Organic pigments analyses
Transcription
Organic pigments analyses
Organic pigments analyses Sanyova Jana jana.sanyova@kikirpa.be “Back to the Roots” Workshop on the Preparation of Historical Lake Pigments March 23th - 25th, 2011 Doerner Institut , München Plan • • • • Definition of organic pigment History of the analysis Diagnostic Analyses – Substrate – Dyestuffs • Interpretation of dyes analysis • Case studies Terminology • Pigment The solid particles finely dispersed in the paint layer organic pigment Pigment containing an organic dyestuff obtained from a natural source (animal or vegetale) or by synthesis. The dyes can be fixed or not on an inert substrate lake pigment Organic pigment obtained by complexation, precipitation or chemisorption of the dyestuffs on inert substrate, with low refractive index, in general inorganic. Preparation of a madder lake 1/ Extraction extraction of water-soluble glycosides and their deglycosylation into the aglycones 2/ Complexation complexation of aglycones with a metal cation (Al3+ S) 3/ Fixation onto the substrate precipitation and/or addition of inorganic substrate (alumina, gypsum, chalk, ) on which the Al-dyestuff complexes adsorb 4/ Finalisation filtration of the lake, rinsing of water-soluble salts, drying and grinding GLYCOSIDES O OH O HO O CH2 OH OH O HO β-D-glucose O OH OH β-D-xylose O primverose Ruberythric acid = alizarin-2β-primverosid Influence of parameters bath temperature précurseur d'alizarine précurseur lucidine 8 90 °C 20°C 6 60°C OD / mg 20 °C 4 60 °C précurseurs de 2 90°C Inc à 27' pseudopurpurine alizarine pseudopurpurine purpurine anthragallol 0 5 10 15 temps 20 25 Influence of parameters K color: Ca Na countercation RTPARAM2.opj, GrBases, Fri, 040827 13:48 NH4 alizarine Na2CO3 (RT10) 2.5 pseudopurpurine K2CO3 (RT2) AUs*10/mg 2.0 Dyes recovery: 1.5 NH4OH (RT15)inc. à 27' Na > K > NH4 > OH > Ca 1.0 0.5 précurseur d'alizarine précurseur de lucidine CaCO3 (RT9) alizarine anthragallol 0.0 10 15 20 temps [min] 25 Chemical structure Alizarin lake on amorphous alumina : It is a chelate-type coordination compound, in which an Al(III) ion, at the surface of amorphous alumina, forms a complex with one or two alizarin molecules. m = 576 z= 0 +H +3H 2O n In special circumstances, i.e. at Al/aliz ratio so low that no alumina can be formed from the excess aluminium, Al-aliz complexes can polymerize into linear chains, and then slowly form gels by crosslinking of these chains through π-π π interactions between the aromatic rings Sanyova. J. (2001), « Contribution à l’étude de la structure et des propriétés des laques de garance », PhD Thesis, l’Université Libre de Bruxelles Analyses of lakes in the past Analyses in the past Synthesis of alum 1806 Applied chemistry in Arts 1807 Art de la peinture du coton en rouge. 1809 several communications in the Annales de Chimie concerning the analyses of lake pigments found during the excavation in Pompei pinkish lake: examined by smelling the products of calcination => lake of vegetal origin Jean-Antoine Chaptal (1756-1832) Jean-Antoine Chaptal (1809): Sur quelques couleurs trouvées à Pompeia, Annales de chimie et de physique, 70, pp. 22-31 Jo Kirby and Raymond White (1996) : The Identification of Red Lake Pigment Dyestuffs and the Discussion of their Use. Technical Bulletin of National Gallery of London, Volume 17, pp. 56-80. Analyses in the past 1812 - Naples – rose pigment found in a broken vessel during excavations the Queen of Naples sent a sample to Davy 1815 – (23 février) - Davy presented his analytical results: « it is a lake pigment » because: Sir Humphry Davy (1778-1829) - the sample was discoulored at the surface of particles, but pink inside - its color is similar to the carmin - the lost of weight by heating represented around 3 % - it changed colour with pH - the inorganic part of the sample is composed of silicates, aluminates and calcium carbonate Jo Kirby and Raymond White (1996) : The Identification of Red Lake Pigment Dyestuffs and the Discussion of their Use. Technical Bulletin of National Gallery of London, Volume 17, pp. 56-80. Analyses in the past W.T. Russell en 1892 The pink pigment from Corinthe was identified by comparison of the reflexion curves of the sample with that of a rose madder lake. These curves were obtained using a Beckman spectrophotometer and are historically the first instrumental analysis of the colour of lakes. MARIE FARNSWORTH (1951): Second Century B. C. Rose Madder from Corinth and Athens. American Journal of Archaeology, Vol. 55, No. 3 (Jul., 1951), pp. 236-239 Diagnostic of organic pigments Colour + refractive index + UV fluorescence Examination : - macroscopic - microscopic Macroscopic examination Microscopic examination Salt grain needle sample UV Vis UV mikroskopia a Vis osvetleni ColourOpticka + refractive indexv+UV luminescence Sanyova J., Saverwyns S. (2006) « Quelle technique dans l’atelier de Lambert Lombard ? » Scientia Artis 3, p.259-295 Analyses of substrates 1/ atomic characterisation : SEM-EDX, XRF 2/ molecular characterisation: FTIR, MRS Staining with iodin Confirmation by MRS Lead white flour A B Wheat starch C MRS in situ Renishaw plc resolution 70µm MRS on cross-section Advantages Analysis in reflexion mode =>x-section + in situ Excellent spectral & spatial resolution : > 1 µm => 1 grain of pigment – « finger-print » spectrum Identification of inorganic compounds (substrates) and organics (mainly modern + indigo) Drawback Fluorescence of OP Signal weak for OP Measurements long for OP SEM EDX on cross-section C 54.117 Fragment « Couronnement d’épine » Opitter (+/- 1540) C 49.106 atomic and spatial information on substrate 879.46 798.38 779.53 721.15 670.49 612.17 1112.58 1233.03 1318.13 1453.56 1408.68 1650.88 2853.57 2928.64 3076.37 3398.59 1546.76 µ-FTIR in TR mode Master of Trebon, NG Prague, 1380 0.35 1650 amideI 1456 amideII 0.30 OH Absorbance Units 0.10 0.15 0.20 0.25 Al-O S-O oxalates 0.05 1318, 779 0.00 S-O 3500 3000 2500 2000 1500 Wavenumber cm-1 Proteins-containing substrate => lake from wool shearings waste 1000 ToF – SIMS Institut de Chimie des Substances Naturelles Saccharide fragment SANYOVA J., CERSOY S., RICHARDIN P., LAPREVOTE O., WALTER P., BRUNELLE A. Unexpected Materials in a Rembrandt Painting Characterized by High Spatial Resolution Cluster-TOF-SIMS Imaging, Analytical Chemistry 2011, 83(3), pp. 753-760 Dyestuffs analysis 1/ non-invasive spectroscopic methods (UV-Vis imaging, MRS, SIMS) 2/ chromatographic methods (HPLC,LC-MS, GCMS, TLC) MRS - indigo Reliquaire de Sainte Ursule (Bruges, 1400 – 1415) SEM-EDX X X Intensiteit / AU Intensiteit / AU Indigo Lead white 500 1000 Prussian blue Lead white 1500 2000 500 1000 1500 Ramanshift / cm-1 Ramanshift / cm-1 2000 2500 « Vis-Imaging » Reflection µ-spectroscopy -– localisation and diagnostic « VIS-imaging data » - non invasive (in situ) & non destructive (cross-section) - digital treatement of ponctual spectras spatiale resolution : ca 1µm => grains of pigment ( good for the mixtures) spectrale resolution : 4 nm => in certain cases - possible identification 10 05_050126_03 47,25 min.spc - 10 47.25 Min / Bkgd 5 5 0 0 200 400 600 nm indigo b OM imaging (at 600nm) J. van der Weerd, and all : Identification of Pigments in Paint Cross Sections by Reflection Visible Light Imaging Microspectroscopy, Anal. Chem. 2003, 75, 716-722 mAU Jan Lievens : Vijf Muzen (1649-1652) mAU Indigo tin « Vis-Imaging » Vis µ-spectroscopy imaging : localisation & diagnostic Patrick Caulfield: Interior with a Picture (1985-6) c. 1: PR170, (a diazotized p-aminobenzamide coupled with 3-hydroxy-2-naphtho-O-phenetide) c. 4: azo pigment – unidentified c. 3,5,6,7: inorganic pigments : PbCl2, CdS, Fe2O3, TiO2 LC-PDA; LC-PDA-MS; MS interface GuardColumn analytical column Vanne Pumpe quaternaire Autosampler Vanne PDA Detecteur UV 6000 Waste Waste Ion trap Detecteur MS MS detector (LCQ Deca with ion trap MS detector) : Detector connected to the HPLC in addition to the PDA UV detector (but can also be used as independent mass spectrometry detector, for direct injection of liquid samples) As HPLC detector, Mass Spectrometry outperforms classical detectors (UV-VIS, conductivity, fluorescence, etc) in terms of selectivity (identification power) and often of sensitivity HPLC-PDA: Chromatograms & spectra 1: pseudopurpurin purpurin 3 1000 060919_09 30,26min.spc - 30.27 Min / Bkgd pseudopurpurin 1 750 750 500 500 250 250 0 2 alizarin 0 200 400 600 nm Abs [mAU] 2: alizarin 500 060919_09 37,35min.spc - 37.35 Min / Bkgd 255 nm 495 nm (x 3) 600 600 400 400 200 200 0 0 200 0 400 600 nm 3: purpurin 060919_09 43,08min.spc - 43.08 Min / Bkgd 20 30 Time [min] 40 50 1000 1000 500 500 0 200 0 400 600 nm GC-MS Neo-classical frame (1767–1800) shellac (Sh), sandarac (S) mastic (M). Dragonsblood (Dae. Micracantha) 16th century reverse-glass larch turpentine (L) gum benzoin (B) Dragon's blood (Dracaena draco) Ursula Baumer & Patrick Dietemann Identification and differentiation of dragon's blood in works of art using gas chromatography/mass spectrometry, Anal Bioanal Chem (2010) 397:1363–1376 From TLC to UTLC TLC: thin-layer chromatography Masschelein-Kleiner L; Microanalysis of hydroxyquinones in red lakes, Microchimica Acta, 1967, Vol.55, N° 6, Pages 1080-1085 HPTLC : UTLC: high-performance thin-layer chromatography smaller adsorbent material particle sizes and a slight reduction in layer thickness ultra-thin-layer chromatography - no based on granular adsorbents, but have a monolithic structure based on a silica gel matrix, - no binder is needed to fix the layer on the glass - ultra-thin layers has meso- and macro pores, with fine capillaries penetrating - increasing sensitivity => much smaller amounts of sample - shortening analysis, - reducing the quantity of consumables per analysis M. Krauze-Baranowska, I. Malinowska, D. Głód, M. Majdan, A. Wilczańska; UTLC of Flavonols in Sambucus nigra Flowers, JPC - Journal of Planar Chromatography - Modern TLC, Volume 22, Number 5, October 2009, p. 385-387 Interpretation What will influence the interpretation of dyestuffs analysis? - sampling - analytical protocol - complementary analysis - historical source study Sampling Virgin’s Tunique – 11 red layers Pieta 1400, Bratislava (Sk), Franciscain church Reconstitutions • To understand the ancient recipes (influence of the parameters) • To search the link between the past and the present • To study the properties of organic pigments • To understand the degradation mechanisms • To look for « bio-markers » • To develop new analytical methods Reconstitutions Parameters précurseur d'alizarine précurseur lucidine 8 90 °C 20°C 6 60°C OD / mg 20 °C 90°C 4 60 °C RT27 pseudopurpurine alizarine précurseurs de pseudopurpurine 2 purpurine anthragallol 0 5 10 15 20 25 temps Sanyova J. (2000), Étude des pigments organiques préparés à partir des racines des rubiacées européennes, Art et chimie. La couleur, Actes du congrès, Paris, pp. 14 - 17. Study o the prepared samples pH >0 0.2 1.5 1.6 1.8 1.9 2.1 2.5 HF +Li +Li/DTPA +DFOM HCl +Li +DFOM TFA +Li +DFOM Extraction of alizarine at various pH Analytical protocol HF 2 .0 2N DMF/ MeCN 20-40°C 0,5 - 2 h pH = 1,5 a liz a rin e p s e u d o p u rp u rin e d é c o m p le x a tio n 1 .5 OD / mg HCl p u rp u rin e 6M MeOH/H2O 110 °C, 10 min. pH < 0 tra ite m e n t a c id e R T27 1 .0 p ré c u rs e u r d 'a liz a rin e p ré c u rs e u rs d e lu c id in e 0 .5 a n th ra g a llo l 0 .0 5 10 15 20 25 Sanyova J., Reisse J.(2006): Development of a mild method for the extraction of anthraquinones from their aluminium teCultural m p s Heritage 7 (2006) 229–235 complexes in madder lakes prior to HPLC analysis. Journal of Study of the historical sources Workshop of Dirk Bouts, Christ Crowned with Thorns (NG 712) Kermes lake was used in the red glaze and a madder lake in the pink underpaint. In addition to the expected kermes dyestuff components, ellagic acid was detected in the glaze suggesting extraction of the kermes dydestuff from silk - ellagic acid is a component of oak galls (and a breakdown product of many tannins). Cross-section of red paint, showing red lake in both red glaze and pink underpaint 140 120 psp + Me © The National Gallery, London Absorbance / mAU 100 ea = ellagic acid ka = kermesic acid al = alizarin pu = purpurin psp = pseudopurpurin 80 ka 60 ka + Me ea al 40 pu (psp) 20 0 50 60 70 80 90 100 110 tim e / m in 120 130 140 150 160 170 Reconstitutions Kermes Al / Ca Kermes Al / Ca / S Triptyque de la Patience de Job, school Hieronymus Bosch, Groeningenmuseum Brugge Sanyova J. (2008), Mild extraction of dyes by HF in routine analysis of historical paint micro-samples. Microchimca Acta ((361-370) Reconstructions Kermes Madder benzoic acid Abs [mAU] 2000 1000 255 nm 320 nm (x 2) 495 nm (x 3) alizarin A070123_03, P168.060, Mlynica, volet ouvert, St Nicholas pseudopurpurin + munjistin (?) flavokermesic + kermesic acids purpurin inc "RT 27" 0 St. Nicolas altarpiece, Mlynica (Sk), 1500 20 30 40 Time [min] 50 60 HPLC 255nm Kermes madder Fading - xenotest Lightfastness of lake powder increase with the concentration of dyestuffs complexed (M/L) The saturation of the color increase with concentration of Al => compromis between lightfastnes and saturation of color Fading ,3 2 iz Al 8 Grade of lightfastnes : fonction of the dye concentration 7 i1 u1 u Q P 7 , iz4 liz1 l A A grade 6 5 4 iz6 l A iz8 liz5 l A A ui2 Q ,3 2 Pu 3 0 100 200 300 400 500 mg aliz / g laque (calc) 600 700 « Case studies » Sedes Sapientiae, Liège (private col.), 1260-70 purpurin HPLC 1000 pseudopurpurin Abs [mAU] alizarin Madder (Rubia tinctorum L.) SEM-EDX 500 Pb S Cl Al Cloak Madder (Rubia tinctorum L.) (Al, S,Ca) 0 255 nm 20 30 40 Time [min] 50 Pb Ca St Bishop and donator (privat collection), 1360(?) HPLC Madder (Rubia tinctorum L.) Kermes (K.vermilio Planch.) Lac (Kerria lacca Ker.) SEM-EDX Bishop’s red mantel Madder Kermes Lac (Al,S,Ca) Substrat: Al, S, Ca Pre-eyckian painting, Namur, 1400 Annonciation (Panneaux de Walcourt, Namur) 49 - bord de l'aile de l'ange, rouge fonce HPLC: Rubia tinctorum L. Porphyrophora polonica (?) pu al Abs [mAU] 10 carminic acid SEM-EDX : purpurin alizarin 0 Al / Ca / S HgS, -10 255 nm 495 nm (x 3) 20 30 Time [min] Annonciation Coupe stratigraphique PbCO3.Pb(OH)2 UV 40 50 Vis Projet « Peinture pré-Eyckienne » Reliquary of St Maurice, Namur, 1400 Pantalon rose 20 HPLC: benz.ac. ka Abs [mAU] 10 fk 0 255 nm 495 nm -10 20 HPLC: SEM-EDX : Cl Au Ca Al Ca O C S K C Au K S O 2 Pb S Al Ca 4 0 Al, S,Cl,K, Pb Cl K C SEM-EDX : Ca O K 0 Au Au K Cl 40 Pb Au K 2 4 0 2 50 Kermes (K.vermilio Planchon) (two differentes lakes) Cl Au 30 Time [min] 4 Al / Ca / S et K/S St. Nicolas’ Altarpiece, V. Lomnica, 1500-1510 Vis UV Vis UV 1 SEM 2 S chromatogram 255 nm C Ca HPLC 200 benzoic acid 0 2 4 Full Scale 624 cts Cursor: 0.000 6 purpurin alizarin kermesic acid Abs [mAU] Ca 7-oxo-dehydroabietic acid dehydroabietic acid 150 100 Al O CERVENY SAT Red robe 2 Red robe Kermes (Al) on Madder (Al, S,Ca) 50 FIALOVY RUB PLASTA Pin resin Violet cloak, revers 1 Violet cloak, revers 2 1 20 Kermes /Alumina Fluorite, azurite Pine resine 40 Time [min] 60 Sanyova Jana, Carmine. Kermes and Cochineal Lake Pigments . Postprint of VIIth international seminar on restoration, Bratislava, 2008, p. 167-183 L.Lombard: Rebecca and Eliezer, Liège 1550 Vis HPLC At 255nm UV Lakes from: - Dyers broom (Genista tinctoria L.) - Madder (Rubia tinctorum L.) - Kermes (Kermes vermilio Planchon) Sanyova Jana, Mild extraction of dyes by hydrofluoric acid in routine analysis of historical paint micro-samples, Microchim Acta 162, (on-line depuis 19 novembre 2007), 2008, p. 361–370. L.Lombard:Coriolan reçoit sa mère,Liège 1550 Yellow pattern on green tente 255 nm 350 nm Tente verte et jaune (44) HPLC: genistein glycoside Abs [mAU] 200 genistein luteolin apigenine glycoside 100 apigenin apigenine glycoside HPLC: Dyers broom (Genista tinctoria L.) SEM-EDX: 0 Al(OH)3, CaSO4, (admixture of ochre and Pb-Sn yellow) 05_051019_12 HF 20 30 Time [min] 40 Sanyova J., Saverwyns S. (2006) « Quelle technique dans l’atelier de Lambert Lombard ? » Scientia Artis 3, p.259-295 Th.Van Loon: Adoration of shepherds, MRBAB, XVIIth C. Vis UV HPLC: BSE SEM-EDX: cochineal brazil wood dha and 7-oxo-dha (Dactylopius coccus Costa) (Caesalpiniaces sp.) (Pine resin) Master of Trebon, 1380, NG in Prague . Vis 679.53 837.73 1109.23 1447.71 1412.07 1652.98 UV Amid I Amid II OH Absorbance Units 0.3 0.4 0.5 0.6 CH2, CH3 UV6000-495nm P200.013 05_100521_03.dat 0.2 Retention Time pp CaCO3 aliz 29,5 50 pu 75 495nm 50 3000 2500 2000 1500 1000 Wavenumber cm-1 C:\JANA\Dossiers\2010_10667_Trebon,Prague\TR\08_110104_13 200.013 grain rouge.4 08_110104_13 200.013 grain rouge mAU 3500 mAU 0.0 0.1 HPLC 42.4 75 Al-O 36.2 0.7 1558.21 2930.02 2855.35 3067.88 µ-FTIR 0.8 3324.96 B 25 25 0 0 HYPERION Transmittance 04/01/2011 Page 1/1 Two kinds of madder lake + azurite + charcoal, lead white (modeling) 10 20 30 40 Minutes 50 60 A. Gierymski: Dama rokokowa, 1870-1901 Alizarin m AU HPLC 25 SEM-EDX 20 Al(OH)3, BaSO4 HCl, 255nm Xanthopurpurin, Purpurin 15 Rhamnazin 10 Lawson 5 0 5 Madder (Rubia tinctorum L.) Yellow lake (Rhamnus or quercus ?) (Al, Ca / Ba) 10 15 20 25 30 50 40 min 50 Purpurin Munjistin pseudopurpurin HF, 255nm 40 35 40 30 30 Alizarin 20 20 10 10 quercitrin mAU mAU Benzoic acid 0 0 -1 0 -1 0 -2 0 -2 0 -3 0 -3 0 -4 0 -4 0 -5 0 -5 0 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 M inute s E. Doleżyńska-Sewerniak, W. Nowik, J. Sanyova: Analytical investigation of organic dyestuffs in glazes of Aleksander Gierymski’s paintings from 1870-1901 Synthetics dyestuffs, 1903-1934 SEM-EDX : BaSO4, Na, Ca, C. MRS: too much fluorescence -identification impossible HPLC: 5,5'-indigodisulfonic acid Blue pigment from the collection of prof. Gottfried Kallstenius, “Royal Academy of Fine Arts in Stockholm” (1903 - 1934) 255 nm indigo disulfonic acid 06222_05, F157, substrat : BaSO4 Abs [mAU] 200 100 indigo sulfonic acid 0 indigo-carmin / BaSO4 C.I. Natural Blue 2, Acid Blue 74, 20 40 Time [min] Sanyova Jana, Mild extraction of dyes by hydrofluoric acid in routine analysis of historical paint micro-samples, Microchim Acta 162, (on-line depuis 19 novembre 2007), 2008, p. 361–370. Thanks Analytical protocol al-pr Au <0,1mg sample + 20µL DMF/ACN quercitrin unk al-pr lc-pr HF pp+mu al ru-pr unk27 pu ru al unk unk HCl 10 20 pu mu +unk 30 Time (min) + HF 4N -> discoloration Evap. to dryness (N2) ru unk27 40 1 2 3 4 5 50 redissolution in DMF/H20 HPLC analyse Red-brown organic pigment used by Nils Masson Mandelgren, between 1850-1880 Site of complexation O - O Al+++ O- diphenolate Al+++ O O OH Keto-phenolate Complexe alizarin-aluminium (Fierz-David et Rutishauer, 1940) O O H2O O Ca O H2O O O O Ca O H 2O O Ca O O H 2O O Al O O Al O H 2O O O O Complexe alizarin-aluminium (Kiel et Heertjes, 1963) -- O (...) O(-) O HO Al O O Ca++ H2O O O(-) O (...) Complexe alizarin-aluminium (Soubayrol, 1996) 4O O O O - O O O O O O Al Al O O O O H H - O O 4 Na+ O O