In-gas-cell and in-gas-jet laser ion sources at LISOL
Transcription
In-gas-cell and in-gas-jet laser ion sources at LISOL
Laser LISOL Source In-gas-cell and in-gas-jet laser ion sources at LISOL Yuri Kudryavtsev Instituut voor Kern- en Stralingsfysika, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium. Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Overview 1. In-Gas-Cell Laser Ionization LISOL laser ion source Laser system Radioactive Ion Beams (RIB) for nuclear spectroscopy 2. In-Gas-Cell Laser Spectroscopy Dual-chamber laser ion source Laser spectroscopy of 57-59Cu, 97-101Ag, 3. In-Gas-Jet Laser Spectroscopy What spectral resolution can be achieved? Off-line high resolution laser spectroscopy in a free jet. Experiment 4. New developments HELIOS project S3 & GANIL 5. Conclusions Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 IGLIS - In Gas Laser Ionization and Spectroscopy LISOL (since 1992) SPIG RF ion guide gas Gas cell P0 T0 ρ0 500mbar Ions towards mass separator + target accelerator beam laser beams λ1, λ2 Thing target 1 mg/cm2 Autoionizing state IP λ2 λ1 Ground state Q – conductance of the exit orifice, d=0.5 mm, Ar, 35 cm3/s V – irradiated volume, 1 cm3 Laser pulse repetition rate – Q/V= 35 Hz (saturation, no recombination) Gas purity ! - Refractory elements - Isotopes with a short lifetime - Pre separation, after in-flight mass separator Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 IGISOL / Jyväskylä - Volker Sonnenschein PALIS / RIKEN - Michiharu Wada KISS / KEK - Yoshikazu Hirayama GSI - Mustapha Laatiaoui Dubna/JINR - Sergey Zemlyanoy S3 / GANIL Louvain-la-Neuve Radioactive Beam Facility CYCLONE 110 LISOL Leuven Isotope Separator On-Line Detection LASER ION SOURCE Laser System (since 1994) Excimer laser 2 LPX240, 200Hz, 15ns, 100 mJ Dye Laser 2 SHG Synchron. Unit Telescope Excimer laser 1 LPX240, 200Hz, 15ns, 100 mJ λ2 Telescope Dye Laser 1 Energy meters λ1 SHG TOF Energy (eV) Autoionizing state Laser Ion Source of the LISOL mass separator Reference Cell 4 Tunable range 205 - 900 nm 0 15 m Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 SEM Laser System XeCl Excimer lasers Dye lasers SHG Reference cell Yu.Kudryavtsev, SMI06, March 27-28, 2006 Towards LIS, 15m Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Two-step laser ionization schemes Tunable range 205 - 900 nm 80% of all elements can in principle be ionized by the LISOL laser system Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 LISOL Laser Ion Source Towards mass separator Energy (eV) Gas cell for fusionevaporation reactions SPIG –210V Target (~ mg/cm2) 4 Exit hole Cyclotron beam Ar 500mbar Ar/He from gas purifier Filament Laser beams 200Hz 0 Ion source selectivity - Laser ON/OFF: 30-80 for proton-induced fission reactions 100-200 for fusion evaporation reactions 57Co 112Rh - Eff. 6% - Eff. 3.8%, 252Cf fission source Pulsed operation mode Cyclotron on off off on Laser Separator on Plasma created in the cell does not allow to collect not neutralized ions and causes partial recombination of laser-produced ions Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Front end of the LISOL mass separator Cyclotron beam Extraction electrode SPIG Gas Cell Gas from purifier Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 LISOL Radioactive Ion Beams (since 1992) Heavy Ion-induced fusion evaporation reactions: Ac Heavy Ion-induced fusion evaporation reactions: Rh,Ru,Sn,In,Ag Light Ion-induced fusion evaporation reactions: Co,Ni,Mn,Cr,V,Cu Proton-induced fission of 238U: Spontaneous fission of 252Cf: Rh,Ru,Mo,Pd Proton-induced fission of Fe,Co,Ni,Cu Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 238U: Dual-Chamber Gas Cell Laser Ion Source Ar, He from gas purifier Accelerator beam Stopping chamber Target + + “Shadow” effect – laser ionization region and ion collector are not visible from the cyclotron bam pass + 500 mbar CW operation of cyclotron and separator Reaction products Ion collector Laser beams λ1 λ 2 Ionization chamber + + Ion Collector Yu. Kudryavtsev et al., NIM B 267 (2009) 2908–2917 Laser ionization chamber + + Exit orifice Stopping chamber – 4 cm in diameter Laser ionization chamber – 1 cm in diameter SPIG + Exit orifice diameter – 0.5 mm/1mm Towards mass separator Fusion evaporation reactions: Yield-LaserON Selectivity = Yield-LaserOFF > 2200 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Dual Chamber Laser Ion Source SPIG Prism Cyclotron beam Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Laser selectivity in heavy-ion induced fusion evaporation reaction 94Rh 40Ar + 58Ni → 98Pd* → Rh/Ru + xp yn 94Rh 94Rh 40Ar beam 265 MeV + + Laser beam + + + + Selectivity - 450 Ion collector Ionization chamber + Selectivity > 2200 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 In-Gas-Cell Laser Spectroscopy of 57,59Cu Cu+ + e- 65Cu Autoionizing State First Ionization Limit 62317.4 cm-1 λ2 = 441.6 nm 1 4P0 40943.73 4 1/2 cm-1 3 2 3 4 F=2 F=1 λ1 = 244.164 nm 2S 1/2 µ ( Cu ) = Ahf ( ACu ) 63 Ahf ( Cu ) 58Ni(p, 59Cu F=2 F=1 CuI: ground state A 63Cu µ ( 63Cu ) T. Cocolios et al., PRL 103, 102501 (2009); Phys. Rev. C 81, 014314 (2010) 57Cu: 6 ions/s 2n)57Cu (T1/2=199 ms) Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Frequency [GHz] In-gas-cell laser spectroscopy of 57,59Cu: total statistics 57Cu and 63Cu & 59Cu and 65Cu were measured simultaneously – no systematic error Measurement number Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Results 57Cu 199 ms 55Ni 56Ni 57Ni 58 Ni 209 ms 6.0 d T. E. Cocolios et al., PRL103 (2009) 102501 T. E. Cocolios et al., PRC81 (2010) 014314 36 h 55Co 17 h 54Co Magnetic moment of 57Cu isotopes using the β-NMR technique K. Minamisono et al., PRL 96 (2006) 102501 In source laser spectroscopy at ISOLDE down to 58,59Cu N.J. Stone et al., PRC 77 (2008) 014315 Collinear laser spectroscopy at ISOLDE on 58-62Cu P. Vingerhoets et al., PLB 703 (2011) 34 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Laser spectroscopy of 97-101Ag • Production 92Mo(14N – 130 MeV,2pxn)104−xAg 64,natZn(36Ar– 125 MeV,pxn)101−97Ag 101 Ag(9/2+) 1250 750 250 Laser ionization efficiency ~ 2% 101 Ag(1/2-) 1250 750 250 Counts (arb. u.) • In-gas cell laser spectroscopy 520 mbar argon Total width: 9-10 GHz • Isomeric beam 99 Ag(9/2+) 1000 800 600 400 99 Ag(1/2-) 105 55 5 97 Ag(9/2+) 600 500 • Detection Beta- and gamma detection 400 -40 R. Ferrer et al., to be published Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 -20 0 20 Freq- CoG (GHz) 40 In-Gas-Cell Laser Spectroscopy of 57,59Cu Cu+ + e- 65Cu Autoionizing State First Ionization Limit 62317.4 cm-1 λ2 = 441.6 nm 4P0 40943.73 Doppler broadening, T=300 K Pressure broad. (P = 140 mbar, Ar) Laser bandwidth – 1.6 GHz 1/2 63Cu 3.5 GHz F=2 F=1 cm-1 λ1 = 244.164 nm 2S 1/2 F=2 F=1 CuI: ground state µ ( Cu ) = A Ahf ( ACu ) 63 Ahf ( Cu ) 58Ni(p, 59Cu µ ( 63Cu ) T. Cocolios et al.PRL 103, 102501 (2009); Phys. Rev. C 81, 014314 (2010) 57Cu: 6 ions/s 2n)57Cu (T1/2=199 ms) Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Frequency [GHz] In-gas-jet laser spectroscopy at LISOL, LIST mode Reference cell Ni FWHM= ~ 2 GHz Laser band width ~1.6 GHz, (excimer-pumped dye lasers, second harmonic) perpendicular to the atomic beam Ar 500 mbar Gas cell FWHM=6.5 GHz Red shift of 2.5 GHz: pressure dependence Gas Jet Doppler shift due to jet velocity: ~560 m/s Gas Cell FWHM= ~ 2 GHz 43089.2 43089.6 43090.0 Wavenumber [cm-1] T. Sonoda et al., NIM B267 (2009) 2908 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Resonance Laser Ionization in Supersonic Gas Jets Crossed laser beams with a supersonic jet NO laser ionization inside the cell ! Laser ionization only in the cold jet ! De Laval nozzle gas Gas cell λ2 ! u λ1 Po To ρo flaser ≥ 1/ ( L / u ) ≥ 10 kHz, argon jet - L = 5.5 cm u – stream velocity, 550m/s λ2 laser beam expander Autoionizing state λ2 bent RFQ L IP Yu. Kudryavtsev et al., NIM B 297 (2013) 7–22 ν2= ν02 The parallel beam from de Laval nozzle ! No broadening due to the beam divergence Very careful design of the nozzle is required λ1 ν 1 = ν 01 × (1 − u / c) Free jet gas Ground state Po To ρo zone of silence λ1 target accelerator beam Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 λ2 Doppler and Collision Contributions to the Spectral Line Width RF ion guide SPIG λ1, λ2 Gas cell gas Po To ρo target accelerator beam laser beams λ1, λ2 4s2S1/2 – 4p2P1/2, 327.4 nm 63Cu transition, ν0= 30535.3 cm-1 Gas jet 5000 4500 Linewidth, MHz γ coll γ coll × ρ Hot cavity 63Cu Collision/pressure contribution 4000 ∆ν = coll Gas cell 3500 - collision broadening coefficient, 1.5·10-20 cm-1/cm-3 (8 MHz/mbar) ρ – gas density (atom /cm3) P=300 mbar 3000 2500 P=100 mbar 2000 { 1500 1000 Doppler contribution 500 0 1 3.3 MHz 10 200 MHz Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 100 Temperature, K 1000 10000 Properties of supersonic beams y x z One dimensional Maxwell-Boltzmann velocity distribution Po To ρo PTρ -mvi 2 m F (vi) = exp 2π kT 0 2kT0 th -m(vz-u)2 m F (vz) = exp 2π kT 2kT ss Radioactive atoms are in thermal equilibrium with buffer gas atoms Velocity distribution 0,030 0,025 0,020 M=25 63Cu 0,015 Fss(vi) 0,010 M=7 Fth(vi) 0,005 T=300K M=1 0,000 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800 Velocity vz, m/s δ ( F ) = 2 ln 2 2kT m Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 - Full Width at Half Maximum (FWHM) Doppler Gaussian and collision- and natural Lorentzian contributions to the spectral line shape Lorentzian collision 300 K 500 mbar G (ν ) 2 2 c (ν −ν o ) G0 exp − 2 2 kT ν0 m 1 Γ L (ν −ν 0 ) = 2π (ν −ν 0 + Γsh )2 + ( Γ 2 )2 Laser bandwidth – δlaser Gaussian if laser time profile is Gaussian δ laser = 441/ τ pulse τpulse = 5 ns δlaser =88 MHz Gaussian Doppler Laser -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 300K 100 mbar Jet M=12 T=6 K ρ=0.003ρ0 Laser collision Doppler -500 -400 -300 -200 -100 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 0 100 Frequency, MHz 200 300 400 500 λ2 laser beam Free jet Two-Step Laser Ionization in a Free Jet 1951 free jet – A. Kantrowitz, J. Grey Pbg zone of silence Po To ρo Diameter of orifice d λ1 laser beam Mach disk, T, ρ ↑ Zt ZM ZM – position of the Mach disk ZM P0 = 0.67 d Pbg z Mt - terminal Mach number Zt – position of terminal Mach number Mt = 3.32 ( P 0 d ) (mbar, mm) 0.4 1.5 Zt Mt = d 3.26 Mach disk Visualization of free jet High T, P M.Belan, S.De Ponte , D.Tordella, Exp. Fluids 45(2008)501-511 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Properties of Free Jet Centerline Mach number calculation A B C1 C2 C3 C4 3.337 -1.541 3.232 -0.7563 0.3937 -0.0729 ρ Po To ρo z coll Γ= γ coll × ρ → 3.3 MHz Mach=12 1 3 25 0,1 20 0,01 Mach number atom density, ρ/ρ0 −2 Z Z M= 1.0 + A + B d d (γ −1) C3 C2 C4 Z Z M C + + + > 0.5 = 1 Z Z 2 Z 3 d d d d d Z 0 < < 1.0 d 0,001 0,0001 0 5 10 15 Distance from orifice, z/d 20 15 10 5 0 0 5 10 15 Distance from orifice, z/d Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 20 Doppler Broadening in the Free Jet Supersonic Beam λ2 λ1 Po To ρo 4s2S1/2 – 4p2P1/2, 327.4 nm 63Cu transition, ν0= 30535.3 cm-1 Doppler broadening, MHz 1.600 1000 Temperature, K 100 10 1 1.400 2 ln 2 ∆ν Doppler = 1.200 ν0 1.000 800 c 2kT m Total broadening 600 400 200 Contribution due to beam divergence 0 0 5 10 15 20 Mach number 0,1 0 10 20 Mach number 30 ∆ axDoppler = ν 0 ⋅ u (1 − cos θ ) / c - axial laser beam direction T=6K, Doppler FWHM =200 MHz Total broadening = 420 MHz Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Amplification of CW Single Mode Diode Laser Radiation in a Pulsed Dye Amplifier Two-stages dye amplifier Tunable single mode 654.98 nm Amp. I Amp. II SHG 327.49 nm CW diode laser KDP Output pulse energy, uJ Excimer XeCl Laser 5ns → 88 MHz 300 250 200 150 5ns 100 50 0 0 50 Towards gas Jet & Atomic Beam Unit 100 150 CW input laser power, mW 200 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Resonance Ionization Spectroscopy in a Free Gas Jet (Experiment I) Gas cell chamber 3d94s5s 2D3/2 Autoionizing state 65260.1 cm-1 63Cu 62317.4 cm-1 IP I λ2=287.9 nm 3d104p 2P1/2 30535.3 cm-1 λ1=327.395 nm 3d104s 2S1/2 Ground state a Extraction chamber 900 bended RFQ Extraction RFQ Gas cell P0=200 mbar Extraction electrode Towards mass separator L1L1 Ar F’ 2 1 L2 Cu filament Free jet expansion Towards extraction RFQ b 2 1 1E-4 mbar 0.1 mbar 900 bent segmented RFQ Gas cell L1 L2 Yu. Kudryavtsev et al., NIM B 297 (2013) 7–22 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Resonance Ionization Spectroscopy in a Free Gas Jet (Experiment II) u= { kT 0γ M mng 1 + ( γ − 1) 2 M 2 } 1830 MHz → T0 =355±3K 3d94s5s 2D3/2 + Po To ρo λ1 62317.4 cm-1 IP 30535.3 cm-1 λ1=327.395 nm 3d104s 2S1/2 Ground state a b 2 1 63Cu 0,8 Ion signal (arb. u.) 3d104p 2P1/2 1830 MHz 1,0 F’ 2 1 + + Crucible T=1250K I λ2=287.9 nm Detector Laser beams λ2 Autoionizing state 65260.1 cm-1 63Cu Atomic beam 2 0,6 0,4 Gas Jet b 450 MHz 300 MHz a a 0,2 0,0 30535,40 Atomic beam b 30535,45 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 30535,50 a 65Cu 30535,55 Wavenumber (cm-1) 30535,60 Comparison of laser ionization spectroscopy in a gas cell and in a gas Jet gas cell 3d94s5s 2D3/2 63Cu Po To ρo Autoionizing state 65260.1 cm-1 62317.4 cm-1 λ1 IP I λ1 λ2=287.9 nm 3d104p 2P1/2 30535.3 cm-1 F’ 2 1 1,0 λ1=327.395 nm a cd Ground state b 2 1 Intensity (arb. u.) 0,8 3d104s 2S1/2 gas jet 0,6 0,4 In gas cell In gas jet P0=500 mbar T0=300K 8 MHz/mbar cd a 0,2 b 0,0 -10 -5 0 5 10 First First step step laser frequency, GHz GHz Freq.laser - CoGfrequency, (GHz) Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 15 In-gas-cell and in-gas-jet laser RIS setup for HELIOS and S3 projects grant has been granted for HELIOS project (Heavy Elements Laser IOnization and Spectroscopy) New laser laboratory will be set up at KU Leuven Gas cell chamber Gas Cell de Laval nozzle S-shaped RFQ IGLIS at S3 GANIL S3 - Super Separator Spectrometer Collaboration GANIL, IPN, CSNSM Differential pumping chamber Extraction chamber Towards mass separator Ion collector Gas jet gas Extraction RFQ Extraction 1·10-5-2·10 -3 mbar < 1e-5 mbar from in-flight separator electrode One-dimension laser beam expander Thing entrance window Position of the stopped nuclei λ1 λ2 In-gas-cell ionization λ2 λ1 In-gas-jet ionization 1·10-2 -2 mbar Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 IGLIS laboratory at KU Leuven, HELIOS project Separator room Laser room Clean room: ISO 100 000 ΔT=±0.5oC HV platform 24 m2 Laser power supplies Yu. Kudryavtsev, May 30-31, 2013 Yu.Orsay, Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 24 m2 IGLIS laboratory at KU Leuven, HELIOS project laser room dipole magnet measuring station einzel lens beam diagnostics front-end vacuum chamber pumping system Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Laser equipment for IGLIS experiments @ HELIOS &S3 Two step laser ionization spectroscopy in the gas cell • Two high-repetition-high-power Nd:YAG pump Laser - Max. average power: 90 W (@ 532 nm) or 36 W (@ 355 nm) - Max. repetition rate: 15 kHz • Two high repetition rate dye lasers - Tunable wavelength from 215 to 900 nm - Linewidth: 0.06 cm-1 (1.8 GHz) – 0.25 cm-1 (7.5 GHz) Pump Laser Dye Laser For high resolution spectroscopy in the gas jet first step will consist of • A continuous wave (CW) single mode tunable diode laser - Linewidth: 0.1 MHz -> 60 MHz (pulsed) - mode-hop-free tuning range: 20-30 GHz • A dye amplifier with second harmonic generator Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Diode Laser Developments for S3 at SPIRAL2 LINAC: 14.5 A MeV HI, A/q=3 HI source Up to 1mA Beam dump & Movable fingers High power Rotating targets including actinides Gas cell Large acceptance Multipoles S3 transmission: 50% (5 charge states), Beam spot – 3*5 cm2 58Ni(40Ca,p3n)94Ag: few 10 pps amongst them the 21+ isomer 390 ms 208Pb(48Ca,2n)254No: about 1 pps Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Detection room Laser room Pauline Ascher – Wednesday – 10:15 Workshop “S3-Low Energy Branch” Orsay, May 30 – May 31, 2013 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Efficiency of the “Horn” Gas Cell (I) The dual chamber approach remains Gas flow S3 beam Calculations have done by Evgeny Mogilevskiy (Comsol) width Width – 40 mm, 20 mm Exit orifice diameter d= 0.5 mm, 1 mm Pressure (Ar) – 100, 300, 500 mbar Evacuation time, ms P=500 mbar, d=1 mm 40 Exit orifice Efficiency, % 30 85 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 600 Gas-cell based laser ionization and spectroscopy: worldwide With pre-Separator Without pre-Separator MARA JYFL IGISOL-4 JYFL DUBNA LISOL LLN SHIP GSI ANL S3 GANIL LBL TEXAS A&M ? Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 PALIS RIKEN KISS RIKEN Workshop on “Gas-Cell-Based Laser Ionization Spectroscopy” Leuven, May 30 – June 1, 2012 RIKEN-Wako, December 10 -11, 2012 Dedicated website & newsletters Sunchan Jeong http://kekrnb.kek.jp/iglis-net/ Active from the beginning of June Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Summary 1. Resonance laser ionization in a gas cell can be used for efficient production of exotic isotopes to perform nuclear spectroscopy and in-gas-cell laser spectroscopy 2. The novel approach based on the crossed laser beams with a supersonic gas jet has been proposed and realized in a free jet at off-line conditions. 3. Using this method, the spectral resolution can be improved by more than one order of magnitude (200 MHz, Δν/ν =2.3E-7) in comparison to the gas cell ionization. Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013 Yu. Kudryavtsev, SMI-13, Jyväskylä, June 11-13, 2013