoints (e.g. no of dead offspring) from concentrations of 8.9 µg/l and above
(no effects seen in any of the controls) and so a clear LOEC of 8.9 µg/l and NOEC of
5 µg/l were determined. This test appears to be reliable.
Madeley J R and Thompson R S (1983). Toxicity of a chlorinated paraffin to mussels
(Mytilus edulis) over 60 days. ICI Report BL/B/2291.
Test method
This was initially a toxicity/bioaccumulation screening study to see if any effects
occurred. It was later extended (further concentrations tested) in order to obtain a LC50.
The study was carried out to GLP.
144
Procedure
Groups of 50 mussels initially exposed to measured concentrations of 0.13 and
0.93 mg/l plus control plus acetone control (acetone concentration 500 µl/l) using a
flow-through system. No replicates were carried out. At a later date, three other
concentrations (0.013, 0.044 and 0.071 mg/l; measured) were also tested. A qualitative
determination of sub-lethal effects on filter feeding activity was also undertaken.
Comments
The highest concentration tested was thought to be a suspension rather than a true
solution. Significant mortality was seen at 0.071, 0.13 and 0.93 mg/l and these were
used to determine a LC50. Filtering activity was seen to be reduced at the lower two
exposure groups but this effect was minimal at 0.013 mg/l. Like the 60-day trout
screening study above, this study is probably less reliable but does provide useful
information.
Thompson R S and Madeley J R (1983). The acute and chronic toxicity of a chlorinated
paraffin to the mysid shrimp (Mysidopsis bahia). ICI Report BL/B/2373.
Test method
No protocol numbers were given but the tests seem to be relatively standard 96-hour
and 28-day flow through tests. Test carried out to GLP.
Procedure
In the acute test, 20 mysid (<24 hour old in the first series; <72 hour old in the second
series) were exposed to chlorinated paraffins in two series; measured concentrations of
14.9, 24.0, 43.9 and 84.4 µg/l and 5.0, 7.1, 13.7 and 23.8 µg/l. In addition controls and
solvent controls (150 µl/l acetone) were carried out.
In the 28-day tests, duplicate vessels, each containing 20 mysids/concentration were
exposed to measured chlorinated paraffin concentrations of 0.6, 1.2, 2.4, 3.8 and
7.3 µg/l. Control and solvent control (125 µl/l acetone) were also carried out.
Comments
The acute LC50 obtained from the two different series were similar (15.5 and 14.1 µg/l).
The control throughout series 1 and for the first two days of series 2 were thought to be
contaminated with a small amount of chlorinated paraffin. However, no effects were
seen in these control and so the tests are probably reliable.
In the chronic tests, rather high levels of parent mortality were seen in controls (20%)
and solvent control (27%). No significant differences were seen between mortalities at
any test concentration and solvent control but two mortality at 1.2 and 2.4 µg/l were
significantly different from control. It was concluded that these deaths were not
treatment related but may be due to the acetone co-solvent which appeared to stimulate
microbial growth. No significant effects on number of offspring/adult (again there may
145
have been a problem with the acetone control) or body length was seen. This test,
given the problems with the control, is probably less reliable.
Algal tests
Thompson R S and Madeley J R (1983). Toxicity of a chlorinated paraffin to the green
alga Selenastrum capricornutum. ICI Report BL/B/2321.
Test method.
No protocol number given. Approximates to OECD 201 but duration was up to 14
days, but could be terminated after 10 days. May have been an EPA method. Test
carried out to GLP.
Procedure
Six replicate cultures for control and triplicates of solvent control (100 µl/l acetone)
and 5 test concentrations (measured concentrations of 0.11, 0.22, 0.39, 0.57, 0.90 and
1.2 mg/l), 2 control blanks and one blank for solvent control and each concentration
were run. Initial algal cell density was 104 cells/ml. Cell density was monitored by
particle counting.
Comments
There was evidence that some chlorinated paraffin was lost from solution by
adsorption/absorption by algae. There were some differences between the cell densities
in controls and solvent controls on day 7 and 10. Cell densities in test solutions were
significantly lower than solvent control on day 3 onwards (1.2 mg/l) and from day 4
onwards (0.57 and 0.90 mg/l). Growth rates were also significantly lower than solvent
control on days 3 to 4 (0.57 mg/l) and days 2 to 3 (1.2 mg/l). NOEC was determined as
0.39 mg/l. EC50 s were also determined, but since the maximum reduction in cell
biomass seen at the end of the test was 45%, they are all greater than the highest
concentration tested. The results are probably reliable.
Thompson R S and Madeley J R (1983). Toxicity of a chlorinated paraffin to the marine
alga Skeletonema costatum. ICI Report BL/B/2328.
Test method
No protocol number given. Approximates to OECD 201 but duration was up to 14
days, but could be terminated after 10 days. Test carried out to GLP.
Procedure
Six replicate cultures for control and triplicates of solvent control (100 µl/l acetone)
and 5 test concentrations (initial measured concentrations of 4.5, 6.7, 12.1, 19.6, 43.1
and 69.8 µg/l), 2 control blanks and one blank for solvent control and each
146
concentration were run. Initial algal cell density was 0.8 · 104 cells/ml. Cell density
was monitored by particle counting and absorbance measurement.
Comments
There was evidence that some chlorinated paraffin was lost from solution by
adsorption/absorption by algae. Since effects were seen only over the first few days,
the initial measured concentrations were used for calculation. The test substance
affected growth during the early stages of the test but by day 10, all cultures had
similar cell densities to controls. Again, there was some difference between controls
and solvent controls (only significant at the p=0.2 level). After 4 days, the cell
densities in the 43.1 and 69.8 µg/l groups were significantly (p=0.01) lower than
solvent control. Growth rates were significantly lower than solvent controls in first
two days at 19.6, 43.1 and 69.8 µg/l, but recovered after day 3. Thus the NOEC was
12.1 µg/l. The results were consistent with the test substance having increased the
duration of the initial lag phase prior to exponential growth, but the recovery of growth
rate might have been due to loss of test substance from solution with time. Since the
effects were seen over the first 2-3 days, this is probably a reliable 72-96 hour study.
As a 10 day study, it is less reliable as it is not clear if the lack of effects seen at the
end of the test is real or due to loss of test substance.
147
Appendix B
EUSES Modelling
In the main report, several local emission scenarios were developed for production of short
chain length chlorinated paraffins. In order to incorporate all of these in the model, Use
Pattern 1 refers only to the production process, with the two different release estimates
appearing under the headings production and formulation. In the EUSES printout the uses are
identified as shown below.
EUSES printout
Scenario from main report
Use Pattern 1
[Production]
[Formulation]
Production of short chain length chlorinated paraffins
Release estimated by TGD defaults
Release estimated using other data
Use Pattern 2
[Formulation]
[Processing]
Formulation and use of metal cutting/working fluids
Release during formulation of fluids
Release during use of fluids (using lower release
estimate)
Use Pattern 3
[Processing]
Use in rubber as a flame retardant
Release during processing step
Use Pattern 4
[Formulation]
Formulation and use in leather finishing
Release during production/formulation of
sulphated products (Scenario A)
Release during use in leather finishing (Scenario B)
[Processing]
The PEClocal for metal cutting fluids using the higher release estimates and formulation of
leather finishing products for Scenario B have been estimated from the PECs for the other
scenarios, using the appropriate scaling.
In the regional and continental model, the sum of the highest release figures estimated for each
use has been used as input as a worst case approach.
148
Appendix C
Results of Koc determination for short chain length
chlorinated paraffins
As a results of the draft risk assessment for the short chain length chlorinated paraffins
(SCCPs), industry volunteered to carry out a Koc determination. The reason for this was that
they felt that the method used in the Technical Guidance document for determination of Koc
might substantially underestimate the adsorption of the substance onto soil and sediment. If
this was the case, then the risks to the soil and sediment compartment could be lower than
determined in the risk assessment.
Koc value currently used in the risk assessment
The Koc value currently used in the risk assessment is 91,200 l/kg. This is estimated from the
equation below (from the Technical Guidance Document), using a log Kow value of 6.
log Koc = 0.81 · log Kow + 0.10
log Koc = 4.96
- equation 1
Koc = 91,200 l/kg
Short chain length chlorinated paraffins are mixtures of compounds with different carbon
chain lengths and degrees of chlorination. The log Kow (and hence Koc) value is likely to vary
between the components, and would be expected to increase with increasing chlorination and
carbon chain length. Measured values for the log Kow indicate that this is indeed found, and
values between 4.4 and 8.7 have been measured for various formulations. A value of log Kow
of 6 was chosen as it is around the mid point of the range measured, and may represent the
log Kow of some of the more common commercial products used (e.g. those containing around
50-55% chlorine contents).
In the risk assessment, the Koc value is important for determining the concentrations in
sediment and for determining the PNECs for both soil and sediment.
Measured Koc value (Thompson et al. (1998)
The Koc values of two straight chain chlorinated alkanes were determined:
and
55% wt Cl n-decane (approx. formula C10H17.2Cl4.8)
55% wt Cl n-tridecane (approx. formula C13H21.8Cl6.2; 14C-labelled)
The method used was based on OECD 106 but was modified to use a larger water: solid ratio.
The experiment was carried out in 3 parts: a study to look at the kinetics of the process, a
study where a single application of the chlorinated paraffin was made to the aqueous phase
and finally, one where multiple applications to the aqueous phase were made (this was to
allow a higher amount of the chlorinated paraffin to be added to the system without exceeding
the water solubility of the substance). The concentrations of the substance in the solid and
water phase were determined by both 14C measurements and parent compound analysis where
possible. However, only in the case of experiments with multiple application of the test
substance was the concentration in the water phase above the detection limit of the parent
compound analysis. Here, the results obtained by 14C and parent compound measurements
were in good agreement.
149
In the kinetic study, two soils [a loamy sand (0.85% organic carbon) and a loam (14.5% organic
carbon)], along with a sediment [mean particle diameter 51 µm (5.8% organic carbon)] were
used. In the two other studies to determine the Koc, the same sediment was used, but the soil
used was a clay loam (3.4% organic carbon).
The kinetic studies, using 0.4 g dry weight of soil or sediment in 20 ml of aqueous phase
(sediment/soil to water ratio 1:50), indicated that equilibrium was reached within 16 hours.
In the single spiking studies, 0.5, 1.0 and 2.0 g dry weight of sediment were used in a total
aqueous volume of 250 ml (sediment to water ratio 1:500; 1:250 and 1:125). The chlorinated
decane or tridecane (39 µg) was added as a solution in acetone to give an initial chlorinated
paraffin concentration of 0.15 mg/l (acetone concentration in test solution 0.1 ml/l).The
sediment/water mixtures were then mixed for 17 hours and then the phases were analysed for
chlorinated paraffin. In this experiment, although both parent compound and 14C-measurements
were used to analyse the water and sediment phases, only the 14C-measurements were sensitive
enough to determine the concentration present in the aqueous phase. The mean log Koc value
found was 5.42 for the chlorinated tridecane. No significant difference was seen in the Koc
determined in experiments using the three different sediment concentrations.
Multiple spiking studies were carried out using 0.5 g dry weight of sediment or soil in 250 ml
of test water (sediment/soil to water ratio 1:500). Initially 30 µg of the chlorinated paraffin (as
an acetone solution) was added (initial aqueous chlorinated paraffin concentration = 0.12 mg/l).
This was shaken for 2 hours and then the spiking and mixing procedure was repeated a further
4 times such that the total addition of chlorinated paraffin was 150 µg (final acetone
concentration was 0.05 ml/l). This was then mixed for a further 16 hours. In this case, all
parent compound analyses of the aqueous phase were above the limit of detection. For the
chlorinated tridecane, good agreement between the concentrations measured in the sediment
and water was obtained by both the direct (parent compound) and 14C-measurements. The log
Koc values obtained were 5.26 for the sediment and 5.38 for the soil. The geometric mean of
all determinations was 5.32. For the chlorinated decane, only parent compound analysis was
possible. Here the log Koc values obtained were 5.21 for sediment and 5.36 for soil. The
geometric mean was 5.31.
The paper concluded that overall, a log Koc of 5.3 (Koc = 199,526 l/kg) was appropriate for a
short chain length chlorinated paraffin with around 55% Cl by weight.
Significance of measured Koc in terms of the risk assessment
The measured Koc value of 199,526 l/kg is higher than the estimated value currently used in
the risk assessment of 91,200 l/kg. However, the measured value does indicate that the
estimation method used in the Technical Guidance Document is appropriate for this type of
substance, since a log Kow value of 6.42 would give a Koc value similar to the measured value
(this log Kow value was thought, based on the available measurements, to be a reasonable
value for the type of substance used in the Koc determination (Thompson et al., 1998)). Thus,
the measured data indicate that a Koc value of 91,200 l/kg is appropriate for a SCCP with log
Kow of 6.
Therefore, the key question for the risk assessment is which value of log Kow to use to
represent the products currently used. As mentioned above, the value of 6 was chosen as this
150
appeared to fit in with the measured data available for the most common short chain length
chlorinated paraffin products.
In order to consider this further, the PECs and PNECs for several scenarios for the sediment
and the terrestrial compartment used in the assessment have been recalculated (using EUSES)
using the measured Koc of 199,526 l/kg. The results of this are summarised in the Table A.
As can be seen from Table A, the PEC/PNEC ratios for the terrestrial compartment have
reduced by around a factor of 2 in the local scenarios. A reduction in the PEC/PNEC ratios
was also seen for the sediment compartment. However, the PEC/PNEC ratios would still lead
to the same conclusions as included in the original risk assessment.
References
Thompson R. S., Gillings E. and Cumming R. I. (1998). Short-chain chlorinated paraffin
(55% chlorinated): Determination of organic carbon partition coefficient. Zeneca Confidential
Report BL6426/B.
151
Table A PECs, PNECs and PEC/PNECs for sediment and the terrestrial compartment
Scenario
PEC
PNEC
Koc =
Koc =
91,200 l/kg
199,526 l/kg
Koc =
91,200 l/kg
Koc =
199,526 l/kg
<0.71 and
<0.84 mg/kg
8.5 mg/kg
<1.48
<1.74
16.6
0.88 mg/kg
1.92 mg/kga
0.88 mg/kg
2.8 mg/kg
5.23
<0.67 mg/kg
PEC/PNECc
Koc =
Koc =
91,200 l/kg
199,526 l/kg
Sediment
Production (2 sites)
1.92 mg/kga
<8.1
<9.5
97
<7.7
<9.1
86
0.88 mg/kg
1.92 mg/kga
32
27
<1.42
0.88 mg/kg
1.92 mg/kga
<7.6
<7.4
negligible
negligible
0.88 mg/kg
1.92 mg/kga
negligible
negligible
153 mg/kg
292 mg/kg
0.88 mg/kg
1.92 mg/kga
1,740
1,521
Leather use
153 mg/kg
292 mg/kg
0.88 mg/kg
1.92 mg/kga
1,740
1,521
Textile applications
negligible
negligible
0.88 mg/kg
1.92 mg/kga
negligible
negligible
1.16 mg/kg
2.43 mg/kg
0.88 mg/kg
1.92 mg/kga
13
13
Metal working
(formulation)
Metal working
(use)
Rubber
formulations
Paints and sealing
compounds
Leather formulation
Regional
Terrestrial compartment (agricultural soil)
Production (2 sites)
negligible
negligible
0.80 mg/kg
1.76 mg/kgb
negligible
negligible
Metal working
(formulation)
Metal working
(use)
Rubber formulations
20.1 mg/kg
21.2
0.80 mg/kg
1.76 mg/kgb
251
120
5.1 (or 23.2)
mg/kg
<0.073 mg/kg
5.4
0.80 mg/kg
1.76 mg/kgb
64 or 290
31
0.086
0.80 mg/kg
1.76 mg/kgb
<0.92
<0.49
Paints and sealing
compounds
Leather formulation
negligible
negligible
0.80 mg/kg
1.76 mg/kgb
negligible
negligible
385 mg/kg
406 mg/kg
0.80 mg/kg
1.76 mg/kgb
4,813
2,307
Leather use
385 mg/kg
406 mg/kg
0.80 mg/kg
1.76 mg/kgb
4,813
2,307
Textile applications
negligible
negligible
0.80 mg/kg
1.76 mg/kgb
negligible
negligible
10.8 mg/kg
20.7 mg/kg
0.80 mg/kg
1.76 mg/kgb
135
117
Regional
aPNECsediment
= Ksusp-water · PNECwater · 1000 / RHOsed
where
Ksusp-water = 4,988 m3/m3
RHOsed
= 1,300 kg/m3
(strictly speaking RHOsusp should be used instead of RHOsed, but this is not yet implemented in EUSES. However, since
RHOsusp is 1,150 kg/m3, if this was used the PNEC would be higher by a factor of 1.13. The resulting PEC/PNECs would be lower
by a similar factor)
bPNECsoil
= Ksoil-water · PNECwater ·1000 / RHOsoil
where
Ksoil-water = 5,987 m3/m3
RHOsoil
= 1,700 kg/m3
PNECwater = 0.5 µ g/l
cPEC/PNEC
152
increased by factor of 10 to take into account the possibility of direct ingestion.
Appendix D
Effect of proposed risk reduction measures on the
conclusions of the environmental risk assessment
Introduction
Risk reduction measures have been proposed for short-chain chlorinated paraffins for the
formulation and use of metal working fluids and formulation and use of leather finishing
products, based on the risk assessment for the aquatic compartment. The proposed risk
reduction measures take the form of marketing and use restrictions of short-chain chlorinated
paraffins in these areas.
In the environmental risk assessment report, a conclusion (i) (i.e. further information and/or
testing required) was obtained for the soil and sediment compartment for production of
chlorinated paraffins (sediment only), formulation and use of metal working fluids and leather
finishing products, use in rubber formulations (sediment only) and also at a regional level.
This appendix addresses these endpoints further in light of the proposed risk reduction
measures and also new information received since the conclusions in the main report were
agreed.
Effect of risk reduction measures proposed for short-chain chlorinated paraffins on
regional concentrations
Marketing and use restrictions have been proposed for short-chain chlorinated paraffins for
the formulation and use of metal working fluids and formulation and use of leather finishing
products. Such restrictions will lead to a reduction in emissions to waste water from these
applications to essentially zero. This in turn will lead to negligible levels in sediment and soil
for these uses (the main route to soil was predicted to be from application of sewage sludge
from waste water treatment plants).
For the other two areas where a conclusion (i) exists (short-chain chlorinated paraffin
production sites and sites manufacturing rubber containing short-chain chlorinated paraffins),
the risk reduction measures proposed for leather finishing and metal working applications
will have an indirect effect on the PECs by reducing the background (regional) concentration.
Table B outlines the releases estimated from the various applications in the risk assessment
report, along with the possible future releases taking into account the proposed marketing and
use restrictions.
In addition to the proposed marketing and use restrictions, further information on regional
releases has become available since the original assessment was agreed. Firstly, the Scientific
Committee for Toxicity, Ecotoxicity and the Environment (CSTEE) provided unpublished
information on the release of short-chain chlorinated paraffins from painted surfaces. They
indicated that the total EU release from this source was around 9 tonnes/year, but could be
higher due to the presence of surfaces painted in previous years. Assuming a similar
contribution from surfaces painted over the previous 10 years, the worst case release
estimates from this source would be around 90 tonnes/year in the EU. Thus, the regional
release would be 10% of this figure (i.e. 9 tonnes/year) and the continental release would be
81 tonnes/year. These releases are shown in Table 1 and would be to the air compartment.
153
Secondly, information has been obtained on the possible release from polymeric products
(e.g. rubber products) over their working lifetime (UCD, 1998). A release factor of 0.05% of
the annual consumption has been recommended for general polymeric products based on data
derived for a plasticiser such as diethylhexyl phthalate (DEHP). This figure is based on the
estimated amounts volatilised from the major applications, related to the annual consumption
of the substance. Thus, although the actual amount of substance present in articles at any one
time will be higher than the annual consumption (the lifetime of many products is >1 year),
this is accounted for in the way the factor has been derived.
The vapour pressure of DEHP is around 2.2 · 10-5 Pa at 20oC. The short-chain chlorinated
paraffins used in rubber applications typically have high chlorine contents (e.g. 63-71% wt Cl).
Recently, Drouillard et al (1997) measured the vapour pressures of several short-chain
chlorinated paraffins of known carbon chain length and chlorine content at 25oC and found
that the vapour pressure decreased with increasing carbon chain length and degree of
chlorination. From the data generated the following equation was derived which allows the
vapour pressure to be estimated for any specific short-chain chlorinated paraffin:
log (vp) = -0.353 · (C No) – 0.645 · (Cl No) + 4.462
where vp
= vapour pressure (Pa)
C No = number of carbon atoms
Cl No = number of chlorine atoms
This equation has been used to calculate the vapour pressure for every possible combination
of carbon chain length and number of chlorine atoms for short-chain chlorinated paraffins,
and the results are shown in the Annex at the end of this Appendix. From these results, it can
be seen that the vapour pressure for the short-chain chlorinated paraffins with chlorine
contents in the range 63-71% is generally between 2.6 · 10-4 Pa and 1. 4 · 10-8 Pa, with an
average vapour pressure of around 3 · 10-5 Pa at 25oC. Thus, it might be expected that the
volatility of the short-chain chlorinated paraffins used in rubber may be similar to that found
for DEHP.
As a worst case, the factor of 0.05% will be applied to the annual consumption of short-chain
chlorinated paraffins used in rubber (1,310 tonnes/year) to give a total EU release of
655 kg/year from rubber products. Thus the regional release is 65.5 kg/year and the
continental release is 589.5 kg/year. These figures are summarised in Table B.
154
Table B Effects of proposed risk reduction measures on release estimates
Source
Release estimates before marketing and
use restrictions
Amount
released/site
(local model)
Production
(site specific)
Metal working formulation
Metal working use
Paints and sealing
compounds
Amount
release/site
(local model)
Regional
release
Continental
released
<9.9 kg/year
to water
<0.089 kg/day
to water
<26.7kg/year
to water
<9.9 kg/year
to water
21,105 kg/year
to water
negligible
negligible
negligible
1,519,000 kg/year
to water
negligible
negligible
negligible
negligible
negligible
negligible
Regional
release
Continental
released
1,000 or
30,000 kg/year
to water
500 or
15,000 tonnes/year
to water
<0.089 kg/day
to water
<26.7 kg/year
to water
1.3 kg/day
to water
2,345 kg/year
to water
Production
(default)
0.33 or 1.5 kg/day 169,000kg/year
to water
to water
Release estimates after marketing and
use restrictions
negligible
negligible
negligible
<0.004 kg/day
to air/watera
<1.2 kg/year
to air/watera
<10.8 kg/year
to air/watera
0.01-0.12 kg/day
to air
20-25 kg/day
to water
0.39 kg/year
to air
780 kg/year
to water
3.51 kg/year
to air
7,020 kg/year
to water
negligible
negligible
negligible
Leather use
0.5 kg/day
to air
25 kg/day
to water
39 kg/year
to air
1,950 kg/year
to water
351 kg/year
to air
17,550 kg/year
to water
negligible
negligible
negligible
Textile applications
negligible
negligible
negligible
negligible
negligible
negligible
Release from
painted surfaces
over 10 years
not included
not included
9,000 kg/year 81,000 kg/year
to air
to air
Release from
rubber products
over lifetime
not included
not included
65.5 kg/year
to air
39.39 kg/year
to air
204,076 kg/year
to waterb,c
354.5 kg/year
to air
1,579,696 kg/year
to waterb,c
Rubber
(production)
Leather formulation
(Scenario A)
Totals
(for EUSES model)
<0.004 kg/day <1.2 kg/year to <10.8 kg/year
air/watera
to air/watera
to air/watera
589.5 kg/year
to air
9,065 kg/year 81,589 kg/year
to air
to air
<27.9 kg/year 20.7 kg/year
to waterc
to waterc
aRelease
is assumed to be to water for the purposes of the PEC estimation
the default release estimate from production
cIn the EUSES model, 70% of this is released via a waste water treatment plant and 30% is released directly to surface water
dContinental release = total EU release – regional release
bIncludes
The PECregional obtained using the release estimates taking into account the proposed
marketing and use restrictions, and the new exposure data from paints and rubber products,
are shown in Table C. The values have been estimated using the EUSES model, with the
same physico-chemical properties as used in the main risk assessment report. The original
PECregional from the risk assessment report are included for comparison.
155
Table C Effects of proposed marketing and use restrictions on PECregional
PEC
Value estimated before marketing
and use restrictions
(from main report)
Value
PECregional (surface water – dissolved)
0.33 µ g/l
PECregional (sediment)
1.16 mg/kg wet wt
PECregional (agricultural soil)
PECregional (natural soil)
Value estimated after marketing and use
restrictions
PEC/PNEC
10.8 mg/kg wet wt
0.0115 mg/kg wet wt
0.66
Value
PEC/PNEC
1.39 · 10-4 µ g/l
2.8 · 10-4
13
4.85 · 10-4 mg/kg wet wt
5.5 · 10-3
135
2.08 · 10-3 mg/kg wet wt
0.026
0.14
6.55 · 10-4 mg/kg wet wt
8.2 · 10-3
PNECsurface water = 0.5 µ g/l
PNECsediment
= 0.88 mg/kg wet wt (equilibrium partitioning method: PEC/PNEC ratio increased by a factor of 10 to take into
account possible ingestion of sediment-bound substance)
PNECsoil
= 0.80 mg/kg wet wt (equilibrium partitioning method: PEC/PNEC ratio increased by a factor of 10 to take into
account possible ingestion of sediment-bound substance)
Koc data relevant to the risk assessment
In the main risk assessment the Koc, and subsequent partition coefficients, are estimated from
a log Kow of 6, which represents approximately the mid-point of the values determined for
short-chain chlorinated paraffins. The values for these partition coefficients are shown in
Table D.
Measured data indicate that the Koc for a 55% wt Cl substance is around 199,500 l/kg, which
is slightly higher than that used in the main risk assessment (see Appendix C). The partition
coefficients for sediment and soil derived from this Koc value are also shown in Table D.
Table D Partition coefficients for short-chain chlorinated paraffin
Partition coeffcient
Estimated from log Kow = 6
Based on measured Koc value
Koc
91,200 l/kg
199,500 l/kg
Kp(soil)
1,824 l/kg
3,990 l/kg
Kp(sed)
4,560 l/kg
9,975 l/kg
Kp(susp)
9,120 l/kg
19,950 l/kg
Ksoil-water
2,736 m3/m3
5,985 m3/m3
Ksed-water
2,281 m3/m3
4,988 m3/m3
Ksusp-water
2,281 m3/m3
4,988 m3/m3
As well as affecting the PECs for sediment and soil, the value of the partition coefficient used
in the risk assessment also affects the PNECs for sediment and soil when they are calculated
by the equilibrium partitioning method. The PECs and PNECs obtained using the set of
partition coefficients based on the measured Koc are summarised in Table E (the values based
on the log Kow of 6 are shown in Table C).
156
Table E Effects of measured Koc value on PECregional
PEC
Koc value estimated before marketing
and use restrictions
(from main report: Appendix C)
Koc value estimated after marketing
and use restrictions
Value
PEC/PNEC
Value
PEC/PNEC
PECregional (sediment)
2.43 mg/kg wet wt
13
1.02·10-3 mg/kg wet wt
5.3·10-3
PECregional (agricultural soil)
20.7 mg/kg wet wt
117
3.99·10-3 mg/kg wet wt
0.023
PNECsurface water = 0.5 µ g/l
PNECsediment = 1.92 mg/kg wet wt (equilibrium partitioning method: PEC/PNEC ratio increased by a factor
of 10 to take into account possible ingestion of sediment-bound substance)
PNECsoil
= 1.76 mg/kg wet wt (equilibrium partitioning method: PEC/PNEC ratio increased by a factor
of 10 to take into account possible ingestion of sediment-bound substance)
Effects on local PEC/PNEC ratios
PEClocal (production)
In the risk assessment report, the PEClocal for production is estimated using site-specific
release and dilution data. The PEClocal for production sites will change as a result of the
proposed marketing and use restrictions due to a reduction in the PECregional.
Confidential site-specific release information is available for the two current production sites.
At one of these sites, an environmental improvement program has been completed since the
main report was agreed and this is taken into account in the following PEC calculation. At
neither site is sewage sludge applied to agricultural land and so the PEClocal (soil) will be
similar to the regional background.
At the production sites, the maximum total concentration in the receiving water is 0.032 µg/l
for Site 1 and 0.026 µg/l for Site 2. Adsorption onto suspended sediment needs to be taken
into account in order to obtain the dissolved concentration (Clocal(water)). These are shown
below using the two values for Ksusp-water estimated above:
Site 1:
Clocal(water)
= <0.028 µg/l
or <0.025 µg/l
A
B
Site 2:
Clocal(water)
= <0.023 µg/l
or <0.020 µg/l
A
B
where Clocal(water)
and
Kpsusp
= total concentration in the receiving water/(1+Kpsusp · 15 · 10-6)
= 9,120 l/kg, based on a log Kow of 6
(A)
or 19,950 l/kg, based on a Koc of 199,500 (B)
157
The revised PECregional for surface water is 1.39 · 10-4 µg/l (using the partition coefficients
estimated from a log Kow of 6) or 1.33 · 10-4 µg/l (using the measured Koc value of 199,500 l/kg)
and so the following revised PEClocals can be calculated:
Site 1:
Site 2:
PEClocal (surface water) = <0.028 + 1.39 · 10-4 = <0.028 µg/l
or <0.025 + 1.33 · 10-4 = <0.025 µg/l
A
B
PEClocal (sediment)
A
B
= 0.056 mg/kg wet wt
or 0.108 mg/kg wet wt
PEClocal (surface water) = <0.023 + 1.39 · 10-4 = <0.023 µg/l
or <0.020 + 1.33 · 10-5 = <0.020 µg/l
A
B
PEClocal (sediment)
A
B
= 0.046 mg/kg wet wt
or 0.087 mg/kg wet wt
where PEClocal (sediment) = Ksusp-water / Psusp · PEClocal (surface water) · 1000
Ksusp-water = 2,281 m3/m3, based on a log Kow of 6
(A)
3
3
(B)
or 4,988 m /m , based on a Koc of 199,500 l/kg
Psusp
= bulk density of suspended matter = 1,150 kg/m3
The PNEC for sediment using the equilibrium partitioning method is 0.88 mg/kg wet wt
(based on a log Kow of 6) or 1.92 mg/kg wet wt (based on a Koc of 199,500 l/kg). Thus the
revised PEC/PNEC ratios for sediment (increased by a factor of 10 to account for direct
ingestion of sediment-bound substance) for these two sites are:
Site 1:
PEC/PNEC (sediment)
Site 2:
PEC/PNEC (sediment)
=
or
=
or
0.64
0.56
0.52
0.45
A
B
A
B
PEClocal (rubber)
In the risk assessment report the PEClocal for use in rubber is estimated based on a release rate
of 0.004 kg/day to waste water using the default size for waste water treatment plant and river
dilution. This lead to a PEClocal(surface water) of 0.34 µg/l, a PEClocal(sediment) of 0.67
mg/kg wet wt and a PEClocal(soil) of 0.073 mg/kg wet wt. and gave a PEC/PNEC ratio >1 for
sediment but <1 for agricultural soil and surface water.
The PEClocal(sediment) for rubber depends on both the regional surface water concentration
and the partition coefficients used in a similar manner to that outlined above for the
production sites.
158
The recalculated values, taking into account the measured Koc value and the likely reduction
in the PECregional(surface water), are shown below:
Release rate to water at site
Size of waste water treatment plant
Influent concentration
Removal during waste water treatment
Effluent concentration
Dilution in receiving water
Kpsusp
Clocal(water)
= 0.004 kg/day
= 2,000 m3/day
= 2 µg/l
= 93%
= 0.14 µg/l
= 10
= 9,120 l/kg, based on a log Kow of 6
or 19,950 l/kg, based on a Koc of 199,500
= 0.012 µg/l
or 0.011 µg/l
(A)
(B)
(A)
(B)
The revised PECregional for surface water is 1.39 · 10-4 µg/l (using the partition coefficients
estimated from a log Kow of 6) or 1.33 · 10-4 µg/l (using the measured Koc value of
199,500 l/kg) and so the following revised PEClocals can be calculated:
PEClocal(surface water)
= 0.012 + 1.39 · 10-4 = 0.012 µg/l
or 0.011 + 1.33 · 10-3 = 0.011 µg/l
A
B
PEClocal(sediment)
= 0.024 mg/kg wet wt
or 0.048 mg/kg wet wt
A
B
where PEClocal (sediment) = Ksusp-water /Psusp · PEClocal (surface water) · 1000
and
and
(A)
Ksusp-water = 2,281 m3/m3, based on a log Kow of 6
3
3
or 4,988 m /m , based on a Koc of 199,500 l/kg (B)
= bulk density of suspended matter = 1,150 kg/m3
Psusp
The PNEC for sediment using the equilibrium partitioning method is 0.88 mg/kg wet wt
(based on a log Kow of 6) or 1.92 mg/kg wet wt (based on a Koc of 199,500 l/kg). Thus the
revised PEC/PNEC ratios for sediment (increased by a factor of 10 to account for direct
ingestion of sediment-bound substance) are:
PEC/PNEC(sediment)
= 0.27
or 0.25
A
B
Summary of changes to PEC/PNEC ratios and revised conclusions
Table F shows the revised PEC/PNEC ratios for sediment and soil for uses where conclusion (i)
was indicated in the main report, taking into account the proposed risk reduction measures for
metal working and leather finishing fluids (and other new information as indicated above).
159
The PEC/PNEC ratios are <1 for soil and sediment for all endpoints, and based on these
calculations it can be predicted that:
- the risk to sediment and soil at the regional level will be low;
- the risk to sediment from production sites and use in rubber will be low at the
local level; and
- the risk to sediment and soil from formulation and use of metal working fluids
and formulation and use of leather finishing (leather fat liquoring) products will
be low as a direct result of the risk reduction measures proposed for the water
compartment.
Table F Summary of changes to PEC/PNEC ratios
Scenario
Original PEC/PNECa
Revised PEC/PNECb
Sediment compartmentc
PEClocal (production) – 2 sites
<8.1 and <9.5
<0.56-<0.64 and <0.45-<0.52
97
<1
PEClocal Metal working (use)
32 or 113
<1
PEClocal Rubber formulations
<7.6
<0.25-<0.27
PEClocal Leather finishing (formulation)
1,740
<1
PEClocal Leather finishing (use)
1,740
<1
13
5.3 -3
PEClocal Metal working (formulation)
PECregional
Soil compartment
PEClocal Metal working (formulation)
251
<1
64 or 290
<1
PEClocal Leather finishing (formulation)
4,813
<1
PEClocal Leather finishing (use)
4,813
<1
135
0.023
PEClocal Metal working (use)
PECregional
aPEC/PNEC
ratios from main risk assessment report
ratios calculated taking into account proposed risk reduction measures for metal working and leather, and also
new exposure data for regional release from painted surfaces and rubber products, and site-specific information for production
cStrictly speaking, when the equilibrium partitioning method is used for the PNECsediment, the density of suspended sediment
(1,150 kg/m3) should be used instead of that of the bulk sediment (1,300 kg/m3) to ensure that both the PEC and PNEC are
determined on the same basis. This is not yet implemented in EUSES. If the correct density was used the PNEC would be
higher by a factor of 1.13 and the resulting PEC/PNEC ratios would be lower by a similar factor. This would not change the
conclusions drawn
bPEC/PNEC
160
Result
When the proposed risk reduction measures for formulation and use of metal working and
leather finishing fluids are taken into account, the conclusion of the risk assessment of all
environmental compartments for production and all other uses of short-chain chlorinated
paraffins, and also at the regional level, is:
ii)
There is at present no need for further information and/or testing or for risk reduction
measures beyond those which are being applied already.
This finding may need to be reconsidered once the marketing and use restrictions have had
time to take effect, since market conditions may change for the other uses.
References
Drouillard K. G., Tomy G. T., Muir D. C. G. and Friesen K. J. (1998). Volatility of
chlorinated n-alkanes (C10-12): vapour pressures and Henry’s Law Constants. Environ.
Toxicol. Chem., 17, 1252-1260.
UCD (1998). Use Category Document – Plastics Additives. Revised Draft for Discussion
with OECD, June 1998. Building Research Establishment, produced under contract to the
Environment Agency.
161
ANNEX to Appendix D
Vapour Pressure Estimates
The following Table gives the vapour pressures for short-chain chlorinated paraffins
calculated using the following equation:
log (vp) = -0.353 · (C No) – 0.645 · (Cl No) + 4.462
where vp
= vapour pressure (Pa)
C No = number of carbon atoms
Cl No = number of chlorine atoms
Reference: Drouillard K. G., Tomy G. T., Muir D. C. G. and Friesen K. J. (1998). Volatility
of chlorinated n-alkanes (C10-12): vapour pressures and Henry’s Law Constants. Environ.
Toxicol. Chem., 17, 1252-1260.
162
No.carbon atoms No. chlorine atoms
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
13
No. hydrogen atoms Molecular weight
21
20
19
18
17
16
15
14
13
12
23
22
21
20
19
18
17
16
15
14
13
25
24
23
22
21
20
19
18
17
16
15
14
27
26
25
24
23
22
21
20
19
18
17
16
15
176.5
211
245.5
280
314.5
349
383.5
418
452.5
487
190.5
225
259.5
294
328.5
363
397.5
432
466.5
501
535.5
204.5
239
273.5
308
342.5
377
411.5
446
480.5
515
549.5
584
218.5
253
287.5
322
356.5
391
425.5
460
494.5
529
563.5
598
632.5
%Cl
Vapour pressure (Pa)
20.1
33.6
43.4
50.7
56.4
61.0
64.8
67.9
70.6
72.9
18.6
31.6
41.0
48.3
54.0
58.7
62.5
65.7
68.5
70.9
72.9
17.4
29.7
38.9
46.1
51.8
56.5
60.4
63.7
66.5
68.9
71.1
72.9
16.2
28.1
37.0
44.1
49.8
54.5
58.4
61.7
64.6
67.1
69.3
71.2
73.0
1.936E-00
4.385E-01
9.931E-02
2.249E-02
5.093E-03
1.153E-03
2.612E-04
5.916E-05
1.340E-05
3.034E-06
8.590E-01
1.945E-01
4.406E-02
9.977E-03
2.259E-03
5.117E-04
1.159E-04
2.624E-05
5.943E-06
1.346E-06
3.048E-07
3.811E-01
8.630E-02
1.954E-02
4.426E-03
1.002E-03
2.270E-04
5.140E-05
1.164E-05
2.636E-06
5.970E-07
1.352E-07
3.062E-08
1.690E-01
3.828E-02
8.670E-03
1.963E-03
4.446E-04
1.007E-04
2.280E-05
5.164E-06
1.169E-06
2.649E-07
5.998E-08
1.358E-08
3.076E-09
163
European Commission
EUR 190010 - European Union Risk Assessment Report
Alkanes, C10-13, chloro-, Volume 4
Editors: B.G. Hansen, S.J. Munn, G. Schoening, M. Luotamo, A. van Haelst, C.J.A. Heidorn
G. Pellegrini, R. Allanou, H. Loonen
Luxembourg: Office for Official Publications of the European Communities
2000 – VIII, 166 pp. – 17.0 x 24.0 cm
Environment and quality of life series
ISBN 92-828-8451-1
Price (excluding VAT) in Luxembourg: EUR 14.50
The report contains the comprehensive risk assessment of the substance alkanes, C10-13,
chloro-. It has been prepared by the United Kingdom in the frame of Council Regulation
(EEC) No. 793/93 on the evaluation and control of the risks of existing substances, following
the principles for the assessment of risks to man and the environment, laid down in
Commission Regulation (EC) No. 1488/94.
The evaluation considers the emissions and the resulting exposure to the environment and
the human population in all life cycle steps. Following the exposure assessment, the
environmental risk characterisation for each protection target in the aquatic, terrestrial and
soil compartment has been determined. For human health the scenarios for occupational
exposure, consumer exposure and human exposed indirectly via the environment have been
examinated and the possible risks have been identified.
The risk assessment concludes that there is a risk to aquatic organisms arising from the local
emissions of chloro (C10-13) alkanes from metal working applications and leather finishing and
from formulation of products for these uses. This conclusion also applies to secondary
poisoning for formulation and use in leather finishing and use in metal finishing.
A need for further information for the environment with special attention to soil and sediment
has also been identified. A risk for human health could not be determined.
The conclusion of this report will lead to risk reduction measures to be decided by the risk
management committee of the Commission.
CL-NA-19010-EN-C
European Union Risk Assessment Report
alkanes, C10-13, chloro
CAS No.: 85535-84-8 EINECS No.: 287-476-5
Series: 1st Priority List
Volume: 4
European
Chemicals
Bureau
Existing Substances
European Union
Risk Assessment Report
CAS No.: 85535-84-8
EINECS No.: 287-476-5
alkanes, C10-13, chloro
European Union Risk Assessment Report
alkanes, C10-13, chloro
European Commission - Joint Research Centre
Institute for Health and Consumer Protection
European Chemicals Bureau (ECB)
European Chemicals Bureau
14
The mission of the JRC is to provide customer-driven scientific and technical support
for the conception, development, implementation and monitoring of EU policies. As a
service of the European Commission, the JRC functions as a reference centre of
science and technology for the Union. Close to the policy-making process, it serves the
common interest of the Member States, while being independent of special interests,
private or national.
Institute for Health and
Consumer Protection
Price (excluding VAT) in Luxembourg: EUR 14.50
CAS: 85535-84-8
EC: 287-476-5
OFFICE FOR OFFICIAL PUBLICATIONS
OF THE EUROPEAN COMMUNITIES
L – 2985 Luxembourg
PL-1
4
1st Priority List
Volume:
4
EUROPEAN COMMISSION
JOINT RESEARCH CENTRE
EUR 19010 EN
Hazardous Substances Series
Background Document on
short chain chlorinated paraffins
2009
Background Document on Short Chain Chlorinated Paraffins
OSPAR Convention
Convention OSPAR
The Convention for the Protection of the
Marine Environment of the North-East Atlantic
(the “OSPAR Convention”) was opened for
signature at the Ministerial Meeting of the
former Oslo and Paris Commissions in Paris
on 22 September 1992. The Convention
entered into force on 25 March 1998. It has
been ratified by Belgium, Denmark, Finland,
France, Germany, Iceland, Ireland,
Luxembourg, Netherlands, Norway, Portugal,
Sweden, Switzerland and the United Kingdom
and approved by the European Community
and Spain.
La Convention pour la protection du milieu
marin de l'Atlantique du Nord-Est, dite
Convention OSPAR, a été ouverte à la
signature à la réunion ministérielle des
anciennes Commissions d'Oslo et de Paris,
à Paris le 22 septembre 1992. La Convention
est entrée en vigueur le 25 mars 1998.
La Convention a été ratifiée par l'Allemagne,
la Belgique, le Danemark, la Finlande,
la France, l’Irlande, l’Islande, le Luxembourg,
la Norvège, les Pays-Bas, le Portugal,
le Royaume-Uni de Grande Bretagne
et d’Irlande du Nord, la Suède et la Suisse
et approuvée par la Communauté européenne
et l’Espagne.
Acknowledgement
This report has been prepared by Mr Bo Nyström for Sweden as lead country
Secretariat note: This Background Document was prepared by Sweden as lead country and first
adopted in 2001. A monitoring strategy for lead was added in 2004 (annex 1). The document was
updated in 2009.
2
OSPAR Commission, 2009
Executive Summary .......................................................................................................... 4
Récapitulatif ....................................................................................................................... 4
1.
Introduction ............................................................................................................. 6
2.
Sources of Short Chain Chlorinated Paraffins and their pathways to the
marine environment .......................................................................................................... 7
2.1 Production and use in the European Community ........................................... 7
2.2 Emissions and discharges .............................................................................. 8
2.3 Pathways to the Marine Environment ............................................................. 8
3.
Monitoring data, quantification of sources and assessment of the
extent of problems ............................................................................................................ 9
3.1 Monitoring data ............................................................................................... 9
3.1.1 Conclusion of comparison of the monitoring data found before
and after 2001............................................................................................... 12
3.2 Quantification of sources .............................................................................. 12
3.2.1 Releases to the environment ............................................................. 12
3.2.2 Human exposure ................................................................................ 13
3.3 Assessment of the extent of problems ......................................................... 13
4.
Desired reduction ................................................................................................. 14
5.
Identification of measures ................................................................................... 14
5.1 Measures within the European Community.................................................. 14
5.2 Implementation of PARCOM Decision 95/1 by Contracting Parties............. 15
5.3 Alternatives to short chain chlorinated paraffins........................................... 15
5.4 Identification of possible OSPAR measures................................................. 16
6.
Choice for action................................................................................................... 16
References ....................................................................................................................... 18
Annex 1: Monitoring strategy for short chained chlorinted paraffins ....................... 20
3
Background Document on Short Chain Chlorinated Paraffins
Executive summary
Short-chain chlorinated paraffins (SCCPs) are n-paraffins that have a carbon chain length of between
(and including) 10 and 13 carbon atoms and a degree of chlorination of more than 48% by weight.
They are very persistent and not biodegradable. They adsorb strongly to sludge and sediments. They
are therefore very likely to bioaccumulate. They are carcinogenic. The OSPAR Action Plan in 1992
gave priority to action on them, and they were therefore included in the List of Chemicals for Priority
Action in 1998.
SCCPs are mainly used as metal-working fluids, with other major uses being in paints, coatings and
sealants and as flame-retardants in rubber and textiles. The main sources of inputs to the sea are
therefore production sites for SCCPs and products containing them and metal-, leather- and rubberworking-sites where they are used.
Releases of EU-produced SCCPs from EU sites to water in 1994 were estimated at 1784 tonnes a
year, 95% of which was from metal-working sites. Substantial reductions in use have since been
made. There are, however, no figures for releases from products or from imported SCCPs.
Concentrations of SCCPs of 426 – 526 μg/kg have been found in Arctic marine mammals.
The existing OSPAR measure is PARCOM Decision 95/1, which required the phasing-out by the end
of 1999 of the use of SCCPs as plasticisers in paints and coatings, as plasticisers in sealants, in
metal-working fluids and as flame retardants in rubber, plastics and textiles, except for some uses in
dams and mining where the end-date was the end of 2004. EC Directive 2002/45/EC bans the use in
metal-working fluids, and leather finishing. SCCPs are identified as priority hazardous substances
under the EC Water Framework Directive.
The action proposed is: greater efforts to implement PARCOM Decision 95/1, including identifying
uses not previously recognised, identification of acceptable alternatives, and avoidance of the use of
unacceptable substitutes; to review by OSPAR of the need for further OSPAR measures to
supplement the EC measures; and to ask other relevant international forums to take account of the
Background Document.
Récapitulatif
Les paraffines chlorées à chaîne moléculaire courte (SCCP) sont des paraffines « n » dont la chaîne
de carbone comporte entre 10 et 13 atomes de carbone (inclus) et possédant un degré de chloration
de plus de 48% de leur poids. Elles sont très persistantes et ne sont pas biodégradables. Elles sont
fortement adsorbées sur la boue et les sédiments. Elles ont donc de fortes chances de s’accumuler
biologiquement. Elles sont cancérigènes. Une action prioritaire à leur égard est prévue dans le Plan
d’action OSPAR 1992, d’où le fait qu’en 1998, elles aient été inscrites sur la Liste des produits
chimiques devant faire l’objet de mesures prioritaires.
Les SCCP sont pour l’essentiel utilisées comme fluides de travail des métaux, leurs principales autres
applications étant dans les peintures, les revêtements et les produits d’étanchéité, ainsi que comme
agents ignifuges dans le caoutchouc et les textiles. Les principales sources d’apport à la mer sont
donc constituées par les sites de fabrication des SCCP ainsi que par les produits qui en contiennent,
de même que par les sites de transformation des métaux, du cuir et du caoutchouc où elles sont
utilisées.
Les émissions dans l’eau de SCCP fabriquées dans l’Union européenne et provenant de sites se
trouvant dans l’Union européenne ont été estimées en 1994 à 1784 tonnes par an, dont 95%
4
OSPAR Commission, 2009
provenaient de sites de travail des métaux. Depuis lors, d’importantes réductions ont été obtenues
dans leur consommation. Il n’existe cependant aucune statistique des émissions dues aux produits ni
des importations de SCCP. Des teneurs en SCCP se situant entre 426 et 526 µg/kg ont été
constatées chez des mammifères marins de l’Arctique.
La mesure OSPAR en vigueur est la décision PARCOM 95 /1, qui exige l’abandon, d’ici la fin de 1999,
de l’utilisation des SCCP comme plastifiants dans les peintures et les revêtements, comme plastifiants
dans les produits d’étanchéité, dans les fluides de travail des métaux et comme agent ignifuge dans le
caoutchouc, les matières plastiques et les textiles, excepté dans le cas de certaines applications dans
les barrages et les mines, où la date limite d’abandon a été fixée à fin 2004. La Directive
communautaire européenne 2002/45/EC interdit son utilisation dans les fluides de travail de métaux et
dans la finition des cuirs. Les SCCP sont définies comme des substances dangereuses prioritaires
dans le cadre de la Directive communautaire européenne cadre relative aux eaux.
L’action proposée est la suivante : intensification des efforts de mise en œuvre de la Décision
PARCOM 95/1, dont l’identification des applications qui n’ont pas encore été décelées, la
détermination d’alternatives acceptables, et la non-utilisation de succédanés inacceptables ; examen
par OSPAR de la question de savoir si de nouvelles mesures OSPAR venant compléter les mesures
communautaires européennes éventuelles s’imposent ; et enfin, demande adressée aux autres
instances internationales compétentes de prendre en considération le document de fond
correspondant.
5
Background Document on Short Chain Chlorinated Paraffins
1. Introduction
In PARCOM Decision 95/1 on the Phasing Out of Short Chained Chlorinated Paraffins, Contracting
Parties agreed (with reservations from Portugal1 and the United Kingdom1) on the phasing out of short
chained, highly chlorinated paraffins. “Chlorinated paraffins” are here defined as mixtures of
compounds that are manufactured by the chlorination of n-paraffins with carbon chain length between
and including 10 and 36 and with a chlorination degree between 10 and 72% by weight. Short chain
chlorinated paraffins (SCCPs) are defined as chlorinated paraffins with carbon chain length between
and including 10 and 13 and with a chlorination degree of more than 48% by weight.
Occurrences of SCCPs, in particular those with carbon chain length C10-C13 and a chlorination of
>50% were found in the aquatic environment of industrial and non-industrial areas as well as in
aquatic and terrestrial organisms, were reasons for concern. Further justifications for PARCOM
Decision 95/1 were the persistent and bioaccumulative properties of these substances, together with
their toxicity to aquatic organisms and carcinogenicity to rats and mice. It was considered that less
environmentally hazardous substitutes were available for most major applications.
SCCPs are also on the OSPAR List of Chemicals for Priority Action (Agreement 2004-12).
The following substance information is given in the risk assessment within the framework of the
European Union (EU) Existing Substances Regulation (EEC) 793/93/EEC, for ‘typical’ C10-13
chloroalkanes (short chain length chlorinated paraffins) (EU, 2008):
CAS No
85535-84-8
Molecular formula
CxH(2x-y+2)Cly, where x = 10 to 13 and y = 1 to x
Synonyms
Alkanes, chlorinated; alkanes (C10-13), chloro-(50 - 70%); alkanes (C10chloro-(60%); chlorinated alkanes; chlorinated paraffins;
12),
chloroalkanes; chlorocarbons; polychlorinated alkanes; paraffinschlorinated.
SCCPs occur in industrial formulations as highly complex mixtures, which make the chemical analysis
complicated. The calibration is a major problem, yielding hugely variable results, and there are no
certified reference materials (CRMs) available. In order to get comparable results in a one-off survey it
is therefore essential that all analyses will be undertaken at one laboratory. In addition, SCCPs is a
priority group within the EU Water Framework Directive, so further method development is likely to
occur (ICES, 2004).
The EU risk assessment for SCCPs was first published in October 1999 and updated in 2008.
Environmental risks of SCCP were identified for the aquatic environment where e.g. metalworking and
fat liquoring for leather takes place. An EC Directive restricting the use of SCCPs was published in
2002 (Directive 2002/45/EC). SCCPs are classified as dangerous for the environment (very toxic to
aquatic organisms) (Technical channels, 2004). In March 2003 an updated environmental risk
assessment report was published, which included new data. This report identified a number of
potential risks of SCCPs in several environmental compartments, and it was recommended that further
exposure information should be gathered (Technical channels, 2004).
1
6
Portugal lifted its reservations at OSPAR/MMC 1998. The UK entered its reservation to this Decision
because it considered that the competence to enforce it rests with the European Community. The UK
urges the European Commission to bring forward early proposals on that subject.
OSPAR Commission, 2009
2. Sources of Short Chain Chlorinated Paraffins
and their pathways to the marine environment
2.1 Production and use in the European Community
According to the EU risk assessment, C10-13 chloroalkanes were manufactured by two producers within
the European Union (EU), and with a total production of < 15 000 tonnes/year (1994). The main uses
were in metal working fluids, as plasticiser in paints, coatings and sealants, as flame retardant in
rubbers and textiles, and in leather processing (fat liquoring).
Recent data shows that the corresponding use of SCCPs has been reduced from 13 000 tonnes in
1994 to 4000 tonnes in 1998 (Chlorinated Paraffins Sector Group of CEFIC, 1999; Table 1 below).
The main use in 1998 was still in metal working fluids, in spite of a considerable reduction of
7362 tonnes. The different uses in products mentioned in PARCOM Decision 95/1 have also declined
considerably. Overall there has been a reduction of nearly 70% over the period 1994 to 1998, largely
due to voluntarily agreements by industry.
The unspecified group “other” increased considerably from 100 tonnes in 1994 to 648 tonnes in 1998.
However, this category may have been used to categorise tonnage where manufacturers are not sure
of the exact uses further down the supply chain, and/or to render an account for some earlier not
known uses. Therefore, an increase in other uses does not necessarily mean that these are different
from those already identified. It could also be a difference in the basis for reporting between 1994 and
1998. On the other hand, it is not possible to rule out new product developments using SCCPs.
In 1998, about 50% of European sales and about 10% each of Medium Chain Chlorinated Paraffins
(MCCPs) and Long Chain Chlorinated Paraffins (LCCPs) sales have been used for formulation of
metal working fluids.
Table 1: Use of SCCPs in Europe, tonnes per year and per cent of total
Application
Metal working fluids
Paints, coatings and sealants
tonnes/year in 1994
tonnes/year in 1998
9380(71.02%)
2018(49.5%)
1150(8.71%) +
726(17.8%) +++
695(5.26%) ++
Rubber/flame retardants/
Leather fat liquors
Textile/polymers (other than PVC)
1310(9.91%)
638(15.7%)
390(2.95%)
45(1.1%)
183(1.4%)
PVC plasticisers
-
-
Other
100(0.75%)
648(15.9%)
Total
13208
4075
There is no specific information on the use category “Other”.
+ figures for paints; ++ figures for coatings and sealants; +++ figures for paints, coatings and sealants
It has not, within the scope of this document, been possible to obtain information on the amount of
SCCPs imported into the European Community. Hence, it has not been possible to estimate use
categories for imported SCCPs. Neither has it been possible to get any figures on the amounts of
SCCPs entering the EU through imported goods. According to a recent report (1999), the total
production of SCCPs, MCCPs and LCCPs in China in 1997 was about 100 000 tonnes. Even if only a
7
Background Document on Short Chain Chlorinated Paraffins
very small fraction reaches the EU, e.g. through imported goods, it can still represent significant
amounts.
The EU’s ban of SCCPs for metal and leather working was applied in January 2004. The usage of
SCCPs in 1994 in products was in Sweden reported to be 233 tonnes in about 50 products. In 2005
the usage had decreased to 14 tonnes in 18 products (Kemi-Stat, 2008). In France, several thousands
of tonnes were used in the beginning of the 1990s but only 222 tons in 2002. At the time 147 tonnes
were still used for metal working fluid, which was expected to end in 2004 (INERIS, 2005).
2.2 Emissions and discharges
The main sources, identified in the EU risk assessment as having the potential for releases to water,
sediment and sewage sludge are production sites for SCCPs, production sites for the formulation of
metal working fluids and leather finishing agents, as well as metal working and leather finishing plants.
Metal working plants are also sources for releases to landfills, like leather finishing plants are to air.
Rubber working plants are emitting to water, air and soil. Of these, the use of metal working fluids is
still by far the largest source of releases into the environment.
As considered in PARCOM Decision 95/1, different products, e.g. articles, containing SCCPs are also
potential sources of emissions. This can be the case during production and use, and when the articles
become waste and are sent to landfill. SCCPs could be a possible source of PCBs (polychlorinated
biphenyls) and PCNs (polychlorinated naphthalenes) formation via incineration of wastes.
In the EU risk assessment, emissions from articles are discussed very briefly. Elaborated methods to
estimate this are lacking in the EC Technical Guidance Document (TGD) on Risk Assessment of New
and Existing Substances (1996). However, reported data on emissions from surfaces with a paint
containing SCCPs could indicate that such emissions can be significant.
The emissions of SCCPs in Europe 2001 reported to the European Pollutant Emission Register
(EPER) are given in Table 2. The emissions of SCCPs mainly take place indirect to water, via transfer
to an off site water treatment plant.
Table 2. Total emissions in Europe of SCCPs reported to EPER 2001 in tonnes (EPER 2006)
Activity
Combustion installations
> 50 MW
Basic organic chemicals
Basic inorganic
chemicals or fertilisers
Total
To air
(per year)
Direct to
water
(per year)
-
-
Indirect to water
(transfer to off-site waste
water treatment)
0.0022
-
-
0.01584
-
0.01
-
-
0.01
0.01804
2.3 Pathways to the marine environment
If SCCPs reach the marine environment, they will generally do so via rivers and via the atmosphere,
from the main compartments to which releases occur. The latter are sediment and surface waters in
rivers, lakes and seas, air, and soil spread with sewage sludge. Furthermore, recent reports of high
levels of SCCPs in biological samples from the Arctic could indicate that these chemicals are
effectively transported over long distances.
8
OSPAR Commission, 2009
3. Monitoring data, quantification of sources and
assessment of the extent of problems
3.1 Monitoring data
Concentrations of SCCPs in surface water, sediment, sewage sludge up to 2001
Monitoring data from the EU Risk Assessment Report (1999) and from Organohalogen Compounds,
Volume 47 (2000) are summarised here:
Levels of 0.12 - 1.45 µg/l have been measured in surface water in rivers from industrial areas in the
United Kingdom in the year 1986;
 Levels of 0.50 - 1.2 µg/l and 0.05 - 0.12 µg/l have been measured in two rivers in Germany
in the years 1987 and 1994, respectively. These values include sites downstream from a
chlorinated paraffins production plant;

Levels of 17 - 83 µg/kg dry weight in sediments have been measured in rivers in Germany
in 1994. These values also includes sites downstream from a chlorinated paraffins
production plant;

Levels of 47 - 65 µg/g in sewage sludge have been measured near a metal working plant in
Germany. Further levels around 0.12 µg/l in the run-off water from the sewage plant into a
nearby river, and of 0.08 and 0.07 µg/l in the river water, up and downstream from the metal
working plant have been measured in the years 1991 to 1993;

Levels of 18 - 275 µg/kg dry weight in surface sediments have been measured in three
lakes in Canada;

Levels of 0.0073 - 0.29 µg/g in surface sediment have been measured in harbour areas
along Lake Ontario;

Average levels around 1.8 µg/g have been measured in sediment of the Detroit River at
Lake Eire in Canada;

Levels of 0.06 - 0.448 µg/l have been measured in final effluent from sewage treatment
plants in southern Ontario in Canada in 1998;

Levels of around 0.0045 g/g dry weight have been measured in sediment in Lake Hazen
on Ellesmere Island in the Arctic;

Estimates of SCCPs in waters in non-industrial areas compared to marine waters and
industrial areas in the United Kingdom were 0.1 - 0.3, 0.1 - 1 and 0.1 - 2 µg/l, respectively.
These data were estimated from analytical values for all chlorinated paraffins in the range
C10-C20 (data published in 1980).
Monitoring data of SCCPs in sediments, water, digested sludge and soil published after 2001

In general, Baltic Sea sediments were more contaminated with Chloroparaffins (CPs) than
North Sea sediments. The concentrations of SCCPs in sediments from the North Sea
varied between 5 to 112 ng/g dw and in sediments from the Baltic Sea between 116 to
377 ng/g dw. The samples were collected between August 2001 and May 2003 (Huttig and
Oehme, 2005);

The concentrations of SCCPs in surface sediments collected during 1998 in Lake Ontario
in North America were on average 49 ng/g dw with the highest concentrations ranging from
9
Background Document on Short Chain Chlorinated Paraffins
147 to 410 ng/g dw (Marvin et al. 2003). The highest concentrations were found in the most
industrialised areas. Core samples from a polluted site in the Niagara Basin showed a
decreasing trend of accumulation of SCCPs with the highest peak during the 1970s of
about 700 - 800 ng/g dw. However at a background site in Lake Ontario there was still a
slight increase in accumulation of SCCPs (Marvin et al. 2003);

SCCP and MCCP (medium chain chlorinated paraffins) in samples from the UNITED
KINGDOM collected 1983 to 1988 showed concentration levels in sediment of <0.2 - 65.1
mg/kg dw, in water <0.1 - 1.7 g/l, in digested sewage 1.8 - 93.1 mg/kg dw and in soil <0.1
mg/kg dw (Nicholls et al. 2001). These sampling sites were chosen on the basis of target
specific industries;

Sediments in 11 Czech rivers were collected during 2003 and 2004, were analysed for
SCCPs. Concentrations of SCCPs were between 6 to 397 ng/g dw. The highest
concentration occurred close to a chemical and electro engineering industry (Pribylová et
al., 2006);

The concentrations of SCCPs in sediments from the Czech Republic varied in the Kosetice
area between 24 to 46 ng/g dw, in the Zlin area 16 to 181 ng/g dw and in the Beroun area
from 5 to 22 ng/g dw (Stejnarova et al. 2005). The Kosetice area is considered to be a
background area, the Zlin area is a typical industrial region with rubber, tanning and textile
industries and the Beroun area represents the cement and machinery industries;

Sediments from Lake Mälaren in Sweden were collected close to an urban area,
Stockholm. The concentrations of SCCPs in the sediments varied between 170 to
3300 ng/g dw in samples collected at sites close to the city and between 8 - 63 ng/g dw at
urban background sites (Sternbeck et al., 2003);

Sediment samples were collected in Norway and analysed for SCCPs and the results
varies between 5.8 to 1300 ng/g dw. High concentrations were found in e.g. Trondheim
harbour, while Tromsö harbour showed as low concentrations as 5.8 ng/g dw (Fjeld et al.
2004).
Concentrations of SCCPs in Biota up to 2001
10

Mussels were collected up and downstream from a chlorinated paraffin manufacturing site
in the United States. Measured levels of SCCPs ranged between 7 - 280 µg/kg;

High levels of SCCPs have been measured in different marine mammals in the Arctic, such
as seal from Iceland and walrus from Western Greenland. The measured concentrations of
SCCPs were 526 and 426 µg/kg in blubber, respectively;

On a lipid basis, average levels of 13 µg/kg of SCCPs have been measured in breast milk
from Inuit women living in communities on the Hudson Strait in Northern Quebec;

Levels of SCCPs of 370 - 1400 µg/kg have been measured in beluga blubber from the
St. Lawrence River in Canada;

Average levels of SCCPs of 630 µg/kg, 200 µg/kg, 320 µg/kg and 460 g/kg have been
measured in blubber from male beluga collected in different Arctic places; Hendrickson
Island, Arivat (Western Hudson Bay), Sanikiluaq (Belcher Island area in southern Hudson
Bay) and in Pangnirtung (south eastern Baffin Island), respectively.
OSPAR Commission, 2009
Concentrations of chlorinated paraffins (C6-C16, C10-C20 and C15-C17 respectively) in biota up to
2001

On a lipid basis, levels of around 1500 µg/kg chlorinated paraffins (C6-C16) have been
measured in herring (muscle), in the Bothnian Sea, in the Baltic Sea and in Skagerrak in
Sweden in the years 1986 and 1987;

High concentrations of chlorinated paraffins (C6-C16) have also been measured in rabbit and
moose (2900 and 4400 µg/kg, respectively on a lipid basis) in Sweden in 1986;

On a lipid basis, levels of around 130 and 280 µg/kg chlorinated paraffins (C6-C16),
respectively, have been measured in ringed seal blubber from Kongsfjorden, Svalbard in
1981 and in grey seal blubber from the Baltic Sea during 1979 - 85;

On a lipid basis, levels of chlorinated paraffins (C6-C16) of around 1000 µg/kg and
570 µg/kg, respectively, have been measured in whitefish muscle in Lake Storvindeln,
Lapland, in Sweden and in Arctic char muscle in Lake Vättern, central Sweden in 1986 and
1987;

On a lipid basis, levels of chlorinated paraffins (C6-C16) of around 140 µg/kg and 530 µg/kg,
respectively, have been measured in reindeer suet and in osprey muscle in Sweden in
1986;

Levels of chlorinated paraffins (C10-C20) up to 200 µg/kg in fish, 100 - 12 000 µg/kg in
mussels, levels in mussels above 200 g/kg have been measured in the Wyre Estuary
close to a paraffinic production site, 50 - 2000 g/kg have been found in seabirds (eggs),
100 - 1200 g/kg in heron and guillemot, 200 - 900 g/kg in herring gull, 50 - 200 g/kg in
sheep close to a chlorinated paraffin production plant and 40 - 100 g/kg in grey seal have
been found in the United Kingdom (data published in year 1980). All these values were
estimated from analytical values for all chlorinated paraffins in the range C10 to C20;

Stern et al. (1998) noted that the Arctic formula group profiles showed higher proportions of
the lower chlorinated congeners (Cl5-Cl7), suggesting that the major source of contamination
to the Arctic is via long range atmospheric transport.
Monitoring data of SCCPs in Biota published after 2001

In liver samples of little aUnited Kingdoms collected in the European Arctic SCCP levels of
5 - 88 ng/g ww were found (Reth et al. 2006). The range for SCCPs in cod varied from 11 to
70 ng/g ww, and in Arctic char from 7 to 27 ng/g ww;

Fish from the North Sea and the Baltic Sea were collected during 2002; cod, flounder and
North Sea dab. In the Baltic Sea the concentration levels of SCCPs varied between 19 and
221 ng/g ww, and in the North Sea the levels varied between 26 and 286 ng/g ww. The
congener patterns in the samples from the Baltic Sea were similar to commercial SCCP
mixtures and C13 were the most abundant, while the North Sea samples had a higher
abundance of C10 (Reth et al. 2005);

In ringed seals from Pangnirtung and Eureka in the Canadian Arctic, levels of SCCP of 95
and 527 ng/g ww were found, respectively (Braune et al. 2005);

The concentrations of SCCP and MCCP in biota samples collected during 1983 to 1988 in
UNITED KINGDOM were in fish <0.1 - 5.2 mg/kg ww, in benthos <0.05 - 0.8 mg/kg ww and
in earthworms <0.1 - 1.7 mg/kg ww (Nicholls et al. 2001);
11
Background Document on Short Chain Chlorinated Paraffins

Moose liver and muscle samples from Sweden, Norway and Finland collected in the late
1990s showed levels below the detection limit, < 20 ng/g fresh muscle tissue (Fridén et al.
2004);

SCCPs have recently been found in Arctic biota but there is still insufficient information to
assess species differences, spatial patterns or food web patterns (Braune et al. 2005). The
SCCPs are found in fish samples from the North Sea and the Baltic Sea, at concentrations
up to 300 ng/g wet weight in dab liver (North Sea), and in cod liver at up to 100 ng/g (North
Sea) and 150 ng/g (Baltic) (ICES 2004);

Blue mussel from Norway showed a concentration range from 0.9 to 4.8 ng/g ww. Samples
from Bölmo/Sotra had a concentration of 4.8 ng/g ww and samples from Ulleröy/Lista had a
concentration of 0.9 ng/g ww (Fjeld et al. 2004);

Cod liver from Norway had concentrations of SCCPs between 30 ng/g ww in
Drammensfjorden to 110 ng/g ww in Ulleröy/Lista area (Fjeld et al. 2004);

Concentrations of chlorinated paraffins (C10-C30) in household waste;

Levels of 0.5 - 48 g/g dry matter of chlorinated paraffins (C10-C30) have been measured in
household waste collected from the Uppsala municipality in Sweden in 1995.
3.1.1
Conclusion of comparison of the monitoring data found before and after 2001
No general decrease in the concentration levels of SCCPs in sediments and biota in the samples
collected and reported lately were found when compared to data published before 2001.
3.2 Quantification of sources
3.2.1
Releases to the environment
The EU Existing Substances Regulation risk assessment (EU, 2008) concluded that risk reduction in
metal working would eliminate 98% of the total environmental burden. This risk assessment, carried
out by the United Kingdom, contains a number of release estimates, made by using various models
and assumptions. In summary they indicate the following releases of SCCPs in the EU:

0.4 tonnes/year to air, apportioned to rubber formulations <0.012 tonnes/year (including
releases to soil and water), leather formulations 0.0039 tonnes/year and leather use
0.390 tonnes/year;

1784 tonnes/year to water, apportioned to metal working use 1688 tonnes/year, metal
working formulation 23.4 tonnes/year, production sites <0.037 tonnes/year, rubber
formulations <0.012 tonnes/year (including releases to air and soil), leather formulations
7.8 tonnes/year and leather use 19.5 tonnes/year.
It should be noted that the estimates of releases referred to are made on the basis of uses in Europe
of SCCPs produced in 1994 in Europe. Bearing in mind the heavy reductions in corresponding uses
up to 1998, those releases should be much lower today. On the other hand, there are no figures on
amounts of imported SCCPs and hence, no estimates of releases from such uses.
There are no general figures on releases from products. These could, however, contribute
considerably to emissions to the environment. An example is given by CSTEE (1998) on estimated
emissions of nine tonnes on a yearly European scale from surfaces with paint containing SCCPs.
Other sources, which could contribute to emissions mentioned, are products like rubber, textiles,
sealants and polymers.
12
OSPAR Commission, 2009
3.2.2
Human exposure
In the EU risk assessment, concerns for exposure of workers in metalworking and leather finishing
plants are expressed. It is further concluded that measures identified to protect the environment will
also reduce human exposure.
To date there are no reliable scientific data on exposure to humans/consumers from different products
containing SCCPs. The possibility of emissions from products has, among others, been expressed by
the CSTEE.
A median level of SCCPs in human milk fat was 180 ng/g fat with a range of 49 to 820 ng/g fat in the
UNITED KINGDOM, London and Lancaster (Thomas et al. 2006).
3.3 Assessment of the extent of problems
In the EU risk assessment, it was found that some major characteristics of C10-13 chloroalkanes are
relevant for the assessment of exposure to the environment: the C10-13 chloroalkanes are not
hydrolysed in water; are not readily or inherently biodegradable; have a high log Kow value (4.4 - 8)
and have an estimated atmospheric half-life of 1.9 - 7.2 days. The high log Kow values indicate a high
potential for bioaccumulation, strong adsorption to sludge and sediments and very low mobility in soil.
High bioconcentration factors have been reported with a variety of freshwater and marine organisms
(ranging from 1000 to 50 000 for the whole organism, with high values for individual tissues).
SCCPs have been raised as a concern with regard to long range transport. This is currently being
discussed within the appropriate international forums. High levels of SCCPs in biological samples from
the Arctic indicate that these chemicals are effectively transported over long distances (CSTEE 1998)
and a draft risk profile made for the Stockholm Convention in October 2008 mentions that:
“SCCPs are not expected to degrade significantly by hydrolysis in water, and dated sediment cores
indicate that they persist in sediment longer than 1 year. SCCPs have atmospheric half-lives ranging
from 0.81 to 10.5 days, indicating that they are relatively persistent in air. SCCPs have been detected
in diverse environmental samples (air, sediment, water, wastewater, fish and marine mammals), and
in remote areas such as the Arctic, providing evidence of long-range transport.”
Tumours of the liver, thyroid and kidney (male rats only) were observed in a lifetime carcinogenic
study in rats carried out in the US (Organohalogen Compounds, Volume 47, 2000).
It can be concluded that all environmental contamination of SCCPs is likely to represent a widespread
problem. This is due to the persistent, bioaccumulative and toxic (PBT), as well as the carcinogenic
properties of SCCPs. It can further be concluded that emissions from different, also diffuse sources,
have the potential to reach the maritime area. On the basis of the accessibility of data on the amount
of discharges, emissions and losses from several sources, it is not always possible to fully estimate
the degree of risk to the marine environment. However, the absence of data to quantify emissions
from each source should not be an obstacle to observing potential risks. Hence, the absence of
quantifiable data does not eliminate a risk as such.
13
Background Document on Short Chain Chlorinated Paraffins
4. Desired reduction
The adopted targets for year 2000 and 2004 are outlined in PARCOM Decision 95/1. According to
this, SCCPs should be phased out by 31 December 1999 in metalworking fluids and in major uses as
plasticisers in paints, as coatings and sealants and as flame retardant in rubber, plastics and textiles.
The use as plasticers in sealants in dams, and as flame retardant in rubber in conveyor belts for the
exclusive use in underground mining, should be phased out by 31 December 2004.
The objective for SCCPs, in the framework of the OSPAR Strategy on Hazardous Substances, is to
make every endeavour to move towards the target of the cessation of discharges, emissions and
losses of hazardous substances by the year 2020 with the ultimate aim of achieving concentrations in
the marine environment close to zero.
5. Identification of measures
5.1 Measures within the European Community
The C10-13 chloroalkanes are (decision in the 25th Adaptation to Technical Progress of EU Directive
67/548/EEC on the classification, packaging and labelling of dangerous substances) classified as
dangerous for the environment, with the symbol N and the risk phrases R50/53 (very toxic to aquatic
organisms/may cause long-term adverse effects in the aquatic environment) and harmful, carcinogen,
cat. 3 with the symbol Xn and risk phrase R40 (possible risk of irreversible effects).
The agreed conclusions of a final risk assessment and a risk reduction strategy within the framework
of the EU Existing Substances Regulation (EEC) 793/93 were unanimously adopted by Member
States and the Commission in July 1999.
The Recommendation of the European Commission on a risk reduction strategy for SCCPs was that
limitations on marketing and use within the framework of Council Directive 76/769/EEC for the use and
formulation of products, in particular for metal working and leather finishing, should be considered to
protect the environment. It was further concluded that these measures would reduce concern for
human exposure.
In July 1999 the Directorate General Enterprise of the European Commission presented a draft
proposal on limitations on marketing and use of metalworking fluids and leather finishing uses of
SCCPs. Member States were divided on this proposal in the light of PARCOM Decision 95/1. The
Directive 2002/45/EC later prohibited the use of SCCPs in substances and preparations for
metalworking fluids and for fat liquoring of leather in concentrations higher than 1%. In the Directive it
was stated that a review should be made before 1 January 2003 of new relevant scientific data,
especially on emissions. In a recital introducing the articles, references are made to those products
included in PARCOM Decision 95/1. This review was made, but no further measures have been
proposed. SCCPs have however been selected as a Substance of Very High Concern (SVHC) based
on its PBT properties and further use in the EU will require authorisation.
In the framework of Directive 2000/60/EC of the European Parliament and of the Council of
establishing a framework for Community action in the field of water policy (Water Framework Directive)
the Council has reached on 7 June 2001 a common position on the establishment of a list of priority
substances, including substances identified as priority hazardous substances. C10-13 chloroalkanes are
included in this list with an indication that they are identified as priority hazardous substances. With
respect to the priority substances, the European Commission shall submit proposals of controls for the
14
OSPAR Commission, 2009
progressive reduction of discharges, emissions and losses of substances concerned, and, in particular
the cessation or phasing out of discharges, emissions and losses of priority hazardous substances.
Hazardous substances are defined in the Water Framework Directive as “substances or groups of
substances that are toxic, persistent and liable to bio-accumulate, and other substances or groups of
substances which give rise to an equivalent level of concern”. In drawing up the above list, the
European Commission has taken into account OSPAR work on the prioritisation of hazardous
substances.
The European Union has also notified SCCPs to the Stockholm POPs convention and a draft risk
profile has been prepared (UNEP, 2008).
5.2 Implementation of PARCOM Decision 95/1 by Contracting Parties
Sweden made a review of the status of implementation by Contracting Parties of PARCOM Decision
95/1 in 2006 (Insert publication number). The review notes the coming into force of the EU directive
2002/45/EC. In the conclusion it is also stated that:
“OSPAR should cooperate with the Commission to perform the envisaged overview of the remaining
uses of SCCPs that might give reasons for concern for the marine environment and future EC risk
reduction measures for the use of MCCPs may also be of relevance for the 95/1 Decision. Any further
risk reduction measures regarding the use of MCCPs should also be noted by OSPAR”.
In Finland and the Netherlands, national restrictions equivalent to PARCOM Decision 95/1 have been
notified to the European Commission. Norway has implemented the restrictions as set out in PARCOM
Decision 95/1. In Sweden, a complete phase out of uses of SCCPs has taken place by voluntary
means. Furthermore, 90% of the use of medium- and long chain chlorinated paraffins (MCCPs and
LCCPs) have been phased out. An almost complete phase out of SCCPs used for formulation of
metalworking fluids seems to have taken place in Germany and Norway. Corresponding phasing out
activities are also reported by Belgium and the United Kingdom. There is no information on phasing
out activities in remaining Contracting Parties.
5.3 Alternatives to short chain chlorinated paraffins
MCCPs, the medium-chain chlorinated paraffins (C14-17) may have similar uses to SCCPs and are
used as replacements for SCCPs as extreme pressure additives in metalworking fluids, as plasticisers
in paint, and as additives in sealants.
The UNITED KINGDOM risk assessment on MCCPs, in the framework of the Existing Substances
Regulation, states that some risk reduction measures are required for uses in the production of PVC,
in some process formulations of metal cutting fluids, in emulsifiable metal cutting/working fluids where
the spent fluid is discharged to waste water, in leather fat liquors and in carbonless copy paper during
recycling. The risk from use in oil-based metal cutting fluids may also be of concern.
LCCPs, the long chained chlorinated paraffins have been used in some demanding applications in
metalworking fluids instead of SCCPs in Sweden. LCCPs are also suggested as a replacement to
SCCPs in the leather industry as well as in paint and coatings, in sealants and rubber.
Alkyl phosphate esters and sulfonated fatty acid esters may function as replacements for SCCPs as
extreme pressure additives in metalworking fluids. Natural animal and vegetable oils are also
alternatives in the leather industry. In paint and coatings, phthalate esters, polyacrylic esters,
diisobutyrate as well as phosphate and boron-containing compounds are suggested as replacements.
Phthalates esters are alternatives for use in sealants. Alternatives as flame retardant in rubber, textiles
and PVC are antimony trioxide, aluminium hydroxide, acrylic polymers and phosphate containing
15
Background Document on Short Chain Chlorinated Paraffins
compounds. Sweden considers these substances as being less harmful than chlorinated paraffins.
However, there might still be uses for which these alternatives do not fulfil all technical and security
demands. In addition, the cost of substitution may not be proportional to health and environmental
advantages for all types of applications. Risk reduction measures like closed production and/or further
regulation of emission limits, are amongst several measures that could be taken into account.
It was agreed at the OECD Expert Meeting on SCCPs and NP/NPEs, hosted by Switzerland on
8 - 10 November 1999, that some form of exchange of information on substitute chemicals and
processes is desirable. A password protected web site has been established by the OECD
Secretariat.
5.4 Identification of possible OSPAR measures
Most OSPAR Contracting Parties are bound to harmonised EU-restrictions on the marketing and use
(Council Directive 76/769/EEC) of SCCPs, and remaining Contracting Parties have introduced similar
or more stringent measures. It is to be noted that the phasing out of the most severe uses which are
included in Directive 2002/45/EC on a regulation on SCCPs, has been partly achieved by voluntary
means. The regulation however does not so far include articles containing SCCPs.
OSPAR should therefore continue to follow the outcome of EU measures, and continue to strive for
decisions that will aim at the 2020 target. The phasing out of additional uses identified in the EU risk
assessment and for which alternatives seem to be available, e.g. as additives to paint and plastics,
should be promoted by OSPAR, especially considering the notification of SCCPs to the Stockholm
Convention and the draft conclusion on the POPs properties of SCCPs. Measures will also eventually
be taken according the REACH regulation and the need to apply for authorisation for remaining use of
SCCPs.
6. Choice for action
The EU Risk Assessment identified that the uses in metalworking fluids and leather finishing gave rise
to considerable emissions that could reach the marine environment. This situation should have
improved since the introduction of the Directive 2002/45/EC. The Directive however also included a
review clause which gave the possibility within three years of the further inclusion of other uses, e.g. in
products such as plasticisers in paints, coatings and sealant and as flame-retardant in rubber, plastics
and textiles, since these uses also gave rise to concern in the Risk Assessment. As reflected in
Chapter 4 (first paragraph), the review is to be conducted in co-operation with OSPAR.
Bearing this in mind, OSPAR Contracting Parties that are also EU Member States should, in coming
years, take actions aiming at ensuring that PARCOM Decision 95/1 will be fully covered by EC
legislation. The updated monitoring data in this document should also be taken into account. Recent
monitoring data show no clear reduction of environmental concentrations. The inclusion of SCCPs as
a priority hazardous substance in the water framework directive and the nomination to the Stockholm
Convention also underlines the need for further measures and the elimination of remaining uses.
According to the measures that have been reported, PARCOM Decision 95/1, which should have
been acted upon by the year 2000, seems to have been implemented by only a few of the Contracting
Parties that are bound by it. Therefore,
-
16
all Contracting Parties that are bound by PARCOM Decision 95/1 should increase their
efforts to implement it by national measures. Measures for such implementation can be
taken by means of voluntary agreements;
OSPAR Commission, 2009
-
while carrying out this implementation, these Contracting Parties should pay attention to
identifying uses of SCCPs that have not previously been recognised;
-
all Contracting Parties should put efforts into collecting information on the availability of,
and experiences on the use of, technically and economically acceptable alternatives to
SCCPs. This information should preferably, with the agreement of the OECD Secretariat,
be included on the OECD web site.
In order to avoid substitution of SCCPs by alternatives which are later shown to be unacceptable:
-
States that are OSPAR Contracting Parties should take action to ensure that any
decisions on substitution take account of the fact that the work in the EU risk assessment
of MCCPs has demonstrated a need for risk reduction measures for some of the uses of
MCCPs;
In the light of the information collected on MCCPs and LCCPs by the UNITED KINGDOM (in its EU
risk assessment of MCCPs) further consideration by OSPAR on the whole range of chlorinated
paraffins is likely to be needed.
The EU decisions to notify SCCPs to the Stockholm Convention and the inclusion into the water
framework directive as a priority hazardous substance highlight the need for further measures to be
taken. OSPAR is therefore recommended:
-
-
to review the outcome so far of:
(i)
legislative actions on SCCPs within the framework of Council Directive
76/769/EEC;
(ii)
the implications of the inclusion of SCCPs in the Water Framework Directive list on
priority hazardous substances;
(iii)
the EU Risk Assessment and the Risk Reduction Strategy for MCCPs;
consider the need for the full implementation of PARCOM Decision 95/1 and hence the
need for further actions in order to achieve the OSPAR 2020 target.
The inclusion of SCCPs in the Water Framework Directive as a priority hazardous substance and
other risk reduction measures increase the probability that the OSPAR 2020 will be reached, but
Contracting Parties will have to continue to assess the potential to substitute SCCPs and MCCPs
wherever possible.
To ensure that the information in this Background Document and the conclusions reached by OSPAR
are formally communicated to the European Commission.
17
Background Document on Short Chain Chlorinated Paraffins
References
Bergman A., 2000. Organohalogen Compounds, vol. 47, pp.36-40.
Braune B.M., Outridge P.M., Fisk A.T., Muir D.C.G., Helm P.A., Hobbs K., Hoekstra P.F., Kuzyk Z.A.,
Kwan M., Lechter R.J., Lockhart W.L, Nordstrom R.J., Stern G.A., Stirling I., 2005. Persistent
organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial
and temporal trends, Science of the total environment 351-352, 4-56.
CSTEE 1998. Opinion of the CSTEE on the results of the Risk Assessment of: Alkanes, C10-13,
chloro (SCCP) carried out in the framework of Council Regulation (EEC) 793/93 on the
evaluation and control of the risks of existing substances. Opinion expressed at the 6th CSTEE
plenary meeting, Brussels, 27 November 1998, Scientific Committee on Toxicity, Ecotoxicity
and the Environment, http://europa.eu.int/comm/food/fs/sc/sct/out23_en.html.
EU, 1999. European Union Risk Assessment Report. Alkanes, C10-13, chloro. 1st Priority List.
Volume 4.
European Commission, Joint Research Centre, EUR 19010 EN.
EU, 2008. European Union Risk Assessment Report. Alkanes, C10-13, chloro. CAS Number: 8553584-8. EINECS Number: 287-476-5. European Chemicals Bureau. 1st Priority List. Vol. 81. EUR
23396 EN. ISSN 1018-5593. European Communities 2008.
Eurochlor available at http://www.eurochlor.org/aboutparaffins, 2006.
EPER available at
http://www.eper.cec.eu.int/eper/emissions_pollutants.asp?CountryCode=EU&Year=2001&Pollut
antId=28 (2006)
Fjeld, E., Schlabach, M., Berge J.A., Eggen, T., Snilsberg, P., Källberg, G., Rognerud, S., Enge, E.K.,
Borgen, A. og Gundersen, H., 2004. Kartlegging av utvalgte nye organiske milj¢gifter-bromerte
flammehemmere, klorerte parafiner, bisfenol A og triclosan. (Screening of selected new organic
contaminants-brominated flame retardants, chlorinated paraffins, bisphenol A and triclosan)
Statlig program for forurensningsovervåkning. SFT rapport TA-2006/2004. 117 pages.
Fridén U., Jansson B., Parlar H., 2004. Photolytic clean-up of biological samples for gas
chromatographic analysis of chlorinated paraffins, Chemospere, 54, 1079-1083pp.
Huttig J., Oehme M., 2005. Presense of chlorinated paraffins in sediments from the North and Baltic
Seas, Arch. Environ. Contam. Toxicol. 49, 449-456pp.
ICES, 2004. ICES Marine Habitat Committee ICES CM 2004/E:03 Ref. ACME, C Report of the Marine
Chemistry Working Group (MCWG) 15–19 March 2004 Nantes, France.
INERIS, 2005. Chloroalcanes C10-C13, Données technico-économiques sur les substances
chimiques en France.
Kemi-Stat, 2008 available at http://apps.kemi.se/kemistat/start.aspx.
KUR, 2006 available at http://www.naturvardsverket.se/kur/ 2006.
Marvin H.C., Painter S., Tomy G.T., Stern A., Braekevelt E., Muir D.C.G., 2003. Spatial and temporal
trends in Short-chain chlorinated Paraffins in Lake Ontario Sediments Environmental Science
and Technology 37, 4561-4568pp.
18
OSPAR Commission, 2009
Nicholls C.R., Allchin C.R., Law R. J., 2001. Levels of short and medium chain legth polychlorinated nalkanes in environmental samples from selected industrial areas in England and Wales,
Environmental Pollution 114, 415-430pp.
Organohalogen Compounds Volume 47, 2000.
Pribylová P., Klanova J., Holoubek I., 2006. Screening of short- and medium-chain chlorinated
paraffins in selected riverine sediments and sludge from the Czech Republic, Environmental
Pollution, in press.
Reth M., Ciric A., Christensen G.N., Heimstad E.S., Oelme M., 2006. Short- and medium-chain
chlorinated paraffins in biota from the Auropean Arctic- differences in homologue group
patterns, The science of the total environment, on line.
Reth M., Zdenek Z., Oehme M., 2005. First study of conger patterns and concentrations of short- and
medium-chain chlorinated paraffins in fish from the North and Baltic Sea, Chemospere, 58, 847854pp.
Stejnarova P, Coelhan M., Kostrhounova R., Parlar H., Holoubek I., 2005. Analysis of short chain
chlorinated paraffins in sediment samples from the Czech Republic by short-column GC/ECNIMS, Chemospere, 58, 253-262pp.
Sternbeck, J., Brorström-Lundén E., Remberger M., Kaj L., Palm A., Junedahl E., Cato I., 2003. WFD
priority substances in sedimentts from Stockholm and the Svealand coastal region, IVL report
B1538.
Technical channels, 2004. Article of the week by SpecialChem, Flame retardants: European Union
Risk Assessments Update.
http://www.specialchem4polymers.com/2456/eng/article.aspx?id=1690, May 19.
Thomas G.O., Farrar D., Braekevelt E., Stern G., Kalantzi O.C., Martin F.L. Jones K.C., 2006. Short
and medium chain length chlorinated paraffins in UNITED KINGDOM human milk fat,
Environment International, 32, 34-40pp.
UNEP 2008. Short-chained Chlorinated Paraffins: Draft Risk Profile prepared by the ad hoc working
group on Short-chained chlorinated paraffins under the Persistent Organic Pollutants Review
Committee of the Stockholm Convention, July 2008
19
Background Document on Short Chain Chlorinated Paraffins
Annex 1: Monitoring strategy for short chained
chlorinted paraffins
As part of the Joint Assessment and Monitoring Programme (reference number 2003-22),
OSPAR 2004 adopted an Agreement on monitoring strategies for OSPAR Chemicals for Priority
Chemicals (reference number 2004-15) to implement the following monitoring for tracking progress
towards the objectives of the OSPAR Hazardous Substances Strategy (reference number 2003-21)
with regard to short chained chlorinated paraffins. The Monitoring Strategy for short chained
chlorinated paraffins will be updated as and when necessary, and redirected in the light of subsequent
experience.
In general, the sources of SCCPs are well characterised and have been set out in the OSPAR
Background Document on SCCPs and the HARP-HAZ Guidance document on SCCPs.
Methodologies for monitoring SCCPs are available and monitoring that has been carried out in the
marine environment shows concentrations above the detection limit in the individual environmental
compartments water, biota and sediment. There are currently no monitoring programmes for SCCPs in
the OSPAR framework.
There are a number of relevant controls (e.g. regulations, directives, recommendations and decisions)
on a) marketing and/or use, b) emissions and/or discharges of SCCPs which have been agreed by
Contracting Parties both in OSPAR and in other international forums and have been highlighted as
important measures for achieving the OSPAR Hazardous Substances objective with respect to SCCPs
in the “choice for actions” chapter of the Background Document. Evidence from reports on the
implementation of such measures will be used to make an initial judgement of the extent to which the
amounts of the substance emitted or discharged are likely to have been reduced.
On the evidence available, it would not appear to be sensible to include SCCPs in the RID or CAMP
programmes. If any monitoring is to take place, it could be in the form of periodic surveys on
sediments in specific locations known to be at risk, and identified through the WFD catchment
assessments. The PEC/PNEC ratios from the EU Technical Guidance Document (TGD) indicate a
significant risk to aquatic organisms local to release sources, and biological effects monitoring may
also need to be considered. The need for developing an EAC may be questionable in the light of the
development of Environmental Quality Standard (EQS) under the WFD.
OSPAR will examine and assess trends in data on discharges from large installations reported
annually by Contracting Parties to the EPER database.
SCCPs, as C10-13 chloroalkanes, are priority hazardous substances under the WFD. OSPAR will
therefore seek to make use of monitoring with respect to the environmental quality standard.
In order to establish a base-line against which to measure progress towards the objectives of the
Hazardous Substances Strategy with respect to SCCPs, OSPAR will carry out a one-off baseline
survey of concentrations of SCCPs in sediments.
As an additional tool, OSPAR will seek to evaluate progress on the implementation of EC directives or
regulations and OSPAR measures addressing the regulation of marketing and use, and the reduction
of discharges of, SCCPs.
20
OSPAR Commission, 2009
Short chained chlorinated paraffins Monitoring Strategy
Implementation of
actions and
measures

Examination of progress in the implementation of regulations on marketing
and/or use or emission and/or discharge which have been agreed, or are
endorsed, by the Background Document
Discharges and
losses to water

Examination and assessment of trends in data on discharges from large
installations reported annually by Contracting Parties to EPER



A base-line one-off survey will be carried out
The need for EACs and BRCs will be considered
Where available, data will be periodically compiled from EC WFD monitoring
Maritime area:
Concentrations in
sediments
Concentrations in
water
21
New Court
48 Carey Street
London WC2A 2JQ
United Kingdom
t: +44 (0)20 7430 5200
f: +44 (0)20 7430 5225
e: secretariat@ospar.org
www.ospar.org
OSPAR’s vision is of a healthy and diverse North-East Atlantic ecosystem,
used sustainably
ISBN 978-1-906840-37-2
Publication Number: 397/2009
© OSPAR Commission, 2009. Permission may be granted by the publishers for the report to be wholly or partly reproduced
in publications provided that the source of the extract is clearly indicated.
© Commission OSPAR, 2009. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par
l’Editeur, sous réserve que l’origine de l’extrait soit clairement mentionnée.
Agenda item 6 (ASMO)
Agenda item 5 (HSC)
ASMO 01/6/10 – HSC 01/5/6-E
Original: English
English only
OSPAR CONVENTION FOR THE PROTECTION OF THE MARINE ENVIRONMENT OF THE
NORTH-EAST ATLANTIC
MEETING OF THE ASSESSMENT AND MONITORING COMMITTEE (ASMO)
OSTEND: 26-30 MARCH 2001
MEETING OF THE HAZARDOUS SUBSTANCES COMMITTEE (HSC)
STOCKHOLM: 2 - 6 APRIL 2001
______________________________________________________________________________________
Draft OSPAR Background Document on Short Chain Chlorinated Paraffins
Presented by Sweden
Background
1.
OSPAR 1998 adopted the OSPAR Strategy with regard to Hazardous Substances (reference number:
1998-16), which lists short chained chlorinated paraffins (SCCP) as a group of chemicals for priority action
(cf. Annex 2 of this strategy).
2.
OSPAR 1999 a greed on a 1999 upda te of t he O SPAR Action Plan 1998 – 2003. T his upda te
identified (i) SCCP as a group of hazardous substances for the purpose of the development of programmes
and measures; (ii) the various activities to be carried out under OSPAR in this context.
3.
The draft O SPAR B ackground D ocument on S CCP at A nnex 1 t akes i nto a ccount t he " Interim
Guidance on B ackground Documents on P riority-action Hazardous Substances" presented at OSPAR 2000
(cf. Annex 7 of the OSPAR 2000 S ummary Record) and generally uses the basic structure proposed in this
document: ( a) I dentification of s ources a nd pa thways t o t he m arine e nvironment; ( b) M onitoring da ta,
Quantification of sources and Assessment of the extent of problems; (c) Desired reduction; (d) Identification
of possible measures; (e) Choice for action/measures.
4.
PDS 2000, INPUT 2001, ( OIC 2001) and SIME 2001 e xamined this draft background document, the
results of which are reflected in an extract of their respective (draft) Summary Record.
Action Requested
5.
ASMO an d H SC ar e i nvited t o ex amine an d, as t hey deem appropriate, t o f urther e laborate t he
attached draft OSPAR background document with a view to forwarding the draft background documents to
OSPAR 2001.
1
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
ANNEX 1
Draft OSPAR Background Document On Short Chain Chlorinated Paraffins
Short Chain Chlorinated Paraffins
1.
In PARCOM Decision 95/1, Contracting Parties ag reed ( with r eservations f rom P ortugal 1 and t he
United Kingdom) on t he phasing out of short chained, highly chlorinated paraffins, in particular those with
carbon chain length between 10 a nd 13 a nd a chlorination level of > 50%. ”Chlorinated paraffins” are here
defined as mixtures of c ompounds t hat a re m anufactured by t he c hlorination of n -paraffins w ith c arbon
chain l ength be tween a nd i ncluding 10 a nd 36 a nd w ith a c hlorination de gree be tween 10 and 72% by
weight. ”SCCP” are defined as chlorinated paraffins with carbon chain length between and including 10 and
13 and with a chlorination degree of more than 48% by weight.
2.
Occurrence of Short Chain Chlorinated Paraffins (SCCP) in the aquatic environment of industrial and
non-industrial ar eas as w ell as i n aq uatic an d t errestrial o rganisms w ere reasons for concern. Further
justifications w ere t he p ersistent an d b ioaccumulative p roperties o f t hese su bstances, t ogether w ith t hem
being t oxic t o a quatic or ganisms and carcinogenic t o r ats an d m ice. I t w as co nsidered t hat l ess
environmentally hazardous substitutes were available for most major applications.
3.
SCCP are also found on the OSPAR list of hazardous substances identified for priority action set out
in Annex 2 of the Strategy.
4.
The f ollowing s ubstance i nformation i s g iven i n t he f inal r isk a ssessment (1999), within the
framework of t he European Union ( EU) Existing Substances Regulation ( 793/93/EEC), f or ‘ typical’ C10-13
chloroalkanes (short chain length chlorinated paraffins):
CAS No
85535-84-8
Molecular formula
CxH(2x-y+2)Cly, where x = 10 to 13 and y = 1 to x
Synonyms
Alkanes, chlorinated; alkanes (C10-13), chloro-(50-70%); alkanes (C10-12),
chloro-(60%); chlorinated alkanes; c hlorinated pa raffins; ch loroalkanes;
chlorocarbons; polychlorinated alkanes; paraffins-chlorinated.
1.
Sources of Short Chain Chlorinated Paraffins and its pathways to the marine environment
1.1
Production and use in the European Community
5.
According to the EU risk assessment, C10-13 chloroalkanes were manufactured by two producers within
the EU, and with a total production of < 15 000 tonnes/year (1994). The main uses were in metal working
fluids, as plasticiser in paints, coatings and sealants, as flame retardant in rubbers and textiles, and in leather
processing (fat liquoring).
6.
Recent data shows that the corresponding use of SCCP has been reduced from 13 000 tonnes in 1994
to 4 000 tonnes in 1998 (Chlorinated Paraffins Sector Group of CEFIC, 1999; table 1 below). The main use
1998 is still in metal working fluids, in spite of a considerable reduction of 7,362 tonnes. The different uses
in products mentioned in the PARCOM de cision 95/ 1 ha ve a lso de clined considerably. O verall t here ha s
been a reduction by nearly 70 per cent over the period 1994 to 1998, highly due to voluntarily agreements by
industry.
7.
The unspecified group “ other” i s i ncreasing considerable f rom 100 t onnes i n 1994 t o 648 t onnes i n
1998. However, this category may have been used to categorise tonnage where manufacturers are not sure of
the exact uses further down the supply chain, and/or to render an account for some earlier not known uses.
Therefore, an increase in other uses does not necessarily mean t hat t hese ar e different f rom t hose al ready
identified. It could also be a difference in the basis for reporting between 1994 and 1998. On the other hand,
it is not possible to rule out new product developments using SCCPs. Further, the former phased out use as
plasticisers in PVC is again noted.
1
Portugal lifted its reservations at OSPAR/MMC 1998.
2
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
8.
In 1998, about 50 per cent of European s ales a nd a bout 10 pe r c ent of e ach M edium C hain
Chlorinated P araffins ( MCCP) an d L ong C hain C hlorinated P araffins ( LCCP) sal es h ave b een used for
formulation of metal working fluids (Chlorinated Paraffins Sector Group of CEFIC, 1999).
Table 1: Use of short-chained (s) in Europe (Euro Chlor, 1999)
Application
Metal working fluids
Paints, coatings and sealants
Rubber/flame retardants/
Leather fat liquors
Textile/polymers (other than PVC)
PVC Plasticisers
Other
Total
tonnes/year in 1994
9 380
(71,02 %)
1 150
(8,71 %)
695
(5,26 %)
1 310
(9,91 %)
390
(2,95 %)
183
(1,4 %)
100
(0,75 %)
13 208
tonnes/year in 1998
2 018
(49,5 %)
713
(17,5 %)
638
45
(15,7 %)
(1,1 %)
13
648
4 075
(0,3 %)
(15,9 %)
There is no specific information on the use category “Other”.
9.
It has not, within the scope of this document, been possible to obtain information on t he amount of
SCCP imported into the European Community. Hence, it has not been possible to estimate use categories for
imported SCCP. Neither has it been possible t o get any f igures on t he amounts of SCCP entering t he EU
through i mported g oods. A ccording t o a r ecent r eport ( 1999), the t otal pr oduction of S CCP, M CCP a nd
LCCP in China 1997 was about 100 000 tonnes. Even if only a very small fraction reaches EU, e.g. through
imported goods, it can be significant amounts.
1.2
Emissions and discharges
10. The main sources, identified in the EU risk assessment as h aving the potential for releases to water,
sediment an d s ewage s ludge a re pr oduction s ites f or SCCP, pr oduction s ites f or the formulation of metal
working f luids a nd leather finishing agents, as well as metal w orking an d l eather f inishing p lants. Met al
working p lants ar e al so so urces f or r eleases t o l andfills, like leather finishing pl ants a re t o a ir. R ubber
working plants are emitting to water, air and soil. Of these, the use of metal working fluids still is by far the
largest source of releases into the environment.
11. As considered in PARCOM Decision 95/1, also different products, e.g. articles, containing SCCP are
potential sources of emissions. This during use, and when the goods become waste and are sent to landfill or
incinerated.
12. In the EU risk assessment, emissions from articles are discussed very briefly. Elaborated methods to
estimate this are lacking in the Technical Guidance Document. However, reported data on emissions from
surfaces with a paint containing SCCP could indicate that such emissions can be significant (CSTEE 1998).
1.3
Pathways to the Marine Environment
13. If SCCP reach the marine environment, they will generally do so via rivers and via the atmosphere,
from the main compartments to which releases occur. The later are sediment and surface waters in rivers,
lakes an d seas, ai r, a nd soil spread with sewage sludge. Further, r ecent r eports of hi gh l evels of SCCP i n
biological samples from the Arctic indicate t hat t hese ch emicals ar e ef fectively t ransported o ver l ong
distances.
2.
Monitoring data, Quantification of sources and Assessment of the extent of problems
2.1
Monitoring data
14. Monitoring data from the UK Risk Assessment (1999) and from Organohalogen Compounds, Volume
47 (2000) are summarised here:
Concentrations of SCCP in Surface water, Sediment, Sewage sludge
•
Levels around 0.12-1.45 µg/l have been measured in surface water in rivers from industrial areas in
the United Kingdom in year 1986.
3
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
•
Levels around 0.50-1.2 µg/l and 0.05-0.12 µg/l have been measured in two rivers in Germany in the
years 1987 and 1994, respectively.
•
Levels around 17 -83 µg /kg dr y w eight i n s ediments ha ve be en a nalysed i n r ivers i n G ermany i n
1994.
•
Surface sediments were collected up and downstream from a chlorinated paraffin production plant
in Germany in the years 1987 a nd 1994, r espectively. The measure levels ranged between 400-700
and <5-70 µg/kg dry weight, respectively.
•
Levels a round 0.017 a nd 0.7 µg /g i n s ediments ha ve be en m easured i n H amburg H arbour and in
River Lech in Germany in the year 1994, respectively.
•
Levels around 47 -65 µ g/g i n sew age sl udge h ave b een an alysed n ear a m etal w orking p lant i n
Germany. Further levels around 0.2 µg/l i n t he r un-off water f rom t he sewage plant i nto a n earby
river, and around 0.08 and 0.07 µg/l in the river water, up and downstream from the metal working
plant in year 1995.
•
Levels around 18-275 µg/kg dry weight in surface sediments have been measured in three lakes in
Canada.
•
Levels a round 0.0073 -0.29 µg /g i n s urface s ediment ha ve be en m easured i n ha rbour a reas along
Lake Ontario.
•
Levels around 0.0045 µg /g and 0.176 µg/g dry weight in surface sediments have been measured in
Lake Hazen on Ellesmere Island and in Lake Winnipeg in Canada, respectively.
•
Mean l evels ar ound 1 .8 µ g/g w ere m easured i n sed iment o f t he D etroit R iver at Lake Eire in
Canada.
•
Levels around 0.06-0.448 µg/l have been measured in final effluent from sewage treatment plants in
southern Ontario in Canada in 1998.
•
Levels 4.5 µg/kg dry weight has been measured in sediment in one lake in the Arctic.
•
An estimation of SCCP in waters in non-industrial areas compared to marine waters and industrial
areas in the United Kingdom were 0.1-0.3, 0.1-1 and 0.1-2 µg/l, respectively.
Concentrations in Biota
•
50-2,000 µg/kg SCCP has been found in seabirds (eggs), 100-1,200 µg/kg in heron and guillemot,
200-900 in herring gull, 50-200 µg/kg in sheep close to a chlorinated paraffin production plant and
40-100 µg/kg in grey seal have been measured in the United Kingdom.
•
Mussels were collected up and downstream from a chlorinated paraffin manufacturing si te in t he
United State. Measured levels had a range between 7-280 µg/kg.
•
High levels have been measured in different marine mammals in the Arctic, such as seal from Island
and w alrus f rom W estern G reenland. T he m easured c oncentrations w ere 526 and 426µg/kg wet
weight, respectively.
•
On a lipid basis, levels of 13 µg/kg were measured in human breast milk from Inuit women living in
communities on Hudson Strait in Northern Quebec.
•
Levels around 370-1400 µg/kg have been measured in beluga blubber from St. Lawrence River in
Canada.
•
Levels of 630 µg/kg, 200 µg/kg, 320 µg/kg and 460 g/kg have been measured in blubber from male
beluga co llected i n d ifferent A rctic p laces; H endrickson I sland, A rivat ( Western Hudson Bay),
Sanikiluaq (Belcher Island area in southern Hudson Bay) and in Pangnirtung (south eastern Baffin
Island), respectively.
Concentrations of chlorinated paraffins (C6-C16, C10-C20 and C15-C17 respectively) in Biota
•
On a lipid basis, levels of around 1,500 µg/kg chlorinated paraffins (C6-C16) have been measured in
herring(muscle), in Bothnian Sea, in the Baltic and in Skagerack in Sweden in the years 1986 and
1987.
•
High concentrations of chlorinated paraffins (C6-C16) have also been measured in rabbit and moose
in Sweden in year 1986, 2,900 and 4,400 µg/kg, respectively on a lipid basis.
4
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
2.1
•
On a lipid basis, levels of around 130 and 280 µg/kg chlorinated paraffins (C6-C16), respectively,
have be en m easured i n r inged s eal bl ubber f rom K ongsfjorden, Svalbard in the year 1981 and in
grey seal blubber from the Baltic Sea during 1979-85.
•
Levels of chlorinated paraffins (C6-C16) of around 1000 µg /kg and 570 µg /kg, r espectively, ha ve
been m easured i n w hitefish m uscle i n L ake S torvindelns, L apland, i n S weden and in arctic char
muscle in Lake Vättern, central Sweden in the years 1986 and 1987.
•
Levels o f ch lorinated p araffins ( C6-C16) of a round 140 µg /kg a nd 530 µg/kg, respectively, have
been measured in reindeer suet and in osprey muscle in Sweden in the year 1986.
•
Levels of chlorinated paraffins (C10-C20) up to 200 µg/kg in fish, 100-12,000 µg/kg in mussels.
•
Stern e t. a l. not ed t hat t he A rctic f ormula g roup pr ofiles s howed hi gher pr oportions of the lower
chlorinated congeners (Cl5-Cl7), suggesting that the major source of contamination to the Arctic is
via long range atmospheric transport. I St. Lawrence beluga, the formula group profile more closely
resembles that of PCA-60, which implies local sources of PCAs.
Quantification of sources
Releases to the environment
15. The ESR risk assessment concluded that risk reduction in metalworking would eliminate 98% of the
total environmental burden. The UK risk assessments contains a r ow of release estimations, made by using
various models and assumptions. In summary they indicate the following releases of SCCP in the EU:
•
0.4 t on/year t o a ir, a pportioned t o r ubber f ormulations < 0.012 t on/year, l eather f ormulations
0.0039 ton/year and leather use 0,390 ton/year.
•
1,784 tonnes/year to water, apportioned to metal working use 1,688 t onnes/year, metal working
formulation 0,023 t onnes/year, pr oduction sites of < 0.082 t onnes/year, r ubber f ormulations
<0.012 tonnes/year, leather formulations 0.0078 tonnes/year and leather use 0,0195.
16. It should be noted that referred estimations are m ade o n r eleases f rom u ses i n E urope o f S CCP
produced in E urope 1994. B earing in mind the heavy reductions i n c orresponding us es up t o 1998, t hose
releases should be much lower today. On the other hand, there are no figures on amounts of imported SCCP
and hence, no estimations of releases from such uses.
17. There ar e n o g eneral figures on r eleases f rom pr oducts. T hese could, however, contribute
considerably to e missions t o t he e nvironment. A n e xample i s g iven by C STEE (1998) on e stimated
emissions o f n ine t onnes o n a y early E uropean scal e f rom su rfaces w ith p aint co ntaining S CCP. Other
sources, w hich c ould c ontribute t o e missions m entioned, a re pr oducts like rubber, textiles, sealants and
polymers.
Human exposure
18. In t he E U r isk assessm ent, co ncern f or ex posure o f w orkers i n metalworking and leather finishing
plants ar e ex pressed. It i s f urther c oncluded, t hat measures i dentified to protect the environment will also
reduce human exposure.
19. Up to d ate there are no reliable sci entific d ata on exposure to humans/consumers from different
products containing SCCP. The possibility of emissions from products has, among others, been expressed by
the SCTEE.
2.3
Assessment of the extent of problems
20. In the EU risk assessment, it w as f ound t hat so me m ajor ch aracteristics o f C10-13 chloroalkanes ar e
relevant f or t he assessment o f ex posure to the environment: t he C10-13 chloroalkanes are not hydrolysed i n
water; are not readily or inherently biodegradable; have a high log Kow value (4,4-8) and have an estimated
atmospheric h alf-life of 1,9 -7,2 da ys. T he hi gh l og K ow v alues i ndicates a high pot ential f or
bioaccumulation, strong sorption to sludge and sediments a nd v ery l ow m obility i n s oil. H igh
bioconcentration f actors ( ranging f rom 1 000 t o 50 000 for w hole body , w ith hi gh v alues f or i ndividual
tissues) have been reported with a variety of freshwater and marine organisms.
5
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
21. High levels of SCCP in b iological samples f rom t he A rctic could i ndicate t hat t hese ch emicals ar e
effectively transported over long distances (CSTEE 1998).
22. Tumours of the liver, thyroid a nd kidney ( male r ats on ly) w ere o bserved i n a l ifetime car cinogenic
study in rats carried out by the US NTP. (Organohalogen Compounds, Volume 47, 2000).
23. It can be concluded that all environmental contamination of SCCP is likely to represent a widespread
problem. This is due to the persistent, bioaccumulative and toxic (PBT), as well as carcinogenic properties
of SCCP. It can further be concluded that emissions from different, also diffuse sources, have the potential
to reach the maritime area. On the basis of the accessibility of data on t he amount of emissions, discharges
and losses from several sources, it is not always possible to fully estimate the degree of risk to the marine
environment. However, the absence of data to quantify emissions from each source should not be a hinder to
observe potent risks. Hence, the absence of quantifiable data does not eliminate a risk as such.
4.
Desired reduction
24. The adopted t argets f or year 2000 a nd 2004 a re out lined i n PARCOM Decision 95/ 1. According t o
this, SCCP s hould be pha sed out by 31 December 1999 i n metal working fluids and in major uses as
plasticisers in paints, as coatings and sealants and as flame retardant in rubber, plastics and textiles. The use
as plasticers in sealants in dams, and as f lame retardant in rubber in conveyor belts for the exclusive use in
underground mining, should be phased out by 31 December 2004.
25. The o bjective f or S CCP, w ith r egard t o t he O SPAR S trategy f or H azardous S ubstances, is to make
every endeavour to move towards the target of discharges, emissions and losses of hazardous substances by
the year 2020 with the ultimate aim of achieving concentrations in the marine environment close to zero.
5.
Identification of possible measures
5.1
Measures within the European community
26. The C10-13 chloroalkanes ar e acco rding t o a r ecent d ecision ( in 2 5th ATP of 67/548) cl assified as
Dangerous for the Environment, with t he s ymbol N a nd t he r isk phr ases R 50/53 ( Very t oxic t o a quatic
organisms/May cause long-term adverse effects in the aquatic environment) and Harmful, Carcinogen, cat. 3
with the symbol Xn and risk phrase R40 (Possible risk of irreversible effects).
27. The agreed conclusions of a f inal risk assessment and a r isk reduction strategy within the framework
of the EU Existing Substances Regulation (EEC)793/93 were unanimously adopted by Member States and
the Commission in July 1999.
28. The EU Commission Recommendation on a risk reduction strategy for SCCP was that limitations on
marketing and use within t he f ramework of Council Directive 76/ 769/EEC f or t he use and f ormulation of
products, in particular for metal working and l eather f inishing, s hould be c onsidered t o pr otect t he
environment. It was further concluded that these measures would reduce concern for human exposure.
29. In J uly 1999 the Directorate G eneral ( DG) E nterprise i n t he E U C ommission p resented a d raft
proposal on limitations on marketing and use on m etal working fluids and leather finishing uses of SCCP.
Member states were divided in the light of the PARCOM Decision 95/1. A draft restriction, embracing the
opportunity to t ake an immediate de cision on a ban on the us e and formulation of products for metal
working a nd l eather f inishing, w hich i n a f ew y ears c ould e mbrace pr oducts, w as a dopted by the
Commission and presented to the Council. In that draft, a paragraph on a review within three years of new
data o n em issions i s i ncluded. I n a “w hereas” p aragraph, i ntroducing t he ar ticles, references are made to
those products included in the PARCOM Decision.
5.2
Implementation of PARCOM Decision 95/1 by Contracting Parties
30. There is no satisfactory overview of the status of CPs implementation of PARCOM Decision 95/1. In
Finland and the Netherlands, national restrictions equivalent to the PARCOM Decision, have been notified.
Norway such a proposal is under consideration. In Sweden, a complete phasing out of uses of s have taken
place by voluntary means. Further, 90 pe r cent of the use of medium- and long chain chlorinated paraffins
(MCCP and LCCP) have been phased out. An almost complete phase out of s used for formulation of metal
6
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
working fluids seems to have taken place in Germany and Norway. Corresponding phasing out activities are
also reported by Belgium and UK. There is no information on phasing out activities in remaining CPs.
5.3
Alternatives to short chain chlorinated paraffins
31. MCCPs, the m edium-chain c hlorinated pa raffins (C14-C17) m ay h ave si milar u ses as S CCP and is
used as replacements for SCCP as extreme pressure ad ditives i n m etal w orking f luids, as p lasticisers i n
paint, and as additives in sealants.
32. Reading t he U K d raft r isk assessm ent o n MC CP, i n t he f ramework o f t he Existing Substances
Regulation, it is understood that some risk reduction measures may be required for uses in the production of
PVC, i n s ome pr ocess formulations of metal c utting f luids, in e mulsifiable m etal c utting/working f luids
where the spent fluid is discharged to waste water, in leather fat liquors and in carbonless copy paper during
recycling. The risk from use in oil-based metal cutting fluids may also be of concern. It is however to early
in the process to conclude what the actual proposals on measures will be. According to comments from the
UK, these considerations need to include potential implications of other substitutes to SCCP.
33. LCCPs, the long chained chlorinated paraffins have, at least in Sweden, been used in some demanding
applications in metal working fluids instead of SCCP. LCCP is also suggested as replacements to SCCP in
the leather industry as well as in paint and coatings, in sealants and rubber.
34. A separate document for MCCP and LCCP is being developed by Germany within the framework of
OSPAR. 2
35. Alkyl phosphate esters and sulfonated fatty aci d est ers m ay f unction as r eplacements f or S CPP as
extreme pressure additives in metal working fluids. Natural animal and vegetable oils are alternatives to in
the leather i ndustry. In paint and coatings, phthalate esters, polyacrylic esters, d iisobutyrate as well as
phosphate and boron containing compounds are suggested as replacements. Phthalates esters are alternatives
for u se i n seal ants. A lternatives as f lame r etardant i n r ubber, t extiles an d P VC ar e an timony t rioxide,
aluminium hy droxide, a crylic pol ymers a nd phos phate c ontaining c ompounds. These substances are by
Sweden c onsidered as less harmful than chlorinated p araffins. S till, t here m ight b e u ses f or w hich t hese
alternatives do n ot f ulfil al l t echnical an d secu rity d emands. N either m ay co st f or su bstitution b ee
proportional to health and environmental advantages for all types of applications. Risk reduction measures
like closed production and/or further regulation of emission limits, are some of several measures that could
be taken into account
36. It w as a greed a t t he O ECD E xpert M eeting on S CCP a nd N P/NPE, hos ted by Switzerland on
8-10 November 1999, that some form of exchange of information on s ubstitute chemicals and processes is
desirable. A password protected web site has been organised by the OECD Secretariat.
5.4
Identification of possible OSPAR measures
37. Most OSPAR C Ps w ill be bound t o ha rmonised E U-restrictions on the m arketing an d u se
(76/769/EEC) of SCCP. It is to be noted, that the phasing out of most severe uses, which are included in the
proposed regulation on SCCP, to a great extent have been phased out by voluntary means. As commented in
5.1, the proposed regulation might not include articles containing SCCP in a first step.
38. OSPAR should therefore continue to follow the outcome of EU measures, and continue to strive for
decisions, that will aim at the 2020 target. Measures should be taken both in EU and on a national scale in
CPs,.
39. The p hasing o ut o f ad ditional u ses i dentified i n t he E U r isk assessm ent an d f or w hich al ternatives
seem to be available, e.g. as fatting and softening agent i n t he l eather pr ocessing i ndustry, should also be
adopted by OSPAR.
40. New data on uses of SCCP in Europe 1998, shows an increasing category “other uses”. This category
should be studied in order to find out what uses it is composed of, taking into account the uncertainties in
data collection mentioned in paragraph 7”.
2
cf. PRAM 00/3/15
7
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
6.
Choice for action
41. Work within the Council Directive 76/769/EEC on r estrictions on m arketing a nd us e ha ve s o f ar
provided a proposal on sufficient restrictions on t he by volume most important uses of SCCP. These uses,
which are in metal working fluids and for leather finishing, also give rise to considerable emissions that can
reach the marine environment. As mentioned, the pr oposal e mbraces a f urther pos sible i nclusion of ot her
uses, e.g. in products, such as plasticisers in paints, coatings and sealants and as f lame retardant in rubber,
plastics and textiles within three years.
42. Bearing this in mind, OSPAR Contracting Parties that also are EU Member States, should strive for a
directive, w hich t akes a full i mplementation of PARCOM D ecision 95/1 into account. If possible, such a
directive should be decided upon in ongoing negotiations in the Council Working Group.
43. Recognising the r esults of t he E C’s r isk assessment, a seco ndary approach should be to e nsure t he
inclusion of the review clause. This approach should, in coming years, be followed by actions by OSPAR
Contracting Parties that also are EU Member States. These actions should aim at confirming that PARCOM
Decision 95/1 will be fully regulated in the EU.
44. The Draft Water Framework Directive l ist o n p riority su bstances i s d eveloping. I t i s t herefore
recommended that OSPAR Contracting Parties, that also are EU Member States, should endeavour at having
SCCP on that list.
45. OSPAR should consider the need for monitoring activities in order to follow up measures taken by the
EU.
46. According to reported measures, the PARCOM Decision, which should have been acted upon by the
year 2000, s eems t o ha ve be en i mplemented onl y by a f ew C ontracting P arties. A ll C ontracting P arties
should t herefore i ncrease t heir ef forts t o n ationally i mplement ag reed m easures. Measu res t o such an
implementation can also be taken by voluntary means.
47. While Contracting Parties deal with the implementation process mentioned above, attention should be
paid to recognise uses of SCCP that are earlier not known.
48. All Contracting Parties should put efforts to collect information on t he availability, and experiences
on t he us e, of t echnically and economically acceptable al ternatives t o S CCP. T his i nformation co uld
preferably, and if agreed by the OECD Secretariat, be included on the OECD web site.
49. It is obvious that MCCP already are seen as al ternatives to SCCP for certain use areas. The work so
far with an EU risk assessment of MCCP has indicated a potential need for risk reduction measures also for
some of the uses of MCCP. OSPAR should follow further work and consider the outcome of that work. In
the interim, Contracting Parties should take measures to counteract that uses of SCCP are substituted with
uses of MCCP.
50. In light of the information so far collected on M CCP and LCCP by UK (in the Risk Assessment of
MCCP) and Germany (in the OSPAR document on MCCP and LCCP), further considerations by OSPAR on
the whole Chlorinated Paraffins concept is anticipated.
51.
Finally, OSPAR should not later than 2003:
a.
review the outcome so far of:
(i)
legislative actions on SCCP within the framework of Council Directive 76/769
(ii) the (Draft) Water Framework Directive list on priority substances
(iii)
the EU Risk Assessment and the possible Risk Reduction Strategy for MCCP;
b.
consider the need for review of PARCOM Decision 95/1
c.
consider the need for further actions in order to achieve the year 2020 target.
52.
An official communication from OSPAR to the EU on decisions and recommendations on measures
on NP/NPE decided upon by the OSPAR Commission should take place. Such a document should be drafted
by lead country.
8
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
ANNEX 2
Project Sheet for the development of a draft OSPAR background document on short chain
chlorinated paraffins
Lead country
Sweden
Contact person
Eva Gustafsson
Organisation
National Chemicals Inspectorate
Address
P.O. Box 1384
Tel.
+46 8 783 11 82
Fax
+46 8 735 76 98
E-mail
evag@kemi.se
Substance(s) / group substance(s)
identified
CAS No
IUPAC name
SCCP
85535-84-8
Short chain chlorinated paraffins
Identification of priority substance by the Commission
1998
Confirmation by lead country to take up the work
1999
Draft background document available for discussion and comments
OSPAR HSC 2001
Deadline for comments of Contracting Parties and observer organisations
(electronic f ormat a ttached a s i con). C omments s hould (also) be submitted to the
Secretariat: secretariat@ospar.org (for onward transmission to the lead country)
9
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
ANNEX 3
COMMENTS ON DRAFT OSPAR BACKGROUND DOCUMENT ON SHORT-CHAINED CHLORINATED PARAFFINS (SCCP)
§
Contracting Party /
observer organisation
NL
Comments and suggestions
The N etherlands w ould l ike t o t hank S weden f or t he way in which the Dutch
comments were taken into account in the revision of the documents since the PRAM
2000 meeting in Calais.
It is the view of The Netherlands that actions by OSPAR Contacting Parties that are
also E U M ember S tates s hould al so b e b rought i nto p ractice ( beside act ion of the
individual states) by an official OSPAR communication to the EC (to be prepared by
lead country Sweden). T his el ement s hould t herefore b e i ncluded i n t he r elated
actions in the two documents.
NL
NL examination of information on monitoring in marine environment will take place
before the SIME and INPUT meetings.
UK
The UK will provide Sweden with comments on this late document subsequent
to PDS.
Action by lead country
52.
An o fficial c ommunication f rom OSPAR
to t he EU on decisions a nd recommendations on
measures o n N P/NPE d ecided u pon b y the
OSPAR Commission s hould t ake p lace. S uch a
document should be drafted by lead country.
The UK made quite extensive comments at an earlier stage and would find it helpful
to see a Project Sheet showing how they have been addressed.
Chap.
6 § 42
D
Germany supports the NL with regard to an official OSPAR communication to the
EC beside action of individual contracting parties.
See above.
Chap.
1 § 13;
D
Germany would like to stress that Eurochlor has r ecently challenged the long r ange
transport and the occurrence of CPs in remote areas as being a n atural process (PDS
00/03/23). It is stated in PDS 00/03/23 that the use in legitimate applications in these
remote regions might contribute to the presence and furthermore, that the operation of
aircraft, motor vehicles, and shipping may be valid routes for ingress of CPs from the
various applications, together with flame retardant, adhesive, sealant and paint uses.
S kindly asks Eurochlor t o present studies based
on that statement.
Chap.
6 § 41;
D
The above mentioned comment (Chap. 1, § 13) again o utlines that the b an o f these
uses by PARCOM Decision 95/1 (agreed by all OSPAR CPs but UK) is justified and
OSPAR should strive for a full implementation of PARCOM Decision 95/1 within the
EU regulation.
See para 42 and 43.
INPUT 2001
As a general principle, INPUT agreed that the background documents should include
reference to the existence (or absence) of waterborne or atmospheric input data, and
where possible with any relevant qualifications that would allow the relevant bodies
in O SPAR t o j udge i n f uture w hether a ny ne w e nvironmental m onitoring and
assessment work on inputs was desirable.
S i s l ooking f orward t o a more specific
contribution o f t he I NPUT kno wledge on these
matters.
10
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
§
Contracting Party /
observer organisation
Comments and suggestions
Action by lead country
INPUT 2001
5.4
From an editorial point of view, INPUT highlighted that lead countries should:
a.
use s tandard O SPAR t erminology with regard to ' emissions, d ischarges a nd
losses' (i.e. respectively to air, water and diffuse);
b.
use t he Q SR c onventions w ith r egard t o d ecimal p oints and thousand
separators for numbers;
c.
include, as far as p ossible, r eferences t o i nformation s ources an d t he
corresponding reference list, as their absence in certain draft background documents
made them difficult to evaluate by other Contracting Parties.
S will d o its v ery b est. A ccording to la ck o f
resources, editorial work will mainly be done after
HSC.
INPUT 2001
(discussion)
the UK delegation indicated that it w ould forward national information derived from
its monitoring results of the presence of SCCPs in the atmosphere.
Genera
l
UK
The Chapters in the Guidance for preparing background documents indicate that the
overall purpose of the background document is to compile a study of all inputs of a
selected hazardous substance to the m arine en vironment an d t o es tablish w hether
these s ources r epresent a w idespread o r l ocal p roblem; i f so, what action should be
taken.
In our view, the background document should analyse and summarise available data
in o rder t o p rovide t he b asis for t ransparent O SPAR d ecision making. Although the
draft background document on SCCPs identifies a number of relevant issues, it reads
more as a cr itique o f the E U r isk assessment and r isk r eduction strategy ( which has
been accepted by Sweden), emphasising what was not covered in these documents,
rather than summarising w hat is known about the hazardous properties and risks of
the substance. In addition, the d ocument r ecords o nly th e c riticisms f rom th e
Scientific Committee for Toxicity, Ecotoxicity a nd th e E nvironment( C STEE)
opinion and we believe th at f or th e s ake o f o bjectivity, th e o verall C STEE
conclusions should also be quoted (i.e. that the risk assessment can be considered
“the best possible solution for the environmental effects assessment and risk
characterisation…. The generation of additional information is considered essential
to increase the scientific basis of this assessment and to reduce the level of
uncertainty. Nevertheless, the conclusion of potential unacceptable environmental
risks associated to the life cycle of these chlorinated paraffins is considered
scientifically sound and in agreement with an acceptable use of the Precautionary
Principle"
12
UK
The l ast s entence s hould b e d eleted as t he r emainder o f t he p aragraph already
indicates some of the p roblems w ith e stimating th is ty pe o f e mission. I f it is
considered that more information is available, it would be helpful if the Background
Document could take steps to quantify this as appropriate.
Answers on all UK comments are separately
attached.
11
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
§
Contracting Party /
observer organisation
Comments and suggestions
13, 14
and 15
UK
These do not sit well in S ection 2 , w hich, a ccording to th e title is a bout th e
identification of sources. Paragraphs 13, 14 and 15 refer to the choice and
uncertainties in the selection of the physico-chemical data. T hese uncertainties lead
to uncertainties in the predicted environmental distribution and concentrations of the
substance and not in the sources of release. Section 3 may be a better place for these
paragraphs.
15
UK
This paragraph is rather critical of the approach taken in the EU risk assessment, but
effectively repeats some of the points made in Paragraph 14. W e would suggest that
Paragraph 15 is deleted altogether and the f ollowing t ext i s ad ded t o t he en d o f
Paragraph 1 4: “ This leads to uncertainties in the modelling of the environmental
distribution and concentrations for these types of products”.
19 a nd
23
UK
According to the CEFIC f igures, al l u ses h ave d eclined co nsiderably ap art f rom a
very small additional use as a PVC plasticiser and an increase in the “other” category
(see also comments on para 27). I t would be helpful to record in the document that
proportions have dropped from over 70% due to a significant reduction in the use in
metalworking. Some information o n ho w f ar t hese c urrent us es c ontribute t o
environmental exposure would also be useful. T his i s ve ry r elevant i n t erms o f
prioritising risks t o t he m arine e nvironment, p articularly gi ven t hat t he r isk
assessment concluded that risk reduction in metalworking and leather working would
eliminate > 98% o f the to tal e nvironmental b urden. S ome estimation of the scale of
the risks to the marine environment from these other uses should be given.
20
UK
24
UK
We would welcome further clarification as to why monitoring data, indicating that the
substances are transported o ver l ong d istances, ad ds f urther u ncertainty i n a
quantified exposure assessment.
The information requirements given, p articularly f or t he K oc, ap pear t o h ave b een
taken f rom an older version of t he E U r isk a ssessment r eport. The background
document therefore needs to b e updated with the most r ecent information. T he Koc
study was completed quite a while ago and the results were incorporated into the final
draft version of the risk assessment report (dated October 1999) that was sent to the
ECB f or f inal p ublication. T he in formation r equirements ( conclusion i) f rom that
report are given below for information:
(x) i)
Action by lead country
There is a need for further information and/or testing.
This conclusion applies to the sediment a nd s oil c ompartment for pr oduction of
short chain l ength chlorinated paraffins (sediment only), formulation and use of
metal working f luids a nd l eather f inishing p roducts, us e i n r ubber f ormulations
(sediment o nly), an d al so at the r egional l evel. The requirements are:- For soil
12
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
§
Contracting Party /
observer organisation
Comments and suggestions
Action by lead country
firstly, better information on releases to this compartment to revise the PEC
(monitoring data for soil near to sources of release could be useful).
if the revised PECs do not remove the concern, the PNEC could be revised
through toxicity testing on soil-dwelling organisms. The test strategy could be
based on the tests recommended in the Technical Guidance Document (currently
a plant test involving exposure via soil; a test with an annelid; and a test with
microorganisms).- For sediment firstly, better information on releases to this
compartment to revise the PEC (monitoring data for sediment near to sources of
release could be useful).
if the revised PECs do not remove the concern, the PNEC could be revised
through toxicity testing on sediment-dwelling organisms. The test strategy could
include firstly a long-term Chironomid test; secondly a long-term Oligochaete
test; and finally a long-term test with Gammarus or Hyalella (all using spiked
sediment).
The risk reduction measures recommended as a result of the assessment of
aquatic risks from metal working and leather finishing will also (either directly or
indirectly) have some effect on the PECs for sediment and soil. Any further
information and/or testing requirements should therefore await the outcome of
these risk reduction measures on releases to the environment.
26
UK
This needs updating to reflect current progress.
27
UK
The B ackground D ocument s hould n ot as sume t hat t he “ other u ses” ar e act ually
different from those already identified. I n our experience, the “other uses” category
can s ometimes b e m isleading a s it is o ften u sed to p ut to nnage w here t he
manufacturers etc. are not sure of the exact use of the substance (i.e. they may supply
it t o a co mpany where s everal u ses o ccur o r s upply i t t o a t hird p arty who t hen r esupply the substance for the end users). This does not necessarily mean that the uses
are different from those already identified. Some of this “apparent” increase in the
“other uses” could therefore be due to a different basis for reporting between the 1994
figures and the 1998 figures. This could be checked as part of the proposal given in
Paragraph 39 of the paper.
30
Finland
Amendment: the Finnish national restriction implementing 95/1 is not yet in force, but
it has been notified
33
UK
There is a ty po o n th e f irst lin e – it s hould b e S CCP r ather t han S CPP. T his
paragraph also refers to several possible alternatives to SCCPs but does not consider
any of the potential hazards associated with these substances (for example among the
The text is amended accordingly.
13
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
§
40
Contracting Party /
observer organisation
Comments and suggestions
UK
The la st lin e indicates t hat M CCPs sh ould n ot b e u sed a s su bstitutes f or S CCPs,
based on the emerging results of the EU risk assessment on MCCPs. This may be too
bold a statement at present as the actual risk reduction measures needed for MCCPs
are not clear at the moment (i.e. it is possible that risk reduction measures other than a
marketing and use ban could be adopted allowing continued use – it is too early in the
process to say what the actual measures might b e). W e also need to be clear on the
potential im plications o f other s ubstitutes t o m ake s ure t here i s cl ear b enefit f or
human health and the environment.
Action by lead country
alternatives ar e p hthalate es ters, m any o f w hich ar e g oing through t he E SR risk
assessment p rocess at present). This should be further elaborated and the need for
any derogations identified whereby restrictions on the use of SCCPs could constitute
greater environmental or health risks.
14
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
COMMENTS ON DRAFT OSPAR BACKGROUND DOCUMENT ON SHORT-CHAINED CHLORINATED PARAFFINS (SCCP)
Unless otherwise indicated all paragraph numbers refer to the version of the background document submitted to SPS (1) 2000.(SPS(1) 01/5/1)
1
Indicates comment made previously on version submitted to PRAM 2000 (PRAM 00/3/14-E)
§
Contracting Party /
observer organisation
UK
Comments and suggestions
Action by lead country
Previous General Comment on PRAM 00/3/14-E : I n o ur vi ew, t he b ackground
document should analyse and summarise available data in order to provide the basis
for t ransparent O SPAR d ecision making. A lthough t he d raft b ackground document
on SCCPs identifies a number of relevant issues, it reads more as a critique of the EU
risk assessment an d r isk r eduction s trategy ( which h as b een accep ted b y S weden),
emphasising what was not covered in these documents, rather than summarising what
is kno wn a bout t he ha zardous properties and risks of the substance. In addition, the
document r ecords o nly th e c riticisms f rom th e S cientific C ommittee f or T oxicity,
Ecotoxicity and the Environment( CSTEE) opinion and we believe that for the sake
of objectivity, the overall CSTEE c onclusions s hould a lso b e q uoted ( i.e. th at th e
risk assessment can be considered “the best possible solution for the environmental
effects assessment and risk characterisation…. The generation of additional
information is considered essential to increase the scientific basis of this
assessment and to reduce the level of uncertainty. Nevertheless, the conclusion of
potential unacceptable environmental risks associated to the life cycle of these
chlorinated paraffins is considered scientifically sound and in agreement with an
acceptable use of the Precautionary Principle"
Paragraph 2 7: UK notes that there have b een a n umber o f d eletions b ut is not clear
what has been d eleted. W e w ould s till lik e to s ee th e in corporation o f th e te xt
proposal f rom t he C STEE o pinion a nd s uggest th at th is is inserted at the end of
paragraph 27
Sweden agrees with the UK opinion on the purpose of
the background document. In a ccordance w ith t his,
Sweden has deleted comments that are less relevant to
the actual context.
UK
Previous comment on PRAM 00/3/14-E Paragraph 121. The last sentence should
be deleted as the remainder of the paragraph already indicates some of the problems
with e stimating this type of emission. If it is c onsidered th at m ore in formation is
available, it would be helpful if the B ackground D ocument c ould ta ke s teps to
quantify this as appropriate.
UK accepted this amendment at SPS (1) 2001
The Paragraph is deleted
UK
Previous comment on PRAM 00/3/14-E Paragraphs 13, 14 and 15. 1 These do not
sit w ell in S ection 2 , w hich, a ccording to th e title is a bout th e identification of
sources. P aragraphs 1 3, 1 4 an d 1 5 r efer t o the choice and uncertainties in the
selection of the physico-chemical data. These uncertainties lead to uncertainties in
the predicted environmental distribution and concentrations of the substance and not
The c ontent of pa ragraph 13 moved to paragraph
20, under 2.3 Assessment of the extent of problems.
Paragraphs 14 and 15 are deleted
S c annot understand w hy U K h as t o b e co mpletely
clear over ev ery deleted sentence. What ought to be
important i s t hat t he d ocument co uld b e r ed as a
background document and not as a critique of the EU
risk assessment and risk reduction strategy. Which, as
UK points out, has been accepted by Sweden.
The incorporation of the suggested CSTEE sentence,
which S reads as a cr itique, t hough a p ositive o ne,
will not help to p rovide a b asis f or tr ansparent
OSPAR decision making.
However, an inclusion or not does not add anything
to conclusions drawn. Therefore, S wants the meeting
to decide on the matter.
15
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
in the sources of release. Section 3 may be a better place for these paragraphs.
UK accepted this amendment at SPS (1) 2001
UK
Previous comment on PRAM 00/3/14-E Paragraph 15. 1 This paragraph is rather
critical of the approach taken in the EU risk assessment, but effectively repeats some
of the points made in Paragraph 14. W e would suggest that Paragraph 15 is deleted
altogether and the following text is added to the end of Paragraph 14: “This leads to
uncertainties in the modelling of the environmental distribution and
concentrations for these types of products”.
UK accepted this amendment at SPS (1) 2001
See above.
UK
Previous comment on PRAM 00/3/14-E Paragraph 19 and 23. 1 According to the
CEFIC figures, all uses have declined considerably apart from a very small additional
use as a P VC plasticiser and an increase in the “other” category (see also comments
on para 27). It would be helpful to record in the document that proportions h ave
dropped f rom ov er 70% du e to a s ignificant r eduction in th e use in metalworking.
Some information on how far these current uses contribute to environmental exposure
would also be useful. This is very relevant in terms of prioritising risks to the marine
environment, particularly given that the risk assessment concluded that risk reduction
in metalworking a nd le ather w orking w ould e liminate > 98% o f th e to tal
environmental b urden. S ome es timation o f t he s cale o f t he r isks t o t he marine
environment from these other uses should be given.
The UK notes also that the 70% reductions in metalworking uses of SCCPs are
now reflected in para graph 6 SPS(1) 01/5/4
Additionally The UK proposes the following text additions:
Paragraph 28: “The ESR risk assessment concluded that risk reduction in
metalworking would eliminate 98% of the total environmental burden”.
Paragraph 16.
It s hould b e n oted that referred
estimations are made on releases from uses in Europe
of SCCP produced in Europe 1994. Bearing in mind
the he avy r eductions i n c orresponding us es up to
1998, those releases should be much lower today.
After paragraph 23: “On the basis of the data provided, it is not possible to
quantify the degree of risk to the marine environment from the increasing
category of “other uses””
UK
Previous comment on PRAM 00/3/14-E Paragraph 20. 1 We w ould w elcome
further c larification a s to w hy m onitoring d ata, in dicating that the substances are
transported over long d istances, ad ds f urther u ncertainty i n a q uantified ex posure
assessment.
S thinks para 15 is more suitable;
15. The ESR risk assessment concluded that risk reduct
The f ollowing te xt is a dded to p ara 2 3: … O n th e
basis o f th e a ccessibility o f d ata on the amount of
emissions, discharges a nd l osses f rom s everal
sources, it is not always possible to the degree of risk
to t he marine en vironment. H owever, t he ab sence o f
data to quantify em issions f rom each s ource s hould
not b e a h inder t o o bserve p otent r isks. H ence, the
absence of quantifiable data does not eliminate a risk
as such.
The l ast s entence i s d eleted, an d the rest is
reformulated in paragraph 13.
16
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
UK accepts the deletion of this statement makes its earlier comment redundant.
UK
UK
Previous comment on PRAM 00/3/14-E Paragraph 24. 1 The i nformation
requirements given, particularly for the Koc, appear to have been taken from an older
version of the EU risk assessment report. The background document therefore needs
to be updated with the most recent information. The Koc study was completed quite a
while ag o an d t he r esults were incorporated in to th e f inal d raft v ersion o f th e risk
assessment report (dated October 1 999) t hat w as s ent t o t he E CB f or f inal
publication. T he information requirements (conclusion i) from that report are given
below for information:
(x)
i)
There is a need for further information and/or testing.
This conclusion applies to the sediment and soil compartment for production of
short chain length chlorinated paraffins (sediment only), formulation and use of
metal working fluids and leather finishing products, use in rubber formulations
(sediment only), and also at the regional level. The requirements are:
- For soil firstly, better information on releases to this compartment to revise the
PEC (monitoring data for soil near to sources of release could be useful).
- if the revised PECs do not remove the concern, the PNEC could be revised
through toxicity testing on soil-dwelling organisms. The test strategy could be based
on the tests recommended in the Technical Guidance Document (currently a plant
test involving exposure via soil; a test with an annelid; and a test with
microorganisms).
- For sediment firstly, better information on releases to this compartment to revise
the PEC (monitoring data for sediment near to sources of release could be useful).
- if the revised PECs do not remove the concern, the PNEC could be revised
through toxicity testing on sediment-dwelling organisms. The test strategy could
include firstly a long-term Chironomid test; secondly a long-term Oligochaete test;
and finally a long-term test with Gammarus or Hyalella (all using spiked sediment).
The risk reduction measures recommended as a result of the assessment of aquatic
risks from metal working and leather finishing will also (either directly or indirectly)
have some effect on the PECs for sediment and soil. Any further information and/or
testing requirements should therefore await the outcome of these risk reduction
measures on releases o the environment
.As the relevant paragraph has been deleted the proposed amendment is redundant,
but UK will await the revised background documents Sweden submits to HSC 2001
to see how any similar text has been incorporated
The p aragraph i s d eleted. T he r elevance o f s uch
information will b e r econsidered b efore th e H SC in
April 2001.
Previous comment on PRAM 00/3/14-E Paragraph 26. This needs up dating t o
Paragraph 29.
S has no comment to this.
In July 1999 th e D irectorate
17
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
UK
reflect current progress.
UK is now happy with the new paragraph 29
General (DG) Enterprise in t he E U C ommission
presented a d raft p roposal o n lim itations o n th e
marketing and use of metal working fluids and leather
finishing uses of SCCP. Member states were divided
in the light of the PARCOM Decision 95/1. A draft
restriction, e mbracing th e o pportunity to ta ke an
immediate decision o n a b an o n t he u se an d
formulation of products for metal working and leather
finishing, w hich i n a f ew years could embrace
products, was adopted by t he C ommission a nd
presented to the Council. In that draft, a paragraph on
a review within three years of new data on emissions
is included. In a “whereas” paragraph, introducing the
articles, r eferences ar e m ade t o t hose p roducts
included in the PARCOM Decision.
Previous comment on PRAM 00/3/14-E Paragraph 27. 1 The B ackground
Document s hould n ot as sume t hat t he “other u ses” ar e actually different from those
already identified. In our experience, t he “ other u ses” cat egory can s ometimes b e
misleading as it is often used to put tonnage where the manufacturers etc. are not sure
of the exact use of the substance (i.e. they may supply it to a co mpany where several
uses occur or supply it to a third party who then re-supply the substance for the end
users). T his does not necessarily mean that the uses are different from those already
identified. S ome o f this “apparent” increase in the “other uses” could therefore be
due to a different basis for reporting between the 1994 f igures and the 1998 figures.
This could be checked as part of the proposal given in Paragraph 39 of the paper.
At SPS (1) 2001 the UK maintained its comment asking Sweden to incorporate
this in the project sheet, if not the background document. The UK now makes
the following text proposals to help reflect both viewpoints:
Paragraph 7.
“However, it should be noted that this category can often be misleading and
used to categorise tonnage where manufacturers are not sure of the exact uses
further down the supply chain. An increase in other uses does not necessarily
mean that these are different from those already identified and is more likely a
difference in the basis for reporting between 1994 and 1998. It is also not
possible to rule out new product developments using SCCPs. The former phased
out use as plasticisers in PVC is again noted.”
In our experiences, the market is constantly changing
according both to type of pr oducts a nd t o t he
technical an d/or ch emical co ntent o f cer tain types of
products. S weden can t herefore n ot simply a ssume
that no product developments have taken place on the
market since 1998 when it comes to different uses of
SCCPs..
Paragraph 40 (addition to final sentence):
7.
The uns pecified gr oup “ other” i s increasing
considerable from 100 t onnes i n 1994 t o 648 tonnes
in 1998. However, this category may have been used
to categorise tonnage where m anufacturers ar e n ot
sure of the exact uses further down the supply chain,
and/or t o r ender an acco unt f or s ome ear lier not
known uses. Therefore, an increase in other uses does
not n ecessarily m ean t hat these ar e d ifferent f rom
those already identified. It could also be a d ifference
in the basis for reporting between 1994 and 1998. On
the o ther h and, it is n ot p ossible to r ule o ut n ew
product d evelopments us ing S CCPs. Further, t he
former phased out use as plasticisers in PVC is again
noted.
Reasonable.
18
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
UK
“…while recognising the uncertainties in paragraph 7”
40. “ …. This category should be studied in order to
find out w hat u ses it is c omposed o f, ta king in to
account the uncertainties in data collection mentioned
in paragraph 7”.
Previous comment on PRAM 00/3/14-E Paragraph 33. 1 There is a typo on the
first line – it should be SCCP rather than SCPP. This paragraph also refers to several
possible a lternatives to S CCPs b ut d oes n ot c onsider a ny of the potential hazards
associated w ith t hese s ubstances (for ex ample am ong t he al ternatives ar e p hthalate
esters, many of which are going through the ESR risk assessment process at present).
This should be further elaborated and the need for any derogations identified whereby
restrictions on the u se o f S CCPs c ould c onstitute g reater e nvironmental o r h ealth
risks.
Thank you for being observant!
Paragraph 35. Alkyl phosphate esters and sulfonated
fatty acid esters may f unction as r eplacements f or
SCPP as extreme pressure additives in metal working
fluids. Natural animal an d v egetable o ils ar e
alternatives in leather industry. In paint and coatings,
phthalate esters, polyacrylic es ters, d iisobutyrate as
well as phosphate and bor on c ontaining c ompounds
are s uggested as r eplacements. P hthalate es ters are
alternatives for use in sealants. Alternatives as flame
retardant in rubber, t extiles an d P VC ar e an timony
trioxide, aluminium hydroxide, acrylic polymers and
phosphate containing compounds. T hese s ubstances
are b y S weden co nsidered as l ess h armful t han
chlorinated p araffins. S till, th ere m ight be uses fo r
which th ese a lternatives d o n ot fulfil all technical
demands.
35. “ …all technical and security demands. Neither
may c ost f or s ubstitution b e proportional to health
and en vironmental ad vantages f or al l types of
applications. R isk r eduction m easures lik e c losed
production a nd/or f urther r egulation of emission
limits, are some o f s everal m easures t hat co uld b e
taken into account
Paragraph 35: UK will accept the new paragraph 35 with the addition of the
following text to the sentence:
“………and it is important that the potential human health, environmental and
costs implications are understood”
UK
Previous comment on PRAM 00/3/14-E Paragraph 40. 1 The last line in dicates
that M CCPs sh ould n ot b e u sed a s s ubstitutes f or S CCPs, b ased o n t he e merging
results o f t he E U r isk as sessment o n MC CPs. T his may be too bold a statement at
present as the actual risk reduction measures needed for MCCPs are not clear at the
moment (i.e. it is possible that risk reduction measures other than a marketing and use
ban could be adopted allowing continued use – it is to o e arly in th e p rocess to s ay
what the actual measures m ight b e). W e al so n eed t o b e cl ear o n t he p otential
implications of other substitutes to make sure there is clear benefit for human health
and the environment.
UK feels proposes the following text amendment:
Paragraph 49 (last sentence):
According to data presented so far, Sweden is of the
opinion that it is w ise to h ighlight p ossible f uture
restrictions. Such in formation c an b e in cluded in a
base for industrial in vestment d ecisions. I t g ives
industry th e p ossibility to ta ke a possible future
restriction into account.
S f inds th e s entence to b e too unspecific within the
context in question. According t o t he S o pinion,
19
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
“In line with the principles of the Hazardous Substances Strategy Contracting
parties should strive to ensure that only acceptable substitutes are used”
UK
Paragraph 13: The UK proposes the following text amendment to the third
sentence:
“Further, recent reports of high levels of SCCP in biological samples from the
Arctic could indicate that these chemicals are effectively transported over long
distances.”
“could” has been added.
Paragraph 23: The UK proposes the following text to be added at the end of this
paragraph:
“Although it should be noted that the measures identified by the European
Community proposals will address up to 98% of known exposure”
15.
The E SR r isk as sessment co ncluded that risk
reduction in metalworking w ould e liminate 9 8% o f
the total environmental burden.
UK
Paragraph 25: UK thinks that it is important that the OSPAR objective with
regard to hazardous substances is fully quoted and insists on the following text
amendment to paragraph 25
“The objective for SCCP, with regard to the OSPAR Strategy for Hazardous
Substances, is to make every endeavour to move towards the target of
discharges, emissions and losses of hazardous substances by the year 2020 with
the ultimate aim of achieving concentrations in the marine environment close to
zero”.
Taken. See new para 25.
UK
Paragraph 42: UK makes the following text proposal
“OSPAR Contracting Parties that are also EU Member States agree to urge the
European Commission to make proposals such that Council Directive
76/769/EEC takes full account of the identified risks of the use categories given
in PARCOM Decision 95/1”
Not accep ted. D oes U K w ant its reservation on
Decision 95/1 to be reflected?
Paragraph 43: The UK proposes the following text amendment:
“However, recognising the results of the EC’s risk assessment, a secondary
approach should be to ensure the inclusion of the review clause. This approach
should, in coming years, be followed by actions by OSPAR Contracting Parties
that also are EU Member States. These actions should aim at confirming that
PARCOM Decision 95/1 will be fully regulated in the EU. Initiatives to such
actions can be taken by lead country.”
Accepted. See the inclusion in para 43.
UK
Paragraph 44 (second sentence):
UK makes the following text proposal:
“It is therefore recommended that OSPAR Contracting Parties that are also EU
Member States agree to urge the European Commission to include SCCPs on
that list”.
Not accepted.
UK
Paragraph 47: UK will ask Sweden and CEFIC at HSC how work to identify
UK is of course welcome to p ut th at q uestion a t th e
UK
Feb
2001
"acceptable" is spelt out in paragraph 48.
20
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
uses in the category ‘other uses’ has progressed.
HSC-meeting.
However, a s U K a ssumes, t his work is not
proceeding. Most of t he p aragraph i s t herefore
deleted. S has r econsidered i ts pr oposal, a nd finds it
more appropriate to deal with such a problem within a
technical adaption process within the directive
76/769/EEC.
UK
Paragraph 49: UK proposes the following text amendment to the final sentence:
“In the interim, Contracting Parties should strive to ensure that only acceptable
substitutes are used”
According to the S view, this is mainly an obligation
for Industry.
UK
Paragraph 51: UK thinks that to be consistent with the timing of a review for
NP/NPEs, the review of these various outcomes should take place not later than
the 2002/2003 intersessional
and proposes the following text amendment:
(i) legislative actions on SCCP within the framework of Council Directive 76/769
and the need for review of PARCOM Decision 95/1.”
21
OSPAR Commission
ASMO 01/6/10 – HSC 01/5/6-E
Oppdragsgivere
Rapport 827/01
Statens forurensningstilsyn
Statens næringsmiddeltilsyn
Utførende institusjon
Norsk institutt for vannforskning
Cl
C
Cl
Cl
l
Halogenerte organiske miljøgifter og
kvikksølv i norsk ferskvannsfisk,
1995–1999
Cl
C
l
Cl
O
Cl
Cl
O
Cl
Br
Cl
Cl
C
l
O
C
l
Cl
Br
Br
Br
Cl
Cl
Cl
Cl
TA-1813/2001
 Eirik Fjeld
RAPPORT
Norsk institutt for vannforskning
Hovedkontor
Sørlandsavdelingen
Østlandsavdelingen
Vestlandsavdelingen
Akvaplan-niva
Postboks 173, Kjelsås
0411 Oslo
Telefon (47) 22 18 51 00
Telefax (47) 22 18 52 00
Internet: www.niva.no
Televeien 3
4979 Grimstad
Telefon (47) 37 29 50 55
Telefax (47) 37 04 45 13
Sandvikaveien 41
2312 Otestad
Telefon (47) 67 57 64 00
Telefax (47) 62 57 66 53
Nordnesboder 5
5008 Bergen
Telefon (47) 55 30 22 50
Telefax (47) 55 30 22 51
9296 Tromsø
Telefon (47) 77 75 03 00
Telefax (47) 77 75 03 01
Tittel
Løpenr. (for bestilling)
Dato
Halogenerte organiske miljøgifter og kvikksølv i norsk ferskvannsfisk, 1995–1999
4402-01
august 2001
Prosjektnr.
Undernr.
Sider
Pris
O-98106
48 s. + vedlegg
Forfattere
Fagområde
Distribusjon
Eirik Fjeld1, Jon Knutzen1, Einar M. Brevik1, Martin Schlabach2,
Trond Skotvold3 , Anders R. Borgen2 og Marie L. Wiborg4
1NIVA, 2NILU, 3Akvaplan-niva, 4SNT
Miljøgifter
Fri
Geografisk område
Trykket
Norge
NIVA
Oppdragsgiver(e)
Oppdragsreferanse
Statens forurensningstilsyn (SFT)
Statens næringsmiddeltilsyn (SNT)
Per Erik Iversen
Marie Louise Wiborg
Sammendrag
Det har blitt gjort en kartlegging av halogenerte organiske miljøgifter, samt supplerende registreringer av kvikksølv, i
norsk ferskvannsfisk fanget i 1995–1999. Undersøkelsen tar for seg en rekke organiske miljøgifter, med hovedvekt på
polyklorerte bifenyler (PCB, inkludert dioksinliknende), DDT (m. nedbrytningsprodukter), dioksiner (PCDD) og
dibenzofuraner (PCDF), polyklorerte naftalener (PCN), toksafener, bromerte flammehemmere (PBDE), polyklorerte
parafiner (PCA). Materialet omfatter prøver fra nær 100 fiskebestander (ørret, røye, abbor, gjedde og lake) fra 54
innsjøer fra fastlands-Norge og Bjørnøya. Samtlige bestander ble analysert for standard PCB (di- og mono-orto),
DDT og kvikksølv; de øvrige analysene ble gjort på et begrenset utvalg fra 24 lokaliteter. Nivåene av organiske
miljøgifter var relativt lave i de fleste bestandene med følgende unntak: Mjøsa og Randsfjorden hadde generelt høye
nivåer av PCB og DDT, særlig i fiskespisende rovfisk som storørret og lake (lever). Leverprøvene av lake fra Mjøsa
viste svært høye nivåer av bromerte flammehemmere og indikerer at Mjøsa er betydelige påvirket av lokale
forurensninger. Røye fra Ellasjøen, Bjørnøya, hadde særdeles høye nivåer av PCB og DDT, og betydelig forhøyde
nivåer av bromerte flammehemmere, sammenliknet med røye- og ørretbestander på fastlands-Norge. I Mårvatn, AustAgder, hadde ørreten er relativt høyt innhold av dioksiner i forhold til PCB, trolig på grunn av lokale dioksinforurensninger. På fastlands-Norge var det en tendens til en gradient i konsentrasjonene av de fleste organiske
miljøgiftene, med de høyeste nivåene i Sør-Norge og avtakende verdier nordover. Kvikksølv-analysene bekrefter
tidligere funn med en nord-sør gradient, med tildels høye verdier i fiskespisende rovfisk som storørret, lake og gjedde
i Sør- og Øst-Norge. Statens næringsmiddeltilsyn har vurdert resultatene og konkluderer med at nivåene av
halogenerte organiske miljøgifter i ferskvannsfisk generelt sett er så lave at de ikke utgjør noe helsemessig problem ut
fra dagens kunnskap, men nivåene i storørret fra Mjøsa anbefales å undersøkes nærmere. Det frarådes imidlertid å
spise lever av lake fra Mjøsa (hovedbassenget og Furnesfjorden), samt Randsfjorden. Kvikksølvnivåene tilsvarer de
nivåer som er funnet tidligere, og gir derfor ikke behov for andre kostholdsråd for ferskvannsfisk enn de som tidligere
er gitt.
Fire norske emneord
1.
persistente organiske miljøgifter
2.
kvikksølv
3.
ferskvannsfisk
4.
Norge
Fire engelske emneord
1.
persistent organic pollutants
2.
mercury
3.
freshwater fishes
4.
Norway
Prosjektleder
Forskningsleder
Forskningssjef
Eirik Fjeld
Sigurd Rognerud
ISBN 82-577-4044-6
Nils Roar Sæltun
NIVA 4402-01
Halogenerte organiske miljøgifter og kvikksølv i
norsk ferskvannsfisk, 1995–1999
av
Eirik Fjeld, Jon Knutzen, Einar M. Brevik, Martin Schlabach,
Trond Skotvold, Anders R. Borgen og Marie L. Wiborg
NIVA 4402-01
Forord
Foreliggende undersøkelse er utført for Statens forurensningstilsyn (SFT) og Statens næringsmiddeltilsyn (SNT). Prosjektet er finansiert av disse etater, samt med interne forskningsmidler fra NIVA.
Fiskematerialet er innsamlet av en rekke lokale fiskere og kontaktpersoner, samt av personell fra NIVA.
Opparbeiding av prøver til analyser av fisk er gjort av Sigurd Øxnevad og Eirik Fjeld ved NIVA.
Analysene av PCB og DDT er utført ved NIVA, under ledelse av Einar M. Brevik, mens kvikksølv er
analysert ved NIVA under ledelse av Bente Lauritzen. Analysene av dioksiner, dibenzofuraner, non-orto
PCB, toxaphener, polyklorerte naftalener, bromerte flammehemmere og klorerte parafiner er gjort ved
Norsk institutt for luftforskning (NILU), under ledelse av Martin Schlabach. Analysene av klorerte
parafiner er gjort av Anders Røsrud Borgen (NILU). Analysene av stabile N-isotoper er gjort ved
Institutt for energiteknikk (IFE).
Ved NIVA har Eirik Fjeld vært prosjektleder. For oppdragsgivere har prosjektkontakter vært Per Erik
Iversen (SFT) og Marie Louise Wiborg (SNT).
Fiskematerialet har vært framskaffet av NIVA og Akvaplan-NIVA, samt en rekke privatpersoner og
institusjoner. Blant disse vil vi særlig nevne Fylkesmannen i Hedmark v. Tore Qvenild, Fylkesmannen i
Oppland v. Ola Hegge, Rådgivende Biologer v. Harald Sægrov, Svanhovd miljøsenter v. Paul Eric
Aspholm, Tydal Fjellstyre v. Terje Erik Garberg, Utmarksavdelingen for Akershus og Østfold v.
Øystein Toverud, Næringsmiddeltilsynet for Nord-Helgeland v. Arnold Alterskjær, Sandefjord
Kommune v. Ole Jakob Hansen, Eivind Østby (Universitetet i Oslo), Gunnar Kjørvik, Max Emil
Waalberg, Caroline Steen, Ingvild Møgster, Per Egil Knutsen, og Arne Hulsund.
Kapitelet om kostholdsråd er skrevet av Marie Louise Wiborg (SNT).
Vi vil med dette takke alle involverte privatpersoner og institusjoner for deres velvillige innsats i
prosjektet.
Oslo, september 2001
Eirik Fjeld
Prosjektleder
NIVA 4402-01
Innholdsfortegnelse
1
Innledning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Materiale og metoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Lokaliteter og arter
2.2 Innsamling og prøvetakning av fisk
2.3 Kjemiske analyser
2.3.1 Standard analyseprogram
2.3.2 Utvidet analyseprogram
2.4 Kort om miljøgiftene
2.4.1 Polyklorerte bifenyler – PCB
2.4.2 DDT, lindan og utvalgte organiske miljøgifter
2.4.3 Dioksiner
2.4.4 Polyklorerte naftalener – PCN
2.4.5 Toxafener
2.4.6 Polybromerte difenyletere – PBDE
2.4.7 Polyklorerte parafiner – PCA
2.4.8 Toksisitetsekvivalenter
2.4.9 Kvikksølv
3
Standard analyseprogram: ΣPCB7, ΣDDT mm. . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 ΣPCB7
10
3.1.1 Generelt
10
3.1.2 Innsjøer med forhøyde nivåer av ΣPCB7
11
3.2 ΣDDT
16
3.2.1 Generelt
16
3.2.2 Innsjøer med forhøyede nivåer av ΣDDT
17
15
3.3 Samvariasjoner mellom ΣPCB7, ΣDDT og trofisk nivå (δ N)
21
3.4 QCB, HCH, HCB og OCS
22
4
Andre persistente klor- og bromorganiske forbindelser . . . . . . . . . . . . . . . . . . .
4.1 Dioksiner og dibenzofuraner
4.2 non-orto PCB
4.3 Polyklorerte naftalener – PCN
4.4 Toxafener
4.5 Bromerte flammehemmere – PBDE
4.6 Polylorerte parafiner – PCA
5
Toksisitets-ekvivalenter – TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6
Kvikksølv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7
Vurdering av resultatene – kostholdsråd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8
Referanser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Vedlegg
2
2
2
3
3
4
5
5
7
7
8
8
8
8
9
9
23
23
25
27
29
31
33
NIVA 4402-01
1. Innledning
NIVA fikk i 1998 i oppdrag av Statens forurensningstilsyn (SFT) og Statens næringsmiddeltilsyn (SNT)
å gjøre en nasjonal kartlegging av nivåene av en rekke klororganiske miljøgifter i ferskvannsfisk.
Bakgrunnen var at det forelå et forvaltningsmessig behov for en mer systematisk registrering av
nivåene av klororganiske forbindelser i ferskvannsfisk, noe som ble dokumentert gjennom undersøkelser av organiske mikroforurensinger i innsjøsedimenter (Rognerud og Fjeld, 1997), det arktiske
overvåkningsprogrammet AMAP (AMAP 1998; Skotvold et al. 1997), samt nyere resultater fra spredte
lokaliteter. Med unntak for kvikksølv har det generelt vært sparsomt med kunnskap om miljøgifter i
norsk ferskvannsfisk. Dette er i motsetning til marin fisk, der man etter hvert har mye data både fra
referanselokaliteter og forurensede fjorder (Knutzen et al 1999, Solberg et al. 1999; Green et al. 2000 ).
Fram til foreliggende rapport har det kun vært gjort spredte nyere undersøkelser av nivåene av
klororganiske miljøgifter i ferskvannsfisk fra Norge. Disse viser at det kan finnes tildels betydelige
nivåer i fisk fra lokaliteter i nærheten av lokale forurensningskilder. Eksempelvis har Berg og Skåre
(1995) og Brevik et al. (1996, 2001) rapportert om markert forhøyde nivåer av DDT med
nedbrytningsprodukter i fisk påvirket av tidligere punktkilder (planteskoler), mens Schlabach og
Skotvold (1997) rapporterer om sterkt forhøyet dioksininnhold i sik belastet fra en lokal kilde i
Varanger (sinterverk, smelteverkindustri). Fra en bynær innsjø i Bergen, påvirket av lokale
forurensninger, er det funnet betydelige PCB-nivåer i ørret (Tveitavannet, data fra Naturvenforbundet
Hordaland). Fra Mjøsa og nedre deler av Drammens-vassdraget er det også rapportert om forhøyede
nivåer av PCB i fisk (Fjeld. et al. 1999a og b)
Nivåene av klororganiske miljøgifter i ferskvannsfisk fra lokaliteter uten spesielle lokale kilder, dvs.
dagens forekommende «bakgrunnsnivå», er lite studert. Ut fra sedimentundersøkelsen til Rognerud og
Fjeld (1997) kan man forvente at det finnes en nord-sør gradient i bakgrunnsnivået — med de høyeste
konsentrasjonene i kystnære områder i Sør-Norge. Arktis synes imidlertid å være særlig utsatt for
langtransporterte atmosfæriske avsetninger av klororganiske miljøgifter. På grunn av en viss flyktighet
kan slike miljøgifter fraktes med de globale luftsirkulasjon-systemene til nordlige områder, hvor
temperaturforholdene ligger tilrette for at de kondenseres og ikke lenger remobiliseres til atmosfæren
(Wania og Mackay 1993). Effektene av slik transport viser Skotvold et al. (1997) i en undersøkelse fra
Finnmark og norsk Arktis (Svalbard, Bjørnøya). Her meldes det om forholdsvis lave nivåer i Finnmark,
forhøyde nivåer i røye fra Svalbard, og ekstremt høye konsentrasjoner i en røyebestand fra Ellasjøen,
Bjørnøya. Resultatene fra Bjørnøya har blitt fulgt opp av nye undersøkelser, som bekrefter de ekstreme
nivåene i Ellasjøen (Skotvold et al. 1999) og som indikerer at både høye atmosfæriske avsetninger samt
tilførsler via ekskrementer fra hekkende sjøfuglkolonier kan bidra til de høye nivåene. I en europeisk
studie av forurensninger i høyfjellssjøer og fra Svalbard viser at det var relativt lave konsentrasjoner i to
ørretbestander fra Sør-Norge (Watne et al. 1997, Rognerud et al. 2001) sammenliknet med nivået i en
røyebestand fra Svalbard.
Med bakgrunn i de spredte undersøkelser som har vært gjort - og de svært varierende nivåene som er
rapportert - ble derfor hovedmålet til denne undersøkelsen å framskaffe en statusoversikt over nivåene
av klororganiske forbindelser i ferskvannsfisk, med særlig tanke på å etablere bakgrunnsnivåer,
dokumentere nivåene i antatt belastede innsjøer, samt å belyse variasjoner mellom arter og mellom
regioner.
Prosjektet ga også muligheten til å analyser kvikksølvnivåene i de undersøkte bestandene. Kvikksølvkonsentrasjonene i ferskvannsfisk fra Sør- og Øst-Norge er delvis høyt (Rognerud et al. 1996, Fjeld
2000, Fjeld et al. 1999a og b), og i flere lokaliteter overskrider nivåene i gjedde, storvokst abbor og
storørret EUs grenseverdier for salg til konsum, og SNT har gitt generelle kostholdsråd vedrørende
konsum av slik fisk. Da det ikke skjer noen rutinemessige overvåkning av kvikksølv i ferskvannsfisk ble
det valgt å inkludere kvikksølvanslyser i prosjektet—slik at supplerende data kunne framskaffes.
1
NIVA 4402-01
2. Materiale og metoder
2.1
Lokaliteter og arter
For å skaffe en nasjonal oversikt, samt belysning av regionale variasjoner og forskjell mellom arter, ble
samlet inn prøver av 97 forskjellige bestander av ulike arter fisk (ørret, røye, abbor, gjedde, lake og
lagesild) fra i alt 61 forskjellige lokaliteter/stasjoner over hele landet (Mjøsa med 4 stasjoner). Ved
utvelgelsen av lokalitetene ble det tatt hensyn til de atmosfæriske deposisjonsmønstre kjent fra NIVAs
undersøkelser over organiske mikroforurensninger i innsjøsedimenter og spormetaller i vann
(Rognerud og Fjeld 1997; Skjelkvåle et al. 1996). Det er derfor statistisk sett en overrepresentasjon av
innsjøer fra de antatt mer belastede områdene i Sør-Norge. På grunn av ressursmessige hensyn måtte
mye av innsamlingen av materialet skje ved frivillig innsats fra lokale fiskere, eller i forbindelse med
andre pågående prosjekter, noe som har lagt visse begrensninger på innsjøutvalget.
Det ble primært lagt vekt på ørret, røye, abbor og gjedde, da det er knyttet store brukerinteresser til
disse artene. Materialet ble også supplert med lake, da denne arten har spesielle indikatoregenskaper i
kraft av lang levetid og fettrik lever. Lagesild fra Mjøsa ble også inkludert da det er kjent at denne arten
her kan akkumulere betydelige konsentrasjoner av klororganiske miljøgifter, samt at den er en viktig
byttefisk for storørretbestandene i innsjøen.
De undersøkte artene har forskjellig geografisk utbredelsesmønster og prøveutvalget vårt avspeiler
dette. Ørret og røye har en vid geografisk utbredelse, mens de andre artene har en østlig utbredelse og
finnes i hovedsak i sørøstlige Norge samt Troms og Finnmark (lake finnes også i Trøndelag, lagesild
finnes kun på Østlandet). På grunn av sin utbredelse og popularitet som mat- og sportsfisk er ørret den
arten som er best representert i vårt prøveutvalg, dernest kommer abbor, gjedde, lake, røye og lagesild.
I innsjøer hvor både ørret og røye var tilstede ble det ut fra budsjettmessige grunner fortrinnsvis tatt
prøver av ørretbestandene.
Tabell 1. Antall bestander analysert, fordelt på de ulike artene.
Art
Antall
Ørret
34
Røye
11
Abbor
26
Gjedde
13
Lake
12
Lagesild
Total
2.2
1
97
Innsamling og prøvetakning av fisk
All fisk ble frosset ned like etter innfanging og ble sendt til NIVA hvor den ble oppbevart i dypfryser
(-18 °C) inntil uttak av vevsprøver.
2
NIVA 4402-01
Under prøveopparbeidelsen ved NIVA ble fisken målt og veid, og strukturer til alderbestemmelse ble
dissekert ut. Under kontrollerte, ukontaminerte forhold ble det dissekert ut skinn- og beinfrie prøver av
skjelettmuskulaturen (muskelfilet) fra hver fisk. Hver prøve som skulle analyseres for kvikksølv ble
pakket inn i ren aluminiumsfolie som igjen ble lagt inn i en tett plastpose med lynlås. For analyser av
klororganiske mikroforurensninger ble det preparert blandprøver av skjellettmuskulaturen og
leverprøver. Hver blandprøve besto av jamnstore prøver, og det ble tilstrebet at hver blandprøve skulle
bestå av omlag 10-20 individer. Blandprøvene ble lagret på glødede glass, forseglet med glødet
aluminiumsfolie. Alle prøvene ble oppbevart i fryser ved -18°C inntil de ble sendt til laboratoriet for
analyse.
2.3
Kjemiske analyser
2.3.1
Standard analyseprogram
Standard PCB, DDT mm.
Analysene av mono-orto og di-orto PCB, DDT med nedbrytningsprodukter (p,p’-DDT, p,p’-DDE, p,p’DDD), QCB (pentaklorbenzen), HCH (α- og γ-hexaklor-cyclohexan), HCB (hexaklorbenzen) og OCS
(oktaklorstyren) ble gjort ved NIVAs laboratorium med «NIVA-metode nr. H 3-4, ekstraksjon og
opparbeidelse av klororganiske forbindelser i biologisk materiale». En publisert metodebeskrivelse
finnes hos Brevik et al. (1995). Metoden er akkreditert av Norsk Akkreditering i henhold til EN 45 001.
I korthet består metodikken i at prøvene tilsettes en indre standard og ekstraheres med organiske
løsemidler. Ekstraktene gjennomgår ulike rensetrinn for å fjerne interfererende stoffer. Til slutt
analyseres ekstraktet ved bruk av gasskromatograf utstyrt med elektoninnfangingsdetektor, GC/ECD.
De klororganiske forbindelsene identifiseres utfra de respektives retensjonstider på to kolonner med
ulik polaritet. Kvantifisering utføres ved hjelp av indre standard.
Kvikksølv
Kvikksølv ble analysert med «NIVA metode nr. E 4-3, Bestemmelse av kvikksølv i vann, slam og
sedimenter og biologisk materiale med Perkin-Elmer FIMS-400». Metoden baserer seg på kalddamp
atomabsorbsjonspekrometri. Benyttede instrumenter er en Perkin-Elmer FIMS med P-E AS-90
autosampler og P-E amalgeringssystem. De biologiske prøvene frysetørres forut for autoklavering med
salpetersyre, hvor det organiske bundet kvikksølvet oksideres til toverdig kvikksølv på ioneform
(Hg2+). Det ioniske kvikksølvet reduseres til metallisk kvikksølv (Hg0) med SnCl2, og en inert
bæregass (argon) transporterer kvikksølvet til spekrofotometeret. Kvikksølvet oppkonsentreres i et
amalgeringssystem. Nedre grense for faste prøver er 0,005 µg/g.
Stabile isotoper
For bestemmelse eller indikasjon på fiskens plass i næringskjedene ble det analysert på stabile
nitrogenisotoper (14N og 15N) i prøvene. Det er allment akseptert at det relative 15N-innholdet i
organismer, målt som δ15N, øker med gjennomsnittlig 3,4‰ for hvert trofiske nivå (Minagawa and
Wada 1984).
δ15N = [(Rsample/Rstandard)-1] · 1000
Her er Rsample forholdet 14N:15N i prøven, mens Rstandard er tilsvarende forhold i atmosfærisk nitrogen.
Det er antatt at den underliggende isotop-fraksjoneringsmekanismen er knyttet til forskjeller i
vibrasjonsenergi mellom 14N- og 15N-aminogrupper og de kinetiske forkjeller dette igjen innebærer for
transaminering- og deamineringsrelasjoner i aminosyresyntesen (Minagawa and Wada 1984).
Kunnskapen om at det relative 15N-innholdet i organismene øker oppover i nærings-kjedene har vært
benyttet til å studere sammenhengen mellom bioakkumulerbare miljøgifter og organismenes trofiske
3
NIVA 4402-01
posisjon, særlig i undersøkelser med fokus på klororganiske miljøgifter i akvatiske næringskjeder
(Spies et al. 1989, Vander Zanden et al. 1997, Kidd et al. 1998).
Stabile nitrogenisotoper (14N, 15N) og karbonisotoper (12C, 13C) ble analysert ved Institutt for
energiteknikk (IFE). Forholdet mellom disse isotopene kan utrykkes som den prosentvise økningen av
henholdsvis 15N og 13C sammenliknet med en standard. δ13C-resultatene ble ikke benyttet i denne
undersøkelsen, men er gitt i vedlegget.
For bestemmelse av δ15N og δ13C 1.0 mg tørket prøvematerialet veid inn og overført til en tinnkapsel.
Kapselen lukkes og plasseres i prøveveksleren på en Carlo Erba NCS 2500 elementanalysator. Prøvene
forbrennes med O2 og Cr2O3 ved 1700 °C, og NOx reduseres til N2 med Cu ved 650 °C.
Forbrenningsproduktene N2, CO2 og H20 separeres på en 3 m lang Poraplot Q kolonne. N2 og CO2
overføres direkte til et Micromass Optima isotop massespektrometer for bestemmelse av δ13C og δ15N.
Duplikater analyseres rutinemessig ca. for hver 10. prøve. Før forbrenning er prøvematerialet tørket ved
60 °C og homogenisert i en agatmorter. Interne standarder analyseres samtidig med prøvematerialet for
ca hver 10. prøve. δ14N resultatene kontrolleres med analyser av IAEA-N-1 og IAEA-N-2 standarder,
og δ13C resultatene kontrolleres med analyser av USGS-24 grafitt standard.
2.3.2
Utvidet analyseprogram
Dioksiner, non-orto PCB og PCA
Prøvene ble analysert ved Norsk institutt for luftforskning (NILU) med metode NILU-O-1. Metoden er
akkreditert av Norsk Akkreditering i henhold til EN 45 001 for dikosiner og non-orto PCB.
Analysematerialet ble forbehandlet ved homogenisering med Na2SO4, og ekstraksjon ble gjort ved
direkte eluering med sykloheksan/diklormetan.. Til alle prøvetyper ble det tilsatt 13C-merkete 2,3,7,8klorsubstituerte PCDD/PCDF og non-orto PCB-forbindelser for å kontrollere utbytte av ekstraksjon og
opparbeidelse. De samme forbindelser brukes seinere som intern standard ved kvantifiseringen. Dette
medfører at prøveresultatene ble automatisk korrigert for eventuelle tap under ekstraksjon og
opparbeidelse. For å kunne bestemme svært lave konsentrasjoner av PCDD/PCDF var det nødvendig å
fjerne mest mulig av andre, forstyrrende prøvebestanddeler (matriks). Til dette ble det benyttet et
flerkolonne-system med forskjellige typer silika, aluminiumoksid og aktivt kull. Den rensete prøven ble
oppkonsentrert til cirka 10 µl og en 13C-merket gjenvinningsstandard ble tilsatt. Bestemmelse av alle
2,3,7,8-klorsubstituerte kongenerer, samt bestemmelse av totalkonsentrasjonen for hver kloreringsgrad,
ble gjennomført ved hjelp av gasskromatografi koplet med høyoppløsende massespektrometri (GC/
MS). Dette gir høy følsomhet og en god sikkerhet mot feilidentifikasjon. En streng kvalitetskontroll,
basert på kravene til kvalitetsnormen EN 45001, ble anvendt.
Toksafen og polybromerte difenyletere
Prøvene ble analysert ved NILU med metode NILU-O-2. Metoden er akkreditert av Norsk
Akkreditering i henhold til EN 45 001.
Prøvematerialet var det samme som for metoden beskrevet ovenfor. Analysematerialet ble forbehandlet
ved homogenisering med Na2SO4. Blandingen ble fyllt på en glasskolonne og det ble tilsatt 13Cmerkete standarder for å kontrollere utbytte av ekstraksjon og opparbeidelse. De samme forbindelser
ble senere brukt som intern standard ved kvantifiseringen. Dette medførte at prøveresultatene
automatisk ble korrigert for eventuelle tap under ekstraksjon og opparbeidelse. De lipofile
forbindelsene ble eluert ved en sakte tilføring av sykloheksan/etylacetat. Lipider ble fjernet med GPC
(gel permeation chromatography). Etter GPC ble prøven oppkonsentrert og gjennomgikk
aluminiumoksid-kromatografi, ble oppkonsentrert, tilsatt gjenvinningsstandarder og analysert ved hjelp
av høyoppløsende massespektrometri (HRGC) (HP Ultra-II), kombinert med lavoppløsende negative
ioner kjemisk ionisasjons massespektrometri (LRMS-NCI). En streng kvalitetskontroll, basert på
kravene til kvalitetsnormen EN 45001, ble anvendt.
4
NIVA 4402-01
Polyklorerte parafiner
Prøvene ble analysert ved NILU, og prøvematerialet var det samme som for metoden beskrevet ovenfor.
Det ble benyttet en metode beskrevet av Tomy et al. (1997). Det ble benyttet en en høyoppløselig
gasskromatograf (HP5890 GC) koblet til et høyoppløselig massespektrometer (VG AutoSpec) i ECNI
modus (elektroninnfangning negativ ionisering) (GC/ECNI-MS). Kvantifiseringen omfattet fraksjonen
av kortkjedede (C10–C13) polyklorerte parafiner med mer enn 50% klor (atmomvekt).
2.4
Kort om miljøgiftene
Alle de studerte organiske miljøgiftene tilhører gruppen halogenerte organiske forbindelser. Dette er
forbindelser som består av et grunnskjelett av forskjellige hydrokarboner hvor hydrogen i ulik grad er
substituert med halogener (Fig. 1). Klor er det vanligste elementet som brukes til å substituere
hydrogen, men bromerte og fluorerte hydrokarboner har også en kommersiell anvendelse.
Halogeneringen endrer stoffenes kjemiske og fysiske egenskaper, og gjør dem mer stabile.
Råmaterialene består som regel av stabile organiske forbindelser, slik som ulike aromatiske
hydrokarboner. Dette er forbindelser som er bygget opp av en eller flere benzen-ringer (6 karbonatomer
lenket sammen i en ring med alternerende enkelt- og dobbeltbindinger).
De undersøkte organiske miljøgiftene er alle tungt nedbrytbare i naturen, svært fettløselige (lipofile) og
oppkonsentreres i organismene i næringskjedene (bioakkumuleres). Flere av dem er tilstrekkelig
flyktige til at de har fått en global spredning via atmosfærisk transport. Arktiske strøk synes særlig
utsatt for effektene av slik transport da temperaturforholdene her ligger tilrette for at de kondenseres og
ikke lenger remobiliseres til atmosfæren (Wania og Mackay 1993).
2.4.1
Polyklorerte bifenyler – PCB
Polyklorerte bifenyler (PCB) er bygget opp av en bifenylgruppe (to sammenkoblede benzen-ringer)
med en ulik grad av klorering (Fig. 1). Alt etter produksjonsbetingelsene erstattes flere eller færre av
bifenylens hydrogenatomer med klor. Teoretisk finnes det 209 forskjellige PCB-forbindelser eller ulike
kongenerer. De fleste av disse er vist å være tilstede i de PCB-blandingene som har hatt en kommersiell
anvendelse. PCB-forbindelsene er kjemisk sett meget stabile; de brenner ikke, har isoelektriske
egenskaper og har derfor vært mye brukt som isolatorolje i kondensatorer og transformatorer. De har óg
hatt en vid anvendelse i blant annet hydrauliske systemer, kjølevæsker, visse malingstyper (bl.a
skipsmaling), i trykksverte, fugemasser, som tilsetningsmiddel i betong og murpuss, og som mykgjører
i plast. Den industrielle produksjonen og anvendelsen av PCB begynte på 1930-tallet, og den totale
produksjonen på verdensbasis oppgis av Berens (1998) til å har vært omlag 1,5 millioner tonn. Av disse
regner man med at av omlag en tredjedel har blitt sluppet ut til miljøet. I Norge ble ny bruk av PCB
forbudt i 1980, og all bruk ble utfaset i 1994. Stoffet er blitt spredt i miljøet ved spill av PCB-holdige
oljer, ved utstyrshavari, kassering av utstyr, fra byggningsavfall, utlekking fra avfallsdeponier, og
lufttransport.
PCB-forbindelsene er svært lipofile og er meget stabile overfor biologisk nedbrytning, og de
konsentreres derfor i organismenes fettvev. Det er særlig i toppen av de akvatiske næringskjedene man
finner de høye konsentrasjonene. PCB har lav akutt giftighet, men har en rekke kroniske giftvirkninger
overfor både akvatiske og terrestre organismer selv i lave konsentrasjoner. PCB-kongenererne uten
kloratomer i ortho-posisjoner (non-orto PCB) er de som er ansett å være de mest toksiske. Mangelen på
klor i ortho-posisjoner gjør at de kan ha en plan romlig konfigurasjon, og toksikologisk sett får de
derved dioksinliknende toksiske egenskaper (se underkapittelet om dioksiner). For at de skal regnes å
ha dioksinliknende egenskaper må PCB-kongenene ha alle følgende kriterier oppfyllt: mer enn 4
kloratomer uansett posisjon; ett eller ingen kloratomer i orto-posiosjoner; kloratomer i begge paraposisjoner; minimum to kloratomer i meta-posisjoner.
5
NIVA 4402-01
Cl
meta
3
orto
2
1
para 4
5
meta
1’
6
orto
Cl Cl
meta’
3’
orto’
2’
4’ para’
6’
orto’
1
Cl
Cl
Cl
Cl
Cl
Cl
Cl
2,2’,4,4’,5,5’-hexaklordifenyl (PCB 153)
3,3’,4,4’,5-pentaklordifenyl (PCB 126)
Cl
9
O
2
Cl
5’
meta’
Generell struktur av PCB
Cl
Cl
8
Cl
O
Cl
Cl
O
Cl
Cl
Cl
3
7
O
4
6
Generell struktur av dibenzo-p-dioksin
2,3,7,8 -TCDD
Cl
Cl
Cl
Cl
O
en polyklorert benzofuran (2,3,7,8 -TCDF)
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
DDT
Cl
Cl
DDE og DDD, nedbrytningsprodukter av DDT
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Heksaklorcykloheksan – HCH
Br
3
5
O
10
O
Cl
Heksaklorbenzen – HCB
Br
1
2
Cl
Cl
Oktaklorstyren – OCS
Br
Br
6
Br
Br
Br
Br
Generell struktur av polybromerte difenyletere – PBDE 2,2',4,4'-TeBDE (IUPAC nr. 47)
2,2',4,4',5-PenBDE ( (IUPAC nr. 99)
Cl
Cl
Cl
H
H
Cl
H
Cl
Cl
H
Cl
H
Cl
Br
Br
8
7
H
Cl Cl
O
9
4
H
Cl
H
Cl
H
en toksafen-kongener
(nonaklorbornan, Parlar nr. 50)
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
en polyklorert naftalen – PCN
(12357-pentaklornaftalen)
Cl
Cl
Cl
en polyklorert parafin – PCA
(C12Cl10H16)
Figur 1. Eksempler på strukturformler til de aktuelle halogenerte miljøgiftene.
6
Cl
Cl
NIVA 4402-01
2.4.2
DDT, lindan og utvalgte organiske miljøgifter
DDT er en forkortelse for den tidligere betegnelsen p,p-diklordiphenyl triklormetan. Dette insektdrepende middelet ble tatt i bruk like før 2. verdenskrig og var i utstrakt anvendelse fram til 1970-tallet.
Fortsatt er det i bruk i flere tropiske land i forbindelse med malariabekjempning. Det er tungt
nedbrytbart, svært fettløselig og oppkonsentreres gjennom trinnene i næringskjedene. I naturen brytes
det ned til en lang rekke produkter, hvorav DDD og DDE er de viktigste (Fig. 1). DDT og nedbrytningsproduktene, særlig DDE, kan ha kroniske, subletale effekter selv i lave doser. De toksiske
effektene omfatter blant annet forstyrrelser i hormonreguleringen (østrogene effekter av DDT, antiandrogene effekter av DDE) og reproduktive forstyrrelser. I Norge ble det lagt sterke begrensninger på
bruken av DDT fra 1969 av, og stoffet ble i en mindre grad benyttet i planteskoler fram til 1988, da all
lovlig bruk er opphørte. Avrenning fra avfallsdeponier, dumpesteder, forurenset grunn og lufttransport
er i dag viktige tilførselskilder. Summen av DDT og nedbrytningsproduktene DDD og DDE kalles i
denne rapporten for ΣDDT.
Lindan eller gamma-hexaklorsykloheksan (γ-HCH) er et insektdrepende plantevernmiddel, og var i
bruk i Norge fram til 1992. Det ble særlig benyttet som sprøytemiddel på tømmeropplag. Lindan eller
den tekniske blandingen inneholdt også andre isomerer slik som α-HCH. Lindan brytes raskere ned enn
DDT og har ikke like stor evne til bioakkumulering.
Heksaklorbenzen (HCB), pentaklorbenzen (QCB) og oktaklorstyren (OCS) er substanser som blant
annet dannes som uønskede biprodukter ved industrielle prosesser, eller benyttes i framstillingen av
kjemikalier. HCB har også vært brukt som soppdrepende middel, men ikke i Norge. Disse klororganiske forbindelsene har en rekke toksiske effekter, og er persistente og bioakkumulerbare
miljøgifter.
2.4.3
Dioksiner
Dioksiner brukes som en samlebetegnelse på gruppene polyklorerte dibenzo-p-dioksiner (PCDD) og
polyklorerte dibenzofuraner (PCDF). De utgjør to familier av nesten plane trisykliske aromatiske
forbindelser med liknende kjemiske egenskaper (Fig. 1). I sine grunnskjelett har de to benzenringer
med ulik grad av klorering. Det finnes i alt 75 forskjellige polyklorerte dibenzo-p-dioksiner og 135
forskjellige polyklorerte dibenzofuraner. De har aldri vært kommersielt framstilt, men dannes i
spormengder under forbrenningsprosesser hvor klor er tilstede eller de opptrer som uønskede
biprodukter i kjemiske prosesser eller produkter. Kilder til dioksiner har vært kjemiske prosesser hvor
klorfenoler inngår, produksjon av magnesium og nikkel, klorbleking av cellulose, avfallsforbrenning,
vedbrenning og forbrenningsmotorer. De største forurensningskildene i Norge har vært fra metallindustri (Hydro Magnesium; Porsgrunn; Falkonbridge Nikkelverk, Kristiansand; AS Sydvarangers
pelletsverk, Kirkenes), men utslippene fra disse er nå kraftig redusert eller stanset.
Gruppen av de mest giftige dioksiner er meget stabile ovenfor biologisk nedbrytning og de er svært
fettløselige. De akkumulerer i organismers fettvev og biomagnifiseres i næringskjedene. Den akutte
giftighet av dioksiner varierer i betydelig grad mellom ulike organismer; de har en ekstremt stor akutt
giftighet hos noen pattedyr (eks. marsvin) mens de har en lav akutt giftighet for andre arter — som hos
mennesker. I økotoksikologisk sammenheng er det effektene av langvarig lav-dose eksponering som er
aktuelle. Dioksiner gir opphav til et karakteristisk sykdomsmønster; de påvirker skjoldbruskkjertelen
og immunosystemet, de fører til hudskader, utviklingsforstyrrelser hos fostre, er involvert i utviklingen
av kreft og forstyrrer omsetningen av vitamin A og leverfunksjonen.
En typisk egenskap hos dioksiner og dioksinliknende stoffer er at de i organismene binder seg til et
spesifikt protein som kalles Ah-reseptoren, noe som igjen utløser en kjede av reaksjoner som ender med
at resptoren binder seg til DNA i cellekjernen. Et av bindingsstedene på DNA-molekylene regulerer
aktiviteten for genet som produserer enzymet P450 1A1, som tilhører en familie av enzymer som er
involvert i metabolismen av en rekke toksiske og organismefremmede stoffer. Av alle dioksinene er
7
NIVA 4402-01
forbindelsen 2,3,7,8-tetraklordibenzo-p-dioksin (TCDD) den mest toksiske kongeneren og den som har
størst potensiale for å indusere produksjonen av detoksifiserende enzymer. Flere andre klororganiske
miljøgifter har en struktur som likner dioksiner, og da de også er i stand til å indusere aktiviteten av de
samme detoksifiserende enzymene sies de å ha dioksinliknende egenskaper.
2.4.4
Polyklorerte naftalener – PCN
Polyklorerte naftalener (PCN) har hatt mye av det samme anvendelsesområdet som PCB; de har vært
benyttet som isolasjonsmedium i transformatorer og kondensatorer, brukt som mykgjørere mm. De
består av et grunnskjelett av naftalen (to kondenserte benzenringer) med ulik grad av klorering (Fig. 1),
noe som gjør det i teorien mulig å produsere 75 forskjellige klorinerte naftalener. De fleste av disse er
imidlertid relativt ustabile og dekomponerer lett, men noen er tungt nedbrytbare og er vist å
bioakkumulere i næringskjedene. Noen av de polyklorerte naftalenene har en plan romlig konfigurasjon
og er vist i toksikologisk sammenheng å ha dioksinliknende egenskaper.
2.4.5
Toxafener
Toxafen er et bredspektret insektbekjempningsmiddel, som består av en kompleks blanding av
polyklorerte bornaner og kamfener (eller terpener), og det finnes flere hundre forskjellige kongenerer
av toksafen. Toxafen er tungt nedbrytbart, fettløselig og bioakkumuleres i næringskjedene. På grunn
av et relativt høyt damptrykk kan det spres via atmosfærisk transport og har derfor fått en global
spredning. Internasjonalt kom toxafen særlig i anvendelse etter at bruken av DDT ble regulert i
begynnelsen av 1970-tallet, og det har hatt en utstrakt anvendelse i USA og en rekke andre nasjoner. De
fleste land har nå innført restriksjoner og forbud mot bruk av toxafen, men det antas at det fremdeles er
en betydelig anvendelse i flere utviklingsland. Det er ikke kjent at toxafen har vært i bruk i Norge.
2.4.6
Polybromerte difenyletere – PBDE
Polybromerte difenyletere (PBDE) tilhører en gruppe kjemikalier som kalles bromerte flammehemmere. De tilsettes ulike materialer som plast, elektroniske kretskort, tekstiler, polyuretanskum,
bygningsmaterialer og maling. De virker brannhemmende da de gjør materialene vanskelige å antenne
og reduserer spredningen av flammer når en brann har oppstått. PBDE har et grunnskjellett av difenyl
(to benzenringer koblet sammen via et oksygenatom) med varierende grad av bromering (Fig. 1). I
likhet med PCB finnes det teoretisk 209 forskjellige kongenerer av klorerte difenyletere, men de
kommersielle produktene i dag består primært av høybromerte forbindelser.
Produksjonen i dag domineres av den fullbromerte forbindelsen dekabromodifenyleter (DePDE med 10
brom-atomer per molekyl, men blandinger med gjennomsnittlig fem (PeBDE) eller åtte (OcPDE)
brom-atomer per molekyl produseres også. De høybromerte forbindelsene tas i liten grad opp av
levende organismer, men de med fire eller fem brom-atomer har vist seg i særlig grad å bioakkumulere.
DePDE er et svært stabilt molekyl, men det er en risiko og usikkerhet ved at det eventuelt kan bli
dehalogenert – det vil si at det mister et eller flere bromatomer — og på den måten blir biotilgjengelig
(de Wit 2000).
Bromerte flammehemmere har liten akutt giftighet, men det er knyttet usikkerhet til effektene av
langtidseksponering. Norske miljøvernmyndigheter har vedtatt en målsetning om at utslippene av
bromerte flammehemmere skal reduseres vesentlig innen 2010, og stoffene står oppført på
myndighetenes prioritetsliste (St. meld. nr. 58, 1996-1997).
2.4.7
Polyklorerte parafiner – PCA
Polyklorerte parafiner eller alkaner (PCA) er en stor stoffgruppe som framstilles ved å klorere parafiner
eller alkaner (kjedede hydrokarboner, Fig. 1). Klorerte parafiner brukes som myknere og
brannhemmende midler i plast, maling, gummimasse og som høytrykksadditiver i kjøle- og smøremidler i metallbearbeidende industri. Polyklorerte parafiner deles inn etter kjedens lengde, og
klorinnhold. Kommersielle blandinger av såkalte kortkjede klorparafiner består av C10 – C13 med et
8
NIVA 4402-01
klorinnhold på 30–70% av molekylvekten.
Polyklorerte parafiner er kjemisk relativt stabile og brytes langsomt ned i naturen. Kortkjedede
polyklorerte parafiner med 60–70% kloreringsgrad har omlag samme molekylvekt og fysiske
egenskaper (fettløselighet, vannløselighet, damp-trykk) som flere andre persistente klororganiske
miljøgifter (PCB). De har derfor et potensiale for å bioakkumulere. Det er relativt få kunnskaper om
forekomsten av polyklorerte parafiner i miljøet, da det har vært store metodiske vansker med å
analysere disse.
Polyklorerte parafiner antas å ha kreftframkallende og andre toksiske egenskaper. Norske
miljøvernmyndigheter har en målsetning om at utslippene av kortkjedede polyklorerte parafiner skal
reduseres vesentlig innen 2010, og stoffene står oppført på myndighetenes prioritetsliste (St. meld. nr.
58, 1996-1997).
2.4.8
Toksisitetsekvivalenter
2,3,7,8-TCDD er kjent som den mest toksiske dioksin-kongeneren, og enkelte andre dioksinkongenerer og halogenerte organiske forbindelser synes å virke gjennom de samme toksisk
mekanismene som 2,3,7,8-TCDD. Dette har gjort det mulig å uttrykke giftigheten av dioksiner og
stoffer med dioksinliknende effekt i en felles enhet som kalles toksiske ekvivalenter eller TE (Van den
Berg et al. 1999). I dette systemet blir 2,3,7,8-TCDD gitt en toksisk ekvivalent faktor (TEF, en
omregningsfaktor) lik 1, mens 16 andre kongenerer av dioksiner og dibenzofuraner har blitt gitt TEFverdier mellom 0.5 og 0.001. De andre dioksinforbindelsene har blitt vurdert til å ha såvidt lav toksisitet
at de kunne bli sett bort fra. Denne toksikologiske vurdering omfattet også dioksinliknende PCBkongenerer. Fire PCB-kongenerer med ingen kloratomer i orto-posisjoner (koplanar PCB, non-orto
PCB) ble tildelt TEF-verdier mellom 0,1 og 0,0001, mens åtte kongenerer med et kloratom i ortoposisjon (mono-orto PCB) ble tildelt TEF-verdier mellom 0,005 og 0,00001.
Ved å multiplisere mengden av en gitt dioksin- eller PCB-kongener med dens TEF-verdi blir den
konvertert til 2,3,7,8-TCDD-ekvivalenter eller toksiske ekvivalenter (TE). Dette produktet indikerer
hvor mye TCDD som trengs for å produsere den samme toksiske effekt som dosen av den aktuelle
forbindelsen. Ved å addere de toksiske ekvivalentene (TE-verdiene) til de individuelle dioksin- eller
PCB-kongenerene i en prøve finner man den samlede toksisiteten til prøven. I foreliggende undersøkelse har vi benyttet denne framgangsmåten til å gi et toksisitetsmål på prøvene som har blitt
analysert for både dioksiner, non-orto PCB og mono-orto PCB.
2.4.9
Kvikksølv
Undersøkelser av fisk fra en rekke innsjøer i Nord-Amerika og Skandinavia har vist at de kan ha tildels
betydelig forhøyede nivåer av kvikksølv, og årsaken antas i første rekke å være atmosfærisk
langtransport av menneskeskapte forurensninger. De viktigste kildene for atmosfæriske kvikksølvutslipp er forbrennning av kull, ulik smelteverkindustri og søppelforbrenningsanlegg.
Kvikksølv i ferskvannsfisk foreligger i all hovedsak (95–99%) som den metallorganiske forbindelsen
metylkvikksølv, CH3Hg+ (Grieb et al. 1990) — som har en betydelig evne til å biomagnifiseres.
Metyleringen av uorganiske kvikksølvioner (Hg2+) til metylkvikksølv skyldes for en stor del
mikrobielle prosesses i sedimenter og vann (Furutani and Rudd 1991). Metylkvikksølv er en farlig
nervegift, og særlig synes embryonalutviklingen av sentralnervesystemet til fostere å være følsomme
for eksponering — med effekter på kognitiv og psykomotorisk utvikling i senere barneår (Grandjean et
al. 1997; Grandjean et al. 1998).
NIVA har vist at nivåene i ferskvannsfisk fra Sør- og Øst-Norge generelt er høyt, og for visse arter
overskrides EUs grenseverdier for salg til konsum (generelt 0,5 mg Hg/kg, 1 mg Hg/kg for gjedde)
(Rognerud et al. 1996, Fjeld 1999, Fjeld et al. 1999a og b).
9
NIVA 4402-01
3. Standard analyseprogram: ΣPCB7, ΣDDT mm.
Dette analyseprogrammet omfatter et utvalg mono-orto og di-orto PCB-kongenerer (herunder ΣPCB7,
se vedlegg), p,p’-DDT med nedbrytnings-produkter (p,p’-DDE og p,p’-DDD), penta- og hexaklorbenzen, hexaklor-cyclohexan (α og γ) og oktaklorstyren. Resultatene er framkommet ved samme
analytiske prosedyre, og det er derfor hensiktsmessig å framstille og drøfte disse resultatene samlet.
Rådata er gjengitt i Tab. 2 og Tab. 3 i vedlegget.
3.1
ΣPCB7
3.1.1
Generelt
Nivåene av ΣPCB7 i muskelvev hos de ulike artene var gjennomgående forholdsvis lave, med medianverdier (50-prosentiler) i området 1–3,4 µg/kg våtvekt (Tab. 2 og Fig. 2). Konsentrasjonene på
fastlands-Norge viste i hovedsak en nord-sør gradient, med høyeste verdier i sør (Fig. 3). Noen
lokaliteter skilte seg ut med tildels betydelig forhøyde nivåer, slik som Mjøsa og Ellasjøen på Bjørnøya.
Ørret var den arten med den videste geografiske utbredelsen i vårt utvalg og den arten hvor vi hadde
størst antall prøver (n = 34). Typiske konsentrasjoner (interkvartil-området: 25–75 prosentilen) av
ΣPCB7 lå i intervallet 0,9–3,6 µg/kg. De laveste nivåene fantes i fisk fra midt- og nord-Norge, mens
fisken fra i sør-Norge generelt hadde høyere verdier. De høyeste verdiene ble funnet i storørretbestandene fra Mjøsa og Randsfjorden, med nivåer av ΣPCB7 på henholdsvis 75 og 25 µg/kg.
Røye-materialet (n = 11) var tallmessig mer spinkelt enn ørret-materialet og lokalitetene lå i hovedsak i
midt- og nord-Norge. Det var en tendens til at røya hadde svakt høyere nivåer av ΣPCB7 enn ørret, med
typiske konsentrasjoner av ΣPCB7 i intervallet 1,8–5,5 µg/kg. Fra åtte lokaliteter hadde vi analyser av
samlevende bestander av ørret og røye. I alle disse lokalitetene hadde røya høyere nivåer av PCB enn
ørreten, og i gjennomsnitt var nivåene av ΣPCB7 henholdsvis 2,6±1,3 µg/kg og 1,4±0,9 µg/kg.
Tabell 2. Konsentrasjonene av ΣPCB7 i ferskvannsfisk, oppgitt som middelverdi og prosentiler.
Analysene er basert på blandprøver fra ulike bestander. Antall bestander analysert (n), samt
gjennomsnittlig fettprosent og individvekt (± standardavvik) er oppgitt.
art
n
vev
ΣPCB7, µg/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret
34
muskel
1.35
5.76
0.0a
0.32
0.88
1.95
3.64
17.01
75.18
røye
11
muskel
1.40
32.24
0.52
0.77
1.77
3.40
5.51
577
715
abbor
26
muskel
0.44
2.05
0.16
0.27
0.65
0.96
2.85
4.13
15.03
gjedde
13
muskel
0.27
2.37
0.78
0.84
1.13
2.42
3.50
4.42
4.70
lake
8
muskel
0.43
4.12
0.95
0.95
1.11
1.52
5.51
16.06
16.06
lake
12
lever
37.4
1128
72.3
96.2
209
557
1361
4584
5816
muskel
0.73
46.6
-
-
-
-
-
-
-
lagesild
1
a. Samtlige 7 kongenerer lå under metodens kvantifiseringsgrense på <0.01µg/kg v.v.
10
NIVA 4402-01
Abbor var arten med nest høyest antall prøver (n = 26) og hadde i hovedsak en geografisk utbredelse
begrenset til sørøst-Norge. Gjedde-materialet hadde en tilsvarende geografisk utbredelse, men antallet
prøver (n = 13) var færre enn for abbor. Typiske konsentrasjoner av ΣPCB7 i abbor lå i intervallet 0,7–
2,9 µg/kg. Tilsvarende tall for gjedde var 1,1–3,5 µg/kg. Ingen klare geografiske trender i
konsentrasjonenene kunne spores i materialet, men nivåene i nordlige grensetrakter på Østlandet og i
Finnmark (Pasvik) var lavt for begge artene.
Lake-materialet var også lokalisert med tyngdepunkt på Østlandet, men i tillegg var lokaliteter fra midtNorge (Selbusjøen) og Finnmark (Pasvik) representert. For lake ble det analysert i både muskelvev (8
prøver) og i lever (12 prøver). Lakelever er svært fettrik, og er derfor velegnet som måleorgan for
lipofile miljøgifter. Typiske konsentrasjoner av ΣPCB7 i muskelvev var 1,1–5,5 µg/kg, mens tilsvarende
tall for lever var 200 –1400 µg/kg. Den store forskjellen i nivåene mellom muskelvev og lever skyldes i
første rekke de store ulikhetene i fettinnhold (0,4% vs. 37%). De laveste konsentrasjonene ble funnet i
Pasvik og ellers i innsjøer på Østlandet uten særlig menneskelig aktivitet i nedbørfeltene.
3.1.2
Innsjøer med forhøyde nivåer av ΣPCB7
Mjøsa
Mjøsa var innsjøen på fastlands-Norge med de markert høyeste nivåene. Bestandene av både ørret,
abbor, gjedde og lake herfra hadde de høyest registrerte nivåene av samtlig undersøkte fastlandsbestander. Lagesilda herfra hadde også et påtakelig høyt PCB-nivå. Mjøsørret kjennetegnes ved at de er
spesialiserte fiskespisere, hurtigvoksende og når en stor kroppsstørrelse («stor-ørret»). De står på et
høyere trofisk nivå (plass i næringsnettet) enn den mer småvokste «normal-ørreten» som hovedmaterialet ellers består av. Dette bidrar til den forholdsvis høye konsentrasjonen av ΣPCB7, da nivåene
av biomagnifiserebare miljøgifter innen et næringsnett generelt øker med organismenes trofiske
posisjon. De høye konsentrasjonene av ΣPCB7 i de andre fiskeartene vitner imidlertid om at Mjøsa må
ha blitt tilført betydelige mengder av PCB som følge av ulik industriell og sivilisatorisk aktivitet i
nærområdene. Nivået i Mjøs-ørret (ΣPCB7: 75 µg/kg) var noe lavere enn de som rapporteres fra laks fra
Østersjøen (ΣPCB7: ≈ 90–190 µg/kg1). Østersjøen anses som betydelig påvirket av klororganiske
miljøgifter.
Analysene av lakelever (4 prøver) fra Mjøsa viser at lake fanget innerst i Furnesfjorden (utenfor
Brumunddal) hadde akkumulert atskillig mer PCB enn lake fanget lengre ute i Furnesfjorden, eller ved
Gjøvik og Lillehammer (ΣPCB7: 5800 µg/kg vs. 1300–1700 µg/kg). Hvorvidt dette skyldes at
Furnesfjorden ved Brumunddal er mer påvirket enn fjorden utenfor Hamar kan vi ikke gi noe svar på,
da fisken alder ikke har blitt bestemt. Furnesfjorden er imidlertid blitt tilført PCB-forurensninger fra
NSBs verksteder ved Hamar (Kjellberg og Løvik 2000). I henhold til SFTs klassifiseringssystem for
miljøkvalitet i fjorder mht. ΣPCB7 i torskelever (Molvær et al. 1997) faller innerste del av
Furnesfjorden inn i tilstandsklasse IV, sterkt forurenset (ΣPCB7: 4000–10000 µg/kg våtvekt). De andre
prøvene faller stort sett inn i tilstandsklasse II, moderat forurenset (ΣPCB7 : 500–1500 µg/kg våtvekt).
En må imidlertid være varsom med direkte og ukritisk anvendelse av de marine kriteriene på innsjøer,
da det her er snakk om ulike økosystemer og indikatororganismer. Når kriteriene for torsk likevel
brukes for å antyde forurensningsgrad er det fordi torsk og lake er beslektede arter; har samme bruk av
lever som opplagsorgan for fett, og er på sammenlignbart trofisk nivå.
Hurdalssjøen
Med en konsentrasjon av ΣPCB7 på nær 1300 µg/kg, hadde lever av lake fra Hurdalssjøen omlag like
høye nivåer av PCB som lake i fra Mjøsas hovedbasseng. Vi har ingen analyser av annen fisk fra
1. Estimert her, basert på forholdet ΣPCB7 /(PCB 153 + PCB 138). Data for PCB 153 og 138 i
Østersjølaks er hentet fra Asplund et al. 1999a.
11
NIVA 4402-01
Hurdalssjøen, men disse dataene indikerer at også Hurdalssjøen har blitt tilført betydelige mengder
PCB fra lokale kilder.
Randsfjorden
Ørreten fra Randsfjorden hadde også en relativt høy konsentrasjon av ΣPCB7 (24 µg/kg) sammenlignet
med det resterende ørret-materialet. Dette skyldes trolig i første rekke at det er en storvokst,
fiskespisende ørretbestand (stor-ørret), da nivåene i abbor og gjedde fra Randsfjorden ikke tyder på at
innsjøen har vært særskilt belastet med PCB-forurensninger.
Agder, kystnære innsjøer
I de kystnære innsjøene i Agder-fylkene var det en tendens til at ørreten hadde tydelig forhøyde PCBnivåer sammenliknet med typiske verdier fra normalvokste ørretbestander. Ørreten fra Grovatnet,
Mårvatnet og Vatnebuvatnet hadde ΣPCB7-konsentrasjoner på henholdsvis 6, 10 og 26 µg/kg, mens
typiske verdier for de andre normalvokste ørretbestander var 1–3 µg/kg. Det dreier seg her ikke om
typiske storørretbestander, skjønt ørreten fra Vatnebuvatnet var forholdsvis storvokst og det i prøven
herfra fantes fisk i størrelsesgruppa 1–2 kg. Ingen av disse lokalitetene har noen virksomhet i
nedbørfeltet som skulle kunne bidra med lokale punktutslipp, og vi anser det derfor som mest
sannsynlig at de forhøyde nivåene skyldes høye atmosfæriske avsetninger.
Ellasjøen og Øyangen, Bjørnøya
Data på ΣPCB7 fra disse sjøene er hentet fra en undersøkelse som er tidligere har vært rapportert av
Skotvold et al. (1999). I foreliggende rapport er de oppgitt som gjennomsnittsverdier av analyseresultater fra individuelle fiskeprøver.
Konsentrasjonen av ΣPCB7 i røye fra Ellasjøen var særdelses høyt (715 µg/kg), og var nær 30 ganger
høyere enn konsentrasjonen i Øyangen (24 µg/kg). Konsentrasjonen av PCB — og flere andre
klororganiske forbindelser — i røye fra Ellasjøen er de høyeste som er målt i arktiske strøk. Høye
atmosfæriske deposisjonsrater på grunn av spesielle meteorologiske forhold og betydelig kondensasjon
av arktisk tåke, samt høye tilførsler av forurensninger i ekskrementer fra sjøfuglkolonier i nedbørfeltet
(kobling til marine næringskjeder), har vært foreslått som mekanismer for de høye nivåene. Disse
forholdene er nå under utredning i et eget forskningsprosjekt.
12
NIVA 4402-01
røye
10
antall bestander
antall bestander
ørret
8
6
4
2
0
0.1
1.0
10
ΣPCB7, µg/kg
6
4
2
0
0.1
100
1.0
15
10
5
0
4
2
0
0
2
4
6
8
10
ΣPCB7, µg/kg
12
14
16
0
antall bestander
4
2
2
4
6
8 10 12
ΣPCB7, µg/kg
2
3
4
ΣPCB7, µg/kg
5
6
14
4
2
0
10
0
0
1
lake, lever
lake, muskel
antall bestander
1000
gjedde
antall bestander
antall bestander
abbor
10
100
ΣPCB7, µg/kg
16
100
1000
ΣPCB7, µg/kg
10000
Figur 2. Konsentrasjonene av ΣPCB7 i ferskvannsfisk. Konsentrasjonene (µg/kg våtvekt) gjelder
muskelvev; i lake også lever. Over søylediagrammene er det tegnet inn et box-plot hvor de vertikale
linjene angir minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
13
NIVA 4402-01
ørret
røye
Bjørnøya
715 µg/kg
ΣPCB7, µg/kg
100
ΣPCB7, µg/kg
≥100
10
10
1
1
0.1
0.1
abbor
gjedde
ΣPCB7, µg/kg
100
ΣPCB7, µg/kg
100
10
10
1
1
0.1
0.1
Figur 3. Kart over konsentrasjonene av ΣPCB7 i muskelvev (våtvektsbasis) fra ørret, røye, abbor og
gjedde. De enkelte lokalitetene er markert med en fargekode som angir konsentrasjonene.
14
NIVA 4402-01
lake, muskel
lake, lever
ΣPCB7, µg/kg
10000
ΣPCB7, µg/kg
100
10
1000
1
0.1
100
Figur 4. Kart over konsentrasjonene av ΣPCB7 i muskelvev og lever fra lake (våtvekt). De enkelte
lokalitetene er markert med en fargekode som angir konsentrasjonene.
15
NIVA 4402-01
3.2
ΣDDT
3.2.1
Generelt
Nivåene av ΣDDT i muskelvev hos de ulike artene var gjennomgående lave, med medianverdier (50prosentiler) i området 0,7–1,4 µg/kg våtvekt (Tab. 3, Fig. 5–7). Konsentrasjonene på fastlands-Norge
viste i hovedsak samme geografiske variasjonsmønster som ΣPCB7: en nord-sør gradient, med høyeste
verdier i sør (Fig. 6). En forskjell var imidlertid at også noen av innsjøer på Vestlandet hadde moderat
forhøyde verdier av ΣDDT. Som for PCB hadde Mjøsa og Ellasjøen på Bjørnøya betydelig forhøyde
nivåer av ΣDDT.
Hos ørret lå vanlig forekommende konsentrasjoner av ΣDDT i intervallet 0,7–3,2 µg/kg. De laveste
nivåene fantes i fisk fra midt- og nord-Norge, mens fisken fra sør-Norge generelt hadde høyere verdier.
Til forskjell fra fordelingen i PCB-konsentrasjonene hadde Vestlands-sjøene vanligvis moderat
forhøyde verdier av ΣDDT. De høyeste verdiene ble imidlertid funnet i storørret-bestandene fra Mjøsa
og Randsfjorden, med nivåer av ΣDDT på henholdsvis 61 og 25 µg/kg.
Røye-materialet var tallmessig mer spinkelt enn ørret-materialet og lokalitetene lå i hovedsak i midt- og
nord-Norge. Det var en tendens til at røya hadde noe høyere nivåer av ΣDDT enn ørret, med typiske
konsentrasjoner i intervallet 1,2–2,8 µg/kg. Fra åtte lokaliteter hadde vi analyser av samlevende
bestander av ørret og røye. I alle disse lokalitetene hadde røya høyere nivåer av ΣDDT enn ørreten, og i
gjennomsnitt var nivåene henholdsvis 1,2 ± 0,5 µg/kg og 0,7 ± 0,4 µg/kg.
Abbor- og gjedde-materialet hadde i hovedsak en geografisk utbredelse begrenset til sørøst-Norge.
Typiske konsentrasjoner av ΣDDT i abbor lå i intervallet 0,4–1,7 µg/kg. Tilsvarende tall for gjedde,
men med et tallmessig mer sparsomt materiale, var 0,8–2,6 µg/kg. Ingen klare geografiske trender i
konsentrasjonenene kunne spores i materialet, men nivåene i nordlige grensetrakter på Østlandet og i
Finnmark (Pasvik) var lavt for begge artene.
Tabell 3. Konsentrasjonene av ΣDDT i ferskvannsfisk, oppgitt som middelverdi og prosentiler.
Analysene er basert på blandprøver fra ulike bestander. Antall bestander analysert (n), samt
gjennomsnittlig fettprosent er oppgitt
art
n
vev
ΣDDT, µg/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret
34
muskel
1.35
4.39
0.0
0.33
0.65
1.15
3.15
11.5
61.0
røye
11
muskel
1.34
7.28
0.41
0.46
1.18
1.40
2.77
70.6
87.2
abbor
26
muskel
0.44
1.47
0.18
0.23
0.42
0.69
1.72
3.84
gjedde
13
muskel
0.27
2.02
0.30
0.42
0.82
1.10
2.58
6.28
lake
8
muskel
0.43
3.34
0.54
0.54
0.57
1.17
4.36
14.0
14.0
lake
12
lever
37.4
822
31.0
51.5
147
359
1249
3008
3702
lagesild
1
muskel
0.74
53.7
-
-
-
-
-
-
-
10.7
8.00
Lake-materialet var også lokalisert med tyngdepunkt på Østlandet, men lokaliteter fra midt-Norge og
Finnmark var også representert. For lake ble det analysert i både muskelvev og i lever. Typiske
konsentrasjoner av ΣDDT i muskelvev var 0,5–4,4 µg/kg, mens tilsvarende tall for lever var 150 –1300
µg/kg. De laveste konsentrasjonene ble funnet i Pasvik og ellers i innsjøer på Østlandet uten særlig
menneskelig aktivitet i nedbørfeltene.
16
NIVA 4402-01
3.2.2
Innsjøer med forhøyede nivåer av ΣDDT
Nivåene av ΣDDT korrelerte stort sett godt med ΣPCB7 (se kommende kapittel om samvariasjoner), og
bestandene med høye verdier av PCB hadde jevnt over også høye verdier av ΣDDT. På grunn av
tidligere utstrakt anvendelsen av DDT som pesticid vil man imidlertid kunne finne en større lokal
variasjon i nivåene enn for PCB. Slik anvendelse er trolig en årsak til at fisk fra innsjøer på Vestlandet
hadde en tendens til å ha noe forhøyde nivåer av DDT.
Mjøsa
Som for ΣPCB7, var Mjøsa den innsjøen på fastlands-Norge med de markert høyeste nivåene av ΣDDT
i fisk. Bestandene av både ørret, abbor, gjedde og lake herfra hadde de høyest registrerte nivåene av
samtlig undersøkte fastlands-bestander. Også lagesilda herfra hadde et bemerkelsesverdig høyt DDTnivå. De høye nivåene i Mjøs-ørret må dels tilskrives at dette er storørret som står på et høyt trofisk
nivå, men de forhøyde konsentrasjonene av ΣDDT i de andre fiskeartene indikerer at Mjøsa har blitt
tilført merkbare mengder DDT fra hage-, land- og skogbruk i nedbørfeltene. Nivåene i Mjøs-ørret
(ΣDDT: 61 µg/kg) var imidlertid vesentlig lavere enn de som rapporteres fra laks fra Østersjøen
(ΣDDT: ≈ 120–300 µg/kg1). Østersjøen anses som betydelig påvirket av klororganiske miljøgifter.
Analysene av lakelever (4 prøver) fra Mjøsa viser at lake fanget i Furnesfjorden nær Hamar var
vesentlig mer påvirket av DDT enn lake fanget lengre ute i Furnesfjorden, ved Gjøvik og ved
Lillehammer (ΣDDT: 3700 µg/kg vs. 1100–1400 µg/kg). Det er rimelig å tolke de forhøyde verdiene
nær Hamar som et resultat av betydelige lokale tilførsler. Forholdet mellom p,p’-DDT og p,p’-DDE i
denne prøven av var relativt høyt sammenliknet med forholdet i de andre lakeprøvene fra Mjøsa (1,03
versus 0,26–0,51; se vedlegg). Dette viser at det var relativt mindre nedbrutt DDT i denne prøven
sammenliknet med prøvene fra hovedbassenget. I henhold til SFTs klassifiseringssystem for marin
miljøkvalitet (Molvær et al. 1997) faller fisken fra Furnesfjorden nær Hamar inn i tilstandsklasse V for
torskelever, meget sterkt forurenset (ΣDDT: >3000 µg/kg våtvekt). De andre prøvene faller inn i
tilstandsklasse III, markert forurenset (ΣDDT i torskelever: 500–1500 µg/kg våtvekt).
Randsfjorden
Ørreten fra Randsfjorden hadde også en relativt høy konsentrasjon av ΣDDT (15,6 µg/kg)
sammenlignet med det resterende ørretmaterialet. Som for PCB skyldes dette trolig i første rekke at det
er en storvokst, fiskespisende ørretbestand (storørret), da ΣDDT-nivåene i abbor og gjedde fra
Randsfjorden ikke skilte seg spesielt ut fra dagens bakgrunnsnivå.
Vestlandet
I noen innsjøer på Vestlandet hadde ørreten noe forhøyde nivåer av ΣDDT, slik som Breimsvatnet og
Holmevatn i Sogn og Fjordane (ΣDDT: 7,4 og 5,8 µg/kg). Typiske verdier for de andre normalvokste
ørretbestander var 0,7–3,2 µg/kg. Det er sannsynlig at lokal anvendelse av DDT i fruktdyrkningsdistriktene har ført til både direkte tilførsler til innsjøene og indirekte gjennom en økning i de luftbårne
avsetningene.
Agder, kystnære innsjøer
I noen av de kystnære innsjøene i Agderfylkene var det óg en tendens til ørret hadde forhøyde DDTnivåer sammenliknet med typiske verdier fra normalvokste ørretbestander. Ørreten fra Mårvatnet og
Vatnebuvatnet hadde ΣDDT-konsentrasjoner på henholdsvis 5,7 og 16 µg/kg, mens typiske verdier for
de andre normalvokste ørretbestander var 0,7–3 µg/kg. Dette var ingen typiske storørretbestander,
skjønt ørreten fra Vatnebuvatnet var forholdsvis storvokst og det i prøven fantes et fåtall individer i
størrelsesgruppen 1–2 kg. Ingen av disse lokalitetene har noen virksomhet i nedbørfeltet som skulle
kunne bidra med lokale punktutslipp, og vi anser det derfor som sannsynlig at høye atmosfæriske
1. Basert på lipidnormaliserte data på DDT og DDE i Østersjølaks, Asplund et al. 1999a.
17
NIVA 4402-01
avsetninger har bidratt til de forhøyde nivåene i fisken.
Ellasjøen og Øyangen, Bjørnøya
Data fra disse sjøene er hentet fra en undersøkelse som er rapportert av Skotvold et al. (1999). I
foreliggende rapport er de oppgitt som gjennomsnittsverdier av analyseresultater fra individuelle
fiskeprøver.
Konsentrasjonen av ΣDDT i røye fra Ellasjøen var svært høyt (87,2 µg/kg), og var drøyt 30 ganger
høyere enn konsentrasjonen i Øyangen (2,76 µg/kg). Som tidligere nevnt har røya i Ellasjøen et
særdelses høyt innhold av flere kloroganiske miljøgifter, noe som har vært foreslått å kunne skyldes
spesielle meteorologiske forhold, samt høye tilførsler av forurensninger i ekskrementer fra sjøfuglkolonier i nedbørfeltet (kobling til marine næringskjeder).
10
8
6
4
2
0
røye
antall bestander
antall bestander
ørret
0.1
1.0
10
ΣDDT, µg/kg
6
4
2
0
0.1
100
1.0
10
ΣDDT, µg/kg
gjedde
10
antall bestander
antall bestander
abbor
5
0
4
2
0
0
2
4
6
ΣDDT, µg/kg
8
10
0
lake, muskel
4
3
2
1
0
0
2
4
6
8
10
ΣDDT, µg/kg
1
2
3
4 5 6 7
ΣDDT, µg/kg
8
9
10
lake, lever
antall bestander
antall bestander
100
12
4
2
0
10
14
100
1000
ΣDDT, µg/kg
5000
Figur 5. Konsentrasjonene av ΣDDT i ferskvannsfisk. Konsentrasjonene (µg/kg våtvekt) gjelder
muskelvev; i lake også lever. Over søylediagrammene er det tegnet inn et box-plot hvor de vertikale
linjene angir minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
18
NIVA 4402-01
ørret
røye
Bjørnøya
59 µg/kg
ΣDDT, µg/kg
≥50
61 µg/kg
ΣDDT, µg/kg
≥50
10
10
1.0
1.0
0.1
0.1
abbor
gjedde
ΣDDT, µg/kg
ΣDDT, µg/kg
50
50
10
10
1.0
1.0
0.1
0.1
Figur 6. Kart over konsentrasjonene av ΣDTT i muskelvev (våtvekt) fra ørret, røye, abbor og gjedde.
De enkelte lokalitetene er markert med en fargekode som angir konsentrasjonene.
19
NIVA 4402-01
lake, muskel
lake, lever
ΣDDT, µg/kg
50
ΣDDT, µg/kg
5000
10
1000
1.0
100
0.1
10
Figur 7. Kart over konsentrasjonene av ΣDDT i muskelvev og lever fra lake (våtvekt). De enkelte
lokalitetene er markert med en fargekode som angir konsentrasjonene.
20
NIVA 4402-01
Samvariasjoner mellom ΣPCB7, ΣDDT og trofisk nivå (δ15N)
3.3
Det var generelt en svært god sammenheng mellom konsentrasjonene av ΣPCB7 og ΣDDT, og vi har
illustrert dette i figur 8 a og b. I figur 8 b har vi beregnet konsentrasjonene på fettvektsbasis. En slik
justering gjøres ofte når nivåene av lipofile miljøgifter skal sammenlignes mellom ulike arter eller
vevstyper med forskjellig fettinnholdfører, og vi ser i figur 8 b at variasjonsbredden i konsentrasjonene
minsker betydelig. Etter en slik «normalisering» blir nivåene i fettfraksjonen fra musklevev fra stor
fiskespisende rovfisk (storørret, gjedde og stor abbor) mer sammenliknbare med nivåene som finnes i
fettfraksjonen fra lake-lever.
I figur 8 c og d har vi framstilt de fettvektbasert konsentrasjonene av ΣPCB7 og ΣDDT som funksjon av
δ15N (isotopforholdet 15N:14N; relativ anrikning i forhold til atmosfærisk luft). δ15N-nivået gir et
uttrykk for fiskens plass i næringskjede, og generelt antas det å stige med 3,4‰ for hvert trofisk nivå
(Minagawa og Wada, 1984).
10000
10000
b)
1000
ΣDDT, ng/g lipidvekt
ΣDDT, µg/kg våtvekt
a)
100
10
1
1000
100
r2 = 0.97
r2 = 0.94
(log-transformed)
(log-transformed)
0.1
10
0.1
1
10
100
1000 10000
10
100
1000
10000 100000
ΣPCB7, ng/g lipidvekt
ΣPCB7, µg/kg våtvekt
2
f(x) = 26.5 * e^( 0.206*x ), r = 0.41
f(x) = 35.5 * e^(0. 220*x), r 2 = 0.41
10000
100000
d)
ΣDDT, ng/g lipidvekt
ΣPCB7, ng/g lipidvekt
c)
10000
1000
100
1000
100
10
10
3
6
9
12
15
18
3
21
6
9
12
15
18
21
15
δ N, ‰
15
δ N, ‰
Figur 8. Samvariasjonen mellom ΣPCB7 og ΣDDT (figur a og b); mellom ΣPCB7 og δ15N (figur c) og
mellom ΣDDT og δ15N (figur d) i det samlede prøvematerialet. I figur b, c og d er konsentrasjonene
framstilt på fettvektsbasis. Lever-prøvene er markert med trekant, muskel-prøvene er markert med
sirkel.
21
NIVA 4402-01
De fettvektjusterte nivåene av ΣPCB7 og ΣDDT viste en forholdsvis god samvariasjon med δ 15N, noe
som demonstrerer at disse forbindelsene i høy grad biomagnifiserer i akvatiske næringsnett. Den store
variasjonen omkring regresjonslinjen tolker vi i første rekke som et resultat av ulik forurensningsbelastning i de enkelte lokalitetene. Når det gjelder δ15N-nivået i enkelte lokaliteter, så er dette trolig
noe forhøyet som følge av menneskelig virksomhet, slik som utslipp fra kloakk-renseanlegg, avrenning
fra husdyrgjødsel mm. I Ellasjøen på Bjørnøya vet man også at δ15N-nivået er betydelig forhøyet på
grunn av stor tilførsel av fugleskitt fra sjøfuglkolonier. Disse forholdene kan i en viss grad ha forsterket
assosiasjonen mellom nivåene av klororganiske miljøgifter og δ15N, da menneskelige aktivitet i
nedbørfeltene også fører til økt risiko for lokal tilførsel av miljøgifter. For Ellasjøen kan den store
aktiviteten av hekkende sjøfugl i nedbørfeltene også tenkes å fungere som en kobling mot det marine
økosystemet og gi økt tilførsler av miljøgifter.
3.4
QCB, HCH, HCB og OCS
Standard analyseprogram inkluderte også QCB (pentaklorbenzen), HCH (α− og γ−hexaklorcyclohexan), HCB (hexaklorbenzen) og OCS (oktaklorstyren). I muskelvevs-prøvene ble det i
hovedsak funnet verdier som lå under kvantifiseringsgrensene av disse komponentene (se Tab. 3 i
vedlegg). I leverprøvene av lake fantes det imidlertid kvantifiserbare mengder, og vi har summarisk
framstilt disse verdiene i tabell 4. Generelt framsto Mjøsa med de høyeste verdiene, men ingen av
nivåene av HCB eller ΣHCH (HCHA + HCHG) i lakelever overskred grensene for tilstandsklasse I,
ubetydelig – lite forurenset, i SFTs klassifiseringssystem for miljøkvalitet i fjorder og kystvann
(Molvær et al. 1997).
Tabell 4. Konsentrasjoner av diverse klororganiske forbindelser i lakelever oppgitt som prosentiler.
Analysene er basert på blandprøver fra ulike bestander. Antall bestander analysert er 12.
Gjennomsnittlig fettprosent var 34%. Celler merket i.k. betyr ikke-kvantifiserbare verdier.
konsentrasjon, µg/kg våtvekt
komponent
Min.
25%
50%
75%
Max.
QCB, pentaklorbenzen
i.k.
i.k.
i.k.
0.3
3
HCB, hexaklorbenzen
1.3
8.8
9.6
13.5
18
HCHA, α-hexaklorsykloheksan
i.k.
1.1
3.3
3.9
15
HCHG, γ-hexaklorsykloheksan (lindan)
i.k.
1.3
5.7
11.3
17
4
4
4
4
4
OCS, oktaklorstyren
22
NIVA 4402-01
4. Andre persistente klor- og bromorganiske
forbindelser
Dette analyseprogrammet omfattet flere mer spesialiserte analyser av klorerte og bromerte organiske
miljøgifter, som dioksiner og dioksinliknende PCB-kongenere, polyklorerte naftalener og polyklorerte
parafiner, toksafener, samt polybromerte flammehemmere. Prosjektets rammer tillot kun å anlysere for
disse forbindelsene i et mindre utvalg prøver (inntil 16 ørret/røye- og 8 lakeprøver). I dette
prøveutvalget inngår ikke storørret fra Mjøsa—som viste seg å ha et høyt nivå av både ΣPCB7 og
ΣDDT. Nivåene i Mjøsa er imidlertid dekket ved at det er analysert i lever fra lake fra Furnesfjorden og
Lillehammer.
Det bør understrekes at det bare er ved analyser av disse variable — spesielt dioksiner og
dioksinliknende PCB — at man får et noenlunde pålitelig uttrykk for mulig helserisiko ved å spise
ferskvannsfisk. Denne kartleggingen har vært forsømt i minst et 10-år, og de resultater det redegjøres
for i det følgende bør være begynnelsen på en utvidet kartlegging av disse stoffenes forekomst..
4.1
Dioksiner og dibenzofuraner
Polyklorerte dibenzo-p-dioksiner (PCDD) og polyklorerte dibenzofuraner (PCDF) er en gruppe
forbindelse som for enkelhets skyld ofte omtales bare som dioksiner. Den toksikologiske vurderingen
av disse forbindelsenes forekomst innebærer at de omregnes til toksistetsekvivalenter av 2,3,7,8TCDD, noe som er gjort i Kapittel 5.
Vanlig forekommende nivåer av sum dioksiner (ΣPCDD/F) i ørret og røye lå i intervallet (0,7– 2 ng/kg
våtvekt, Tabell 5 og Figur 9). Rådata er framtilt i vedlegget, Tabell 4. Prøve-materialet besto av 14 ørretog 2 røye-prøver. De høyeste dioksinverdiene i muskelvev fra ørret og røye ble funnet i Mårvatn i AustAgder (Figur 10). Summen av dioksiner i ørret herfra (8,4 ng/kg våtvekt) var av omlag samme størrelse
som de nivåene som er rapportert fra ørret i vatn nær det tidligere smelteverket (pelletverket) i
Sørvaranger (Schlabach og Skotvold 1997) –– en virksomhet som slapp ut betydelige mengder
dioksiner til luft. De forhøyde nivåene i fisken fra Mårvatn kan tolkes som et resultat av at dette er et
område med relativt høye atmosfæriske avsetninger av dioksiner.
Blant innsjøene i Nord-Norge var den høyest registrerte nivået i ørret fra Store Raudvatn nær Mo i Rana
med 1,5 ng/kg. Nivået i røye fra Ellasjøen på Bjørnøya lå innenfor det vanlig forekommende nivået for
ørret og røye.
Vanlig forekommende nivåer av ΣPCDD/F i lake-lever lå i intervallet 80–200 ng/kg våtvekt. De
høyeste verdiene var i materialet fra Sør-Norge, og både Mjøsa, Hurdalssjøen og Femsjøen (nederst i
Haldenvassdraget) hadde verdier omkring 300 ng/kg.
Tabell 5. Konsentrasjonene av sum polyklorerte dioksiner og dibenzofuraner (ΣPCDD/F) i ørret/røye
og lake, oppgitt som middelverdi og prosentiler. Analysene er basert på blandprøver fra ulike bestander.
Antall bestander analysert (n), samt gjennomsnittlig fettprosent er oppgitt.
art
n
vev
ΣPCDD/F ng/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
16
muskel
1.49
1.63
0.49
0.49
0.67
0.94
1.98
4.69
8.4
lake
8
lever
35.6
178
25.5
25.5
79.0
152
306
313
313
23
NIVA 4402-01
lake, lever
10
antall bestander
antall bestander
ørret/røye, muskel
5
0
4
2
0
0
1
2
3 4 5 6 7
ΣPCDD/F, ng/kg
8
9
10
0
50 100 150 200 250 300 350 400
ΣPCDD/F, ng/kg
Figur 9. Konsentrasjonene av polyklorerte dioksiner og dibenzofuraner (ΣPCDD/F) i ørret/røye og
lake. Konsentrasjonene er analysert i muskelvev for ørret og røye, mens det for lake er analysert i lever.
Konsentrasjonene er oppgitt på våtvektsbasis. Over søylediagrammene er det tegnet inn et box-plot
hvor de vertikale linjene angir minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
ørret og røye, muskel
lake, lever
Bjørnøya
PCDD/F, ng/kg
10
PCDD/F, ng/kg
500
100
1.0
0.1
10
Figur 10. Kart over konsentrasjonene (våtvektbasis) av polyklorerte dioksiner og dibenzofuraner
(ΣPCDD/F) i muskelvev fra ørret/røye og lever fra lake. De enkelte lokalitetene er markert med en
fargekode som angir konsentrasjonenene.
24
NIVA 4402-01
4.2
non-orto PCB
Non-orto PCB er plane PCB-kongenerer hvor ingen av ortoposisjonene har klorsubstitusjoner. De
utgjør kun en liten fraksjon av den totale summen av PCB i en biologisk prøve. I en toksikologisk
sammenheng er de likevel viktige da de har dioksinliknende egenskaper og i betydelig grad kan bidra til
prøvens totale sum av toksistetsekvivalenter fra dioksiner og dioksinliknende stoffer. Summen av nonorto PCB som det her refereres til utgjøres av PCB-kongenerene med IUPAC nr. 77, 81, 126 og 169. En
toksikologiske vurderingen av forekomsten disse forbindelsene må imidlertid innebære at de omregnes
til toksistetsekvivalenter, noe som er gjort i Kapittel 5.
Vanlig forekommende nivåer av Σnon-orto PCB i muskelvev fra ørret og røye lå i intervallet 4–11 ng/
kg våtvekt (Tabell 6 og Figur 11). De høyeste nivåene i muskelvev fra ørret og røye på fastlands-Norge
ble generelt funnet i kystnære innsjøer i Aust-Agder (Figur 12), og ørretprøven fra Mårvatn nær
Arendal hadde 17,7 ng/kg. Ørret fra Store Raudvatnet nær Mo i Rana hadde også et forhøyet nivå. med
16,5 ng/kg. Røye fra Ellasjøen på Bjørnøya hadde imidlertid det suverent høyeste nivået med hele 118
ng/kg.
Vanlig forekommende nivåer av Σnon-orto PCB i lake-lever lå i intervallet 400–2000 ng/kg. De høyeste
verdiene var i materialet fra Sør-Norge. Lakeprøven fra Furnesfjorden i Mjøsa hadde en konsentrasjon
på 4000 ng/kg, mens prøvene fra Lillehammer (Mjøsa) og Hurdalssjøen hadde nivåer på omkring 2000
ng/kg. Dette er relativt høye verdier. Som sammenlikning kan det nevnes at det i Lake Laberg i nordlige
Canada, en innsjø hvor fisken har tildels svært høye nivåer av klororganiske miljøgifter, har det vært
rapportert nivåer av Σnon-orto PCB på omlag 4000 ng/kg (våtvekt) i lakelever (Muir og Lockhardt
1994)
Tabell 6. Konsentrasjonene av sum non-orto PCB i ørret/røye og lake, oppgitt som middelverdi og
prosentiler. Analysene er basert på blandprøver fra ulike bestander. Antall bestander analysert (n),
samt gjennomsnittlig fettprosent er oppgitt. Antallet ørret- og røyebestander var henholdsvis 14 og 2.
art
n
vev
Σnon-orto PCB, ng/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
16
muskel
1.49
14.32
2.04
2.30
4.00
6.43
11.3
47.9
118
lake
8
lever
35.6
1357
215
215
408
920
1946
4094
4094
25
NIVA 4402-01
lake, lever
antall bestander
antall bestander
ørret/røye, muskel
4
2
0
1.0
10
ΣnoPCB, ng/kg
4
2
0
100
100
1000
ΣnoPCB, ng/kg
10000
Figur 11. Konsentrasjonene av sum non-orto PCB i ørret/røye og lake. Konsentrasjonene er analysert i
muskelvev for ørret og røye, mens det for lake er analysert i lever. Konsentrasjonene er oppgitt på
våtvektsbasis. Over søylediagrammene er det tegnet inn et box-plot hvor de vertikale linjene angir
minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
ørret og røye, muskel
lake, lever
Bjørnøya
118 ng/kg
røye
n-o PCB, ng/kg
≥100
n-o PCB, ng/kg
5000
1000
10
røye
1
100
Figur 12. Kart over konsentrasjonene (våtvektsbasis) av sum non-orto PCB i muskelvev fra ørret/røye
og lever fra lake. De enkelte lokalitetene er markert med en fargekode som angir konsentrasjonene.
26
NIVA 4402-01
4.3
Polyklorerte naftalener – PCN
Vanlig forekommende nivåer av sum polyklorerte naftalener (ΣPCN) i muskelvev fra ørret og røye lå i
intervallet 10–20 ng/kg våtvekt (Tabell 7 og Figur 13). Rådata er gitt i vedlegget, Tabell 9. De høyeste
nivåene i muskelvev fra ørret og røye på fastlands-Norge ble generelt funnet i kystnære innsjøer i AustAgder (Figur 14), og ørretprøvene fra Mårvatn (ved Arendal) og Grovatn (ved Kristiandsand) hadde
konsentrasjoner på henholdsvis 58 og 32 ng/kg. Dette er nivåer i omlag samme størrelse som er
rapportert for ikke-fiskespisende ørret fra Great Lakes, USA (ΣPCN: 35–44 ng/kg våtvekt, Kannan et
al. 2000). Røye fra Ellasjøen på Bjørnøya hadde derimot en konsentrasjon som lå innenfor ovennevnte
normalintervall.
Vanlig forekommende nivåer av ΣPCN i lakelever lå i intervallet 800–7000 ng/kg våtvekt. De høyeste
verdiene var i materialet fra Sør-Norge. Lakeprøven fra Lillehammer, Mjøsa, hadde en konsentrasjon på
nær 9000 ng/kg, mens prøvene fra Furnesfjorden i Mjøsa og Hurdalssjøen hadde nivåer på henholdsvis
8000 og 5000 ng/kg. Som sammenlikning kan det nevnes at det i lever fra torsk fanget i indre Oslofjord
har det vært rapportert nivåer av ΣPCN på omlag 5000–15000 ng/kg våtvekt (Knutzen et al. 2000).
Enkelte polyklorerte naftalener har dioksinliknende egenskaper og er gitt tentative TEF-verdier av
Hanberg et al. (1990): 0,002 for 1,2,3,5,6,7-HxCN og 0,003 for 1,2,3,4,5,6,7-HpCN. Bidragene fra
disse forbindelsene til ΣTE blir imidlertid ubetydelig (< 1%) og er derfor ikke tatt med i de videre
beregningene. Generelt kan man imidlertid være oppmerksom på at mer kunnskap om PCN kan
medføre at gruppen må inkluderes i TE-beregningen (Villeneuve et al. 2000).
Tabell 7. Konsentrasjonene av sum polyklorerte naftalener (ΣPCN) i ørret/røye og lake, oppgitt som
middelverdi og prosentiler. Analysene er basert på blandprøver fra ulike bestander. Antall bestander
analysert (n), samt gjennomsnittlig fettprosent er oppgitt.
art
n
vev
ΣPCN ng/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
16
muskel
1.49
17.7
6.59
7.93
9.43
12.5
23.7
39.3
57.5
lake
8
lever
35.6
3638
643
643
834
2251
7374
8961
8961
27
NIVA 4402-01
lake, lever
antall bestander
antall bestander
ørret/røye, muskel
6
4
2
0
4
2
0
0
10
20
30
40
50
ΣPCN, ng/kg
60
70
0
2000
4000
6000
ΣPCN, ng/kg
8000
10000
Figur 13. Konsentrasjonene av sum polyklorerte naftalener (ΣPCN) i ørret/røye og lake.
Konsentrasjonene er analysert i muskelvev for ørret og røye, mens det for lake er analysert i lever.
Konsentrasjonene er oppgitt på våtvektsbasis. Over søylediagrammene er det tegnet inn et box-plot
hvor de vertikale linjene angir minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
ørret og røye, muskel
lake, lever
Bjørnøya
PCN, ng/kg
100
PCN, ng/kg
10000
10
1000
1
500
Figur 14. Kart over konsentrasjonene (våtvektsbasis) av sum polyklorerte naftalener (ΣPCN) i
muskelvev fra ørret/røye og lever fra lake. De enkelte lokalitetene er markert med en fargekode som
angir konsentrasjonene.
28
NIVA 4402-01
4.4
Toxafener
Vanlig forekommende nivåer av sum toxafener (ΣToxafen: Parlar nr. 26, 50 og 62) i muskelvev fra ørret
og røye lå i intervallet 2–12 µg/kg våtvekt (Tabell 8 og Figur 15). Rådata er gitt i vedlegg, Tabell 10.
Mønsteret i konsentrasjonene avvek noe fra det som ble registrert for PCB, DDT og dioksiner ved at
nord-sør gradientene ikke var så sterke. De høyeste nivåene i muskelvev fra ørret og røye på fastlandsNorge ble generelt funnet i Sør- og Midt-Norge (Figur 16), men de laveste nivåene ble funnet på indre
Østlandet. De høyeste nivåene ble funnet i ørretprøvene fra Vegår (Aust-Agder) og Selbussjøen (SørTrøndelag) med konsentrasjoner på henholdsvis 26 og 15 µg/kg. Røye fra Ellasjøen på Bjørnøya hadde
den tredje høyeste konsentrasjonen med 12 µg/kg. Til sammenlikning har nivåene av de samme
toxafen-forbindelsene i Østersjø-laks vært rapportert å ligge i området 5–30 µg/kg, med de høyeste
konsentrasjonene for bestandene fra de nord-svenske elvene (Atuma et al. 2000). Fra Grønland er det
rapportert om toxafen-nivåer (sum av Parlar nr. 26, 50 og 62) i stasjonær innsjølevende røye i området
2–4 µg/kg, men det i en elvelokalitet ble funnet nivåer på 18 µg/kg (Cleeman et al. 2000).
Vanlig forekommende nivåer av ΣToxafen i lake-lever lå i intervallet 30–125 µg/kg. Antallet prøver var
imidlertid kun 5, og det er ikke analysert prøver fra Mjøsa og Hurdalssjøen – innsjøer hvor fisken ellers
har hatt høye nivåer av klororganiske miljøgifter. Den høyest registrerte verdien i materialet var fra
Femsjøen i Haldenvassdraget med et konsentrasjon på nær 160 µg/kg. Til sammenlikning kan det
nevnes at konsentrasjonen i lever av torsk og sei fra kysten av Sør-Norge har vært rapportert til å ligge i
området 100–300 µg/kg (Solberg et al. 1999, Green et al. 2000)
Tabell 8. Konsentrasjonene av sum toxafener i ørret/røye og lake, oppgitt som middelverdi og
prosentiler. Analysene er basert på blandprøver fra ulike bestander. Antall bestander analysert (n),
samt gjennomsnittlig fettprosent er oppgitt. (sum Toxafen er oppgitt som summen av kongenerene med
Parlar nr. 26, 50 og 62)
art
n
vev
Σ Toxafen µg/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
15
muskel
1.50
7.32
0.26
0.51
1.55
4.98
11.7
19.5
26.2
lake
5
lever
29.4
72.8
18.9
18.9
32.1
46.8
126.4
156.7
156.7
29
NIVA 4402-01
lake, lever
6
antall bestander
antall bestander
ørret/røye
4
2
0
3
2
1
0
0
5
10
15
20
ΣToxafen, µg/kg
25
30
0
25
50
75 100 125
ΣToxafen, µg/kg
150
175
Figur 15. Konsentrasjonene av sum toxafener i ørret/røye og lake. Konsentrasjonene er analysert i
muskelvev for ørret og røye, mens det for lake er analysert i lever. Konsentrasjonene er oppgitt på
våtvektsbasis. Over søylediagrammene er det tegnet inn et box-plot hvor de vertikale linjene angir
minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen. (sum toxafen er oppgitt som summen
av kongenerene med Parlar nr. 26, 50 og 62)
ørret og røye, muskel
lake, lever
Bjørnøya
røye
ΣToxaphen, µg/kg
50
ΣToxaphen, µg/kg
200
100
10
røye
1.0
0.1
10
Figur 16. Kart over konsentrasjonene (våtvektsbasis) av sum toxafener i muskelvev fra ørret/røye og
lever fra lake. De enkelte lokalitetene er markert med en fargekode som angir konsentrasjonen. (sum
toxafener er oppgitt som summen av kongenerene med Parlar nr. 26, 50 og 62)
30
NIVA 4402-01
4.5
Bromerte flammehemmere – PBDE
Polybromerte difenyletere (PBDE) tilhører en gruppe kjemikalier som omtales som bromerte
flammehemmere, og i denne undersøkelsen refererer vi til ΣPBDE som summen av de to vanlig
forekommende kongenerene med IUPAC nr. 47 og 99 (2,2’4,4’-TeBDE og 2,2’,4,4’,5-PeBDE). De
øvrige 3 analyserte kongenerene var lave i sammenlikning (rådata er gitt i vedlegget, Tabell 7).
Vanlig forekommende nivåer av ΣPBDE i muskelvev fra ørret og røye lå i intervallet 0,3–1,1 µg/kg
våtvekt (Tabell 9 og Figur 17). De to kongenerene (47 og 99) forkom stort sett i omlag like store
konsentrasjoner. De høyeste nivåene av ΣPBDE i muskelvev fra ørret og røye på fastlands-Norge ble
generelt funnet i kystnære områder i Sør-Norge (Figur 18), med høyeste konsentrasjon i ørret fra Vegår,
Aust-Agder (2,4 µg/kg). Røye fra Ellasjøen på Bjørnøya hadde betydelig høyere konsentrasjoner med
en verdi på 16,3 µg/kg. Omregnet til konsentrasjoner på lipidvektbasis var nivåene i fiskeprøvene fra
Ellasjøen og Vegår henholdsvis 1250 og 125 µg/kg lipid. Til sammenlikning har nivåene av PBDE
(IUPAC nr. 47, 99 og 100) i røye fra Väneren i Sverige (beliggende i et tett befolket og industrialisert
område) vært rapportert å være omlag 500 µg/kg lipidvekt (Sällstrøm et al. 1993), mens nivåene i
Østersjølaks har vært rapportert å være omlag 145 µg/kg lipidvekt (Asplund et al. 1999b).
Vanlig forekommende nivåer av ΣPBDE i lake-lever lå i intervallet 50–500 µg/kg (våtvekt). De høyeste
nivåene fantes i Sør-Norge hvor Mjøsa var den mest forurensede lokaliteten, med konsentrasjoner i
lakelever fra Furnesfjorden og Lillehammer på henholdsvis 1955 og 670 µg/kg. Omregnet til
konsentrasjoner på lipidvektbasis utgjør dette omlag 3900 og 1500 µg/kg lipid. Dette er svært høye
nivåer som kan sammenliknes med de som har vært funnet i laksefisk (Oncorhynchus kisutch; O.
tsawytcha) fra Lake Michigan, USA (2440 µg/kg lipid, Manchester-Neesvig et al. 2001). Verdiene i
lake var også høye sammenliknet med torskelever fra norskekysten, der summen av IUPAC nr. 47 og 99
i fire orienterende blandprøver var 16–154 µg/kg (våtvekt), eller på lipidbasis opp til 135 µg/kg (Green
et al. 2000). I motsetning til ferskvannsbestandene var innholdet i torsk helt dominert av IUPAC 47 (9599% av sum PBDE 47 og 99).
Tabell 9. Konsentrasjonene av bromerte flammehemmere (sum polybromerte difenyletere, IUPAC nr. 47
og 99) i ørret/røye og lake, oppgitt som middelverdi og prosentiler. Analysene er basert på blandprøver
fra ulike bestander. Antall bestander analysert (n), samt gjennomsnittlig fettprosent er oppgitt.
art
n
vev
PBDE µg/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
15
muskel
1.50
1.74
0.10
0.12
0.31
0.57
1.14
7.94
16.30
lake
8
lever
35.6
395
20.3
20.30
55.23
121.0
529.3
1955
1955
31
NIVA 4402-01
lake, lever
antall bestander
antall bestander
ørret/røye, muskel
4
2
0
0.1
1.0
10
PBDE, µg/kg
100
3
2
1
10
100
1000
PBDE, µg/kg
5000
Figur 17. Konsentrasjonene av bromerte flammehemmere (sum polybromerte difenyletere, IUPAC nr.
47 og 99) i ørret/røye og lake. Konsentrasjonene (våtvektsbasis) er analysert i muskelvev for ørret og
røye, mens det for lake er analysert i lever. Over søylediagrammene er det tegnet inn et box-plot hvor de
vertikale linjene angir minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
ørret og røye, muskel
lake, lever
Bjørnøya
16.3 µg/kg
røye
PBDE, µg/kg
≥10
PBDE, µg/kg
≥1000
1.0
1955 µg/kg
100
røye
0.1
10
Figur 18. Kart over konsentrasjonene (våtvektsbasis) av bromerte flammehemmere (sum polybromerte
difenyletere, IUPAC nr. 47 og 99) i muskelvev fra ørret/røye og lever fra lake. De enkelte lokalitetene er
markert med en fargekode som angir konsentrasjonen.
32
NIVA 4402-01
4.6
Polylorerte parafiner – PCA
Vanlig forekommende nivåer av polyklorerte parafiner eller alkaner (PCA, kortkjedet: C10–C13) i
muskelvev fra ørret og røye lå i intervallet 4–8 µg/kg våtvekt (Tabell 10 og Figur 17). Det var ingen
markante geografiske gradientene i konsentrasjonene. Det høyeste nivået av ΣPCA ble funnet i ørret fra
Grunnevatn i Ballangen, Nordland, med en konsentrasjon på 22 µg/kg. Nivået i røye-prøven fra
Ellasjøen på Bjørnøya avvek ikke fra de vanlig forekommende nivåene i ørret fra fastlands-Norge. Det
var en tendens til at den midlere molekylvekten til ΣPCA sank med økende breddegrad, noe som kan
forklares med en at de letteste og mest flyktige forbindelsene fraktest lengst med luftstrømmene.
Prøven fra Ellasjøen brøt imidlertid med dette mønsteret, og hadde den nest høyeste midlere
molekylvekt. Dette kan bety at forurensningene i denne prøven i mindre grad skyldes atmosfæriske
avsetninger, men er mer koblet opp mot tilførslene fra de hekkende sjøfuglbestandene i området. (Se
vedlegg, Tabell 9, for rådata , samt data på midlere molekylvekter).
Vanlig forekommende nivåer av ΣPCA i lake-lever lå i intervallet 100–1000 µg/kg. Antallet prøver var
imidlertid kun 5, og det er ikke analysert prøver fra Mjøsa og Hurdalssjøen – innsjøer hvor fisken ellers
har hatt høye nivåer av klororganiske miljøgifter. Den høyest registrerte verdien i materialet var fra
Femsjøen i Haldenvassdraget med et konsentrasjon på nær 1500 µg/kg.
Det finnes få tilgjengelige data på nivåene av klorerte parafiner, men i følge Bjørnstad (1999) har det i
fiskeprøver (uspesifisert m.h.t art) vært målt nivåer i området 570–1600 µg/kg lipidvekt.
Tabell 10. Konsentrasjonene (våtvektsbasert) av sum polyklorerte parafiner (ΣPCA, kortkjedede) i
ørret/røye og lake, oppgitt som middelverdi og prosentiler. Analysene er basert på blandprøver fra ulike
bestander. Antall bestander analysert (n), samt gjennomsnittlig fettprosent er oppgitt.
art
n
vev
ΣPCA µg/kg våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
15
muskel
1.50
7
2.7
2.9
4.1
6.0
7.7
16
22
lake
5
lever
29.4
440
86
86
87
153
938
1480
1480
33
NIVA 4402-01
lake, lever
antall bestander
antall bestander
ørret/røye
6
4
2
0
0
5
10
15
ΣPCA, µg/kg
20
3
2
1
10
25
100
1000
ΣPCA, µg/kg
5000
Figur 19. Konsentrasjonene (våtvektsbasis) av sum polyklorerte parafiner (ΣPCA, kortkjedede) i ørret/
røye og lake. Konsentrasjonene er analysert i muskelvev for ørret og røye, mens det for lake er
analysert i lever. Over søylediagrammene er det tegnet inn et box-plot hvor de vertikale linjene angir
minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilen.
ørret og røye, muskel
lake, lever
Bjørnøya
røye
22 µg/kg
Σ PCA, µg/kg
≥1000
Σ PCA, µg/kg
20
15
10
røye
5
1480 µg/kg
≤100
0
Figur 20. Kart over konsentrasjonene (våtvektsbasis) av sum polyklorerte parafiner (ΣPCA,
kortkjedede) i muskelvev fra ørret/røye (og lever fra lake. De enkelte lokalitetene er markert med en
fargekode som angir konsentrasjonene
34
NIVA 4402-01
5. Toksisitets-ekvivalenter – TE
Toksisiteten av de dioksiner med klor i 2,3,7,8-posisjon og dioksinliknende PCBer (non-orto og endel
mono-orto PCB) kan uttrykkes som fraksjoner av toksisteten til den mest toksiske dioksinforbindelsen
2,3,7,8-TCDD, såkalte toksiske ekvivalenter (TE). Ved å summere bidragene av toksiske ekvivalenter
fra de enkelte forbindelsene kan den samlede toksisiteten til en prøve (ΣTE) beregnes.
Vi har i Tabell 11 beregnet summen av toksiske ekvivalenter (ΣTE) i fisk, basert på en modell anbefalt
av WHO (Van den Berg 1998). Kun for prøvene som var analysert med både standard og utvidet
analyseprogram (n = 24) var det mulig å beregne ΣTE som inkluderer bidragene fra de fire
hovedgruppene av dioksiner og dioksinliknende PCBer (polyklorerte dibenzo-p-dioksiner og
dibenzofuraner, PCDD/F; non-orto PCB, mono-orto PCB).
Vanlig forekommende nivåer av ΣTE i ørret og røye var i området 0,3–1 pg/g (Tabell 11, Figur 21). De
høyeste nivåene i muskelvev fra ørret og røye på fastlands-Norge ble generelt funnet i kystnære
områder i Sør-Norge (Figur 22), med høyeste konsentrasjon i ørret fra Mårvatnet, Aust-Agder med ΣTE
lik 1,9 pg/g. Røya fra Ellasjøen på Bjørnøya hadde en betydelig høyere konsentrasjon med en verdi på
22,25 pg/g.
Vanlig forekommende nivåer av ΣTE i lake-lever var 40–180 pg/g (Tabell 11, Figur 21). Høyeste nivå
ble funnet i Furnesfjorden, Mjøsa, med ΣTE på 445 pg/g. Dernest fulgte Hurdalssjøen med ΣTE på 190
pg/g. Lake fra Mjøsa ved Lillehammer og Femsjøen i Haldenvassdraget hadde også noe høye verdier
med 147 og 65 pg/g. De resterende prøvene hadde ΣTE-nivåer under 50 pg/g.
I dette prøveutvalget mangler imidlertid storørret fra Mjøsa, som hadde de høyeste konsentrasjonene av
klororganiske miljøgifter blant ørretbestandene i standard analyseprogram (ΣPCB7 og ΣDDT).
Tabell 11. Konsentrasjonene av dioksiner og dioksinliknende PCB i ørret/røye og lake, omregnet til
sum toksiske ekvivalenter (ΣTE, våtvektsbasis) etter Van den Berg et al. (1998). Summen består av
delbidragene fra non-orto PCB, mono-orto PCB og dioksiner (PCDD/F). Nivåene er gitt som
middelverdi og prosentiler. Analysene er basert på blandprøver fra ulike bestander. Antall bestander
analysert (n), samt gjennomsnittlig fettprosent fra utvidet analyseprogram er oppgitt
art
n
vev
ΣTE pg/g våtvekt
% fett
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret/røye
16
muskel
1.49
2.22
0.24
0.24
0.26
0.51
1.07
9.40
25.0
lake
8
lever
35.6
136.3
20.5
20.5
40.0
99.2
181.6
445.6
445.6
35
NIVA 4402-01
lake, lever
6
antall bestander
antall bestander
ørret/røye, muskel
4
2
0
0.1
1.0
10
3
2
1
0
10
100
TEF, pg/g
100
TEF, pg/g
1000
Figur 21. Konsentrasjonene av dioksiner og dioksinliknende PCB i ørret/røye og lake, omregnet til sum
toksiske ekvivalenter (ΣTE, våtvektsbasis) etter Van den Berg et al. (1998, i muskelvev fra ørret/røye og
lever fra lake. Over søylediagrammene er det tegnet inn et box-plot hvor de vertikale linjene angir
minimum og maksimum, samt 10-, 25-, 50-, 75- og 90-prosentilene.
ørret og røye, muskel
lake, lever
Bjørnøya
25 pg/g
røye
ΣTEF, pg/g
≥10
ΣTEF, pg/g
500
100
1.0
røye
0.1
10
Figur 22. Kart over konsentrasjonene av dioksiner og dioksinliknende PCB i ørret/røye og lake,
omregnet til sum toksiske ekvivalenter (ΣTE, våtvektsbasis) etter Van den Berg et al. (1998), i muskelvev
fra ørret/røye og lever fra lake. De enkelte lokalitetene er markert med en fargekode som angir
konsentrasjonene
Det var en tilsynelatende svært god samvariasjon mellom størrelsen på delbidragene av TE fra de
enkelte hovedgruppene av dioksiner og dioksinliknende PCB (korrelasjonskoeffisienter mellom 0,86 og
0,99, log-transformerte data) (Figur 23), best var den mellom TE fra henholdsvis dibenzo-p-dioksiner
(PCDD) og dibenzofuraner (PCDF). Den generelt gode sammenhengen skyldes imidlertid delvis at vi
36
NIVA 4402-01
her har basert oss på prøver av både muskel og lever, noe som gjør at konsentrasjonsområdet spenner
over fire størrelsesordener og effekten fra avvikende observasjoner på korrelasjons-koeffisientene blir
relativt svake. Dersom det fokuseres på nivåene i muskel isolert blir korrelasjonene tildels vesentlig
dårligere (r: 0,14–0,91) noe som illustrerer at det kan være vanskelig med akseptabel sikkerhet å
beregne ΣTE i en prøve ut fra delbidraget fra en enkelt av hovedgruppene av dioksiner eller
dioksinliknende PCBer.
I gjennomsnitt lå bidraget til ΣTE fra de fire hovedgruppene av dioksiner og dioksinliknende PCBer i
fiskeprøvene mellom 40% og 16%, høyest for non-orto PCB og lavest for dioksiner (Figur 24).
Variasjonen mellom de enkelte prøvene kunne imidlertid være betydelig, noe som illustreres i ternærdiagrammet i Figur 25. I dette diagrammet peker prøvene fra Ellasjøen (Bjørnøya) og Mårvatnet seg ut
som forholdsvis avvikende — Ellasjøen med svært lav andel av TE fra dioksiner og dibenzofuraner
(PCDD/F), og Mårvatnet (Aust-Agder) med relativt høy andel fra PCDD/F.
non-orto PCB, TE (pg/g)
1000
r = 0.97
100
10
1
ørret/røye
moPCB
0.1
moPCB
lake
0.01
PCDF, TE (pg/g)
100
r = 0.89
r = 0.95
r = 0.86
r = 0.93
10
1
0.1
PCDD, TE (pg/g)
0.01
100
r = 0.99
10
1
0.1
0.01
0
10
10
1
non-orto PCB, TE (pg/g)
0.1
1
0.0
00
10
0
10
10
1
0.1
1
0.0
00
10
0
10
10
1
0.1
1
0.0
mono-orto PCB, TE (pg/g)
PCDF, TE (pg/g)
Figur 23. Samvariasjonen mellom polyklorerte dibenzo-p-dioksiner (PCDD) og dibenzofuraner
(PCDD), non-orto PCB og mono-orto PCB, omregnet til sum toksiske ekvivalenter (ΣTE, våtvektsbasis)
etter van den Berg et al. (1998), i muskelvev fra ørret/røye og lever fra lake. Korrelasjonskoeffesientene
er beregnet på log-transformert materiale. n = 24.
37
NIVA 4402-01
Toksisitetsekvivalenter (TE), midlere andel
21%
23%
mono-orto
PCB
non-orto
PCB
16%
PCDD
PCDF
40%
0
Figur 24. Gjennomsnittlig prosentvis bidrag til summen av toksiske ekvivalenter (ΣTE) fra henholdsvis
polyklorerte dibenzo-p-dioksiner (PCDD), dibenzofuraner (PCDF), non-orto PCB og mono-orto PCB,
i muskelvev fra ørret/røye og lever fra lake (n= 24).
20
100
/F,
40
60
%)
40
80
PC
DD
(
TE
B,
PC
60
to
TE
(%
)
Mårvatn
-or
no
mo
80
Ellasjøen
10
0
20
0
0
20
40
60
80
0
10
non-orto PCB, TE (%)
Figur 25. Ternær-diagram som viser de enkelte prosentvise bidragene til summen av toksiske
ekvivalenter (ΣTE) fra henholdsvis polyklorerte dibenzo-p-dioksiner og dibenzofuraner (PCDD/F),
non-orto PCB og mono-orto PCB, i muskelvev fra ørret/røye (sirkler) og lever fra lake (triangler) (n=
24).
38
NIVA 4402-01
6. Kvikksølv
Vanlig forekommende nivåer (middelverdiene) av kvikksølv i muskelvev hos de ulike artene lå i
området 0,07–0,53 mg Hg/kg våtvekt (Tabell 12, Figur 26), Det var imidlertid vesentlig forskjeller
mellom de ulike artene; de høyeste konsentrasjonene ble gjennomgående funnet hos abbor, gjedde og
lake, mens ørret og røye hadde stort sett de laveste verdiene. For ørret og røye, som er de to artene med
videst geografisk utbredelse, viste analysene at det var en nord-sør gradient i konsentrasjonene, med de
høyeste nivåene i Sør- og Øst-Norge.
Nivåene i storørret-bestandene avvek imidlertid markert fra nivåene i de mer småvokste «normalbestandene», og for storørreten fra Mjøsa og Randsfjorden var kvikksølvnivået i blandprøvene
henholdsvis 0,51 og 1,33 mg/kg. Kvikksølv-innholdet i fisk fra Mjøsa og Randsfjorden er grundigere
beskrevet i Fjeld et. al. (1999a) og Fjeld (1999, 2000) der det dokumenteres at kvikksølvkonsentrasjonene i stor-ørretbestandene fra disse innsjøene er høye. Mjøsa har tidligere blitt tilført
betydelige mengder kvikksølv fra treforedlingsindustrien. For Randsfjorden er det derimot ikke kjent
lokale forurensningskilder, og de høye nivåene i fisken herfra skyldes derfor trolig langtransporterte
atmosfæriske avsetninger.
En forholdsvis høy konsentrasjon på 0,55 mg/kg ble funnet i ørretprøven fra Vatnebuvatnet, AustAgder; dette var også en prøve med innslag av noen storvokste individer (midlere individvekt: 920 g).
De høyeste konsentrasjonene i abbor ble funnet i fisk fra Østlandet, i områdene nær grensa til Sverige.
Prøvene fra Namsjøen (Grue, Hedmark) og Øymarksjøen (Marker, Østfold) hadde kvikksølvkonsentrasjoner på henholdsvis 1,20 og 0,88 mg/kg. For gjedde ble de høyeste konsentrasjonene funnet
i Randsfjorden og Namsjøen med henholdsvis 1,05 og 0,87 mg/kg. I lake ble de høyeste
konsentrasjonene funnet i Røgden (Grue, Hedmark) og i Mjøsa (Furnesfjorden) med henholdsvis 0,98
og 0,81 mg/kg.
Disse resultatene er i overensstemmelse med tidligere nasjonale undersøkelser (Rognerud et al 1990,
Rognerud et al. 1995). Det ble her konkludert med at kvikksølv-konsentrasjonene i ferskvannsfisk var
høyest i Sørøst-Norge, spesielt i bestander fra humusrike skogsvann; samt at fiskespisende rovfisk som
gjedde og storvokst abbor kunne akkumulere betenkelig høye nivåer av kvikksølv. En nylig rapportert
nasjonal undersøkelse av tungmetaller i innsjøesedimenter viser at det generelt er forhøyde nivåer av
kvikksølv i norske innsjøer på grunn av langtransporterte atmosfæriske avsetninger, og at innsjøer i
kystnære områder i Sør-Norge er mest utsatt (Rognerud og Fjeld 1999, Rognerud og Fjeld 2001).
Tabell 12. Kvikksølvkonsentrasjoner i ulike arter ferskvannsfisk, oppgitt som middelverdi og
prosentiler. Analysene er basert på blandprøver fra ulike bestander. n: antall bestander analysert.
Hg, mg/kg
Art
n
middel
Min.
10 %
25 %
50 %
75 %
90 %
Max.
ørret
33
0.15
0.019
0.029
0.050
0.079
0.11
0.44
1.33
røye
9
0.07
0.035
0.035
0.043
0.073
0.094
0.11
0.11
abbor
26
0.37
0.055
0.17
0.23
0.30
0.42
0.73
1.20
gjedde
13
0.53
0.15
0.16
0.36
0.45
0.74
0.98
1.05
lake
8
0.44
0.18
0.18
0.26
0.30
0.66
0.98
0.98
39
NIVA 4402-01
røye
20
antall bestander
antall bestander
ørret
15
10
5
0
0
0.25
0.5
0.75
1
Hg, mg/kg
1.25
4
3
2
1
0
1.5
0
0.05
12
10
8
6
4
2
0
0
0.25
0.5
0.75
Hg, mg/kg
0.2
0.25
1
1.25
gjedde
antall bestander
antall bestander
abbor
0.1
0.15
Hg, mg/kg
1
1.25
5
4
3
2
1
0
0
0.25
0.5
0.75
Hg, mg/kg
antall bestander
lake
4
3
2
1
0
0
0.25
0.5
0.75
Hg, mg/kg
1
Figur 26. Konsentrasjoner av kvikksølv (Hg) i ferskvannsfisk. Konsentrasjonene er analysert i
blandprøver av muskelvev og er oppgitt på våtvekts-basis. Over søylediagrammene er det tegnet inn et
box-plot hvor de vertikale linjene angir minimum og maksimum, samt 10-, 25-, 50-, 75- og 90prosentilene.
40
NIVA 4402-01
ørret
røye
Hg, mg/kg
3.0
Hg, mg/kg
3.0
1.0
1.0
0.1
0.1
0.01
0.01
abbor
gjedde
Hg, mg/kg
3.0
Hg, mg/kg
3.0
1.0
1.0
0.1
0.1
0.01
0.01
Figur 27. Kart over konsentrasjonene av kvikksølv (Hg) i blandprøver av muskelvev fra ørret, røye
abbor og gjedde. De enkelte lokalitetene er markert med en fargekode som angir konsentrasjonene
41
NIVA 4402-01
Hg, mg/kg
1.0
0.1
0.01
Figur 28. Kart over konsentrasjonene av kvikksølv (Hg) i blandprøver av muskelvev fra lake. De
enkelte lokalitetene er markert med en fargekode som angir konsentrasjonene.
EU og Codex Alimentarius, FNs organisasjon for matvarestandardisering, har satt en grenseverdi for
kvikksølv i fisk beregnet på omsetning og konsum på 0,5 mg/kg, med unntak av visse arter (med grense
på 1,0 mg/kg). Som følge av EØS-avtalen gjelder dette regelverket også for Norge. Av de artene som
behandles i denne rapporten har alle – utenom gjedde – en grense på 0,5 mg/kg. Gjedde har en grense
på 1 mg/kg, da det ble antatt at befolkningen konsumerte mindre av gjedde enn annen ferskvansfisk.
42
NIVA 4402-01
7. Vurdering av resultatene – kostholdsråd
Dette prosjektet er en landsomfattende kartlegging av innholdet av organiske miljøgifter i
ferskvannsfisk. Resultatene vil SNT bruke i sitt arbeid med å beregne inntak av miljøgifter i maten. Det
er viktig å beregne inntaket av de enkelte miljøgiftene fra hele kostholdet når helserisiko skal vurderes.
For en del av stoffene i rapporten er det både mangelfull toksikologisk kunnskap og mangelfull
kunnskap om hvilke nivåer som kan forekomme i organismer. Det er derfor for tidlig å gi en fullstendig
vurdering av alle resultatene i rapporten. Kartleggingen av de klororganiske miljøgiftene PCN, DDT,
toxafener og PCA samt PBDE er verdifull informasjon som SNT vil benytte i sitt videre arbeid med å
vurdere mulig helsefare ved inntaket av disse stoffene gjennom kostholdet.
Nivåene av dioksiner, dioksinliknende PCB og kvikksølv som tidligere har ført til kostholdsråd for
enkelte matvarer, vurderes nedenfor.
Dioksiner og PCB
Dioksiner og PCB er fettløselige og finnes hovedsakelig i fett fra fisk og pattedyr. Dioksiner kan ha
flere forskjellige virkninger i kroppen. De viktigste virkningene etter lang tids eksponering for små
mengder er endringer i immunforsvaret, endringer i forplantningsevnen, utvikling av kreft og endringer
i hormonbalansen. Ulike internasjonale ekspertkomiteer (EU, JECFA (Joint Expert Committee on Food
Additives and Contaminants), WHO, Nordisk) har alle fastsatt tolerabelt ukentlig inntak (TWI) for
dioksiner og dioksinliknende PCB basert på eksperimentelle resultater fra forsøksdyr og andre
vitenskapelige studier. TWI er den mengden av et stoff en person skal kunne få i seg hver uke gjennom
hele livet uten at det medfører helseskader. Det er langtidsvirkningene av akkumulering av dioksiner/
PCB som er mest bekymringsfullt. Om inntaket av miljøgifter er større enn anbefalt i noen perioder
antas det ikke å være forbundet med noen helserisiko bare total inntaket av miljøgifter over tid ikke blir
for høyt.
SNT har til nå forholdt seg til nordisk-TWI for dioksiner/PCB som er 35 pg TE/kg kroppsvekt, eller
2100 pg TE/uke for en voksen person (60 kg) (Ahlborg et al., 1988, revurdert i 1999). I år 2000 og 2001
har det vært høy aktivitet i ekspertgrupper i EU, WHO og JECFA som har vurdert helserisiko knyttet til
inntaket av dioksiner og dioksinliknende PCB. Konklusjonen fra disse vurderingene er at det har skjedd
en reduksjon av hva som anses som tolerabelt ukentlig inntak (TWI). SNT vil i løpet av høsten 2001 ta
stilling til hvilken TWI vi vil benytte videre i våre vurderinger. Situasjonen i dag er at et
gjennomsnittlig norsk kosthold vil gi inntak av dioksiner/PCB i befolkningen på omtrent samme nivå
som ny TWI. Grupper av befolkningen som har et høyere inntak av matvarer som inneholder mer
dioksiner/PCB enn gjennomsnittet vil kunne overskride tolerabelt ukentlig inntak.
Nivåene av dioksiner og dioksinliknende PCB funnet i muskel av ørret/røye i denne undersøkelsen kan
sammenliknes med det som er målt i for eksempel oppdrettslaks. Det er ikke forbundet med helsefare å
spise fisk med disse nivåene. Ørreten fra Ellasjøen, Bjørnøya er meget forurenset, men dette må anses
som et særtilfelle. Slike nivåer er ikke representative for ferskvannsørret i innsjøer på fastlands-Norge. I
ørret fra Mjøsa er det funnet forhøyede verdier av PCB7. Ørreten er ikke analysert for dioksiner og
dioksinliknende PCB. For å kunne utføre en risikovurdering er det nødvendig med slike data.
Nivåene av dioksiner/PCB i lakelever varierte en del, og innholdet i lever av lake fanget i Furnesfjorden
i Mjøsa er spesielt høyt. SNT har ikke kjennskap til hvor mye lakelever som spises i Norge, men vi har
fått en forståelse av at lakelever kan spises omtrent som torskelever. Underarbeidsgruppen for
miljøgifter i SNTs vitenskapelige komité har vurdert resultatene fra rapporten. Med bakgrunn i deres
anbefalinger fraråder SNT konsum av lever fra lake fanget i Furnesfjorden og hovedbassenget i Mjøsa
og i Hurdalssjøen.
43
NIVA 4402-01
Kvikksølv
Kvikksølv i fisk og skalldyr foreligger hovedsakelig som metylkvikksølv (CH3Hg+) som er mer toksisk
enn uorganisk kvikksølv. Etter opptak vil kvikksølv kunne finnes i de fleste deler av kroppen.
Kvikksølv er et tungmetall som kan skade nervesystemet. Dersom gravide kvinner får i seg for mye
metylkvikksølv, kan utviklingen av fosterets hjerne påvirkes. De tidligste effektene sett hos voksne
mennesker er prikking og stikking i hender og føtter som tegn på skade av det perifere nervesystemet.
Det tolerable ukentlige inntaket for kvikksølv er av JECFA (ekspertgruppe under WHO og FAO) satt til
5 µg/kg kroppsvekt, hvorav høyst 3,3 µg må være organisk kvikksølv. Et tolerabelt ukentlig inntak på
3,3 µg organisk Hg/kg kroppsvekt tilsvarer for en voksen person (60 kg) om lag 200 µg organisk
kvikksølv hver uke.
I det siste tiåret har det kommet nye studier som viser sammenheng mellom inntak av metylkvikksølv
fra sjømat og forstyrrelser i utvikling av nervesystemet på fosterstadiet. Hos de berørte barna er det
påvist dårligere konsentrasjonsevne, forsinket språkutvikling og dårligere finmotorikk. Faren for slike
skader er størst i 2. og 3. del i svangerskapet og tidlig i ammeperioden. Det har også vært utført nye
risikovurderinger av National Academy of Science, USA (NRC 2000) som indikerer at JECFAs verdi
for tolerabelt inntak ikke er tilstrekkelig for å beskytte mot helseskader forårsaket av metylkvikksølv.
SNTs eksperter på miljøgifter i vitenskapskomiteen har vurdert nye studier og gjort nye
risikovurderinger av metylkvikksølv. Konklusjonen er at tidligere vurderinger ikke vil gi et tilstrekkelig
beskyttelsesnivå for gravide og ammende. Tolerabelt ukentlig inntak for metylkvikksølv fastsatt av
JECFA vil imidlertid være tilstrekkelig for å beskytte andre grupper i befolkningen.
For kvikksølv er det fastsatt en norsk grenseverdi. Det gjennomsnittlige kvikksølvinnholdet i spiselige
deler av fiskeprodukter skal ikke overskride 0,5 mg/kg. For noen spesielle navngitte fiskearter skal
kvikksølvinnholdet i spiselige deler ikke overstige 1,0 mg/kg. Samme grenser gjelder i EU og
internasjonalt.
Underarbeidsgruppen for miljøgifter i SNTs vitenskapelige komité har vurdert helsefaren forbundet
med kvikksølvinntaket via fisk. Deres vurderinger har ført til at SNT har gitt landsomfattende
kostholdsråd for gravide og ammende. Rådene gjelder kun for fisk som er fisket i ferskvann.
Oppdrettsfisk og sjøørret kan trygt spises
Gravide og ammende bør ikke spise:
•
gjedde
•
abbor over ca 25 cm
•
ørret over én kilo
•
røye over én kilo
Andre personer bør ikke spise disse fiskeslagene mer enn én gang i måneden i gjennomsnitt.
Kvikksølvnivåene i ferskvannsfisk i denne undersøkelsen er tilsvarende det som er funnet i tidligere
undersøkelser. Ut fra resultatene i denne rapporten er det ikke behov for andre kostholdsråd for
kvikksølv i ferskvannsfisk enn de som er nevnt ovenfor.
Nye kostholdsråd som følge av denne undersøkelsen:
Konsum av lever fra lake fanget i Furnesfjorden og i hovedbassenget Mjøsa frarådes.
Konsum av lever fra lake fanget i Hurdalssjøen frarådes.
44
NIVA 4402-01
8. Referanser
Ahlborg, U.G., Becking, G.C., Brinbaum, L.S., Brouwer, A., Derks, H.J.G.M., Feely, M.,Golor, G.,
Hanberg, A., Larsen, J.C., Liem, A.K.D., Safe, S.H., Schlatter, C., Wärn, F., Younes, M., Yräheikki,
1994. Toxic equivalency factors for dioxin-like PCBs. Chemosphere 28: 1049–1067.
AMAP. 1998. AMAP Assesment Report: Arctic Pollution Issues. Arctic Monitoring and Assesment
Programme (AMAP), Oslo, Norway. 859 s.
Asplund, L., Athanasiadou, M., Sjödin, A., Bergman, Å. og Börjeson, H. 1999a. Organohalogen
Substances in Muscle, Egg and Blood from Healthy Baltic Salmon (Salmo salar) and Baltic Salmon
that Produced Offspring with M74 Syndrom. Ambio 28: 67-76.
Asplund, L., Hornung, M., Peterson R.E., Turesson, K. og Bergman, Å. 1999b. Levels of
polybrominated diphenyl ethers (PBDEs) in fish from the Great Lakes and the Baltic Sea.
Organohalogen comp. 40: 351–354.
Atuma, S.S., Bergh, A., Nilsson, I., og Aune, M. 2000. Toxaphene levels in salmon (Salmo salar) from
the Baltic Sea. Chemosphere 41: 517–520.
Berg, V. og Skaare, J.U. 1995. DDT og endel andre klororganiske forbindelser i gjedde og ørret fanget
høsten 1994 i Gvarvelva. Inst. for farmakologi, mikrobiologi og næringsmiddelhygiene. Rapport. 8 s. +
vedlegg.
Bernes, C. 1998. Persistent Organic Pollutants. A Swedish View of an International Problem. Swedish
Environmental Protection Agency, Monitor 16. 152 s.
Brevik, E.M, Grande, M., Knutzen, J. og Polder, A. 1995 DDT-forurensning i fisk og sedimenter fra
Ørsjøen (Østfold) i 1994 jevnført med observasjoner fra 1975. NIVA rapport 3377-95. 62 s.
Brevik, E.M. Grande, M., Knutzen, J., Polder, A. og Skaare, J.U. 1996. DDT contamination of fish and
sediments from Lake Ørsjøen, southern Norway: Comparison of data from 1975 and 1994.
Chemosphere 33: 2189–2200.
Brevik, E.M., Lien, L. Følsvik, N., Knutzen, J. og Andresen, B. Bruk av passive vannprøvetakere til
kartlegging av punktkilder for persistente klorerte miljøgifter med DDT som modellsubstans. NIVA
rapport 4134–99. 51 s.
Bjørnstad, S.L. 1999. Kortkjedede høyklorerte paraffiner. Materialstrømsanalyse. SFT rapport 99:24,
32 s.
Cleemann, M., Riget, F., Paulsen, G.B., de Boer, J., Klungsøyr, J. og Aastrup, P. 2000. Organochlorines
in Greenland lake sediments and landlocked Atctic char (Salvelinuns alpinus). Sci. Tot. Environ.
245:173–185.
de Wit, C.A. Brominated Flame Retardants. Swedish environmental protection agency, report 5056. 94
s.
Fjeld, E. 1999. Miljøgifter i fisk fra Randsfjorden, 1998. Kvikksølv og klororganisk forbindelser. NIVA
rapport 4073-99. 29 s. + vedlegg.
Fjeld, E. 2000. Supplerende analyser av kvikksølv i ørret og røye fra Randsfjorden, 1999/2000. NIVA
45
NIVA 4402-01
notat, 5 s.
Fjeld, E. Øxnevad, S., Følsvik, N. og Brevik, E.M. 1999a. Miljøgifter i fisk fra Mjøsa, 1998. Kvikksølv,
klororganiske og tinnorganiske forbindelser. NIVA rapport 4072-99. 28 s. + vedlegg
Fjeld, E. Lien, L., Rognerud, S., og Underdal, B. 1999b. Miljøgifter i Drammenselva 1997–1998.
Tungmetaller og organiske mikroforurensninger i fisk, moser og muslinger. NIVA rapport 4060-99. 37
s.
Furutani, A., og Rudd, J.W.M. 1991. Measurment of mercury methylation in lake water and sediment
samples. Appl. Environmental Microbiol. 40: 770–776.
Grandjean, P., Weihe, P., White, R.F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sorensen, N.,
Dahl, R., and Jorgensen, P.J. 1997. Cognitive deficit in 7-year-old children with prenatal exposure to
methylmercury. Neurotoxicol. Teratol. 19: 417-28.
Grandjean, P., Weihe, P., White, R.F., and Debes, F. 1998. Cognitive performance of children prenatally
exposed to "safe" levels of methylmercury. Environ. Res. 77: 165-72.
Green, N., Bjerkeng, B., Helland, A., Hylland, K., Knutzen, J. and Walday, M. 2000. Joint Assesment
and Monitoring Programme (JAMP). National comments regarding the Norwegian data for 1998 and
suppementary investigations on cod (1996) and sediment (1996–1997). Norwegian State Pollution
Monitoring Programme, report 788/00, NIVA rapport 4171-00. 206 s.
Grieb, T.M., Driscoll, C.T., Gloss, S.T., Schofield, C.L., Bowie, G.L., and B., P.D. 1990. Factors
affecting mercury accumulation in fish in the upper Michigan peninsula. Environ. Toxicol. Chem. 9:
919-930.
Hanberg, A., Warn, F., Asplund, L., Haglund, E., og Safe, S.E. 1990. Swedish dioxin survey:
Determination of 2,3,7,8-TCDD toxic equivalent factors for some polychlorinated biphenyls and
naphtalenes using biological tests. Chemosphere 20: 1161–1164.
Kannan, K., Imagawa, T., Ymashita, N., Miyazaki, A. og Giesy, J.P. 2000. Polychlorinated naphtalenes
in sediment, fishes and fish-eating waterbirds from Michigan Waters of the Great Lakes.
Organohalogen Compounds 47: 13-17.
Kidd, K. A., Schindler, D. W., Hesslein, R. H., and Muir, D. C. G. 1998. Effects of trophic position and
lipid on organochlorine concentrations in fishes from subarctic lakes in Yukon Territory. Can. J. Fish.
Aquat. Sci., 55: 869–881.
Kjellberg, G. og Løvik, J. L. 2000. PCB-konsentrasjoner i sedimenter fra NSBs båthavn i Åkersvika og
fra Mjøsa utenfor Esperen. Rapport fra undersøkelsen i 1999. NIVA rapport 4167-00. 38 s.
Knutzen, J., Fjeld, E., Hylland, K, Killie, B., Kleivane, L., Lie, E., Nygård, T., Savinova, T., Utne Skåre,
J. og Aanes, K.J. 1999. Miljøgifter og radioaktivitet i norsk fauna — inkludert Arktis og Antarktis.
Direktoratet for naturforvaltning. Utredning for DN, Nr. 1999–5. 235 s.
Knutzen, J., Brevik, E.M., Følsvik, N. og Schlabach, M. 2000. Overvåkning i indre Oslofjord.
Miljøgifter i fisk og blåskjell 1997–1998. Statlig program for forurensningsovervåkning.
Overvåkningsrapport 784/99, NIVA rapport 4126-99. 89 s.
Molvær, J., Knutzen, J., Magnusson, J., Rygg, B., Skei, J. og Sørensen, J. 1997. Klassifisering av
miljøkvalitet i fjorder og kystfarvann. Veiledning. SFT-rapport TA-1467. 36 s.
46
NIVA 4402-01
Manchester-Neesvig, J.B., Valters, K. og Sonzogni, W.C. 2001. Comparison of Polybrominated
Diphenyl Ethers (PBDEs) and Polychlorinated Biphenyls (PCB) in lake Michigan Salmonids. Environ.
Sci. Technol. 1072–1077.
Minagawa, M., and Wada, E. 1984. Stepwise enrichment of 15N along food chains: further evidence
and the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48: 1135–1140.
Muir, D.C.G. og Lockhardt, W.L. 1994. Contaminant trends in freshwater and marine fish. I: Murray,
J.L. og Shearer, R.G. (red). Synopsis of research conducted under the 1993/1994 Northern Contaminats
Program, s. 264-271. Indian and Northern Affairs Canada, Ottawa, Environmental studies 73. 459 s.
NRC. 2000. Toxicological Effects of Methylmercury. Commitee on the Toxicological Effects of
Methylmercury, Board on Environmental Studies and Toxicology, National Research Counsil (NRC).
386 s.
Rognerud, S. Fjeld, E. 1990. Landsomfattende undersøkelse av tungmetaller i innsjøsedimenter og
kvikksølv i fisk. Statlig program for forurensningsovervåkning. SFT. Rapport 326/90.
Rognerud, S., Fjeld, E. og Eriksen, G.S. 1996. Landsomfattende undersøkelse av kvikksølv i
ferskvannsfiske og vurderiung av helsemessige effekter ved konsum. Statlig program for
forurensningsovervåkning, Rapport 673/96. 21 s + vedlegg.
Rognerud, S. og Fjeld, E. 1997. Regional undersøkelse av miljøgifter i innsjøsedimenter. Delrapport 1.
Organiske mikroforurensninger. Statlig program for forurensningsovervåkning. SFT. Rapport 712/97.
NIVA rapport 3699-97. 37 s. + vedlegg
Rognerud, S. og Fjeld, E. 1999. Landsomfattende undersøkelser av metaller i innsjøsedimenter. Statlig
program for forurensningsovervåkning. SFT. Rapport 759/99. NIVA rapport 4024-99. 71 s. + vedlegg
Rognerud, S. og Fjeld, E. 2001. Trace element contamination of Norwegian lake sediments. Ambio 30:
11–19.
Rognerud, S., Grimalt, J.O., Rosseland, B.O., Fernadez, P., Hofer, R., Lackner, R., Lauritzen, B., Lien,
L. Massabuau, J.C. og Vilanova, R. 2001. Mercury, and organochlorine contamination in Brown trout
(Salmo trutta) and Arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the
Svalbard archipelago. Water Air Soil Pollut. (in print)
Sällstrøm , U., Kierkegaard, A, de Vit, C., Jansson, B., og Olsson, M. 1993. Polybrominated diphenyl
ethers (PBDE) in biological samples from the Swedish environment. Chemosphere 26: 1703–1718.
Schlabach, M. og Skotvold, T. 1997 Undersøkelser av PCDD/PCDF i næringsmidler i Sørvaranger.
Oppfølgingsundersøkelser i 1997. NILU rapport OR 65/97. 15 s. + vedlegg
Skjelkvåle, B.L., Henriksen, A., Vadset, M. og Røyset, O. 1996. Sporelementer i norske innsjøer foreløpig resultat for 473 sjøer. NIVA rapport 3457/97. 18 s.
Skotvold, T., Wartena, E.M.M., og Rognerud. S. 1997 Hevy metals and persistent organic pollutants in
sediments and fish from lakes in Northern and Arctic Regions of Norway. Statlig program for
forurensningsovervåkning. SFT rapport 688/97. 98 s.
Skotvold, Wartena, E.M.M. Christensen, G.N., Fjeld, E. og Schlabach, M. Organochlorine
contaminants in biota and sediment from lakes on Bear Island. Statlig program for
forurensningsovervåkning. SFT. Rapport 764/99. 47 s. + vedlegg
47
NIVA 4402-01
Solberg, T., Øvrevoll, B., Berg, V., Biseth, A. og Eriksen, G.S. 1999. Kartlegging av tungmetaller og
klororganiske miljøgifter i Sør-Norge. SNT-Rapport 4·99. 27 s. + vedlegg
Spies, R. B., Kruger, H., Ireland, R., and Rice, D. W. 1989. Stable isotope ratios and contaminant
concentrations in a sewage-distorted food web. Mar. Ecol. Prog. Ser., 54: 157–170.
Tomey, G.T., Stern, G.A., Muir, D.C.G., Fisk, A.T., Cymbalisty, C.D,og Westmore, J.B. 1997.
Quantifying C10-C13 polychloralkanes in environmental samples by high-resolution gas
chromatography/electron capture negative ion high-resolution mass spectrometry. Anal. Chem. 69:
2762–2771.
Van den Berg, M., Birnbaum, L., Bosveld, A.T., Brunström, B., Cook, P., Feeley, M., Giesy, JP,
Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak ,T., Larsen, J.C., van Leeuwen, F.X., Liem, A.K.,
Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M.,
Waern, F., og Zacharewski, T. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for
humans and wildlife. Environ Health Perspect.106: 775-792.
Vander Zanden, M. J., Cabana, G., and Rasmussen, J. B. 1997. Comparing trophic position of
freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature data. Can. J. Fish.
Aquat. Sci., 54: 1142–1158.
Villeneuve, D.L., Kannan, Khim, J.S., Falandysz, J., Nikiforov, V.A. Blankenship, A.L., og Gisey, 2000.
Relative potencies of individual polychlorinated naphtalenes to induce dioxin-like responses in fish and
mammalian in vitro bioiassays. Arch. Environ. Contam. Toxicol. 39: 273–281.
Wania, F. og Mackay, D. 1993. Global fractionation and cold condensation of low volatility
organochlorine compounds in polar regions. Ambio 22: 10–18.
Wathne, B.M., Patrick, S. og Cameron, N. (eds.) 1997. AL:PE - Acidification of Mountain Lakes:
Paleolimnology and Ecology. Part 2. Remote Mountain Lakes as indikators of Air Pollution and
Climate Change. NIVA rapport 3638-97. 525 s.
48
NIVA 4402-01
Vedlegg
Tabell 1, Lokalitetsangivelser................................................................... Vedlegg s. 2
Tabell 2, Di-orto og mono-orto PCB........................................................ Vedlegg s. 5
Tabell 3, QCB, HCHA, HCHG, HCH, OCS og DDT ............................. Vedlegg s. 11
Tabell 4, Dioksiner ................................................................................... Vedlegg s. 14
Tabell 5, Dibenzofuraner.......................................................................... Vedlegg s. 16
Tabell 6, Non-orto PCB............................................................................ Vedlegg s. 18
Tabell 7, Polybromerte flammehemmere ................................................. Vedlegg s. 19
Tabell 8, Polyklorerte naftalener .............................................................. Vedlegg s. 20
Tabell 9, Polyklorerte parafiner ................................................................ Vedlegg s. 21
Tabell 10, Toxafener................................................................................. Vedlegg s. 22
Tabell 11, Toksiske ekvivalenter .............................................................. Vedlegg s. 23
Tabell 12, Fiskestørrelse, stabile isotoper, kvikksølv............................... Vedlegg s. 24
Vedlegg s. 1
Tabell 1. Beliggenhet av de undersøkte lokaliteter, samt innsjøareal og høyde over havet
hoh, m
Breddegrad
Lengdegrad
NORD-TRØNDELAG
0.137
507
65.057
13.216
FJALER
SOGN OG FJORDANE
0.329
68
61.254
5.522
Breimsvatnet
GLOPPEN
SOGN OG FJORDANE
22.517
61
61.694
6.388
Bæreia
KONGSVINGER
HEDMARK
1.342
231
60.158
11.968
Dragsjøen
SELBU
SØR-TRØNDELAG
0.263
395
63.295
11.132
Einavatnet
VESTRE TOTEN
OPPLAND
13.516
398
60.580
10.634
Ellasjøen
(Bjørnøya)
(Arktis)
0.72 km2
21
74.393
19.040
Femsjøen
HALDEN
ØSTFOLD
10.637
79
59.135
11.461
Femunden
ENGERDAL
HEDMARK
203.523
662
62.352
11.954
Fjellfrøsvatnet
BALSFJORD
TROMS
6.711
125
69.086
19.334
Flåte
BAMBLE
TELEMARK
3.929
53
59.061
9.460
Glomma Elverum
ELVERUM
HEDMARK
.
.
60.851
11.577
Goksjø
SANDEFJORD
VESTFOLD
3.471
28
59.168
10.143
Grindheimsvatnet
AUDNEDAL
VEST-AGDER
0.422
112
58.447
7.423
Grovatnet
KRISTIANSAND
VEST-AGDER
0.336
18
58.197
8.004
Grunnvatnet
BALLANGEN
NORDLAND
2.005
80
68.285
16.702
Hallandsvatnet
FARSUND
VEST-AGDER
0.441
36
58.128
6.715
Holmevatn
GAULAR
SOGN OG FJORDANE
0.335
582
61.334
6.401
Huddingsvatnet
RØYRVIK
NORD-TRØNDELAG
6.728
464
64.875
13.794
Hurdalsjøen
HURDAL
AKERSHUS
32.311
175
60.310
11.105
Isebakktjernet
RÅDE
ØSTFOLD
0.186
60
59.346
10.968
Kalandsvatnet
BERGEN
HORDALAND
3.296
53
60.270
5.406
Kalsjøen
GRUE
HEDMARK
0.676
381
60.370
12.545
Kommune
Fylke
Austre Gåsvatn
NAMSSKOGAN
Bogevatnet
NIVA 4402-01
Vedlegg s. 2
Areal, km2
Lokalitet/prøve
Tabell 1. (Fortsettelse) Beliggenhet av de undersøkte lokaliteter, samt innsjøareal og høyde over havet
hoh, m
Breddegrad
Lengdegrad
NORD-TRØNDELAG
0.611
663
64.875
13.251
OPPEGÅRD
AKERSHUS
0.29
95
59.803
10.799
Lygne
HÆGEBOSTAD
VEST-AGDER
7.565
188
58.447
7.223
Lønavatnet
VOSS
HORDALAND
2.911
78
60.685
6.477
Mindrebøvatnet
MARNARDAL
VEST-AGDER
0.282
154
58.371
7.489
Mjøsa
RINGSAKER
HEDMARK
365.189
123
60.899
10.692
Mjøsa Furnesfjorden/95
RINGSAKER
HEDMARK
365.189
123
60.789
11.002
Mjøsa Furnesfjorden/98
RINGSAKER
HEDMARK
365.189
123
60.789
11.002
Mjøsa Gjøvik
RINGSAKER
HEDMARK
365.189
123
60.803
10.709
Mjøsa Lillehammer
RINGSAKER
HEDMARK
365.189
123
61.084
10.446
Mjøvann
DRANGEDAL
TELEMARK
????
190
59.061
9.248
Mårvatnet
FROLAND
AUST-AGDER
0.201
78
58.485
8.659
Namsjøen
GRUE
HEDMARK
1.108
198
60.510
12.156
Nautsundvatnet
FJALER
SOGN OG FJORDANE
0.652
47
61.254
5.410
Pasvikelva
SØR-VARANGER
FINNMARK
.
70
69.016
29.040
Pasvikelva Grensefoss
SØR-VARANGER
FINNMARK
.
70
69.016
29.040
Randsfjorden
GRAN
OPPLAND
139.232
135
60.390
10.394
Ravalsjø
KONGSBERG
BUSKERUD
0.815
475
59.510
9.544
Rimsjøen
SELBU
SØR-TRØNDELAG
0.336
642
63.204
11.434
Røgden
GRUE
HEDMARK
15.968
280
60.421
12.504
Selbusjøen
SELBU
SØR-TRØNDELAG
58.263
157
63.261
11.004
Snåsamottjørna
NAMSSKOGAN
NORD-TRØNDELAG
0.047
547
65.039
13.353
Stavsvatnet
VINJE
TELEMARK
0.406
1050
59.630
8.115
Stordalsvatnet
NAMSSKOGAN
NORD-TRØNDELAG
0.182
356
65.060
13.132
Store Raudvatnet
RANA
NORDLAND
4.447
488
66.278
14.517
Kommune
Fylke
Kjeråtjørnin
NAMSSKOGAN
Kolbotntjernet
NIVA 4402-01
Vedlegg s. 3
Areal, km2
Lokalitet/prøve
Tabell 1. (Fortsettelse) Beliggenhet av de undersøkte lokaliteter, samt innsjøareal og høyde over havet
hoh, m
Breddegrad
Lengdegrad
FINNMARK
0.565
42
71.034
27.927
KRISTIANSAND
VEST-AGDER
0.117
52
58.121
7.919
Takvatnet
BALSFJORD
TROMS
15.188
215
69.115
19.088
Ulgjellvatnet
FARSUND
VEST-AGDER
0.19
210
58.148
6.707
Vaggatem
SØR-VARANGER
FINNMARK
33.865
51
69.296
29.282
Vannsjø
VÅLER
ØSTFOLD
36.943
25
59.413
10.712
Vatnebuvatnet
ARENDAL
AUST-AGDER
0.336
7
58.556
8.938
Vegår
VEGÅRSHEI
AUST-AGDER
17.704
189
58.808
8.858
Velmunden
GRAN
OPPLAND
2.859
389
60.470
10.288
Øgderen (Hemnessjøen)
AURSKOG-HØLAND
AKERSHUS
12.8
133
59.696
11.431
Østre Engvatn
BAMBLE
TELEMARK
0.225
108
58.985
9.531
Øyangen
(Bjørnøya)
(Arktis)
0.350 km2
33
74.447
19.007
Øymarksjøen
MARKER
ØSTFOLD
14.328
107
60.201
10.327
Kommune
Fylke
Storvatnet
GAMVIK
Storvatnet
NIVA 4402-01
Vedlegg s. 4
Areal, km2
Lokalitet/prøve
Tabell 2. Konsentrasjoner av di-orto og mono-orto PCB, oppgitt i µg/kg våtvekt. ΣPCB er summen av alle kongenerer; ΣPCB7 er summen av kongenerene
med IUPAC-nr. 28, 52, 101,118, 153, 138 og180. ΣTE (mo-PCB) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/g våtvekt) av mono-orto PCB
(PCB 105, 118 og 156), beregnet etter Van den Berg et al. (1998). For beregningene av sum PCB er konsentrasjoner under kvantifiseringsgrensene satt lik
null, for beregningen ΣTEF er konsentrasjoner under kvantifiseringsgrensene satt lik denne. Vevstype: M, muskel; L, lever.
PCB 28
PCB 52
PCB 101
PCB 118
PCB 105
PCB 153
PCB 138
PCB 156
PCB 180
PCB 209
ΣPCB
ΣPCB 7
(mo-PCB)
Austre Gåsvatn
Røye
M
2.23
<0.04
<0.04
0.17
0.35
0.11
0.53
0.45
1.3
0.26
<0.04
3.17
1.76
0.696
Austre Gåsvatn
Ørret
M
0.9
<0.1
<0.1
<0.1
0.14
<0.1
0.26
0.2
<0.1
0.13
<0.1
0.73
0.73
0.074
Bogevatnet
Ørret
M
0.76
<0.06
<0.06
0.13
0.25
0.06
0.58
0.47
<0.06
0.25
<0.06
1.74
1.68
0.061
Breimsvatnet
Ørret
M
1.1
<0.06
<0.06
0.2
0.22
0.09
0.86
0.69
0.06
0.35
<0.06
2.47
2.32
0.061
Bæreia
Abbor
M
0.7
<0.04
0.07
0.28
0.38
0.17
0.95
0.87
0.09
0.43
0.04
3.28
2.98
0.1
Dragsjøen
Røye
M
0.68
<0.06
<0.06
<0.06
0.06
<0.06
0.21
0.17
<0.06
0.08
<0.06
0.52
0.52
0.042
Dragsjøen
Ørret
M
1.11
<0.06
<0.06
<0.06
0.06
<0.06
0.16
0.1
<0.06
<0.06
<0.06
0.32
0.32
0.042
Einavatnet
Abbor
M
0.4
<0.1
<0.1
0.11
0.12
<0.1
0.31
0.3
<0.1
0.1
<0.1
0.94
0.94
0.072
Einavatnet
Gjedde
M
0.39
<0.1
<0.1
0.38
0.42
0.19
1.2
1.1
0.1
0.48
<0.1
3.87
3.58
0.111
Ellasjøen
Røye
M
1.88
0.48
0.20
3.77
60.80
14.12
354.59
163.03
15.45
132.05
746.37
714.7
15.191
Femsjøen
Abbor
M
0.34
<0.1
<0.1
0.41
0.6
0.3
1.7
1.7
0.18
0.77
<0.1
5.66
5.18
0.18
Femsjøen
Gjedde
M
0.31
<0.06
<0.06
0.23
0.37
0.15
1
0.85
0.08
0.47
<0.06
3.15
2.92
0.092
Femsjøen
Lake
L
37
2.8
10
45
81
30
320
220
24
120
2.3
855.1
798.8
23.1
Femsjøen
Lake
M
0.55
<0.06
0.07
0.33
0.59
0.25
2.2
1.6
0.17
0.89
<0.06
6.1
5.68
0.169
Femunden
Abbor
M
0.79
<0.06
<0.06
0.07
0.08
<0.06
0.26
0.19
<0.06
0.1
<0.06
0.7
0.7
0.044
Femunden
Gjedde
M
0.41
<0.06
<0.06
0.13
0.24
<0.06
0.6
0.45
0.25
<0.06
1.67
1.67
0.03
NIVA 4402-01
Fett %
ΣTE
Art
Vevstype
Vedlegg s. 5
Lokalitet
Tabell 2. (Fortsettelse) Konsentrasjoner av di-orto og mono-orto PCB, oppgitt i µg/kg våtvekt. ΣPCB er summen av alle kongenerer; ΣPCB7 er summen av
kongenerene med IUPAC-nr. 28, 52, 101,118, 153, 138 og180. ΣTE (mo-PCB) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/g våtvekt) av
mono-orto PCB (PCB 105, 118 og 156), beregnet etter Van den Berg et al. (1998). For beregningene av sum PCB er konsentrasjoner under
kvantifiseringsgrensene satt lik null, for beregningen ΣTEF er konsentrasjoner under kvantifiseringsgrensene satt lik denne. Vevstype: M, muskel; L, lever.
ΣPCB 7
Røye
M
1.4
<0.06
<0.06
0.2
0.33
0.12
1.3
0.92
0.07
0.43
<0.06
3.37
3.18
0.08
Fjellfrøsvatnet
Ørret
M
1.2
<0.06
<0.06
0.09
0.12
<0.06
0.33
0.24
<0.06
0.09
<0.06
0.87
0.87
0.048
Flåte
Abbor
M
0.2
<0.03
<0.03
0.03
0.04
0.05
0.06
<0.03
0.03
<0.03
0.21
0.21
0.019
Glomma Elverum
Lake
L
35.5
10
16
31
31
10
70
42
4.6
19
0.48
238.04
219
6.4
Goksjø
Abbor
M
0.39
<0.06
<0.06
0.17
0.17
0.07
0.55
0.46
<0.06
0.27
<0.06
1.69
1.62
0.054
Goksjø
Gjedde
M
0.15
<0.06
<0.06
0.13
0.12
<0.06
0.43
0.32
<0.06
0.19
<0.06
1.19
1.19
0.048
Grindheimsvatnet
Abbor
M
0.88
<0.06
<0.06
<0.06
<0.06
<0.06
0.09
0.07
<0.06
<0.06
<0.06
0.16
0.16
0.042
Grindheimsvatnet
Ørret
M
1.07
<0.06
<0.06
0.27
0.37
0.13
1.5
1.3
0.12
0.79
<0.06
4.48
4.23
0.11
Grovatnet
Abbor
M
0.76
<0.06
<0.06
0.2
0.41
0.16
0.9
0.88
0.11
0.47
<0.06
3.13
2.86
0.112
Grovatnet
Ørret
M
1.27
<0.06
0.1
0.54
1.1
0.45
3.3
3
0.35
1.9
0.15
10.89
9.94
0.33
Grunnvatnet
Ørret
M
0.7
<0.1
<0.1
<0.1
<0.1
<0.1
0.13
0.1
<0.1
<0.1
<0.1
0.23
0.23
0.07
Hallandsvatnet
Ørret
M
1.02
<0.04
0.12
0.2
0.07
0.8
0.65
0.08
0.49
0.04
2.45
2.26
0.067
Holmevatn
Ørret
M
2.75
<0.1
<0.1
0.21
0.38
0.14
1.3
0.92
0.63
<0.1
3.58
3.44
0.052
Huddingsvatnet
Ørret
M
0.21
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
0
0
0.07
Hurdalsjøen
Lake
L
38.5
2.1
6.9
35
75
33
360
290
36
220
9.2
1367.2
1289
28.8
Isebakktjernet
Abbor
M
0.17
<0.1
<0.1
0.36
<0.1
<0.1
0.14
0.15
<0.1
<0.1
<0.1
0.65
0.65
0.07
Isebakktjernet
Gjedde
M
0.27
<0.1
<0.1
0.19
0.38
0.13
0.82
0.67
<0.1
0.36
<0.1
2.55
2.42
0.101
Kalandsvatnet
Ørret
M
2.85
<0.2
<0.2
0.54
0.45
0.2
1.4
1.3
<0.2
0.58
<0.2
4.47
4.27
0.165
Kalsjøen
Ørret
M
1.84
<0.06
<0.06
0.19
0.63
0.13
0.94
0.73
0.09
0.43
<0.06
3.14
2.92
0.121
NIVA 4402-01
ΣPCB
Fjellfrøsvatnet
(mo-PCB)
PCB 209
ΣTE
PCB 105
PCB 180
PCB 118
PCB 156
PCB 52
PCB 138
PCB 28
PCB 153
Fett %
PCB 101
Art
Vevstype
Vedlegg s. 6
Lokalitet
Tabell 2. (Fortsettelse) Konsentrasjoner av di-orto og mono-orto PCB, oppgitt i µg/kg våtvekt. ΣPCB er summen av alle kongenerer; ΣPCB7 er summen av
kongenerene med IUPAC-nr. 28, 52, 101,118, 153, 138 og180. ΣTE (mo-PCB) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/g våtvekt) av
mono-orto PCB (PCB 105, 118 og 156), beregnet etter Van den Berg et al. (1998). For beregningene av sum PCB er konsentrasjoner under
kvantifiseringsgrensene satt lik null, for beregningen ΣTEF er konsentrasjoner under kvantifiseringsgrensene satt lik denne. Vevstype: M, muskel; L, lever.
PCB 105
PCB 209
ΣPCB
ΣPCB 7
(mo-PCB)
Røye
M
1.27
<0.06
<0.06
0.13
0.23
0.08
0.62
0.5
<0.06
0.29
<0.06
1.85
1.77
0.061
Kjeråtjørnin
Ørret
M
0.94
<0.06
<0.06
0.06
0.15
<0.06
0.25
0.19
<0.06
0.11
<0.06
0.76
0.76
0.051
Kolbotntjernet
Abbor
M
0.16
0.1
0.1
0.5
0.4
0.7
0.8
0.1
0.4
<0.1
3.1
3
0.09
Kolbotntjernet
Gjedde
M
0.06
<0.1
0.2
0.6
0.6
1
1.1
0.1
0.5
<0.1
4.1
4
0.11
Lygne
Ørret
M
1.34
<0.1
<0.1
0.18
0.26
0.1
0.65
0.59
0.11
0.39
<0.1
2.28
2.07
0.091
Lønavatnet
Ørret
M
1.18
<0.06
<0.06
0.2
0.28
0.1
1
0.79
0.06
0.51
<0.06
2.94
2.78
0.068
Mindrebøvatnet
Ørret
M
1.41
<0.06
<0.06
0.07
0.11
<0.06
0.31
0.24
<0.06
0.15
<0.06
0.88
0.88
0.047
Mjøsa
Abbor
M
0.40
<0.1
0.13
1.3
1.4
0.19
5.1
5.2
0.35
1.9
<0.1
15.57
15.03
0.334
Mjøsa
Gjedde
M
0.10
<0.1
0.1
0.4
0.5
1.4
1.6
0.2
0.7
<0.1
4.9
4.7
0.15
Mjøsa
Lagesild
M
0.73
0.1
0.55
5.2
5
15
15
1.1
5.8
<0.1
49.55
46.55
1.24
Mjøsa Gjøvik
Lake
L
43.6
5
6
83
120
488
400
50
170
5
1327
1272
37
Mjøsa Furnesfjorden 98
Lake
L
45.5
4.6
17
130
190
77
670
510
42
190
<4
1830.6
1711.6
47.7
Mjøsa Furnesfjorden 95
Lake
L
44.1
17
31
343
576
219
2300
1880
195
679
13
6243
5816
177
Mjøsa Lillehammer
Lake
L
34.6
10
16
109
172
77
496
387
55
180
2
1519
1385
52.4
Mjøsa Furnesfjorden 98
Lake
M
0.44
<0.1
0.16
1.1
1.9
0.85
6.2
5.1
0.46
1.6
<0.1
17.37
16.06
0.505
Mjøsa Gjøvik
Lake
M
0.57
<0.1
<0.1
0.37
0.53
0.22
1.9
1.6
0.1
0.62
<0.1
5.34
5.02
0.125
Mjøsa
Ørret
M
4.30
0.18
0.9
8
8.2
2.3
25
24
1.4
8.9
<0.1
78.88
75.18
1.75
Mjøvann
Abbor
M
0.30
0.06
<0.03
0.03
0.07
0.23
0.23
0.04
0.15
0.04
0.85
0.77
0.027
Mjøvann
Ørret
M
0.76
<0.03
<0.03
0.06
0.1
0.25
0.23
0.05
0.14
0.05
0.88
0.78
0.035
NIVA 4402-01
PCB 118
ΣTE
PCB 101
PCB 180
PCB 52
PCB 156
PCB 28
PCB 138
Fett %
Kjeråtjørnin
1.9
PCB 153
Art
Vevstype
Vedlegg s. 7
Lokalitet
Tabell 2. (Fortsettelse) Konsentrasjoner av di-orto og mono-orto PCB, oppgitt i µg/kg våtvekt. ΣPCB er summen av alle kongenerer; ΣPCB7 er summen av
kongenerene med IUPAC-nr. 28, 52, 101,118, 153, 138 og180. ΣTE (mo-PCB) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/g våtvekt) av
mono-orto PCB (PCB 105, 118 og 156), beregnet etter Van den Berg et al. (1998). For beregningene av sum PCB er konsentrasjoner under
kvantifiseringsgrensene satt lik null, for beregningen ΣTEF er konsentrasjoner under kvantifiseringsgrensene satt lik denne. Vevstype: M, muskel; L, lever.
(mo-PCB)
M
0.53
<0.06
<0.06
0.12
0.2
0.08
0.97
0.83
0.12
0.72
0.06
3.1
2.84
0.088
Mårvatnet
Ørret
M
2.27
<0.06
0.1
0.45
0.58
0.26
2.1
1.9
0.21
1.1
<0.06
6.7
6.23
0.189
Namsjøen
Abbor
M
0.63
<0.04
<0.04
0.1
0.11
0.04
0.29
0.24
<0.04
0.13
<0.04
1.91
0.87
0.035
Namsjøen
Gjedde
M
0.11
<0.1
<0.1
0.11
0.12
<0.1
0.32
0.26
<0.1
0.12
<0.1
0.93
0.93
0.072
Nautsundvatnet
Ørret
M
1.07
<0.06
<0.06
0.09
0.14
<0.06
0.52
0.39
<0.06
0.27
<0.06
1.41
1.41
0.05
Pasvikelva Grensefoss
Gjedde
M
0.48
<0.1
<0.1
<0.1
0.16
<0.1
0.3
0.22
<0.1
0.1
<0.1
0.76
0.78
0.076
Pasvikelva Grensefoss
Lake
L
26.2
<2
2.4
14
34
13
72
59
6.1
24
<1
224.5
205.4
7.75
Pasvikelva Grensefoss
Lake
M
0.31
<0.06
<0.06
0.07
0.17
0.08
0.33
0.28
<0.06
0.1
<0.06
1.03
0.95
0.055
Randsfjorden
Abbor
M
0.4
<0.04
0.13
0.14
0.07
0.44
0.39
0.04
0.15
<0.04
1.36
1.25
0.041
Randsfjorden
Gjedde
M
0.18
<0.1
0.2
0.3
0.8
0.9
0.1
0.4
<0.1
2.7
2.6
0.08
Randsfjorden
Ørret
M
1.5
0.08
1.5
1.9
0.76
8.7
7.5
0.75
4.4
0.09
25.68
24.08
0.641
Ravalsjø
Abbor
M
0.51
<0.06
<0.06
<0.06
0.06
<0.06
0.12
0.11
<0.06
<0.06
<0.06
0.29
0.29
0.042
Ravalsjø
Ørret
M
1.08
<0.06
<0.06
0.16
0.49
0.09
0.52
0.44
<0.06
0.24
<0.06
1.94
1.85
0.088
Rimsjøen
Ørret
M
0.8
<0.06
<0.06
0.08
0.13
<0.06
0.34
0.27
<0.06
0.1
<0.06
0.92
0.92
0.049
Røgden
Abbor
M
0.59
<0.06
<0.06
0.06
0.08
<0.06
0.3
0.25
<0.06
0.15
<0.06
0.84
0.84
0.044
Røgden
Gjedde
M
0.47
<0.06
0.13
0.16
0.06
0.53
0.41
<0.06
0.26
<0.06
1.55
1.49
0.052
Røgden
Lake
L
32.8
<2
<2
11
14
4.5
59
38
3.6
30
<2
160.1
152
3.65
Røgden
Lake
M
0.31
0.06
0.09
0.1
<0.06
0.37
0.3
<0.06
0.19
<0.06
1.11
1.11
0.046
Selbusjøen
Lake
L
42.0
2
19
39
14
130
80
5.4
35
<1
327.6
308.2
8
NIVA 4402-01
ΣPCB 7
ΣTE
PCB 138
ΣPCB
PCB 153
PCB 209
PCB 101
PCB 180
PCB 52
PCB 156
PCB 28
Abbor
3.2
PCB 105
Fett %
Mårvatnet
<0.1
PCB 118
Art
Vevstype
Vedlegg s. 8
Lokalitet
Tabell 2. (Fortsettelse) Konsentrasjoner av di-orto og mono-orto PCB, oppgitt i µg/kg våtvekt. ΣPCB er summen av alle kongenerer; ΣPCB7 er summen av
kongenerene med IUPAC-nr. 28, 52, 101,118, 153, 138 og180. ΣTE (mo-PCB) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/g våtvekt) av
mono-orto PCB (PCB 105, 118 og 156), beregnet etter Van den Berg et al. (1998). For beregningene av sum PCB er konsentrasjoner under
kvantifiseringsgrensene satt lik null, for beregningen ΣTEF er konsentrasjoner under kvantifiseringsgrensene satt lik denne. Vevstype: M, muskel; L, lever.
PCB 138
M
0.48
<0.06
<0.06
0.08
0.16
0.06
0.51
0.34
0.14
<0.06
1.29
1.23
0.052
Selbusjøen
Røye
M
2.21
<0.06
<0.06
0.24
0.27
0.1
0.74
0.58
0.27
<0.06
2.2
2.1
0.037
Selbusjøen
Ørret
M
1.76
<0.06
<0.06
0.12
0.16
0.06
0.44
0.34
0.13
<0.06
1.25
1.19
0.022
Snåsamottjørna
Ørret
M
1.09
<0.06
<0.06
<0.06
0.07
<0.06
0.14
0.1
<0.06
<0.06
<0.06
0.31
0.31
0.043
Stavsvatnet
Ørret
M
1.47
<0.04
<0.04
0.19
0.4
0.14
1.5
1.3
0.17
1.1
0.16
4.96
4.49
0.139
Stordalsvatnet
Ørret
M
2.06
<0.04
<0.04
0.13
0.27
0.06
0.41
0.33
0.17
<0.04
1.37
1.31
0.033
Store Raudvatnet
Røye
M
0.34
<0.1
0.1
0.2
0.3
1.1
1.1
0.2
0.6
<0.1
3.6
3.4
0.13
Store Raudvatnet
Ørret
M
1.00
<0.1
0.1
0.2
0.3
1
1
0.3
0.6
<0.1
3.5
3.2
0.18
Storvatnet
Røye
M
1.30
<0.06
<0.06
0.19
0.42
0.16
1.4
1
0.11
0.57
<0.06
3.85
3.58
0.113
Storvatnet
Ørret
M
0.44
<0.06
<0.06
0.11
0.19
0.07
0.62
0.49
<0.06
0.31
<0.06
1.79
1.72
0.056
Takvatnet
Røye
M
1.29
<0.04
0.05
0.32
0.51
0.18
1.7
1.4
0.09
0.47
<0.04
4.72
4.45
0.114
Takvatnet
Ørret
M
1.73
<0.04
0.04
0.17
0.26
0.1
0.76
0.59
0.05
0.22
<0.04
2.19
2.04
0.061
Ulgjellvatnet
Ørret
M
0.81
<0.1
<0.1
0.14
0.29
0.11
1.2
0.89
0.13
0.73
<0.1
3.49
3.25
0.105
Vaggatem
Abbor
M
0.20
<0.1
0.1
0.1
0.1
0.2
0.2
<0.1
0.1
<0.1
0.8
0.8
0.06
Vaggatem, duplikat
Abbor
M
0.23
<0.1
<0.1
<0.1
<0.1
<0.1
0.17
0.15
<0.1
<0.1
<0.1
0.32
0.32
0.07
Vaggatem
Gjedde
M
0.48
<0.06
<0.06
0.09
0.17
<0.06
0.39
0.29
<0.06
0.13
<0.06
1.07
1.07
0.053
Vaggatem
Lake
L
25.4
<2
<2
6.8
10
2.5
28
19
<2
8.5
<2
74.8
72.3
2.25
Vaggatem
Lake
M
0.36
<0.06
<0.06
0.14
0.27
0.1
0.73
0.48
0.07
0.19
<0.06
1.98
1.81
0.072
Vannsjø
Abbor
M
0.38
<0.06
0.06
0.35
0.39
0.16
1.3
1.1
0.09
0.48
<0.06
3.96
3.68
0.1
<0.06
NIVA 4402-01
PCB 153
(mo-PCB)
PCB 105
Lake
ΣTE
PCB 118
ΣPCB 7
PCB 101
ΣPCB
PCB 52
PCB 209
PCB 28
Selbusjøen
PCB 180
Fett %
PCB 156
Art
Vevstype
Vedlegg s. 9
Lokalitet
Tabell 2. (Fortsettelse) Konsentrasjoner av di-orto og mono-orto PCB, oppgitt i µg/kg våtvekt. ΣPCB er summen av alle kongenerer; ΣPCB7 er summen av
kongenerene med IUPAC-nr. 28, 52, 101,118, 153, 138 og180. ΣTE (mo-PCB) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/g våtvekt) av
mono-orto PCB (PCB 105, 118 og 156), beregnet etter Van den Berg et al. (1998). For beregningene av sum PCB er konsentrasjoner under
kvantifiseringsgrensene satt lik null, for beregningen ΣTEF er konsentrasjoner under kvantifiseringsgrensene satt lik denne. Vevstype: M, muskel; L, lever.
ΣPCB 7
(mo-PCB)
0.37
0.44
0.2
1.2
0.96
<0.1
0.46
<0.1
3.63
3.43
0.114
M
0.5
<0.06
<0.06
0.11
0.15
0.07
0.5
0.44
<0.06
0.25
<0.06
1.52
1.45
0.052
Vatnebuvatnet
Ørret
M
1.59
<0.06
0.15
1.2
1.9
0.64
9.9
7.6
0.67
5.5
<0.06
27.56
26.25
0.589
Vegår
Abbor
M
0.29
<0.1
<0.1
<0.1
<0.1
<0.1
0.24
0.26
<0.1
0.15
<0.1
0.65
0.65
0.07
Vegår
Ørret
M
0.61
<0.1
<0.1
0.15
0.19
<0.1
0.54
0.56
<0.1
0.34
<0.1
1.78
1.78
0.079
Velmunden
Abbor
M
0.53
<0.06
<0.06
0.09
0.12
<0.06
0.31
0.3
<0.06
0.15
<0.06
0.97
0.97
0.048
Velmunden
Røye
M
1.34
<0.06
0.08
0.47
0.65
0.25
1.8
1.7
0.14
0.85
<0.06
5.94
5.55
0.16
Øgderen (Hemnessjøen)
Abbor
M
0.50
<0.04
0.06
0.21
0.22
0.1
0.65
0.57
0.06
0.28
<0.04
2.15
1.99
0.062
Øgderen (Hemnessjøen)
Lake
L
43.9
2.3
5.6
25
36
14
110
86
8.4
51
2.8
341.1
315.9
9.2
Øgderen (Hemnessjøen)
Lake
M
0.43
<0.06
<0.06
0.12
0.14
0.07
0.38
0.31
<0.06
0.17
<0.06
1.19
1.12
0.051
Østre Engvatn
Abbor
M
0.20
<0.03
<0.03
0.04
0.04
0.13
0.13
<0.03
0.09
<0.03
0.43
0.43
0.019
Øyangen
Røye
M
1.49
0.086
0.05
0.45
2.40
0.697
12.45
4.49
1.14
4.12
24.0
0.882
Øymarksjøen
Abbor
M
0.34
<0.06
<0.06
0.21
0.29
0.13
1
0.89
0.09
0.44
2.83
0.087
<0.06
3.05
NIVA 4402-01
ΣPCB
Abbor
ΣTE
PCB 209
Vatnebuvatnet
PCB 180
<0.1
PCB 156
0.13
PCB 138
M
PCB 153
Gjedde
PCB 105
PCB 118
PCB 28
PCB 101
Fett %
Vannsjø
PCB 52
Art
Vevstype
Vedlegg s. 10
Lokalitet
NIVA 4402-01
Tabell 3. Konsentrasjoner av pentaklorbenzen (QCB), α-hexaklorcyclohexan (HCHA), γ-hexaklorcyclohexan (HCHG; lindan), hexaklorbenzen (HCH) og oktaklorstyren (OCS), samt p,p’-DDT med
nedbrytningsprodukter (p,p’-DDE og p,p’-DDD), oppgitt i µg/kg våtvekt., Vevstype: M, muskel; L,
lever.
HCB
HCHG
OCS
p,p'-DDT
p,p'-DDE
Austre Gåsvatn
Røye
M
2.23 <0.02
0.18
0.28
0.22
0.04
0.37
1.4
<0.1
Austre Gåsvatn
Ørret
M
0.9 <0.05
<0.1
0.13
<0.1 <0.05
<0.4
0.63
<0.2
Bogevatnet
Ørret
M
0.76 <0.03 <0.08
Breimsvatnet
Ørret
M
1.1 <0.03 <0.08
Bæreia
Abbor
M
0.7 <0.02 <0.04
Dragsjøen
Røye
M
Dragsjøen
Ørret
M
Einavatnet
Abbor
M
0.4 <0.05
<0.2
0.09
<0.2 <0.05
<1
0.64
<0.3
Einavatnet
Gjedde
M
0.39 <0.05
<0.2
0.11
<0.2 <0.05
<1
2.5
0.37
Ellasjøen
Røye
M
1.88
.
.
.
.
0.392
86.39
0.414
Femsjøen
Abbor
M
0.34 <0.05
<0.2
0.09
<0.2 <0.05
2.3
2.1
0.5
Femsjøen
Gjedde
M
0.31 <0.03 <0.08
0.07 <0.08 <0.03
<0.2
Femsjøen
Lake
L
Femsjøen
Lake
Femunden
0.03
<0.2
1.5 <0.15
0.21
0.1 <0.03
0.95
6.1
0.37
0.1
0.1 <0.03
<0.1
1.8
0.11
0.68 <0.03 <0.08
0.09 <0.08 <0.03
<0.2
0.41 <0.15
1.11 <0.03 <0.08
0.12 <0.08 <0.03
<0.2
0.35 <0.15
37
<0.6
0.18 <0.08
p,p'-DDD
HCHA
QCB
Art
Vevstype
Fett %
Lokalitet/prøve
.
1.1 <0.15
3.8
14
13
4
84
410
76
M
0.55 <0.03 <0.08
0.39
0.12
0.04
1
3
0.31
Abbor
M
0.79 <0.03 <0.06
0.9 <0.06 <0.03
<0.2
0.42
<0.1
Femunden
Gjedde
M
0.41 <0.03 <0.06
0.08 <0.06 <0.03
0.21
0.8
<0.1
Fjellfrøsvatnet
Røye
M
1.4 <0.03 <0.08
0.26 <0.08 <0.03
<0.2
0.7 <0.15
Fjellfrøsvatnet
Ørret
M
1.2 <0.03 <0.08
0.16 <0.08 <0.03
<0.2
0.3 <0.15
Flåte
Abbor
M
0.2
0.07
0.05
0.08
0.12
0.1
0.03
Glomma
Lake
L
35.5
0.55
1.3
1.3
4
32
74
27
Goksjø
Abbor
M
0.39 <0.03 <0.06
0.06 <0.06 <0.03
0.67
2.5
0.22
Goksjø
Gjedde
M
0.15 <0.03 <0.06 <0.03 <0.06 <0.03
0.39
1.9
<0.1
Grindheimsvatnet
Abbor
M
0.88 <0.03 <0.08
0.06 <0.08 <0.03
<0.2
Grindheimsvatnet
Ørret
M
1.07 <0.03 <0.08
0.33
0.08 <0.03
0.35
Grovatnet
Abbor
M
0.76 <0.03 <0.08
0.07
0.09 <0.03
<0.2
1.1 <0.15
Grovatnet
Ørret
M
1.27
0.28
0.18 <0.03
<0.2
2.7
0.25
Grunnvatnet
Ørret
M
<0.2
0.18
<0.2 <0.05
<1
0.2
<0.3
Hallandsvatnet
Ørret
M
1.02 <0.02 <0.04
0.17
0.1 <0.03
<0.1
1.2
<0.1
Holmevatn
Ørret
M
2.75 <0.05
<0.1
0.57
<0.1 <0.05
0.32
5.2
0.32
Huddingsvatnet
Ørret
M
0.21 <0.05
<0.2 <0.05
<0.2 <0.05
<1
<0.1
<0.3
Hurdalsjøen
Lake
L
38.5
<1
3.4
12
4
.
380
84
Isebakktjernet
Abbor
M
0.17 <0.05
<0.2
0.07
<0.2 <0.05
<1
0.26
<0.3
Isebakktjernet
Gjedde
M
0.27 <0.05
<0.2
0.07
<0.2 <0.05
<1
1
<0.3
Kalandsvatnet
Ørret
M
2.85
<0.1
<0.2
0.38
0.26
<0.1
0.64
1.8
0.32
Kalsjøen
Ørret
M
1.84 <0.03
0.1
0.18
0.23 <0.03
<0.2
2.4
0.3
0.03 <0.08
0.7 <0.05
Vedlegg s. 11
0.13 <0.03
2.2
8.8
0.18 <0.15
3
0.39
NIVA 4402-01
Tabell 3. (Fortsettelse) Konsentrasjoner av pentaklorbenzen (QCB), α-hexaklorcyclohexan (HCHA),
γ-hexaklor-cyclohexan (HCHG; lindan), hexaklorbenzen (HCH) og oktaklorstyren (OCS), samt p,p’DDT med nedbrytningsprodukter (p,p’-DDE og p,p’-DDD), oppgitt i µg/kg våtvekt., Vevstype: M,
muskel; L, lever.
0.07 <0.03
p,p'-DDD
p,p'-DDE
HCHG
p,p'-DDT
HCB
OCS
HCHA
QCB
Fett %
0.22
0.22
1.1
<0.1
0.11 <0.06 <0.03
<0.2
0.41
<0.1
<0.1
0.6
0.6
0.1
<0.1
0.8
0.7
0.1
0.38 <0.05
<1
1.5
<0.3
1.18 <0.03 <0.08
0.36 <0.08 <0.03
0.28
2.3
0.16
1.41 <0.03 <0.08
0.37 <0.08 <0.03
<0.2
Art
Vevstype
0.07
Lokalitet/prøve
Kjeråtjørnin
Røye
M
1.27 <0.03
Kjeråtjørnin
Ørret
M
0.94 <0.03 <0.06
Kolbotntjernet
Abbor
M
0.16
<0.1
<0.1
0.1
<0.1
Kolbotntjernet
Gjedde
M
0.06
<0.1
<0.1
<0.1
<0.1
Lygne
Ørret
M
1.34 <0.05
<0.2
0.35
Lønavatnet
Ørret
M
Mindrebøvatnet
Ørret
M
Mjøsa
Abbor
M
0.4
<0.1
<0.1
0.13
<0.1
<0.1
2.5
7.3
0.91
Mjøsa
Gjedde
M
0.1
<0.1
<0.1
<0.1
<0.1
<0.1
4
3.4
0.6
Mjøsa
Lagesild
M
0.73
<0.1
0.14
0.35
0.15
0.3
16
32
5.7
Mjøsa, Gjøvik
Lake
L
43.6
3
1
11
1
4
346
736
202
Mjøsa, Furnesfj. 98
Lake
L
45.5
<2
9.5
16
9.3
4
270
1020
99
Mjøsa, Furnesfj. 95
Lake
L
44.1
1
15
18
17
4
1790
1730
182
Mjøsa, Lillehammer
Lake
L
34.6
<2
4
9
7
4
316
619
210
Mjøsa, Furnesfj 98
Lake
M
0.44 <0.05
<0.2
0.27
<0.2 <0.05
2.3
10
1.7
Mjøsa, Gjøvik
Lake
M
0.57
<0.1
<0.1
0.17
<0.1
<0.1
1.4
2.7
0.28
Mjøsa
Ørret
M
4.3
<0.1
0.29
1
0.45
0.3
14
44
3
Mjøvann
Abbor
M
0.3
0.07 <0.03
0.06
0.05 <0.03
0.18
0.32
0.04
Mjøvann
Ørret
M
0.76
0.09
0.22
0.13 <0.03
0.23
0.51
0.06
Mårvatnet
Abbor
M
0.53 <0.03 <0.06
0.07 <0.06 <0.03
<0.2
1.5
0.15
Mårvatnet
Ørret
M
2.27
0.09
0.37
0.23
0.05
0.6
4.5
0.61
Namsjøen
Abbor
M
0.63 <0.02 <0.04
0.06
0.04 <0.03
<0.1
0.46
<0.1
Namsjøen
Gjedde
M
0.11 <0.05
0.05
<0.2 <0.05
<1
0.59
<0.3
Nautsundvatnet
Ørret
M
1.07 <0.03 <0.08
0.12 <0.08 <0.03
<0.2
0.86 <0.15
Pasvikelva
Gjedde
M
0.48 <0.05
<0.1
0.12
<0.4
0.64
<0.2
Pasvikelva
Lake
L
26.2
2.9
9.6
4
31
150
74
Pasvikelva
Lake
M
0.31 <0.03 <0.06
0.24 <0.06 <0.03
0.44
0.71
<0.1
Randsfjorden
Abbor
M
0.4 <0.02 <0.06
0.07
0.08 <0.02
0.25
0.6
0.13
Randsfjorden
Gjedde
M
0.18
0.1
<0.1
<0.1
<0.1
<0.1
2.4
1.1
0.2
Randsfjorden
Ørret
M
1.5
0.04
0.11
0.4
0.32 <0.02
2.5
12
1.1
Ravalsjø
Abbor
M
0.51 <0.03 <0.08
0.05 <0.08 <0.03
<0.2
0.18 <0.15
Ravalsjø
Ørret
M
1.08 <0.03 <0.08
0.2 <0.08 <0.03
<0.2
1.1 <0.15
Rimsjøen
Ørret
M
0.8 <0.03 <0.08
0.16 <0.08 <0.03
<0.2
0.92 <0.15
Røgden
Abbor
M
0.59 <0.03 <0.08
0.04 <0.08 <0.03
<0.2
0.41 <0.15
Røgden
Gjedde
M
0.47 <0.03 <0.06
0.08 <0.06 <0.03
0.26
0.68
0.06
Røgden
Lake
L
32.8
4
37
55
7.4
Røgden
Lake
M
0.31 <0.03 <0.06
0.21 <0.03 <0.03
0.21
0.03
<1
<1
0.05
<0.2
<2
Vedlegg s. 12
6.2
<0.1 <0.05
2
<2
0.73 <0.15
0.42 <0.06
NIVA 4402-01
Tabell 3. (Fortsettelse) Konsentrasjoner av pentaklorbenzen (QCB), α-hexaklorcyclohexan (HCHA),
γ-hexaklor-cyclohexan (HCHG; lindan), hexaklorbenzen (HCH) og oktaklorstyren (OCS), samt p,p’DDT med nedbrytningsprodukter (p,p’-DDE og p,p’-DDD), oppgitt i µg/kg våtvekt., Vevstype: M,
muskel; L, lever.
M
Selbusjøen
Røye
Selbusjøen
9.6
4.4
p,p'-DDD
Lake
3.1
p,p'-DDE
Selbusjøen
140
7.5
4
43
0.48 <0.03 <0.08
0.22 <0.08 <0.03
<0.2
0.54 <0.15
M
2.21 <0.03
0.13
0.29
0.21 <0.03
0.33
0.93 <0.15
Ørret
M
1.76 <0.03
0.08
0.19
0.11 <0.03
<0.2
0.94 <0.15
Snåsamottjørna
Ørret
M
1.09 <0.03 <0.06
0.15 <0.06 <0.03
<0.2
0.4
<0.1
Stavsvatnet
Ørret
M
1.47
0.02
0.1
0.27
0.33
0.04
<0.1
5.3
0.16
Stordalsvatnet
Ørret
M
2.06
0.03
0.08
0.47
0.11 <0.03
<0.1
0.86
<0.1
Store Raudvatnet
Røye
M
0.34
0.1
0.1
0.2
0.1
<0.1
0.8
0.8
0.1
Store Raudvatnet
Ørret
M
1
0.1
0.1
0.3
0.1
<0.1
0.8
0.5
0.1
Storvatnet
Røye
M
1.3 <0.03 <0.08
0.2 <0.08 <0.03
0.21
0.97 <0.15
Storvatnet
Ørret
M
0.44 <0.03 <0.06
0.08 <0.06 <0.03
<0.2
0.59
<0.1
Takvatnet
Røye
M
1.29 <0.02
0.08
0.4
0.06
0.06
<0.2
1.4
<0.1
Takvatnet
Ørret
M
1.73
0.02
0.14
0.3
0.09
0.04
<0.1
0.65
<0.1
Ulgjellvatnet
Ørret
M
0.81 <0.03
<0.1
0.1
<0.1 <0.03
<0.4
1
<0.2
Vaggatem
Abbor
M
0.1
<0.1
0.1
<0.1
<0.1
0.2
0.3
0.1
Vaggatem
Abbor
M
0.23 <0.05
<0.2
0.12
<0.2 <0.05
<1
0.26
<0.3
Vaggatem
Gjedde
M
0.48 <0.03 <0.08
0.07 <0.08 <0.03
<0.2
0.3 <0.15
Vaggatem
Lake
L
25.4
4
<20
31
<3
Vaggatem
Lake
M
0.36 <0.03 <0.06
0.19 <0.06 <0.03
0.23
0.81
0.15
Vannsjø
Abbor
M
0.38 <0.03 <0.06
0.03 <0.06 <0.03
<0.2
1.9
0.13
Vannsjø
Gjedde
M
0.13 <0.05
<0.2
0.07
<0.2 <0.05
<1
2.1
<0.3
Vatnebuvatnet
Abbor
M
0.5 <0.03 <0.08
0.06
0.08 <0.03
<0.2
0.89
0.17
Vatnebuvatnet
Ørret
M
1.59 <0.03 <0.08
0.22
0.19 <0.03
0.71
14
0.99
Vegår
Abbor
M
0.29 <0.05
<0.2
0.09
0.2 <0.05
<1
0.47
<0.3
Vegår
Ørret
M
0.61 <0.05
<0.2
0.24
0.41 <0.05
<1
1.4
<0.3
Velmunden
Abbor
M
0.53 <0.03 <0.08
0.08 <0.08 <0.03
<0.2
Velmunden
Røye
M
1.34 <0.03
0.08
0.19
0.21 <0.03
0.54
3.3
0.55
Øgderen (Hemnessjøen)
Abbor
M
0.5 <0.02 <0.03
0.07
0.11
<0.3
<0.1
1.2
<0.1
Øgderen (Hemnessjøen)
Lake
L
43.9
3.9
8.8
12
4
31
190
19
Øgderen (Hemnessjøen)
Lake
M
0.43 <0.03 <0.08
0.19
0.09 <0.03
<0.2
0.55 <0.15
Østre Engvatn
Abbor
M
0.2 <0.03 <0.03
0.05
0.1 <0.03
0.25
0.38
0.11
Øyangen
Røye
M
1.49
.
.
.
0.051
2.598
0.117
Øymarksjøen
Abbor
M
0.34 <0.03 <0.08
0.06
0.1 <0.03
0.35
0.2
<1
p,p'-DDT
42
OCS
L
HCHG
Fett %
Lake
HCB
Vevstype
Selbusjøen
HCHA
Art
QCB
Lokalitet/prøve
<1
<1
.
<4
Vedlegg s. 13
8.8
<4
.
0.61 <0.15
1.6 <0.15
Tabell 4. Konsentrasjoner av dioksiner (polyklorinerte dibenzo-p-dioksiner) oppgitt i ng/kg våtvekt. Verdier merket med (<) betyr at konsentrasjonen er
lavere enn påvisningsgrensen ved signal:støy 3:1; verdier merket med (i) betyr at isotopforholdet avviker mer enn 20% fra teoretisk verdi.
SUM
PCDD
OCDD
SUM
HpCDD
1234678HpCDD
SUM
HxCDD
123789HxCDD
123678HxCDD
123478HxCDD
SUM
PeCDD
12378PeCDD
SUM
TCDD
2378TCDD
Fett, %
Art
Vev
Bogevatnet
Ørret
Muskel
0.7
0.02
0.02
0.03
0.03
0.01
0.02
<0.04
0.03
0.05
0.05
0.1
0.23
Breimsvatnet
Ørret
Muskel
1.3
0.02
0.02
0.02
0.02
<0.04
<0.04
0.04
.
0.03
0.03
0.09
0.16
Ellasjøen
Røye
Muskel
1.3
0.03
0.03
<0.02
.
<0.04
<0.04
<0.04
.
<0.08
.
0.07
0.1
Femsjøen
Lake
Lever
40
4.06
4.9
11.24
11.24
<0.2
18.67
3.84
25.58
10.83
10.83
7.54
60.09
Fjellfrøsvatnet
Ørret
Muskel
1.1
<0.02
.
<0.02
.
<0.04
<0.04
0.02
0.02
0.02
0.02
0.12
0.16
Grindheimsvatnet
Ørret
Muskel
0.9
0.04
0.04
0.07
0.07
<0.04
<0.04
<0.04
.
<0.08
.
0.12
0.23
Grovatnet
Ørret
Muskel
1.3
0.06
0.06
0.19
0.19
0.03
0.11
0.02
0.16
0.06
0.06
0.11
0.58
Grunnvatnet
Ørret
Muskel
1.3
<0.02
.
<0.02
.
<0.04
<0.04
<0.04
.
<0.08
.
0.07
0.07
Hurdalsjøen
Lake
Lever
45.7
6.12
6.72
19.46
19.46
1.04
14.35
1.52
18.97
5.6
6.98
33.46
85.59
Kalandsvatnet
Ørret
Muskel
2.6
0.02
.
0.03
0.03
0.04
0.04
0.04
.
0.08
.
0.11
0.14
Kalsjøen
Ørret
Muskel
1.8
0.04
0.08
0.09
0.09
0.02
0.08
0.02
0.12
0.05
0.05
0.09
0.43
Lygne
Ørret
Muskel
1.3
0.02
0.03
0.07
0.07
0.02
0.04
0.02
0.08
0.03
0.03
0.07
0.28
Mjøsa, Furnes 95
Lake
Lever
49.7
5.43
5.43
9.93
9.93
0.06
11.99
1.52
20.76
4.45
4.45
9.35
49.92
Mjøsa, Lilleh.
Lake
Lever
42.7
2.28
3.15
5.48
5.48
<0.2
5.32
0.73
6.35
3.14
3.14
14.79
32.91
Mårvatnet
Ørret
Muskel
1.6
0.17
0.2
0.47
0.47
0.07
0.32
0.11
0.49
0.19
0.19
0.15
1.5
Pasvikelva, Grensefoss
Lake
Lever
11.6
0.22
0.22
0.41
0.41
0.12
0.32
0.06
0.5
0.31
0.31
0.37
1.81
Røgden
Lake
Lever
34.8
0.8
0.8
2.36
2.36
<0.2
3.48
0.39
4.37
2.08
2.08
1.87
11.48
Selbusjøen
Lake
Lever
38.5
1.78
1.85
5.71
5.71
0.59
4.87
1.44
7.12
6.08
6.08
21.37
42.13
Selbusjøen
Ørret
Muskel
1.4
0.02
0.02
0.04
0.04
<0.04
0.02
<0.04
0.02
0.04
0.04
0.15
0.27
NIVA 4402-01
Vedlegg s. 14
Navn
Tabell 4. (Fortsettelse) Konsentrasjoner av dioksiner (polyklorinerte dibenzo-p-dioksiner) oppgitt i ng/kg våtvekt. Verdier merket med (<) betyr at
konsentrasjonen er lavere enn påvisningsgrensen ved signal:støy 3:1; verdier merket med (i) betyr at isotopforholdet avviker mer enn 20% fra teoretisk
SUM
PCDD
OCDD
SUM
HpCDD
1234678HpCDD
SUM
HxCDD
123789HxCDD
123678HxCDD
123478HxCDD
SUM
PeCDD
12378PeCDD
SUM
TCDD
2378TCDD
Fett, %
Navn
Art
Vev
Store Raudvatnet
Ørret
Muskel
2.5
0.04
0.04
0.14
0.14
0.04
0.06
0.03
0.13
0.04
0.04
0.13
0.48
Takvatnet
Ørret
Muskel
1.8
0.02
0.02
0.02
0.02
<0.04
<0.04
0.01
0.01
<0.08
.
0.04
0.09
Vegår
Ørret
Muskel
1.9
0.04
0.04
0.14
0.14
0.03
0.09
0.04
0.17
0.13
0.13
0.12
0.6
Velmunden
Røye
Muskel
1
0.02
0.02
0.06
0.06
<0.04
<0.04
<0.04
.
<0.08
.
<0.2
0.28
Øgderen (Hemnessjøen)
Lake
Lever
22
1.08
1.08
2.81
2.81
0.31
3.91
0.76
5.01
2.72
2.72
2.04
13.66
NIVA 4402-01
Vedlegg s. 15
Tabell 5. Konsentrasjoner av polyklorerte dibenzofuraner, oppgitt i ng/kg våtvekt. Verdier merket med “<” betyr at konsentrasjonen er lavere enn
påvisningsgrensen ved signal:støy 3:1; verdier merket med “i” betyr at isotopforholdet avviker mer enn 20% fra teoretisk verdi. Prøvens lipid-innhold er gitt
i tabell 4.
23478PeCDF
SUM
PeCDF
123478/123479HxCDF
123678HxCDF
123789HxCDF
234678HxCDF
SUM
HxCDF
1234678HpCDF
1234789
-HpCDF
SUM
HpCDF
0.11
0.11
0.04
0.07
0.13
0.04
0.03
<0.04
0.02
0.09
0.03
<0.16
0.07
0.04
0.44
Breimsvatnet
Ørret
Muskel
0.17
0.18
0.02
0.04
0.06
0.02
0.01
<0.04
<0.04
0.03
0.01
<0.16
0.01
0.05
0.33
Ellasjøen
Røye
Muskel
0.34
0.34
0.05
0.17
0.24
<0.04
<0.04
<0.04
<0.04
.
<0.08
<0.16
.
0.04
0.62
Femsjøen
Lake
Lever
86.39
94.52
22.96
47.09
90.81
11.18
13.69
1.03
16.92
57.03
6.73
0.65
9.36
0.69
252.41
Fjellfrøsvatnet
Ørret
Muskel
0.15
0.18
0.02
0.02
0.04
0.03
0.02
0.01
0.01
0.07
0.02
<0.16
0.02
<0.2
0.51
Grindheimsvatnet
Ørret
Muskel
0.3
0.3
0.06
0.16
0.25
<0.04
<0.04
<0.04
<0.04
.
<0.08
<0.16
.
<0.2
0.75
Grovatnet
Ørret
Muskel
0.4
0.46
0.16
0.41
0.65
0.06
0.07
<0.04
0.06
0.21
0.03
<0.16
0.03
<0.2
1.55
Grunnvatnet
Ørret
Muskel
0.15
0.18
<0.02
0.04
0.04
<0.04
<0.04
<0.04
<0.04
.
<0.08
<0.16
.
<0.2
0.42
Hurdalsjøen
Lake
Lever
68.68
74.43
20.04
49.83
78.93
10.21
8.99
<0.2
10.32
50.52
3.49
<0.8
4.21
<1
209.09
Kalandsvatnet
Ørret
Muskel
0.41
0.47
0.05
0.1
0.15
0.02
0.02
0.04
0.04
0.04
0.08
0.16
.
0.2
0.86
Kalsjøen
Ørret
Muskel
0.52
0.92
0.16
0.24
0.66
0.06
0.05
0.01
0.05
0.26
0.03
<0.16
0.04
0.03
1.91
Lygne
Ørret
Muskel
0.23
0.3
0.08
0.17
0.31
0.03
0.03
<0.04
0.04
0.1
0.02
<0.16
0.02
0.03
0.76
Mjøsa, Furnesfj. 95
Lake
Lever
144.23
146.87
20.88
35.51
63.19
3.2
6.68
0.26
9.68
38.15
2.44
0.33
2.77
9.78
260.76
Mjøsa, Lillehammer
Lake
Lever
64.65
71.63
8.37
18.16
30.33
2.11
3.28
<0.2
4.61
20.84
1.57
0.11
1.82
15.18
139.8
Mårvatnet
Ørret
Muskel
1.79
2.19
0.86
1.81
3.22
0.27
0.28
<0.04
0.25
1.2
0.07
<0.16
0.07
<0.2
6.88
Pasvikelva, Grensefoss
Lake
Lever
13.22
16.43
1.01
2.17
5.1
0.35
0.28
<0.2
0.18
1.05
0.11
<0.8
0.11
<1
23.69
Røgden
Lake
Lever
20.36
20.63
4.46
10.35
17.55
2.51
2.62
<0.2
2
8.55
1.3
<0.8
1.3
<1
49.03
Vedlegg s. 16
NIVA 4402-01
12378/12348PeCDF
Muskel
Vev
SUM
PCDF
SUM TCDF
Ørret
Art
OCDF
2378-TCDF
Bogevatnet
Navn
Tabell 5. (Fortsettelse) Konsentrasjoner av polyklorerte dibenzofuraner, oppgitt i ng/kg våtvekt. Verdier merket med “<” betyr at konsentrasjonen er lavere
enn påvisningsgrensen ved signal:støy 3:1; verdier merket med “i” betyr at isotopforholdet avviker mer enn 20% fra teoretisk verdi. Prøvens lipid-innhold er
gitt i tabell 4.
SUM TCDF
12378/12348PeCDF
23478PeCDF
SUM
PeCDF
123478/123479HxCDF
123678HxCDF
123789HxCDF
234678HxCDF
SUM
HxCDF
1234678HpCDF
1234789
-HpCDF
SUM
HpCDF
OCDF
SUM
PCDF
46.03
3.32
12.78
33.21
1.47
1.51
0.19
2.92
8.45
1.63
0.12
1.85
0.28
89.82
Muskel
0.16
0.42
0.02
0.04
0.06
0.03
0.02
<0.04
<0.04
0.05
0.04
<0.16
0.04
0.06
0.63
Ørret
Muskel
0.46
0.67
0.06
0.11
0.23
0.03
0.02
<0.04
<0.04
0.05
0.02
<0.16
0.02
0.09
1.06
Takvatnet
Ørret
Muskel
0.28
0.28
0.03
0.04
0.07
0.03
0.01
<0.04
<0.04
0.04
<0.08
<0.16
.
<0.2
0.59
Vegår
Ørret
Muskel
0.95
1.31
0.25
0.43
0.81
0.09
0.1
<0.04
0.07
0.29
0.04
0.02
0.06
0.04
2.51
Velmunden
Røye
Muskel
0.24
0.26
0.05
0.12
0.17
0.05
0.03
<0.04
<0.04
0.08
0.02
<0.16
0.02
0.07
0.6
Øgderen (Hemnessjøen)
Lake
Lever
21.91
22.85
4.65
12.28
22.14
2.93
2.93
0.18
3.29
7.8
1.56
0.14
1.97
0.44
55.2
Art
Vev
Selbusjøen
Lake
Lever
Selbusjøen
Ørret
Store Raudvatnet
Vedlegg s. 17
NIVA 4402-01
2378-TCDF
30.99
Navn
NIVA 4402-01
Tabell 6. Konsentrasjoner av non-orto PCB, oppgitt i ng/kg våtvekt. Verdier merket med (<) betyr at
konsentrasjonen er lavere enn påvisningsgrensen ved signal:støy 3:1; verdier merket med (i) betyr at
isotopforholdet avviker mer enn 20% fra teoretisk verdi. Prøvenes lipid-innhold er gitt i tabell 4
Fett , %
PCB-77
PCB-81
Ellasjøen
Røye
Muskel
1.30
38.83
2.52
70.93
6.07
118.35
Store Raudvatnet
Ørret
Muskel
2.50
9.52
0.41
5.32
1.21
16.46
Femsjøen
Lake
Lever
40.00
368.54
17.88
618.4
306.86
1311.68
Lygne
Ørret
Muskel
1.30
2.53
0.13
1.10
0.22
3.98
Vegår
Ørret
Muskel
1.90
6.75
0.28
4.41
0.73
12.17
Grunnvatnet
Ørret
Muskel
1.30
1.65
0.06
0.55
0.15
2.41
Grindheimsvatnet
Ørret
Muskel
0.90
2.9
0.14
2.12
0.35
5.51
Takvatnet
Ørret
Muskel
1.80
3.88
0.16
1.90
1.40
7.34
Kalandsvatnet
Ørret
Muskel
2.60
6.48
0.22
1.13
0.19
8.02
Grovatnet
Ørret
Muskel
1.30
4.04
0.24
3.61
0.88
8.77
Fjellfrøsvatnet
Ørret
Muskel
1.10
1.98
0.08
1.14
0.76
3.96
Selbusjøen
Ørret
Muskel
1.40
2.20
0.10
0.92
0.40
3.62
Selbusjøen
Lake
Lever
38.5
80.09
7.41
190.9
216.27
494.67
Øgderen (Hemnessjøen)
Lake
Lever
22
175.69
8.38
136.84
58.33
379.24
Breimsvatnet
Ørret
Muskel
1.30
3.11
0.14
1.27
0.30
4.82
Bogevatnet
Ørret
Muskel
0.70
1.18
0.06
0.66
0.14
2.04
Kalsjøen
Ørret
Muskel
1.80
4.84
0.2
2.87
0.53
8.44
Velmunden
Røye
Muskel
1.00
2.90
0.14
2.12
0.35
5.51
Mårvatnet
Ørret
Muskel
1.60
9.42
0.54
6.51
1.24
17.71
Pasvikelva, Grensefoss
Lake
Lever
11.60
60.81
2.88
88.75
62.17
214.61
Røgden
Lake
Lever
34.30
108.33
6.22
297.4
117.1
529.05
Mjøsa, Furnesfj. 95
Lake
Lever
49.70
577.89
33.37
2019.35
1463.09
4093.7
Hurdalsjøen
Lake
Lever
45.70
485.8
27.22
959.4
502.2
1974.62
Mjøsa, Lillehammer
Lake
Lever
42.70
763.75
30.94
653.58
411.53
1859.8
Vedlegg s. 18
∑noPCB
Vevstype
PCB-169
Art
PCB-126
Lokalitet
Tabell 7. Konsentrasjoner av polybromerte difenyletere (PBDE, bromerte flammehemmere), oppgitt på våtvektbasis. Verdier merket med (<) betyr at
konsentrasjonen er lavere enn påvisningsgrensen ved signal:støy 3:1; verdier merket med (i) betyr at isotopforholdet avviker mer enn 20% fra teoretisk
verdi. Prøvenes lipid-innhold er gitt i tabell 4.
PBDE 15
PBDE 52
PBDE153
PBDE 47
PBDE 99
2,2',5,5'-TetBB
2,2',4,4',5,5'-HexBB
2,2',4,4'-TetBDE
2,2',4,4',5-PenBDE
art
vev
enhet
4,4-DiBB
Bogevatnet
Ørret
Muskel
pg/g
3.22(b)
2.28(b)
54.04
226.34
396.63
Breimsvatn
Ørret
Muskel
pg/g
9.49(b)
3.94(b)
<3.03
322.89
242.48
Ellasjøen
Røye
Muskel
pg/g
2.33(i)
3.51(b)
<5.17
8271.99
8024.09
Femsjøen
Lake
Lever
ng/g
<0.1
<0.18
6.19
89.71
17.47
Fjellfrøsvatnet
Ørret
Muskel
pg/g
37.11
2.44(b)
11.72(i)
74.57
68.66
Grindheimsvatn
Ørret
Muskel
pg/g
<8.36(i,b)
<15.33(b)
100.2(i)
326.44
547.62
Grunnvatnet
Ørret
Muskel
pg/g
4.03
3.31
<2.95
63.47
38.06
Hurdalssjøen
Lake
Lever
pg/g
<2.05
5.09
26788.55
149442.19
43010.07
Kalandsvatn
Ørret
Muskel
pg/g
<2.26
1.71 b
49.60 i
488.84
415.758
Kalsjøen
Ørret
Muskel
pg/g
<0.44
1.14(b)
31.43(i)
165.44
144.92
Lygne
Ørret
Muskel
pg/g
3.30(b)
1.74(b)
61.84(i)
342.48
464.34
Mjøsa, Furnesfjorden 1995
Lake
Lever
pg/g
<1.44
<3.79
187642.27
1044330.04
910678.39
Mjøsa, Lillehammer
Lake
Lever
pg/g
<0.94
<0.89
32098.36
323511.39
332155.37
Mårvann
Ørret
Muskel
pg/g
<1.86
1.41
<7.88
-
762.4
Pasvikelva,Grensefoss
Lake
Lever
ng/g
0.08(i,b)
0.01(b)
1.85
9.69
10.61
Røgden
Lake
Lever
ng/g
<0.09
<0.11
19.14
136.03
27.93
Selbusjøen
Lake
Lever
ng/g
<0.1
<0.14
11.3
62.45
72.42
Selbusjøen
Ørret
Muskel
pg/g
29.04
2.27(b)
39.14
217.08
268.81
Store Raudvannet
Ørret
Muskel
pg/g
3.08(i,b)
1.44(b)
58.2(i)
208.08
155.33
Takvatn
Ørret
Muskel
pg/g
1.58(b)
1.14(b)
16.25(i)
99.08
55.33
Vegår
Ørret
Muskel
pg/g
9.53(b)
8.23(i,b)
216.87(i)
804.59
1552.07
Velmunden
Røye
Muskel
pg/g
1.4(i)
1.28(b)
152.4(i)
515.2
621.21
Øgderen (Hemnessjøen)
Lake
Lever
ng/g
<0.18
<0.13
10.31
52.23
40.01
NIVA 4402-01
Vedlegg s. 19
Lokalitet
Tabell 8. Konsentrasjoner av polyklorerte naftalener (PCN), oppgitt i ng/kg våtvekt. ΣTE (PCN) er summen av toksiske ekvivalenter (pg 2,3,7,8-TCDD-ekv/
g våtvekt) av PCN etter Engwall et al. (1994 )(TE for 1,2,3,4,6,7 + 1,2,3,5,6,7 HxCN og 1,2,3,4,5,6,7 HpCN). Prøvenes lipid-innhold er gitt i tabell 4.
0.13
2.8
0.56
0.17
0.2 0.01
M
0.36
0.14 0.01
1.18
0.07
0.02
0.09
Breimsvatnet
Ørret
M
0.72
0.52 0.03
Ellasjøen
Røye
M
0.67
0.43 0.02
5.96
1.5
0.08
0.14
3.08
0.36
0.09
2.69
1.56
0.06
0.08
1.99
1.25
0.07
0.18 0.03
0.8
0.06
0.03
0.09
9.93
0.001
0.09 <0.1
8.09
0.08
0.02
0.1
12.87
0.003
Femsjøen
Lake
L
Fjellfrøsvatnet
Ørret
M
0.75
0.13 0.01
3.88
1.7
0.1
91.32 1623.35 336.02 119.63
0.3
4.45
0.49
0.16
127.5 3.92
0.58 0.01
857.86 37.93
1.46
0.06
8.28
46.21 3422.75
0.786
Grindheimsvatnet
Ørret
M
1.99
0.25 0.06
7.16
5.23
0.38
0.42
12.07
1.15
0.23
0.19 0.02
1.76
0.09 <0.23
0.09
21.08
0.003
Grovatnet
Ørret
M
1.57
0.63 0.04
8.59
6.85
0.39
0.38
14.52
3.73
1.05
1.39 0.06
8.09
0.26
0.09
0.35
31.55
0.008
Grunnvatnet
Ørret
M
0.7
0.51 0.04
6.35
0.87
0.04
0.09
1.59
0.28
0.06
0.08 0.02
0.54
0.03 <0.13
0.03
8.51
0.001
Hurdalsjøen
Lake
L
78.7 22.73 101.43 5099.87
1.433
Kalandsvatnet
Ørret
M
1.65
0.57 0.06
9.14
2.91
0.19
0.25
7.65
0.5
0.27
0.43 0.01
1.72
0.07
0.05
0.12
18.63
0.001
Kalsjøen
Ørret
M
0.58
0.42 0.02
7.21
5.24
0.33
0.6
13.33
1.63
0.8
1.09 0.03
4.82
0.14
0.06
0.2
25.56
0.004
Lygne
Ørret
M
0.47
0.12 0.01
3.03
1.99
0.16
0.2
4.84
0.99
0.35
0.32 0.02
2.26
0.15
0.04
0.19
10.32
0.002
Mjøsa, Furnesfj. 95
Lake
L
306.93
10.6 2.18
61.94 8131.86
1.362
Mjøsa, Lillehammer
Lake
L
469
42.9 2.45
2614
987
25.9
509
4704
220
203
592 0.87
1595
22
26.1
48.1
8961.1
0.506
Mårvatnet
Ørret
M
4.05
0.56 0.03
13.34
15.22
0.87
0.89
31.99
5.72
1.63
1.67 0.06
11.8
0.27
0.1
0.37
57.5
0.013
Pasvikelva
Lake
L
69.22
6.08 0.25
233.78
83.74
4.83
21
322.79
27.08
9.84
20.8 0.23
82.46
3.05
1.17
4.22
643.25
0.063
Røgden
Lake
L
100.07
9.76 0.46
268.97 251.54 17.76
23.4
765.23 161.44
41.58
49.84 0.92
337.42
13.9
1.82
15.72 1387.34
0.365
Selbusjøen
Lake
L
193.63 22.96 0.87
730.3
79.7
7.4
15.76
298.46
15.27
6.78
9.87
0.2
48.33
2.61
0.95
3.56 1080.65
0.038
Selbusjøen
Ørret
M
1.14
0.14 0.01
5.13
1.12
0.07
0.13
3.36
0.18
0.07
0.12 0.01
0.45
0.02
0.01
0.03
Store Raudvatnet
Ørret
M
0.81
0.18 0.03
3.36
3.11
0.4
0.18
6.53
1.27
0.19
0.22 0.03
2.08
0.07
0.03
0.1
12.07
0.003
Takvatnet
Ørret
M
1.62
0.17 0.02
6.77
2.37
0.21
0.35
7.15
0.78
0.18
0.57 0.02
1.98
0.07
0.06
0.13
16.03
0.002
Vegår
Ørret
M
1.24
0.18 0.01
4.87
5.51
0.52
0.41
13.23
3.14
0.72
0.76 0.06
6.02
0.34
0.07
0.41
24.53
0.007
Velmunden
Røye
M
0.71
0.1 0.01
2.31
1.93
0.04
0.13
4.31
1.11
0.36
0.5 0.02
2.5
0.13
0.03
0.16
9.28
0.003
Øgderen (Hemnessjøen) Lake
L
296.39 155.04 11.26
26.81
475.96
72.31
30.65
35.89 0.79
198.34
8.84
2.1
10.94
981.63
0.171
84.11 16.89 1.04
860.84 1295.1 43.93 185.39 4217.45 626.41 399.61 956.54 2.88 2991.63 36.67 25.27
0.1
9.89
0.001
0.001
8.97 0.0004
NIVA 4402-01
366.22 12.81 2.39 1028.43 711.33 32.94 105.59 2594.93 598.22 165.69 264.34 5.11 1375.08
0.04
6.59
sum TE(PCN)
0.06
Sum-TeCN HpCN
1234568-HpCN
1.31
Sum-HpCN
1234567-HpCN
2.52
Sum-HxCN
123678-HxCN
124568-HxCN+
124578-HxCN
123568-HxCN
123467-HxCN+
123567-HxCN
Sum-PeCN
Ørret
895.33 491.69 36.16
12358-PeCN
12367-PeCN
12357-PeCN
Bogevatnet
268.57 45.67 2.57
Sum-TeCN
2367-TeCN
1357-TeCN
1256-TeCN
Art
Vevstype
Vedlegg s. 20
Lokalitet
NIVA 4402-01
Tabell 9. Konsentrasjoner av polyklorerte parafiner (PCA), oppgitt i ng/kg våtvekt. Beregnet midlere
molekylvekt for PCA i hver prøve er også oppgitt. Det er analysert på fraksjonen kortkjedete parafiner
(C12-C13) med mer enn 50% klor (molekylvekt).
PCA
ng/g
Fett, %
PCA
molvekt
Navn
Art
Vevstype
Bogevatnet
Ørret
Muskel
0.7
9.9
395
Breimsvatnet
Ørret
Muskel
1.3
12
427
Ellasjøen
Røye
Muskel
1.3
7.7
453
Femsjøen
Lake
Lever
40
1480
429
Fjellfrøsvatnet
Ørret
Muskel
1.1
6
378
Grindheimsvatnet
Ørret
Muskel
0.9
6.6
394
Grunnvatnet
Ørret
Muskel
1.3
22
421
Kalandsvatnet
Ørret
Muskel
2.6
6.6
387
Kalsjøen
Ørret
Muskel
1.8
3.2
394
Lygne
Ørret
Muskel
1.3
5.3
408
Mårvatnet
Ørret
Muskel
1.6
4.1
415
Pasvikelva
Lake
Lever
11.6
86
435
Røgden
Lake
Lever
34.3
274
456
Selbusjøen
Lake
Lever
38.5
87
421
Selbusjøen
Ørret
Muskel
1.4
6.1
389
Store Raudvatnet
Ørret
Muskel
2.5
2.7
411
Takvatnet
Ørret
Muskel
1.8
3.1
396
Vegår
Ørret
Muskel
1.9
5
407
Velmunden
Røye
Muskel
1
5
435
Øgderen (Hemnessjøen)
Lake
Lever
22
153
417
Vedlegg s. 21
NIVA 4402-01
Tabell 10. Konsentrasjoner av toxaphener, oppgitt i µg/kg våtvekt.
Lokalitet
Art
Vevstype
Fett i %
Toks 26
(Okta)
Toks 32
(Hepta)
Toks 50
(Nona)
Toks 62
(Nona)
Bogevatnet
Ørret
Muskel
0.7
0.14
<1.00
0.57
<11.00
Breimsvatnet
Ørret
Muskel
1.3
0.23
0.03
1.00
0.33
Ellasjøen
Røye
Muskel
1.3
0.75
0.02
1.47
10.11
Femsjøen
Lake
Lever
40
23.73
<113.00
64.09
68.76
Fjellfrøsvatnet
Ørret
Muskel
1.1
0.26
<2.00
1.17
3.55
Grindheimsvatnet
Ørret
Muskel
0.9
0.03
0.10
0.05
<0.90
Grunnvatnet
Ørret
Muskel
1.3
0.04
0.01
0.07
<2.00
Kalandsvatnet
Ørret
Muskel
2.6
0.08
0.04
0.18
<10.00
Kalsjøen
Ørret
Muskel
1.8
0.06
0.09
0.18
0.02
Lygne
Ørret
Muskel
1.3
0.06
0.04
0.20
<9.00
Mårvatnet
Ørret
Muskel
1.6
0.01
0.02
0.04
<4.00
Pasvikelva
Lake
Lever
11.6
10.13
1.25
35.89
0.75
Røgden
Lake
Lever
34.3
12.22
<95.00
16.32
16.79
Selbusjøen
Lake
Lever
38.5
21.18
<112.00
60.41
14.65
Selbusjøen
Ørret
Muskel
1.4
0.35
<2.00
1.64
<13.00
Store Raudvatnet
Ørret
Muskel
2.5
0.43
0.05
1.20
<7.00
Takvatnet
Ørret
Muskel
1.8
0.27
<1.00
0.91
0.68
Vegår
Ørret
Muskel
1.9
0.42
<2.00
1.83
<24.00
Velmunden
Røye
Muskel
1
0.08
0.04
0.41
0.18
Øgderen (Hemnessjøen)
Lake
Lever
22
5.49
<105.00
6.26
7.20
Vedlegg s. 22
NIVA 4402-01
Tabell 11. Toksiske ekvivalenter (TE) av mono-orto PCB (mo-PCB), non-orto PCB dioksiner(no-PCB)
(PCDD) og dibenzofuraner (PCDF), samt det samlede bidraget (∑TE-total). TE er uttrykt som pg
2,3,7,8-TCDD-ekv/g våtvekt, beregnet etter Van den Berg (1998). For beregninger av TE er
konsentrasjoner av kongenerer under kvantifiseringsgrensene satt lik denne.
mono-orto PC)
dioksiner, dibenzofurenaer og nonorto PCB
Lokalitet
Art
Vevstype
Fett %
∑TE mo-PCB
Fett %
∑TE PCDD
∑TE PCDF
∑TE no-PCB
∑TE-total
Bogevatnet
Ørret
M
0.76
0.06
0.7
0.06
0.06
0.07
0.25
Breimsvatnet
Ørret
M
1.1
0.06
1.3
0.05
0.05
0.13
0.29
Ellasjøen
Røye
M
1.88
15.19
1.3
0.06
0.14
7.16
22.55
Femsjøen
Lake
L
37
23.10
40
17.68
37.69
64.95
143.42
Fjellfrøsvatnet
Ørret
M
1.2
0.05
1.1
0.05
0.03
0.12
0.25
Grindheimsvatnet
Ørret
M
1.07
0.11
0.9
0.12
0.13
0.22
0.58
Grovatnet
Ørret
M
1.27
0.33
1.3
0.27
0.28
0.37
1.24
Grunnvatnet
Ørret
M
0.7
0.07
1.3
0.05
0.05
0.06
0.23
Hurdalsjøen
Lake
L
38.5
28.80
45.7
27.33
35.80
101.01
192.94
Kalandsvatnet
Ørret
M
2.85
0.17
2.6
0.06
0.11
0.12
0.45
Kalsjøen
Ørret
M
1.84
0.12
1.8
0.14
0.20
0.29
0.76
Lygne
Ørret
M
1.34
0.09
1.3
0.10
0.13
0.11
0.43
Mjøsa, Furnesfj. 95
Lake
L
44.1
177.00
49.7
16.76
35.23
216.63
445.62
Mjøsa, Lillehammer
Lake
L
34.6
52.40
42.7
8.42
17.00
69.55
147.37
Mårvatnet
Ørret
M
2.27
0.19
1.6
0.69
1.21
0.66
2.76
Pasvikelva, Grensefoss
Lake
L
26.2
7.75
11.6
0.68
2.57
9.50
20.50
Røgden
Lake
L
32.8
3.65
34.3
5.66
14.80
30.92
55.03
Selbusjøen
Lake
L
42
8.00
38.5
8.24
10.28
21.26
47.79
Selbusjøen
Ørret
M
1.76
0.02
1.4
0.07
0.05
0.10
0.24
Store Raudvatnet
Ørret
M
1
0.18
2.5
0.19
0.12
0.55
1.04
Takvatnet
Ørret
M
1.73
0.06
1.8
0.05
0.06
0.20
0.38
Vegår
Ørret
M
0.61
0.08
1.9
0.20
0.35
0.45
1.08
Velmunden
Røye
M
1.34
0.16
1
0.09
0.10
0.22
0.57
Øgderen (Hemnessjøen)
Lake
L
43.9
9.20
22
4.42
9.51
14.29
37.41
Vedlegg s. 23
NIVA 4402-01
Tabell 12. Oversikt over analysert prøvemateriale og vevstype analysert, samt individenes midlere
lengde og vekt (med standardavvik, SD), stabile C- og N-isotoper (δ13C og δ15N), og
kvikksølvkonsentrasjonen i muskelprøvene. Vevstype: M, muskel; L, lever.
lengde, cm
Lokalitet
vevstype
art
Austre Gåsvatn
Austre Gåsvatn
Bogevatnet
Breimsvatnet
Bæreia
Dragsjøen
Dragsjøen
Einavatnet
Einavatnet
Ellasjøen-96
Ellasjøen-98
Femsjøen
Femsjøen
Femsjøen
Femunden
Femunden
Fjellfrøsvatnet
Fjellfrøsvatnet
Flåte
Glomma Elverum
Goksjø
Goksjø
Grindheimsvatnet
Grindheimsvatnet
Grovatnet
Grovatnet
Grunnvatnet
Hallandsvatnet
Holmevatn
Huddingsvatnet
Hurdalsjøen
Isebakktjernet
Isebakktjernet
Kalandsvatnet
Kalsjøen
Kjeråtjørnin
Kjeråtjørnin
Kolbotntjernet
Kolbotntjernet
Lygne
Lønavatnet
Mindrebøvatnet
Mjøsa
Mjøsa
Mjøsa
Mjøsa
Mjøsa Furnesfjorden
Mjøsa Furnesfjorden 95
Mjøsa Gjøvik
Mjøsa Lillehammer
Mjøvann
M
M
M
M
M
M
M
M
M
M
M
M
M
M, L
M
M
M
M
M
L
M
M
M
M
M
M
M
M
M
M
L
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M, L
L
M, L
L
M
Røye
Ørret
Ørret
Ørret
Abbor
Røye
Ørret
Abbor
Gjedde
Røye
Røye
Abbor
Gjedde
Lake
Abbor
Gjedde
Røye
Ørret
Abbor
Lake
Abbor
Gjedde
Abbor
Ørret
Abbor
Ørret
Ørret
Ørret
Ørret
Ørret
Lake
Abbor
Gjedde
Ørret
Ørret
Røye
Ørret
Abbor
Gjedde
Ørret
Ørret
Ørret
Abbor
Gjedde
Lagesild
Ørret
Lake
Lake
Lake
Lake
Abbor
N
middel
19
20
20
20
20
20
20
20
18
11
20
17
5
22
20
18
20
20
20
5
20
10
20
20
20
19
23
20
17
15
2
20
15
20
20
16
14
18
12
20
20
19
20
13
20
20
20
7
19
4
12
20.3
17.4
20.9
22.2
33.5
17.4
15.6
28.1
63.5
47.4
32.8
28.5
52.6
41.2
30.5
54.9
27.2
21.0
20.5
61.2
27.2
49.2
19.9
23.9
20.1
27.9
30.5
21.3
27.3
25.9
50.5
22.8
59.2
26.1
29.0
17.2
20.4
34.3
67.2
23.4
23.9
24.5
30.3
74.7
18.7
65.0
46.7
53.4
50.8
52.6
22.6
SD
1.6
2.8
1.8
3.0
6.4
1.1
1.6
3.6
16.5
8.5
3.9
6.7
8.5
7.6
3.1
5.4
3.6
3.0
3.2
4.4
1.7
3.0
2.7
1.5
0.8
2.8
4.5
2.9
8.1
7.2
3.5
3.3
16.3
2.5
3.2
1.8
3.4
6.1
6.1
2.5
4.8
3.6
5.5
18.3
0.7
14.2
2.8
9.2
5.4
6.0
4.9
Vedlegg s. 24
vekt, g
middel
75
56
85
116
613
42
38
321
2162
1173
356
334
914
472
482
1284
206
97
124
1579
264
764
106
118
85
224
343
91
299
194
864
159
1576
188
246
48
88
687
2095
137
145
150
421
2631
35
3416
730
1329
1045
948
154
stabile isotoper
SD
20
26
20
52
375
9
12
156
1668
814
125
208
375
265
147
438
88
45
102
324
48
144
35
17
12
62
174
34
308
168
52
67
1141
44
88
18
45
346
567
42
77
53
228
1769
4
2111
100
1125
274
231
169
δ13C
-28.3
-22.95
-26.4
-22.5
-27.1
-29.7
-27.1
-23.2
-27.3
-24.8
.
-24.7
-25.6
.
-25.1
-23.2
-24.1
-24.9
-27.1
.
-27.8
-28.2
-24.3
-26.9
-24.25
-24.9
-30.2
-26.3
-23.8
-24.2
.
-31.4
-29.7
.
-27.8
-21.1
-20.3
-25.0
-25.2
-26.3
-25.1
-28.1
.
-24.3
.
.
.
.
.
.
-27.4
δ15N
5
4.5
8.4
8.8
9.3
6.3
5.9
13
13.7
18.4
.
13.8
14.4
.
8.5
9
7.7
6.6
5.8
.
16.2
16.9
8.8
8.8
5.7
6.3
10.7
6.3
4.5
6.1
.
9.6
10.6
.
7.6
5.9
5.2
17.2
18.3
7
9.2
10.1
.
14.2
.
.
.
.
.
.
7
Hg, mg/kg
0.073
0.04
0.12
0.054
0.46
0.10
0.04
0.25
0.38
.
.
0.66
0.45
0.24
0.18
0.18
0.035
0.019
0.21
.
0.30
0.36
0.055
0.11
0.15
0.071
0.092
0.082
0.037
0.027
.
0.40
0.68
.
0.087
0.048
0.031
0.30
0.37
0.10
0.12
0.087
.
0.74
0.14
.
.
.
0.26
.
0.41
NIVA 4402-01
Tabell 12. Oversikt over analysert prøvemateriale og vevstype analysert, samt individenes midlere
lengde og vekt (med standardavvik, SD), stabile C- og N-isotoper (δ13C og δ15N), og
kvikksølvkonsentrasjonen i muskelprøvene. Vevstype: M, muskel; L, lever.
lengde, cm
Lokalitet
vevstype
art
Mjøvann
Mårvatnet
Mårvatnet
Namsjøen
Namsjøen
Nautsundvatnet
Pasvikelva, Grensefoss
Pasvikelva, Grensefoss
Randsfjorden
Randsfjorden
Randsfjorden
Ravalsjø
Ravalsjø
Rimsjøen
Røgden
Røgden
Røgden
Selbusjøen
Selbusjøen
Selbusjøen
Snåsamottjørna
Stavsvatnet
Stordalsvatnet
Store Raudvatnet
Store Raudvatnet
Storvatnet
Storvatnet
Takvatnet
Takvatnet
Ulgjellvatnet
Vaggatem
Vaggatem
Vaggatem
Vaggatem
Vannsjø
Vannsjø
Vatnebuvatnet
Vatnebuvatnet
Vegår
Vegår
Velmunden
Velmunden
Øgderen (Hemnessjøen)
Øgderen (Hemnessjøen)
Østre Engvatn
Øyangen
Øymarksjøen
M
M
M
M
M
M
M
M, L
M
M
M
M
M
M
M
M
M, L
M, L
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M, L
M
M
M
M
M
M
M
M
M
M, L
M
M
M
Ørret
Abbor
Ørret
Abbor
Gjedde
Ørret
Gjedde
Lake
Abbor
Gjedde
Ørret
Abbor
Ørret
Ørret
Abbor
Gjedde
Lake
Lake
Røye
Ørret
Ørret
Ørret
Ørret
Røye
Ørret
Røye
Ørret
Røye
Ørret
Ørret
Abbor
Abbor
Gjedde
Lake
Abbor
Gjedde
Abbor
Ørret
Abbor
Ørret
Abbor
Røye
Abbor
Lake
Abbor
Røye
Abbor
N
middel
8
20
15
7
12
20
7
9
20
12
4
20
20
20
20
21
9
20
20
20
18
12
20
12
20
20
20
19
20
20
15
20
6
19
20
12
17
9
20
23
20
20
6
8
20
9
11
24.2
17.6
28.7
28.6
47.8
19.4
54.5
44.5
27.5
65.7
55.4
19.1
23.5
22.9
22.7
59.5
68.7
34.9
26.4
29.9
17.5
27.6
22.8
24.5
29.5
21.0
29.9
25.2
21.3
25.9
26.4
26.1
47.5
45.0
28.9
68.9
23.6
44.7
24.3
29.5
18.5
23.5
27.3
37.6
23.8
44.3
30.9
SD
2.5
1.7
5.3
7.4
7.9
1.4
3.6
4.4
5.3
17.4
19.3
1.5
1.7
2.2
1.7
14.4
12.3
3.5
1.7
2.2
2.1
5.0
2.0
6.2
6.4
2.6
3.0
4.6
3.7
3.2
1.2
1.5
5.6
7.9
3.9
13.5
5.2
12.8
4.3
5.6
1.8
2.2
3.3
4.0
3.4
5.6
3.9
Vedlegg s. 25
vekt, g
middel
155
55
252
338
693
75
1017
550
271
2394
2500
79
124
113
131
1882
2768
260
187
262
54
243
94
174
347
82
246
150
110
168
229
236
770
663
387
2416
196
918
193
273
64
91
276
394
165
969
368
stabile isotoper
SD
53
18
148
278
352
13
122
157
151
1535
1547
16
25
28
39
1565
1275
60
52
62
17
107
32
196
254
39
68
104
60
56
22
52
370
541
166
1723
178
840
88
134
19
22
125
185
107
300
145
δ13C
-27.9
-28.4
-29.3
-29.7
-29.85
-25.05
-27.8
-27.2
-23.6
.
.
-27.8
-26.8
-25.1
-27.6
.
.
-25.7
-29.7
-24.3
-28.2
-24.2
-26.3
-25.4
-24.6
-23.8
-28.6
-22.4
-22.8
-23.85
-23.9
-24.5
-24.6
-24.6
-27
-26.8
-26.7
-27.1
-24.5
-27.2
-28.5
-30.9
-24.2
-25.3
-27.7
-20.92
-25.5
δ15N
6
9
8.2
10.2
10.2
9.05
9.8
10.3
12.2
.
.
7.3
6.4
6.6
9.1
.
.
12
8.9
9.4
5.8
6.1
4.6
7.1
8.1
6.2
6.4
8.1
8.4
6.15
9.2
8.9
10.2
9.7
16.5
16.6
9.3
10.2
6.4
6.4
7.4
7.2
15.7
16.3
4.9
8.95
16.4
Hg, mg/kg
0.079
0.35
0.078
1.20
0.87
0.10
0.35
0.29
.
1.05
.
0.27
0.075
0.049
0.35
0.59
0.98
0.26
0.11
0.05
0.33
0.057
0.064
0.061
0.07
0.075
0.089
0.037
0.021
0.08
0.26
0.20
0.15
0.18
0.44
0.73
0.30
0.55
0.21
0.17
0.24
0.087
0.29
0.31
0.46
.
0.88
Kartlegging av bromerte flammehemmere og klorerte
parafiner
NILU 62/2002
Rapport:
(TA-1924/2002)
TA-nummer:
82-425-1411-9
ISBN-nummer
Statens forurensningstilsyn
Oppdragsgiver:
Utførende institusjon: Norsk institutt for luftforskning (NILU)
Martin Schlabach, Espen Mariussen,
Forfattere:
Anders Borgen, Christian Dye,
Ellen-Katrin Enge (alle NILU),
Eiliv Steinnes (NTNU), Norman
Green (NIVA) og Henning Mohn
(NIVA)
Kartlegging av bromerte
flammehemmere og klorerte
parafiner
Rapport
866/02
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Forord
NILU har på oppdrag fra SFT gjennomført en screening-undersøkelse av bromerte
flammehemmere (BFR) og klorerte parafiner (CP eller PCA) fra utvalgte deler av det norske
miljøet.
Det ble fokusert på risiko for utlekking fra avfallsdeponier, på lufttransportpotensiale og på
nivåene i marine biologiske prøver fra høyt, diffus og mindre belastede områder.
Noen bromerte flammehemmere og klorerte parafiner har i de senere årene kommet i
søkelyset på grunn av at de er lite nedbrytbare i miljøet. De kan oppkonsentreres i
næringskjeden og er påvist i levende organismer og i morsmelk. En del av stoffene har vist
helse- og miljøskadelige effekter. Spesielt har det vært fokus på stoffgruppene polybromerte
difenyletere (PBDE) og polybromerte bifenyler (PBB). Andre bromerte flammehemmere som
det fokuseres på er heksabromsyklododekan (HBCD) og tetrabrombisfenol A (TBBPA).
En lang rekke personer har bidratt å få dette prosjektet gjennomført:
NILU:
Espen Mariussen: Metodeutvikling og GC/MS analyse av BFR
Anders Borgen: GC/MS analyse av CP
Christian Dye: LC/MS analyse av HBCD
Hans Gundersen: GC/MS analyse av TBBPA
Ellen Katrin Enge: Ansvarlig for prøveopparbeidelse
Martin Schlabach: Prosjektledelse og rapportering
NTNU:
Eiliv Steinnes: Prøvetaking og håndtering av moseprøver
NIVA:
Norman Green: Prøvetaking og håndtering av marine biologiske prøver
Henning Mohn: Prøvetaking og håndtering av sigevannsprøver fra avfallsdeponier
Jon L. Fuglestad har vært prosjektkoordinator hos SFT.
Kjeller, 07.01.2003
Martin Schlabach
3
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
4
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Innhold
Forord........................................................................................................................................ 3
Sammendrag ............................................................................................................................. 7
1.
1.1
1.2
Bakgrunn og formål................................................................................................. 11
Bakgrunn.................................................................................................................... 11
Formål ........................................................................................................................ 12
2.
2.1
2.2
2.3
Prøvetaking............................................................................................................... 13
Avfallsdeponier.......................................................................................................... 13
Mose........................................................................................................................... 13
Marine biologiske prøver ........................................................................................... 14
3.
3.1
3.2
3.3
Kjemisk analyse........................................................................................................ 15
Analyserte forbindelser .............................................................................................. 15
Opparbeidelse............................................................................................................. 17
Kvantifisering............................................................................................................. 18
4.
4.1
4.2
4.3
Resultater.................................................................................................................. 19
Konsentrasjon av BFR og CP i sigevannssystemer fra avfallsdeponier .................... 19
Konsentrasjon av BFR og SCCP i etasjemose fra Norge .......................................... 20
Konsentrasjon av BFR og SCCP i blåskjell og torskelever ....................................... 21
5.
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
Diskusjon og konklusjon (miljørelevans)............................................................... 22
Polybromerte bifenyler .............................................................................................. 22
Polybromerte difenyletere.......................................................................................... 22
Heksabromsyklododekan ........................................................................................... 24
Tetrabrombisfenol A .................................................................................................. 24
Klorerte parafiner ....................................................................................................... 25
Tribromanisol............................................................................................................. 26
Utslipp til vann og vanntransport............................................................................... 26
Utslipp til luft og lufttransport ................................................................................... 27
6.
Referanser................................................................................................................. 28
Vedlegg A Feltrapport fra prøvetaking avfallsdeponier .................................................... 31
Vedlegg B Spørreskjema utfylt av avfallsdeponiene........................................................... 39
Vedlegg C Feltrapport fra prøvetaking av mose................................................................. 57
Vedlegg D Feltrapport fra prøvetaking av blåskjell og torskelever.................................. 61
Vedlegg E Prøveopparbeidelse og analyse ........................................................................... 67
5
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
6
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Sammendrag
På oppdrag av Statens forurensningstilsyn har Norsk institutt for luftforskning (NILU)
gjennomført en første gangs kartlegging (screening-undersøkelse) av bromerte flammehemmere (BFR) og klorerte parafiner (CP eller PCA) i det norske miljøet. Målsetting med
prosjektet er å få en overordnet oversikt over nivåene av bromerte flammehemmere og
klorerte parafiner i utvalgte deler av miljøet i Norge. I en første runde er det blitt fokusert på
risiko for utlekking fra avfallsdeponier, på lufttransportpotensiale og på nivåene i marine
biologiske prøver fra høyt, diffust og mindre belastede områder.
Det dreier seg om en innledende undersøkelse med et meget begrenset prøveantall og prøveutvalg. Analysemetodikken er fortsatt under utvikling og måleusikkerheten er noe høyere enn
for eksempel for PCB-analyser. Man må derfor være litt tilbakeholden ved fortolkning av
resultatene.
Polybromerte bifenyler (PBB)
PBB ble ikke funnet i sediment fra avfallsdeponier og bare sporadisk i de andre undersøkte
prøvetypene. Siden 1973 er den globale produksjonen av PBB blitt gradvis redusert og den
opphørte høsten 2000. Siden stoffgruppen heller ikke lenger blir påvist i høye konsentrasjoner, er det blitt mindre relevant å ha sterkt fokus på denne. På den andre siden er ikke
mange prøver blitt undersøkt og i tillegg kan PBB uten særlige ekstrakostnader analyseres
sammen med PBDE, slik at PBB fortsatt bør inkluderes i nye kartleggingsprosjekter for BFR.
Polybromerte difenyletere (PBDE)
PBDE er blitt påvist i alle prøver i denne undersøkelsen. I sedimenter fra avfallsdeponier var
PBDE-209 mest framtredende. Høyest konsentrasjon ble funnet ved Grinda, Larvik. Også i
moseprøver var PBDE-209 mest framtredene. Moseprøvene er de første luftrelaterte prøver
hvor det er påvist PBDE-209. I luftprøver fra bakgrunnsområder har man tidligere funnet
PBDE-47, 99 og 100 samt HBCD. Dette viser at alle PBDE, også PBDE-209 (dekaBDE), kan
transporteres med luft. Dette er vesentlig for vurdering av miljørisikoen av dekaBDE. I de
biologiske prøver var PBDE-47 mest framtredende. Høyest i denne undersøkelsen var nivået i
torskelever fra indre Oslofjord. Det var ikke mulig å påvise en tidstrend. Tidligere undersøkelser viser imidlertid enda høyere verdier i ferskvannsfisk (lakelever) fra Mjøsa og
Hurdalsjøen .
Denne og andre undersøkelser dokumenterer at særlig ”pentaBDE”-blandingen (med bl.a.
indikatorforbindelsen 2,2’,4,4’-tetrabromdifenyleter, eller PBDE-47), men også ”oktaBDE”blandingen finnes i miljøet og i organismer høyt oppe i næringskjeden, samt i morsmelk.
Dette gjelder også i områder langt fra typiske kilder. De toksiske effektene av PBDE regnes
for å være lavere en for PCB, men vil komme som en tilleggsbelastning for biota sammen
med annen type forurensning. En additiv toksisk effekt vil kunne forventes av disse stoffene.
SFT har foreslått at det utarbeides forslag til forbud mot bruk av ”pentaBDE” fra 1.1.2003 i
tråd med et foreslått EU-direktiv.
De relativt høye nivåene som ble funnet av BDE-209 i mose og sediment viser at teknisk
dekaBDE både spres via luftmassene og kan akkumuleres i miljøet. BDE-209 kan relativt lett
brytes ned til lavere bromerte bifenyletere av sollys. Det har derfor blitt foreslått at teknisk
dekaBDE er en av bidragsyterne til økningen av nivåene av de lavere bromerte
komponentene. I og med at lavere bromerte difenyleterne er mer toksiske enn BDE-209, må
7
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
man ta dette i betraktning i forbindelse med reguleringen av bruken. Ettersom dekaBDE
fortsatt er i utstrakt bruk bør man være oppmerksom på denne i overvåkningen av miljøgifter.
Heksabromsyklododekan (HBCD)
I nesten alle sedimentprøvene fra avfallsdeponier var det mulig å påvise alle 3 HBCDisomerer som finns i den tekniske blandingen (α-, β- og γ-HBCD). γ-HBCD viste
gjennomgående høyest konsentrasjon. I mer en 50 % av alle moseprøvene var det mulig å
påvise α-HBCD, i noen få γ-HBCD. Dette viser at HBCD kan langtransporteres via luft. I de
marine prøvene ble det bare påvist α-HBCD. Det opprinnelige tekniske mønsteret forandres
og de tre isomerene viser dermed forskjellige miljøegenskaper (bioakkumulering og
persistens). Dette er, så langt vi vet, aldri tidligere blitt påvist for HBCD, men er kjent fra
både PCB, dioksiner og andre miljøgifter og bør i framtiden studeres nærmere.
Denne og andre studier viser at HBCD kan anrikes i miljøet og på forskjellige nivåer i
næringskjeden. Dette må det tas hensyn til ved vurdering av reguleringer av HBCD, som
foreløpig ikke er forbudt hverken i Norge eller EU.
Tetrabrombisfenol A (TBBPA)
TBBPA og metabolitten dimetyl-TBBPA er påvist i alle prøvene fra avfallsdeponier. Hverken
i mose eller blåskjell og torskelever ble det funnet signifikante nivåer av TBBPA. Dette kan
skyldes at TBBPA har en fenolisk struktur som gjør at den sannsynligvis lettere kan
metaboliseres og dermed ikke har det samme bioakkumuleringspotensialet som de andre
flammehemmerne.
TBBPA er, i motsetning til de ovennevnte, benyttet som en kjemisk bundet flammehemmer.
Det betyr at man vil kunne forvente mindre utslipp til miljøet av denne stoffgruppen. Denne
og andre studier viser imidlertid at TBBPA spres i miljøet. TBBPA er bl. a. påvist i blod hos
befolkningen i Norge. Det faktum at TBBPA ikke kunne påvises i signifikante
konsentrasjoner i de få miljøprøvene fra denne studien kan gi en viss indikasjon på at
miljøkontaminerte matvarer som opptaksvei er mindre relevant enn for eksempel direkte
kontaminerte matvarer, det vil si kontaminert under videreforedling eller lagring, og opptak
gjennom luft eller hud i et kontaminert innemiljø.
På bakgrunn av dens utstrakte bruk, dens påviste toksiske effekter og det begrensete antallet
undersøkte prøver er det vanskelig å fastslå hvilken relevans TBBPA har for vårt ytre miljø.
Klorerte parafiner (CP)
CP ble funnet i til dels store konsentrasjoner i de fleste prøvene som ble analysert. SCCP ble
påvist i alle undersøkte prøver fra avfallsdeponier. Høyest konsentrasjon ble funnet i sediment
fra Lindum, Drammen. MCCP ble påvist i alle undersøkte prøver fra avfallsdeponier. Også
for MCCP var konsentrasjonen høyest i prøven fra Lindum. Nivåene var høyest for de
kortkjedede som også anses som de mest toksiske og miljøfarlige. Alle tre analyserte
moseprøver viste høye SCCP-konsentrasjoner som bekrefter at SCCP har et betydelig
langtransportpotensiale. Det var mulig å påvise SCCP i alle undersøkte prøver av blåskjell og
torskelever. Høyest konsentrasjon ble funnet i torskelever fra indre Oslofjord.
Denne studien viser at opptak via mat er meget relevant for human eksponering. I denne
sammenheng er det også vesentlig å nevne at EUs ”worst case” scenario for humant opptak
overstiger WHOs veiledene grenseverdi (WHO 1996 og WHO-ECEH 2002). Til tross for
relativt få publiserte studier vurderes CP som mindre toksiske enn de andre halogenerte
8
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
organiske miljøgiftene. De høye nivåer man finner i naturen gjør imidlertid at man bør være
oppmerksom på denne stoffgruppen som en viktig miljøgift.
Tribromanisol (TBA)
TBA er blitt påvist i alle marine prøver. Nivået er høyest i torskelever fra ytre Oslofjord med
en konsentrasjon tilsvarende sum PBDE. Det er imidlertid vanskelig å vurdere miljørelevans
av TBA. Det foreligger svært få andre resultater av TBA i miljøprøver. Man antar at TBA i all
hovedsak er en naturlig bromert forbindelse som har sin opprinnelse i marine mikroorganismer, men den kan også oppstå via metabolisering av antropogene bromfenoler. Siden
TBA oppfører seg som en persistent organisk forbindelse og har strukturelle likhetstrekk med
andre bromerte miljøgifter, bør man holde øye med denne forbindelsen.
Utslipp til vann og vanntransport
Det var mulig å påvise de fleste bromerte flammehemmere og SCCP i sigevannssystemer fra
avfallsdeponier. Lindum i Drammen viste høyest SCCP konsentrasjon. Det kan ikke
utelukkes at de ekstremt høye SCCP-konsentrasjoner målt ved Lindum, Drammen, skyldes
deponering av avfall fra mekanisk industri eller verftsindustri. Estimert årlig utslipp fra et
større deponi kan komme opp i ca 1 – 10 g pr. enkeltforbindelse av PBDE, HBCD og
TBBPA. CP utslipp derimot kan ligge i størrelsesorden 1 til 10 kg pr. år.
Konsentrasjonene som ble funnet i denne studien ligger på samme nivå eller er lavere enn
konsentrasjonene som er funnet i kloakkslam fra andre land. Siden vannstrøm fra kloakkrenseanlegg i en del tilfeller er mye større enn sigevannsstrøm fra avfallsdeponier, kan det
antas at avrenning fra kloakkrenseanlegg kan ha et høyere forurensningspotensiale enn
sigevann fra avfallsdeponier. Imidlertid er ca. 40% av norske avfallsdeponier koblet på
kommunalt renseanlegg slik at de også kan være kilde til utslipp fra renseanlegg. I de
undersøkte biologiske prøver var det mulig å identifisere en tydelig nedadgående trend fra
indre Oslofjord og utover som tyder på at lokale kilder dominerer over langtransport og
deposisjon. Det anbefales derfor å prioritere kartlegging av mulige lokale kilder og her først
og fremst forurensningspotensiale fra norske kloakkrenseanlegg.
Utslipp til luft og lufttransport
Resultatene fra moseundersøkelser viser ingen klar regional trend. Derimot er det entydige
indikasjoner på at både PBDE, HBCD og SCCP transporteres gjennom atmosfæren.
Det anbefales at man går videre med kartlegging av potensielle store enkeltkilder av BFR og
CP til luft som for eksempel destruksjonsanlegg for elektronisk utstyr og andre former for
avfallshåndtering. Imidlertid må man også regne med at mye av utslippene til luft også er av
diffus karakter og skjer under daglig bruk. Avgassing fra materialer er påvist, men det er
foreløpig ikke mulig å beregne den totale emisjonen for Norge. En måte å vurdere
betydningen av atmosfærisk langtransport kontra lokale kilder, er å kople luftmålinger med
episoder av høye BFR/CP-konsentrasjoner til vindretning eller beregnete trajektorieplott som
viser hvor luftmassene har sin opprinnelse.
9
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
10
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
1.
Bakgrunn og formål
1.1 Bakgrunn
Bromerte flammehemmere (ofte forkortet som BFH eller BFR = brominated flame retardants)
er en fellesbetegnelsen for en større gruppe organiske stoffer. Stoffene har forskjellige
strukturer, men alle inneholder brom. Under sterk varmepåvirkning frigis bromradikaler som
stopper kjedereaksjonen i forbrenningsprosessen og som dermed virker hemmende på
utvikling av brann. Noen bromerte flammehemmere har i de senere årene kommet i søkelyset
på grunn av at de er lite nedbrytbare i miljøet. De kan oppkonsentreres i næringskjeden og er
påvist i levende organismer og i morsmelk. En del av stoffene har vist helse- og miljøskadelige effekter. Spesielt har det vært fokus på stoffgruppene polybromerte difenyletere
(PBDE) og polybromerte bifenyler (PBB). Den globale produksjonen av PBB opphørte
høsten 2000. Andre bromerte flammehemmere som det fokuseres på er heksabromsyklododekan (HBCD) og tetrabrombisfenol A (TBBPA).
Polyklorerte alkaner(PCA) eller klorerte parafiner (CP), som de også kalles, er en gruppe
forbindelser som er blitt brukt i stor utstrekning som tilsetningsstoffer i ekstremsmøremidler,
spesielt til metallbearbeiding og i skipsindustrien. De er også benyttet som sekundærmyknere
og flammehemmere i plast-, maling- og lærindustrien. Man skiller ofte mellom kortkjedede
(SCCP, C10-C13), mellomkjedede (MCCP, C14-C17) og langkjedede (LCCP, C18-C30) klorerte
parafiner.
Forbruk
SFT anslår at den totale mengden bromerte flammehemmere som brukes i Norge er mellom
270 og 340 tonn i 2001. Bruk omfatter her både som kjemikalium, i plastråvare og
-halvfabrikata og i de ferdige produktene. Elektriske og elektroniske produkter er den største
produktgruppen og da spesielt kretskort. Andre produktgrupper er isolasjonsmaterialer, plast
og tekstiler i transportmidler og noe i møbelstoffer. TBBPA er den mest brukte bromerte
flammehemmerne i Norge i dag, mens bruken av HBCD og dekabromdifenyleter (dekaBDE)
er betydelig mindre.
De kommersielt produserte flammehemmere inneholder ikke rene stoffer, men er en blanding
av flere. Således inneholder produktet som selges som oktabromdifenyleter (oktaBDE) også
ca 45 % heptabromdifenyleter heptaBDE (se også Tabell 2).
Utslipp og spredning i miljøet
Utslipp kan forekomme under produksjon og bruk av produkter samt ved deponering eller
destruksjon etter bruk. Bromerte flammehemmere kan tilføres jord, vann og luft. Det er bl.a.
funnet bromerte flammehemmere i inneluften i kontorlokaler med store mengder datautstyr.
Bromerte flammehemmere blir også tilført miljøet via langtransporterte luftstrømmer. I tillegg
kan bromholdige dioksiner dannes ved forbrenning av avfall som inneholder bromerte
flammehemmere.
Det er i tidligere undersøkelser funnet polybromerte difenyletere i fisk fra Frierfjorden,
Hordaland, Lofoten, Mjøsa og i fisk fra Bjørnøya. Bromerte flammehemmere er påvist i
blodprøver fra den norske befolkningen og konsentrasjonene har økt i perioden fra 1977 til
1999. I en svensk undersøkelse av PBDE i morsmelk ble det funnet en markert økning fra
1972 til 1997. Enkelte svenske undersøkelser kan tyde på at nivåene av de lavere bromerte
PBDE i miljøet nå er i ferd med å stabiliseres.
11
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Effekter
Stoffene er lite akutt giftige for mennesker, men enkelte bromerte flammehemmere er akutt
giftige for akvatiske organismer. Ved langvarig eksponering er det påvist at de kan føre til
leverskade. Det er mistanke om at enkelte bromerte flammehemmere kan gi hormoneffekter
og at de kan gi skader på nervesystemet. Generelt er kunnskapen om stoffenes langtidseffekter på helse og miljø mangelfull. Pentabromdifenyleter (pentaBDE) er meget giftig for
vannlevende organismer, persistent og bioakkumuleres. PentaBDE er klassifisert som
miljøskadelig og som helseskadelig ved kronisk påvirkning. Oktabromdifenyleter (oktaBDE)
og dekabromdifenyleter (dekaBDE) er lite nedbrytbare og er til dels også påvist høyt oppe i
næringskjeden. OktaBDE er foreslått klassifisert som reproduksjonsskadelig (fruktbarhetsreduserende og fosterskadelig). Det antas også at deka- og oktaBDE kan omdannes til
pentaBDE og andre homologer med tilsvarende egenskaper i naturen.
Både TBBPA og HBCD er meget giftig for vannlevende organismer, stoffene er ikke lett
nedbrytbare, og de kan forårsake langtidsvirkninger i vannmiljøet. TBBPA er påvist i blod
hos den generelle befolkningen i Norge. HBCD kan gi leverskader hos pattedyr. Det er svært
bioakkumulerende og kan derfor oppkonsentreres i miljøet og i organismer på forskjellige
nivåer i næringskjeden.
Kortkjedede (C10–C13) og høyklorerte (>50 % klor) parafiner (SCCP), som nylig er blitt
forbudt brukt i Norge, har utvist toksiske egenskaper hos mus. Dose-respons forsøk med mus,
foretatt ved institutt for oral biologi ved universitetet i Oslo, viser at eksponering av SCCP
fører til betydelig økt levervekt relativt sett. SCCP er meget giftig for vannlevende
organismer. Stoffet er persistent og bioakkumuleres og er klassifisert som miljøskadelig og
kreftfremkallende (mulig fare for kreft). Mellomkjedede klorparafiner (MCCP) er også
foreslått klassifisert som miljøskadelige basert på at de er giftige for akvatiske organismer, lite
nedbrytbare og bioakkumulerende.
Tiltak
Norske miljøvernmyndigheter har vedtatt en målsetning om at utslippene skal reduseres
vesentlig, senest innen 2010, og bromerte flammehemmere er oppført på myndighetenes
prioritetsliste og OBS-liste. SFT har utarbeidet en handlingsplan for reduksjon av utslippene.
Nordsjølandene har forpliktet seg til arbeide for å erstatte bromerte flammehemmere der det
er tilgjengelige erstatningsstoffer. Bromerte flammehemmere er en gruppe stoffer som inngår
i OSPARs utfasingsmål (2020).
1.2 Formål
Målsetting med prosjektet er å få en overordnet oversikt over nivåene av bromerte flammehemmere og klorerte parafiner i utvalgte deler av miljøet i Norge. I en første runde er det blitt
fokusert på risiko for utlekking fra avfallsdeponier, på lufttransportpotensiale og på nivåene i
marine biologiske prøver fra høyt, diffust og mindre belastede områder.
Følgende prøver er derfor blitt valgt ut: 1. sedimenter i sigevannsrør fra store avfallsdeponier,
2. moseprøver fra bakgrunnsområder fra hele Norge og 3. blåskjell og torskelever fra indre og
ytre Oslofjord og blåskjell fra Risøy ved Risør .
12
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
2.
Prøvetaking
2.1 Avfallsdeponier
Prøvetaking ble utført i perioden 11.–13.09.2002 på 6 deponier som ligger enten i tilknytning
til Oslofjord-systemet eller Skagerrak. Deponiene ble valgt ut i samarbeid med SFT etter
nærmere definerte kriterier (de viktigste kriteriene er at deponiene skal ha en viss minstestørrelse, skal være i drift eller nylig avsluttet, skal ha sigevannskontroll og de skal drenere
direkte eller indirekte til det såkalte JAMP-området). Følgende deponier ble prøvetatt:
Støleheia i Kristiansand, Heftingsdalen i Arendal, Grinda i Larvik, Lindum i Drammen,
Grønmo i Oslo og Øra i Fredrikstad. Stasjonene er vist i Figur 1.
Figur 1: Prøvetakingsstasjoner i Sør-Norge.
For nærmere beskrivelse av prøvetakingen og stasjonene se også Vedlegg A og B.
2.2 Mose
Tidligere undersøkelser i Norge har vist at mose er meget vel egnet til å bestemme nedfall av
tungmetaller fra atmosfæren (e.g. Steinnes et al., 1992; Berg et al., 1995). Metoden har også
vært forsøkt for PCB og andre persistente organoklorforbindelser (Lead et al., 1996). Dette
studiet, som ble utført på arkiverte moseprøver, tydet på at mose kan gi nyttig informasjon om
tilførsel av disse stoffene. Studiet viste også at stor forsiktighet må utvises under prøvetaking,
transport og lagring av prøvene for å unngå kontaminering.
Så vidt bekjent er det ikke tidligere forsøkt å analysere mose med hensyn på persistente
organobrom-forbindelser. Det ble derfor i perioden 01.07.–06.07.2002 samlet inn prøver av
etasjemose (Hylocomium splendens) for dette formål fra 11 lokaliteter spredt ut over landet.
En oversikt over lokalitetene er gitt i Figur 1 og Figur 2.
For nærmere beskrivelse av prøvetakingen og stasjonene se Vedlegg C.
13
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Figur 2: Stasjoner for moseprøvetaking.
2.3 Marine biologiske prøver
Prøvetaking av blåskjell (Mytilus edulis) og torskelever (Gadus morhua) er i regi av det
norske bidrag til OSPAR-kommissjonens Joint Assessment and Monitoring Programme
(JAMP). JAMP har fulgt retningslinjene fra OSPAR (1990, 1997) så langt det har latt seg
gjøre. Blåskjell ble innsamlet fra hver av tre stasjoner: Indre Oslofjord (st. 30A), ytre
Oslofjord (st. 36A) og på Risøy (st. 76A) utenfor Risør (Tabell 1 og Figur 1). Torskelever ble
tatt på to stasjoner: indre Oslofjord (st.30B) og ytre Oslofjord (36B). Alle prøvene ble
innsamlet i september/oktober 2001. For nærmere beskrivelse av prøvetakingen og stasjonene
se også Vedlegg D.
Tabell 1: JAMP-stasjoner for prøvetaking av blåskjell og torskelever.
JAMP
Stasjonsnummer
30A
30B
36A
36B
76A
Stasjonsnavn
Gressholmen
Oslo City area
Færder
Færder
Risøy
Bredde
59° 52.75
59° 49.0
59° 1.60
59° 2.0
58° 43.60
14
Lengde
10° 43.0
10° 33.0
10° 31.70
10° 32.0
9° 17.0
Art
Mytilus edulis
Gadus morhua
Mytilus edulis
Gadus morhua
Mytilus edulis
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
3.
Kjemisk analyse
Analysemetodikken som ble benyttet i dette prosjektet er basert på kompetanse og metodikk
som er utviklet gjennom et strategisk instituttprogram, utvikling finansiert av NILU og
prosjekter finansiert av Norges forskningsråd (NFR).
3.1 Analyserte forbindelser
Følgende forbindelser ble analysert og påvist i denne undersøkelse:
Tabell 2: Analyserte forbindelser i denne undersøkelsen med forkortelse, fult navn og CASnummer.
Forkortelse
Kjemisk navn
CAS-nummer
PBB-15
PBB-49
PBB-52
4,4’-dibrombifenyl
2,2’,4,5’-tetrabrombifenyl
2,2’,5,5’-tetrabrombifenyl
92-86-4
60044-24-8
60044-24-8
PBDE-28
PBDE-47
PBDE-99
PBDE-100
PBDE-138
PBDE-153
PBDE-154
PBDE-183
PBDE-209
2,4,4’-tribromdifenyleter
2,2’,4,4’-tetrabromdifenyleter
2,2’,4,4’,5-pentabromdifenyleter
2,2’,4,4’,6-pentabromdifenyleter
2,2’,3,4,4’,5’-heksabromdifenyleter
2,2’,4,4’,5,5’-heksabromdifenyleter
2,2’,4,4’,5,6’-heksabromdifenyleter
2,2’,3,4,4’,5’,6-heptabromdifenyleter
Dekabromdifenyleter
46690-94-0
40088-49-9
32534-81-9
32534-81-9
36483-60-0
36483-60-0
36483-60-0
68928-80-3
13654-09-6
α-HBCD
β-HBCD
γ-HBCD
α-heksabromsyklododekan
β- heksabromsyklododekan
γ- heksabromsyklododekan
25637-99-4
25637-99-4
25637-99-4
m-TBBPA
TBBPA
Dimetyltetrabrombisfenol A
Tetrabrombisfenol A
79-94-7
SCCP
MCCP
Kortkjedede klorerte parafiner
Mellomkjedede klorerte parafiner
85535-84-8
85535-85-9
TBA
2,4,6-tribromanisol
607-99-8
Polybromerte bifenyler (PBB)
Br Br
Br
Br
15
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Polybromerte difenyletere (PBDE)
Br
Br
Br
Br
Br
O
Br
Br
Br
Br
Br
O
Br
Br
Br
Br
De 209 forskjellige kongenerene er nummerert i henhold til IUPAC-systemet for PCB basert
på posisjonen av bromatomene på de to benzenringene.
De tekniske blandingene ”pentaBDE”, ”oktaBDE” og ”dekaBDE” inneholder blandinger av
flere kongenerer og bromeringsgrader som vist i Tabell 3.
Tabell 3: Kongener sammensetning av tekniske PBDE-blandinger
Kongenerer
i%
Teknisk blanding
”PentaBDE”
”OktaBDE”
”DekaBDE”
TetraBDE
PentaBDE
HeksaBDE
HeptaBDE
OktaBDE
NonaBDE
DekaBDE
24 - 38
50 – 60
4–8
10 – 12
44
31 – 35
10 – 11
<3
<1
97 – 98
Heksabromsyklododekan (HBCD)
Br
Br Br
Br
Br Br
Tetrabrombisfenol A (TBBPA)
Br
Br
CH3
HO
OH
C
CH3
Br
Br
16
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Dimetyl-tetrabrombisfenol A (m-TBBPA)
Br
Br
CH3
MeO
OMe
C
CH3
Br
Br
Kortkjedede polyklorerte alkaner eller klorerte parafiner (sPCA eller SCCP) (med
kjedelengde C10 til C13)
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Mellomkjedede polyklorerte alkaner eller klorerte parafiner (mPCA eller MCCP) (med
kjedlengde C14 til C17)
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Tribromanisol (TBA)
OMe
Br
Br
Br
Det antas at TBA i all hovedsak produseres av marine alger. TBA er tidligere blitt påvist i luft
og marin biota (Vetter, 2002)
3.2 Opparbeidelse
For å unngå analytiske problemer og for å begrense risiko for kontaminering mest mulig, ble
prøvene ikke tørket før ekstraksjon. Prøveopparbeidelse og analyse ble gjennomført etter
internstandardmetoden. Det betyr at til alle prøvetyper ble det tilsatt et sett av relevante
internstandarder for å kontrollere utbytte av ekstraksjon og opparbeidelse. De samme
forbindelser ble senere benyttet som intern standard ved kvantifiseringen. Dette medfører at
17
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
prøveresultatene automatisk blir korrigert for eventuelle tap under ekstraksjon og
opparbeidelse. Etter ekstraksjon ble prøvene renset vha. gelpermeasjonskromatografi og
svovelsyrebehandling. Før kvantifisering ble ekstraktet oppkonsentrert og tilsatt
gjenvinningsstandard.
3.3 Kvantifisering
Bestemmelse av PBB, PBDE, HBCD, m-TBBPA, TBBPA og SCCP ble utført ved hjelp av
gasskromatografi eller væskekromatografi kombinert med massespektrometri (GCMS eller
LC/MS)-NCI).
I tillegg til de avtalte analyser gjorde NILU et forsøk på å bestemme mellomkjedede CP
(MCCP) i noen få prøver og TBA i alle prøver. Også disse bestemmelser ble gjennomført ved
hjelp av GC/MS.
Analysekvaliteten og analyseusikkerheten blir testet ved hjelp av deltakelse i interkalibreringer. I 2002 har NILUs laboratorium deltatt i to relevante interkalibreringer.
Resultatene av sammenligningen kan betegnes som meget gode tatt i betraktning av at
metoden hos alle deltakere fortsatt er i utviklingsfasen. Det estimeres at måleusikkerheten for
TBA, PBB, PBDE og TBBPA ligger mellom 30 og 40%. For SCCP ligger måleusikkerheten
mellom 40 og 50 %. Dette er noe høyere enn for PCB eller dioksiner hvor måleusikkerheten
ligger rundt 20 %. Analyser av HBCD må betraktes som semikvantitative. Ved vurdering av
tids- eller geografiske trender bør man ta hensyn til denne måleusikkerheten som er høyere
enn for dioksin- eller PCB-analyser.
18
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
4.
Resultater
4.1 Konsentrasjon av BFR og CP i sigevannssystemer fra avfallsdeponier
I denne screening-undersøkelsen ble det samlet inn og analysert total 12 sedimentprøver fra
sigevannssystemer fra 6 avfallsdeponier. Stasjonene er beskrevet i kapittel 2.1 og i detalj i
Vedlegg A-B. Resultater er i sin helhet vist i Tabell 4.
Øra
Fredrikstad
Øra
Fredrikstad
Grønmo
Oslo
Grønmo
Oslo
Lindum
Drammen
Lindum
Drammen
Grinda
Larvik
Grinda
Larvik
Heftingsdalen
Arendal
Heftingsdalen
Arendal
Komponent
Støleheia
Kristiansand
Prøvetakingssted
Støleheia
Kristiansand
Tabell 4: Analyseresultat av sedimenter fra sigevannssystemer fra avfallsdeponier.
Konsentrasjonen er gitt i ng/g våtvekt.
PBB-15
<0,05 <0,1
<0,05 <0,1
<0,05 <0,1
<0,05
<0,1
<0,05 <0,1
<0,05 <0,1
PBB-49
<0,05 <0,1
<0,05 <0,1
<0,05 <0,1
<0,05
<0,1
<0,05 <0,1
<0,05 <0,1
PBB-52
<0,05 <0,1
<0,05 <0,1
<0,05 <0,1
<0,05
<0,1
<0,05 <0,1
<0,05 <0,1
PBDE-28
<0,1
<0,05
<0,1
0,12
0,18
0,13 <0,05 <0,1
9,36
0,20
0,61 <0,05 <0,1
PBDE-47
1,80
3,18
5,86
0,74
1,16
2,51
1,11
1,40
4,05
0,22
0,28
PBDE-99
1,73
2,81 14,5
9,69
1,03
1,62
3,11
1,16
1,43
5,07
0,22
0,22
PBDE-100
0,52
0,89
1,67
0,18
0,32
0,55
0,22
0,19
0,76
0,05
0,04
PBDE-138
PBDE-153
PBDE-154
PBDE-183
PBDE-209
<0,05 <0,1
0,39
0,59
<0,05 <0,1
0,47
0,49
2,65
1,30 <0,1
0,20
1,23
3,48
0,05
0,10
<0,05
0,82
0,09
0,13
0,36
0,11
0,33
0,83 <0,05
0,01
0,63
0,14
4,80 13,2
1,63
1,2
i.a.
β-HBCD
0,0
3,8
SCCP
MCCP
TBA
0,20
25,3
0,90
0,81
<4
0,26
0,07
0,02
62,3
0,49
0,50
1,7
9,1
0,0
0,1
0,7
2,6
0,0
0,0
2,9
5,3
33,5
91,0
35,4
4,0
3,6
1,0
0,0
0,0
i.a. 0,9
i.a. 32
0,1
0,2
0,0
0,0
6,7
5,4
0,0
2,6
0,46
0,25
0,22
0,65
4,78
4,37
8,60
6,91 24,3
0,18
1,23
7,89 23,2
<1
0,17
41,9
i.a. 6 500
i.a. 2 700
860
i.a.
<1
10,1
79
21,7
<0,05 <0,1
0,54
1,0
TBBPA
<0,05 <0,1
0,20
α-HBCD
m-TBBPA
<0,1
0,13
26,8
33
<0,05
1,14
12,5
γ-HBCD
<0,05 <0,1
1,35
i.a. 660
i.a.
i.a.
<4
<1
2,37 34,2
i.a. 19 400
i.a. 11 400
<4
<1
0,24
29
0,25
44,4
<4
<1
0,11 <0,9
2,61
1,92
i.a. 330
i.a.
i.a.
i.a. 1 190
i.a.
i.a.
<: under deteksjonsgrensen; i.a.: ikke analysert; (i): interfererende forbindelse.
19
12
<4
<1
i.a.
i.a.
<4
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
4.2 Konsentrasjon av BFR og SCCP i etasjemose fra Norge
I denne screening-undersøkelsen ble det samlet inn og analysert total 11 moseprøver fra hele
Norge. Innsamling er beskrevet i kapittel 2.2 og vedlegg C Alle resultater er vist i Tabell 5.
PBB-15
11,5
<4
<0,50
7,32
22,3
23,2
<1
<1
<1
<1
Narbuvoll
Nannestad
Risør
Ualand
Stord
Fure
Molde
Roan
Limingen
Komponent
Valvik
Prøvetakingssted
Skoganvarre
Tabell 5: Analyseresultatene av etasjemose. Konsentrasjonen er gitt i pg/g våtvekt.
<1
PBB-49
11,4
<4
<0,50
<0,50
<2
<3
<1
<1
<1
<1
<1
PBB-52
<5
<4
2,23
1,01
<2
<3
<1
<1
<1
<1
<1
PBDE-28
16,7
<4
5,79
0,47
12,4
<3
80,4(i) 264(i)
<1
<1
256(i)
10,2
25,7
149
PBDE-47
224
15,4
29,8
8,99
47,9
47,4
14,3
7,87
46,3
PBDE-99
45,5
11,9
2,89
11,6
<2
21,9
<1
<1
<1
51,8(i)
PBDE-100
21,1
<4
<0,50
<0,50
<2
<4
<1
<1
<1
<1
<1
PBDE-138
<10
<5
<0,6
<0,6
<2
<4
<1
<1
<1
<1
<1
PBDE-153
<8
<4
<0,50
<0,50
<2
<4
21,3
<1
<1
<1
<1
PBDE-154
<8
1,06
<0,50
0,91
<2
<4
<1
<1
<1
<1
<1
PBDE-183
<12
1,22
<0,50
1,79
<2
<4
<1
<1
<1
<1
<1
165
552
78,7
237
416
260
PBDE-209
25,3
α-HBCD
<1
i.a.
β-HBCD
<1
i.a.
γ-HBCD
<1
i.a.
m-TBBPA
TBBPA
SCCP
MCCP
TBA
<5
19,4
123
660
3
<1
23
<5
<5
140
887
i.a. 35 000
i.a.
i.a.
1 443 <30
157
<1
<1
<1
290
<1
585
<1
1532
<1
1338
<1
0
<1
324
<1
<1
<1
<1
<1
9582
<1
<1
<1
<5
<5
91,6
i.a.
79,7
i.a. 100 000
i.a.
i.a.
i.a.
<30
59,3
<1
<30
<90
<5
<5
420
127
<5
651
<5
67,2
i.a.
i.a.
i.a.
i.a.
i.a.
i.a.
i.a.
i.a.
<90
<30
<: under deteksjonsgrensen; i.a.: ikke analysert; (i): interfererende forbindelse.
20
<5
<30
<30
<5
37,4
106
i.a. 3 000
i.a.
i.a.
<30
<30
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
4.3 Konsentrasjon av BFR og SCCP i blåskjell og torskelever
Analyseresultatene av marine biologiske prøver fra indre og ytre Oslofjord og fra Skagerrakkysten er vist i Tabell 6. Konsentrasjonen er gitt i ng/g våtvekt. I tillegg til analysene som er
blitt gjennomført i regi av dette prosjektet er det gjengitt resultater av PCB-analysen og
fettbestemmelse gjennomført ved NIVA i forbindelse med JAMP-programmet. Innsamlingen
er beskrevet i kapittel 2.3 og vedlegg D.
Prøvetakingssted
Komponent
Blåskjell
Indre Oslofjord
St. 30 A
Blåskjell
Indre Oslofjord
St. 30 A
Blåskjell
Ytre Oslofjord
St. 36 A
Blåskjell
Ytre Oslofjord
St. 36 A
Blåskjell
Risøy
St. 76A
Blåskjell
Risøy
St. 76A
Torskelever
Indre Oslofjord
St. 30 B
Torskelever
Indre Oslofjord
St. 30 B
Torskelever
Indre Oslofjord
St. 30 B
Torskelver
Ytre Oslofjord
St. 36 B
Torskelver
Ytre Oslofjord
St. 36 B
Torskelver
Ytre Oslofjord
St. 36 B
Tabell 6: Analyseresultatene av prøver av blåskjell og torskelever fra indre og ytre Oslofjord
samt Risøy. Konsentrasjonen er gitt i ng/g våtvekt.
PBB-15
<0,01
<0,01
0,10
<0,01
PBB-49
<0,01
<0,01
0,02
<0,01
PBB-52
<0,01
<0,01
0,01
<0,01
PBDE-28
0,05
0,01
<0,01
0,01
PBDE-47
0,31
0,32
0,13
0,07
0,01
<0,20
<0,20
<0,20
<0,20
<0,20
<0,20
0,01
0,01
0,21
0,32
0,36
<0,20
0,14
0,23
<0,01
<0,01
0,08
0,13
0,09
<0,20
0,04
0,13
0,06
0,02
1,35
1,54
1,42
0,32
0,44
0,64
0,14
0,11
0,22
43,1
0,18
0,13
<0,01
0,04
0,06
0,05
PBDE-100
0,05
0,08
0,03
0,02
0,03
0,02
20,0
36,8
28,7
PBDE-138
<0,01
<0,01
<0,01
<0,01
<0,01
<0,01
<0,20
<0,20
PBDE-153
0,01
0,01
<0,01
<0,01
<0,01
<0,01
0,23
PBDE-154
0,01
0,01
<0,01
<0,01
<0,01
<0,01
4,03
PBDE-183
<0,01
<0,01
<0,01
<0,01
<0,01
<0,01
PBDE-209
0,16
0,04
0,11
<0,50
0,03
α-HBCD
1,5
i. a.
0,0
0,0
β-HBCD
0,0
i. a.
0,0
0,0
γ-HBCD
0,0
i. a.
0,0
<0,1
TBBPA
SCCP
<0,1
0,03
0,02
0,03
0,22
2,65
3,53
<0,20
<0,20
<0,20
<0,20
<0,20
0,27
<0,20
<0,20
<0,20
7,88
4,13
0,49
0,54
0,93
0,13
0,13
0,16
<0,20
<0,20
<0,20
0,03
0,16
<0,50
<0,50
<0,50
<0,50
<0,50
0,2
0,1
7,3
i. a.
9,9
i. a.
0,3
3,2
0,0
0,0
0,0
i. a.
0,0
i. a.
0,0
0,0
0,0
0,0
0,0
0,0
i. a.
0,0
i. a.
0,0
0,0
<0,1
<0,1
<0,1
<0,50
<0,50
<0,50
<0,50
<0,50
<0,50
0,09
0,16
0,10
0,16
0,08
0,09
0,01
0,02
i.a.
80,0
i.a.
14,0
i.a.
i.a.
i.a.
i.a.
i.a.
i.a.
7-PCB
7,7
7,4
1,4
1,1
1,4
1,1 2455,3
Fett i %
1,6
1,4
3,1
2,9
1,7
1,5
TBA
0,41
0,51
25.10.01 25.10.01
0,21
17,5
0,14
i.a.
02.10.01 02.10.01
13,0
1,90
0,02
0,25
25.09.01 25.09.01
1,48
1,44
750
i.a.
35,5
370
i.a.
32,8
0,10
<: under deteksjonsgrensen; i.a.: ikke analysert; (i): interfererende forbindelse.
21
i.a.
25,0
23,0
i.a.
i.a.
i.a.
i.a.
i.a.
457,5
423,7
451,7
31,4
31,1
28,2
0,0 3483,0
02.10.01 02.10.01
0,07
2,23
10,3
0,20
MCCP
Fangstdato
130
<0,1
2,96
62,2
PBDE-99
m-TBBPA
1,89
97,9
35,8
02.10.01 25.10.01
0,17
23,4
25.10.01 25.10.01
13,8
20,8
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
5.
Diskusjon og konklusjon (miljørelevans)
Det gjøres oppmerksom på at det her dreier seg om en innledende undersøkelse (eller
screening) med et meget begrenset prøveantall og prøveutvalg. Man må derfor være forsiktig
med fortolkning av resultatene og man kan ikke trekke noen endelige konklusjoner.
5.1 Polybromerte bifenyler
PBB ble ikke funnet i sediment fra avfallsdeponier og bare sporadisk i de andre undersøkte
prøvetypene. Om dette skyldes at PBB var mindre benyttet i Norge enn i andre land, kan
denne studien ikke besvare.
PBB er homologer til PCB. De ansees som like toksiske og akkumuleres lett i miljøet. Etter at
det, ved et uhell i Michigan i 1973, ble tilsatt PBB til dyrefôr, ble stoffgruppen etterhvert tatt
ut av bruk. Da hadde man akkurat blitt oppmerksom på PCB som en global miljøgift. Den
globale produksjonen av PBB opphørte høsten 2000. Siden stoffgruppen er utfaset og ikke
lenger blir påvist i høye konsentrasjoner, er det blitt mindre relevant å ha veldig stor fokus på
denne stoffgruppen. På den andre siden er ikke mange prøver blitt undersøkt og i tillegg kan
denne stoffgruppen med letthet analyseres sammen med PBDE og uten særlige ekstrakostnader, slik at de fortsatt bør inkluderes i nye kartleggingsprosjekter.
5.2 Polybromerte difenyletere
PBDE er blitt påvist i alle prøver i denne undersøkelsen. I sedimenter fra avfallsdeponier var
PBDE-209 mest framtredende (0,49 – 91 ng/g våtvekt). Høyest konsentrasjon ble funnet ved
Grinda, Larvik (91 ng/g våtvekt). I en undersøkelse ved 3 kloakkrenseanlegg i Stockholm ble
det, når man tar hensyn til vanninnhold, funnet høyere eller tilsvarende konsentrasjoner av
alle PBDE-forbindelser i kloakkslam (Tabell 7).
Tabell 7: Konsentrasjon av bromerte flammehemmere i kloakkslam fra 3 kommunale
renseanlegg i Stockholm (deWit 2002) og fra sedimenter fra avfallsdeponier fra denne
studien.
Komponent
Kloakkslam, Stockholm
Konsentrasjon i ng/g tørrv.
PBDE-47
PBDE-99
PBDE-100
PBDE-209
HBCD
TBBPA
36 – 80
56 – 100
13 – 25
170 – 270
19 – 54
3,6 – 8,6
Sedimenter fra
avfallsdeponier, Norge
Konsentrasjon i ng/g våtv.
0,22 – 9,4
0,22 – 15
0,04 – 2,7
0,5 – 91
< 0,1 – 84
1,9 - 44
Også i moseprøver var PBDE-209 mest framtredene av PBDE (59 – 660 pg/g våtvekt). Så
langt vi vet er dette første gang mose er benyttet som middel for å påvise langtransport av
bromerte flammehemmere. Moseprøver fra denne undersøkelsen er også de første luftrelaterte
prøver hvor det er påvist PBDE-209. I luftprøver fra bakgrunnsområder (Ammernäs, NordSverige; Hoburgen, Gotland) har man tidligere funnet PBDE-47, 99 og 100 samt HBCD.
22
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Disse funnene i moseprøver viser at alle PBDE, også PBDE-209 (dekaBDE), kan
transporteres med luft. Dette er vesentlig for vurdering av miljørisikoen av ”dekaBDE”blandingen.
I de biologiske prøver var PBDE-47 mest framtredende av alle PBDE. Høyest i denne
undersøkelsen var nivået i torskelever fra indre Oslofjord (10 – 98 ng/g våtvekt). I en tidligere
undersøkelse av torskelever fra stasjon 36B tatt i år 1996 (Tabell 8 og Green 2001) ble det
funnet høyere konsentrasjoner av både PBDE-47 og 99. Siden dette bare er en prøve fra 1996
og forskjellen ikke er større enn de naturlige variasjonene i datasettet fra årets undersøkelse
(f.eks St. 30B PBDE-47: 43,1, 97,2 og 62,2 ng/g), kan dette ikke brukes for å bevise at
nivåene i ytre Oslofjord er avtakende. Tidligere undersøkelser i ferskvannsfisk viser
imidlertid enda høyere verdier i lakelever fra Mjøsa og Hurdalsjøen (se Tabell 8 og Fjeld,
2001).
Torskelever
St.36B, JAMP
(Prøvet. 1996)
(Green, 2001)
Torskelever
Norge, JAMP
(Prøvet. 1996)
(Green, 2001)
Lakelever
Ferskvann, Norge
(Fjeld, 2001)
Torskelever,
Nederland
(deBoer, 1989 og
1995)
Blåskjell,
Nederland
(de Boer, 2000)
Tabell 8: Resultater av PBDE-47 og 99 samt SCCP fra tidligere undersøkelser av biota.
PBDE-47
32,3
15 – 49
9,7 – 1044
0,6 – 60
0,2 – 1,6
PBDE-99
0,78
0,5 – 0,8
10,6 – 910
Komponent
SCCP
86 – 1480
Denne og andre undersøkelser dokumenterer at særlig ”pentaBDE”-blandingen (med bl.a.
indikatorforbindelsen 2,2’,4,4’-tetrabromdifenyleter, eller PBDE-47), men også ”oktaBDE”blandingen finnes i miljøet og i organismer høyt oppe i næringskjeden, samt i morsmelk.
Dette gjelder også i områder langt fra typiske kilder. Denne gruppen forbindelser er giftig for
akvatiske organismer, de er svært lite nedbrytbare og kan forårsake langtidsvirkninger i
vannmiljøet og i næringskjeden. PentaBDE kan videre gi kroniske helsevirkninger. De
toksiske effektene av PBDE regnes for å være lavere en for PCB, men vil komme som en
tilleggsbelastning for biotaen sammen med annen type forurensning. En additiv toksisk effekt
vil kunne forventes av disse stoffene. SFT har foreslått at det utarbeides forslag til forbud mot
bruk av ”pentaBDE” fra 1.1.2003 i tråd med et foreslått EU-direktiv.
De relativt høye nivåene som ble funnet av BDE-209 (dekaBDE) i mose og sediment viser at
teknisk ”dekaBDE” både spres via luftmassene og kan akkumuleres i miljøet. dekaBDE kan
relativt lett brytes ned til lavere bromerte bifenyletere av sollys. Det har derfor blitt foreslått at
teknisk ”dekaBDE” er en av bidragsyterne til økningen av nivåene av de lavere bromerte
komponentene. I og med at lavere bromerte difenyleterne er mer toksiske enn dekaBDE, må
man ta dette i betraktning i forbindelse med reguleringen av bruken. Ettersom dekaBDE
fortsatt er i utstrakt bruk bør man være oppmerksom på denne i overvåkningen av miljøgifter.
23
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
5.3 Heksabromsyklododekan
I nesten alle sedimentprøvene fra avfallsdeponier var det mulig å påvise alle 3 HBCDisomerer som finns i den tekniske blandingen (α-, β- og γ-HBCD). γ-HBCD viste
gjennomgående høyest konsentrasjon (2,6 – 44 ng/g våtvekt). Målinger i kloakkslammet fra
3 kommunale renseanlegg i Stockholm (se Tabell 7) ligger i samme størrelsesorden.
I mer en 50 % av alle moseprøvene var det mulig å påvise α-HBCD, i noen få γ-HBCD, men
aldri β-HBCD. Dette viser at HBCD kan langtransporteres via luft.
I de marine prøvene ble det bare påvist α-HBCD og ingen av de to andre isomerer
(0,1 – 10 ng/g våtvekt). Det er tydelig at det opprinnelige tekniske mønsteret forandres og at
de tre isomerene har forskjellige miljøegenskaper (bioakkumulering og persistens). Dette er,
så langt vi vet, aldri tidligere blitt påvist for HBCD, men er kjent fra både PCB, dioksiner og
andre miljøgifter og bør i framtiden studeres nærmere.
Foreløpige resultater fra risikovurderinger viser at HBCD har negative helse- og miljøvirkninger. Til tross for dette er HBCD svært utstrakt brukt og har til en viss grad erstattet
bruken av de pentabromerte bifenyleterne. HBCD er en av de mest anvendte bromerte
flammehemmere på verdensbasis. HBCD har vist seg som meget giftig for akvatiske
organismer. Det er tungt nedbrytbart og kan dermed føre til langtidsvirkninger i det akvatiske
miljøet. Det er videre vist at HBCD kan gi leverskader hos pattedyr.
Denne og andre studier viser at HBCD kan anrikes i miljøet og på forskjellige nivåer i
næringskjeden. Dette må det tas hensyn til ved vurdering av reguleringer av HBCD, som
foreløpig ikke er forbudt hverken i Norge eller EU.
5.4 Tetrabrombisfenol A
TBBPA og metabolitten dimetyl-TBBPA er påvist i alle prøvene fra avfallsdeponier
(1,9 – 44 ng/g våtvekt og <0,9 – 1,2 ng/g våtvekt). Dette er konsentrasjonsnivåer i samme
størrelsesorden som er påvist i kloakkslam fra Stockholm (se Tabell 7).
I moseprøvene ble det bare funnet utgangsproduktet TBBPA, men i konsentrasjoner som ikke
skiller seg signifikant fra metodeblindverdier.
I blåskjell og torskelever ble det heller ikke funnet signifikante nivåer av TBBPA. Dette kan
skyldes at TBBPA har en fenolisk struktur som gjør at den sannsynligvis lettere kan
metabolisere i kroppen og dermed ikke har det samme bioakkumuleringspotensialet som de
andre flammehemmerne.
Foreløpige resultater fra risikovurderinger tyder på at TBBPA kan ha negative helse- og
miljøvirkninger. Likevel er TBBPA i svært utstrakt bruk og ansees å være den mest anvendte
bromerte flammehemmer på verdensbasis. Som for PCB og hydroksylerte PCB har man vist
at TBBPA påvirker thyroidhormonbinding. Det er også vist at homologen bisfenol A er en
typisk hormonhermer. TBBPA er meget giftig for akvatiske organismer. Det er ikke lett
nedbrytbart, og kan derfor føre til langtidsvirkninger i det akvatiske miljøet.
TBBPA er, i motsetning til de ovennevnte, benyttet som en kjemisk bundet flammehemmer.
Det betyr at man vil kunne forvente mindre utslipp til miljøet av denne stoffgruppen.
24
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Imidlertid viser denne og andre studier at TBBPA spres i miljøet, noe som sannsynligvis
delvis skyldes utslipp av overskuddsmateriale under produksjonen og bruk.
TBBPA er påvist i blod hos befolkningen i Norge. Det faktum at TBBPA ikke kunne påvises i
signifikante konsentrasjoner i de få miljøprøvene fra denne studien kan gi en viss indikasjon
på at miljøkontaminerte matvarer som opptaksvei er mindre relevant enn for eksempel direkte
kontaminert matvarer, det vil si kontaminert under videreforedling eller lagring, og opptak
gjennom luft eller hud i et kontaminert innemiljø.
På bakgrunn av dens utstrakte bruk, dens påviste toksiske effekter og det begrensete antallet
undersøkte prøver er det vanskelig å fastslå hvilken relevans TBBPA har for vårt ytre miljø.
5.5 Klorerte parafiner
CP ble funnet i til dels store konsentrasjoner i de fleste prøvene som ble analysert.
SCCP ble påvist i alle undersøkte prøver fra avfallsdeponier (330 – 19 400 ng/g våtvekt).
Høyest konsentrasjon ble funnet i sediment fra Lindum, Drammen (19 400 ng/g våtvekt).
MCCP ble påvist i alle undersøkte prøver fra avfallsdeponier (2 700 – 11 400 ng/g våtvekt).
Også for MCCP var konsentrasjonen høyest i prøven fra Lindum (11 400 ng/g våtvekt).
Nivåene var høyest for de kortkjedede som også anses som de mest toksiske og miljøfarlige.
I en større engelsk undersøkelse av elvesedimenter tatt nedstrøms fra kloakkrenseanlegg, fant
man konsentrasjoner av SCCP og MCCP i størrelsesorden 200 – 63 000 ng/g tørrvekt. Dette
tilsvarer resultater fra denne undersøkelsen når man tar hensyn til tørketap. Prøvene fra de
norske avfallsdeponier er imidlertid tatt direkte i utslippet og ikke i miljøprøver i nærheten av
utslippskilden.
Alle tre analyserte moseprøver viste høye SCCP-konsentrasjoner som bekrefter at SCCP har
et betydelig langtransportpotensiale.
Det var mulig å påvise SCCP i alle undersøkte prøver av blåskjell og torskelever. Høyest
konsentrasjon ble funnet i torskelever fra indre Oslofjord.
Til tross for relativt få publiserte studier konkluderer Tomy (1998) som følger i sin oversikt
av miljøegenskaper og toksikologi av SCCP: Sammenlignet med andre halogenerte organiske
forbindelser som f.eks. PCB og klorerte pesticider, viser SCCP færre akutt og kronisk
toksiske effekter. SCCP har lavere reproduksjons- og embryotoksisk virkning på pattedyr og
fugler. SCCP induserer ikke CYP450 1A1 type MFO enzym systemet. SCCP og mulige
oksidative nedbrytningsprodukter (OH- or COOH-substituerte klor parafiner) viser ingen
strukturell likhet med stoffer som virker forstyrrende på de endokrine eller thyroide hormonsystemer som for eksempel hydroxy-PCB eller alkylfenoler. I motsetning til andre klorerte
alifatiske eller aromatiske forbindelser så har man foreløpig ikke funnet immunotoksiske eller
nevrotoksiske effekter. For å vurdere subletale toksiske effekter trenger man mer informasjon
som ideelt sett burde tatt hensyn til strukturforskjellene i de mange tusen enkelforbindelser i
den komplekse SCCP blandingen. SCCP er klassifisert som kreftfremkallende (mulig fare for
kreft).
I EUs Risk assessment report (European Commission, 2000) konkluderes det med at SCCP
(med hensyn på visse bruksområder) utgjør en risiko for det akvatiske miljøet og gir effekter
25
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
via næringskjeden (secondary poisoning). Det konkluderes videre at SCCP-nivået i miljøet
ikke utgjør noe signifikant risiko for human helse. Denne risikovurderingen er under revisjon.
Atmosfærisk langtransport ansees som vesentlig for den globale spredningen av SCCP og er
ansvarlig for forekomsten av SCCP i den arktiske næringskjeden. Bruken av SCCP har gått
betydelig ned de siste årene. Det at man finner fortsatt SCCP i miljøet styrker antagelsen om
at stoffene er persistente, bioakkumulerende og/eller tilføres ved langtransport. Her pågår det
utredningsarbeid i EU av UK som er koordinert med OSPAR. Det er mye som tilsier at SCCP
blir klassifisert som PBT stoff utfra EUs kriterier.
Også denne studien viser at opptak via mat er meget relevant for human eksponering. I denne
sammenheng er det også vesentlig å nevne at EUs ”worst case” scenario for human opptak
overstiger WHOs veiledene grenseverdi (WHO 1996 og WHO-ECEH 2002).
Til tross for relativt få publiserte studier vurderes CP som mindre toksiske enn de andre
halogenerte organiske miljøgiftene. De høye nivåer man finner i naturen gjør imidlertid at
man bør være oppmerksom på denne stoffgruppen som en viktig miljøgift.
5.6 Tribromanisol
TBA er blitt påvist i alle marine prøver (0,07 – 23 ng/g våtvekt). Nivået er høyest i
torskelever fra ytre Oslofjord med en konsentrasjon tilsvarende sum PBDE. Det er imidlertid
vanskelig å vurdere miljørelevans av TBA. Det foreligger veldig få andre resultater av TBA i
miljøprøver. TBA finner man stort sett i prøver som er direkte knyttet til det marine miljøet
og forbindelsen viser store sesongvariasjoner. Man antar at TBA i all hovedsak er en naturlig
bromert forbindelse som har sin opprinnelse i marine mikroorganismer (Führer, 1998). Det er
påvist at marine rødalger (Polysiphonia sphaerocarpa) produserer TBA og andre bromerte
fenoler, anisoler og benzaldehyder (Flodin, 2000). Man har også sett at mikroorganismer
metylerer bromerte fenoler som ble brukt som coating i en drikkevannstank til anisoler
(Malleret, 2002). Siden TBA oppfører seg som en persistent organisk forbindelse og har
strukturelle likhetstrekk med andre bromerte miljøgifter, bør man holde øye med denne
forbindelsen.
5.7 Utslipp til vann og vanntransport
Når man diskuterer utslipp til vann og vanntransport av BFR og CP er det viktig å vite at disse
stoffer, med unntak av TBBPA, er ekstremt lipofile og ekstremt lite løslig i vann. Dette gjør at
BFR og CP stort sett vil være bundet til partikler. Dette vil redusere mobiliteten av disse
stoffene i deponier.
Ut i fra disse egenskaper er det blitt vurdert som mest hensiktsmessig å analysere partikulære
prøver (sedimenter) og ikke sigevann fra avfallsdeponier for å kunne overvinne de analytiske
begrensninger og for overhodet å kunne detektere BFR og CP i utslipp til vann.
Det var mulig å påvise de fleste bromerte flammehemmere og SCCP i sigevannssystemer fra
avfallsdeponier.
26
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
PBB ble ikke påvist i noen deponi. De andre forbindelser ble påvist i alle deponier:
•
•
•
•
•
Heftingsdalen, Arendal viste høyeste pentaBDE-konsentrasjon (6 – 9 ng/g våtvekt).
Grinda, Larvik viste høyeste decaBDE-konsentrasjon (33 – 91 ng/g våtvekt).
Grønmo, Oslo viste høyeste TBBPA-konsentrasjon (24 – 44 ng/g våtvekt).
Stølsheia, Kristiansand viste høyeste γ-HBCD-konsentrasjon (33 – 79 ng/g våtvekt).
Lindum i Drammen viste høyeste SCCP konsentrasjon (19 400 ng/g våtvekt).
Siden de forskjellige substansgrupper hver for seg kan knyttes til bestemte bruksområder, kan
denne informasjonen eventuelt relateres til den tilgjengelige informasjonen om deponerte
stoffer.
Det kan for eksempel ikke utelukkes at de ekstremt høye SCCP-konsentrasjoner målt ved
Lindum, Drammen, skyldes deponering av avfall fra mekanisk industri eller verftsindustri.
Det er også blitt rapportert at det er blitt deponert avfall fra mekanisk industri i dette deponiet
selv om det blir karakterisert som lite (se vedlegg B).
Når man tar et grovt estimat for partikkelinnhold i sigevann (10 – 100 mg/l suspendert
materiale) og total vannmengde per år (109 l; 100 da areal og 1000 mm årsmiddelnedbør) blir
partikkelutslippet ca 100 t (=108 g). Beregnet årlig utslipp fra et større deponi kan dermed
komme opp i ca 1 – 10 g pr. enkeltforbindelse av PBDE, HBCD og TBBPA. CP utslipp
derimot kan ligge i størrelsesorden 1 til 10 kg pr. år.
Konsentrasjonene som ble funnet i denne studien ligger på samme nivå eller er lavere enn
konsentrasjonene som er funnet i kloakkslam, eller i tilfellet SCCP sedimenter tatt rett
nedstrøms fra kloakkrenseanlegg, fra andre land. Siden masse/vannstrøm fra kloakkrenseanlegg er flere størrelsesordener større enn sigevannsstrøm fra avfallsdeponier, må det antas at
avrenning fra kloakkrenseanlegg har et signifikant høyere forurensningspotensiale enn
sigevann fra avfallsdeponier. Det må imidlertid tas hensyn til at vannføring fra avfallsdeponier varierer med sesong, alder og så videre og at man i denne undersøkelsen kun har fått
et korttidsbilde av utslippene. Videre er ca. 40% av norske avfallsdeponier koblet på
kommunale renseanlegg og avrenning fra deponier vil dermed også kunne være en kilde til
utslipp i avløpssystemet.
I de undersøkte biologiske prøver var det mulig å identifisere en tydelig nedadgående trend
fra indre Oslofjord og utover som tyder på at lokale kilder dominerer over langtransport og
deposisjon. Det anbefales derfor at man gir en høyere prioritet til kartlegging av mulige lokale
kilder og her først og fremst forurensningspotensiale fra norske kloakkrenseanlegg før man
eventuelt går videre med en grundigere kartlegging av risikoen som utgår fra avrenning fra
avfallsdeponier.
5.8 Utslipp til luft og lufttransport
Resultatene fra moseundersøkelser viser ingen klar regional trend. Dette skyldes mest
sannsynlig metodiske problemer med kalibrering av mose som indikator for deposisjon siden
det var mulig å identifisere en tydelig nord-sør-gradient for PBDE i ferskvannsfisk fra
innsjøer uten direkte lokal påvirkning (Fjeld, 2001). Derimot er det entydige indikasjoner på
at både PBDE, HBCD og SCCP transporteres gjennom atmosfæren.
27
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Det anbefales at man går videre med kartlegging av potensielle store enkeltkilder av BFR og
CP til luft som for eksempel destruksjonsanlegg for elektronisk utstyr og andre former av
avfallshåndtering. Man må imidlertid regne med at mye av emisjon til luft er av diffus
karakter og skjer under daglig bruk av materiale som er tilsatt bromerte flammehemmere.
Avgassing fra materialer er påvist, men datagrunnlaget er foreløpig altfor spinkelt til at man
kan beregne eller modellere den totale emisjonen for Norge.
En måte å vurdere betydningen av atmosfærisk langtransport kontra lokale kilder er å kople
luftmålinger med episoder av høye BFR/CP-konsentrasjoner til vindretning eller beregnete
trajektorieplott som viser hvor luftmassene har sin opprinnelse.
6.
Referanser
Berg, T., Røyset, O. and Steinnes, E. (1995) Moss (Hylocomium splendens ) used as
biomonitor of atmospheric trace element deposition: Estimation of uptake efficiencies.
Atmos. Environ., 29, 353-360.
de Wit, C. A. (2000) Brominated Flame Retardants. Stockholm (Swedish Environmental
Protection Agency report 5065).
European Commission (2000) European Union Risk Assessment Report. Vol. 4: Alkanes,
C10–13, chloro-. Luxembourg, Office for Official Publications of the European
Communities (EUR 19010).
European Commission (2001) European Union Risk Assessment Report. Vol. 5: Diphenyl
ether, pentabromo derivative (pentabromodiphenyl ether). Luxembourg, Office for Official
Publications of the European Communities (EUR 19730).
Fjeld, E., Knutzen, J., Brevik, E.M., Schlabach, M., Skotvold, T., Borgen, A.R. og Wiborg,
M.I. (2001) Halogenerte organiske miljøgifter og kvikksølv i norsk ferskvannsfisk 19951999. Oslo (NIVA Rapport 4402-01) (Statlig program for forurensningsovervåking
Rapport 827/01).
Flodin,C. og Whitfield, F.B. (2000) Brominated anisoles and cresols in the Red Alga
Polysiphonia Sphaerocarpa. Phytochemistry, 53, 77-80.
Führer,U. og Ballschmiter, K. (1998) Bromochloromethoxybenzenes in the marine
troposphere of the Atlantic Ocean - a group of organohalogens with mixed biogenic and
anthropogenic origin. Environ.Sci.Techn. , 32, 2208-2215.
Green, N.W., Helland, A., Hylland, K., Knutzen, J. og Walday, M. (2001) Overvåking av
miljøgifter i marine sedimenter og organismer 1981-1999 : Joint Assessment and
Monitoring Programme (JAMP). Oslo (NIVA Rapport 4358-2001) (Statlig program for
forurensningsovervåking Rapport 819/01).
Lead, W.A., Steinnes, E. and Jones K.C. (1996) Atmospheric deposition of PCBs to moss
(Hylocomium splendens ) in Norway between 1977 and 1990. Environ. Sci. Technol., 30,
524-530.
28
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Malleret,L. og Bruchet, A. (2002) A taste and odor episode caused by 2,4,6-tribromoanisole.
J. Am. Water Works Ass., 94, 84-95.
Steinnes, E., Rambæk, J.P. and Hanssen, J.E. (1992) Large scale multi-element survey of
atmospheric deposition using naturally growing moss as biomonitor. Chemosphere, 35,
735-752.
Tomy, G.T., Fisk, A.T., Westmore, J.B. and Muir, D.C.G. (1998): Environmental chemistry
and toxicology of polychlorinated n-alkanes. Rev. Environ. Contam. Toxicol., 158, 53-128.
Vetter,W., Schlabach, M. og Kallenborn, R. (2002) Evidence for the presence of natural
halogenated hydrocarbons in Southern Norwegian and polar air. Fresenius Environ. Bull.,
11, 170-175.
World Health Organization (1994) Brominated diphenyl ethers. Genève (Environmental
Health Criteria 162).
World Health Organization (1996) Chlorinated paraffins. Genève (Environmental Health
Criteria 181).
World Health Organization (1997) Flame retardants. A general introduction. Genève
(Environmental Health Criteria 192).
World Health Organization (1995) Tetrabromobisphenol A and derivatives. Genève
(Environmental Health Criteria 172).
29
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
30
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Vedlegg A
Feltrapport fra prøvetaking avfallsdeponier
31
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
32
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
NOTAT
26. september 2002
Til:
Martin Schlabach/NILU
Fra:
Henning Mohn/NIVA
Kopi: Jon Fuglestad og Gro Andersen/SFT
Sak: Feltrapport fra prøvetaking for bromerte flammehemmere i
sigevannsystemer fra deponier.
NIVA ved undertegnede er engasjert av NILU for prøvetaking av sigevann og sedimenter i
sigevannsystemer. Oppdraget gjennomføres som en følge av NILUs engasjement av SFT ved
J. Fuglestad og G. Andersen.
Prøvetaking ble utført på 6 deponier som ligger enten i tilknytning til Oslofjord-systemet eller
Skagerrak. Deponiene ble valgt ut i samarbeid med SFT etter nærmere definerte kriterier (de
viktigste er at deponiene skal ha en viss minstestørrelse, skal være i drift eller nylig avsluttet,
skal ha sigevannskontroll og de skal drenere direkte eller indirekte til det såkalte JAMPområdet). Følgende deponier ble prøvetatt: Øra i Fredrikstad, Grønmo i Oslo, Lindum i
Drammen, Grinda i Larvik, Heftingsdalen i Arendal og Støleheia i Kristiansand.
For å unngå kontaminering av prøvetakingsutstyr og emballasje, ble stor fokus lagt på grundig
rengjøring og atskillelse (gløding av glassvarer, vask med aceton og pentan av alt som
kommer i kontakt med prøvematerialet). Prøvene ble uttatt i tidsrommet 10 t.o.m. 13
september 2002. Under transport ble prøveene oppbevart mørkt og kjølig inntil ankomst på
NIVA i Oslo. Der ble sedimentprøvene frosset ned. Prøvene ble overlevert NILU den 24
september då.
En oversikt over prøvene fremgår fra det følgende:
Prøver av sigevann/bunnfall:
Type prøve Lokalitet
Tilhørende by Uttakssted Dato
Type emballasje
Sigevann
Bunnfall i
rør
Sigevann
Støleheia
Kristiansand
Samlekum 12.09.2002
Glødet 1 liter
Ant. delprøver
1
Støleheia
Kristiansand
Samlekum 12.09.2002
200 ml glødet glass
2
Heftingsdalen
Arendal
Fangdam
11.09.2002
Glødet 1 liter
1
Sigevann
Grinda
Larvik
Samlekum 11.09.2002
Glødet 1 liter
1
Sigevann
Lindum
Drammen
Samlekum 12.09.2002
Glødet 2 liter
1
Sigevann
Grønmo, fagdam A Oslo
Fangdam
13.09.2002
Glødet 1 liter
1
Sediment
Grønmo, fagdam B Oslo
Fangdam
13.09.2002
Glødet 1 liter
1
Sediment
Øra, kum 615
Fredrikstad
Samlekum 13.09.2002
Glødet 1 liter
1
Sigevann
Bunnfall i
kum
Øra, kum 611
Fredrikstad
Samlekum 13.09.2002
200 ml glødet glass
2
Øra, kum 611
Fredrikstad
Samlekum 13.09.2002
200 ml glødet glass
2
33
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Prøver av sediment:
Type prøve Lokalitet
Tilhørende by Uttakssted Dato
Type emballasje
Sediment
Støleheia
Kristiansand
Fangdam
12.09.2002
200 ml glødet glass
Ant. delprøver
2
Sediment
Heftingsdalen
Arendal
Fangdam
11.09.2002
200 ml glødet glass
3
Sediment
Grinda
Larvik
Samlekum 11.09.2002
200 ml glødet glass
2
Drammen
Sediment
Lindum
Samlekum 12.09.2002
200 ml glødet glass
3
Sediment
Grønmo, fagdam A Oslo
Fangdam
13.09.2002
200 ml glødet glass
3
Sediment
Øra, kum 615
Samlekum 13.09.2002
200 ml glødet glass
3
Fredrikstad
På hver lokaltet ble det uttatt utført noen feltanalyser, samt fotografering. Resultatene er vist i
det nedenstående:
Lokalitet:
Øra, Fredrikstad
Kontaktperson:
Dato for befaring og prøvetaking:
Kort beskrivelse av deponiet:
Knut Lilleng
13.09.02
Stort overdekket nedlagt deponi for blandet
kommunalt avfall anlagt på flatt område. Nå
forbrennes avfallet. Opereres av FREVAR
Prøver ble tatt ut fra kum 611 og 615. Kum 611
er mest påvirket av sigevann fra nyere fylling,
kum 615 er sterkt påvirket av sigevann fra den
eldste deponidelen.
850 mS/m (kum 611), 326 mS/m (kum 615)
6,73 (kum 611), 6,65 (kum 615)
17,8 °C (kum 611), 20,6 °C (kum 615)
Beskrivelse av prøvetakingsstedet:
Ledningsevne:
pH:
Temperatur:
Foto av huset til kum 615:
34
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Lokalitet:
Grønmo, fagdam A og B, Oslo
Kontaktperson:
Dato for befaring og prøvetaking:
Kort beskrivelse av deponiet:
Åslie
13.09.02
Hoveddeponi for Oslo fram til midten av 90tallet. Nå foregår det mottak av byggeavfall og
spesialavfall på lokaliteten, det er også er
miljøstasjon der.
Fangdam A: Mottar drenering fra eldste og det
aller yngste deponiområdet. Fangdam B mottar
drenering fra et deponi som ble anlagt i en
mellomfase (tidlig 90-tallet)
515 mS/m (dam A), 419 mS/m (dam B)
7,40 (dam A), 7,52 (dam B)
15,7 °C (dam A), 16,1 °C (dam B)
Beskrivelse av prøvetakingsstedet:
Ledningsevne:
pH:
Temperatur:
Fotos fra Grønmo:
Fangdam A til venstre,
Fangdam B til høyre
Lokalitet:
Lindum, Drammen
Kontaktperson:
Dato for befaring og prøvetaking:
Kort beskrivelse av deponiet:
Thomas Henriksen
12.09.02
Hovedmottaker for avfall fra Drammensregionen. Det foregår sortering og kompostering
på anlegget. Deponiet mottar mye fremmedvann,
og genererer dermed store sigevannsvolumer.
Kum for samlet sigevannsavløp, som går til
kommunalt nett.
260 mS/m
6,75
18,2 °C
Beskrivelse av prøvetakingsstedet:
Ledningsevne:
pH:
Temperatur:
35
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Foto av bunn av samlekum, Lindum:
Lokalitet:
Grinda, Larvik
Kontaktperson:
Dato for befaring og prøvetaking:
Kort beskrivelse av deponiet:
Oddvar Pedersen
11.09.02
Mottar blandet avfall fra Larvikregionen, men det meste
av hva som mottas er sorterte fraksjoner. Stort deponi
som opereres av Norsk Gjenvinning
Beskrivelse av prøvetakingsstedet: Samlekum for sigevann fra hele området.
Ledningsevne:
168 mS/m
pH:
7,05
Temperatur:
14,0 °C
Foto av samlekum:
36
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Lokalitet:
Heftingsdalen, Arendal
Kontaktperson:
Dato for befaring og prøvetaking:
Kort beskrivelse av deponiet:
Beskrivelse av prøvetakingsstedet:
Ledningsevne:
pH:
Temperatur:
Kjell Aaberg
11.09.02
Deponi for samlet avfall fra Arendalsregionen,
samt for sorterte fraksjoner fra et større
geografisk område. Sigevannet drenerer til en
felles fangdam.
Fra felles fangdam
480 mS/m
7,57
20,6 °C
Lokalitet:
Støleheia, Kristiansand
Kontaktperson:
Dato for befaring og prøvetaking:
Kort beskrivelse av deponiet:
Åsmund Homme
12.09.02
Stort, nyanlagt deponi (1996) for blandet avfall
og sortert organisk avfall fra
Kristiansandsregionen. Deponiet drenerer i en
retning til en felles fangdam.
Prøver ble tatt både fra røret med samlet sigevann
(både vannfase og bunnfall i røret), samt i
fangdammen.
345 mS/m
7,00
22,4 °C
Beskrivelse av prøvetakingsstedet:
Ledningsevne:
pH:
Temperatur:
Nærmest:
Fangdam,
Heftingsdalen
Helt til høyre:
Sigevannrør i
kum, Støleheia
37
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
38
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Vedlegg B
Spørreskjema utfylt av avfallsdeponiene
39
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
40
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
1. OVERORDNET INFORMASJON
© NIVA 1999
Utarbeidet av H. Mohn, O. Lindholm, E. Iversen 1999-2002
1.1. NAVN
* Lokalitetens navn
* Adresse
* Postnummer og poststed
* Referansenr. i NGU-rapport
1.2. EIERFORHOLD
Deponieier
Grunneier
Støleheia Avfallsanlegg
Øvrebø
Vennesla
Renovasjonsselskapet for Krist
Postboks 393
4664 Kristiansand
RKR
navn,adresse
1.3. OMRÅDEBESKRIVELSE
Områdetype rundt fyllingen:
tlf
5
1:dyrket mark, 2:industri/lager, 3:bebyggelse, 4:rekreasjon, 5:utmark, 6:sjø, 7:annet
Avstand til nærmeste bebyggelse:
5
1: 0-50 m, 2: 50-200 m, 3: 200-500 m, 4: 500 - 1000 m, 5 > 1000 m
Topografiske forhold rundt fyllingen
2
1: åpent og flatt terreng, 2: kupert men fremkommelig, 3: sterkt kupert terreng
Bruk av tilgrensende områder:
1.6
1: rekreasjon, 2: industri, 3: jordbruk, 4: bolig/hytte, 5: verneverdig naturomr, 6: annet
Flora og fauna i området:
3
1: mangfoldig og bevaringsverdig, 2: mindre rik men bevaringsverdig, 3: ingen verdi, 4: ukjent
Menneskelig aktivitet i området:
2
1: mye aktivitet og mange tekniske anlegg, 2: liten aktivitet men vil øke, 3: avtagende, 4: ukjent
Bruk av tilgrensende resipient:
3
1:drikkevann, 2:vanning, 3:rekreasjon, 4: beitemark, 5:annet
Kommentarer
(F.eks spesielle dyre/fugle/plante-arter på stedet, kultur/fornminner,
spesielle reguleringsbestemmelser, avtaler, hevd, annen virksomhet som vil ha innflytelse)
Har samarbeid med ornitologiskforening i Kristiansand.
Vi har prikkand som hekker i lokalt renseanlegg
41
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
2. HISTORIE / AVFALLSTYPER
© NIVA 1999
2.1. TIDSPERIODE
Start på deponi / forurensning (periode/årstall)
Opphøring av deponi / forurensning (periode/årstall)
2.2. DEPONERTE AVFALLSTYPER
Aktiviteter, avfallskilder, aktivitetsperiode
apr.96
sett x hvis
deponert
Periode/år Mengde / andel
X
X
X
X
X
X
X
X
Kommunalt, blandet avfall
Avfall fra mek.verksted
Avfall fra plastindustri
Avfall fra trebearbeiding
Avfall fra transportbransjen
Avfall fra overflatebearbeidende industri
Avfall fra betong / asfaltbrukere
Avfall fra smelteverk, metallurgisk ind.
Avfall fra parker, spesielt organisk avfall
Annet (spesifiser i egen rubrikk)
apr.96
okt.96
okt.96
okt.96
okt.96
okt.96
okt.96
okt.96
50 %
2.3. DEPONERING AV MILJØGIFTER
Har du kunnskap om type miljøgift (sett x i rett rubrikk)?
sikker
mulig
syre
base
olje
løsemiddel
uherdet plast
maling/lakk
metallholdig
annet
vet ikke
2.4. DRIFT OG TILSTAND
Deponiets areal og volum
Hvordan er deponiet oppbyd
30 da
1
250.000 m
3
1: avfall i celler med tett masse mellom, 2: utstrukturert deponering, 3: ukjent
Kompaktering/komprimering:
1
1: Komprimering ble utført med kompakteringsmaskin, 2: Ingen komprimering, 3: ukjent
Deponiets toppdekke:
2
1: Leire, 2: annet tett dekke, 3: uten tett dekke
Metanproduksjon/biokjemisk tilstand:
2
1: økende produkjon, 2: stabil høy produksjon, 3: avtagende, 4: avsluttet, 5: uvisst
Er uttak av biogass etablert?
1
1: ja, 2: nei, 3: planlegges, 4: uvisst
Nylig utførte forurensningsbegrensende tiltak:
1.2
Beskriv gjerne i kommentarfeltet
1: avskjærende grøft, mur etc, 2: oppsamling av sigevann, 3: forsterket overdekking, 4: annet (beskriv)
Kommentarer
42
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
3. VANNFORURENSNING
© NIVA 1999
3.1. Hydrologiske/geologiske forhold
Årsmiddelnedbøren i området (omtrent)
Dybde til normal grunnvannstand
Jordens mektighet til fjell
Beskriv type løsmasseavsetninger i området
Fuktighet i fyllingen
1850MM mm/år
30 meter
??????
100% FJELL
200 %
1: fuktig hele året, 2: periodevis tørr, 3: ukjent
Resipienter for sigevann/avrenning:
2
1: elv/bekk, 2: innsjø, 3: fjord/kyst, 4: grunnvann, 9: annet
Dominerende grunnforhold
3
3
- Under fylling:
- Rundt fylling:
1: morene, 2: sand/grus, 3: fjell, 4: leire, 5: myr, 6: utfyllingsmasser, 9: ukjent
3.2. Drenering ut fra deponi
(sett x)
Fangdam for sigevann er bygget
X
Deponi med bunntetting og oppsamling i rør
Deponi uten bunntetting med oppsamling i rør X
Overflateavrenning
Drenerer diffust til grunnen
Annet
Ukjent dreneringsvei
3.3. Sigevannsbehandling
Ledes i rør til komm. renseanlegg
Behandles lokalt i teknisk anlegg
Behandles lokalt i bygget infiltrasjonssystem
Diffus, tilfeldig infiltrasjon
Returpumping tilbake til fylling
Annen behandling (spesifiser)
3.4. Prøvetaking
Er det nedstatt prøvetakingsbrønn(er)?
Prøvetaking av sigevann mulig ?
Utført vannmengdemålinger ?
(sett x)
X
X
X
LEDES I RØR TIL BYFJODEN PÅ 60 M DYBDE
(ja,nei)
J
J
J
3.5. Observasjoner knyttet til vannforurensning
(sett x)
Olje
Misfarging
Lukt
Skader på vegetasjon
Fiskedød
Annet
Kommentarer
43
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
1. OVERORDNET INFORMASJON
© NIVA 1999
Utarbeidet av H. Mohn, O. Lindholm, E. Iversen 1999-2002
1.1. NAVN
* Lokalitetens navn
* Adresse
* Postnummer og poststed
* Referansenr. i NGU-rapport
1.2. EIERFORHOLD
Deponieier
Grunneier
Norsk gjenvinning Telemark Vestfold
Grinda
3270 Larvik
NGTV
Grinda, 3270 Larvik
Miljøeiendommer as
c/o Norsk Gjenvinning
navn,adresse
1.3. OMRÅDEBESKRIVELSE
Områdetype rundt fyllingen:
tlf
5
1:dyrket mark, 2:industri/lager, 3:bebyggelse, 4:rekreasjon, 5:utmark, 6:sjø, 7:annet
Avstand til nærmeste bebyggelse:
2
1: 0-50 m, 2: 50-200 m, 3: 200-500 m, 4: 500 - 1000 m, 5 > 1000 m
Topografiske forhold rundt fyllingen
2
1: åpent og flatt terreng, 2: kupert men fremkommelig, 3: sterkt kupert terreng
Bruk av tilgrensende områder:
6
1: rekreasjon, 2: industri, 3: jordbruk, 4: bolig/hytte, 5: verneverdig naturomr, 6: annet
Flora og fauna i området:
3
1: mangfoldig og bevaringsverdig, 2: mindre rik men bevaringsverdig, 3: ingen verdi, 4: ukjent
Menneskelig aktivitet i området:
3
1: mye aktivitet og mange tekniske anlegg, 2: liten aktivitet men vil øke, 3: avtagende, 4: ukjent
Bruk av tilgrensende resipient:
5
1:drikkevann, 2:vanning, 3:rekreasjon, 4: beitemark, 5:annet
Kommentarer
(F.eks spesielle dyre/fugle/plante-arter på stedet, kultur/fornminner,
spesielle reguleringsbestemmelser, avtaler, hevd, annen virksomhet som vil ha innflytelse)
44
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
2. HISTORIE / AVFALLSTYPER
© NIVA 1999
1976-2
2.1. TIDSPERIODE
Start på deponi / forurensning (periode/årstall)
Opphøring av deponi / forurensning (periode/årstall)
2.2. DEPONERTE AVFALLSTYPER
Aktiviteter, avfallskilder, aktivitetsperiode
1976
2005
sett x hvis
deponert
Kommunalt, blandet avfall
Avfall fra mek.verksted
Avfall fra plastindustri
Avfall fra trebearbeiding
Avfall fra transportbransjen
Avfall fra overflatebearbeidende industri
Avfall fra betong / asfaltbrukere
Avfall fra smelteverk, metallurgisk ind.
Avfall fra parker, spesielt organisk avfall
Annet (spesifiser i egen rubrikk)
Periode/år Mengde / andel
x
x
x
1976-1996
1976-1992
1976- dd
x
x
x
x
1976-1992
1976-1996
1976-1992
1976-1992
2.3. DEPONERING AV MILJØGIFTER
Har du kunnskap om type miljøgift (sett x i rett rubrikk)?
sikker
syre
base
olje
løsemiddel
uherdet plast
maling/lakk
metallholdig
annet
vet ikke
mulig
x
x
x
x
x
x
2.4. DRIFT OG TILSTAND
Deponiets areal og volum
Hvordan er deponiet oppbyd
95
2
da
m
3
1: avfall i celler med tett masse mellom, 2: utstrukturert deponering, 3: ukjent
Kompaktering/komprimering:
1
1: Komprimering ble utført med kompakteringsmaskin, 2: Ingen komprimering, 3: ukjent
Deponiets toppdekke:
1
1: Leire, 2: annet tett dekke, 3: uten tett dekke
Metanproduksjon/biokjemisk tilstand:
2
1: økende produkjon, 2: stabil høy produksjon, 3: avtagende, 4: avsluttet, 5: uvisst
Er uttak av biogass etablert?
1
1: ja, 2: nei, 3: planlegges, 4: uvisst
Nylig utførte forurensningsbegrensende tiltak:
3
Beskriv gjerne i kommentarfeltet
1: avskjærende grøft, mur etc, 2: oppsamling av sigevann, 3: forsterket overdekking, 4: annet (beskriv)
Kommentarer
45
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
© NIVA 1999
3. VANNFORURENSNING
3.1. Hydrologiske/geologiske forhold
Årsmiddelnedbøren i området (omtrent)
Dybde til normal grunnvannstand
Jordens mektighet til fjell
Beskriv type løsmasseavsetninger i området
Fuktighet i fyllingen
mm/år
08.okt meter
Morene,leire, myr
1
1: fuktig hele året, 2: periodevis tørr, 3: ukjent
Resipienter for sigevann/avrenning:
9
1: elv/bekk, 2: innsjø, 3: fjord/kyst, 4: grunnvann, 9: annet
Dominerende grunnforhold
- Under fylling:
- Rundt fylling:
3,4,5
3.6
1: morene, 2: sand/grus, 3: fjell, 4: leire, 5: myr, 6: utfyllingsmasser, 9: ukjent
(sett x)
3.2. Drenering ut fra deponi
Fangdam for sigevann er bygget
Deponi med bunntetting og oppsamling i rør
x
Deponi uten bunntetting med oppsamling i rør
x
Overflateavrenning
x
Drenerer diffust til grunnen
Annet
Ukjent dreneringsvei
3.3. Sigevannsbehandling
Ledes i rør til komm. renseanlegg
Behandles lokalt i teknisk anlegg
Behandles lokalt i bygget infiltrasjonssystem
Diffus, tilfeldig infiltrasjon
Returpumping tilbake til fylling
Annen behandling (spesifiser)
3.4. Prøvetaking
Er det nedstatt prøvetakingsbrønn(er)?
Prøvetaking av sigevann mulig ?
Utført vannmengdemålinger ?
(sett x)
x
(ja,nei)
ja
ja
ja
3.5. Observasjoner knyttet til vannforurensning
(sett x)
Olje
Misfarging
Lukt
Skader på vegetasjon
Fiskedød
Annet
Kommentarer
x
x
Pkt. 3.2: anlegget består av 2 deponier; det elste
startet i 1976 og avsluttet i1992 er uten bunntetting,men har dreneringssystem for sigevann. Nyeste deponi startet 1992, og ikke
avsluttet har bunntetting med leire, og rørsystem for sigevann.
46
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
1. OVERORDNET INFORMASJON
© NIVA 1999
Utarbeidet av H. Mohn, O. Lindholm, E. Iversen 1999-2002
1.1. NAVN
* Lokalitetens navn
* Adresse
* Postnummer og poststed
* Referansenr. i NGU-rapport
1.2. EIERFORHOLD
Deponieier
Grunneier
Lindum Ressurs og Gjenvinning
Lerpeveien 155
3036 Drammen
Lindum Ressurs og Gjenv
*
Drammen kommun
Engene 1 3008 Dra
navn,adresse
1.3. OMRÅDEBESKRIVELSE
Områdetype rundt fyllingen:
tlf
4
1:dyrket mark, 2:industri/lager, 3:bebyggelse, 4:rekreasjon, 5:utmark, 6:sjø, 7:annet
Avstand til nærmeste bebyggelse:
1
1: 0-50 m, 2: 50-200 m, 3: 200-500 m, 4: 500 - 1000 m, 5 > 1000 m
Topografiske forhold rundt fyllingen
2
1: åpent og flatt terreng, 2: kupert men fremkommelig, 3: sterkt kupert terreng
Bruk av tilgrensende områder:
1 og 3
1: rekreasjon, 2: industri, 3: jordbruk, 4: bolig/hytte, 5: verneverdig naturomr, 6: annet
Flora og fauna i området:
3
1: mangfoldig og bevaringsverdig, 2: mindre rik men bevaringsverdig, 3: ingen verdi, 4: ukjent
Menneskelig aktivitet i området:
Liten akt
1: mye aktivitet og mange tekniske anlegg, 2: liten aktivitet men vil øke, 3: avtagende, 4: ukjent
Bruk av tilgrensende resipient:
4
1:drikkevann, 2:vanning, 3:rekreasjon, 4: beitemark, 5:annet
Kommentarer
(F.eks spesielle dyre/fugle/plante-arter på stedet, kultur/fornminner,
spesielle reguleringsbestemmelser, avtaler, hevd, annen virksomhet som vil ha innflytelse)
* For avfall deponert før 1998 er Drammen kommune ansvarlig for
eventuelle miljøsynder
47
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
2. HISTORIE / AVFALLSTYPER
© NIVA 1999
2.1. TIDSPERIODE
Start på deponi / forurensning (periode/årstall)
Opphøring av deponi / forurensning (periode/årstall)
2.2. DEPONERTE AVFALLSTYPER
Aktiviteter, avfallskilder, aktivitetsperiode
1964
2023
sett x hvis
deponert
Periode/år Mengde / andel
x
Kommunalt, blandet avfall
Avfall fra mek.verksted
Avfall fra plastindustri
Avfall fra trebearbeiding
Avfall fra transportbransjen
Avfall fra overflatebearbeidende industri
Avfall fra betong / asfaltbrukere
Avfall fra smelteverk, metallurgisk ind.
Avfall fra parker, spesielt organisk avfall
Annet (spesifiser i egen rubrikk)
x
64-98
64-75
Mye
lite
x
x
x
x
64-90
64-97
64==>
64-98
lite
lite
lite
lite
x
64-95
lite
2.3. DEPONERING AV MILJØGIFTER
Har du kunnskap om type miljøgift (sett x i rett rubrikk)?
sikker
syre
base
olje
løsemiddel
uherdet plast
maling/lakk
metallholdig
annet
vet ikke
mulig
x
x
x
x
x
x
x
2.4. DRIFT OG TILSTAND
Deponiets areal og volum
Hvordan er deponiet oppbyd
250 da
1
3,5 mill
m
3
1: avfall i celler med tett masse mellom, 2: utstrukturert deponering, 3: ukjent
Kompaktering/komprimering:
1
1: Komprimering ble utført med kompakteringsmaskin, 2: Ingen komprimering, 3: ukjent
Deponiets toppdekke:
1
1: Leire, 2: annet tett dekke, 3: uten tett dekke
Metanproduksjon/biokjemisk tilstand:
2
1: økende produkjon, 2: stabil høy produksjon, 3: avtagende, 4: avsluttet, 5: uvisst
Er uttak av biogass etablert?
1
1: ja, 2: nei, 3: planlegges, 4: uvisst
1
Nylig utførte forurensningsbegrensende tiltak:
Beskriv gjerne i kommentarfeltet
1: avskjærende grøft, mur etc, 2: oppsamling av sigevann, 3: forsterket overdekking, 4: annet (beskriv)
Kommentarer
Har også laget en avskjærende grøft for å begrense innsiget av
i sigevannsnettet
48
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
3. VANNFORURENSNING
© NIVA 1999
3.1. Hydrologiske/geologiske forhold
Årsmiddelnedbøren i området (omtrent)
Dybde til normal grunnvannstand
Jordens mektighet til fjell
Beskriv type løsmasseavsetninger i området
Fuktighet i fyllingen
850 mm/år
2-5
meter
1-5
Morene/leire
2
1: fuktig hele året, 2: periodevis tørr, 3: ukjent
Resipienter for sigevann/avrenning:
1*
1: elv/bekk, 2: innsjø, 3: fjord/kyst, 4: grunnvann, 9: annet
Dominerende grunnforhold
- Under fylling: 5/3
- Rundt fylling:
1
1: morene, 2: sand/grus, 3: fjell, 4: leire, 5: myr, 6: utfyllingsmasser, 9: ukjent
3.2. Drenering ut fra deponi
(sett x)
Fangdam for sigevann er bygget
Deponi med bunntetting og oppsamling i rør
Deponi uten bunntetting med oppsamling i rør x
Overflateavrenning
Drenerer diffust til grunnen
Annet
Ukjent dreneringsvei
3.3. Sigevannsbehandling
Ledes i rør til komm. renseanlegg
Behandles lokalt i teknisk anlegg
Behandles lokalt i bygget infiltrasjonssystem
Diffus, tilfeldig infiltrasjon
Returpumping tilbake til fylling
Annen behandling (spesifiser)
3.4. Prøvetaking
Er det nedstatt prøvetakingsbrønn(er)?
Prøvetaking av sigevann mulig ?
Utført vannmengdemålinger ?
(sett x)
(ja,nei)
3.5. Observasjoner knyttet til vannforurensning
(sett x)
Olje
Misfarging
Lukt
Skader på vegetasjon
Fiskedød
Annet
Kommentarer
* Sigevannet går på kommunalt nett.
Overvannet går i bekk nedstrøms deponi. Det er gjort stor innsats for
å hindre at sigevann går i bekk nedstrøms deponi
49
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
1. OVERORDNET INFORMASJON
© NIVA 1999
Utarbeidet av H. Mohn, O. Lindholm, E. Iversen 1999-2002
1.1. NAVN
* Lokalitetens navn
* Adresse
* Postnummer og poststed
* Referansenr. i NGU-rapport
1.2. EIERFORHOLD
Deponieier
Grunneier
GRØNMO AVFALLSANLEGG
SØRLIVN
1279 KLEMTESRUD
?
Oslo kommune
renovasjonsetaten
Oslo kommune
navn,adresse
1.3. OMRÅDEBESKRIVELSE
Områdetype rundt fyllingen:
tlf
4.5
1:dyrket mark, 2:industri/lager, 3:bebyggelse, 4:rekreasjon, 5:utmark, 6:sjø, 7:annet
Avstand til nærmeste bebyggelse:
3
1: 0-50 m, 2: 50-200 m, 3: 200-500 m, 4: 500 - 1000 m, 5 > 1000 m
Topografiske forhold rundt fyllingen
2
1: åpent og flatt terreng, 2: kupert men fremkommelig, 3: sterkt kupert terreng
Bruk av tilgrensende områder:
1.4
1: rekreasjon, 2: industri, 3: jordbruk, 4: bolig/hytte, 5: verneverdig naturomr, 6: annet
Flora og fauna i området:
4
1: mangfoldig og bevaringsverdig, 2: mindre rik men bevaringsverdig, 3: ingen verdi, 4: ukjent
Menneskelig aktivitet i området:
2
1: mye aktivitet og mange tekniske anlegg, 2: liten aktivitet men vil øke, 3: avtagende, 4: ukjent
Bruk av tilgrensende resipient:
5
1:drikkevann, 2:vanning, 3:rekreasjon, 4: beitemark, 5:annet
Kommentarer
(F.eks spesielle dyre/fugle/plante-arter på stedet, kultur/fornminner,
spesielle reguleringsbestemmelser, avtaler, hevd, annen virksomhet som vil ha innflytelse)
50
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
2. HISTORIE / AVFALLSTYPER
© NIVA 1999
2.1. TIDSPERIODE
Start på deponi / forurensning (periode/årstall)
Opphøring av deponi / forurensning (periode/årstall)
2.2. DEPONERTE AVFALLSTYPER
Aktiviteter, avfallskilder, aktivitetsperiode
1969
2007
sett x hvis
deponert
Periode/år Mengde / andel
DETTE KREVER FOR LANG TID
Kommunalt, blandet avfall
Avfall fra mek.verksted
Avfall fra plastindustri
Avfall fra trebearbeiding
Avfall fra transportbransjen
Avfall fra overflatebearbeidende industri
Avfall fra betong / asfaltbrukere
Avfall fra smelteverk, metallurgisk ind.
Avfall fra parker, spesielt organisk avfall
Annet (spesifiser i egen rubrikk)
2.3. DEPONERING AV MILJØGIFTER
Har du kunnskap om type miljøgift (sett x i rett rubrikk)?
sikker
mulig
syre
base
olje
løsemiddel
uherdet plast
maling/lakk
metallholdig
annet
vet ikke
X
X
X
X
X
X
X
X
X
2.4. DRIFT OG TILSTAND
Deponiets areal og volum
Hvordan er deponiet oppbyd
580 da
1.2
5 MILL
m
3
1: avfall i celler med tett masse mellom, 2: utstrukturert deponering, 3: ukjent
Kompaktering/komprimering:
1
1: Komprimering ble utført med kompakteringsmaskin, 2: Ingen komprimering, 3: ukjent
Deponiets toppdekke:
1
1: Leire, 2: annet tett dekke, 3: uten tett dekke
Metanproduksjon/biokjemisk tilstand:
2.3
1: økende produkjon, 2: stabil høy produksjon, 3: avtagende, 4: avsluttet, 5: uvisst
Er uttak av biogass etablert?
1
1: ja, 2: nei, 3: planlegges, 4: uvisst
Nylig utførte forurensningsbegrensende tiltak:
1,2,3
Beskriv gjerne i kommentarfeltet
1: avskjærende grøft, mur etc, 2: oppsamling av sigevann, 3: forsterket overdekking, 4: annet (beskriv)
Kommentarer
i TILLEGG BENYTTES VEKSTLAG
51
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
© NIVA 1999
3. VANNFORURENSNING
3.1. Hydrologiske/geologiske forhold
Årsmiddelnedbøren i området (omtrent)
Dybde til normal grunnvannstand
Jordens mektighet til fjell
Beskriv type løsmasseavsetninger i området
Fuktighet i fyllingen
750 mm/år
meter
01.okt
mar. leirer
2
ca
1: fuktig hele året, 2: periodevis tørr, 3: ukjent
Resipienter for sigevann/avrenning:
9
1: elv/bekk, 2: innsjø, 3: fjord/kyst, 4: grunnvann, 9: annet
Dominerende grunnforhold
4
3
- Under fylling:
- Rundt fylling:
1: morene, 2: sand/grus, 3: fjell, 4: leire, 5: myr, 6: utfyllingsmasser, 9: ukjent
3.2. Drenering ut fra deponi
Fangdam for sigevann er bygget
Deponi med bunntetting og oppsamling i rør
Deponi uten bunntetting med oppsamling i rør
Overflateavrenning
Drenerer diffust til grunnen
Annet
Ukjent dreneringsvei
(sett x)
x
leire
3.3. Sigevannsbehandling
Ledes i rør til komm. renseanlegg
Behandles lokalt i teknisk anlegg
Behandles lokalt i bygget infiltrasjonssystem
Diffus, tilfeldig infiltrasjon
Returpumping tilbake til fylling
Annen behandling (spesifiser)
(sett x)
x
3.4. Prøvetaking
Er det nedstatt prøvetakingsbrønn(er)?
Prøvetaking av sigevann mulig ?
Utført vannmengdemålinger ?
sep.
kloakk
delvis
luft/sed
(ja,nei)
ja
ja
ja
3.5. Observasjoner knyttet til vannforurensning
(sett x)
Olje
Misfarging
Lukt
Skader på vegetasjon
Fiskedød
Annet
Kommentarer
3.5 ikke registrert dersom det dreier seg om forur.
fra sigevann. Svak antydning i en gr.vannsbrønn
Anlegget har biologisk lufting med sedimenteringDrenering fra gammelt med byggavfall, betong.
I dag med dreneringslag av spr.stein og pukk med
selvfall
52
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
1. OVERORDNET INFORMASJON
© NIVA 1999
Utarbeidet av H. Mohn, O. Lindholm, E. Iversen 1999-2002
1.1. NAVN
* Lokalitetens navn
* Adresse
* Postnummer og poststed
* Referansenr. i NGU-rapport
1.2. EIERFORHOLD
Deponieier
Grunneier
FREVAR KF
Habornveien 61
1630 Gamle Fredrikstad
Fredrikstad Kommune
Eiendomsavdelingen
Nygårdsgata 16 - R
pb 1405
navn,adresse
1.3. OMRÅDEBESKRIVELSE
Områdetype rundt fyllingen:
tlf
2
1:dyrket mark, 2:industri/lager, 3:bebyggelse, 4:rekreasjon, 5:utmark, 6:sjø, 7:annet
Avstand til nærmeste bebyggelse:
3
1: 0-50 m, 2: 50-200 m, 3: 200-500 m, 4: 500 - 1000 m, 5 > 1000 m
Topografiske forhold rundt fyllingen
1
1: åpent og flatt terreng, 2: kupert men fremkommelig, 3: sterkt kupert terreng
Bruk av tilgrensende områder:
1, 2, 5.
1: rekreasjon, 2: industri, 3: jordbruk, 4: bolig/hytte, 5: verneverdig naturomr, 6: annet
Flora og fauna i området:
4
1: mangfoldig og bevaringsverdig, 2: mindre rik men bevaringsverdig, 3: ingen verdi, 4: ukjent
Menneskelig aktivitet i området:
1
1: mye aktivitet og mange tekniske anlegg, 2: liten aktivitet men vil øke, 3: avtagende, 4: ukjent
Bruk av tilgrensende resipient:
5
1:drikkevann, 2:vanning, 3:rekreasjon, 4: beitemark, 5:annet
Kommentarer
(F.eks spesielle dyre/fugle/plante-arter på stedet, kultur/fornminner,
spesielle reguleringsbestemmelser, avtaler, hevd, annen virksomhet som vil ha innflytelse)
53
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
2. HISTORIE / AVFALLSTYPER
© NIVA 1999
2.1. TIDSPERIODE
Start på deponi / forurensning (periode/årstall)
Opphøring av deponi / forurensning (periode/årstall)
2.2. DEPONERTE AVFALLSTYPER
Aktiviteter, avfallskilder, aktivitetsperiode
sett x hvis
deponert
Periode/år Mengde / andel
Kommunalt, blandet avfall
Avfall fra mek.verksted
Avfall fra plastindustri
Avfall fra trebearbeiding
Avfall fra transportbransjen
Avfall fra overflatebearbeidende industri
Avfall fra betong / asfaltbrukere
Avfall fra smelteverk, metallurgisk ind.
Avfall fra parker, spesielt organisk avfall
Annet (spesifiser i egen rubrikk)
2.3. DEPONERING AV MILJØGIFTER
Har du kunnskap om type miljøgift (sett x i rett rubrikk)?
sikker
mulig
syre
base
olje
løsemiddel
uherdet plast
maling/lakk
metallholdig
annet
vet ikke
2.4. DRIFT OG TILSTAND
Deponiets areal og volum
Hvordan er deponiet oppbyd
da
m
3
1: avfall i celler med tett masse mellom, 2: utstrukturert deponering, 3: ukjent
Kompaktering/komprimering:
Kontinuerlig på aktiv deponi.
1: Komprimering ble utført med kompakteringsmaskin, 2: Ingen komprimering, 3: ukjent
Deponiets toppdekke:
1: Leire, 2: annet tett dekke, 3: uten tett dekke
Metanproduksjon/biokjemisk tilstand:
5
1: økende produkjon, 2: stabil høy produksjon, 3: avtagende, 4: avsluttet, 5: uvisst
Er uttak av biogass etablert?
Delvis gjennom bioceller.
1: ja, 2: nei, 3: planlegges, 4: uvisst
Nylig utførte forurensningsbegrensende tiltak:
Beskriv gjerne i kommentarfeltet
1: avskjærende grøft, mur etc, 2: oppsamling av sigevann, 3: forsterket overdekking, 4: annet (beskriv)
Kommentarer
54
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
3. VANNFORURENSNING
© NIVA 1999
3.1. Hydrologiske/geologiske forhold
Årsmiddelnedbøren i området (omtrent)
Dybde til normal grunnvannstand
Jordens mektighet til fjell
Beskriv type løsmasseavsetninger i området
Fuktighet i fyllingen
750 mm/år
2.0
meter
3.4
silt, sand, leire , grus.
1: fuktig hele året, 2: periodevis tørr, 3: ukjent
Resipienter for sigevann/avrenning:
1
1: elv/bekk, 2: innsjø, 3: fjord/kyst, 4: grunnvann, 9: annet
Dominerende grunnforhold
- Under fylling: Gammel sjøbunn, siltig leire og fast leire.
- Rundt fylling:
1: morene, 2: sand/grus, 3: fjell, 4: leire, 5: myr, 6: utfyllingsmasser, 9: ukjent
3.2. Drenering ut fra deponi
(sett x)
Fangdam for sigevann er bygget
Deponi med bunntetting og oppsamling i rør
x- Vi har ikke noen bunntettning utover at bunn i deponi er av leire.
Deponi uten bunntetting med oppsamling i rør
Overflateavrenning
Drenerer diffust til grunnen
Annet
Ukjent dreneringsvei
3.3. Sigevannsbehandling
Ledes i rør til komm. renseanlegg
Behandles lokalt i teknisk anlegg
Behandles lokalt i bygget infiltrasjonssystem
Diffus, tilfeldig infiltrasjon
Returpumping tilbake til fylling
Annen behandling (spesifiser)
3.4. Prøvetaking
Er det nedstatt prøvetakingsbrønn(er)?
Prøvetaking av sigevann mulig ?
Utført vannmengdemålinger ?
(sett x)
X
X* ligger i deponi som er ferdig og tilbakeført Fredrikstad kommune.
(ja,nei)
Ja
Ja
Ja
3.5. Observasjoner knyttet til vannforurensning
Olje
Misfarging
Lukt
Skader på vegetasjon
Fiskedød
Annet
(sett x)
X
X
X
Kommentarer
*Gjelder sigevann fra avsluttet deponi for spesialavfall (elektrofilterstøv
og posefilterstøv.
55
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
56
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Vedlegg C
Feltrapport fra prøvetaking av mose
57
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
58
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Tidligere undersøkelser i Norge har vist at mose er meget vel egnet til å bestemme nedfall av
tungmetaller fra atmosfæren (e.g. Steinnes et al., 1992; Berg et al., 1995). Metoden har også
vært forsøkt for PCB og andre persistente organoklorforbindelser (Lead et al., 1996). Dette
studiet, som ble utført på arkiverte moseprøver, tydet på at mose kan gi nyttig informasjon om
tilførsel av disse stoffene. Studiet viste også at stor forsiktighet må utvises under prøvetaking,
transport og lagring av prøvene for å unngå kontaminering.
Så vidt bekjent er det ikke tidligere forsøkt å analysere mose med hensyn på persistente
organobrom-forbindelser. Det ble derfor i perioden 1.7-6.7 2002 samlet inn prøver av
etasjemose (Hylocomium splendens) for dette formål fra 11 lokaliteter spredt ut over landet.
En oversikt over lokalitetene er gitt i Tabell C.1 og Figur C.1. Prøver på ca. 1 liter ble tatt fra
skog og andre naturtyper i en avstand på minst 300 meter fra vei eller bebyggelse. Ingen av
lokalitetene lå mindre enn 10 km fra nærmeste by eller tettbebyggelse. Prøven ”Molde” ble
tatt på en topografisk skjermet lokalitet ca. 10 km vest for sentrum av byen. Prøvene ble
pakket inn i aluminiumsfolie, og ”pakken” ble deretter plassert i en lukket polyeten lynlåspose
og transportert til NTNU i en kjølebag med fryseelementer. Der ble prøvene renset for
barnåler og annet fremmed materiale så langt det var mulig uten oppvarming, og de rensede
prøvene ble igjen innpakket på samme måte som før og frosset ned. Transporten til
analyselaboratoriet ved NILU skjedde nedfrosset i kjølebag. All berøring med mosen i felt og
lab foregikk med engangshansker av polyeten.
Figur C.1: Stasjoner for moseprøvetaking.
59
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Tørrvekt av mosen ble bestemt på separate paralleller av prøvene, og resultatene er gitt i
Tabell C.1.
Tabell C.1: Lokaliteter for prøvetaking av mose (koordinatene er gitt i desimalform).
Lokalitet
Skoganvarre
Valvik (”Bodø”)
Limingen
Roan (”Osen”)
Molde
Fure
Stord
Ualand
Risør
Nannestad
Narbuvoll
o
N
69.83
67.38
64.97
64.15
62.73
61.33
59.88
58.55
58.75
60.19
62.38
o
E
Tørrrvekt (% av friskvekt)
25.18
14.64
13.58
10.25
07.00
05.30
05.32
06.37
09.13
10.77
11.47
19.6
25.0
20.1
17.1
34.1
21.0
60
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Vedlegg D
Feltrapport fra prøvetaking av blåskjell og torskelever
61
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
62
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Undersøkelse av blåskjell (Mytilus edulis) og torsk (Gadus morhua) er i regi av det norske
bidrag til OSPAR-kommissjonens Joint Assessment and Monitoring Programme (JAMP).
JAMP har fulgt retningslinjene fra OSPAR (1990, 1997) så langt det har latt seg gjøre. Tre
størrelsesgrupper av blåskjell ble innsamlet fra hver av tre stasjoner: Indre Oslofjord
(st. 30A), ytre Oslofjord (st. 36A) og på Risøy (st. 76A) utenfor Risør (Tabell D.1 og
Figur D.1). De tre størrelsesgruppene er 20-30, 30-40 og 40-50 mm. For hver gruppe ble det
innsamlet femti individer til en blandprøve. Hundre individer fra 2-3 cm gruppen ble
innsamlet dersom det var for lite materiale i femti individer. Etter retningslinjene ble skjellene
"tarmrenset" ved at de holdes levende 12-24 timer i et akvarium med sjøvann fra innsamlingsstedet. Under denne tømmingen av tarm skal temperaturen holdes konstant ved ca. 8°C.
Deretter blir skjellene renset og frosset.
Analyse av torskelever ble gjort på tre blandprøver av fem individer etter de omtrentlig
størrelsesintervallene: 475-540, 540-615, og 615-700 mm. Torskelever ble undersøkt på to
stasjoner: indre Oslofjord (st.30B) og ytre Oslofjord (36B).
Tabell D.1: JAMP-stasjoner for prøvetaking av blåskjell og torskelever.
JAMP
Stasjonsnummer
30A
30B
36A
36B
76A
Stasjonsnavn
Gressholmen
Oslo City area
Færder
Færder
Risøy
Bredde
59° 52.75
59° 49.0
59° 1.60
59° 2.0
58° 43.60
63
Lengde
10° 43.0
10° 33.0
10° 31.70
10° 32.0
9° 17.0
Art
Mytilus edulis
Gadus morhua
Mytilus edulis
Gadus morhua
Mytilus edulis
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
8°30'
59°
8°45'
9°
9°15'
I7119°30'
Steinholmen #
Y#
Y9°45'
I712 Gjemesholmen
71A Bjørkøya (Risøyodd.) #
Y
T
$
59°
LANGESUND
U 71G Fuglø
%
Y
#
74A Oddneskjær
T
$
58°45'
KRAGERØ
U#
%
Y
58°45'
76A/G Risøy
8°30'
T
RISØR$
58°30'
Y 77B Borøy area
#
Y 77A Flostafjord
#
ARENDAL
Y
#
8°45'
T
$
77C Borøy area #
Y
9°
58°30'
79A
Gjerdsvoldsøyen
east
77S Arendal area
9°15'
9°30'
V
&
Figur D.1: JAMP-stasjoner.
64
9°45'
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
9°45'
10°
10°15'
10°30'
10°45'
60°
11°
60°
Y
#
O S
L O
F J O
R D
9°45' 59°45'
T
$
59°45'
31A/B/C
Solbergstrand
DRAMMEN
59°30'
10°
10°15'
10°15'
T MOSS
$
10°30'
10°30'
59°15'
Y
#
Y
#
73A
36B
Lyngholmen Færder
11°
11°15'
11°30'
FREDRIKSTAD
T
$
I021
Kjøkø, south
I022 West
Damholmen
I024 Kirkøy,
36B Færder north west
Y
#
V
&
Y
#
U 36A/G
%
36S Færder
Færder
V
&
11°15'
NORWAY
36F Færder area
Y
#
11°
59°15'
T
$
10°45'
10°45'
J O R D
O S L O F
SANDEFJORD
59°30'
33X Sande (west side)33C Sande
Y#
#
Y
Y32A Rødtangen
#
33B Sande (east side)
35A Mølen &
V
Y&
Y #
35C Homlmestrand-Mølen#
V
35S
Holmestrand-Mølen
V
&
HORTEN$
T
59°
11°15'
OSLO
305 Lysaker $
T 301/I301
Y
#
Y Akershuskaia
#
30B Oslo City area
302 Ormøya
Y
#
Y
#
Y
#
Y 30A
#
Y 303 Malmøya
#
304 /I304 Gåsøya
Y
#
Gressholmen
40C Steilene
V 30S Steilene
Y&
#
30B Oslo City area #
Y#
Y #
Y 30X West of Nesodden
30H Storegrunn #
Y#
Y 30B Oslo City area
Y 30G Spro
#
I307 Ramtonholmen #
Y
Y#
#
Y 30B Oslo City area
Y 30B Oslo City area
306/I306 Håøya #
Y#
02A
Y Fugleskjær
#
Y
#
Y
Y#
#
Y
#
Y
#
I023
Singlekalven,
south
HALDEN
T
$
#
Y
Y#
#
Y
Y
#
I011
01A Kråkenebbet
Sponvika
V
&
03A Tisler
59°
36S Færder
Y
##
Y
S K A G E R R A K
58°45'
SWEDEN
10°15'
10°30'
10°45'
11°
58°45'
Figur D.1, forts.
65
11°15'
11°30'
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
66
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Vedlegg E
Prøveopparbeidelse og analyse
67
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
68
Kartlegging av bromerte flammehemmere og klorerte parafiner (TA-1924/2002)
Opparbeidelse
Til alle prøvetyper ble det tilsatt et sett av intern standarder (PBDE-71 og 77og 13C-TBBPA)
for å kontrollere utbytte av ekstraksjon og opparbeidelse. De samme forbindelser ble senere
benyttet som intern standard ved kvantifiseringen. Dette medfører at prøveresultatene
automatisk blir korrigert for eventuelle tap under ekstraksjon og opparbeidelse.
Før opparbeidelse ble prøvene forbehandlet på følgende måte:
Prøvetype
Sediment
Forbehandling
Vannet er filtrert av
Mose
Homogenisering med Na2SO4
Biologiske prøver
Homogenisering med Na2SO4
Ekstraksjon
Soxhlet a)aceton (4 t)
b) heksan/aceton (12 t)
Kald kolonneekstraksjon
med heksan/aceton
Kald kolonneekstraksjon
etylacetat/sykloheksan
Etter ekstraksjon ble prøvene renset vha. gelpermeasjonskromatografi (GPC) og ble behandlet
med 90 % svovelsyre. Før separasjon og kvantifisering vha. GC/MS eller LC/MS blir
ekstraktet oppkonsentrert og tilsatt gjenvinningsstandard.
Analyse
Bestemmelse av TBA, PBB og PBDE ble utført ved hjelp av gasskromatografi kombinert
med lavoppløsende negativt ion kjemisk ionisasjon massespektrometri (GC/LRMS-NCI).
Bestemmelse av m-TBBPA og TBBPA ble utført ved hjelp av gasskromatografi kombinert
med høyoppløsende massespektrometri i elektronstøt-modus (GC/HRMS). Bestemmelse av
SCCP og MCCP ble utført ved hjelp av gasskromatografi kombinert med høyoppløsende
negativt ion kjemisk ionisasjon massespektrometri (GC/HRMS-NCI).
HBCD er vanskelige å analysere med GC/MS på grunn av termolabilitet. Derfor ble det
utviklet en mer skånsom analysemetode basert på høytrykks væskekromatografi koplet til
høytoppløsende massespektrometri (HPLC/HRMS). Før prøvene kunne analyseres med
HPLC/HRMS ble løsemiddelet byttet til acetonitril. Deretter ble det benyttet negativ
elektrospray-ionisering og omvendt fase væskekromatografi.
Følgende kvalitetskriterier ble kontrollert:
•
•
•
Rene uforstyrrete massefragmentogrammer
Korrekt intensitetsforhold for M- og (M+2)-massefragmentogrammene
Signal/støyforhold > 3:1
Analysekvaliteten og analyseusikkerheten blir testet ved hjelp av deltakelse i
interkalibreringer. I 2002 har NILUs laboratoriet deltatt i to relevante interkalibreringer.
Resultatene av sammenligningen kan betegnes som meget gode tatt i betraktning av at
metoden hos alle deltakere fortsatt er i utviklingsfasen. Det estimeres at måleusikkerheten for
TBA, PBB, PBDE og TBBPA ligger mellom 30 og 40%. For SCCP ligger måleusikkerheten
mellom 40 og 50 %. Dette er noe høyere enn for PCB eller dioksiner hvor måleusikkerheten
ligger rundt 20 %. Analyser av HBCD må betraktes som semikvantitative.
69
Norsk institutt for luftforskning (NILU)
Postboks 100, N-2027 Kjeller
RAPPORTTYPE
RAPPORT NR. NILU 62/2002
OPPDRAGSRAPPORT
DATO
ISBN 82-425-1411-9
ISSN 0807-7207
ANSV. SIGN.
ANT. SIDER
PRIS
69
TITTEL
NOK 150,-
PROSJEKTLEDER
Kartlegging av bromerte flammehemmere og klorerte parafiner
Martin Schlabach
NILU PROSJEKT NR.
O-102116
FORFATTER(E)
TILGJENGELIGHET *
Martin Schlabach, Espen Mariussen, Anders Borgen, Christian Dye,
Ellen-Katrin Enge (alle NILU), Eiliv Steinnes (NTNU), Norman Green
(NIVA) og Henning Mohn (NIVA)
A
OPPDRAGSGIVERS REF.
SFT rapport nr. 866/02
(TA-1924/2002)
OPPDRAGSGIVER
Statens forurensningstilsyn
Postboks 8100 Dep.
0032 OSLO
STIKKORD
Bromerte flammehemmere
Klorerte parafiner
POP
REFERAT
NILU har på oppdrag fra SFT gjennomført en screening-undersøkelse av de mest relevante bromerte
flammehemmere (BFR) og klorerte parafiner (CP) fra utvalgte deler av det norske miljøet. Det ble fokusert på
utlekking fra avfallsdeponier, på lufttransportpotensiale og på nivåene i marine biologiske prøver.
Det var mulig å påvise de fleste BFR og CP i sedimenter i sigevann fra avfallsdeponier. Det var klare
indikasjoner på at CP og de fleste BFR, inklusive dekabromdifenyleter, kan transporteres gjennom
atmosfæren. Det ble funnet BFR og CP i alle undersøkte marine biologiske prøver. Blåskjell og torskelever
fra indre Oslofjord er hadde høyest nivåer i denne studien og er tydelig påvirket av lokale kilder.
Resultatene fra denne studien er meget relevant for videre risikovurderinger.
TITLE
Screening of brominated flame retardants and chlorinated paraffins
ABSTRACT
NILU has, on behalf of Norwegian Pollution Control Authority (SFT), performed a screening study on the
most relevant brominated flame retardants (BFRs) and chlorinated paraffins (CP). The study focused on
aquatic emissions from waste dumps, atmospheric long-range transport potential and contamination levels in
marine biota.
Several BFRs and CP were found in sediments from aquatic emissions of waste dumps. There are clear
indications for atmospheric long range transport of several BFR and CP. BFR and CP were found in all
marine biological samples. Blue mussel and cod liver from the Inner Oslofjord are highest contaminated in
this study and are clearly contaminated by local sources.
The results from this study are highly relevant for further risk assessment of CP and a number of BFRs.
* Kategorier:
A
Åpen - kan bestilles fra NILU
B
Begrenset distribusjon
C
Kan ikke utleveres
Statlig program for forurensningsovervåking omfatter overvåking av
forurensningsforholdene i luft og nedbør, skog, grunnvann, vassdrag,
fjorder og havområder.
Overvåkingsprogrammet dekker langsiktige undersøkelser av:
•
•
•
•
•
overgjødsling av ferskvann og kystområder
forsuring (sur nedbør)
ozon (ved bakken og i stratosfæren)
klimagasser
miljøgifter
Overvåkingsprogrammet skal gi informasjon om tilstanden og
utviklingen av forurensningssituasjonen, og påvise eventuell
uheldig utvikling på et tidlig tidspunkt. Programmet skal dekke
myndighetenes informasjonsbehov om forurensningsforholdene,
registrere virkningen av iverksatte tiltak for å redusere forurensningen,
og danne grunnlag for vurdering av nye tiltak. SFT er ansvarlig for
gjennomføringen av overvåkingsprogrammet.
Statens forurensningstilsyn
Postboks 8100 Dep, 0032 Oslo
Besøksadresse: Strømsveien 96
Norsk instiutt for luftforskning
Postboks 100, 2027 Kjeller
Besøksadresse: Instituttveien 18
Telefon: 22 57 34 00
Telefaks: 22 67 67 06
E-post: postmottakft.no
Internett: www.sft.no
Bestilling: http://www.sft.no/skjema.html
Telefon: 63 89 80 00
Telefaks: 63 89 80 50
E-post: niluilu.no
Internett: www.nilu.no
Organohalogen Compounds, Volume 60, Pages 331-334 (2003)
SCREENING OF CHLORINATED PARAFFINS IN NORWAY
Anders R. Borgen, Martin Schlabach and Espen Mariussen
1
Norwegian Institute for Air Research, Instituttveien 18, P.O. Box 100, N-2027 Kjeller, Norway
Introduction
Chlorinated paraffins (CPs) are straight chain alkanes with varying degrees of chlorination. They
have been produced since the 1930’s to an extent of approximately 300 kilotons estimated for the
western world1 per year. CPs are mainly produced by direct chlorination of a petroleum fraction
with molecular chlorine in the presence of UV-light1. CPs have been used as high temperature
and pressure lubricants as well as secondary plasticizers and flame retardants in plastics and
paints1, 2. Recently CPs have been banned in all terms in Norway.
CPs are di vided into t hree main categories, sh ort c hain (SCCP, C 10-C13), m edium chain
(MCCP, C 14-C17) and l ong c hain (LC CP, C 18-C30), an d further by t heir degree o f
chlorination, l ow (< 50%) a nd hi gh (> 50%)2. Because of their relatively high assim ilation
and accumulation potential, the short chain and more highly chlorinated SCCPs have been
the most wid ely stu died. Although SCCP g enerally h ave sh own lo w tox icity to mammals,
SCCPs ha ve a carci nogenic potential i n rat s an d m ice2. In ad dition, dose-response st udies
have shown that oral intake of SCCP by mice, results in an increase in liver weight, which is
considerable c ompared t o reference m aterials6. They ha ve al so sh own t o be t oxic t owards
certain species in the a quatic environment2, although at co ncentration levels several ord ers
of magnitude higher than for TCDD3.The complexity of C P mixtures makes it difficult to
provide an a nalytical method for thei r precise and s pecific qua ntitative dete rmination.
Technical CP mixture consists of several thousand components, and due to the large number
of i somers, com plete chro matographic s eparation see ms im possible at this poi nt. Thi s
analytical challenge has resulted in different approaches to analysis of CP1-5.
The aim of this project is to get an overview of the le vels of SCCP in s elected parts of the
Norwegian environment. In this first part of the project, the focus has been on the risk of
leaking from sewage deposits, air transport potentials and levels in marine biota.
Methods and Materials
Sample collection
Samples of sediment from landfills were collected from six different localities from the southern
parts of Norway. Samples of cod liver and blue mussels were collected from three different parts
of the Oslofjord to indicate a spatial distribution of PCA accumulation in these species.
Furthermore, three samples of moss were analysed to indicate a potential of atmospheric spread
of the PCA. The sampling sites are shown in figure 1.
Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA
Organohalogen Compounds, Volume 60, Pages 331-334 (2003)
Extraction and clean up
All th e sam ples were add ed 13 C-PCB 118 as an i nternal stan dard prio r to th e sam ple
preparation. The sediment samples were filtered, and then Soxhlet extracted two times. First
with Acet one and sec ond with Acet one/Hexane. The m oss and biological sam ples were
homogenised with Sodium sulphate prior to cold extraction with Hexane/Acetone and Ethyl
acetate/Cyclohexane respectively.
All the sam ples we re further cleane d o n a GPC system , sul phuric acid treate d a nd then
concentrated prior to the GC/MS analyses.
Analysis of PCA by GC/HRMS-EI
An HP5890 GC coupled to a VG AutoSpec, high resolution mass spectrometer was used for
all of the analyses. The MS was operated in ECNI mode with Argon at a pressure of 2´10-5
mbar as reage nt gas , m onitoring t he [M-Cl]- i ons for t he di fferent f ormula grou ps of t he
CPs. T he qua ntification of t he CPs were performed according to t he method derived by
Tomy9.
A: Sewage deposits
B: Mussell
M: Moss
T: Cod
Figure 1. Sampling sites shown in a map of the south part of Norway.
Results and Discussion
The sampling sites (in the south of Norway) are shown in figure 1. Considerable amounts of
SCCP were found in all samples. The results, shown in Table 1, are reported as the sum of C10–
C13 SCCPs with 5-10 Chlorine substitutions. When interpreting these results, it should be taken
into account that SCCP is a very complex mixture. An ideal internal standard is hard to find, and
the analyses are very sensitive to the performance of the mass spectrometer. Two sediment
Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA
Organohalogen Compounds, Volume 60, Pages 331-334 (2003)
samples were also chosen for MCCP analysis, based on the measurement of six different formula
groups8, and are reported as the sum of C14-C17 CP.
Table 1. The co ncentrations of ΣSCCP an d ΣMCCP i n sedi ments, m oss, co d l iver an d
mussel. The lipid content of cod liver and mussel samples are also shown.
Støleheia Kristiansand
Heftingsdalen Arendal
Grinda Larvik
Lindum Drammen
Grønmo Oslo
Øra Fredrikstad
Valvik
Molde
Narbuvoll
Oslofjord (inner)
Oslofjord (inner)
Oslofjord (outer)
Oslofjord (outer)
Oslofjord (inner)
Oslofjord (outer)
Risøy
SCCP (ng/g ww) MCCP (ng/g ww)
Sediments
860
n.a.
6500
2700
660
n.a.
19400
11400
1190
n.a.
330
n.a.
Moss
35
n.a.
100
n.a.
3
n.a.
Codliver
750
n.a.
370
n.a.
25
n.a.
23
n.a.
Mussel
130
n.a.
80
n.a.
14
n.a.
Lipid content (%)
35.5
32.8
31.4
31.1
1.6
3.1
1.7
The highest conce ntrations of C Ps were fo und i n sediment sam ples fr om Li ndum and
Heftingsdalen. There are reasons to believe that these high concentrations are due deposition
of waste from mechanical or shipping industry. These high concentrations are therefore not
surprising. The concentrations of SCCP in sediments samples reported here are in the same
order of magnitude as co ncentrations found in sediments from industrial areas i n the UK10.
The se diment samples show a t echnical pat tern of SCCPs su ggesting that the sources are
near the sampling locations.
The results from the moss sa mples indicate a potential of transpo rt of SCCP b y ai r. The
potential of S CCP being transported by air is also supported by the results from a prev ious
report7, where considerable concentrations of SCCP were found in ambient air samples from
Bear Isl and. T he co ncentrations we re t o high t o be c onsidered as a result of l ong range
alone, but it can not be excluded.
Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA
Organohalogen Compounds, Volume 60, Pages 331-334 (2003)
The concentrations of SCCPs in the marine biological samples show an indication of more
contamination o f SCCPs in t he in ner th an outer Oslofj ord. Alltho ugh th e sample a mounts
are sm all, th is is in agreemen t with previous st udies of PCB and br ominated fla me
retatrdants in cod liver from Oslofjord.
Chlorinated paraffins are, as mentioned earlier, banned in Norway. It is therefore important
to continue with the environmental mapping of th ese pollutants to get more information of
environmental levels and understanding of the long range transport.
Acknowledgements
The authors would like to thank Norwegian Pollution Control Authority for choosing Norwegian
Institute for Air Research to do the chemical analyses in this project.
References
1
Tomy G.T., Thesis, The mass Spectrometric Characterization of Polychlorinated n-Alkanes and
the Methodology for their Analysis in the Environment.
2
International programme on chemical safety, Environmental health criteria 181, Chlorinated
paraffins
3
Coelhan M., Saraci M., Parlar H., Chemosphere 40 (2000) 685-689, A comparative study of
polychlorinated alkanes as standards for the determination of C10-C13 polychlorinated paraffins
in fish samples.
4
Fisk A.T ., Tomy G. T. and Muir D. C.G., Environmental Toxicology and Chemistry. Vol. 18.
No. 12. pp. 2894-2902, 1999, Toxicity of C10-, C11-, C12- and C14-polychlorinated alkanes to
japanese Medaka (Oryzias Latipes) embryos.
5
Junk S.A. and Meisch H.-U., Fresenius’ Journal of Analytical Chemistry (1993) 347:361-364,
Determination of chlorinated paraffins by GC-MS.
6
Osmundsen H, personal correspondance.
7
Borgen A.R., Schlabach M., Kallenborn R., Christensen G. and Skotvold T., Organohalogen
compounds 2002, Volume 59, 303-306.
8
Tomy G.T. and Stern G.A., Analytical Chemistry 1999, 71, 4860-4865, Analysis of C14-C17
Polychlorinated-n-alkanes in Environmental Matrixes by Accelerated Solvent Extraction-HighResolution Gas Chromatography/Electron Capture Negative Ion High-Resolution Mass
Spectrometry.
9
Tomy G.T., Stern G.A., Muir D.C.G., Fisk A.T., Cymbalisty C.D. and Westmore J.B.,
Analytical Chemistry 1997, 69, 2762-2771, Quantifying C10-C13 Polychloroalkanes in
Environmental Samples by High Resolution Gas Chromatography/Electron Capture Negative
Ion High Resolution Mass Spectrometry.
10
Nicholls C.R., Allchin C.R.and Law R.J., Environmental Pollution 2001, 114, 415-430,
Levels of short and medium chain length polychlorinated n-alkanes in environmental samples
from selected industrial areas in England and Wales.
Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA
Forskrift om kortkjedete klorparaffiner.
OPPHEVET
Dato
Departement
Avd/dir
Publisert
Ikrafttredelse
Sist endret
Endrer
Gjelder for
Hjemmel
Sys-kode
Næringskode
Kunngjort
Rettet
Korttittel
13.12.2000 nr. 1544
Miljøverndepartementet
Forurensningsavd.
I 2000 3428 (Merknader)
01.01.2001, 01.01.2002, 01.01.2005
FOR-2002-12-20-1823 fra 01.01.2003
Norge
LOV-1976-06-11-79-§4, FOR-1977-08-05-2
BG14p
9125
Forskrift om kortkjedete klorparaffiner
Fastsatt av Miljøverndepartementet 13. desember 2000 med hjemmel i lov av 11. juni 1976 nr. 79 om kontroll
med produkter og forbrukertjenester (produktkontrolloven) § 4, jf. kgl.res. av 5. august 1977 nr. 2. Opphevet
fra 1 jan 2003, jf. forskrift 20 des 2002 nr. 1823.
§ 1. Virkeområde
Denne forskriften fastsetter regler for produksjon, import, eksport, omsetning og bruk av kortkjedete
klorparaffiner og for stoffblandinger og faste bearbeidede produkter med et innhold på over 0,1 vektprosent
kortkjedete klorparaffiner.
§ 2. Formål
Formålet med denne forskriften er å forhindre miljøskader fra utslipp av kortkjedete klorparaffiner.
§ 3. Definisjoner
Med kortkjedete klorparaffiner menes i denne forskriften klorerte alkaner med 10-13 karboner i kjeden og
minst 48 vektprosent klor.
§ 4. Forbud
Det er forbudt å produsere, importere, eksportere, omsette og bruke kortkjedete klorparaffiner som rent stoff
og som stoffblandinger og faste bearbeidede produkter med et innhold på over 0,1 vektprosent kortkjedete
klorparaffiner. Omsetning og bruk av kortkjedete klorparaffiner til forsknings- og/eller analyseformål er likevel
tillatt.
§ 5. Unntak
Statens forurensningstilsyn kan, i særlige tilfeller, gjøre unntak fra forskriften, og sette de vilkår som finnes
påkrevet for å motvirke skade eller ulempe.
§ 6. Tilsyn og opplysningsplikt
Statens forurensningstilsyn eller den Miljøverndepartementet bemyndiger fører tilsyn med at bestemmelsene i
denne forskriften overholdes, jf. produktkontrolloven § 8.
Tilsynsmyndigheten kan kreve de opplysninger som er nødvendige for gjennomføring av tilsynet etter
forskriften, jf. produktkontrolloven § 5.
§ 7. Klage
Vedtak truffet av Statens forurensningstilsyn i medhold av denne forskrift kan påklages til
Miljøverndepartementet.
§ 8. Tvangsmulkt
For å sikre at bestemmelsene i denne forskriften eller vedtak truffet i medhold av denne forskriften blir
gjennomført, kan Statens forurensningstilsyn ilegge tvangsmulkt etter produktkontrolloven.
§ 9. Straff
Overtredelse av denne forskrift eller vedtak truffet i medhold av forskriften straffes etter produktkontrolloven
§ 12.
§ 10. Ikrafttreden og overgangsbestemmelser
Forskriften trer i kraft 1. januar 2001.
Forbudet mot omsetning og bruk av kortkjedete klorparaffiner trer i kraft 1. januar 2002.
For transportbånd i gruveindustrien og tetningsmaterialer til demninger gjelder forskriften fra 1. januar 2005.
Kommentarer til forskrift om kortkjedete klorparaffiner
Til § 1 Virkeområde
Av ulike årsaker kan andre stoffblandinger og produkter være kontaminert med kortkjedete klorparaffiner.
Det kan også av kontroll- og analysehensyn være nødvendig med en nedre grense for at produktet skal regnes
som inneholdende kortkjedete klorparaffiner. Det er derfor satt en nedre grense på 0,1 vektprosent kortkjedete
klorparaffiner for at stoffblandinger og produkter skal omfattes av forskriftsbestemmelsene.
Til § 2 Formål
Kortkjedete klorparaffiner er lite nedbrytbare og de er bioakkumulerbare. Stoffene er av EU klassifisert som
mulig kreftfremkallende i kategori 3 og miljøskadelige fordi de er meget giftige for vannlevende organismer og
kan forårsake uønskede langtidsvirkninger i vannmiljøet.
Hensikten med forbudene mot kortkjedete klorparaffiner er å beskytte det akvatiske miljøet mot virkningen
av disse stoffene. Gjennom OSPAR er Norge er forpliktet til å redusere og stanse utslippene av kortkjedete
klorparaffiner.
Til § 4 Forbud
Bestemmelsen angir et generelt forbud mot kortkjedete klorparaffiner og stoffblandinger og faste bearbeidete
produkter som inneholder kortkjedete klorparaffiner. Kortkjedete klorparaffiner er industrielt framstilte
forbindelser, og er i så måte definert som stoffer i følge forskrifter om klassifisering, merking m.v. av farlige
kjemikalier av 21. august 1997 nr. 996. Med stoffblanding menes her oppløsninger eller faste, flytende og
gassformige blandinger der kortkjedete klorparaffiner inngår sammen ett eller flere andre stoffer. Med faste
bearbeidede produkter menes her faste gjenstander eller materialer, f.eks. tekstiler, lærvarer og annet der
kortkjedete klorparaffiner forekommer i hele, eller deler av, produktet.
Kortkjedete klorparaffiner brukes i Norge som mykgjørere i maling, farger, plast, fugemasse og ytterbelegg
samt som flammehemmere i gummi, plast og tekstiler og som tilsettingsstoff i andre kjemiske stoffer og
produkter. Andre bruksområder er metallbearbeiding som høytrykksadditiver i skjærevæsker, ulike typer
smøremidler og enkelte bilpleiemidler for beskyttelse mot steinsprut. En del europeiske land benytter
klorparaffiner til ferdigbehandling av lær, og slike lærprodukter er således ikke tillatt i Norge.
Bestemmelsen gjelder ikke produkter som inneholder kortkjedete klorparaffiner som allerede er omsatt til
tredjemann og er i bruk, f.eks. i maling som er påført en mur, omsatte plastprodukter, fuger installert i bygg og
tilsvarende. Når produkter som inneholder kortkjedete klorparaffiner tas ut av bruk, gjelder de alminnelige
bestemmelser om avfall i følge forurensningsloven, jf. også forskrift om spesialavfall av 19. mai 1994 nr. 362,
§ 4.
Forbudet mot å innføre, omsette og ta i bruk SCCP eller SCCP-holdig produkt gjelder ikke forsknings- og
analyseformål. Dette unntaket gjelder omsetning og bruk, og det er ikke generelt tillatt å importere, eksportere
og tilvirke SCCP til slikt formål. Se imidlertid unntaksbestemmelsen i § 5.
For erstatningsstoffer for SCCP gjelder § 3 a i produktkontrolloven - substitusjonsplikt: virksomhet som
bruker produkt med innhold av kjemisk stoff som kan medføre virkning som nevnt i produktkontrolloven § 1
skal vurdere om det finnes alternativ som medfører mindre risiko for slik virkning. Virksomheten skal i så fall
velge dette alternativet, hvis det kan skje uten urimelig kostnad eller ulempe.
Til § 10 Ikrafttreden og overgangsbestemmelser
Omsetning og bruk av lagervarer med kortkjedete klorparaffiner som ikke er omsatt, men som er importert
eller produsert før 1. januar 2001 (ikrafttredelsesdato), er tillatt fram til 1. januar 2002.
Transportbånd i gruveindustrien og tetningsmaterialer i dammer er unntatt fra forskriftsbestemmelsene i en
overgangsperiode fram til 1. januar 2005.
Unofficial translation of FOR‐2000‐12‐13‐1544 § 1 Scope
This Regulation lays down rules on the production, import, export, sale and use of shortchain chained chloroparaffins and for preparations and finished products with a content of
0.1 weight percent short-chain chained chloroparaffins.
§ 2 Purpose
The purpose of this regulation is to prevent environmental damage from emissions of shortchain chained chloroparaffins.
§ 3 Definitions
Short chain chained chloroparaffins meant a chlorinated alkanes with 10-13 carbon atoms in
the chain and at least 48 weight percent chlorine.
§ 4 Prohibition
It is prohibited to manufacture, import, export, sale and use of short chained chloroparaffins
as pure substance and mixtures and finished products with a content of 0.1 weight percent
short-chain chained chloroparaffins. Sale and use of short-chain chained chloroparaffins to
research and / or analysis purposes is permitted.
§ 5 Exceptions
Norwegian Pollution Control Authority may, in exceptional cases, grant exemptions from the
regulations, and set the conditions deemed necessary to prevent damage or inconvenience.
§ 6 Supervision and disclosure
Norwegian Pollution Control Authority or the Ministry appoints supervises the provisions of
these regulations, cf. Product Control Act § 8.
The supervisory authority may require the information necessary for the completion of the
audit by the regulations, cf. Product Control Act § 5.
§ 7 Complaint
Decisions made by the Norwegian Pollution Control Authority pursuant to these regulations
may be appealed to the Ministry of Environment.
§ 8 Coercive fines
To ensure that the provisions of these regulations or decisions made pursuant to this
Regulation are implemented, the Norwegian Pollution Control Authority impose, the Product
Control Act.
§ 9 Penalties
Violation of these regulations or decisions made pursuant to these regulations is punishable
by the Product Control Act § 12.
§ 10 Entry into force and transitional provisions
These regulations come into force on 1 January 2001.
The ban on the sale and use of short-chain chained chloroparaffins enter into force on 1
January 2002. For conveyors in mining and sealing materials for dams, the Regulations
enter into force from 1 January 2005.