Organic pigments analyses

Transcription

Organic pigments analyses
Organic pigments analyses
Sanyova Jana
jana.sanyova@kikirpa.be
“Back to the Roots”
Workshop on the Preparation of Historical Lake Pigments
March 23th - 25th, 2011
Doerner Institut , München
Plan
•
•
•
•
Definition of organic pigment
History of the analysis
Diagnostic
Analyses
– Substrate
– Dyestuffs
• Interpretation of dyes analysis
• Case studies
Terminology
• Pigment
The
solid particles finely dispersed in the paint layer
organic pigment
Pigment containing an organic dyestuff obtained
from a natural source (animal or vegetale) or by
synthesis. The dyes can be fixed or not on an inert
substrate
lake pigment
Organic pigment obtained by
complexation, precipitation or
chemisorption of the dyestuffs on
inert substrate, with low refractive
index, in general inorganic.
Preparation of a madder lake
1/ Extraction
extraction of water-soluble glycosides
and their deglycosylation into the aglycones
2/ Complexation
complexation of aglycones with
a metal cation (Al3+ S)
3/ Fixation onto the substrate
precipitation and/or addition of inorganic
substrate (alumina, gypsum, chalk, ) on which
the Al-dyestuff complexes adsorb
4/ Finalisation
filtration of the lake, rinsing of water-soluble
salts, drying and grinding
GLYCOSIDES
O
OH
O
HO
O
CH2
OH
OH
O
HO
β-D-glucose
O
OH
OH
β-D-xylose
O
primverose
Ruberythric acid = alizarin-2β-primverosid
Influence of parameters
bath temperature
précurseur
d'alizarine précurseur
lucidine
8
90 °C
20°C
6
60°C
OD / mg
20 °C
4
60 °C
précurseurs de
2
90°C
Inc à 27'
pseudopurpurine
alizarine
pseudopurpurine
purpurine
anthragallol
0
5
10
15
temps
20
25
Influence of parameters
K
color:
Ca
Na
countercation
RTPARAM2.opj, GrBases, Fri, 040827 13:48
NH4
alizarine
Na2CO3 (RT10)
2.5
pseudopurpurine
K2CO3 (RT2)
AUs*10/mg
2.0
Dyes recovery:
1.5
NH4OH (RT15)inc. à 27'
Na > K > NH4 > OH > Ca
1.0
0.5
précurseur
d'alizarine précurseur
de lucidine
CaCO3 (RT9)
alizarine
anthragallol
0.0
10
15
20
temps [min]
25
Chemical structure
Alizarin lake on amorphous alumina :
It is a chelate-type coordination compound, in which an Al(III) ion, at the
surface of amorphous alumina, forms a complex with one or two alizarin
molecules.
m = 576
z= 0
+H
+3H 2O
n
In special circumstances,
i.e. at Al/aliz ratio so low
that no alumina can be
formed from the excess
aluminium, Al-aliz
complexes can polymerize
into linear chains, and then
slowly form gels by crosslinking of these chains
through π-π
π interactions
between the aromatic rings
Sanyova. J. (2001), « Contribution à l’étude de la structure et des propriétés des laques de garance », PhD Thesis, l’Université Libre de Bruxelles
Analyses of lakes in the past
Analyses in the past
Synthesis of alum
1806
Applied chemistry in Arts
1807
Art de la peinture du coton en rouge.
1809
several communications in the Annales de Chimie
concerning the analyses of lake pigments found during the
excavation in Pompei
pinkish lake:
examined by smelling the products of calcination
=> lake of vegetal origin
Jean-Antoine
Chaptal
(1756-1832)
Jean-Antoine Chaptal (1809): Sur quelques couleurs trouvées à Pompeia, Annales de
chimie et de physique, 70, pp. 22-31
Jo Kirby and Raymond White (1996) : The Identification of Red Lake Pigment Dyestuffs and the Discussion of their Use.
Technical Bulletin of National Gallery of London, Volume 17, pp. 56-80.
Analyses in the past
1812 -
Naples – rose pigment found in a broken vessel
during excavations
the Queen of Naples sent a sample to Davy
1815 – (23 février) - Davy presented his analytical results:
« it is a lake pigment »
because:
Sir Humphry
Davy
(1778-1829)
- the sample was discoulored at the surface of
particles, but pink inside
- its color is similar to the carmin
- the lost of weight by heating represented
around 3 %
- it changed colour with pH
- the inorganic part of the sample is composed of
silicates, aluminates and calcium carbonate
Jo Kirby and Raymond White (1996) : The Identification of Red Lake Pigment Dyestuffs and the Discussion of their Use.
Technical Bulletin of National Gallery of London, Volume 17, pp. 56-80.
Analyses in the past
W.T. Russell
en 1892
The pink pigment from Corinthe was identified
by comparison of the reflexion curves of the
sample with that of a rose madder lake. These
curves were obtained using a Beckman
spectrophotometer and are historically the first
instrumental analysis of the colour of lakes.
MARIE FARNSWORTH (1951): Second Century B. C. Rose Madder from Corinth and
Athens. American Journal of Archaeology, Vol. 55, No. 3 (Jul., 1951), pp. 236-239
Diagnostic of organic pigments
Colour + refractive index + UV fluorescence
Examination :
- macroscopic
- microscopic
Macroscopic examination
Microscopic examination
Salt grain
needle
sample
UV
Vis
UV
mikroskopia
a Vis osvetleni
ColourOpticka
+ refractive
indexv+UV
luminescence
Sanyova J., Saverwyns S. (2006) « Quelle technique dans
l’atelier de Lambert Lombard ? » Scientia Artis 3, p.259-295
Analyses of substrates
1/ atomic characterisation : SEM-EDX, XRF
2/ molecular characterisation: FTIR, MRS
Staining with iodin
Confirmation by MRS
Lead white
flour
A
B
Wheat starch
C
MRS in situ
 Renishaw plc
resolution 70µm
MRS on cross-section
Advantages
Analysis in reflexion mode =>x-section + in situ
Excellent spectral & spatial resolution :
> 1 µm => 1 grain of pigment –
« finger-print » spectrum
Identification of inorganic compounds
(substrates) and organics (mainly modern +
indigo)
Drawback
Fluorescence of OP
Signal weak for OP
Measurements long for OP
SEM EDX on cross-section
C 54.117
Fragment « Couronnement
d’épine » Opitter (+/- 1540)
C 49.106
atomic and spatial information on substrate
879.46
798.38
779.53
721.15
670.49
612.17
1112.58
1233.03
1318.13
1453.56
1408.68
1650.88
2853.57
2928.64
3076.37
3398.59
1546.76
µ-FTIR in TR mode
Master of Trebon,
NG Prague, 1380
0.35
1650
amideI
1456
amideII
0.30
OH
Absorbance Units
0.10 0.15 0.20 0.25
Al-O
S-O
oxalates
0.05
1318, 779
0.00
S-O
3500
3000
2500
2000
1500
Wavenumber cm-1
Proteins-containing substrate => lake from wool shearings waste
1000
ToF – SIMS
Institut de Chimie des
Substances Naturelles
Saccharide
fragment
SANYOVA J., CERSOY S., RICHARDIN P., LAPREVOTE O., WALTER P., BRUNELLE A. Unexpected Materials in a Rembrandt
Painting Characterized by High Spatial Resolution Cluster-TOF-SIMS Imaging, Analytical Chemistry 2011, 83(3), pp. 753-760
Dyestuffs analysis
1/ non-invasive spectroscopic methods (UV-Vis imaging, MRS, SIMS)
2/ chromatographic methods (HPLC,LC-MS, GCMS, TLC)
MRS - indigo
Reliquaire de Sainte Ursule
(Bruges, 1400 – 1415)
SEM-EDX
X
X
Intensiteit / AU
Intensiteit / AU
Indigo
Lead white
500
1000
Prussian blue
Lead white
1500
2000
500
1000
1500
Ramanshift / cm-1
Ramanshift / cm-1
2000
2500
« Vis-Imaging »
Reflection µ-spectroscopy -– localisation and diagnostic
« VIS-imaging data »
- non invasive (in situ) & non destructive (cross-section)
- digital treatement of ponctual spectras
spatiale resolution : ca 1µm => grains of pigment ( good for the mixtures)
spectrale resolution : 4 nm => in certain cases - possible identification
10
05_050126_03 47,25 min.spc - 10
47.25 Min / Bkgd
5
5
0
0
200
400
600
nm
indigo
b
OM
imaging (at 600nm)
J. van der Weerd, and all : Identification of Pigments in Paint Cross Sections by
Reflection Visible Light Imaging Microspectroscopy, Anal. Chem. 2003, 75, 716-722
mAU
Jan Lievens : Vijf Muzen (1649-1652)
mAU
Indigo
tin
« Vis-Imaging »
Vis µ-spectroscopy imaging : localisation & diagnostic
Patrick Caulfield:
Interior with a Picture
(1985-6)
c. 1: PR170, (a diazotized p-aminobenzamide coupled with 3-hydroxy-2-naphtho-O-phenetide)
c. 4: azo pigment – unidentified
c. 3,5,6,7: inorganic pigments : PbCl2, CdS, Fe2O3, TiO2
LC-PDA;
LC-PDA-MS;
MS
interface
GuardColumn
analytical column
Vanne
Pumpe
quaternaire
Autosampler
Vanne
PDA
Detecteur
UV 6000
Waste
Waste
Ion trap
Detecteur MS
MS detector (LCQ Deca with ion trap MS detector) :
Detector connected to the HPLC in addition to the PDA UV detector
(but can also be used as independent mass spectrometry detector, for direct
injection of liquid samples)
As HPLC detector, Mass Spectrometry outperforms classical detectors
(UV-VIS, conductivity, fluorescence, etc) in terms of selectivity (identification
power) and often of sensitivity
HPLC-PDA:
Chromatograms & spectra
1: pseudopurpurin
purpurin
3
1000
060919_09 30,26min.spc - 30.27 Min / Bkgd
pseudopurpurin
1
750
750
500
500
250
250
0
2
alizarin
0
200
400
600
nm
Abs [mAU]
2: alizarin
500
060919_09 37,35min.spc - 37.35 Min / Bkgd
255 nm
495 nm (x 3)
600
600
400
400
200
200
0
0
200
0
400
600
nm
3: purpurin
060919_09 43,08min.spc - 43.08 Min / Bkgd
20
30
Time [min]
40
50
1000
1000
500
500
0
200
0
400
600
nm
GC-MS
Neo-classical frame (1767–1800)
shellac (Sh),
sandarac (S)
mastic (M).
Dragonsblood
(Dae. Micracantha)
16th century reverse-glass
larch turpentine (L)
gum benzoin (B)
Dragon's blood
(Dracaena draco)
Ursula Baumer & Patrick Dietemann Identification and differentiation of dragon's blood in works of art using gas
chromatography/mass spectrometry, Anal Bioanal Chem (2010) 397:1363–1376
From TLC to UTLC
TLC:
thin-layer chromatography
Masschelein-Kleiner L; Microanalysis of hydroxyquinones in red lakes, Microchimica Acta, 1967, Vol.55, N° 6, Pages 1080-1085
HPTLC :
UTLC:
high-performance thin-layer chromatography
smaller adsorbent material particle sizes and a slight reduction in layer thickness
ultra-thin-layer chromatography
- no based on granular adsorbents, but have a monolithic structure based
on a silica gel matrix,
- no binder is needed to fix the layer on the glass
- ultra-thin layers has meso- and macro pores, with fine capillaries penetrating
- increasing sensitivity => much smaller amounts of sample
- shortening analysis,
- reducing the quantity of consumables per analysis
M. Krauze-Baranowska, I. Malinowska, D. Głód, M. Majdan, A. Wilczańska; UTLC of Flavonols in Sambucus nigra
Flowers, JPC - Journal of Planar Chromatography - Modern TLC, Volume 22, Number 5, October 2009, p. 385-387
Interpretation
What will influence the interpretation of dyestuffs analysis?
- sampling
- analytical protocol
- complementary analysis
- historical source study
Sampling
Virgin’s Tunique – 11 red layers
Pieta 1400,
Bratislava (Sk), Franciscain church
Reconstitutions
• To understand the ancient recipes (influence of the
parameters)
• To search the link between the past and the present
• To study the properties of organic pigments
• To understand the degradation mechanisms
• To look for « bio-markers »
• To develop new analytical methods
Reconstitutions
Parameters
précurseur
d'alizarine précurseur
lucidine
8
90 °C
20°C
6
60°C
OD / mg
20 °C
90°C
4
60 °C
RT27
pseudopurpurine
alizarine
précurseurs de
pseudopurpurine
2
purpurine
anthragallol
0
5
10
15
20
25
temps
Sanyova J. (2000), Étude des pigments organiques préparés à partir des racines des rubiacées européennes,
Art et chimie. La couleur, Actes du congrès, Paris, pp. 14 - 17.
Study o the prepared samples
pH
>0
0.2
1.5
1.6 1.8 1.9 2.1 2.5
HF
+Li
+Li/DTPA
+DFOM
HCl
+Li
+DFOM
TFA
+Li
+DFOM
Extraction of
alizarine at
various pH
Analytical protocol
HF
2 .0
2N
DMF/ MeCN
20-40°C
0,5 - 2 h
pH = 1,5
a liz a rin e
p s e u d o p u rp u rin e
d é c o m p le x a tio n
1 .5
OD / mg
HCl
p u rp u rin e
6M
MeOH/H2O
110 °C,
10 min.
pH < 0
tra ite m e n t a c id e
R T27
1 .0
p ré c u rs e u r
d 'a liz a rin e
p ré c u rs e u rs
d e lu c id in e
0 .5
a n th ra g a llo l
0 .0
5
10
15
20
25
Sanyova J., Reisse J.(2006): Development of a mild method for the extraction of anthraquinones from their aluminium
teCultural
m p s Heritage 7 (2006) 229–235
complexes in madder lakes prior to HPLC analysis. Journal of
Study of the historical sources
Workshop of Dirk Bouts, Christ Crowned with Thorns (NG
712)
Kermes lake was used in the red glaze and a madder lake in the pink
underpaint. In addition to the expected kermes dyestuff components,
ellagic acid was detected in the glaze suggesting extraction of the kermes
dydestuff from silk - ellagic acid is a component of oak galls (and a
breakdown product of many tannins).
Cross-section of
red paint,
showing red
lake in both red
glaze and pink
underpaint
140
120
psp + Me
© The National Gallery, London
Absorbance / mAU
100
ea = ellagic acid
ka = kermesic acid
al = alizarin
pu = purpurin
psp = pseudopurpurin
80
ka
60
ka + Me
ea
al
40
pu
(psp)
20
0
50
60
70
80
90
100
110
tim e / m in
120
130
140
150
160
170
Reconstitutions
Kermes Al / Ca
Kermes Al / Ca / S
Triptyque de la Patience de Job, school Hieronymus Bosch, Groeningenmuseum Brugge
Sanyova J. (2008), Mild extraction of dyes by HF in routine analysis of historical paint micro-samples. Microchimca Acta ((361-370)
Reconstructions
Kermes
Madder
benzoic acid
Abs [mAU]
2000
1000
255 nm
320 nm (x 2)
495 nm (x 3)
alizarin
A070123_03, P168.060, Mlynica, volet ouvert, St Nicholas
pseudopurpurin + munjistin (?)
flavokermesic + kermesic acids
purpurin
inc "RT 27"
0
St. Nicolas altarpiece,
Mlynica (Sk), 1500
20
30
40
Time [min]
50
60
HPLC
255nm
Kermes
madder
Fading - xenotest
Lightfastness of lake powder
increase with the
concentration of dyestuffs
complexed (M/L)
The saturation of
the color increase
with concentration
of Al
=>
compromis
between
lightfastnes and
saturation of color
Fading
,3
2
iz
Al
8
Grade of lightfastnes :
fonction of the dye concentration
7
i1 u1
u
Q P
7
,
iz4 liz1
l
A
A
grade
6
5
4
iz6
l
A
iz8 liz5
l
A A
ui2
Q
,3
2
Pu
3
0
100
200
300
400
500
mg aliz / g laque (calc)
600
700
« Case studies »
Sedes Sapientiae, Liège (private col.), 1260-70
purpurin
HPLC
1000
pseudopurpurin
Abs [mAU]
alizarin
Madder
(Rubia tinctorum L.)
SEM-EDX
500
Pb
S
Cl
Al
Cloak
Madder (Rubia tinctorum L.)
(Al, S,Ca)
0
255 nm
20
30
40
Time [min]
50
Pb
Ca
St Bishop and donator (privat collection), 1360(?)
HPLC
Madder
(Rubia tinctorum L.)
Kermes
(K.vermilio Planch.)
Lac
(Kerria lacca Ker.)
SEM-EDX
Bishop’s red
mantel
Madder
Kermes
Lac
(Al,S,Ca)
Substrat:
Al, S, Ca
Pre-eyckian painting, Namur, 1400
Annonciation (Panneaux de Walcourt, Namur)
49 - bord de l'aile de l'ange, rouge fonce
HPLC:
Rubia tinctorum L.
Porphyrophora
polonica (?)
pu
al
Abs [mAU]
10
carminic acid
SEM-EDX :
purpurin
alizarin
0
Al / Ca / S
HgS,
-10
255 nm
495 nm (x 3)
20
30
Time [min]
Annonciation
Coupe stratigraphique
PbCO3.Pb(OH)2
UV
40
50
Vis
Projet « Peinture pré-Eyckienne »
Reliquary of St Maurice, Namur, 1400
Pantalon rose
20
HPLC:
benz.ac.
ka
Abs [mAU]
10
fk
0
255 nm
495 nm
-10
20
HPLC:
SEM-EDX :
Cl
Au
Ca
Al
Ca
O
C
S
K
C
Au
K
S
O
2
Pb
S
Al
Ca
4
0
Al, S,Cl,K, Pb
Cl
K
C
SEM-EDX :
Ca
O
K
0
Au
Au
K
Cl
40
Pb
Au
K
2
4
0
2
50
Kermes (K.vermilio Planchon)
(two differentes lakes)
Cl
Au
30
Time [min]
4
Al / Ca / S et
K/S
St. Nicolas’ Altarpiece, V. Lomnica, 1500-1510
Vis
UV
Vis
UV
1
SEM
2
S
chromatogram 255 nm
C
Ca
HPLC
200
benzoic acid
0
2
4
Full Scale 624 cts Cursor: 0.000
6
purpurin
alizarin
kermesic acid
Abs [mAU]
Ca
7-oxo-dehydroabietic acid
dehydroabietic acid
150
100
Al
O
CERVENY SAT
Red robe
2 Red robe
Kermes (Al) on
Madder (Al, S,Ca)
50
FIALOVY RUB PLASTA
Pin resin
Violet cloak, revers
1 Violet cloak, revers
2
1
20
Kermes /Alumina
Fluorite, azurite
Pine resine
40
Time [min]
60
Sanyova Jana, Carmine. Kermes and Cochineal Lake Pigments . Postprint
of VIIth international seminar on restoration, Bratislava, 2008, p. 167-183
L.Lombard: Rebecca and Eliezer, Liège 1550
Vis
HPLC
At 255nm
UV
Lakes from:
- Dyers broom (Genista tinctoria L.)
- Madder (Rubia tinctorum L.)
- Kermes (Kermes vermilio Planchon)
Sanyova Jana, Mild extraction of dyes by hydrofluoric acid in routine analysis of historical paint micro-samples,
Microchim Acta 162, (on-line depuis 19 novembre 2007), 2008, p. 361–370.
L.Lombard:Coriolan reçoit sa mère,Liège 1550
Yellow pattern on green tente
255 nm
350 nm
Tente verte et jaune (44)
HPLC:
genistein
glycoside
Abs [mAU]
200
genistein
luteolin
apigenine
glycoside
100
apigenin
apigenine
glycoside
HPLC:
Dyers broom (Genista tinctoria L.)
SEM-EDX:
0
Al(OH)3, CaSO4,
(admixture of ochre and Pb-Sn yellow)
05_051019_12 HF
20
30
Time [min]
40
Sanyova J., Saverwyns S. (2006) « Quelle technique dans l’atelier de Lambert Lombard ? » Scientia Artis 3, p.259-295
Th.Van Loon: Adoration of shepherds, MRBAB, XVIIth C.
Vis
UV
HPLC:
BSE
SEM-EDX:
cochineal
brazil wood
dha and 7-oxo-dha
(Dactylopius coccus Costa)
(Caesalpiniaces sp.)
(Pine resin)
Master of Trebon, 1380, NG in Prague .
Vis
679.53
837.73
1109.23
1447.71
1412.07
1652.98
UV
Amid I
Amid II
OH
Absorbance Units
0.3 0.4 0.5 0.6
CH2, CH3
UV6000-495nm
P200.013
05_100521_03.dat
0.2
Retention Time
pp
CaCO3
aliz
29,5
50
pu
75
495nm
50
3000
2500
2000
1500
1000
Wavenumber cm-1
C:\JANA\Dossiers\2010_10667_Trebon,Prague\TR\08_110104_13 200.013 grain rouge.4
08_110104_13 200.013 grain rouge
mAU
3500
mAU
0.0
0.1
HPLC
42.4
75
Al-O
36.2
0.7
1558.21
2930.02
2855.35
3067.88
µ-FTIR
0.8
3324.96
B
25
25
0
0
HYPERION Transmittance
04/01/2011
Page 1/1
Two kinds of madder lake
+ azurite
+ charcoal, lead white (modeling)
10
20
30
40
Minutes
50
60
A. Gierymski: Dama rokokowa, 1870-1901
Alizarin
m AU
HPLC
25
SEM-EDX
20
Al(OH)3,
BaSO4
HCl, 255nm
Xanthopurpurin,
Purpurin
15
Rhamnazin
10
Lawson
5
0
5
Madder (Rubia tinctorum L.)
Yellow lake (Rhamnus or
quercus ?)
(Al, Ca / Ba)
10
15
20
25
30
50
40
min
50
Purpurin
Munjistin
pseudopurpurin
HF, 255nm
40
35
40
30
30
Alizarin
20
20
10
10
quercitrin
mAU
mAU
Benzoic
acid
0
0
-1 0
-1 0
-2 0
-2 0
-3 0
-3 0
-4 0
-4 0
-5 0
-5 0
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
M inute s
E. Doleżyńska-Sewerniak, W. Nowik, J. Sanyova: Analytical investigation of organic dyestuffs in glazes of Aleksander Gierymski’s paintings from 1870-1901
Synthetics dyestuffs, 1903-1934
SEM-EDX : BaSO4, Na, Ca, C.
MRS: too much fluorescence -identification impossible
HPLC: 5,5'-indigodisulfonic acid
Blue pigment from the collection of
prof. Gottfried Kallstenius,
“Royal Academy of Fine Arts in
Stockholm” (1903 - 1934)
255 nm
indigo disulfonic acid
06222_05, F157, substrat : BaSO4
Abs [mAU]
200
100
indigo sulfonic acid
0
indigo-carmin / BaSO4
C.I. Natural Blue 2, Acid Blue 74,
20
40
Time [min]
Sanyova Jana, Mild extraction of dyes by hydrofluoric acid in routine
analysis of historical paint micro-samples, Microchim Acta 162, (on-line
depuis 19 novembre 2007), 2008, p. 361–370.
Thanks
Analytical protocol
al-pr
Au
<0,1mg
sample + 20µL
DMF/ACN
quercitrin
unk al-pr
lc-pr
HF
pp+mu al
ru-pr
unk27
pu
ru
al
unk
unk
HCl
10
20
pu
mu +unk
30
Time (min)
+ HF 4N ->
discoloration
Evap. to
dryness (N2)
ru unk27
40
1
2
3
4
5
50
redissolution
in DMF/H20
HPLC analyse
Red-brown organic pigment used by Nils Masson Mandelgren, between 1850-1880
Site of complexation
O
-
O
Al+++
O-
diphenolate
Al+++
O
O
OH
Keto-phenolate
Complexe alizarin-aluminium
(Fierz-David et Rutishauer, 1940)
O
O
H2O
O Ca
O
H2O
O
O
O
Ca
O
H 2O
O Ca
O
O
H 2O
O
Al
O
O
Al
O
H 2O
O
O
O
Complexe alizarin-aluminium
(Kiel et Heertjes, 1963)
--
O (...)
O(-)
O
HO Al
O
O
Ca++
H2O
O
O(-)
O
(...)
Complexe alizarin-aluminium
(Soubayrol, 1996)
4O
O
O
O
-
O
O
O
O
O
O
Al
Al
O
O
O
O
H
H
-
O O
4 Na+
O
O