Engineering Multilevel Graph Partitioning Algorithms
Transcription
Engineering Multilevel Graph Partitioning Algorithms
Engineering Multilevel Graph Partitioning Algorithms Peter Sanders, Christian Schulz Institute for Theoretical Computer Science, Algorithmics II 1 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II KIT – die Kooperation vonEngineering Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Overview Introduction Multilevel Algorithms Flow Based Improvement More Localized FM Search Global Search Experiments Future Work 2 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Simulation - FEM Simulation space is discretized into a mesh Solution of partitial differential equations are approximated by linear equations Number of vertices can become quite large → time and memory Parallel processing required 3 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The Common Parallel Approach Mesh partitioned via dual graph 1. Each volume (data, calculation) is represented by a vertex 2. Interdependencies are represented by edges All PE’s get same amount of work Communication is expensive Graph Partitioning Problem: Partition a graph into (almost) equally sized blocks, such that the number of edges connecting vertices from different blocks is minimal. 4 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) e-Balanced Graph Partitioning Partition graph G = (V , E , c : V → R>0 , ω : E → R>0 ) into k disjoint blocks s.t. 1+e total node weight of each block ≤ total node weight k total weight of cut edges as small as possible Applications: finite element simulations, VLSI design, route planning, . . . 5 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Multi-Level Graph Partitioning Successful in existing systems: Metis, Scotch, Jostle,. . . , KaPPa, KaSPar, KaFFPa 6 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Why Yet Another MGP Algorithms? scalable parallel algorithm for the case k =# of processors large inputs high quality (better (even parallel) than other seq. algorithms) understand / engineer multi level method bridge gaps theory ↔ practice embedding into global search strategies 7 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Graph Partitioning Matching Selection Goals: 1. large edge weights sparsify 2. large #edges few levels 3. uniform node weights “represent” input 4. small node degrees “represent” input unclear objective gap to approx. weighted matching which only considers 1.,2. input graph ... match contract Our Solution: Apply approx. weighted matching to general edge rating function 8 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Graph Partitioning Edge Ratings ω ({u , v }) ω ({u , v }) c (u ) + c (v ) ω ({u , v }) expansion∗ ({u , v }) := c (u )c (v ) expansion({u , v }) := ω ({u , v })2 c (u )c (v ) ω ({u , v }) innerOuter({u , v }) := Out(v ) + Out(u ) − 2ω (u , v ) expansion∗2 ({u , v }) := where c = node weight, ω =edge weight, Out(u ) := ∑{u ,v }∈E ω ({u , v }) 9 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Global Paths Algorithm Approx. Weighted Matching [Maue Sanders 2007] Sort edges according to their weight/rating Grow a set of paths and even-length cycles Find optimum matching for every path and cycle Running time O (m + sort(m )) Approximation 12 OPT outperforms HEM, SHEM 10 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Graph Partitioning Initial Partitioning KaPPa → Compared PARTY, P M ETIS, and S COTCH S COTCH yielded best results input graph output partition ... local improvement ... match contract initial uncontract partitioning 11 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Sequential Graph Partitioning Karlsruhe Fast Flow Partitioner Focus: Local and Global Search Local Search: 1. Flow Based Improvement Methods 2. More Localized FM Algorithm (inspired by KaSPar) Global Search: 1. V-cycles and F-cycles similar to methods used in multigrid input graph ... G s V1 ∂1 B ∂2 B B t V2 local improvement ... ... ... local improvement match match contract initial uncontract contract uncontract partitioning 12 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Flows as Local Improvement Two Blocks G s V1 ∂1 B ∂2 B B t V2 area B, such that each (s, t )-min cut is e-balanced cut in G e.g. 2 times BFS (left, right) stop the BFS, if size would exceed (1 + e) n2 − ω (V2 ) ⇒ ω (V2new ) ≤ ω (V2 ) + (1 + e) n2 − ω (V2 ) 13 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Flows as Local Improvement Two Blocks G s V1 B t V2 obtain optimal cut in B since each cut in B yields a feasable partition → improved two-partition 14 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Flows as Local Improvement Adaptive Search search in larger areas for feasable cuts adaptively control the size of corridor B heuristic for Most Balanced Minimum Cuts [Picard et al. 1980] We need: SCC’s, DAGs, Closed Vertex Sets, Topological Sorting s G V1 t B V2 G s V1 B t V2 the maximal upper bound factor is called α0 15 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Local Improvement for k -partitions Using Flows? on each pair of blocks input graph output partition ... local improvement ... match contract initial uncontract partitioning 16 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Local Improvement for k -partitions Using Flows? on each pair of blocks 17 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) More Localized Local Search Idea: KaPPa, KaSPar ⇒ more local searches are better Typical: k-way local search initialized with complete boundary Localization: 1. complete boundary ⇒ maintained todo list T 2. initialize search with single node v ∈rnd T 3. iterate until T = ∅ each node moved at most once 18 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Global Search Iterated Multilevel [Walshaw 2004] input graph ... local improvement ... ... ... local improvement match match contract initial uncontract contract uncontract partitioning don’t contract cut edges no new initial partitioning needed random tiebreaking needed local improvement has to assure ≤ cuts 19 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Global Search V-Cycles Coarsening Uncoarsening Graph partitioned Graph not partitioned 20 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Global Search W-Cycles Coarsening Uncoarsening Graph partitioned Graph not partitioned 21 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Global Search F-Cycles Coarsening Uncoarsening Graph partitioned Graph not partitioned 22 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Experiments Testset 23 Sept. 6, 2011 Medium sized instances graph n m rgg17 217 1 457 506 rgg18 218 3 094 566 Delaunay17 217 786 352 Delaunay18 218 1 572 792 bcsstk29 13 992 605 496 4elt 15 606 91 756 fesphere 16 386 98 304 cti 16 840 96 464 memplus 17 758 108 384 cs4 33 499 87 716 pwt 36 519 289 588 bcsstk32 44 609 1 970 092 body 45 087 327 468 t60k 60 005 178 880 wing 62 032 243 088 brack2 62 631 733 118 finan512 74 752 522 240 bel 463 514 1 183 764 nld 893 041 2 279 080 af shell9 504 855 17 084 020 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Experimental Evaluation Flows Var. α0 16 8 4 2 1 Ref. (+F, -MB, -FM ) ∆ cut % t[s] −1.88 4.17 −2.30 2.11 −4.86 1.24 −11.86 0.90 −19.58 0.76 (-F, -MB, +FM) (+F, +MB, -FM) ∆ cut % t[s] 0.81 3.92 0.41 2.07 −2.20 1.29 −9.16 0.96 −17.09 0.80 2 974 1.13 (+F, -MB, +FM) ∆ cut % t[s] 6.14 4.30 5.99 2.41 5.27 1.62 3.66 1.31 1.64 1.19 final score of different configurations α0 flow region upper bound factor all value are improvements rel. to Ref. 24 Sept. 6, 2011 +/- F +/- MB +/- FM (+F, +MB, +FM) ∆ cut % t[s] 7.21 5.01 7.06 2.72 6.21 1.76 4.17 1.39 1.74 1.22 ↔ +/- Flow ↔ +/- Most Bal. H. ↔ +/- FM Algorithm Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Experimental Evaluation Flows - Effectiveness Effectiveness α0 16 8 4 2 1 (-F, -MB, +FM) (+F, +MB, -FM) ∆ cut % −1.29 −1.12 −3.05 −8.26 −16.41 2 833 (+F,-MB, +FM) ∆ cut % 3.70 4.16 4.04 3.02 1.62 2 831 (+F,+MB,+FM) ∆ cut % 4.28 4.74 4.63 3.36 1.65 2 827 each configuration has the same amount of time all value are improvements rel. to Ref. +/- F +/- MB +/- FM 25 Sept. 6, 2011 ↔ +/- Flow ↔ +/- Most Bal. H. ↔ +/- FM Algorithm Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Experimental Evaluation Global Search Algorithm 2 F-cycle 3 V-cycle 2 W-cycle 1 W-cycle 1 F-cycle 2 V-cycle 1 V-cycle ∆ cut % 2.69 2.69 2.91 1.33 1.09 1.88 2 973 t[s] 2.31 2.49 2.77 1.38 1.18 1.67 0.85 Eff. Avg. 2 806 2 810 2 810 2 815 2 816 2 817 2 834 relative fast basic configuration only global search is varied red significantly < blue red and blue significantly < reference 26 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Experiments Remove Components Remove components step by step Repetition KaFFPa Strong -KWay -MoreLocalizedSearch -FCycle -Flow 27 Sept. 6, 2011 Avg. 2 683 2 682 2 729 2 748 2 934 t 8.93 9.23 5.55 3.27 1.66 Eff. Avg. 2 636 2 636 2 668 2 669 2 799 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Experimental Results Comparison with Other Systems Geometric mean, imbalance e = 0.03: 11 graphs (78K–18M nodes) ×k ∈ {2, 4, 8, 16, 64} Algorithm KaFFPa strong KaSPar strong KaFFPa eco Scotch KaFFa fast kMetis large graphs Best Avg. t[s] 12 053 12 182 121.22 12 450 +3% 87.12 12 763 +6% 3.82 14 218 +20% 3.55 15 124 +24% 0.98 15 167 +33% 0.83 Repeating Scotch as long as KaSPar strong run and choosing the best result 12.1% larger cuts Walshaw instances, road networks, Florida Sparse Matrix Collection, random Delaunay triangulations, random geometric graphs 28 Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Outlook Walshaw Benchmark runtime is not an issue 614 instances (e ∈ {1%, 3%, 5%}) focus on partition quality Algorithm/Entries KaPPa KaSPar KaFFPa 29 Sept. 6, 2011 < 131 155 317 ≤ 189 238 435 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Future Work 1. 2. 3. 4. 30 look at initial partitioning look at large k look at e = 0 graph clustering Sept. 6, 2011 Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Thank you! Contact: 31 Sept. 6, 2011 christian.schulz@kit.edu sanders@kit.edu Vitaly Osipov, Peter Sanders, Christian Schulz – Institute for Theoretical Computer Science, Algorithmics II Engineering Multilevel Graph Partitioning Algorithms KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)
Similar documents
Vitaly Osipov, Peter Sanders, Christian Schulz
Why Yet Another MGP Algorithms? Karlsruhe Parallel Partitioner Karlsruhe Sequential Partitioner scalable parallel algorithm for the case k =# of processors large inputs high quality (better (even ...
More information