H - IBGE
Transcription
H - IBGE
IAG PAIGH GEOCENTRIC REFERENCE SYSTEM FOR THE AMERICAS SIRGAS NEWSLETTER # 7 December 2002 NIMA IAG PAIGH NIMA TABLE OF CONTENTS EDITORIAL MINUTES OF THE COMMITTEE MEETING, HELD ON OCTOBER 21 AND 22, 2002, IN SANTIAGO, CHILE ANNEXES TO THE MINUTES I: STATUS ON THE INTEGRATION OF THE SOUTH AMERICAN COUNTRIES TO SIRGAS (WG II “GEOCENTRIC DATUM”) II: PRESENTATION OF THE SIRGAS 2000 GPS CAMPAIGN RESULTS III: ITRFYY AND ITS GEODETIC APPLICATION, BY MUNEENDRA KUMAR PRESENTATIONS OF THE WG III “VERTICAL DATUM” IV: V: INTRODUCTION URGENT NEED OF A MODERN VERTICAL REFERENCE SYSTEM VI: COMPUTATION OF GEOPOTENTIAL NUMBERS AND PHYSICAL HEIGHTS VII: REFERENCE SURFACE: CONSIDERATIONS REGARDING W0 VIII: FUTURE ACTIVITIES IX: STATUTE OF THE SIRGAS PROJECT X: LIST OF THE SANTIAGO MEETING ATTENDEES XI: PICTURES OF THE MEETING SIRGAS Project Netwsletter # 7 Page 1 IAG PAIGH NIMA EDITORIAL I am glad to introduce to readers the seventh edition of the SIRGAS Newsletter. This edition integrally covers the last project meeting, held on October 21 and 22, in Santiago, Chile. During this meeting, important discussions and resolutions were taken, which are described in this newsletter, with emphasis to those related to the results of the SIRGAS 2000 GPS campaign and to the new project statute. I would like to take this opportunity to wish readers, colleagues of the SIRGAS community and their families a Merry Christmas and a peaceful, healthy and successful New Year. Luiz Paulo Souto Fortes President of the SIRGAS Committee SIRGAS Project Netwsletter # 7 Page 2 IAG PAIGH NIMA MINUTES OF THE COMMITTEE MEETING, HELD ON OCTOBER 21 AND 22, 2002, DURING THE VII INTERNATIONAL CONGRESS OF EARTH SCIENCES, IN SANTIAGO, CHILE October 21st 1. Opening (L. Fortes, President of the Committee) The president of the Committee highlighted the financial support given by the International Association of Geodesy (IAG), decisive for holding the meeting. The Pan-American Institute of Geography and History (PAIGH), which had approved funds for the project in 2002, could not honor this commitment due to financial difficulties that it is currently facing. Therefore IAG responded to our last minute request, enabling the attendance of eight participants of seven countries of South America, which was decisive for the success of the meeting. 2. Status on the integration of the South American countries to SIRGAS (R. Barriga, President of the WG II) (Annex I) 3. Presentation of the SIRGAS 2000 GPS campaign results by the processing centers 3.1 IBGE (S. Costa) (Annex II) 3.2 DGFI (K. Kanniuth) The coordinates obtained in the individual solutions of each processing center (DGFI with Bernese, DGFI with GIPSY and IBGE with Bernese) shown a consistency between each other of about 5 mm in the horizontal components and 7.5 mm in the vertical component. Resolution: The SIRGAS Committee decided that the final solution of the SIRGAS 2000 GPS campaign will be generated by the combination of three solutions: DGFI´s, using the Bernese software; DGFI´s, using the GIPSY software; and IBGE´s, using the Bernese software. 4. Combination of the processing centers´ results (H. Drewes/K. Kanniuth/S. Costa) 4.1 Combination strategy and connection to ITRF2000 M. Kumar, from NIMA, presented the following issue: the ITRF solutions are generated using the tide-free system, which is not realistic and contradicts the IAG Resolution 16 of 1983 (Annex III) Resolution: To keep using the tide-free system in the SIRGAS 2000 results and to formally suggest to IAG to manage with the International Earth Rotation Service (IERS) the solution of this issue. SIRGAS Project Netwsletter # 7 Page 3 IAG PAIGH NIMA 4.2 Determination of velocities According to H. Drewes, it is not enough to consider the results of the SIRGAS 1995 and 2000 campaigns for the determination of the SIRGAS stations velocities. Resolution: The SIRGAS Committee approves H. Drewes´ proposal of considering the observations of permanent GPS stations and of geodynamic campaigns, in addition to the results of the SIRGAS 1995 and 2000 campaigns, for the determination of the velocity field of the South American continent. 4.3 Final results (coordinates and velocities) Resolution: The SIRGAS Committee accepts in advance as official the final combined results of the SIRGAS 2000 GPS campaign, to be generated by the processing centers in near future. Resolution: The SIRGAS Committee defines the date of December 20, 2002, as the deadline for the processing centers to release the final combined results of the SIRGAS 2000 GPS campaign. Resolution: The SIRGAS Committee defines the date of March 28, 2003, as the deadline for DGFI to release the results of the velocity field for the South American continent. Resolution: The procedures to generate the official results of the SIRGAS 2000 GPS campaign will be described in a final report, similarly to that released during the IAG Scientific Assembly, held in Rio de Janeiro, in 1997. Resolution: The SIRGAS Committee proposes to include in the SIRGAS 2000 GPS campaign final report a special acknowledgment to the processing centers – DGFI and IBGE – by the enormous efforts carried out and by the excellence of the results obtained. 5. Use of the SIRGAS 2000 final results (H. Drewes, Representative of IAG) Resolution: The SIRGAS Committee proposes to include in the SIRGAS 2000 GPS campaign final report detailed instructions about how to use the campaign final results. It was recommended that, for countries that have not adopted yet SIRGAS 1995 as reference system, they should adopt the system based on the SIRGAS 2000 results, reference epoch 2000.4. SIRGAS Project Netwsletter # 7 Page 4 IAG PAIGH NIMA 6. Presentation and start of discussion of the new statute proposal (C. Brunini, Substitute Representative of Argentina) October 22nd 7. Presentations of the Working Group III “Vertical Datum” (L. Sanchez, President of WG III, and H. Drewes, Representative of IAG) 7.1 Introduction (Annex IV) 7.2 Urgent need of a modern vertical reference system (Annex V) 7.3 Computation of geopotential numbers and physical heights (Annex VI) 7.4 Reference surface: considerations regarding W0 (Annex VII) 7.5 Future activities (Annex VIII), recommending to countries: • • • • • • • Geodetic leveling of the SIRGAS2000 stations Connection of leveling networks between neighboring countries Identification and typing of all leveling lines that connect SIRGAS2000 stations Typing of the national leveling networks Identification of the network nodes UNIFIED determination of the quasi-geoid Determination of the sea surface topography (SSTop) (GPS positioning of tide gauges) The WG III president offered support to the member countries of the SIRGAS Committee regarding the computation of geopotential numbers and help with parallel tasks. It is emphasized that the height differences to be used in computations are the observed ones, WITHOUT any error distribution or adjustment. 8. Continuation of the discussion on the new statute proposal (L. Fortes and C. Brunini) Resolution: The SIRGAS Committee approves the new project Statute, corresponding to the version originally proposed by the representation of Argentina, with the modifications discussed during the meeting in Santiago del Chile. With the approval of the Statute (Annex IX), the substitute representative of Argentina in the Committee, Claudio Brunini, proposed the names of Luiz Paulo Souto Fortes, from IBGE/Brazil, and Eduardo Andrés Lauría, from IGM/Argentina, respectively for president and vice-president of the project for the next term (2003-2007). The current president of the SIRGAS Committee will contact all countries embraced by the project in order to confirm the names of the representatives in the Committee and, consequently, to define the necessary quorum for electing the new project authorities. This election will be carried out by electronic mail and the elected authorities will be installed in office in July 2003, at the General Assembly of the International Association of Geodesy. SIRGAS Project Netwsletter # 7 Page 5 IAG PAIGH NIMA 9. Closing (L. Fortes) Resolution: The SIRGAS Committee acknowledges the Instituto Geográfico Militar of Chile for the excellent organization of the meeting and for the support to the Committee members. 10. List of attendees (Annex X) 11. Pictures of the meeting (Annex XI) SIRGAS Project Netwsletter # 7 Page 6 IAG PAIGH NIMA ANNEX I STATUS ON THE INTEGRATION OF THE SOUTH AMERICAN COUNTRIES TO SIRGAS (WG II “GEOCENTRIC DATUM”) (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) GRUPO DE TRABAJO II DATUM GEOCENTRICO TCL. R. Barriga V. email : rbarriga@igm.cl GRUPO DE TRABAJO II “DATUM GEOCENTRICO” MISION : Establecer un Datum Geocéntrico mediante la extensión de la Red GPS SIRGAS a través de la integración de las “Redes Geodésicas” de cada uno de los países sudamericanos participantes en el Proyecto. “SITUACION INDIVIDUAL DE CADA PAIS” ARGENTINA RESPONSABLES : Claudio Brunini, Juan Moirano U. Nac. De la Plata. Rubén Rodríguez Eduardo Lauría, Instituto Geográfico Militar. MEDICIONES DE TERRENO : 136 estaciones Red POSGAR 98 109 puntos en común con POSGAR 94 PROCES. DE LOS DATOS : Universidad Nacional de la Plata - DGFI. Software BERNESE 3.5 AVANCE : Recientemente el Subcomité de Geodesia ha recomendado el uso del nuevo marco de referencia POSGAR 98 para las aplicaciones geodésicas de alta precisión que se desarrollen en el futuro, aunque mantendrá por un tiempo más la vigencia de POSGAR 94. POSGAR 98, época 1995.4 CONTRIBUCION A SIRGAS 2000 : 20 estaciones. RED DE ARGENTINA BOLIVIA “SIN ANTECEDENTES ACTUALES” RESPONSABLES : Instituto Geográfico Militar MEDICIONES DE TERRENO : Existen 2 Redes de control GPS - Red geodésica Fundamental clase A - Red Minera clase B. PROCES. DE LOS DATOS : Instituto Geográfico Militar - UNLP Software BERNESE. CONTRIBUCION A SIRGAS 2000 : 9 estaciones. . ECUADOR RESPONSABLES : Departamento de Geodesia del instituto Geográfico Militar MEDICIONES DE TERRENO : 135 estaciones medidas durante 1994, 1996 y 1998. PROCES. DE LOS DATOS : En DGFI, Munich, Software BERNESE 4.0. AVANCE : Obtención de coordenadas enlazadas a SIRGAS, época 1995.4. CONTRIBUCION A SIRGAS 2000 : 8 estaciones. PUNTOS AMBOS SISTEMAS : 42 puntos en común entre PSAD56 y SIRGAS para la determinación de parámetros locales de transformación... RED DEL ECUADOR BRASIL RESPONSABLES : Sonia María Alves Costa - IBGE Instituto Brasileiro de Geografía y Estadística. CONTRIBUCION A SIRGAS : 22 estaciones SIRGAS, 14 son de la Red de Monitoreo Contínuo. PROCES. DE LOS DATOS : IBGE, Software BERNESE 4.0. AVANCE : En Octubre del año 2000 el IBGE organizó y coordinó el primer Seminario para visualizar la adopción de el nuevo Marco de Referencia Geodésico. En el año 2005, Brasil pretende adoptar el SIRGAS oficialmente. CONTRIBUCION A SIRGAS 2000 : 21 estaciones. RED DEL BRASIL 5 Rede Nacional GPS ano 2002 0 Fortaleza Manaus -5 Imperatriz Recife Crato -10 BomJesus -15 Cuiaba Salvador Brasília -20 Viçosa P.Prudente R.Janeiro -25 Curitiba GPS SIRGAS/RBMC -30 Sta. Maria Porto Alegre -70 -65 -60 -55 -50 -45 -40 -35 -30 CHILE RESPONSABLES : Instituto Geográfico Militar. MEDICIONES DE TERRENO : 260 puntos Nueva Red Geodésica Nacional. 133 puntos conectados a la antigua Red. PROCES. DE LOS DATOS : Instituto Geográfico Militar Software BERNESE 4.0 AVANCE : Coordenadas preliminares ITRF 2000, a la espera de ajuste final a SIRGAS 2000. Se estima que en el año 2005 se adoptará oficialmente SIRGAS en Chile. CONTRIBUCION A SIRGAS 2000 : 20 estaciones, incluyendo 8 estaciones GPS permanentes y 5 mareógrafos. RED CHILENA COLOMBIA RESPONSABLES : Laura Sánchez Instituto Geográfico Agustín Codazzi. MEDICIONES DE TERRENO : La Red MAGNA consta de 60 estaciones GPS de las cuales 16 corresponden a la Red CASA (Red Geodinámica para Centro y Sur de América). PROCES. DE LOS DATOS : I. G. Agustín Codazzi - DGFI. Software BERNESE 4.0 AVANCE : La Red MAGNA y en consecuencia SIRGAS fue adoptado como sistema oficial en Colombia desde 1998. Se están definiendo los estándares de geoposicionamiento a nivel nacional, dentro de la normativa ISO9001. CONTRIBUCION A SIRGAS 2000 : 8 estaciones. RED DE COLOMBIA 13° 13.40° PTBOL 12.60° 12° 13.38° 12.58° NAZAR 13.36° RIOHA 12.56° 13.34° SMART BQUIL 12.54° 11° SANAN 13.32° 81.41° 81.39° 81.37° 81.35° 12.52° SAN ANDRES, PROVIDENCIA Y SANTA CATALINA 12.50° 10° 12.48° 81.75° 81.73° 81.71° MAICA VALLED CARTA 81.69° BOSCO PLATO COROZ 9° MOMPO SROQU MONTE 8° TIBU AGUAC TURBO CAUCA 7° CUCUT BUCAR YARUM CRNOR RIONE QUIBD GUARI YOPAL BOGOT OROCU IBAGE TULUA MALPELO PTCAR TUNJA MANIZ 5° 4° ARAUC PTBER SOLAN 6° SARAV VILLA BTURA PTINI CALI 3° BACOM NEIVA GUAPI 2° POPAY SFELI TUMAC FLORE MITU PASTO 1° SJGUA MOCOA IPIAL 0° PTLEG ARARA 1° PEDRE CHORR 2° 3° 4° 1994 1994 - 1995 1995 1994 - 1997 1997 1994 - 1995 - 1997 LETIC 5° 80° 79° 78° 77° 76° 75° 74° 73° 72° 71° 70° 69° 68° 67° 66° PARAGUAY “SIN ANTECEDENTES ACTUALES” RESPONSABLES : Servicio Geográfico Militar MEDICIONES DE TERRENO : 165 puntos medidos de la Red Geodésica primaria en 1992. PROCES. DE LOS DATOS : Servicio Geográfico Militar y por el NIMA. CONTRIBUCION A SIRGAS 2000 : 1 Estación. PERU “SIN ANTECEDENTES ACTUALES” RESPONSABLES : Instituto Geográfico Nacional MEDICIONES DE TERRENO : 165 puntos medidos de la Red Geodésica primaria en 1992. PROCES. DE LOS DATOS : Servicio Geográfico Militar y por el NIMA. CONTRIBUCION A SIRGAS 2000 : 10 estaciones. URUGUAY “SIN ANTECEDENTES ACTUALES” RESPONSABLES : Servicio Geográfico Nacional y el Instituto de Agrimensura. CONTRIBUCION A SIRGAS 2000 : 8 estaciones. VENEZUELA RESPONSABLES : José Napoleón Hernández Instituto Geográfico de Venezuela Simón Bolivar MEDICIONES DE TERRENO : 156 estaciones entre 1995 y 2000. PROCES. DE LOS DATOS : Software BERNESE AVANCE : Venezuela posee 210 vértices integrados a SIRGAS, disponibles y publicados. Así mismo se encuentran 500 vértices totalmente calculados, en fase de edición de descripciones, accesos y monografías. Venezuela oficialmente ha adoptado a SIRGAS como nuevo Sistema de Referencia. CONTRIBUCION A SIRGAS 2000 : 11 estaciones. RED DE VENEZUELA GRUPO DE TRABAJO II DATUM GEOCENTRICO TCL. R. Barriga V. email : rbarriga@igm.cl IAG PAIGH ANNEX II PRESENTATION OF THE SIRGAS 2000 GPS CAMPAIGN RESULTS (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) NIMA RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Klaus Kaniuth - Deutsches Geodatisches Forschungsinstitut - DGFI Sonia Costa - Brazilian Institute of Geography and Statistics - IBGE International Symposium of the IAG Recent Crustal Deformation in South America and Surrounding Area, october, 2002 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Goals of SIRGAS2000 campaign ¾ Maintenance of SIRGAS reference frame; ¾ Define a unique height reference system for the Americas. 2 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Selection criteria of stations ¾ Tide gauges, which define the vertical datum of the leveling networks in each country; ¾ Other tide gauges (countries with long extension of coast); ¾ Stations of leveling networks at the borders between neighboring countries; ¾ Stations participating of SIRGAS95 network. 3 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Campaign Specifications and Equipment ¾The data on each station was organized in 24 hours period and converted to RINEX format; ¾ Data collection rate was 15 and 30 (IGS and NGS) sec. ; ¾ Double frequencies receivers preferably with choke ring antenna or receivers without choke ring antenna, that ones recognized by IGS; ¾Station information's: sessions, antenna station height name, observation (slant/vertical) and antenna/receiver type (IGS identification). 4 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Processing Information's ¾ Orbits and ERP: Combined IGS (SP3 files); ¾ Coordinates of the reference stations : ITRF97, epoch 2000.3; ¾Antenna phase center offset and variation: Information obtained at IGS and NGS; ¾Antenna heights were corrected to ARP (Antenna Reference Point). ¾Software: Bernese , version 4.2 5 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Processing Strategies - IBGE Solutions Mode Observations Strategy forming baselines Sampling rate Elevation cut off angle Elevation weighting Troposphere model (A PRIORI) Trop. zenith delay Mapping function Ionosfere model Ambiguity resolution Ocean Loading Reference Stations Options Daily sessions double differences, observable L3 (ionosphere free, linear combination of L1 and L2) OBS-MAX 30 sec. 10 degrees Cos(z) Not applied Every 2 hours (12 corrections) Niell (dry component) Not applied QIF (Quasi Ionosfere Free) + GIMs\CODE maps Not applied AREQ, AMC2, ALBH, AOML, BRAZ, CRO1, FORT, LPGS, OHIG, KOUR, SANT, WES2, CORD, JAMA and UNSA 6 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Combination of Solutions / IBGE ¾ Divided in 9 blocks, with about 22 stations each; ¾ 3 IGS stations make the link between blocks; ¾ Final daily solutions were saved as removable constraints 7 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Link Stations between blocks N WES2 AMC2 ALBH N1 WES2 AMC2 ALBH BRMU AOML INEG N2 AOML INEG BRMU JAMA CRO1 ESTI C JAMA CRO1 ESTI CART FORT KOUR S CART FORT KOUR BOGA IMPZ BRAZ S1 BOGA IMPZ BRAZ AREQ ZAMO UNSA S2 BRAZ ZAMO UNSA LPGS CHAM CORU S3 UNSA LPGS CHAM CORU SANT CORD S4 LPGS SANT CORD 8 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Network Configuration and Blocks Division - IBGE - RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN STATIONS PROBLEMS AND CHANGES – – – – – – – – UCOR (Argentina) and NPAC (Guatemala) were not used in processing. CART (Colombia) is a different station from campaign 1995, but has the same identification for SIRGAS2000. BATL (Ecuador) was identified as GALA (Ecuador) in campaign 1995. Consequently, GALA in campaign 2000 (IGS station) is a different station from campaign 1995. MANU (Brazil) station was identified as MANA in campaign 1995. L10B (Argentina) was identified as LO10 in campaign 1995. CACH (Brazil) station from campaign 1995 was destroyed and changed to CAC1. BOGT (Colombia) station in 1995 campaign, was changed to BOGA. Stations YACA (Uruguay), ASUN (Paraguay), were not occupied in SIRGAS 2000 campaign. 10 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN DATA PROBLEMS VIMS (U.S.)/day 133, YBHB – Too many cycles slips: (U.S.)/day 134, TEGU (Honduras)/ day131, CHIQ (Bolivia)/ days 131-132. – Few quantity of data: KAMA (Venezuela)/day132 (4 hours of data), ARIC/day 135 (1:30 of data), LOTE (Argentina)/day 136 one hour of data), RIOP (Ecuador)/day 134 (some minutes of data), NPRI (U.S.)/day 132 (less than 6 hours of data), AMC2 (U.S.)/day 137 (less than 6 hours of data), CA00/day 137. – Data from wrong date: MERI (Mexico)/day 138 (data from 1980), CHI3 (Mexico)/day 135, OAXA (Mexico)/day 135, RBLS (Argentina)/day 139. – Data excluded because of observations problems: ANTF (Chile)/days 136, 137, 138, 139 and 140. 11 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Results ¾ Preliminary combination: ADDNEQ ¾ removable constraints: CRO1, KOUR, FORT, ALBH, WES2, BRAZ, AREQ, LPGS, SANT, OHIG and CORD. ¾ Stations excluded from final results: UCOR, NPAC and ANTO. ¾ Number of stations processed = 182 ¾Stations with less than 5 days of solutions: CHAJ (3 days), JUNQ (3 days), LOTE (4 days), ELEN (2 day) and RIOP (3 days). ¾ Checking accuracy with ITRF2000: Stations, which have residuals higher than 20 mm are: GALA, CRO1, INEG, SIO3. 12 -20 -60 -40 STATIONS 60 40 YELL IGM0 20 HOLB GODE GALA GAL1 FORT FLIN EISL DUBO DRAO CUIB CRO1 CORD CHUR CHA1 BRMU BRAZ BOMJ ASHV AREQ AOML AMC2 ALGO 30 WILL WHIT WES2 VIMS VICO VBCA USNO USNA UEPP STJO SOL1 SIO3 -30 SCH2 SANT RIOP RIOG PUR3 PARA OHIG MANU LPGS KOUR JAMA INEG MM ALBH -10 IMPZ MM RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Accuracy of solution / IBGE ITRF2000 RESIDUALS NORTH EAST UP 10 0 -20 STATIONS ITRF2000 RESIDUALS NORTH EAST UP 20 0 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Consistency of daily solutions / IBGE –The stations, which have up component RMS higher than 20 mm are: IMPZ and TALA –EISL station presented higher RMS in the internal solution 14 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Consistency of Block solutions milimeter UNWEIGHTED RM S RESIDUALS - NORTH COM PONENT 14 SIRGASN 12 SIRGASN1 10 SIRGASN2 8 SIRGASC 6 SIRGASS 4 SIRGASS1 2 SIRGASS2 0 DAYS 131 132 133 134 135 136 137 138 139 140 SIRGASS3 SIRGASS4 milimeters UNWEIGHTED RMS RESIDUALS - EAST COMPONENT 14 12 10 8 6 4 2 0 DAYS131 SIRGASN SIRGASN1 SIRGASN2 SIRGASC SIRGASS SIRGASS1 SIRGASS2 132 133 134 135 136 137 138 139 140 SIRGASS3 SIRGASS4 milimeters UNWEIGHTED RMS RESIDUALS - UP COMPONENT 18 16 14 SIRGASN SIRGASN1 12 10 8 6 SIRGASN2 4 2 0 SIRGASS1 DAYS 131 SIRGASC SIRGASS SIRGASS2 132 133 134 135 136 137 138 139 140 SIRGASS3 15 SIRGASS4 RESULTS OF THE SIRGAS 2000 GPS CAMPAIGN Consistency of Block solutions SIRGASN WEIGHTED RM S RESIDUALS - NORTH COM PONENT SIRGASN1 milimeter 14 12 10 8 6 4 2 0 milimeter DAYS SIRGASN2 SIRGASC SIRGASS SIRGASS1 SIRGASS2 SIRGASS3 131 132 134 135 136 137 138 139 140 SIRGASN1 SIRGASN2 SIRGASC SIRGASS SIRGASS1 SIRGASS2 SIRGASS3 131 132 133 134 135 136 137 138 139 140 milimeters WEIGHTED RMS RESIDUALS - UP COMPONENT 14 12 10 8 6 4 2 0 DAYS SIRGASS4 SIRGASN WEIGHTED RMS RESIDUALS - EAST COMPONENT 14 12 10 8 6 4 2 0 DAYS 133 131 132 133 134 135 136 137 138 139 140 SIRGASS4 SIRGASN SIRGASN1 SIRGASN2 SIRGASC SIRGASS SIRGASS1 SIRGASS2 SIRGASS3 SIRGASS4 16 IAG PAIGH ANNEX III ITRFYY AND ITS GEODETIC APPLICATION BY MUNEENDRA KUMAR NIMA ITRFyy AND ITS GEODETIC APPLICATION By Muneendra Kumar National Imagery and Mapping Agency Bethesda MD 20816-5003 (USA) Abstract The International Terrestrial Reference Frame (ITRF) is a realization of the International Terrestrial Reference System (ITRS). Since its first realization in 1988, there have been many variations and additions in data types and changes in computations of ITRF. Between ITRF88 and ITRF97, the reference epochs have also changed three times. Many technical notes from the International Earth Rotation Service (IERS) are available. These notes explain and provide in great details all the technical complexities of different realizations, which have been update every year between 1988 and 1994. After 1994, the ITRF 96 and 97 are the two latest solutions. This paper intends to present and clarify the technical interpretation of the ITRF realization and its definition for the practical geodesists who want to update the geodetic infrastructure of a nation, region, continent, or for the world. The attempt here is to include significant details and explanations to provide a clear and consistent interpretation. 1. INTRODUCTION International Earth Rotation Service (IERS), since it’s founding in 1988, has been updating ITRS with its realizations as ITRF. First solution was ITRF88, which then was followed yearly by ITRF89, 90, 91, 92, 93, and 94. After this, we got two more solutions, viz., ITRF96 and ITRF97. ITRF realization consists in a set of station Cartesian coordinates, a velocity field, and a full variance-covariance matrix (Silard et al, 1998). The direction of the IERS Reference Pole (IRP) and Reference Meridian (IRM) corresponds to the Bureau International de L’Heure (BIH) Conventional Terrestrial System (CTS) Pole and Zero Meridian (McCarthy, 1996). Between 1988 and 1993, ITRFyy (where “yy” corresponds to the year in which it was realized) solution was obtained by a combination of all data submitted to the beginning of yy+1 (Boucher et al, 1997). Here, the reference epoch was 1988.0. The ITRF94 was then defined to the reference epoch 1993.0. Then, the reference frame definition (origin, scale, orientation, and time evolution) was achieved in such a way that ITRF96 is in the same system as ITRF94 (Boucher et al, 1997). This was followed by a combined solution for ITRF96 and ITRF97 with 1997.0 as reference epoch. This paper provides and clarifies the technical details concerning the different ITRFs and their reference epochs with the each periodic IERS solution. A suggested approach is also included for geodetic use when updating national, regional, continental, and/or global geodetic system(s) or datum(s). Published in the Proceedings of the IAG 2001 Scientific Assembly, 2-7 September 2001, Budapest, Hungary 2. INTERNATIONAL TERRESTRIAL REFERENCE FRAME (ITRF) ITRF is a realization of the International Terrestrial Reference System (ITRS). The orientation of its axes is consistent with the Bureau de L’Heure (BIH) Conventional Terrestrial System (CTS) at the epoch 1984.0, in accordance with the resolution of the International Union of Geodesy and Geophysics (IUGG) and International Astronomical Union (IAU). The orientation of the system is such that it has no residual rotational horizontal velocity relative to the Earth’s crust. The construction of the ITRF is based on the combination of sets of station coordinates and velocities derived from observations from Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Lunar Laser Ranging (LLR). Data from Global Positioning System (GPS) was introduced in 1991 and from Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) in 1994. ITRFyy represents a solution, which is based on the data sets that are available till the end of year “yy” and is performed in the year “yy+1”. From the first ITRF88 the solutions are available for 89, 90, 91, 92, 93, 94, 96, 97, and a combined solution for 96 and 97. 3. ITRF COMPUTATIONS The procedure is in sequential steps. (1) First step involves a reduction of coordinates for the participating stations to a common reference epoch t0 using their respective velocity models. These velocity models are either based on fixed tectonic plate motion or estimated velocity fields. The computations (XS, XS’)t0 are done separately for each system “S”, e.g., VLBI. (2) Second step involves a least-squares estimation at the reference epoch “t0” the coordinates and velocities for the ITRFyy of all the stations from all the systems, e.g., VLBI, SLR, LLR, GPS, and DORIS. The model used in the “combination” solution is based on Euclidian similarity of seven parameters: XS S Y S Z = X T1S Y S Z + t0 T2 T3 DS + S R3 R2 S -R3S S X S Y S R1 S S D R1 R2S D Z (1) t0 where X,Y,Z are the coordinates of a station at reference epoch t0 in the ITRFyy, T1S, T2S, T3S, DS, R1S, R2S, R3S are respectively the three translations, scale factor, and three rotations between the ITRFyy and individual “S” solutions. (3) The local geodetic survey ties, with their standard deviations, are used to tie the stations of the different systems. 4. ITRF EPOCHS From the first ITRF88, the reference epochs used to define different ITRF solutions (Altamimi, 2000) are: ITRF88 to ITRF93 - 1988.0 ITRF94 - 1993.0 ITRF96 - 1993.0 ITRF96 and ITRF97 - 1997.0 ITRF00 - 1997.0 Here, we can interpret that ITRF 89 to ITRF93 represent the realization of ITRF88 with additional data sets in each subsequent solution. Thus, in real sense, each of the solutions for the years 1988 to 1993 only realized the same ITRF. It is important to note that the combined solution for the ITRF96 and ITRF97 was obtained by combining positions and velocities simultaneously. This procedure allowed the use of full variance-covariance matrices of the individual VLBI, SLR, GPS, and DORIS data solutions. This will allow users to propagate the 1997.0 positions to any desired epoch. Thus, this approach also replaced the old ITRF96 as a separate realization. 5. ITRF DEFINITION Coordinates are defined in a conventional “tide-free” system (APPENDIX 1) where effects of all tidal have been removed. To achieve this, the Equation 6 (Pp. 57, IERS Tech Note 21, 1996) is used. 6. ITRF ORIENTATION AND SCALE (1) The orientation is defined by adopting IERS Earth Orientation Parameters (ERP) at a “reference” epoch (See Section 3). (2) The orientation of the IERS Reference Pole (IRP) and Reference Meridian (IRM) were initially given by the BIH Terrestrial System (BTS) 1984.0 (McCarthy, 1996). Subsequently, the IRP and IRM are consistent with the “corresponding” directions of the BTS within 0.005”. Thus, the corresponding BTS for the ITRF solutions from 1988 to 1993 (Section 4) will then be: ITRF88 to ITRF93 - BTS 1988.0 Since BIH was replaced by IERS from 1988, the orientations for ITRF94, ITRF96, and ITRF97 followed an independent definition. According to Montag (1997), the IRP and IRM were defined by IERS on the basis of the Conventional International Origin (CIO). However, it is not clear which CIO would have been used. (3) The scale is obtained by relativistic modeling and is consistent with the Geocentric Coordinate Time (TCG) for a geocentric local frame (Chapter 11, IERS Tech. Note 21, 1996). (4) The unit is meter (SI). The time evolution of the orientation is maintained by using a no-net- rotation condition with regards to the horizontal tectonic motions over the whole Earth. 7. MOVEMENT OF THE GEOCENTER Recent analysis of SLR and other satellite data has shown that the coordinates of stations connected to the solid Earth, as realized by the ITRF, show variations as compared with the ITRF, which is assumed to be fixed to the rigid Easrth’s crust (Montag, 1997). Thus, the origin of the ITRF is defined such that the time-dependent translation vector T (from the ITRF origin to the instantaneous center of mass of the Earth) is minimum (Montag, 1997). 8. GEODETIC APPLICATION A. Important Considerations (McCarthy, 1996) - a. ITRF coordinates are realized in the tide-free system and it is important to note that this system is not realistic and the crust can not be observed. b. Alternatively, in the zero-tide system, the crust corresponds to the realistic time average which varies because of the action of lunisolar tides. c. The ITRF coordinates (Section 8.A.a. above) contradicts the IAG Resolution 16, adopted at The 1983 General Assembly (APPENDIX 2). B. Recommendation The following steps relate to a 10-day GPS campaign scenario which is observed from 25 June to 5 July 2001, with mid-epoch of 2001.5. a. Select the IGS stations, which are to be used as constraints to define the intended geodetic system. b. Using the “latest” available ITRF coordinates and velocities, viz., ITRF00 with reference epoch 1997.0, propagate coordinates of the stations to the mid-epoch 2001.5. c. To be consistent with the IAG Resolution 16, 1983 (APPENDIX 2), compute the IGS station coordinates to the zero-tide environment. d. Adjust the network using the propagated and restored coordinates with the zero-tide effects as constraints with appropriate weights. The reference frame of the geodetic system can be held fixed till the next accuracy enhancement. It need not change with each new realization of an ITRFyy. A reference epoch change would be optional but may not be necessary. References Boucher, C. Altamimi, Z., and Sillard, P., 1998. “Results and Analysis of the ITRF96”, IERS Technical Note 24, Central Bureau of IERS, Paris, France. Boucher, C. Altamimi, Z., and Sillard, P., 1999. “The 1997 International Terrestrial Reference Frame (ITRF97)”, 1999, IERS Technical Note 27, Central Bureau of IERS, Paris, France. Ekman, M., 1989. “Impacts of Geodetic Phenomena on Systems of Height and Gravity”, Bull. Geod., 63. McCarthy, D. D., 1992. “IERS Standards (1992)”, IERS Technical Note 13, Central Bureau of IERS, Paris, France. McCarthy, D.D., 1996. “IERS Conventions (1996)”, IERS Technical Note 21, Central Bureau of IERS, Paris, France. Montag, H., 1997. “Zur Definition and Uberwachung der Parameters des International Terrestrial Reference Systems ITRF mit besonderer Berucksichtigung der Variationen des Geozentrums”, Zeitschrift fur Vermessungswesen (ZfV), vol. 123, No. 7. (English Translation, NIMA TC5480, 2000) Rapp, R. H., 1989. “The Treatment of Permanent Tidal Effects in the Analysis of Satellite Altimeter Data for Sea Surface Topography”, Ma, Geod., 14. APPENDIX 1 To account for the effect of the permanent tide, terrestrial reference frames may be defined: Zero-tide – Permanent or “zero frequency tide” is retained. The crust corresponds to the realistic time average, which varies with the luni-solar tides. Tide-free – All effects of permanent tide are removed. This is not realistic since the crust can not be observed. Mean-tide – This a “tide-free” system except the geoid is modeled with permanent tide effects. References McCarthy, Dennis D., “IERS Technical Note 21”, 1996. Ekman, M., 1989. “Impacts of Geodetic Phenomena on Systems of Height and Gravity”, Bull. Geod., 63. Rapp, R. H., 1989. “The Treatment of Permanent Tidal Effects in the Analysis of Satellite Altimeter Data for Sea Surface Topography”, Ma, Geod., 14. Poutanen, M., Vermeer, M., and Mekinen, J., 1996. “The Permanent Tide in GPS Positioning”, Journal. Of GEOD. APPENDIX 2 IAG Resolution No. 16, 19831 The International Association of Geodesy (IAG), recognizing the need for the uniform treatment of tidal corrections to various geodetic quantities such as gravity and station positions, and considering the reports of the Standard Earth Tide Committee and S.S.G. 2.55, recommends that : 1. the rigid Earth model be the Cartwright – Taylor - Edden model with additional constants specified by the International Centre for Earth Tides, 2. the elastic Earth model be that described by Wahr using the 1066 A model Earth of Gilbert and Dziewonski, 3. the indirect effect due the permanent yielding of the Earth be not removed, and 4. ocean loading effects be calculated using the tidal charts and data produced by Schwiderski as working standards. 1 Text obtained from IAG. IAG PAIGH ANNEX IV PRESENTATIONS OF THE WG III “VERTICAL DATUM”: INTRODUCTION (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) NIMA GTIII-SIRGAS: Dátum Vertical • Sep 1997: Adopción oficial de las coordenadas SIRGAS y creación del GTIII-SIRGAS: Dátum vertical. Presidente: R. Luz • Ago 1998: Taller de trabajo: consideraciones teóricas para la definición del nuevo sistema vertical: + alturas elipsoidales + un tipo de alturas físicas + superfcies de referencia correspondientes + realización mediante un marco de referencia (h, C, N) • Jul 1999: Documento técnico sobre los fundamentos teóricos del sistema vertical, BIVAS/BIDAS, planificación campaña GPS mayo 2000 • May 2000: Campaña GPS: realización de la componente geométrica del nuevo sistema vertical: 184 estaciones, 115 en América del Sur • Feb 2001: “Sistema de referencia geocéntrico para las Américas“, recomendación oficial para la adopción de alturas normales • Sep 2001: Preprocesamiento de las campaña 2000. Presidente GTIII-SIRGAS: Laura Sánchez Santiago de Chile, Octubre 2002 Componentes del nuevo sistema vertical 1. Alturas: Elipsoidales (componente geométrica) Normales (componente física) 2. Superficies de referencia: Elipsoide GRS80 (Elipsoidales) Cuasigeoide (Normales) 3. Marco de referencia: Estaciones SIRGAS95 Mareógrafos estaciones fronterizas H N= h - ζ HN = C/γm HN = Σdn + kN nivel de referencia (W0) nivel medio del mar coordenadas SIRGAS nivelación geométrica valor de gravedad 4. Mantenimiento del sistema de referencia: Cambios del marco de referencia a través del tiempo Santiago de Chile, Octubre 2002 Actividades recientes en los países de América del Sur relacionadas con el GTIII-SIRGAS (I) ➤ Diagnóstico de los sistemas de alturas existentes ✔ ✔ ✔ ✔ ✔ ✔ The vertical reference system in the Argentine Republic (Lauría, et al. 2001) Brazilian first order levelling network (Luz, et al. 2001) The vertical geodetic network in Chile (Maturana et al.2001) Considerations of different height systems in Venezuela (Wildermann, et al. 2001) Vertical height system in Colombia (Sánchez 2001) Reportes al GTIII: Argentina, Brasil, Bolivia, Chile, Colombia, Ecuador, Perú, Uruguay ➤ Determinación de la componente geométrica (alturas elipsoidales) ✔ Procesamiento SIRGAS2000: Kaniuth (DGFI), Costa (IBGE) ➤ Superficies de referencia: Cuasi-geoide ✔Subcomisión de la IAG para la determinación del geoide en América del Sur ✔New results in the determination of the geoid model in Argentina (Pacino, et al. 2001) ✔Data collecting and processing for a quasi-geoid determination in Brazil (Blitzkow, et al. 2001) ✔Improving a quasi-geoid model in Colombia (Martínez, et al, 2001) ✔The vertical datum and local geoid models in Uruguay (Subiza, et al. 2001) ✔Current status of geoid calculation in Venezuela (Hoyer, et al. 2001) ✔A reference suface for the unified height system in the northern part of South America (Sánchez, 2001) Santiago de Chile, Octubre 2002 Actividades recientes en los países de América del Sur relacionadas con el GTIII-SIRGAS (II) ➤ Topografía y variación de la superficie del mar ✔ Correlation between multi-mission altimeter time series and tide gauge registration in the Caribbean sea (AcuEa, et al. 2001) ✔Monitoring tide gauges benchmarks in Argentina by GPS (Natali, et al. 2001) ✔Connecting sea level and height systems along the coast of South America (AcuEa, et al. 2001) ✔Local effects in the Brazilian vertical datum (de Freitas, et al. 2001) ✔AcompaEamiento del dátum altimétrico Imbituba a través de las redes altimétrica y mareográfica del sistema geodésico brasileEo (Luz et al. 2001) ✔Vertical crustal movement of tide gauges in Argentina (Natali, et al. 2002) ➤ Nivel del cuasi-geoide (W0) ✔Associated problems to link the South American vertical networks and possible approaches to face them (de Freitas, et al. 2001) ✔Realisation of the Soth American reference system (Sánchez & Drewes 2002) ➤ Cálculo de números geopotenciales ✔Approach to the new vertical reference system for Colombia (Sánchez & Martínez 2001) ✔Comparisson of the classical and the modern vertical reference system in Colombia (Sánchez & Drewes 2001) ✔Hacia una nueva referencia vertical en Argentina (Moirano et al. 2002) Santiago de Chile, Octubre 2002 GTIII-SIRGAS: Taller de trabajo, Santiago de Chile, octubre 2002 ➨ Importancia de la definición de un sistema vertical moderno de referencia ➨ Cálculo de número geopotenciales ➨ Comentarios sobre el nivel de la superficie de referencia física: Cuasi-geoide ➨ Actividades inmediatas .... URGENTES!!! Santiago de Chile, Octubre 2002 IAG PAIGH ANNEX V PRESENTATIONS OF THE WG III “VERTICAL DATUM”: URGENT NEED OF A MODERN VERTICAL REFERENCE SYSTEM (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) NIMA The Urgent Need of Modern Vertical Reference Systems Status of classical height systems (1) • Classical height reference systems shall refer to the geoid as an equipotential surface of the Earth’s gravity field. • They are connected to the mean sea level (MSL) during an arbitrarily chosen epoch at a selected tide gauge. • The mean sea level of a tide gauge does not refer to the geoid - because of the geographic variations of sea level (SSTop). Sea Surface Topography Around South America Bosch 2000 Status of Classical Height Systems (1) • Classical height reference systems shall refer to the geoid as an equipotential surface of the Earth’s gravity field. • They are connected to the mean sea level (MSL) during an arbitrarily chosen epoch at a selected tide gauge. • The mean sea level of a tide gauge does not refer to the geoid - because of the geographic variations of sea level (SSTop) - because of temporal variations of mean sea level Variation of Tide Gauge Records Examples: Mar del Plata (Arg.) -0,2 mm/a Buenaventura (Col.) 6,1 mm/a La Libertad (Ecu.) -1,0 mm/a La Guaira (Ven.) 2,5 mm/a Status of Classical Height Systems (1) • Classical height reference systems shall refer to the geoid as an equipotential surface of the Earth’s gravity field. • They are connected to the mean sea level (MSL) during an arbitrarily chosen epoch at a selected tide gauge. • The mean sea level of a tide gauge does not refer to the geoid - because of the geographic variations of sea level (SSTop) - because of temporal variations of mean sea level Consequences • All height systems referring to different tide gauges (i.e., national height systems) provide a different height level. Status of Classical Height Systems (2) • Heights are extended from the tide gauges to the continental interior by spirit levelling. • Spirit levelling does not refer to the geoid, but it has to be corrected for gravity effects. Heights from Spirit Levelling Orthometric Heights and Normal Heights Orthometric heights: H = (W0 - WP) / gm Normal heights: HN = (W0 - WP) / γm gm can only be determined using a hypothesis on the gravity gradient dg/dH γm can be computed from the normal gravity field of the reference ellipsoid (GRS80) Modern Height Systems • Nowadays heights are determined with modern geodetic space techniques, e.g., GPS. • The primary height system is geometrically defined by a reference ellipsoid. Ellipsoidal Heights Combination of Modern Heights and Classical Heights To transfer modern heights (h) to classical height systems they have to be reduced because of geoid undulations (N) or height anomalies (ζ) h H=h-N h HN = h - ζ This requires the determination of geoid or cuasigeoid, respectively. Most global gravity field models refer more closely to the cuasigeoid than to the geoid (because they do not reduce local gravity gradients). Conclusion • Height determination will be done in future primarily by GPS. • To combine ellipsoidal heights from GPS with classical heights from spirit levelling we have to reduce both of them to the same height reference system. • Reduction of ellipsoidal heights (from GPS) to normal heights is possible without hypothesis and in a unique global reference frame by height anomalies from global cuasigeoid computations. • To apply “GPS levelling” correctly it is necessary to reduce all national height systems from levelled heights to normal heights! IAG PAIGH NIMA ANNEX VI PRESENTATIONS OF THE WG III “VERTICAL DATUM”: COMPUTATION OF GEOPOTENTIAL NUMBERS AND PHYSICAL HEIGHTS (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) Cálculo de números geopotenciales dn1 ≠ dn2 Supercie E quipotencia l B 3 dn1 2 1 A dn2 Línea de la plomada (dirección del vector de la gravedad) W = W2 W = W1 Geoid W = W0 p C = W0 − W p = ∫ g ⋅ dn = ∑ g i ⋅ ∆ni 0 i CB = (g A1 ⋅ ∆n A1 )+ (g12 ⋅ ∆n12 )+ (g 23 ⋅ ∆n23 )+ (g 3 B ⋅ ∆n3 B ) g A1 g A + g1 = 2 GTIII-SIRGAS Santiago de Chile, Octubre 2002 Cálculo de números geopotenciales Información requerida: ☛ Diferencias de nivel medidas (errores sistemáticos) ☛ Distancia (en km) entre los puntos nivelados ☛ Año de nivelación ☛ Valores de gravedad real en cada punto de nivelación GTIII-SIRGAS Santiago de Chile, Octubre 2002 Cálculo de números geopotenciales Información requerida: Diferencias de nivel medidas (errores sistemáticos) Refracción ε =ε R ε R ε ≠ε R ε V ε R V ε V V GTIII-SIRGAS Santiago de Chile, Octubre 2002 Cálculo de números geopotenciales Información requerida: Distancia (en km) entre los puntos nivelados Error medio (Ponderación) m∆n = 4 mm d [km ] p∆n 1 1 / 16 = 2 = m∆n d [km ] GTIII-SIRGAS Santiago de Chile, Octubre 2002 Cálculo de números geopotenciales Información requerida: Año de nivelación Nivelaciones en diferentes épocas D C 1985 1985 C 1950 A 1992 B A B 1950 E D 8 197 1962 E D Cambios en los desniveles C medidos entre los mismos puntos: errores de observación? movimiento vertical? Reducción de las observaciones a una sóla época? GTIII-SIRGAS Santiago de Chile, Octubre 2002 Cálculo de números geopotenciales Información requerida: Valores de gravedad real en cada punto de nivelación Disponibilidad de valores de gravedad E B A C D Interpolación de los valores de gravedad observada!! GTIII-SIRGAS Santiago de Chile, Octubre 2002 Precisión requerida en la interpolación de gravedad para el cálculo de números geopotenciales C = ∑ g ∆n ⇒ mC2 = g 2 m∆2n + ∆n 2 mg2 Σ∆n [m] 10 20 30 40 50 70 100 200 500 1000 2000 4000 ⇒ m∆n = ± 4 mm d [km ] mg[mGal] d = 1km mg[mGal] d = 2km 40 20 13 10 8 6 4 2 1 0,5 0,3 0,1 55 28 19 14 11 8 6 3 1,5 0,8 0,5 0,2 GTIII-SIRGAS Santiago de Chile, Octubre 2002 Recomendaciones referentes a la interpolación de gravedad para el cálculo de números geopotenciales ⇒ La gravedad varía con la altura y con las masas ⇒ Anomalía de Bouguer!! ∆gBouguer = gobs + CAL + Cbouguer - γ ⇒ gobs = ∆gBouguer - CAL -CBouguer + γ CAL = 0,3086 H CBouguer = -2πGρ H ≈ - 0,1119 H γ = Gravedad teórica sobre GRS80 ⇒ Precisión de la latitud para el cálculo de γ: Interpolación de gravedad: ~2” ≈ 60 m Alturas normales: ~0,5”≈ 15 m ⇒ Altura de los puntos a interpolar: H= punto ∑ ∆n mareógrafo GTIII-SIRGAS Santiago de Chile, Octubre 2002 Actividades URGENTES relacionadas con el cálculo de números geopotenciales Digitación (formato digital) de las nivelaciones nacionales → → → → → → nombre del punto desnivel medido distancia [km] entre ellos año de observación coordenadas geodésicas (latitud y longitud) valor de gravedad observado o interpolado a partir de Anomalía Simple de Bouguer GTIII-SIRGAS Santiago de Chile, Octubre 2002 Actividades INMEDIATAS relacionadas con el cálculo de números geopotenciales Identificación de los nodos de las redes de nivelación nacionales GTIII-SIRGAS Santiago de Chile, Octubre 2002 Actividades RE-URGENTES relacionadas con el cálculo de números geopotenciales Identificación y digitación de todas las líneas de nivelación que conectan las estaciones SIRGAS2000: (SIRGAS95, mareógrafos y estaciones fronterizas) GTIII-SIRGAS Santiago de Chile, Octubre 2002 Y después de los números geopotenciales..... Definición de los dátum clásicos: Superficie del mar = Geoide Imbituba Buenaventura C ol om bi a Br Geoide as il H h Nivel medio del mar N Elipsoide GTIII-SIRGAS Santiago de Chile, Octubre 2002 Y después de los números geopotenciales..... Sistema vertical modeno: Superficie del mar ≠ Geoide Buenaventura Imbituba C ol om bi a Br NMM (1942 - 1963) W0 Col Geoide SSTop (Col) Ccol as il Cbra ∆W NMM (1949 - 1957) SSTop (Bra) W0 Bra ⇒ Cúal puede ser la referencia para ∆W? ⇒ Es necesario definir un W0? Elipsoide GTIII-SIRGAS Santiago de Chile, Octubre 2002 IAG PAIGH ANNEX VII PRESENTATIONS OF THE WG III “VERTICAL DATUM”: REFERENCE SURFACE: CONSIDERATIONS REGARDING W0 (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) NIMA The Realisation of the Height Reference Surface - W0 Considerations • Earth gravity models, such as EGM96, provide a spherical harmonic expansion of the gravity potential: GM W= r ∞ 1 + ∑ l =1 l 1 2 2 a (Clm cos mλ + S lm sin mλ ) Plm (cos θ ) + ω p ∑ m =0 r 2 l • The radius r, for which to apply this expansion, may arbitrarily be chosen, e.g., the semimajor axis a of a best-fitting ellipsoid. • Therefore, the geoid is not unequivocally prescribed but has to be defined by a certain value a, or equivalently by W0. • After the definition of Listing (1873) the equipotential surface W = W0 of the geoid coincides with the mean sea level. This is not automatically realised by using an Earth gravity model. General Procedure of W0 Determination From satellite altimetry we get the three-dimensional position of the sea surface. This surface differs from the geoid because of sea surface topography (SSTop). geoid ellipsoid sea surface General Procedure of W0 Determination General Procedure of W0 Determination Geoid W0 Sea Surface WSS ri rk SSTop - We determine the gravity potential WSS of all the sea surface around the world from a Earth gravity model. - We compute the average of all the WSS and assume that this eliminates SSTop, i.e., the average is W0. - Instead of WSS we also can take the average of SSTop = (W0 - WSS) / γ (Poster Sánchez and Drewes) Conclusions • SIRGAS defines the unified vertical reference system by ellipsoidal heights referring to the GRS80 parameters and normal heights referring to a global cuasigeoid. • The level of the cuasigeoid has to be realised in America by the mean sea level - or another approximation. • The mean sea level depends on the geographic position. Therefore a kind of average has to be computed. • The mean sea level also depends on the epoch of definition. Therefore a reference epoch has to be defined. • Because the (cuasi)geoid varies less than the sea level, one could include in the averaging of the sea level also some continental stations with precise ellipsoidal and normal heights as well as height anomalies (e.g., SIRGAS2000). IAG PAIGH ANNEX VIII PRESENTATIONS OF THE WG III “VERTICAL DATUM”: FUTURE ACTIVITIES (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) NIMA Realización del nivel del Cuasi-geoide Chile Bolivia Paraguay Venezuela Brasil ∆ WVen= ∆ HVen ∆ WBra= ∆ HBra Perú W0 ≈ H0 ∆ WUru= ∆ HUru Argentina Ecuador Colombia Uruguay ∆Wi = ∆Hi HiClásico = H0 + ∆Hi GTIII-SIRGAS Santiago de Chile, Octubre 2002 Definición de H0 I. Determinación de SSTop por altimetría satelital Mareógrafo H SSTop 0 H h HN ∆HSSTop SSTop (Cuasi-)geoide ζ ∆H ∑ = SSTop 0 i n ∆H =∫ l l : extensión total de la costa en América del Sur H0 N Elipsoide GTIII-SIRGAS Santiago de Chile, Octubre 2002 Definición de H0 II. Posicionamiento GPS en los mareógrafos de referencia ∆H i ∑ Mareog H0 HN =0 ∆H i = hi − ζ i = n Problema: El nmm actual no coincide con el nmm en la época de definición (HN ≠ 0) Solución: Reducción a la época de definición dH i ∆t dt ⇒ Posicionamiento GPS repetitivo y registros mareográficos (SIRVEMAS, EVAMARIA) GTIII-SIRGAS Santiago de Chile, Octubre 2002 Definición de H0 III. Relación h, HN, ζ (SIRGAS2000) ∆H i = hi − ζ i − H N i H Marco 0 ∆H ∑ = i n Problema: • La determinación del Cuasi-geoide es muy imprecisa, (dm...m) • Las anomalías gravimétricas se refieren a los sistemas clásicos • Las alturas niveladas parten de mareógrafos, que no coinciden con el (cuasi-)geoide y que no están conectados entre si • Las alturas se han modificado por movimiento verticales, es decir que el posicionamiento GPS y altura nivelada no se refieren a una misma época HNi (tj) → hi(tk) Solución: • Utilización de un modelo de cuasi-geoide derivado de las misiones satélitales gravimétricas • Densificación del modelo de cuasi-geoide mediante anomalías locales (iteración) • Corrección de HNi mediante H0 y consideración del cambio con el tiempo (tk-tj) dH/dt • Conexión de las redes → discrepancia entre los sistemas clásicos GTIII-SIRGAS Santiago de Chile, Octubre 2002 Corrección de cada sistema nacional con respecto a H0 Combinación: ∆H H =∫ l ∆H i ∑ Mareog H0 = n ∆H i ∑ Marco H0 = n SSTop 0 Mareógrafos (línea de costa) Continente Corrección para cada sistema local: ∆H Individual = ∆H iMareog +SSTop − H 0 GTIII-SIRGAS Santiago de Chile, Octubre 2002 Actividades URGENTES relacionadas con la realización del nivel de referencia vertical en América del Sur → Conexión de las redes de nivelación entre países vecinos → Nivelación geométrica de las estaciones SIRGAS2000 → Gravimetría correspondiente GTIII-SIRGAS Santiago de Chile, Octubre 2002 Actividades INMEDIATAS relacionadas con la realización del nivel de referencia vertical en América del Sur → Determinación UNIFICADA de un modelo de cuasi-geoide basado en un modelo gravitacional global y densificado mediante anomalías locales (iteración) → Determinación de la topografía de la superficie del mar (SSTop) referida al mismo modelo gravitacional global GTIII-SIRGAS Santiago de Chile, Octubre 2002 Conclusiones Debemos concentrar nuestros esfuerzos en: • Nivelación geométrica de las estaciones SIRGAS2000 • Conexión de las redes de nivelación entre países vecinos • Identificación y digitación de todas las líneas de nivelación que conectan las estaciones SIRGAS2000 • Digitación de las redes de nvelación nacionales • Identificación de los nodos en las redes • Determinación UNIFICADA del cuasi-geoide • Determinación de la topografía de la superficie del mar (SSTop) (posicionamiento GPS de los mareógrafos) GTIII-SIRGAS Santiago de Chile, Octubre 2002 IAG PAIGH ANNEX IX STATUTE OF THE SIRGAS PROJECT (APPROVED BY THE COMMITTEE ON OCTOBER 22, 2002) NIMA Statute of the SIRGAS Project Geocentric Reference System for the Americas The SIRGAS Project (Geocentric Reference System for the Americas) by its objectives and scope has a Pan-American profile, its execution aims at all nations of the Americas and the Caribbean, and its regulation is contained in the following articles. General Objectives Art. 1. The main objective of the SIRGAS Project is to define, materialize and maintain the tri-dimensional geocentric reference system for the Americas. This objective includes: a) Definition of a tri-dimensional geocentric reference system. b) Establishment and maintenance of a geocentric reference frame (set of stations with high precision geocentric coordinates [X, Y, Z] and their variation with time [Vx, Vy, Vz]). c) Definition and establishment of a geocentric datum. d) Definition and materialization of a unique vertical reference system with consistent physical and geometric heights and the determination of the variations of the reference frame with respect to time. Art. 2. The specific objectives of the SIRGAS Project are all those related to the main objective, among them the following can be mentioned: a) Planning, promotion and coordination of the technical activities required to accomplish the main objective. b) Promotion and dissemination of the advances, results and accomplishments of the Project, in order to maximize the benefits to the countries of the region. c) Permanent participation in the International Association of Geodesy (IAG) and in the Pan-American Institute of Geography and History (PAIGH), in order to exchange up-to-date information and knowledge on technical and scientific subjects related to the Project. d) Encouragement, among the member states, of the homogeneity of the technical knowledge involved in the scope of the Project, including the dissemination of the scientific and technological advances which contribute to its improvement. e) Promotion and coordination of all activities that contributes to the accomplishment of the proposed objectives, including among them the connection of the pre-existing geodetic systems to SIRGAS. Members Art. 3. Only American and Caribbean states can be Members of SIRGAS. To join the Project, it is just necessary to write to the Steering Council (defined in Art. 12) mentioning the interest and the will to actively work towards the accomplishment of the objectives and to appoint corresponding representatives (according to Art. 7). Art. 4. The sponsoring institutions of the Project –International Association of Geodesy (IAG), Pan-American Institute of Geography and History (PAIGH) and U.S. National Imagery and Mapping Agency (NIMA)– are considered Members with the same rights and attributions as the member states. Art. 5. Other states, entities and persons can be observing members, providing that they do not aim at profits, and they manifest their intention to participate as such or they are invited by the Project. In any case they must be accepted by the Executive Committee (defined in Art. 9). Art. 6. In addition, it is established the category of cooperative state or entity for those that have required or have been invited by the Project to participate as a contributor in scientific, technical or economic terms. The processing centers that participate in the Project are considered as such. Art. 7. The national representatives will be the persons appointed by the member states, through the entities that congregate the scientists and technicians in geodesy and related subjects, throughout procedures established in each country. The sponsoring entities will appoint their own representatives. Organization Art. 8. The following structure units with corresponding roles, defined in the next articles, are established: a) b) c) d) e) Executive Committee Steering Council Working Groups Technical Meetings Scientific Council Art. 9. The Executive Committee is the supreme unit of the SIRGAS Project and establishes its scientific, technical and administrative directions. Its composition and functioning will be governed by the following rules: a) It will be composed by one representative of each member state and one of each sponsoring institution. Each member will have one vote and can appoint a substitute representative who will replace the representative in case he or she is not present. b) It will ordinarily meet each 4 years. The ordinary meetings will be held during the same year as the General Assembly of IAG and, if possible, simultaneously to it. c) It will be chaired by the president of the Project. d) The authorities –defined in Art. 12– will have voice but not vote, except when taking part of the official delegation of his or her country. e) The observers, cooperative states or entities and the members of the Scientific Council will have voice but not vote. Art. 10. The place of the next ordinary meeting will be decided at each ordinary meeting, being the place selected from the various cities offered by members of the Project. The corresponding agenda will be prepared by the Project authorities. Art. 11. It is established for the resolutions of the Executive Committee: a) Quorum: it is given by the vote –in presence or by correspondence- of two third parts of the members. b) Vote: assuming fulfilled the quorum as mentioned in a), the proposal that has the simple majority of votes in favor is accepted. Art. 12. The Steering Council is composed by the Project authorities, who are: the president and the vice-president of the Project and the presidents of the working groups. Art. 13. The candidates to the position of authorities must be proposed to the Executive Committee by the entities that sponsor them and must have conditions of technical capacity internationally recognized in the subjects of the Project. Art. 14. The states or the sponsoring entities will commit themselves to support their candidates in fulfilling the responsibilities established in this statute. Art. 15. The president and vice-president of the Project will be elected at the ordinary meetings of the Executive Committee, and their term will last 4 years, being eligible to be re-elected for a second term. The presidents of the working groups will be appointed by the president of the Project in coordination with the Executive Committee, and there will be no fixed time for their term. Art. 16. The presidency of the project and of the working groups will specially take into account the opinion of the scientific council when taking decisions and writing resolutions, considering the recognized professional hierarchy of its components. Art. 17. The working groups will be established or dissolved by the Executive Committee according to the Project needs. At the moment of their creation, their general and particular objectives will be established. Art. 18. The working groups and their objectives will initially be the following: I – Reference System: to define the geocentric reference system for the Americas and to coordinate its establishment and maintenance. II – Geocentric Datum: to coordinate the densification of the geocentric reference frame for the Americas within each member estate of the Project. III – Vertical Datum: to define a unified height system for the Americas and to coordinate its establishment and maintenance. Art. 19. The working groups will be composed by their presidents and by experts who have scientific and technical knowledge and experience in the subject. The names of such experts can be proposed by members or be invited by the Project authorities. In any case the final incorporation of an expert to a Working Group will be performed by the corresponding Working Group president, and ratified by the president and vice-president of the Project. Art. 20. The presidents of the working groups will permanently keep the presidency of the Project posted about the activities carried out in the scope of the working groups. Art. 21. The technical meetings will be held whenever scheduled by the Executive Committee or called by the president of the Project or by the presidents of the working groups. Their agenda will be prepared by the corresponding presidents. Art. 22. The Scientific Council will have the following missions: a) To advise the presidency of the Project about geodetic techniques, procedures and executions, and eventually about related subjects that better satisfy the imposed requirements. b) To intervene with working groups and national representatives in order to give directions to their activities, from the scientific point of view, in a way to better contribute to the accomplishment of the Project objectives. c) To explain, at the general meetings of the Executive Committee or at the particular meetings of the working groups, its opinion about the progress of the activities, recommendations that can improve, according to its understanding, the efficiency, and its own analysis about possible action steps that would enable to optimize results and to facilitate future activities. Art. 23. The Scientific Council will be governed by the following rules: a) The appointment of members of the scientific council, among those proposed by representatives in the Executive Committee, observers, Project authorities or cooperative entities, will have a permanent nature, and must be accepted by the Executive Committee. b) The incorporation proposal must be submitted along with a report of the professional experience showing the competence and expertise necessary to occupy the position. c) Periodically they will inform the presidency of the Project and of the working groups about the developed activities. Data policy Art. 24. The national representatives will deal with the authorities of their respective countries to get the corresponding authorizations to have all data needed by the Project freely available to it. Art. 25. The availability mentioned in Art. 24 will be for scientific and/or educational use only and the sources that provide them will be explicitly mentioned every time they are used. Art. 26. The use and distribution of the national data utilized during the Project execution will be regulated by the particular rules of each member state, being requested to the national representatives to arrange their widest availability. Art. 27. The member states will collaborate with the publication of the respective metadata in the webpage of the Project, including the required conditions for their use. Art. 28. The computation centers will facilitate to the member states and to the cooperative entities the access to data, to computation procedures, to their results and to all available information related to the Project. Language Art. 29. The official languages of the Project will be Spanish, Portuguese and English. In any case, the Spanish version of this statute will prevail. Webpage Art. 30. The Project will have a webpage, whose edition will be under the president´s responsibility, with the collaboration of the vice-president. The presidents of the working groups will have the obligation of supplying the information to be published. The participant states, the observing members and the sponsoring and cooperative entities will also contribute with relevant news and periodic information. All Project reports will be released through the webpage. Art. 31. The page contents should be constantly updated, being recommended a complete review at least two times a year. Art. 32 (transitory). The present statute will take effect at the moment of its approval by the Executive Committee. IAG PAIGH ANNEX X LIST OF ATTENDEES TO THE SANTIAGO MEETING NIMA IAG PAIGH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 NAME Alfonso Tierra CAP. Rafael Delgado Carlos Alberto Corrêa e Castro Jr Claudio Brunini Daniel Del Cogliano Denizar Blitzkow Eduardo Lauría Fabian Barbato Felipe Eduardo Vásquez Moya Hayo Hase Hector Parra Hermann Drewes J. Derek Fairhead Johannes Ihde Jorge Velásquez Jose Napoleón Hernández Juan Carlos Baez Soto Jürgen Klotz Klaus Kaniuth Laura Sánchez Lautaro Díaz Lorenzo Centurion Carmona Luiz Paulo Souto Fortes María Cristina Pacino Maria Paula Natali MAY. Alvaro Hermosilla Melvin Hoyer Muneendra Kumar Roberto Teixeira Luz Silvio R. Correia de Freitas Sonia Costa TCL. Oscar Cifuentes TCL. Rodrigo Barriga TCL. Rodrigo Maturana Washington Vinuez Wolfgang Schluter Wolfgang Seemueller NIMA COUNTRY Ecuador Ecuador Brazil Argentina Argentina Brazil Argentina Uruguay Bolivia Chile Chile Germany UK Germany Ecuador Venezuela Chile Germany Germany Colombia Chile Paraguay Brazil Argentina Argentina Chile Venezuela USA Brazil Brazil Brazil Chile Chile Chile Ecuador Germany Germany E-MAIL atierra@espe.edu.ec vrafaeldelgado@hotmail.com castrojr@ibge.gov.br claudio@fcaglp.unlp.edu.ar daniel@fcaglp.unlp.edu.ar dblitzko@usp.br jdivgeod@mapas.igm.gov.ar fbarbato@fing.edu.uy capeduvas@yahoo.com hase@wettzell.ipg.de hparra@igm.cl drewes@dgfi.badw.de jdf@getech.leeds.ac.uk ihde@ifag.de jorgevqz@hotmail.com jhernandez@igvsb.gov.ve jbaez@udec.cl klotz@gfz-potsdam.de kaniuth@gdfi.badw.da lsanchez@igac.gov.co calculo@igm.cl lcenturion@highway.com.py fortes@ibge.gov.br mapacino@fceia.uns.edu.ar paula@fcaglp.unlp.edu.ar ahermosilla@igm.cl mhoyer@luz.ve kumarm@nima.mil roberto@ibge.gov.br sfreitas@cce.ufpr.br soniamaria@ibge.gov.br ocifuentes@tigo.cl rbarriga@igm.cl rmaturana@igm.cl wasvin@hotmail schlueter@wettzell.ifag.de seemueller@dgfi.badw.da IAG PAIGH ANNEX XI PICTURES OF THE MEETING (included in the complete version of this Newsletter, available at http://www1.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm) NIMA