suwin sandu 2007 - OPUS at UTS - University of Technology Sydney

Transcription

suwin sandu 2007 - OPUS at UTS - University of Technology Sydney
ASSESSMENTOFCARBONTAXASAPOLICY
OPTIONFORREDUCINGCARBONDIOXIDE
EMISSIONSINAUSTRALIA
SUWINSANDU
FacultyofEngineering
UniversityofTechnology,Sydney
AdissertationsubmittedtotheUniversityofTechnology,Sydneyinfulfilmentofthe
requirementsforthedegreeofDoctorofPhilosophy(EnergyPlanningandPolicy)
2007
i
CERTIFICATEOFAUTHORSHIP/ORIGINALITY
Icertifythattheworkinthisthesishasnotpreviouslybeensubmittedforadegree,nor
has it been submitted as part of the requirements for a degree, except as fully
acknowledgedwithinthetext.
Ialsocertifythatthethesishasbeenwrittenbyme.AnyhelpthatIhavereceivedin
my research work and the preparation of the thesis itself has been acknowledged. In
addition,Icertifythatallinformationsourcesandliteratureusedareindicatedinthe
thesis.
SignatureofCandidate
____________________________
ii
ACKNOWLEDGMENTS
I am grateful to Associate Professor Deepak Sharma, my major supervisor, for his
encouragement,guidanceandsupportincarryingoutthisresearch.Hiscriticismsand
suggestions,throughoutthisresearch,arehighlyvaluable.Ialsobenefitedgreatlyfrom
thediscussionwithhimonvariousissuesbeyondthescopeofthisresearch.Iamalso
grateful to Emeritus Professor Rod Belcher, my cosupervisor, for his advice during
thisresearch.
Igratefullythankmyuncle,AssociateProfessorTrichakSandhu,whohasgivenmea
good foundation that allows me to undertake this research. Having no parents, it
would have been difficult for me to be where I am now. He is like my father and I
knowthathewouldbeproudfrommyachievement.
ThankstotheFacultyofEngineeringforprovidingtherighttypeofenvironmentand
financial assistance for carrying out this research. Thanks are also due to the staff of
UTSlibraryinassistingmeinacquiringvaluableinformationforthisdissertation.My
particularappreciationalsogoestomyeditor,MsPatSkinner.
I would like to especially thank my colleagues in the Energy Planning and Policy
Program for their encouragement and cheerful assistance. Particular thanks go to Ms
Supannika Wattana and Ms Srichattra Chaivongvilan for providing a consistent
support,particularlyasamediumofcommunicationswithmymajorsupervisor,while
IamworkinginCanberra.ThanksalsotoMrRonnakornVaiyavuthfordiscussionon
variousaspects,includingthisresearch,overapegofsoju.
Finally,IsaythankyoutomyfiancéNiradaManosornwhohasgivenmethestrength,
particularly over the last two years of my research. I look forward to our future life
together.
iii
ABSTRACT
Thisresearchhasanalysedtheeconomywideimpactsofcarbontaxasapolicyoption
toreducetherateofgrowthofcarbondioxideemissionsfromtheelectricitysectorin
Australia. These impacts are analysed for energy and nonenergy sectors of the
economy. An energyoriented Input–Output framework, with ‘flexible’ production
functions, based on Translog and CobbDouglas formulations, is employed for the
analysis of various impacts. Further, two alternative conceptions of carbon tax are
consideredinthisresearch,namely,basedonPolluterPaysPrinciple(PPP)andShared
ResponsibilityPrinciple(SRP).
Inthefirstinstance,theimpactsareanalysed,fortheperiod2005–2020,fortaxlevelsof
$10and$20pertonneofCO2,inasituationofnoapriorilimitonCO2emissions.The
analysisshowsthatCO2emissionsfromtheelectricitysector,whencarbontaxisbased
on PPP, would be 211 and 152 Mt, for tax levels of $10 and $20, respectively (as
comparedto250MtintheBaseCasescenario,thatis,thebusinessasusualcase).The
net economic costs, corresponding with these tax levels, expressed in present value
terms, would be $27 and $49 billion, respectively, over the period 2005–2020. These
economic costs are equivalent to 0.43 and 0.78 per cent of the estimated GDP of
Australia. Further, most of the economic burden, in this instance, would fall on the
electricity sector, particularly coalfired electricity generators – large consumers of
direct fossil fuel. On the other hand, in the case of a carbon tax based on SRP, CO2
emissions would be 172 and 116 Mt, for tax levels of $10 and $20, respectively. The
corresponding net economic costs would be $47 (0.74 per cent of GDP) and $84 (1.34
per cent of GDP) billion, respectively, with significant burden felt by the commercial
sector – large consumers of indirect energy and materials whose production would
contributetoCO2emissions.
Next,theimpactsareanalysedbyplacinganapriorilimitonCO2emissionsfromthe
electricitysector–equivalentto108percentofthe1990level(thatis,138Mt),bythe
year2020.Twocasesareanalysed,namely,earlyaction(carbontaxintroducedin2005)
and deferred action (carbon tax introduced in 2010). In the case of early action, the
analysis suggests, carbon tax of $25 and $15, based on PPP and SRP, respectively,
iv
wouldberequiredtoachievetheabovenotedemissionstarget.Thecorrespondingtax
levels in the case of deferred action are $51 and $26, respectively. This research also
showsthattheneteconomiccosts,inthecaseofearlyaction,wouldbe$32billion(for
PPP) and $18 billion (for SRP) higher than those in the case of deferred action.
However, this research has demonstrated, that this inference is largely due to the
selection of particular indicator (that is, present value) and the relatively short time
frame(thatis,2005–2020)foranalysis.Byextendingthetimeframeoftheanalysisto
theyear2040,thecaseforanearlyintroductionofcarbontaxstrengthens.
Overall,theanalysisinthisresearchsuggeststhatanimmediateintroductionofcarbon
tax,basedonSRP,isthemostattractiveapproachtoreducetherateofgrowthofCO2
emissionsfromthe electricitysectorandto simultaneously meeteconomic andsocial
objectives.Ifthedecisiontointroducesuchataxisdeferred,itwouldberatherdifficult
to achieve not only environmental objectives but economic and social objectives as
well.
v
TABLEOFCONTENTS
CertificateofAuthorship/Originality……………………………………………..i
Acknowledgments…………………………………………………………………..ii
Abstract………………………………………………………………………………iii
TableofContents…………………………………………………………………....v
ListofTables………………………………………………………………………viii
ListofFigures……………………………………………………………………..... ix
Abbreviations…………………………………………………………………………x
CHAPTER1
INTRODUCTION............................................................................................1
1.1
Background..............................................................................................1
1.2
ResearchObjectives ................................................................................9
1.3
ResearchMethodology.........................................................................10
1.3.1 HistoricalReview ...................................................................................... 12
1.3.2 ModellingPerspective............................................................................... 13
1.3.3 PolicyAnalysis.......................................................................................... 14
CHAPTER2
1.4
ScopeofthisResearchandDataConsiderations .............................14
1.5
SignificanceofthisResearch ...............................................................18
1.6
OrganisationoftheThesis ...................................................................19
EVOLUTIONOFTHECOAL–ELECTRICITYCOMPACT...................20
2.1
HistoricalReviewoftheAustralianElectricityIndustry ................21
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
OriginsoftheElectricityIndustry(1880s–1900) ................................... 21
GenesisofCoal–ElectricityCompact(1901–1950s) ................................ 22
ConsolidationoftheCompact(1950s–1980s).......................................... 24
FurtherStrengtheningoftheCompact(1980s–1990s) ........................... 27
FurtherEntrenchmentoftheCompact(1990s–present) ....................... 29
FutureDirectionoftheAustralianElectricityIndustry ..................32
2.2.1 TechnicalConsiderations .......................................................................... 33
2.2.2 EconomicConsiderations.......................................................................... 35
2.2.3 PoliticalConsiderations ............................................................................ 37
2.3
CHAPTER3
SummaryandConclusions..................................................................40
AUSTRALIANGREENHOUSEPOLICYDEVELOPMENT .................42
3.1
ElectricityIndustryandCarbondioxideEmissions ........................42
3.1.1 TotalCarbondioxideEmissions ............................................................... 42
3.1.2 CarbondioxideEmissionsfromElectricityGeneration .......................... 44
3.2
DevelopmentofAustralia’sGreenhousePolicy...............................46
vi
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
ACarbonTaxPolicyforAustralia .....................................................56
3.3.1
3.3.2
3.3.3
3.3.4
3.4
CHAPTER4
ThePacesetter............................................................................................ 46
TheChangingStance ................................................................................ 48
ReaffirmationoftheStance ....................................................................... 50
TheLaggardNation .................................................................................. 51
EntrenchmentoftheStance ...................................................................... 53
EnvironmentalPolicyOptions ................................................................. 56
ConventionalCarbonTaxApproach ........................................................ 58
AModifiedCarbonTaxApproach ........................................................... 63
SectoralResponsibilitiesofAustralianEmissions ................................... 66
SummaryandConclusions..................................................................69
AREVIEWOFMATERIALSBALANCEFRAMEWORK .....................72
4.1
BackgroundofMaterialsbalanceFramework..................................72
4.2
CriteriaforExaminingMethodologicalApproaches.......................75
4.3
PhysicalFlowMethods ........................................................................76
4.3.1
4.3.2
4.3.3
4.3.4
4.4
MaterialFlowAnalysis............................................................................. 79
LifecycleAnalysis .................................................................................... 80
ReferenceEnergy–materialSystemAnalysis........................................... 82
PhysicalFlowMethods:ASummaryofObservations ............................ 84
EmbodiedEnergyMethods.................................................................86
4.4.1 ProcessAnalysis........................................................................................ 86
4.4.2 Input–outputAnalysis.............................................................................. 91
4.4.3 EmbodiedEnergyMethods:ASummaryofObservations ...................... 94
4.5
CHAPTER5
SummaryandConclusions..................................................................95
METHODOLOGICALFRAMEWORKFORTHISRESEARCH..........98
5.1
OverallMethodologicalFramework ..................................................98
5.2
AllocationofCarbondioxideEmissions .........................................100
5.2.1 EmissionsAllocation:PolluterPaysPrinciple ...................................... 101
5.2.2 EmissionsAllocation:SharedResponsibilityPrinciple ......................... 102
5.3
DeterminationofCarbonTax............................................................105
5.4
AssessmentofPriceImpactofCarbonTax.....................................106
5.5
ExaminationofFactorSubstitutionduetoCarbonTax ................108
5.5.1
5.5.2
5.5.3
5.5.4
ModificationofInput–outputCoefficients ............................................. 108
ModellingofElectricityGenerationMix ............................................... 111
ModellingofFinalDemand.................................................................... 113
EconometricSpecificationandParameterEstimation........................... 114
5.6
EconomywideImpactModule ........................................................123
5.7
DataSourcesandPreparation...........................................................126
5.7.1 DataPreparationforInput–outputModel............................................. 126
5.7.2 DataPreparationforProductionFunctionModel................................. 132
vii
5.8
CHAPTER6
SummaryandConclusions................................................................134
ASSESSMENTOFTHEIMPACTSOFCARBONTAX .......................136
6.1
FrameworkforAssessingImpactsofCarbonTax .........................136
6.2
AlternativeCarbonTaxRegimes......................................................138
6.3
AnalysisoftheImpactsofAlternativeCarbonTaxRegimes.......140
6.3.1 EnergyandEnvironmentalImpacts ...................................................... 140
6.3.2 EconomicandSocialImpacts.................................................................. 156
6.4
CarbonTaxtoAchieveAnAprioriEmissionTarget.....................175
6.4.1
6.4.2
6.4.3
6.4.4
CHAPTER7
EarlyIntroductionofCarbonTax .......................................................... 179
DeferredIntroductionofCarbonTax ..................................................... 182
EarlyActionvsDeferredAction:SomeEarlyResults .......................... 184
EarlyActionvsDeferredAction:SomeFurtherAnalysis .................... 185
6.5
ComparisonwithOtherStudies .......................................................189
6.6
PolicyImplicationsofCarbonTax:Someadditionaldiscussion .192
6.7
SummaryandConclusions................................................................195
CONCLUSIONSANDRECOMMENDATIONSFORFURTHER
RESEARCH ...................................................................................................200
7.1
Conclusions..........................................................................................200
7.2
SomeRecommendationsforFurtherResearch...............................209
APPENDICES
AppendixA
ExampleofEmissionsAllocation:PPPvs.SRP………………………….212
AppendixB
DescriptionofInput–outputandProductionFunctionModels……....216
AppendixC
DatasetsRequiredforThisResearch…………………………………….233
AppendixD
CO2EmissionsCalculatedforPPPandSRP……………………………..270
AppendixE
ComputerProgram(Eviews)OutputforProductionFunctionModel.275
AppendixF
ResultsfromEconomywideImpactofCarbonTax…………………….287
BIBLIOGRAPHY…………………………………………………………………………..356
viii
LISTOFTABLES
Table11
Dataconsiderationsforeachspecificobjective................................................17
Table21
Installedcapacity,electricitygenerationandfuelconsumptioninESI........29
Table22
Marginalcostsandemissionratesofelectricitygeneration...........................36
Table31
Australia’sgreenhousegasemissions...............................................................43
Table32
SummaryofselectedcarbontaxstudiesbasedonPPPforAustralia...........61
Table33
AustralianCO2emissions:PPPvs.SRP ............................................................68
Table41
Studiesadoptingphysicalflowmethod ...........................................................77
Table42
PhysicalFlowMethods:KeyFeatures...............................................................85
Table43
Modellingstudiesadoptingembodiedenergymethod .................................87
Table44
EmbodiedEnergyMethods:KeyFeatures .......................................................94
Table51
Parameterestimatesforelectricitysector:energysubmodel .....................119
Table52
Parameterestimatesforelectricitysector:interfactormodel .....................120
Table53
Parameterestimatesforfinaldemand:energysubmodel...........................121
Table54
Parameterestimatesforfinaldemand:interfactormodel...........................122
Table55
Summaryofsectoralclassification...................................................................127
Table56
Economicandtechnicalcharacteristicsofpowerplants ..............................129
Table61
Technologymixforelectricitygeneration......................................................142
Table62
Electricitysupplycosts ......................................................................................145
Table63
Primaryenergyconsumptionandenergydiversity .....................................151
Table64
Percentagechangesincarbondioxideemissions..........................................154
Table65
Impactsofcarbontaxoneconomicoutput:2005–2020.................................157
Table66
Increaseinsectoralprices:2005–2020..............................................................167
Table67
Fiscalrevenuefromcarbontax:2005–2020.....................................................170
Table68
Neteconomicimpactsofcarbontax:2005–2020............................................172
Table69
Impactsofcarbontaxtoachieveanaprioriemissiontarget........................177
Table610 Comparisonofeconomiccosts:PresentandFuturevalues .........................187
Table611Comparisonofeconomiccosts:Shortterm(2020)andLongterm(2040)..188
Table612 ComparisonsofresearchresultsfromcarbontaxstudiesforAustralia ....190
Table613 Summaryofenvironmentaleconomicsocialtradeoffs ................................194
ix
LISTOFFIGURES
Figure11 AnnualgrowthinenergyconsumptionandrealGDPinAustralia .............. 3
Figure12 Energybalance ...................................................................................................... 7
Figure13 Materialsbalance................................................................................................... 8
Figure14 Overallresearchframework ...............................................................................11
Figure15 Sectoralcoverageforthisresearch.....................................................................15
Figure21 Primaryenergyconsumptionforelectricitygeneration.................................31
Figure22 Domesticmarketshareofblackcoal .................................................................32
Figure31 Carbondioxideemissionsfromelectricitygeneration ...................................45
Figure41 Aclassificationofmaterialsbalanceapproaches ............................................74
Figure51 Schematicdiagramoftheoverallmethodologicalframework......................99
Figure52 Representationofdirectandindirectenergyconsumption.........................104
Figure53 Substitutioneffectinneoclassicaleconomictheory ......................................109
Figure54 Inputstructureoftheelectricityindustry.......................................................112
Figure55 Consumptionpatternforfinaldemand ..........................................................114
Figure61 Attributesforassessingimpactsofcarbontax...............................................137
Figure62 Primaryenergyconsumptionforelectricityproduction ..............................148
Figure63 Carbondioxideemissionsfromfossilfuelcombustion ...............................153
Figure64 Annualpercentagechangesineconomicparameters...................................158
Figure65Sectoraloutputs..................................................................................................161
Figure66Sectoraldemandforinvestment ......................................................................161
Figure67Sectoraloutputsforfinalconsumption...........................................................162
Figure68Sectoraloutputsforintermediateconsumption ............................................162
Figure69Sectoraloutputsforexports..............................................................................163
Figure610Sectoralsupplyofinvestmentgoods ............................................................163
Figure611 Increasesininflationrates.................................................................................168
Figure612 Percentagechangesintotalemployment .......................................................173
Figure613 Changesinsectoralemployment .....................................................................173
Figure614 EmissionspathwayofachievingaprioriCO2limit .......................................176
Figure615 Economicimpactsofachievingemissionstargetfromelectricitysector ...178
x
ABBREVIATIONS/GLOSSARY
AAEC
ABARE
ABRCC
ABS
ACA
ACARP
AGO
ASFF
BCA
BCSE
CCS
CES
CISS
COAG
COP
CSIRO
DITR
ECNSW
ERAA
ESAA
ESD
ESI
ETSA
GCP
GDP
GHG
IEA
IHA
IPCC
LCA
LETAG
LETDF
MARKAL
MATTER
MESSAGE
MFA
MIMES
MRET
Mt
NEM
AustralianAtomicEnergyCommission
AustralianBureauofAgriculturalandResourceEconomics
AustralianBusinessRoundtableonClimateChange
AustralianBureauofStatistics
AustralianCoalAssociation
AustralianCoalAssociationResearchProgram
AustralianGreenhouseOffice
AustralianStocksandFlowsFramework
BusinessCouncilofAustralia
BusinessCouncilforSustainableEnergy
CarbonCaptureandSequestration
ConstantElasticityofSubstitution
CoalinaSustainableSociety
CouncilofAustralianGovernment
ConferenceoftheParties
CommonwealthScientificandIndustrialResearchOrganisation
DepartmentofIndustry,TourismandResources
ElectricityCommissionofNewSouthWales
EnergyRetailersAssociationofAustralia
ElectricitySupplyAssociationofAustralia
EcologicallySustainableDevelopment
ElectricitySupplyIndustry
ElectricityTrustofSouthAustralia
GreenhouseChallengeProgram
GrossDomesticProduct
Greenhousegas
InternationalEnergyAgency
InternationalHydroAssociation
IntergovernmentalPanelonClimateChange
LifecycleAnalysis
LowerEmissionsTechnologyAdvisoryGroup
LowEmissionsTechnologyDemonstrationFund
MARKetALlocation
MATerials Technologies for greenhousegas Emission
Reduction
Model for Energy Supply Strategy Alternatives and their
GeneralEnvironmentalimpacts
MaterialFlowAnalysis
Model for description and optimisation of Integrated Material
flowsandEnergySystems
MandatoryRenewableEnergyTarget
Milliontonnes
NationalElectricityMarket
NGAP
NGGIC
NGRS
NGS
NGSC
NIEIR
OECD
PJ
ppmv
PPP
RBA
RES
RMS
RRI
SECV
SMHES
SRP
TIC
Translog
UNFCCC
xi
NationalGreenhouseAdvisoryPanel
NationalGreenhouseGasInventoryCommittee
NationalGreenhouseResponseStrategy
NationalGreenhouseStrategy
NationalGreenhouseSteeringCommittee
NationalInstituteofEconomicandIndustryResearch
OrganisationforEconomicCooperationandDevelopment
Petajoules
Partspermillionbyvolume
PolluterPaysPrinciple
ReserveBankofAustralia
ReferenceEnergySystem
ReferenceMaterialSystem
ResourceResearchInstitute
StateElectricityCommissionofVictoria
SnowyMountainsHydroElectricScheme
SharedResponsibilityPrinciple
TechnoInstitutionalComplex
TranscendentalLogarithmic
UnitedNationsFrameworkConventiononClimateChange
1
CHAPTER1
1 INTRODUCTION
1.1
Background
Climatechangeisoneofthemostpressingproblemsfacinghumanity.1Itisaresultof
increaseinglobaltemperature(globalwarming)causedbythereleaseofgreenhouse
gases into the atmosphere. The emission of greenhousegases is partly a result of
natural environmental processes and partly due to human activity. The naturally
occurring greenhousegases help balance the incoming and outgoing solar radiation,
thusmaintainingtheearth’stemperatureatanaverageofabout15°C(2001).Without
this natural phenomenon, the earth’s average temperature would be 15–20°C below
zero, which would make it difficult for living beings to survive. However, it is the
humaninduced activity that has been the major cause of global warming. Since the
beginningoftheIndustrialRevolution–lateeighteenthandearlynineteenthcenturies
– the concentrations of greenhousegases in the atmosphere have increased
dramatically. Atmospheric concentrations of CO2 – a major greenhousegas – has
increasedbymorethan30percent,from280ppmvduringpreindustrialrevolution,
to 368 ppmv in the year 2000 (Houghton et al. 2001). The increase in anthropogenic
greenhousegas concentration in the atmosphere tends to destabilise the naturally
occurringradiativeforcing2betweentheearthandsolarsystem.Thishasresultedinan
increase in the global average temperature by 0.6 ± 0.2°C since the late nineteenth
century(Houghtonetal.2001).InAustralia,theaveragetemperaturehasincreasedby
0.7°Coverthelastcentury(Pittock2003).Intheabsenceofanypolicyactiontoreduce
There is of course some scepticism about the enormity of this problem (see, for example,
Lomborg(2001).Thisresearchhowevertakesthemorewidelyheldview–alsoendorsedby
theIPCC–onclimatechange,namely,thatclimatechangeisindeedapressingissue.
2Radiativeforcing,according to Houghtonet al.(2001), isameasure oftheinfluenceafactor
has in altering the balance of incoming and outgoing solar radiation to the earth, and is an
indexoftheimportanceofthefactorasapotentialclimatechangemechanism.
1
2
greenhousegasemissions,theworldemissionsareprojectedtoincreasesubstantially.
Thiscouldleadtoanannualaveragewarmingof0.4°Cto2°CovermostofAustralia
by2030and1°Cto6°Cby2070,ascomparedto1990temperaturelevels(CSIRO2001).
It is now widely accepted that even a slight increase in temperature would have a
significantly detrimental impact on economic, social, and natural ecosystems. As
evidenced in 2002, Australia experienced its worst drought since at least 1950 which
was the first drought when the impact of humaninduced global warming could be
clearlyobserved.Thisdroughtnotonlyledtothedisruptionofecologicalsystem,but
alsodecreasedagriculturalproductivity,whichreducedtherateofeconomicgrowthin
Australia during 200203 by 0.75 per cent (Karoly, Risbey & Reynolds 2003). Further,
the recent drought of 2006 is also expected to have a similar impact. ABARE (2006b)
estimatesthatthisdroughtcouldreduceeconomicgrowthinAustraliafor200607by
around 0.7 per cent. According to Pittock (2003), the impact of climate change in
Australiainclude:“50percentdecreaseinwatersupplyinPerthsince1970s…nearrecord
low water levels in reservoirs in the southeast Australia in 200203 due to low rainfall and
hightemperature…increasingtheseverityofdrought…severeandwidespreadbleachingon
theGreatBarrierReef“.Attheinternationallevel,theimpactofclimatechangehasbeen
significantaswell.SelectedexcerptsfromStern(2006)shouldsubstantiatethis,“China
experiencedlossesin1.2percentofGDPin2004duetocombinationofdroughtandflood…
the2000flood in West Bengaldestroyedsignificant transportinfrastructures …theLaNiña
drought in Kenya in 199899 and 19992000 caused damage amounting to 16% of GDP for
each year … the drought in Ethiopia between 19982000 caused poverty level to increase by
25% … Hurricane Katrina in New Orleans in 2005 costs 1.2% of US GDP … European
heatwave in 2003 (2.3°C hotter than average) caused deaths of around 35,000 people across
Europe”.Inaddition,thefutureimpactofclimatechangeisexpectedtobelargerthan
in the past, mainly due to frequency of extreme weather variations and coastal
flooding(ibid).
Emissions of greenhousegases come from a variety of sources and locations. The
combustion of fossil fuels is the single most important source of anthropogenic CO2
emissions, contributing about threequarters of global emissions (Houghton et al.
3
2001).InAustralia,theproductionanduseofenergyisthesinglelargestsourceofCO2
emissions. For example, in 2004, it accounted for over 85 per cent of total CO2
emissions and 63 per cent of total greenhousegases emissions (AGO 2006). The
Australianenergysectorisdominatedbyfossilfuels,whichaccountedforaround95
percentofprimaryenergyconsumedin2005(ABARE2006a).Also,itiswidelyagreed
thatenergyisanessentialingredientforeconomicprosperity.Thelinkbetweenenergy
consumption and economic growth in Australia is shown in Figure 11. This figure
shows the annualgrowthratesof energyconsumption andreal GDPsince 1975.Itis
noticedthatenergyconsumptiongrewataratethatcloselymatchestherateofgrowth
in GDP. A rapideconomicgrowth will clearly resultin largeincrease inthedemand
forenergy.Butthisgrowthwillbesustainableonlyifthereisareliable,uninterrupted
supply of energy in a form that does not threaten the environment. In Australia, the
primary energy consumption is expected to increase by 46 per cent by 202930 to
support an economicgrowthof 2.6 per cent peryear(CuevasCubria &Riwoe 2006).
Nearly94percentofthisincreaseislikelytocomefromfossilfuels(ibid).
Figure11
AnnualgrowthinenergyconsumptionandrealGDPinAustralia
8
6
4
percent
2
0
1975
1980
1985
1990
1995
2000
2005
2
4
realGDP
energyc onsumption
Source: ABARE(2006a),ABS(2006a)
4
Electricity industry is a major contributor to environmental problems. According to
Diesendorf (2003, p. 2), “About 97 per cent of the electricity industry’s greenhousegas
emissions comes from twentyfour coalfired power stations … an amount of greenhouse
pollutionequivalenttotheannualemissionsfromabout40millioncars”.Theseemissionsare
equivalent to about half of total Australia’s CO2 emissions. The Australian electricity
sector is the largest consumer of fossil energy and historically has been one of the
fastest growing sectors (Dickson & Warr 2000). Electricity generation in Australia is
dominated by coalfired power generation. In 2005, about 84 per cent of Australia’s
electricitywasgeneratedfromcoal(ESAA2006),comparedto26percentinEuropean
Union and 50 per cent in the United States (IEA 2006). Furthermore, it is anticipated
that the amount of future investments needed to finance the world’s burgeoning
energysupplywillbesignificantlyhigherthanhasoccurredinthepast.Morethan$16
trillionneedstobeinvestedinenergysupplyinfrastructureworldwideoverthenext
three decades, out of which $10 trillion would be needed for the development of
electricity sector alone (OECD/IEA 2003). Thus, if emissions are to be reduced
substantially, the electricity industry will have to undergo profound changes in the
technologies that generate electricity. However, unless there is a decisive way to
address environmental problem, within a few years, growth in electricity sector
emissionswillstarttodriveAustralia’sgreenhousegasemissionsinexorablyupward.
The urgency of reducing CO2 emissions has begun to influence policy agendas
worldwideonlyinthelastdecade.Thiswasduetotheincreasingawarenessaboutthe
impending dangers from climate change as mentioned earlier. Over the last several
years,therehavebeenincreasingnationalandinternationalpressuresforcountriesto
showresponsibilitybylimitingCO2emissions.Thefirststepstowardsconfrontingthe
climatechangewerediscussedinTorontoconferencein1988.Inthisconference,there
was a “call for action” to reduce global CO2 emissions. This was followed by the
establishment of international environment bodies (such as IPCC and UNFCCC),
which later on lead to the formulation of environmental protocol in 1997 (i.e., Kyoto
5
Protocol). The Kyoto Protocol requires each of the Annex I countries3 to reduce its
greenhousegas emissions to at least 5 per cent below 1990 levels in the commitment
period 20082012. As of February 2007, 84 countries (including Australia) had signed
the Kyoto Protocol, and 170 countries had ratified it. Australia has, however, not yet
ratifiedtheProtocol.
Arangeofpolicyoptionsarebeingconsideredbyvariouscountriesaroundtheworld
to mitigate greenhousegas emissions. These policy measures are based either on
command and control (or regulatory) standards, voluntary action, marketbased
mechanisms, or a combination of these approaches. Regulatory standards require
polluterstomeetaspecificlevelofemissionstarget,regardlessoftherelativecostsof
meeting this target. This approach, together with voluntary action, have been mainly
adopted in Australia, as it can be manipulated to serves commercial interest and
achievethepoliticalgoal(seeSection3.2fordiscussiononthisissue).Assuggestedby
ERAA (2004, p. 2), “the existing policy environment in Australia, which is mainly
characterised by regulatory approach, are a fragmented array of shortterm State and Federal
Government greenhousegas abatement measures that tend to be poorly targeted, overly
complex and highly inefficient as mechanisms for reducing emissions”. Also, emission
reductionfromelectricitysectorareunlikelytohappenfromvoluntaryaction(MMA
2002).
In contrast, marketbased approaches alters market price signals to provide an
incentive for consumers to conserve energy and for producers to invest in cleaner
energy technologies. This approach is favoured by most economists and some
environmentalists because it treats the environmental cost of energy in a transparent
manner. Environmental factors are normally “external” to the market system, that is,
they are not taken into account in the conventional economics oriented decision
Annex I comprises of 36 countries, including Australia, Austria, Belgium, Bulgaria, Canada,
Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, New Zealand,
Norway,Poland,Portugal,Romania,RussianFederation,Slovakia,Slovenia,Spain,Sweden,
Switzerland,Ukraine,UnitedKingdom,andtheUnitedStates.
3
6
making. A marketbased environmentalpolicy approach instead ensures that these
externalities are internalised (in the economic costs); it allows market mechanism to
sendpricesignalsthatcanachieveanappropriatebalancebetweeneconomicbenefits
ofenergyuseanditsenvironmentalcosts.
Emissionstradingandcarbontaxaretwomainmarketbasedinstrumentsthatapolicy
makercanchoosetoreduceCO2emissions.4However,theseapproaches,carbontaxin
particular, have not received unqualified support in the past. This is because of the
perceived adverse economic impacts of these approaches – carbon tax, in particular.
Thisoppositiontothecarbontaxoption,thisresearchcontends,isbasedonlessthan
completeunderstandingoftheeconomicsandbroaderdynamicsofthisoption.Much
ofthediscussiononcarbontax,forexample,focusesontheformulationofcarbontax
on the basis of Polluter Pays Principle (PPP). Based on this principle, the polluter
(emitter) is defined as a consumer of primary energy (called direct energy) where
combustion takes place. CO2 emission is, therefore, considered as the sole
responsibility of this emitter. The magnitudes of (direct) energy consumption and
associatedCO2emissions,basedonPPP,aretraditionallydeterminedfromanenergy
balance approach. A schematic of this approach is shown in Figure 12. It shows the
unidirectionalrelationshipbetweenenergy,economy,andtheenvironment.Here,the
flow of energy is relatively straightforward, beginning with the primary energy
extractionfromthe environment, toenergy conversion, andending with itsenduses
such as by households and industry. In this approach, the electricity sector is
considered as the consumer of primary energy; this energy is used for electricity
production. Further, renewable resource based technology is considered as a zero
emissions technology because it consumes only nonfossil energy. This implies that
carbontaxbasedonPPPtendstopenalisebigpolluterssuchasfossilfuelindustries,
particularly coalbased electricity industry. Based on this principle, electricity
Carbontax,infact,involvesamixtureofregulatoryandmarketbasedapproaches.Itrequires
government intervention in regulating the tax components to ensure the internalisation of
externalities and, at the same time, requires free market principles to send price signals in
ordertoachieveemissionreduction.
4
7
generatedfromrenewableenergyresourceswouldnotbepenalisedatall.Inaddition,
the endusers, such as households and industries, are only responsible for a small
amount of direct fossil energy consumption, although they are large consumers of
electricity producedfrom fossilfuels.Theapplication of carbontax,basedonPPP,is
considered inequitable by some because it holds fossil fuel consumers as solely
responsibleforcreatingemissions.
Figure12
Energybalance
An alternative approach to the formulation of carbon tax is based on Shared
Responsibility Principle (SRP). This approach assigns the responsibility for CO2
emissions not only to the polluters of emissions, but also the consumers of products
and services whose production would have caused CO2 emissions. In this approach,
for example, renewable technology (which would have been considered as a zero
emission technology in terms of the PPP approach) would be considered responsible
forCO2 emissionsto the extent of energyand hence CO2 emissionsembedded inthe
materials that are used to build and operate this technology, over its lifetime. By a
similarreasoning,industrieswouldbeliableforCO2emissionsnotonlytotheextent
of their CO2emitting direct fuel consumption, but also to the indirect energy
embeddedinothermaterialinputstheyconsumeintheproductionprocess.Similarly,
households are responsible for consuming CO2emission embedded consumption
goodsandservices.
8
The task of determining indirect energy (and associated CO2 emissions) for each
economic activity in a society is, however, complex. Reasonably robust policyuseful
estimationscould,however,bedevelopedbyadoptingamaterialsbalanceapproach.5
AschematicofmaterialsbalanceisshowninFigure13.
Figure13
Materialsbalance
The energyeconomyenvironmental interactions shown in materialsbalance are
relativelymorecomplex.Takerenewabletechnologyasanexample.Itwasconsidered
as a zero emission technology under the PPP (or the energybalance approach).
However,underthematerialsbalanceapproach,someemissionsarealsoattributedto
thistechnology,inproportiontotheconsumptionofmaterials.Theincreaseindemand
for renewable electricity will resulted in increase demands for these materials. The
production of these materials would require additional energy, which inturn would
produce CO2 emissions. In contrast to the energybalance, here the renewable
electricity is also responsible for creating CO2 emissions. Using the materialsbalance
The materialsbalance approach discussed here is adapted from the materialsbalance
approachdevelopedbyKneese,Ayersandd’Arge(1970).SeeSection3.3.3andSection4.1for
morediscussion.
5
9
approach,theenvironmentalimpactfromtheconsumptionofenergy(andemissions)
embodied in materials can also be captured. Hence, the responsibility for CO2
emissions could be appropriately assigned, based on both direct as well as indirect
(thatis,embeddedinthematerials)energyconsumption.
The application of carbon tax based on materialsbalance (rather than the energy
balance) provides a fuller understanding of energyeconomyenvironmental
interactions. Furthermore, this approach provides a foundation for allocating
emissions to each economic activity in the economy in a manner that truly reflects
environmental impacts of that activity. Despite this advantage, there is a lack of
analysis and discussion about various facets of this approach. This is the subject of
investigationinthisresearch.
1.2
ResearchObjectives
Against the above background, the main objective of this research is to examine the
appropriatenessofcarbontax(designedonthebasisofenergybalanceandmaterials
balance approaches) as a policy option to reduce carbondioxide emissions from the
electricitysectorinAustralia.Inordertoachievethisobjective,fourspecificobjectives
havebeenset.Theseareasfollows.
I.
Review the evolution of the Australian electricity industry with a view to
develop a wider perspective on the role of coal in the Australian electricity
complex.
II.
ProvideanoverviewofthedevelopmentofgreenhousepolicyinAustraliawith
aviewtoexaminetheforcesthathaveshapedthispolicyand,inparticular,the
rolethatcoal–electricitycompacthasplayedinshapingthispolicy.
III.
Reviewalternativemethodologiesavailablefordesigningacarbontaxandfor
determining the impact of carbon tax on the wider economy – and identify a
methodologicalframeworktobeappliedinthisresearch.
10
IV.
Apply the framework identified in III above to assess the economywide
impacts of carbon tax and analyse the appropriateness of alternative
conceptionsofcarbontaxaspolicymeasurestoreduceCO2emissionsfromthe
electricitysectorintheAustraliancontext.
1.3
ResearchMethodology
TheoverallmethodologicalframeworkusedinthisresearchisshowninFigure14.A
combination of methodologies are applied in this research. These methodologies are
dividedintothreeparts–historicalreview,energyandenvironmentalmodelling,and
policyanalysis.Asummarisedoverviewofthesalientfeaturesofthesemethodologies
isprovidedinthissection.Adetaileddescriptionforeachmethodologyisprovidedin
relevantchaptersofthisthesis.
Figure14
Overallresearchframework
11
12
1.3.1
HistoricalReview
Thehistoricalreviewinthisresearchinvolvesareviewoftwoaspects–theevolution
ofelectricityindustryandthedevelopmentofenvironmentalpolicyinAustralia.
For the first objective, the evolution of the electricity industry is reviewed. Several
studies have reviewed the history of the Australian electricity industry, for example,
ESAA (1973), McColl (1976), Rosenthal and Russ (1988), Johnson and Rix (1991),
Kellow (1996), Sharma and Bartels (1998), Booth (2003), Sharma (2003), and
Fathollazadeh(2006).Thesestudiesdescribedchangesintheelectricityindustry over
time. However, the historical review in this research focuses specifically on the
circumstances during the evolution of the electricity industry that lead to the
intensification of coal–electricity compact. The review of the Australian electricity
industryinthisresearchisdividedintofivetimeperiods–theoriginsoftheindustry
(1880s1900),thegenesisofthecoal–electricitycompact(1900s1950),theconsolidation
of the compact (1950s1980), further strengthening of the compact (1980s1990s), and
theentrenchmentofthecompact(1990spresent).Further,areviewofrecentliterature
ontechnical,economic,andpoliticalaspectsoftheelectricityindustryisundertakenin
order to indicate how the coal–electricity compact would influence the future
developmentoftheelectricityindustry.
For the second objective, the historical development of the Australian greenhouse
policiesisreviewed.Severalstudieshavereviewedtheevolutionofgreenhousepolicy
developmentinAustralia,forexample,Taplin(1994),Bulkeley(2001),Hamilton(2001),
Hunt (2004), Christoff (2005), and Riedy (2005). The historical review undertaken in
this research focuses on understanding the process of how greenhouse policy
development has progressed in Australia. Greenhouse policy development in
Australia is still in its infancy (as compared with the development of the electricity
industry);itonlystartedtoexertsomepolicyinfluenceinthe1990s.Consequently,the
review in this research particularly emphasises the changing stance of the Australian
Government towards the greenhouse policy in the recent past. Further, a review of
studiesfocusingontheapplicationofcarbontaxintheAustraliancontextisperformed
13
in detail. This review focuses on developing an understanding of the basis (that is,
energybalanceapproach)onwhichcarbontaxdebatewasfoundedinthepast.Itthen
proposesanalternativebasis(thatis,materialsbalance)forthedesignofcarbontax.
1.3.2
ModellingPerspective
Thisresearchadoptsamaterialsbalanceapproachforanalysingtheimpactsofcarbon
tax.Inthisapproach,thedescriptionofenergyeconomyenvironmentalinteractionsis
underpinnedbyadetailrepresentationofenergyandmaterialflowsintheeconomy.
The formulation of a framework required for such representation is obviously a
challengingtask.Thischallengeisaddressedinthisresearchinthefollowingmanner.
First,theconceptualfoundationsofvariousmethods,thatcanincorporatematerialand
energyflowsarereviewed.Thesemethodsareclassified intotwo –methodsthat are
based on physical material flows and those based on embodied energy flows. The
purpose of this review is to determine the strengths and weaknesses of different
methods,sothattheappropriatemethodforthisresearchcanbeselected.Thisreview
wasconductedinthecontextofthefollowingcriteria;theabilitytoperformanalysisat
sufficient level of sectoral detail (spatial scope), ability to provide analysis over long
timeframe (temporal scope), ability to capture changes in technology and capital
investment (dynamics), ability to analyse price impacts of carbon tax (price
considerations),andtheflexibilityintermsofdatarequirements.
Based on this review, input–output method, with modified production function, is
selected for application in this research. The framework based on this method
comprisesoffiveinterlinkedmodules.Inthefirstmodule,CO2emissionsareallocated
across different economic sectors based on energy as well as materialsbalance
approaches. Based on these allocations, CO2 intensities are estimated. In the second
module,acarbontaxisassignedbasedonenergyintensities.Inthethirdmodule,the
relative changes in energy and material prices, in response to a carbon tax, are
estimated.Thesectoralpriceeffectsareestimatedusinginput–outputpricemodel.In
the fourth module, the substitution effects, in response to changes in energy and
materialprices,areanalysed.Thedesignoftheproductionfunction,fortheanalysisof
14
these substitution effects, is based on multistage estimation procedure developed by
Fuss (1977). The substitution possibilities between aggregate factor inputs (capital,
labour, electricity, energy, and materials) and energy inputs (coal, oil, and gas) are
estimatedusingTranslogcostfunction;whereasthesubstitutionpossibilitiesbetween
material inputs are estimated using CobbDouglas cost function. In the final module,
theeconomywideimpactsofcarbontaxareanalysed.Theseimpactsinclude–energy,
environmental, economic, and social. These impacts are analysed using energy
environmentorientedinput–outputmodel,proposedbyProopsetal.(1993).
1.3.3
PolicyAnalysis
The policy implications of carbon tax (based on both energy and materialsbalance
approaches)areanalysedwithreferencetoCO2emissions.
A basecase scenario is created in this research so that the impacts arising from the
applicationofcarbontaxbasedonenergyandmaterialsbalanceapproachescouldbe
compared and policy inferences drawn. In the first instance, the economywide
impactsofcarbontaxareassessedwithoutimposinganyaprioriemissionslimits.Two
levels of carbon tax are considered, namely, $10 per tonne and $20 per tonne of CO2
emissions.Anassessmentoftheimpactsofcarbontaxisalsoundertakeninasituation
where there is an apriori restriction on CO2 emissions from the electricity sector. A
comparison is also made between the policy implication of early and delayed
introductionofcarbontax.
1.4
ScopeofthisResearchandDataConsiderations
ThisresearchfocusesonAustralia.Thespatial,temporal,andsectoralscopeofanalysis
has been dictated by the consideration of data availability. The scope of sectoral
coverageisshowninFigure15.
15
Figure15
Sectoralcoverageforthisresearch
TheAustralianeconomy,inthisresearch,hasbeenorganisedintermsofeightenergy
sectors (suppliers of primary and secondary energy) and twenty economic sectors
(suppliers of nonenergy materials). This sectoral organisation is based on national
input–output tables published by the Australian Bureau of Statistics (ABS). The 28
energyandeconomicsectors(asnotedabove)areanaggregatedversionofanumber
ofsectors–rangingbetween106and113–representedintheAustralianinput–output
tables.Thefourenergysupplyandconversionsectorsareadopteddirectlyfrominput–
output tables. The electricity sector has been disaggregated into five generation
technologies – namely – conventional coalfired, internal combustion, gas turbine,
combinedcycle, and renewable. Such disaggregation allows for a representation of
different characteristic of major electricity generation technologies used in Australia
which account for more than 97 per cent of electricity production capacity. This
disaggregationisalsoaccordwiththeannualdatapublishedbytheElectricitySupply
16
Association of Australia (ESAA). The renewable electricity technology sector in this
researchincludeshydro,wind,solarthermal,photovoltaic,etc.Thesetechnologiesdo
not consume fossil energy directly for electricity production but are highly materials
intensiveascomparedtofossilfuelbasedpowerstation.
Theaggregationoftwentyeconomicsectorsisbasedonenergyintensivenessofeach
sector. More energy intensive sectors are kept separate while less energy intensive
sectorsareaggregatedintoonesector.Forexample;ironandsteelandnonferrousmetal
sectorsarekeptseparate,whilethesubsectorsinagriculture,food,textileandcommercial
sectors are combined (see Table 55 for the summary of sectoral classification). As a
consequence,somesectorscompriseasinglesector,whileothers–several.Thesectoral
classificationofthisresearch,ascomparedtosectoralclassificationofnationalinput–
outputtables,isgiveninTableC1(AppendixC,pp.234237).
ToavoiddoublecountingofCO2emissionsduetoenergyconsumption,thisresearch
has constructed primary energy consumption tables in correspondence with sectoral
classification of the input–output tables (as outlined in Figure 15). The primary
energies considered in this research are – black coal, brown coal, natural gas, and
petroleum.Theconstructionofthistableisbasedonprimaryenergyconsumptiondata
for28sectors,whicharepublishedannuallybytheAustralianBureauofAgricultural
andResourceEconomics(ABARE2006a).Further,theCO2emissionsareestimatedon
the basis of emission factors for each type of primary energy. These emission factors
aretakenfromNGGIC(1996).
The time period for analysis in this research is 1980 to 2020. The most recent input–
outputtableusedinthisresearchisfortheyear2002–publishedbyABSinJuly2006.
Asmentionedabove,thisresearchrequiresawiderangeoftimeseriesdataonenergy,
economy, and environment. These data are collected from a variety of published
sources,andsupplementedbypersonalcorrespondencewithprofessionalsworkingin
these sectors of the economy. The overview of data considerations for each specific
objective is shown in Table 11. Further details of data sources and preparation (for
modellingpurposes)forthisresearcharediscussedinSection5.7.
4
3
No
(a)CapitalIOcoefficients
Yes
Yes
No
(a)GDPgrowthrateforfuture
(a)Labourproductivityforfuture
(b)Energyefficiencyimprovement
Yes
Yes
Yes
Yes
Incomplete
Incomplete
Yes
(a)TechnicalIOcoefficients
(b)Primaryenergyconsumption
(c)CO2emissionfactor
(d)Electricitycapacitybytechnology
(d)Electricitygenerationbytechnology
(e)FactorcostsharesforESI
(f)FactorPricesforESI
Yes
gap
(e)ABS(input–outputtables)
(f)ABS(labourandmaterialsprices)
(f)ABARE(nonelectricenergyprice)
(f)ESAA(electricityprice)
(f)RBA(capitalprice)
(a)CommonwealthofAustralia
(b)ABARE
(c)AGO
(d)ESAA
(a)ABS
No
Yes
No
No
No
No
Yes
Yes
No
No
No
No
Yes
No
Assumption
Datainterpolation
Datainterpolation
Secondarydata#
overcomedatagap
Data Strategiesto
Books,journalarticles,reports,legislation, Partial
andpolicypapers
Dataconsiderationsforeachspecificobjective
Data
DataSources
Availability
Informationforelectricitysectorand
environmentalpolicyinthepastand
expectedfuture
Table11
17
ABAREAustralianBureauofAgriculturalandResourceEconomics;ABSAustralianBureauofStatistics;AGOAustralianGreenhouseOffice;ESAAElectricity
SupplyAssociationofAustralia;RBAReserveBankofAustralia.
# Datatodevelopcapitalinput–outputtableisnotdirectlyavailable.Thisisestimatedfromsecondarydata(thatis,fromvariousotherABSpublications).
1&2
Objectives Datarequirements
Note:
18
1.5
SignificanceofthisResearch
This research has made a significant contribution to the analysis of one of the most
criticalissuecurrentlydominatingpolicydebateinAustralia,namely,climatechange.
In particular this research has provided valuable insights into assessing the
appropriateness of carbon tax as a policy measure to reduce climatechanging CO2
emissions.
Traditionally,carbontaxisformulatedbasedonthePolluterPaysPrinciple.According
tothisprinciple,emissionsresponsibilityisallocatedtovarioussectorsintheeconomy
by using an energybalance approach. This approach considers the energyeconomy
environmentalinteractionsasarisingfromtheflowofdirectenergyonlyandignores
energy embodied in the use of materials. The application of this approach for policy
formulation could lead to an incorrect estimation of energyeconomyenvironmental
interactions and hence result in erroneous policy choices. This research proposed an
alternative concept for designing carbon tax, namely, based on Shared Responsibility
Principle. Under this principle, emissions responsibility is reallocated across the
economyonthebasisofamaterialsbalanceapproach.Thisconceptionofcarbontax–
this research has demonstrated – has significantly different (that is, different from
those based on Polluter Pays Principle) ramifications on the economy. This
demonstration is provided in this research through the development and application
ofacomprehensiveresearchframeworkthatallowsforthecapturingofthecomplexity
of the energyeconomyenvironmental interactions in a detailed manner, at national,
sectoralandsubsectorallevels.
TheresultsofthisresearchmightbeofinteresttotheAustralianenvironmentalpolicy
makers,policyanalystsandprofessionalsengagedindevelopingAustralia’sresponse
to the climate change issue. This research should also be useful for other researchers
who might wish to employ this framework to analyse other energyenvironmental
issues.
19
1.6
OrganisationoftheThesis
Thisthesisconsistsofsevenchapters.
Chapter 2 describes the evolution of the coal–electricity compact in the Australian
context. This description includes a brief historical overview of Australian electricity
industryfromitsinceptionthroughtothepresenttimeanditslikelyfutureevolution.
Chapter3providesanoverviewofthedevelopmentofgreenhousepolicyinAustralia.
The purpose of this review is to demonstrate the government’s attitudes towards
environmentalpolicy(carbontaxinparticular).Therationaleandstrategyfortheuse
of carbon tax (based on materialsbalance approach) as a future policy option is also
discussed.
Chapter 4 reviews methods for applying the materialsbalance concept, for
determining the direct and indirect contribution made by various economic activities
to CO2 emissions. The purpose of this review is to understand the relative strengths
and weaknesses of each method in order to select an appropriate method for this
research. The methodological framework, for assessing the impacts of carbon tax, is
thendescribedindetailinChapter5.
In Chapter 6, the economywide impacts of carbon tax are analysed. This analysis is
carried out separately, based on energy and materialsbalance approaches. Also
discussed in this chapter are some of the policy implications of carbon tax in the
Australian context. Chapter 7 presents the main conclusions of this research, and
providessomerecommendationsforfutureresearch.
20
CHAPTER2
2 EVOLUTIONOFTHECOAL–ELECTRICITYCOMPACT
The electricity industry is one of the most important industries in the Australian
economy. In the year 2005, it contributed approximately 1.6 per cent to the gross
domesticproduct,waswortharound$100billion(nominalprices)inassets,employed
nearly 40,000 persons, incurred a capital expenditure of over $6 billion (nominal
prices), and yielded a sales revenue of over $34 billion (nominal prices) (ABS 2006b).
The industry provided over 22 per cent of the total final energy for domestic
consumption in 2004, which increased from 14 per cent in 1980 (ABARE 2006a). The
electricity industry also has a significant impact on climate change. It contributed
nearly35percentoftotalAustraliangreenhousegasemissionsin2004(nearly50per
centoftotalCO2emissions)(AGO2006).Thisisbecausecoalisthedominantfuelfor
electricity production in Australia, contributing about 84 per cent of the electricity
produced in 2004 (ESAA 2006). It is expected that the domination by coal is likely to
continue in the years to come. For example, it is estimated that coal will represent
about70percentofelectricityproductionin2030(CuevasCubria&Riwoe2006).The
environmentalconsequences(inparticular,CO2emissions)ofsuchdominationshould
beobvious.Bythisreasoning,the“role”ofcoalinthewiderelectricitycontextwould
beamajorconsiderationinanyenvironmentalpolicyinitiativetakenbythecountryto
containCO2emissions.Adeeperunderstandingofthisroleisthereforeaprerequisite
for developing an insightful perspective on the efficacy of various environmental
initiatives for containing CO2 emissions, including carbon tax – the focus of this
research.Thischapterisdevotedtowardsthatend.
Thischapterisorganisedasfollows.Section2.1providesabriefhistoricaloverviewof
the Australian electricity industry from its inception to the present. This review is
intendedtodemonstratewhytheelectricitysysteminAustraliabecamedominatedby
coal. This is followed by a discussion on the likely future direction of the electricity
industry(Section2.2),andwhycoalislikelytocontinuetoplayadominantroleinthe
21
future.Finally,asummaryofthemajorfindingsofthischapterisprovidedinSection
2.3.
2.1
HistoricalReviewoftheAustralianElectricityIndustry
Thefocusofthereviewinthissectionistodemonstratethecircumstancesduringthe
historicalevolutionoftheelectricitysupplyindustrythathaveledtotheintensification
ofthecoal–electricitycompact.Thereisanextensiveliteraturethatreviewsthehistory
of the evolution of the Australian electricity industry, for example, ESAA (1973),
McColl (1976), Rosenthal andRuss (1988), Johnson and Rix (1991), Kellow (1996),
Sharma and Bartels (1998), Booth (2003), Sharma (2003) and Fathollazadeh (2006).
Somebroadinferencescanbedrawnfromthesereviewsaboutthenatureofthecoal–
electricity compact. In this chapter, these inferences are supplemented by additional
information in order to develop a more complete picture of this compact. For this
purpose, the historical review in this section is divided into five time periods – the
origins of the electricity industry (1880s–1900), the genesis of the coal–electricity
compact (1901–1950s), the consolidation of the compact (1950s–1980s), further
strengtheningofthecompact(1980s–1990s),anditsentrenchment(1990s–present).
2.1.1
OriginsoftheElectricityIndustry(1880s–1900)
Australia is a federation of six states and two territories. The Australian electricity
industrystartedinthelatenineteenthcentury,aroundstatecapitalsandruraltowns.
Atthat time, electricitywasrelativelymoreexpensive than other energysources and
wasconsideredasaluxury.Thetechnologiesthatwereusedforgeneratingelectricity
in those day were typically distributed, with separate plant supplying electricity to
each town and community (Sharma & Bartels 1998). The industry ownership was
largelyprivate.
The availability of indigenous coal was an important determinant of the early
development of the electricity industry in Australia. Australia possessed abundant
reservesofcoal,andthecoalminingindustrywasalreadywellestablishedpriortothe
inceptionoftheelectricityindustry.Forexample, NewSouthWalesiswell endowed
22
with large reserves of highquality black coal. In fact, the first coal field in Australia
was discovered in New South Wales in the Hunter and Illawarra regions in 1791
(Hargraves1993).Victoriahassignificantreservesofbrowncoalandhasminedthem,
since 1890, in the Latrobe Valley. However, qualitatively this coal is inferior to black
coal. This posed many problems in mining and combustion. Victoria has therefore
been forced to rely on black coal from New South Wales for electricity generation.
Queensland, like New South Wales, has abundant supplies of black coal. South
Australia,however,doesnothaveanyappreciablecoalreservescomparedwithother
states. The only accessible source of coal is available in Leigh Creek. However, it is
expensive to mine and transport, difficult to burn, and has ash and salt problems
(Booth2003).SouthAustraliahasthereforereliedonimportedblackcoalfromBritain
andNewSouthWalesforelectricitygeneration.TasmaniaistheonlyAustralianstate
thathasnotreliedoncoalasafuelforelectricitygeneration.Tasmaniahaslargehydro
reserves,whichweretheleastcostlyandmostflexibleformofpowergenerationatthat
time.Tasmaniawasalsothefirststatetoestablishanauthorityexclusivelyresponsible
for electricity supply, when the first power station became operational in 1895
(Rosenthal & Russ 1988). In summary, coal was the most important primary energy
fuelforelectricitygenerationinmostpartsofAustraliainthevery earlyyearsofthe
development of the electricity industry. Separate, small power stations based on coal
thereforebecamethenorminthoseyears.
2.1.2
GenesisofCoal–ElectricityCompact(1901–1950s)
FollowingtheformationoftheAustraliafederationin1901,energybecameoneofthe
residual powers retained by the states (AATSE 1988). The Australian state
governments began to realise the development potential and political appeal of
electricity (Sharma 2003). Further, it was widely argued that the industry was under
increasing return to scale6 and natural monopoly (Fathollazadeh 2006). Accordingly,
AccordingtoEatwell,MilgateandNewman(1998),thismeansthat“totalcostsofproductionare
lowerwhenasinglefirmproducestheentireindustryoutputthanwhenanycollectionoftwoormore
firmsdividedthetotalamongthemselves”.
6
23
stategovernmentsbegantodevelopandcontroltheirelectricitysystems.However,it
was not until the 1920s that steps were taken towards government ownership and
controloftheindustry,throughtheenactmentofavarietyofstatelegislations.
During this period, the emergence of the coal–electricity compact in many states
becameclearlyvisible.ThefirstsignificantstepwastakeninVictoria.Majorindustrial
problems on the New South Wales coalfields in 1917 left Victoria with supply
shortagesofblackcoal.Todealwiththissituation,theStateElectricityCommissionof
Victoria (SECV) was formed in 1921, following the establishment of the Victorian
BrownCoalAdvisoryCommittee.TheSECVwasestablishedwithaveryclearpurpose
– to develop brown coal resource at Yallourn (the only known coal resource of any
significanceinVictoriaatthattime),inordertoremoveVictoria’srelianceonimported
New South Wales coal. Despite the difficulty in using brown coal for electricity
generation,thegovernmentgavesupportforthisdevelopment,whichwouldnothave
occurred had matters been left to the market (Kellow 1996). This led to a rapid
developmentofbrowncoalminingatYallourn,whereoutputrosefrom79thousand
tons in 1921, to 4.8 million tons in 1944 (Shaw & Bruns 1947). A similar situation
occurred in South Australia. Following the Second World War, the supply of coal
became critically low and there was a fear of black coal supply disruptions to South
Australia.Inordertopreventsuchasituation,theSouthAustralianGovernmenttook
over all power generation and transmission facilities in 1946, and established the
Electricity Trust of South Australia (ETSA). Although it was costly to change the
existingelectricitysysteminordertoconsumestatecoal,thegovernmentannounced
proposalsfortheconstructionoftwopowerstations.Likewise,theNewSouthWales
government had established the Electricity Commission of New South Wales
(ECNSW)in1950,andassigneditthetaskofbuildingasupplysystembasedprimarily
onpowerstationslocatedonthecoalfieldsandtransmittingpowertothemetropolitan
areas(Booth2003).
By the late 1940s, the electricity industry was predominantly owned by the state
governments(Sharma2003).Itwasalsoduringthisperiodthatdemandforelectricity
increased dramatically, from 172 GWh in 1910 to 13,622 GWh in 1954 (Boehm 1955).
24
The increase in electricity production capacity was associated with economic growth
andindustrialisationinthatperiod.Thepoliticalsupportforindigenous(state,inthis
context) fuel sources (that is, coal) and the increasing reliance of the Australian
economyonelectricityduringthisperiodresultedinthecreationofelectricitysupply
systems that were dominated by coalfired power plants. This created a system of
“lockin” by coalbased technology (or in other words, a coalbased technological
complex),whichwastoprovedifficulttooverturninthelateryears.
2.1.3
ConsolidationoftheCompact(1950s–1980s)
Fromthe1950sto 1980s,the roleofstategovernmentsin guiding electricity industry
development increased substantially. The strong economic growth after the Second
WorldWar,combinedwithtechnologicaldevelopmentsinlargeelectricitygeneration
capacities, propelledtheAustralian electricityindustryinto the “golden age”(Johnson
& Rix 1991). The continuous trends in increasing electricity demand and a series of
power shortages during 1949–1953 firmly established the grounds for centralised
electricitysupply.Thisledtoaverticalintegrationoftheelectricitysupplyindustries
in all states, controlled by the state statutory authorities. These authorities were
responsible for all decisions such as dispatching, pricing, and investment planning.
The power plants were dispatched centrally, in terms of their economic merit.
Environmentalimpactsfromelectricitygenerationdidnotinfluencedecisionsrelating
to the scheduling of existing capacity and/or investments in newcapacity (Sharma &
Sproule1998).Thegovernmentdecisionmakingatthattimegenerallydisregardedthe
pollution damage from environmentally inferior technologies, that is, the
environmentalexternalitiesassociatedwiththeuseofpollutingelectricitytechnologies
wereimplicitlyvaluedatzerodollars(Kline2001).Further,undercentralisedcontrol,
the number of power stations increased significantly, including large hydro (for
example, the Snowy Mountains Hydro Electric Scheme)7 and many steamthermal
TheconstructionoftheSMHESstartedin1949andwascompletedin1974.Thisschemeisthe
first interstate coordination scheme which was jointly financed and operated by the
AustralianCapitalTerritory,NewSouthWalesandVictoria.
7
25
power stations. The generating capacity of SMHES is approximately 3,756 MW,
producing electricity on average of 4,500 GWh per year. This project consists of 16
large dams and 7 power stations. Many of these investment decisions, especially
SMHES,werefoundtobenoneconomicaland,assuggestedbyJohnsonandRix(1991,
p.19),“theprivatesectorwouldnotbeinterestedinconstructingsuchscheme,asitproduceda
negativenet present value”.However,the policy behind suchdecisions wasto provide
adequate and reliable energy supply, in order to support economic growth and
prosperity.
Further,in1979,theAustraliangovernmentencouragedthestateelectricityauthorities
toinvestheavilyinexpandinggenerationcapacityinanticipationofthe“mineralboom”
(Saddler1996).Atthesametimethepossibilityofusingnuclearenergyforelectricity
generation drewtheattentionoftheAustralianelectricityauthorities.Thisisbecause
the practicality of nuclear power generation had been well established in many
countries, and Australia possessed significant reserves of uranium. The Australian
AtomicEnergyCommission(AAEC)tooktheroleofpromotingtheconstructionofa
nuclearreactorinNewSouthWales.Althoughinitiallythegovernmentcommittedto
building the reactor, the project was abandoned, as it was considered as being ill
conceived and uneconomic (TEC 1984). Once again, abundant supplies of coal had
renderednuclearenergyasuneconomicandhenceunfeasibleinAustralia.Asaresult,
aseriesofcoalfiredpowerstationswereestablishedinordertomeetelectricityneeds
for an expected “mineral boom”. These electricity infrastructure projects, as selectively
extractedfromBooth(2003),include:
… in Victoria … the Loy Yang project … eight 500 MW units fed by new opencut
browncoalmine…improvetheperformanceofHazelwoodandmuchmoneywasspent
on successive modification program … developed the Yallourn power station, initially
withtwo350MWunits,andlaterextendeditbytwo375MWunits;…inNewSouth
Wales…theECNSWdecidedtotaketheBayswaterproject(4×660MW)tocompletion
…proposedaninnovativeschemetofinancenewfour660MWunitsatEraringonLake
Macquarie…tocomplete2×660MWprojectatMtPiper;…inQueensland…began
thedevelopmentofGladstonepowerstationprojectwithinstalledcapacityof1,680MW
26
…newgenerationofpowerstationsbasedonten350MWunitsizeinstalledatTarong
(4units),CallideB(2units)andStanwell(4units);…inSouthAustralia…additional
to 1,280 MW natural gasfired Torrens Island power plants, the 500 MW Northern
power station was developed to make more efficient use of the Leigh Creek coal; … in
Western Australia … a series of four 200 MW units … two at an extension to Muja
powerstationoperatingonColliecoal…twoweretobeinstalledatKwinanaandfired
byoil…whichlaterconvertedtocoalfiringasaresponsetooilshocks.
Thestrategyofmovingsuccessiveconstructionprojectsfromcoalfieldtocoalfieldwas
adoptedsoastomakeuseofcoalfromstateownedcoalminesandprivatelyowned
companies (ibid). Further, these coalfired power plants benefited from a massive
amount of government investment. The accelerated power station construction
programplacedasignificantburdenonstatefinancialresources.Inseveralcasesstate
authorities borrowed money from overseas, which led to the worsening of the
country’scurrentaccountdeficit,toaround4.5percentofGDP(Kelly1992,p.198).As
previouslymentioned,therationalebehindthedevelopmentoftheelectricityindustry
was to provide a cheap and reliable electricity supply; the construction of these coal
firedpowerplantswasthereforeheavilysubsidised.Thesesubsidieswereintheform
of governmentguaranteed borrowings which gave electricity authorities access to
lowercost debt finance, exemption from paying taxes (such as income tax and other
taxes and charges) and other nontaxation financial imposts, in return for those
electricity authorities performing community service obligations and allowing
differing degrees of control by the minister in each state (Booth 2003). Therefore, the
developmentoftheelectricityindustryduringthisperiodcreatedasystemofmutually
beneficial symbiosis between the political, cultural, social, economical and technical
interests;whichwasusedbythepoliticalpartiesinAustraliatopromotetheirpolitical
agendasandhencetoimprovetheirelectoralprospects(Sharma2003).Inresponseto
thedevelopmentmentionedabove,theenvironmentalcriticsoftheelectricityindustry
had very quickly recognised that many of the new investments during this period
wouldnotbeneededandwere,therefore,wastefulofpublicfundsandunnecessarily
detrimentaltotheenvironment(Saddler1981).
27
Thisperiodclearlyconsolidatedthecoal–electricitycompactbynotonlyexpandingits
coalbasedtechnology,butalsotheassociatedinstitutionsgoverningtheindustry.8In
otherwords,thisperiodhasfirmlyestablishedthecoalbasedtechnologicallockinand
started the creation of the institutional lockin of the coal–electricity compact in
Australia.
2.1.4
FurtherStrengtheningoftheCompact(1980s–1990s)
Bytheearly1980s,thestructureoftheelectricityindustry,whichwascharacterisedas
a “natural monopoly”, was challenged. As a result of the overexpansion of electricity
capacity in the 1970s and early 1980s, the electricity industry was criticised as being
inefficient.Thisinefficiency,accordingtotheIndustryCommission(1991b),wasdueto
poor investment decisions that led to overcapacity, overstaffing and pricing
inefficiencies. This criticism initiated a process of internal reform of the electricity
industrywithaviewtoimprovingtheindustry’sperformance.Itisimportanttonote
here that although state governments appeared to be a driving force in the
development of the electricity industry in past decades, it was electricity authorities
that,withthetechnicalknowledgeandexpertiseintheelectricityindustry,hadahigh
level of control of the industry. Therefore, following the criticism by the Industry
Commission,thestategovernmentstookthisopportunitytointerveneintheelectricity
utilities and at the same time improve their own credentials as responsible economic
managers, by adopting legislative and nonlegislative measures focusing on better
management and control of the industry (Sharma 2003). Such an attempt was first
initiated in 1982 by the new government in Victoria to make the SECV more
accountabletothegovernment(Johnson&Rix1991).Thisprocesswasthenfollowed
byotherstategovernments,especiallyNewSouthWalesandTasmania.Inresponseto
thegovernment’sapproach,theelectricityauthoritiesundertookstrategicinitiativesto
improvetheirimageandtoensuretheirlongertermsurvivalbyadoptinganumberof
The process of technological and institutional lockin in the energy system is discussed in
Unruh(2000;2002)throughthenotionof“TechnoInstitutionalComplex”(TIC).
8
28
reform measures.9 This shows that the role of the governments in shaping the
electricityindustrywasfurtherstrengthened.ThisiswellobservedbySharma(2003):
A review of the history of electricity in Australia also reveals that reform measures
actually adopted by the respective state governments (from among those
recommended/dictated by various inquiries/economic analyses) were well circumscribed
by the political exigencies of the time. Selected excerpts from Kellow (1996) should
substantiate this observation: ‘… in Victoria … the recommendations to ensure public
consultationinenergypolicywerenotimplementedastheydidnotfindfavourwiththe
government…thegovernmentdidnottakeinitialstepstoimplementrecommendations
arisingfromintegratedleastcostplanningstudy…(and)foundtheelectoralattraction
of power station construction irresistible … the energy policy document was carefully
crafted to woo swinging voters … addressed concerns about employment and
environmentalprotection…decisiontoproceedwitha(particular)projectwasnotbased
oncarefuleconomicanalysisbutonthefactthatitwouldprovidecontinuedemployment
...government’sflipfloppingbeforeandaftertheelection.’Theverypoliticalforceswhich
contributed to the development of an inefficient electricity industry in Australia also
contributedtotheimprovementsinitsefficiency.
Although this period witnessed a slow growth in electricity demand and changes in
industry structure to address the problem of overcapacity, many projects that were
under construction in the preceding period were commissioned. This increased the
share of coal in electricity generation, at the expense of oilfired and hydroelectric
power plants (see Table 21). This shows that even in the era when the industry was
faced with a changing course (that is, internal reform), the coal–electricity compact
further strengthened its status under the combined influence of technological lockin
andinstitutionallockin.
DetailsofthesereformmeasurescanbefoundinJohnsonandRix(1991)andKellow(1996).
9
29
Table21
Installedcapacity,electricitygenerationandfuelconsumptioninESI
InstalledCapacity
Total CF IC GT CC RE
Total CF
(MW)
(GWh)
1955
ElectricityGeneration
(PerCent)
3,526 79 5.1
8,455 73 1.8
IC GT CC RE Total BlCBrC NG Oil RE
(PerCent)
16
25
13,853 83 2.6
33,461 74 0.8
1975 19,594 69 1.3 1.6
29
1985 32,450 73 1.1 4.2
1965
Fuelconsumption
(PJ)
(PerCent)
14
6.1 14
25
237 51
464 37
29
34
3.7 25
66,840 76 0.8 0.1
23
820 41
29 4.0 3.1 23
21 111,348 85 0.7 1.0
13
1,245 49
25 8.1 1.8 16
1995 38,115 73 0.9 5.8 0.3 20 160,114 88 0.3 1.2 0.4 10
1,623 55
26 8.7 0.4 10
2005 44,889 70 0.3 8.3 4.5 17 216,647 87 0.1 1.4 4.3
2,288 53
31 8.4 0.3
Sources:
Note: 2.1.5
7
7
ESAA(various).
CF–Coalfired;ICInternalcombustion;GT–Gasturbine;CC–Combinedcycle;RE–
Renewableelectricity;BlCBlackcoal;BrCBrowncoal;NGNaturalGas.
FurtherEntrenchmentoftheCompact(1990s–present)
In the 1990s, the Australian state governments agreed to initiate a broader economic
reformprogram(alsoknownasmicroeconomicreformorsimplymarketreform).This
reformprogramwasbasedonthebeliefinthesupremacyof“freemarketprinciples”in
enhancing economic efficiency10 (Sharma 2003). In Australia, the case for electricity
industryreformwasbuiltonthegroundsthatitwouldleadtosubstantialcostsavings,
lowerelectricityprices,andothereconomicbenefits(Hilmer,Raynor&Taperell1993;
Industry Commission 1991b, 1995). Further, taking note of the increasing concerns
aboutenvironmentalissuesinthe1970sand1980s,proponentsofreformarguedthat
reformwouldalsobebeneficialfortheenvironment.Forexample,“acompetitivemarket
willprovidetherightpricesignalwhichwillensurethatefficiencymeasures,renewableenergy
options and demand side measures are adopted where they are more cost effective” (AGPS
1994).Althoughtherewassomequestioning11ofsuchclaims,itwas,however,unable
todentthepoliticalopinionsinfavourofchange(Sharma2003).
Accordingly, in 1991, the state governments agreed on a reform package for the
electricity industry, which included the creation of the National Electricity Market
Economic efficiency is often used interchangeably with community welfare and public
interest.
11Fordetails,seeJohnsonandRix(1991)andESAA(1996).
10
30
(NEM)12. The NEM was expected to create an environment in which free and fair
competition can be achieved. In the NEM, public and privately owned generators
greaterthan30MWcompetebylodgingbidstosupply electricitytoa common pool
on a halfhourly basis. Bids are then ranked and dispatched on the basis of a purely
economiccriterion,namely,thelowesttothehighestbidprices(Sharma2003).Thebid
price,therefore,isessentiallyitsshortrunmarginalcostwhichdependsprimarilyon
the type of fuel used and the nature of fuel procurement contracts between various
marketplayers(Sharma&Sproule1998).Suchbiddinganddispatchingcriteriaclearly
discourageanyotherconsiderations,suchastechnical,socialorenvironmental,which
will invariably result in higher costs (Sharma 2003). As brown coal is the cheapest
energysourceforelectricityproduction,itsshareoftotalprimaryenergyconsumption,
inrecentyears,hasincreasedtothesamelevelasinthe1960s.Havingreached300PJ
in1982,consumptionofbrowncoaldidnotexceed400PJforsixyears(until1988),and
itdidnotexceed500PJforanothereightyears(until1996).However,withinthetwo
years to 1998, the use of brown coal for electricity generation jumped to over 600 PJ
(seeFigure21).
The NEM was established across all states except Tasmania (which subsequently joined in
2005),WesternAustralia,andNorthernTerritory.
12
31
Figure21
Primaryenergyconsumptionforelectricitygeneration
(PJ) 2,500
2,000
1,500
1,000
500
0
1955
1960
1965
Blackcoal
1970
1975
Browncoal
1980
1985
Naturalgas
1990
1995
Oil
2000
2005
Renewable
Sources:
ESAA(various).
Recent market arrangements also support the development of coalbased electricity
generation, which further entrenched the coal–electricity compact. For example, the
privatisedbrowncoalfiredHazelwoodpowerstationintheLatrobeValleyhadbeen
refurbished in the late 1990s, which extended its life by another 30 years (Hamilton
2001, p. 28). According to Hamilton (2001), it is likely that a similar strategy – of
refurbishing existing browncoalfired power stations – would be adopted to meet
future electricity demand under current market arrangements. In addition to the
refurbishmentstrategy,newcoalfiredpowerstationswerealsocontinuingtodevelop
despitethepressingenvironmentalconcernsduringthatperiod,particularlyfromthe
impacts of climate change from combustion of coal. For example, in 1994, the
construction of a new 135 MW coalfired power station in the Hunter Valley was
approved, even though there was a massive overcapacity of electricity generation in
NewSouthWales(ibid,p.35).
ThedevelopmentoftheNEMisalsothemostimportantdevelopmentforthedomestic
thermal coal market (Productivity Commission 1998). In addition to the increase in
electricityproductionfrombrowncoal(asdiscussedearlier),theuseofblackcoalfor
electricitygenerationalsoincreasedsignificantly.Theshareofblackcoalforelectricity
generationincreasedfrom49percentin1985to53percentin2005(seeTable21).This
32
has led the domestic market share of black coal for electricity generation to increase
from66percentin1980to85percentin2005,asshowninFigure22.
Figure22
Domesticmarketshareofblackcoal
Ce me nt
Othe rs7.4%
Othe rs6.6%
Ce me nt
Industry2.4%
Industry1.3%
Iron&Ste e l
Industry7.6%
Iron&Ste e l
Industry
24.0%
Electricity
Industry
66.2%
Ele ctricity
Industry
84.5%
1980
2005
Sources:
ABARE(various).
The discussion above clearly shows that the recent market arrangements favour the
use of black and browncoalfired technology for electricity generation. Such
development further solidifies the coal–electricity compact by way of further
entrenchingtheinstitutionallockinfortheuseofcoalintheelectricityindustry.
2.2
FutureDirectionoftheAustralianElectricityIndustry
BasedonthehistoricalreviewoftheAustralianelectricityindustryinSection2.1,itis
clear that coal has traditionally been the dominant energy source for electricity
generationin Australia.TheelectricityindustryinAustraliaislocked intocoalbased
technology through continuous development of physical structures using this
technology. As the coalbased technological system expanded, institutions (through
extensive linkages between the coal industry, electricity utilities, and governments)
alsoemergedinacoevolutionarymannertosustainthewellestablishedtechnological
system.Thistechnologicalandinstitutionallockinofthecoal–electricitycompacthas
the ability to withstand external pressures (such as the current environmental
33
pressures) and make the transition to alternative technologies difficult. According to
Unruh(2000,p.818):
TechnoInstitutional Complex (TIC) developed through a pathdependent, co
evolutionary process involving positive feedbacks among technological infrastructures
andtheorganizationsandinstitutionsthatcreate,diffuseandemploythem.Oncelocked
in, TIC are difficult to displace and can lockout alternative technologies for extended
periods,evenwhenthealternativesdemonstrateimprovementsuponestablishedTIC.
ThissectiondiscussesthelikelyfuturedirectionoftheAustralianelectricityindustry.
Future electricity directions are analysed within three arenas – technical, economic,
and political – to show why coal is likely to continue to be a dominant electricity
resourceinthefuture.
2.2.1
TechnicalConsiderations
Australia has abundant supplies of coal resources, with around 800 years of brown
coal and 290 years of black coal deposits (OECD/IEA 2001). In addition to these
abundant coal reserves, Australia is also well endowed with renewable resources,
especiallysolarandwind.Highandconsistentwindsarecommonalongthesouthern
coastline and in Tasmania where wind speed exceeds 8 m/s, while average solar
radiationexceeds4.5kWh/m2/dayinmanyareasofNewSouthWales,SouthAustralia,
Western Australia, and the Northern Territory (Blakers & Diesendorf 1996). With
currentelectricitydemand(ofaround220millionMWhperannum),thelandareaof
about900km2(0.01percentofthetotallandsurface)wouldberequiredforgenerating
electricityfromsolarenergy.13Thisshowsthattheopportunityforthedevelopmentof
renewable electricity is not limited by the availability of natural resources. Questions
are however raised by some regarding the intermittency of renewable resources,
especially solar and wind. It is argued that they can only reliably generate electricity
whenthesunisshiningorthewindisblowing.Theexampleofopencyclegasturbine,
The required land area is estimated using assumptions of average solar radiation of 4.5
kWh/m2/daywith15percentconversionefficiency(Blakers&Diesendorf1996).
13
34
whichisaninefficienttechnologyforgeneratingelectricity,asabackupforrenewable
electricity, is often cited to support the argument. Others however hold a different
opinion and argue that renewables, much like coal, are reliable sources of electricity
generation. Some Australian scientists have shown that a system of largescale and
geographicallydispersedwindpowercangenerateelectricitysmoothlyandasreliable
as a conventional baseload coalfired power plants (Diesendorf 2007; Saddler,
Diesendorf & Denniss 2004). With sophisticated grid management technologies and
improved wind forecasting models, such a system could play a valuable role in an
optimalmixofbase,intermediate,andpeakloadelectricity.
ExistinghydroelectricpowerinAustraliarepresentsonly49percentofthetechnically
feasible hydro resources that have been developed in the country (IHA 2003).
However, there are public concerns about the considerable environmental impacts of
large dams. It is unlikely that any further largescale dams with incorporated
hydroelectric plants would be built in Australia. Nevertheless, there is potential for
increasing hydroelectric generation, through maintaining and refurbishing existing
assets.Saddler,DiesendorfandDenniss(2004)estimatedthattheefficiencyofexisting
plantscouldbeincreasedby6percentonaverageandcapacitiesbyupto30percent.
Carbondioxide Capture and Sequestration (CCS) is another option for reducing
greenhousegas emissions from power stations. CO2 can be collected from fossilfuel
fired power stations, compressed and transported in highpressure pipelines to the
longertermstoragelocations,eitherundergroundorintheocean.However,thereare
significant technological, economic, environmental and political risks associated with
this technology (Baer 2003). These include: the limited potential for sufficient CO2
storage sites, for example, the largest storage potential is in Western Australia while
the biggest pointsource emitters are in eastern Australia (Diesendorf 2003, p. 9); the
cost of capturing CO2 from existing power stations is uncertain, ranging from $36 to
$157 per tonne of CO2 avoided (Saddler, Riedy & Passey 2004, p. 29); and the
environmental risk is also uncertain concerning the leakage of CO2 from either
pipelines or reservoirs, due to little knowledge about the geology of the sites,
particularly the deep saline aquifers in which geosequestration is proposed for
35
Australia(Saddler,Riedy&Passey2004,p.33).Thesuddenleakageofalargevolume
ofCO2couldresultinadisruptionintheecologicalenvironmentandpeoplebecoming
asphyxiated(Diesendorf2003).
Electricity generated from nuclear power, like renewable energy, does not emit
greenhousegasemissionsduringitsoperation.Nuclearfissionisaproventechnology
andhasalreadybeenusedasbaseloadcapacityinmanycountries,contributingnearly
16 per cent to the total world electricity generation in the year 2003 (IEA 2005).
Australia has a significant potential for nuclear power, as it has vast reserves of
uranium. However, nuclear energy has significant waste disposal problems and has
beenlinkedtonuclear weapons proliferation(Fiore2005). Nuclearfusion hasalong
termpotentialforelectricitygeneration.Suchtechnologycanprovidecheapelectricity,
no greenhousegas emissions, negligible radioactive wastes and an infinite supply of
energy (Fiore 2005). The first fusion power is expected to start operating in southern
Francein2016.
2.2.2
EconomicConsiderations
Table 22 summarises the marginal costs and emission rates for different electricity
generationtechnologies.Thetableshowsthatcurrently,conventionalcoalfiredpower
stationsproduceelectricityatthelowestcost,withintherangeof3to4centsperkWh.
Also, the recent expansions in interstate gas pipeline networks, particularly the
development of the Eastern Gas Pipeline, have led to a reduction in real natural gas
prices. As a result, the cost of electricity from natural gasfired power stations has
fallen to about 4 to 6.7 cents per kWh. However, it remains at a price disadvantage
comparedwithcoal,especiallyinVictoriaandNSW,owingtostrongcompetitionfrom
lowcost coal. Renewable electricity in Australia is currently more expensive than
traditional electricity supply. Currently, the most competitive renewable energy is
wind power, with an estimated cost of 7 to 12 cents per kWh. Over time, the
advancementinrenewabletechnologiesisexpectedtoreducethiscost.
36
Table22
Marginalcostsandemissionratesofelectricitygeneration
MarginalCost
EmissionRate
Electricitygenerationtechnology
(tonsCO
(¢/kWh)
2e/GWh)
Conventionalcoal
3.50–4.00
941–1175
Naturalgascombinedcycle(NGCC)
4.13–6.67
491–655
Advancedcoal(IntegratedgasificationCC)
5.47–8.13
750–857
Wind
7.30–11.9
13–40
Nuclear(Fission)
7.50–10.5
10–130
Hydro
7.80–15.1
11–44
SolarThermal
19.9–26.0
n.a.
Wave
20.0–25.0
n.a.
SolarPhotovoltaic
44.8–54.9
53–217
Sources:CommonwealthofAustralia(2006),MMA(2006a;2006b).
Notes: †EmissionrateshowninthisTableincludelifecycleemissionsfromelectricitygeneration
n.a.denotesnotavailable.
Thedifferencesofelectricitysupplycostsforvariouselectricitysupplyoptionsdonot
reflect the true economic value of energy resources. These cost differentials are, as
suggestedbyRiedy(2005),embeddedthroughhistoricalpathdependentprocessesin
the electricity system. Such processes, for example, include subsidy, government
investment for a particular technology, and the neglect of the environmental costs
associated with technologies (ibid). This historical development provides economic
advantagetocoalbasedelectricitytechnologyoverothertechnologies.
Over the years, the government has provided a variety of subsidies for fossilfuel
development.Forexample,sincetheendofWorldWar2,thefossilfuelindustryasa
wholehasreceivedover$3billionindirectsubsidies,andconsumersoffossilfuelhave
received about $37 billion of subsidies (Sonneborn 2004). Although it can be argued
that renewable technologies have also received significant subsidies, as estimated by
Riedy (2005), the extent of these subsidies was less than 15 per cent of the total
subsidiesreceivedbythefossilfuelindustry.Forinstance,in1994,outof$180million
ofgovernmentsupportforenergysectorresearch anddevelopment,only$27million
wasprovidedforthedevelopmentofrenewableenergy(NIEIR1996).Whilemanyof
thesesubsidieshavebeendiscontinued,theywereimportantinthedevelopmentofthe
fossilfuelindustry.
37
Also,asdemonstratedinSection2.1,coalbasedelectricitygenerationtechnologyhasa
long production history under the ownership of stateowned utilities and, therefore,
benefited from significant government investment. These massive government
investmentshelpedreducedtheircostsmanyfold.Itisdifficultforothertechnologies
tobecostcompetitivewithanestablishedtechnologythathasreceivedfarmorepublic
fundingovertime(Riedy2005).
Further, the electricity costs shown in Table 22 do not take into account any
environmentalexternalities.Themainenvironmentalexternalityofburningfossilfuel
inelectricitygenerationplantsisthecostofclimatechange.Ifsuchcostsareincluded,
itislikelythatrenewableenergysourceswouldbecompetitivewithfossilfuels.
2.2.3
PoliticalConsiderations
Coal and electricity industries have traditionally enjoyed significant political power.
Thishascreatedaninstitutionalbarrierforthedevelopmentofothertechnologies.The
electricity industry also has extensive linkages with the coal industry, either through
ownershiporequityinterestinmines(ProductivityCommission1998).Theselinkages
(and also those discussed earlier in Section 2.1), along with the institutional barriers
noted above, inhibit the ability of other contenders to coal to compete with coal. For
example, nuclear power, with its technical potential, would be a viable option as a
baseloadplanttoprovideelectricity;thisis,however,hinderedbyexistinglegislation.
The Nuclear Activities (Prohibitions) Act 1983 in Victoria and the Uranium Mining and
Nuclear Facilities (Prohibitions) Act1986in New South Walesprohibittheconstruction
oroperationofanynuclearreactor(UIC2005).
State governments have an incentive to prefer coalfired over gasfired power
generationbecausecoalcreatesmoreemploymentandusuallyattractsastateexciseor
royalty14, whereas offshore gas is subject to the Commonwealth Petroleum Resource
Rent Tax (PRRT) arrangements (OECD/IEA 2005). One of the recent cases was the
Forexample,theexploitationofbrowncoaldepositsinVictoriawaslargelytaxfree(ACG&
MMA1999,p.80).
14
38
decisiontobuildtheColliecoalfiredpowerstationinWesternAustraliain1999.The
state government supported the construction of the Collie power station, although it
acknowledged that a gasfired power station would have been more economic. The
total additional cost is estimated to be $170 million and, if the government were to
attempt to meet the target of CO2 stabilisation, the additional cost would double, to
$330million(OECD1997).
Therenewableelectricityindustryisinitsinfancy,confinedtosmallandfragmented
marketslocated in remoteareas.Theyrequire support (as coalbased technology had
received)inordertohelpdevelopintoamatureindustry.TheAustraliangovernment
has established a Mandatory Renewable Energy Target (MRET) for electricity
generation,tolimitthegrowthinemissionsandtopromoterenewableenergyindustry
development. The original aim of the MRET was to increase the proportion of
renewable energy in electricity generation by two per cent by 2010, which later was
changedtoanincreaseinrenewablegenerationof9,500GWhperyearuntil2010.Since
its commencement in 2001, the MRET has contributed significantly in attracting the
electricity generation from renewable sources. According to the MRET Review Panel
(2003,pp.12,14):
190powerstationshadbecomeaccreditedundertheMRETmeasure,acrossawiderange
ofeligiblerenewableenergysources…duringthefirsttwoyearsofMRET’soperation,
nearlytwiceasmanyRenewableEnergyCertificates(RECs)havebeencreatedthanare
initiallyrequiredbytheinterimtargets.
With this success, the MRET Review Panel has recommended that the target be
extendedto 2020,with an increase in renewable electricity generation of20,000 GWh
per year (ibid). Such a policy would allow greater penetration of renewable
technologiesintothefutureelectricitymarket.However,thegovernmenthasdecided
notto extendthetarget.Thisdecisionshowsthecontinuingpolitical influence of the
coal–electricitycompact.AccordingtoRiedy(2005,p.211):
ThedecisionnottoextendtheMRETisparticularlyinterestingforwhatitrevealsabout
theinnerworkingofFederalCabinet.Mediareports(e.g.ABC2004a)andstatementsby
39
the Federal Environment Minister (ABC 2004b) strongly suggest that the Minister
argued in Cabinet for an increase to the MRET, but was defeated by other Ministers
concerned about the continued subsidisation of the renewable energy industry and the
economicimpactsofthemeasure.
Withoutsuchpolicysupport,therewillbealackofinvestmentinthedevelopmentof
renewable energy. Further, the government also ceased the funding for the
CooperativeResearchCentredevotedtorenewable energy –theonlyresearch centre
that focused on the development of renewable energy (Diesendorf 2003; Riedy 2005).
This action left the country without a renewable energy research and development
funding agency, for the first time since the oil shocks of the 1970s (Sonneborn 2004).
Support for research and development is critical to the development of renewable
industryinsuchawaythatitcancompetewithtraditionaltechnologies.Thishasbeen
expressedbyrenewableindustryrepresentativesinACGandMMA(1999,p.62),
The sustainable energy industry sees R&D support as critical to its development. It is
important to develop longer term R&D funding arrangements for sustainable energy
technologies,toensurethatappropriateR&Dinfrastructurecanbebuiltupin astable
policycontext.
Despite increasing environmental concerns, the government’s longterm strategies
favour the established coal–electricity compact. As stated by DITR (2004, p. 3), “It is
recognisedthatgivenAustralia’shighleveloffossilfuelresources,wecanbeexpectedtoremain
substantiallyreliantonfossilfuelsforenergyneedsfortheforeseeablefuture”.Itisclearthat
the CCS option seems to be favoured by the Australian government. As stated by
Diesendorf(2003,p.8):
ThefederalgovernmentisfundingthreeCooperativeResearchCentres(CRCs)devotedto
fossilfuelindustries,andhasjustannouncedthatoneofthesehasbeenrenamedtheCRC
forgreenhousegastechnologies,whichfocusedentirelyonCCS,andrenewedforseven
yearsfrom1July2003withanadditional$21millionofgovernmentfunding.
The continuing increase in coalmining activities reflects the government’s policy
preferences.Forexample,in2005,fournewmajorcoalprojectsinNSWandQLD,with
40
acapitalexpenditureofover$1billion,werecompleted.Thesewilladdover10million
tonnesofcoalproductioncapacity(ACA2005).Suchprojectswillcontinuetosupply
lowcost coal to the electricity market, which will help maintain the coal–electricity
compactforextendedperiods.
2.3
SummaryandConclusions
This chapter has investigated the nature of the relationship between the Australian
electricityandcoalindustries.Thisinvestigationsuggeststhat:
x
Coalhastraditionallyplayedacriticalroleinthedevelopmentoftheelectricity
industry in Australia. The abundance of indigenous coal resources provided
initial incentive for the establishment of the coal–electricity compact.
Consequently, small power stations based on coal became the norm in most
partsofAustraliaduringitsearlydevelopment.
x
Overtime,thiscompactwasstrengthenedbyeconomicandpoliticalinterests.
By the mid1900s, the electricity industry was predominantly owned by the
state governments, with the intention of developing power stations based on
coalfields located within the state rather than importing energy from other
states. This marked the beginning of the technological lockin of coalbased
electricityinfrastructures.Inthesecondhalfofthetwentiethcentury,aseriesof
large coalfired power stations were built with government subsidies, in
anticipationofamineralsboom.Thisconsolidatedthetechnologicallockinof
coalbasedtechnology.
x
Theeconomicandpoliticalinterestssoontransformedthetechnologicallockin
into aninstitutionallockin. The useofsignificant publicfundsin the form of
subsidies in the development of power stations in the earlier period has
allowedthedirectinvolvementofpoliticalinterestsintotheelectricityindustry.
The influence of these interests became evident in the investment strategies,
includingtheselectionoffuel(coal)forelectricitygeneration.Evenintherecent
development of the electricity industry, rules which govern the national
electricity market (particularly dispatching criteria) also favour coalbased
41
electricity generation. This demonstrates the institutional lockin of the coal–
electricitycompactinAustralia.
Thischapterhasalso,basedonanhistoricalreview,attemptedtoinvestigatethelikely
futureoftheelectricityindustry.Thisinvestigationsuggeststhat:
x
Thecoal–electricitycompactislikelytoremaindominantintheyearstocome.
Although there is technical potential for the use of alternative fuels for
electricity generation in Australia (for example, solar, wind, hydro, and
nuclear), the uptake of this potential would be restricted by its economic and
politicaldisadvantages.
x
Theeconomicadvantageofthecoal–electricitycompactoverothertechnologies
has been developed through historical pathdependent processes in the
electricity system. These processes include government investment and
subsidiesforcoalbasedelectricitytechnologythatartificiallyloweredtheircost
forelectricityproduction.Theexclusionofnegativeenvironmentalexternalities
associated with coalbased electricity generation technology also enhances its
economicadvantage.
x
The political connections of the coal–electricity compact has further deepened
the economic and political advantages of this compact. It has created an
institution barrier (through legislation and financial support) against the
development of alternative electricity technologies. The longterm policy
directions and political support, particularly for the development of carbon
capture and sequestration – are evidence of the continuing sway of the coal–
electricitycompact.
42
CHAPTER3
3 AUSTRALIANGREENHOUSEPOLICYDEVELOPMENT
Chapter2providedanhistoricalreviewoftheevolutionofthecoal–electricitycompact
inAustralia.Itwasnoticedinthisreviewthatthecoalindustryhasplayedamajorrole
inthedevelopmentoftheelectricityindustry.Itwasalsoarguedthatthiscompactis
likely to remain strong in the foreseeable future. Australia’s coal–electricity compact
clearlyhassignificantenvironmentalimpacts.Byimplication,italsohasthepotential
to significantly influence the Australian government’s stance on policies to reduce
greenhousegasemissions.
Againsttheabovebackground,theobjectiveofthischapteristoprovideanoverview
ofthedevelopmentofgreenhousepolicyinAustraliaandtodevelopaperspectiveon
carbon tax as a policy option to reduce Australia’s carbondioxide emissions. This
chapter is organised as follows. Section 3.1 describes the nexus between electricity
production and CO2 emissions. Section 3.2 describes the development of Australia’s
greenhouse policy aimed at combating CO2 emissions. The rationale and strategy for
the use of carbon tax as a future policy option is discussed in Section 3.3. Finally, a
summaryofmajorfindingsofthischapterisprovidedinSection3.4.
3.1
3.1.1
ElectricityIndustryandCarbondioxideEmissions
TotalCarbondioxideEmissions
Globalwarming and climatechangearecurrentlythemostsignificant environmental
challenges facing humanity. Emissions of greenhousegases from the combustion of
fossil fuels is the dominant anthropogenic emission contributing to climate change.
Greenhousegasemissionscomefromavarietyofsources.InAustralia,theproduction
and use of energy provides the single largest source of greenhousegas emissions. In
2004,Australia’stotalgreenhousegasemissionscomprised565milliontonnesofCO2
43
equivalent (Mt CO2e), out of which 63 per cent (356 Mt CO2e) represented the
contributionfromfuelcombustionalone(AGO2006).
CO2isthelargestcomponentofgreenhousegasemissions,withashare,in2004,of73
per cent (415 Mt CO2e), followed by CH4 with 22 per cent, and others (that is, N2O,
HFCs, PFCs and SF6)15, 5 per cent (AGO 2006). Therefore, CO2 is the single largest
contributor to climate change. Fossilfuel combustion is the major source of CO2; it
accountedforover85percent(352Mt)ofCO2emissionsin2004.Outofthis,electricity
generationaloneaccountedfor55percent(194Mt).TheremainingCO2fromthedirect
combustion of fossil fuels was contributed by transport (21 per cent), manufacturing
andconstruction(12percent),andotherenergycombustionactivities(12percent),as
showninTable31.
Table31
Australia’sgreenhousegasemissions
CO2e emissions(Mtonnes)
1990
2004
CO2
GHG
CO2
Fuelcombustion
254
257
352
Electricityindustry
129
129
194
Transport
61
62
74
Manufacturingandconstruction
37
38
42
Others
28
29
41
Fugitivefuels
6
29
6
Industrialprocesses
18
25
24
Agriculture
91
Landusechangeandforestry
125
129
33
Waste
0
19
0
TotalGHGEmissions
402
551
415
Sources:
GHG
356
195
76
42
42
31
30
93
35
19
565
AGO(2005;2006).
During the period 1990–2004, the nationwide CO2 emissions increased by only 3 per
cent, from 402 Mt in 1990, to 415 Mt in 2004. This was due to significant emission
reductions(73percent)inlandclearingandforestry.However,emissionsfromfossil
fuel combustion increased by 39 per cent (AGO 2005). More importantly, over this
period, CO2 emissions from electricity generation increased by 51 per cent, from 129
CH4:methane,N2O:nitrousoxide,HFCs:hydrofluorocarbons,PFCs:perfluorocarbons,SF6:
sulphurhexafluoride.
15
44
Mt, to 194 Mt. Thus, the future growth in CO2 emissions from electricity generation,
together with the fully utilised reduction potential from landclearing, will put great
pressureonAustralia’scommitmenttoreducetotalCO2emissions.
3.1.2
CarbondioxideEmissionsfromElectricityGeneration
Theelectricityindustryhasaverysignificanteffectontheenvironment.Burningfossil
fuel produces CO2 emissions. The quantity of emissions depends on the carbon and
hydrogencontentofvariousfuels.Forexample,inAustralia,burningeachGJofbrown
coal,blackcoal,petroleumandnaturalgasproduces,onaverage16,95.7,90.4,69.3,and
51.3 kg of CO2, respectively (NGGIC 1996). Brown coal is the most carbonintensive
fuelforgeneratingelectricityinAustralia.Renewableenergy(forexample,wind,solar,
hydro, etc.) does not generate any CO2 emissions during electricity production,
although it may be responsible for significant emissions during the manufacture and
constructionofrenewableenergytechnologiesandsystemsforelectricitygeneration.
Electricity generation accounts for a large proportion of Australia’s greenhousegas
emissions. Its share of total CO2 emissions has increased dramatically over the last
decade–fromabout30percentoftotalCO2emissionsin1990toalmost50percentin
2004, as shown in Figure 31. This is due to the dominance of coalfired power
generation. As Diesendorf (2003, p. 1) states, “Twentyfour coal power stations are the
largest source of greenhouse gas emissions in Australia, pumping out 170 million tonnes of
carbondioxideeveryyear”.AsdiscussedinSection2.1.5,coalaccountedfornearly85per
centofprimaryenergyfuelusedforelectricitygenerationin2004.
These emission factors are the averages over thelastdecade.Emission factorsforeachyear
canbefoundinthecitedpublication.
16
45
Figure31
Carbondioxideemissionsfromelectricitygeneration
50
175
40
150
125
30
100
20
75
50
10
25
0
0
1990
Source: 1992
1994
1996
1998
2000
2002
ShareoftotalCO 2 emissions(percent)
CO2 emissionsfromESI(Mtonnes)
200
2004
AGO(2005).
In Australia, there are no legal requirements on coalfired power generators to limit
their greenhousegas emissions (Diesendorf 2003). Further, the introduction of the
competitive electricity market in several states has also boosted emissions. CO2
emissionsfromelectricitygenerationhavebeenrisinggraduallysince1990.However,
in a single year after the implementation of the NEM Phase 1 (May 1997)17, the
emissionincreasedsharplyby10percent,from152Mtin1997,to167Mtin1998(see
Figure31).FollowingtheintroductionoftheNEMinDecember1998,CO2emissions
continued to grow steadily at an average rate of 3 per cent per annum. The
implementationoftheNEMhasenabledcoalfiredelectricitygenerationtoincreaseits
shareinelectricitygeneration,duetoitsfuelpriceadvantage(AGO2005).Theshareof
browncoalhasincreasedfrom29percentto34percent(orfrom497PJto680PJ)over
the single year after the implementation of the competitive electricity market (see
Figure21).Theincreasingdependenceonbrowncoalisbecausetheoperationofthe
NEM causes companies to seek the cheapest sources of electricity, with no
Anationalelectricitygenerationpoolbeganoperationon5May1997,whenVictoriaandNew
SouthWalesbegananinterstatewholesaleelectricitytradingmarket.Thefulloperationofthe
NEMstartedinDecember1998.
17
46
consideration for environmental impacts (Beder 2003). Brown coal is cheap but has
relativelylowenergycontentperunitofvolume;itthereforeproducesrelativelyhigh
amount of CO2 emissions per unit of energy produced. Old brown coal plants that
have paid off their loans can therefore produce electricity at low marginal costs but
producehigherlevelofCO2emissions(ibid).Browncoalfiredelectricitygenerationin
Victoria displaced blackcoalfired generation in New South Wales and gasfired
generation in South Australia. This is a consequence of the market criterion for plant
ranking and dispatching in the NEM, which could bring further adverse
environmental impacts from the electricity industry. As noted by AGO (2005, p. 15),
“TheintroductionoftheNationalElectricityMarketin1998enabledbrowncoalpowerstations
to increase their share of the electricity market in the eastern States due to their fuel price
advantage”. It is further clear that the electricity industry reforms proved to hinder,
ratherthanhelptoachieveemissionreduction,aswasclaimedbythegovernment(see
Section2.1.5).
3.2
DevelopmentofAustralia’sGreenhousePolicy
This section provides an overview of the development of greenhousegas policies in
Australia.Itisimportanttounderstandhowgreenhousepolicyhasbeendevelopedin
a country where the coal–electricity compact has been strong. Such a review could
provide a basis for designing an appropriate greenhouse policy – that takes into
accountallactorsinvolvedinAustraliangreenhousegasdiscourse.Thereviewinthis
section draws on a number of previous studies, for example, Taplin (1994), Bulkeley
(2001),Hamilton(2001),Hunt(2004),Christoff(2005),andRiedy(2005).Thisreviewis
divided into five subsections – the pacesetter, the changing stance, reaffirmation of
stance,thelaggardnation,andentrenchmentofthestance–accordingtothechanging
positiontakenbytheAustraliangovernmenttowardsgreenhousepolicy.
3.2.1
ThePacesetter
The concerns about the environmental impacts of coalbased electricity production
(especially in view of the entrenched nature of the coal–electricity compact, as
47
discussed in Chapter 2) provided the initial spur for developing policy response to
mitigate such impacts. The global impact of climate change was first discussed in a
conference in Austria in 1985 (Kay 1997). A concern was expressed at the conference
thatincreasingratesoftheuseoffossilfuelswouldincreasethelevelofCO2emissions,
which could worsen the condition of the climate. In 1988, the first steps towards
confrontingclimatechangewerediscussedinToronto.Atthisconference,therewasa
“callforaction”toreduceglobalCO2emissionsby20percentfromthe1988levelsby
theyear2005(Torontotarget).Later,inthesameyear,theIntergovernmentalPanelon
ClimateChange(IPCC)wasestablishedtoinvestigatetheimpactsofglobalwarming
and to suggest strategies to overcome such problems. Australia’s initial response to
these developments was highly cooperative and, according to Christoff (2005, p. 39),
was “shaped by an altruistic public discourse focused on global responsibility and with little
sense of economic reality”. Consequently, in 1990, the Australian government adopted
the “interim planning target” to stabilise emissions of greenhousegases at the 1988
levelsbytheyear2000andthenreducetotheagreedlevelof20percentby2005.The
governmentconsideredtheestablishmentofdomesticgreenhousepolicybasedonthe
assessment of such targets through the advice of the Ecologically Sustainable
Development (ESD) working groups (consisting of representatives from government,
industry, and environment groups) and the Industry Commission. In the meantime,
influenced by the findings of the IPCC, the United Nations (1992) adopted the
FrameworkConventiononClimateChange(FCCC)withtheobjectiveof:
…stabilizationofgreenhousegasconcentrationsintheatmosphereatalevelthatwould
prevent dangerous anthropogenic interference with the climate system. Such a level
shouldbeachievedwithinatimeframesufficienttoallowecosystemstoadaptnaturally
to climate change, to ensure that food production is not threatened and to enable
economicdevelopmenttoproceedinasustainablemanner.
Until this stage, Australia took a progressive position during the negotiations of the
conventionandwasoneoftheeightpacesettercountriestoratifya“callforaction”.
48
3.2.2
TheChangingStance
Such global leadership in combating climate change was soon undermined by the
outcome of the interim target assessment. The Industry Commission (1991a, p. 4)
estimated that achieving the Toronto target would lead to a 2.1 per cent decline in
Australia’snationalproductswiththegreatestimpactfallingonthecoalindustry.The
impactonthecoalindustrywouldbedueto thereallocationofresourcesawayfrom
carbonproducingandusingindustriestootherindustries(ibid,p.110).Ascarbontax
wasconsideredasoneofthemainpolicyinstrumentsdiscussedinthereport,itsoon
becamethesubjectofascarecampaignbythemedia.Thismarkedthebeginningofthe
debateoncarbontaxinAustralia.AccordingtoHamilton(2001,p.33):
Thefossilfuelindustryreactedwithoutrageandthecarbontaxbecamethebogeymanfor
industry in the debate, with both Labor and Coalition governments shunning the
measure(i.e.carbontax)favouredbymosteconomists.
Incontrast,recognisingthepotentialfromenergysystemsinreducinggreenhousegas
emissions, the ESD working groups concluded that “there was a large range of actions
which would be costeffective on energy grounds alone, so that the additional benefit in
greenhouse gas reductions would be free” (Wilkenfeld, Hamilton & Saddler 1995, p. 9).
Becausetheworkinggroupconsistedofrepresentativeswithdifferentviewpoints,the
outcomewasseenasthereconciliationofenvironmentalandeconomicobjectiveswith
precautionary measures – particularly noregrets measures18 – to respond to climate
change. It was also made clear by the ESD working groups that although noregrets
measures would have a negative impact on some industries, this would be
compensatedbythegrowthinotherindustries,suchasenergyefficiencyorrenewable
energy(Bulkeley2001,p.161).
This“noregrets”measureisinterpretedasameasurewhichhaseconomicbenefits,oratleast
no economic losses, as well as achieving a reduction in greenhousegas emissions (National
GreenhouseSteeringCommittee1992).
18
49
In 1992, the Council of Australian Government (COAG) released the National
Greenhouse Response Strategy (NGRS), which was a comprehensive national
approach to reduce greenhousegas emissions. Although the NGRS adopted the no
regrets measure, the term noregrets was interpreted differently from the
interpretation of the ESD working groups. As stated by the National Greenhouse
SteeringCommittee(1992,p.12):
Equity consideration should be addressed by ensuring that response measures meet the
broad needs of the whole community and that any undue burden of adjustment
potentiallybornebyaparticularsectororregionisrecognisedandaccountedfor.
ThisstatementwasinfluencedbytheIndustryCommissionfindings,whichrecognised
the supremacy of economic over environmental objectives in the development of
climatechangepolicy.Itimpliedthatanyindustrysector,includingemissionintensive
industries, should not be economically worse off. Despite this stance by the
government, the NGRS included sufficient measures – particularly on energy supply
side–toreducegreenhousegasemissions.This,accordingtotheNationalGreenhouse
SteeringCommittee(1992,p.16),included:
… limit greenhouse gas emissions arising from energy production and distribution
wherevereconomicallyefficientbyminimisinggreenhousegasemissionsperunitofeach
typeofenergysuppliedto endusers, and by promotingalternative energy sources that
havethepotentialtolowergreenhousegasemissionsperunitofenergysupplied.
This declaration was similar to the claim made by the government that the market
reform program, which was implemented at the same time, would benefit both
economic and environmental objectives (see Section 2.1.5). However, the government
failed to implement NGRS and responses were left to adhoc government processes
andcommercialdecisions,whichwerecountertothestatementgivenintheNGRS,as
notedabove.ThefollowingcitationfromHamilton(2001,p.35)substantiatesthis:
Nearlyeverymajorenergysupplydecisiontakenbystateandterritoriesgovernmentsin
the years subsequent to adoption of the NGRS favoured the options with the higher
greenhouse gasemissions,includingnewcoalfired power stationsand extensionofthe
50
electricity grid into areas previously served by remote area power system (RAPS) and
where renewable energy sources would have been cheaper. The electricity industry,
throughitsorganisationtheElectricitySupplyAssociationofAustralia(ESAA),hasat
alltimesresistedanyseriousmeasurestoattempttolimitemissionsfromcoalburning.
This, together with the existence of the coal–electricity compact (as discussed in
Chapter2),suggeststhatthegovernmentgaveeconomicpriorityprecedenceoverthe
environmentalconcernsendorsedintheUNFCCC.
3.2.3
ReaffirmationoftheStance
By1994,itwasevidentthattheNGRSwasfailingtomeetitstarget.Acomprehensive
reviewoftheNGRSbyWilkenfeldetal.(1995,p.1)suggestedthatthestrategy:
… has failed to make any impact on Australia’s greenhouse gas emissions. After two
years of its operation, there is no evidence that even one tonne of carbon emissions has
beensavedasaresultoftheNGRS.Moreover,Australia’sexcessofemissionsoverthe
targetoftheFrameworkConventiononClimateChange–toreturnto1990levelsbythe
year 2000 – is likely to be far greater than has been admitted by the Commonwealth
Government.
With the increased international pressure19 arising in response to the failure of the
NGRS, the government opted to use an alternative strategy. A package of additional
measures, called Greenhouse 21 C, was proposed in March 1995. As a part of these
measures,asmallcarbontax–intheformofgreenhouselevy–wasalsoproposed.A
tax rate of $1.25 per tonne of CO2 would have been imposed on the domestic
consumptionoffossilfuels,withtheaimofusingpartoftherevenuefromthetaxin
establishinganAustralianSustainableEnergyAuthoritytopromoteenergyefficiency
andrenewableenergy(Hoerner&Muller1996).However,giventheirdomination,in
the media and policy circles, the fossilfuelbased industries overcame attempts to
ThisinternationalpressurewasexpectedtoariseinthefirstConferenceoftheParties(COP1)
attheUNFCCCinBerlinin1995.
19
51
establish even a small level of carbon tax (Christoff 2005). As noted by Diesendorf
(1996,p.39):
Pricesforelectricityandfossilfuelsdonotincludethe‘external’environment,healthand
social costs of their use. Although electricity industry restructuring should in theory
include the internalisation of these external costs, in practice there is strong resistance
fromtheresourceindustries.Indeed,inearly1995,followingintenselobbyingandmedia
campaigning by the resource industries, the Federal government rejected a proposal to
introduceacarbontax/levyonfossilfuels.
Asaresult,thegovernmentintroducedthenewGreenhouseChallengeProgram(GCP)
in October 1995. The GCP is a program that, as an extension to the NGRS, relied on
voluntaryimplementationofnoregretsmeasuresbyindustriesinreturnforpublicity
for their green credentials. This program would not undertake those measures that
would have an adverse economic impact on the industry. As a result, the GCP
attracted considerable support from fossilfuelbased industries in return for their –
governmentfunded–publicityinresponsetoconcernoverclimatechange.Thedebate
overtheimplementationofcarbontax–thatmightimposecostsontheircommercial
interests–wasagaindeflected(Bulkeley 2001).Inthesubsequentyears,theGCPhas
dominated Australia’s greenhouse policy development. Also, it was consistently
referred to as a program that demonstrated the government’s commitment to reduce
GHGemissionsthroughgovernmentandindustries’partnership(Hamilton2001).
3.2.4
TheLaggardNation
Attheinternationallevel,itwasapparentthatvoluntarymeasureswerenotsufficient
toreducegreenhousegasemissions.ThiswasreflectedattheCOP1meetinginBerlin
in1995,whichwasleadingtowardslegallybindingnegotiationstoreducegreenhouse
gasemissions.Thesenegotiationswere arguingforlegally bindingtargetagreements
foreachcountryatCOP3inKyotoin1997,whichwouldbecometheKyotoProtocol.
DuringtherunuptoKyoto,theAustraliangovernmentassumedanaggressivestance
ininternationalnegotiationsoveruniformemissionreductionsof15percentbelowthe
1990 level by 2010 (Christoff 2005). The government made a considerable effort to
52
negotiateforalenienttarget.Suchnegotiationclearlyreflectedtheinfluenceoffossil
fuelbased industries (also the coal–electricity compact) in guiding greenhouse policy
inAustralia.AccordingtoHamilton(2001,p.54):
…thegovernmentarguedthatduetoAustralia’sheavyrelianceonfossilfuels,uniform
emissionreductionrequirementswouldimposeanunfaireconomicburdenonAustralia.
Itadvocatedacomplicatedformulafor‘differentiated’targets,whichwouldawardamore
lenienttasktoAustraliathanothercountries.
This strong claim by the government was supported by a single modelling study
performedbyABARE.Thestudyfoundthattomeetuniformemissionreduction,there
would be decline in almost all sectoral outputs in the Australian economy, which
would lead to an increase in unemployment levels and reduction in wage rates
(ABARE1997).Thisstudy,particularlytheuseoftheMEGABAREmodel,waswidely
criticised,particularlybysomeeconomists,greengroups,andsomeofthosewithinthe
ranks of the party in power (see also, Bulkeley 2001; Hamilton 2001; Hamilton &
Quiggin1997;Tarlo1996).Itwasarguedbythesecriticsthatthisstudyexaggeratedthe
cost of emissionreduction measures and has compromised its neutrality due to
fundingbyfossilfuelbasedindustries(Bulkeley2001;Hamilton2001).
Togetherwiththenegotiationsfor“differentiated”targetsattheinternationallevel,the
government assigned the National Greenhouse Advisory Panel (NGAP) the task of
reviewing the NGRS. Again, the focus was given to noregrets measures at an
individual level (that is, any industry should not be economically worse off). Just
beforeKyoto,thegovernmentreleasedapackageofmeasures–SafeguardingtheFuture
– that constituted the National Greenhouse Strategy (NGS) (Commonwealth of
Australia1998).TheNGSwasformalisedwiththeobjectiveoflegitimisingAustralia’s
responsibility towards greenhouse issue at the COP3 in Kyoto (Christoff 2005).
Despite its ineffectiveness in reducing emissions (as with NGRS), there is one policy
statedintheNGSspecificallyidentified asgoing beyond noregrets–theMandatory
RenewableEnergyTarget(MRET).
53
The strong position taken by the government before and during the Kyoto
negotiations,particularlythethreattowithdrawfromthenegotiations,attractedwide
condemnation (Hamilton 2001, p. 97). However, as a political bargain, Australia was
allowedalenienttargetofemissionlevels–108percentabovethe1990level,bythe
period 2008–2012, together with the inclusion of emissions from landclearing in
greenhouse accounting. Emissions from landclearing in Australia had declined
sharplysince1990;inclusionoftheminthebaseyearwouldallowfossilfuelemissions
toincreasetoatleast120percentof1990levelsbytheyear2010(Hamilton2001,p.88).
This agreement clearly provided Australia with room – under the Kyoto target – for
substantial growth in emissions and, hence, there was little incentive to address the
greenhouseissue.
3.2.5
EntrenchmentoftheStance
SinceKyoto,therehasbeennosignificantinternationalpressureforAustraliatofocus
on developing an environmental policy. However, domestically, the opinion,
particularly among the supporter of the government’s voluntary approach to
greenhousepolicy,begantofragment.AsstatedbyChristoff(2005,p.40):
Late in 2000, ruptures occurred within the Business Council of Australia (BCA), a
leading public supporter of government climate policy, when BHP – then Australia’s
largestcompany–alsodecidedtosupportadomesticemissionstradingsystem.
At that time, the BCA appears to have been thoroughly captured by big mining and
fossil industry interests that consistently opposed any government initiative for
implementingAustralia’sKyotoobligations(Hamilton2001,p.134).Tomoderatethe
situation,severalothermeasureswereincorporatedintheexistingNGSatthenational
level.ThesemeasuresincludetheMRET,energyefficiencythroughminimumenergy
performance standards (for fossilfuel electricity generation, equipment and
appliances,andtheBuildingCodeofAustralia),andfurtherengagingindustryinthe
voluntary Greenhouse Challenge (Commonwealth of Australia 2000). In contrast, at
the state level, the moves towards greenhouse policy were more progressive. These
includemeasuressuchastheGreenhousegasAbatementSchemeinNSWandthe13
54
percentGasSchemeinQueensland.Althoughthesemeasuresweredirectedtoreduce
greenhousegasemissionsbylargeramounts,comparedwiththoseundertakenatthe
nationallevel,theywereconsideredaspoorly targetedinthesensethattheydidnot
allow the market to identify the costeffective options to reduce emissions (ERAA
2004).
In2004,RussiaratifiedtheKyotoProtocol,andthisProtocolwasbackontheagenda.
TheAustraliangovernment,however,reiterateditslongstandingrefusaltoratifythe
Protocol.Thisclearlywasmeanttoprotectthecompetitiveadvantageenjoyedbythe
fossilfuel industry and to hinder (even though by implication) the uptake of
renewable energy technologies (Christoff 2005). This was also reflected in the new
energyandgreenhousepolicystatement“SecuringAustralia’sEnergyFuture”,released
earlier that year20 (Commonwealth of Australia 2004). The Australian government’s
entrenchedgreenhousepolicypositionwasfirmlyarticulatedinthisWhitePaper.The
government has clearly disadvantaged the renewable industry by its decision not to
extend the MRET (also discussed in Section 2.2.3). Further, subsidies were made
available to the fossilfuel industries through a Low Emissions Technology
Demonstration Fund (LETDF). According to the White Paper, the LETDF “support
industryled projects for largescale demonstration of low emissions technologies that could
reduce the cost of technologies with significant longterm abatement potential”
(Commonwealth of Australia 2004, p. 182). Although the LETDF is equally available
forallindustries,duetothedecisionnottoextendtheMRET,ithasdemonstratedits
support for wellestablished fossilfuel industries in the development of CCS (BCSE
2004).AccordingtoRiedy(2005,p.212):
Itishardlysurprisingthatthe White Paperfavoursestablished industrysectors,given
the extent of their involvement in the development of the policy. The … confidential
meeting of the Lower Emissions Technology Advisory Group (LETAG)21 … with the
ThispolicystatementiscommonlyreferredtoastheEnergyWhitePaper.
TheLETAGisagroupcomprisinglargecompaniesintheenergyandresourcesectors.
20
21
55
Prime Minister and Industry Minister … reveal that the LETDF was specifically
developedtoaccelerateinvestmentinnewtechnologiesbyestablishedindustries.
TheWhitePaperwas lateronrevealedasacompleteendorsementofthe“greenhouse
mafia’s”22agenda(Pearse 2005,p. 355),whosecommercialinterestswouldbeaffected
byanymovetoreducegreenhousegasemissions.
More recently (January 2006), the Australian government came up with a new
initiative – the Asia–Pacific Partnership on Clean Development and Climate (also
knownasAP6).23TheAP6aimstoachieveemissionsreductionthroughcollaboration
on the development of existing and emerging clean energy technologies (PM 2006).
AlthoughtheAP6doesnotexplicitlysupportanyparticulartechnology,CCSisoneof
themajortechnologiesthe“partnership”ishighlightingandfostering.Despitebeingan
unproven technology in the context of electricity generation, compared to
commerciallyviablerenewabletechnologies(suchaswind,solarandbiomass),mostof
the recent funding under the “$500 million LETDF” program has been made for the
development of CCS in Australia. Of the total $410 million of funds that have been
allocatedtodate,$335millionhavebeenallocatedforthedevelopmentofCCS(AGO
2007). This shows that such a partnership supports the development of select fossil
basedtechnologies,forexample,CCS.
The government decisions in relation to the development of greenhouse policy, as
discussedinthissection,wereoverwhelminglyinfluencedbythestrengthofthecoal–
electricity compact. Such influences are likely to prevent the development of
greenhouse policy that balances the longterm interests of various segments of the
economy. It is also clear from this discussion that without the political will, the
opportunitiestoimplementeffectivegreenhousepolicywillsimplyneverhappen.
This term, according to Pearse (2005, p. 341), is a selfdescriptor used by some industry
lobbyistsinreferencetotheAustralianIndustryGreenhouseNetwork(AIGN).
23TheAP6countriesareAustralia,China,India,Japan,SouthKorea,andtheUSA.
22
56
3.3
ACarbonTaxPolicyforAustralia
AreviewofthehistoricaldevelopmentofAustralia’sgreenhousepolicy(aspresented
intheprevioussection)suggeststhattheAustraliangovernmenthasoptedtofollowa
“waitandsee”24approachtothedevelopmentofthispolicy.Itswingsintoactiononly
when there is some external (for example, international and/or public) pressure.
Further, such policy development has been strongly influenced by the undue power
wieldedbythefossilfuelindustries.Theseissueshaveinhibitedtheformulationofan
effective greenhouse policy (Johnson & Rix 1991, p. 43). Based on the government’s
current approach to the greenhouse issue, together with the influence of the coal–
electricity compact, it is very likely that any future greenhouse targets for Australia
willbemoredifficulttoachieve.Itisnowcommonlyacceptedthatinordertoreduce
greenhousegas emissions by any significant amount, the fuel mix for electricity
generationmustchangesubstantially(Gerlagh&vanderZwaan2006;Grubb,Carraro
& Schellnhuber 2006). This would be possible only – given the focus of the current
economic reform emphasising freemarket principles – if electricity generation
technologiesreceiveappropriatepricesignalsthatcanachieveanappropriatebalance
betweeneconomicbenefitsandenvironmentalcosts.
This section first discusses various environmental policy options. Then carbon tax
policy,asconventionallyadopted,isdiscussedtogetherwithitslimitations.Finally,an
alternativeperspectiveoncarbontaxisdevelopedandputforwardasapolicyoption
toreducecarbondioxideemissionsinAustralia.
3.3.1
EnvironmentalPolicyOptions
A range of policy options are being considered by various countries to mitigate
greenhousegas emissions. These policy options are based either on a commandand
control (or regulatory) approach or a marketbased approach. A regulatory approach
generally specifies standards and, through regulation, ensures that polluters meet
ThistermisgivenbyJohnsonandRix(1991,p.41).
24
57
these standards, regardless of the relative costs of control. Direct regulation involves
the imposition of technical or emission standards through licensing and monitoring.
Thisapproach(togetherwithvoluntaryaction)hasbeenthetraditionalmainstayofthe
Australian approach to redressing environmental issues. Its attractiveness to the
Australian policymakers arises from the fact that it can be manipulated to serve the
commercialinterestsofthecoal–electricitycompactwhileachievingthepoliticalgoals
(see Section 3.2). This approach, however, argue its critics, lacks flexibility and
motivation,anddoesnotprovidemarketsignalsthatwouldencouragetheuptakeof
leastcostoptionsformeetingemissionstandards(Armstrong1997;Owen1992;Pearce
1991).AsimilardisadvantageintheAustraliancontextwasalsopointedoutbyERAA
(2004,p.2):
... the existing policy environment in Australia, which is mainly characterised by
regulatoryapproach,areafragmentedarrayofshorttermStateandFederalGovernment
greenhousegasabatementmeasuresthattendtobepoorlytargeted,overlycomplexand
highlyinefficientasmechanismsforreducingemissions.
Further, emission reductions from the electricity sector are unlikely to happen under
the most favourable approach adopted by the Australian government, namely,
voluntaryaction(MMA2002).Incontrast,themarketbasedapproach,arguethecritics
of regulatory approach, alters market price signals with the objective of providing
incentives for consumers to conserve energy and for producers to invest in cleaner
energy technologies. This approach is favoured by most economists and some
environmentalists because it treats the environmental cost of energy in a transparent
manner(thatis, itinternalisesthe negativeexternality associated with environmental
impacts) and allows market mechanisms to send a price signal that can achieve an
appropriate balance between the economic benefits of energy use and its
environmentalcosts.Emissionstradingandcarbontaxareoftenconsideredasthetwo
main marketbased environmental policy options to achieve reductions in CO2
emissions (Common & Hamilton 1996; Cornwell & Creedy 1995; Missfeldt & Hauff
2004; Price Waterhouse 1991). A hybrid marketbased approach that combines
elementsofbothemissionstradingandcarbontax,calledapermitandfeesystem,was
58
alsorecentlyconsidered(McKibbin&Wilcoxen2006).Infact,the“carbontax”option
involvesamixtureofregulatoryandmarketbasedapproaches.Itrequiresgovernment
intervention in regulating the tax components to ensure the internalisation of
externalitiesand,atthesametime,requiresfreemarketprinciplestosendpricesignals
thatwouldencourageemissionreduction.
In order to achieve reductions in CO2 emission, both regulatory and marketbased
approaches have often been recommended to be used in combination (Topham &
Hennessy 1996). However, as suggested by Price Waterhouse (1991), before
combinations of measures can be efficiently adopted, each measure needs to be
understoodinisolation.
The discussion in Section 3.2 revealed that the carbon tax approach has not received
much support in Australia in the past, due to concerns about its likely adverse
economicimpacts.Thisresearch,however,arguesthatthisoppositiontocarbontaxis
based on a less than complete understanding of the various facets of this approach,
including alternative principles for the design of appropriate levels of carbon tax, its
economywide impacts, etc. It is also argued in this research that if these facets of
carbontaxareappropriatelyunderstood,muchoftheoppositiontoitwouldweaken
andthatitcouldinfactbetechnically,economicallyandpoliticallyanattractiveoption
toreduceCO2emissions.Oneofthekeyattractivenessofthisapproachisthatitcould
enable a correct pricing of negative environmental externalities and, hence, allow
cleaner electricity production technologies to compete with the traditional
technologies. Moreover, a carbon tax policy is deemed by some as being the easiest
environmentalpolicytobeimplementedandmonitored(Owen1992).Accordingly,in
the subsequent subsections, the rationale and strategy for the implementation of a
carbontaxpolicyforreducingAustralia’sgreenhousegasemissionsisassessed.
3.3.2
ConventionalCarbonTaxApproach
A carbon tax is a tax imposed on the total quantity of greenhousegas emission. Its
main objective is to encourage the use of fuels with lower carbon content. This is
59
achieved by taxing the use of fossil fuels. The level of tax is typically related to the
carboncontentofthefuel.
Carbontaxistraditionallyformulatedbasedonstandardneoclassicaleconomictheory
ofexternalities,includingPigouviantax25andCoaseantheorem.26Theleveloftaxisbased
ontheformer,whiletheallocationofemissions,isbasedonthelatter.Thesetheories,
in essence, define the core of what is known as the Polluter Pays Principle (PPP).
Following the adoption of this principle by the OECD in 1972 and European
Community in 1975, it occupies a prominent place as a background principle for
developingenvironmentalpolicymeasuresaroundtheworld(Steenge1999).
AccordingtothePPP,thepolluterisdefinedastheagentwhoisprimarilyresponsible
for taking measures to maintain desired environmental quality levels (OECD 1994).
The polluters are treated as consumers of primary energy (called direct energy).27
Emissionsare,therefore,allocatedasthesoleresponsibilityofthesepollutersand,asa
result,requirethesepolluterstoberesponsibleforthecostsofcontrollingpollution,by
taxingthemaccordingtotheirlevelsofemissions.Clearly,carbontax–basedonPPP–
tends to penalise big polluters such as fossilfuel industries. The impact on these
industries would be directly proportional to the carbon content of each fossil fuel
consumed.Thismeansthatacoalfiredpowerstationwouldbepenalisedmorethana
gasfired powerstation.Electricitygeneratedfromrenewableenergyisassignedzero
emissions, as it does not consume any fossil fuel and, hence, will not be penalised at
all.
Acarbontaxpolicy,basedonthePPP,hasbeenwidelydebatedinAustraliasincethe
early 1990s. Such debate was particularly intense during the times of international
APigouviantaxreferstoalaxleviedoneachunitofapolluter’soutput,inanamountjust
equal to the marginal damage it inflicts upon society at the efficient level of output (Pigou
1978).
26The Coaseantheoremreferstotheallocationofpropertyrightsand, through the process of
bargaining among parties concerned, the market would solve the environmental problem
(Coase1960).
27 The flow of direct energy can be represented in terms of the energy balance, as shown in
Figure12(Chapter1).
25
60
debateon waysofcombatingclimate change,for example,theTorontoconference in
1988,theCOP1inBerlinin1995,andtheCOP3inKyotoin1997.
A number of studies were conducted during this period to assess the suitability of
carbon tax as a measure to achieve emissions reduction. These studies assessed the
economicimpactofdifferentlevelsofcarbontax.Thisimpactwasassessedintermsof
changesinthegrossdomesticproductsaswellaschangesinthelevelofoutputsfrom
differenteconomicsectors.
Table32presentsasummaryofkeyresultsofthesestudies.Thetableshowsthatthe
introductionofcarbontaxwouldsignificantlyimpactontheAustralianeconomyand
the energy industries. For example, according to the Industry Commission (1991a), a
taxof$21.75pertonneofCO2wouldberequiredtomeettheTorontotargetandthis
leveloftaxwouldresultina2.1percentlossinAustralianeconomicgrowthoverthe
period1991–2005.AccordingtoMcDougal(1993),acarbontaxof$19pertonneofCO2
would result in a GDP loss of 0.9 per cent over the period 1993–2005. Similarly,
according to NIEIR (1995), a tax of $14 per tonne of CO2 would result in economic
lossesequivalentto$179billionovertheperiod1995–2005.
19c
21.75b
2.10%
26.2
Emissiontax($/tonne
CO2)
ChangeinGDP
Blackcoal
3.1
Construction
1.8
+0.2
2.1to+0.2
6.5
1.3
4.8
0.5
4.4
20.8
11.2
100
67
20percentof
1990by2005,
stabiliseby2010
+0.1
+0.3
0.3
0.1
1.1
0.62%to0.01%g
$179bnf
7
Common&
Hamilton(1996)
14d
Toronto
targeta
NIEIR
(1995)
reduceGHGemissionsto20percentbelow1988levelbytheyear2005;
1988prices;
1987prices;
consideredcarbontaxincombinationwithotherpolicymeasures;
$1.25/tonnein1995andincreasesgraduallyuntilitreaches$13.8/tonnein2005,thenmaintainedatthisrateto2010;
presentvaluewith8percentdiscountrate;
reductionofGDPby0.62percentin2004,0.13percentin2014,andincreaseinGDPby0.01percentin2024.
Services
a:
b:
c:
d:
e:
f:
g:
2.2
Manufacturing
7.6
Electricity
9.5
Oil
Ironandsteel
19.3
Gas
Nonferrousmetal
62.3
Browncoal
0.90%
Toronto
targeta
Torontotargeta
CO2emissions
reductiontarget
Thorpeetal.
(1994)
ABARE(1997)
61
1.1%pa
4.3%pa
$61bnf
1.2513.8e
+3
+6
32
60
8
24
1990levelby
1990levelby2010
2005 &10percentbelow
1990by2020
McKibbin&
Pearce(1996)
SummaryofselectedcarbontaxstudiesbasedonPPPforAustralia
McDougal
(1993)
Table32
Industry
Commission
(1991a)
Notes:
Sectoralimpact(percent)
62
Further, these studies have shown that the introduction of carbon tax would
particularly adversely affect fossilfuel industries. For example, Thorpe et al. (1994)
estimatedthat,in order toachievetheToronto target andthen stabiliseemissions by
2010,thebrowncoalsectorwouldbecompletelyphasedoutby2010,whiletheblack
coalsectorwoulddeclinebyalmost70percentofitstotalproduction.Notonlywould
fossilfuelsectorsbeheavilyaffected,fossilfuelconsumptionsectors,suchasenergy
intensivemetalprocessingandelectricityindustries,wouldalsobeaffectedbycarbon
tax.Forexample,McDougall(1993)estimatedthat,inresponsetoacarbontaxof$19
per tonne of CO2, while coal production would decline by about 20 per cent, the
outputsoftheelectricityindustryandnonferrousmetalindustrywouldalsodecline
by5and7percent,respectively.Asimilarpatternofresultsisalsosuggestedbythe
Industry Commission (1991a). These studies marked the beginning of the debate on
carbontaxinAustralia.Theoutcomeofthesestudiesinvitedastrongreactionfromthe
fossilfuel industries. In response to this reaction, the government released the
alternativegreenhousepolicystatementthatwasbasedonthevoluntarymeasures(as
discussedinSection3.2.2).
Inthemid1990s,beforetheincreasedinternationalpressureattheCOP1,carbontax
was again being considered by the Australian policymakers as a policy option to
reduceGHGemissions.Thistimeasmallamountoftax($1.25pertonneofCO2)was
considered as a part of a larger policy package, titled Greenhouse 21 C (see Section
3.2.3).McKibbinandPearce(1996)arguedthateventhissmalltaxwouldreduceGDP
by$61bn,andtheimpactonfossilfuelindustrieswouldbesevere.Theseassessments
of the negative impacts of carbon tax on fossilfuel industries, together with their
dominationwithinthepolicycircles,ensuredthatcarbontaxwouldnotbetakenupas
apolicyoptiontoreduceCO2emissions(seeSection3.2.3).Similaradverseimpactsof
carbontaxonfossilfuelindustrieswerealsohighlightedearlierbyABAREintherun
up to Kyoto (ABARE 1997). However, the study by ABARE showed that the impact
would not be confined to fossilfuel industries; other industries, for example, some
exportoriented industries, such as nonferrous metal and iron and steel, would be
adversely impacted upon as well. Consequently, carbon tax policy was continually
63
rejected by the Australian government, on the grounds that it would endanger the
survivalofthefossilfuelindustriesandimpedeeconomicgrowth.
Given the unrivalled political influence of the coal–electricity compact, the politics of
climate change has been very intense in Australia. A key element of this policy has
beenoppositiontotheimpositionofcarbontax.Theadoptionofsuchpolicywould,as
mentionedinTheAustraliannewspaper,“penalisethebigcarbondioxideproducerssuchas
fossilfuelindustryandcouldcause additionalpoliticalbarrier”(Murphy 2005).Thisisthe
reasonwhythecarbontaxpolicyhasnotbeenreceivedwellinAustralia.
However,thisresearcharguesthattheestimatesabouttheadverseeconomicimpacts
ofcarbontaxbasedonPPP(asdiscussedabove)areflawed.Inthisapproach(thatis,
PPP),nonfossilfuelconsumingsectorsarenotconsideredas“polluters”,eventhough
theyusetechnologieswhosemanufacturemightproduceCO2emissions.Inaddition,
they consume electricity produced from fossil fuels. The contribution to CO2 of these
sectors is not captured in the PPP. This contribution can, however, be captured if
carbon tax is designed on the basis of a modified approach called Shared
ResponsibilityPrinciple(SRP).Thisapproachisdiscussedinthenextsection.
3.3.3
AModifiedCarbonTaxApproach
Although the PPP has been widely adopted as the background principle for
developingarangeofenvironmentalpolicies,includingcarbontaxpolicy,itmaynot
be the most appropriate and effective principle for this purpose. There are two main
shortcomingsofthisprinciple.
First,theformulationofPPPisbasedonpurelyeconomictheoriesanddoesnotreflect
the real physical world in term of a complete materials balance (see, for example,
Ayers1978;Ayers1999;Ayers&Kneese1969;Boulding1966;Fritsch,Schmidheiny&
Seifritz 1994; GeorgescuRoegen 1971; Kneese, Ayers & dArge 1970). Essentially, the
materialsbalance approach holds that all materials (that is, energy and nonenergy)
extractedfromtheenvironmentandusedintheeconomyareaccountedforbyeither
remaining in the economy as durable goods or disposed of in the environment as
64
emissions(Cordato2004;Pearce&Turner1990;Perrings1987;Pethig2003;Ruth1993).
This approach therefore implies that environmental problems are a part of economic
processes and all goods and services produced in an economy are (directly and
indirectly) associated with energy use. In other words, energy is consumed in any
economicactivityintwoways–directlyintheformofprimaryenergy,andindirectly
intheformofenergyembodiedinmaterials(calledindirectenergy).Thisindirectuse
ofenergy,accordingtoSpreng(1988,p.138),includes:
…(1)energyembodiedinmaterialsconsumedduringoperationoftheprocess;(2)energy
embodiedinthecapitalfacilitiesofthesystem(includingtheenergyembodiedinallthe
manufacturedcomponentsaswellastheenergydirectlyconsumedduringconstruction
of these components); (3) energy embodied in the capital facilities that produce the
materials and components and in the equipment used during construction; and (4)
energyrequiredtoproducethefuelsandelectricityconsumeddirectly.
The indirect energy thus comprises a chain of direct energy requirements leading
upstreamtorawmaterialsintheground.Therefore,inordertocompletethematerials
flowandhenceaccuratelyrepresentenergy–environment–economicinteractions,both
directandindirectenergyhavetobeaccountedfor.Thishasalsobeenemphasisedby
Owen(2004,p.131)inthat,withinthecontextofenvironmentalimpactofenergyuse:
…alifecycleapproachmustbeadoptedinordertoidentifyandquantifyenvironmental
addersassociated withtheprovision ofenergyservices. This approach providesdetailed
and comprehensive evaluation of energy supply options (based upon both conventional
andrenewablesources).
In the case of renewable technologies, while PPP considers them as zero emission
technologies,theymayinfactconsumesignificantamountsofenergythroughtheuse
ofmaterialsovertheirentireoperatinglife.Thisincludes,forexample,theconstruction
of power plants requiring steel (from the iron and steel industry), copper (from the
nonferrous metal industry), cement (from the construction industry). Moreover, the
operationofthesetechnologiesmayrequireelectronics(fromtheelectronicsindustry),
plastics (from the chemical industry), and so on (Proops et al. 1996, p. 230). The
65
productionofthesematerialsrequirestheburningofvarioustypesoffossilfuels,and
hencethereleaseofCO2emissions.
FromthediscussioninSection3.3.2,itisclearthatcarbontaxbasedonPPPdoesnot
consider the environmental consequences arising from this indirect energy. If this
indirect energy is considered, there could be, this research contends, different
economywideimplicationsofcarbontaxpolicyfromtheonethatisbasedonPPP.
Thesecondshortcoming(relatedtotheabovenotedshortcoming)ofdesigningcarbon
tax based on PPP is the issue of equity. Because PPP does not consider indirect
emissions, the responsibility of controlling pollution rests solely upon fossilfuel
consumers.Inthisapproach,renewableindustry,usingnonfossilfuelinputs,remains
sheltered from environmental responsibility. Accordingly, this could pose an unfair
burdenonfossilfuelindustries.Themessagehereisthattheclimatechangeproblem
should not be considered as the responsibility of only the fossil fuel consumers (or
pollutersastheyaredefinedbyPPP);itshouldbetheconcernofthewholeeconomy.
In light of these shortcomings, a number of principles have been developed as
alternatives to PPP. These include usershouldpay (UP), polluterandusershouldpay
(PUPP),andvictimpay(VP)(Steenge1999).However,likethePPP,alltheseprinciples
alsohavesomeshortcomings.Forexample,inthecomplicatednetworksofindustrial
complexes,itisdifficulttoidentifywhoshouldbeconsideredasthepolluter,user,or
victim(Steenge1999,p.165).Iftheliabilityofmaintainingenvironmentalstandardsis
setastheresponsibilityofanysingleparty,itwouldinevitablyposeanunfairburden
onthatparticularparty.
Inadditiontotheabove,thereisanotherprinciplethathasrecentlybeenmentionedin
theEuropeanUnionFifthActionProgram.Thisprincipleisderivedfromtheconcept
of shared responsibility and, therefore, is called the Shared Responsibility Principle
(SRP) in the context of this research. This principle seeks to alter production and
consumption patterns in the economy. Such alteration is driven by environmental
considerations (for example, CO2 emissions) of various production and consumption
patterns (Steenge 1999). In other words, this principle assigns responsibility for CO2
66
emissions to both fossilfuel consumers and consumers of other products whose
production may have consumed CO2emitting fossil fuels. Under this principle, both
direct fossil fuel consumers and consumers of indirectfuel that is embodied in
materials would be proportionally responsible for CO2 emissions. By taking into
accounttheinterconnectionswithintheeconomy,onlypartoftheproducedpollution
from fossilfuel consumption is imputed to the sector that actually consumes those
fossil fuels, with the remaining parts being imputed to the consumers of their
products.Thisway,environmentalemissionswouldberelatingmoredirectlytoboth
productionandconsumptionactivitiesintheeconomy.
This research proposes the use of this principle as a basis for developing carbon tax
basedenvironmentalpolicy.Inthisalternativeprinciple,theflowofdirectandindirect
energy in the economy can be examined.28 These flows reflect the true interactions
between an economic activity and its impactontheenvironment. The environmental
impactsfromnonfossilfuelconsumerscanalsobecaptured.Ifcarbontaxisimposed
basedonSRP,theseindirectenergyconsumerswillalsobeconsideredasthepolluters
andhencewouldalsobeliableforenvironmentalresponsibilities.
3.3.4
SectoralResponsibilitiesofAustralianEmissions
In Section 3.3.2 and 3.3.3, two principles that can be used for designing carbon tax
policy were discussed. These are the Polluter Pays Principle (PPP) and the Shared
Responsibility Principle (SRP). The main difference between these two principles (as
was also noted in these sections) is in terms of the procedures for allocating CO2
emissionresponsibilitiesacrossdifferentsectorsintheeconomy(anumericalexample
is also given in Appendix A to provide further clarification on this aspect). Once
emissions are allocated, however, carbon tax is imposed on the same basis in both
casesandthepricemechanisminfluencesthebehaviouroftheeconomicagentsinthe
samemanner.
Theflowofdirectandindirectenergycanberepresentedintermsofthematerialsbalance,as
showninFigure13(Chapter1).
28
67
Table33showssectoralCO2emissionsfortheAustralian economyin2002.TheCO2
emissions are allocated based on both PPP and SRP (using a method discussed in
Chapter5).Thesectoralclassificationshowninthistableisthesameasthatshownin
Figure1.4.
Thetableshowsthat,underPPP,theelectricitysectoristhelargestemitterofCO2in
theAustralianeconomy.ItwasresponsibleforsixtypercentofthetotalCO2emissions
in2002.Thecommercialsector,accountingfornearlyhalfofthecountry’sproduction,
ranked thirteenth, responsible for just over one per cent of total CO2 emissions. The
tablealsosuggeststhat,basedonPPP,thebigfossilfuelconsumers(forexample,the
electricitysector,roadandairtransport,ironandsteelindustry,andnonferrousmetal
industry)areresponsibleformostoftheemissionsintheeconomy.Ontheotherhand,
when allocation of CO2 emissions is based on SRP, the electricity sector contributes
only 21 per cent of total CO2 emissions. In this case, the commercial sector is ranked
first.Itisresponsiblefor33percentoftotalCO2emissions.Althoughthecommercial
sector does not consume fossil energy directly, it consumes significant amount of
electricity, as well as other materials. These materials and electricity, in turn, are
producedfromCO2emittingfossilfuels.
68
Table33
AustralianCO2emissions:PPPvs.SRP
Rank
PolluterPaysPrinciple(PPP)
Sector
SharedResponsibilityPrinciple(SRP)
Mt
%
Sector
Mt
%
1 Electricitysector
187.04
60.47 Commercialsector
102.07
33.00
2 Roadtransport
20.52
6.64 Electricitysector
65.12
21.05
3 Ironandsteelindustry
14.89
4.81 Foodindustry
21.58
6.98
4 Nonferrousmetalindustry
14.41
4.66 Nonferrousmetalindustry
20.75
6.71
5 Airtransport
11.96
3.87 Miningsector
11.02
3.56
6 Coalsector
9.17
2.97 Airtransport
10.26
3.32
7 Chemicalindustry
8.90
2.88 Roadtransport
10.25
3.31
8 Petroleumsector
7.96
2.57 Coalsector
10.00
3.23
9 Nonmetalindustry
6.18
2.00 Agriculturesector
7.55
2.44
10 Agriculturesector
5.47
1.77 Othertransport
6.72
2.17
11 Miningsector
4.64
1.50 Machineryandequipmentindustry
6.71
2.17
12 Watertransport
3.78
1.22 Petroleumsector
6.65
2.15
13 Commercialsector
3.75
1.21 Chemicalindustry
6.56
2.12
14 Foodindustry
2.46
0.79 Ironandsteelindustry
4.00
1.29
15 Constructionsector
1.90
0.62 Woodandpaperindustry
3.88
1.26
16 Woodandpaperindustry
1.83
0.59 Watertransport
3.55
1.15
17 Railwaytransport
1.55
0.50 Railwaytransport
3.47
1.12
18 Othertransport
1.02
0.33 Textileindustry
3.06
0.99
19 Gassector
0.93
0.30 Waterindustry
2.14
0.69
20 Textileindustry
0.41
0.13 Constructionsector
1.06
0.34
21 Machineryandequipmentindustry
0.32
0.10 Nonmetalindustry
1.02
0.33
22 Fabricatedmetalindustry
0.13
0.04 Fabricatedmetalindustry
0.79
0.26
23 Waterindustry
0.08
0.03 Gassector
0.67
0.22
24 Othermanufacturingindustry
0.02
0.01 Othermanufacturingindustry
0.44
0.14
TotalCO2Emissions
Notes: Year2002
309.32
100 TotalCO2Emissions
309.32
Thistablepresentstheresultsobtainedfromtheapplicationofequation53forPPPand
equation56forSRP,asdetailedinChapter5,Section5.2.Fordetailedresults–seeTableD1
toD4,AppendixD,pp.271274.
CO2emissionsfromroadtransportdonotincludefuelusedinprivatevehicles.Although
privateroadtransportisamajorsourceofemissions,thefocusofthisresearchisonthe
productionsideoftheeconomy.
ItisalsoclearfromTable33thatcarbontaxpolicybasedonSRPwouldhavecertain
advantagesoverthatbasedonPPP.Theprincipleofreallocationofemissionsbasedon
SRPisinlinewiththematerialsbalanceapproach.Itinvolvesintegratingtheenergy
andnonenergyrelatedemissionsandassigningthemtoaparticulareconomicactivity
(GWA & ES 2002).Inother words,itnotonly considers emissionsfromdirectuse of
energy, but also indirect emissions from the use of energy embodied in materials for
100
69
eachgoodproduced.Thisway,acomprehensiveevaluationofenergysupplyoptions–
fossilsandrenewable–couldbecarriedout.Also,basedonSRP,theresponsibilityfor
CO2emissionscanbefairlyattributedacrossallsectorsintheeconomy(seeTable33).
Despite these advantages of SRP over PPP, there is a lack of discussion and further
investigation of its policy implications in Australia and indeed worldwide. This
investigationconstitutesacoreaspectofthisresearch.
3.4
SummaryandConclusions
Themainobjectiveofthischapterwastoprovideanoverviewofthedevelopmentof
greenhousepolicyinAustraliaandtodevelopaperspectiveoncarbontaxasapolicy
optiontoreduceAustralia’scarbondioxideemissions.Themajorconclusionsfromthis
chapteraresummarisedasfollows.
x
Carbondioxide emissions from electricity generation in Australia are
substantial and increasing. Its share of total CO2 emissions increased from 32
percent(129Mt)in1990,to47percent(194Mt)in2004–anincreaseof51per
centascomparedwithanincreaseof3percent(from402Mtto415Mt)oftotal
CO2 emissions. Specifically, the introduction of the national electricity market
has contributed to a considerable increase in emissions. For example, these
emissions increased from 152 Mt in 1997 to 167 Mt in 1998. This is due to an
increaseintheshareofbrowncoal(from29percentin1997to34percentin
1998)–thecheapestanddirtiestfuel–forelectricitygeneration.Intheabsence
ofanydecisiveenvironmentalpolicy,thefuturegrowthinCO2emissionsfrom
electricity generation will place significant pressure on Australia’s total CO2
emissions.
x
The climate change policy development in Australia has, in the initial years,
been guided by genuine concerns about global warming. In these years,
Australia indeed acted as a global leader in proposing strategies to combat
climate change. Australia was among the first countries to ratify with the
internationalpartyandconductedthedomestic“interimplanningtarget”based
mainlyontheadoptionofcarbontaxtoreduceCO2emissions.Later,however,
70
as the economic impacts of such policies became clearer, especially on fossil
fuel industries, Australia drastically changed its environmental stance. The
release of key policy papers thereafter (for example, National Greenhouse
Response Strategy, Greenhouse Challenge Program, and Energy White Paper)
firmly established a stance that favours economic objectives over
environmentalobjectives.
x
Thecoal–electricitycompacthasexertedastronginfluenceontheevolutionof
Australia’sgreenhousegasreductionpolicies.Suchpolicieshavereliedmainly
on voluntary initiatives for the reduction of greenhousegases. These policies
were,however,characterisedbya fragmentedarrayofshorttermcommercial
and economic interests and lacked consideration of longterm environmental
sustainability.
x
The use of marketbased instruments, particularly carbon tax, has been
continually rejected by the Australian federal political parties, on the grounds
that it would impede economic growth. Its expected impact on Australian
industries has created “carbon tax phobia” among coalelectricity interests,
which has significantly influenced the government’s greenhouse policy
development.
x
Carbontax,astraditionallyexamined,isbasedonanarrowlydefinedprinciple
–thePolluterPaysPrinciple.Emissionsbasedonthisprincipleareconsidered
as the sole responsibility of the consumer of direct energy. This approach,
therefore,tendstopenalisebigfossilfuelindustries.
x
There are two main shortcomings of carbon tax that are based on PPP. It
ignoresindirectenergy embodied inmaterials,and is inequitableinassigning
environmentalresponsibility.
x
TheSharedResponsibilityPrinciple(SRP)couldovercometheseshortcomings
andhencecouldbeusedasanalternativemethodforthedesignofacarbontax
policy.Thisprincipleconsidersemissionsarisingfrombothdirectandindirect
energyconsumption.Hence,it providesacomprehensiveandrealisticpicture
of the real impact of carbon tax on various segments of society. This method
71
also promotesfairness(intermsof emissionsaccreditation)between all actors
involvedintheAustraliangreenhousegasdiscourse.
x
Despite these advantages of SRP, there is a lack of analysis about the
applicationofcarbontaxbasedonthisprinciple.Thisresearchdevotesspecific
attentiontothisissue.
72
CHAPTER4
4 AREVIEWOFMATERIALSBALANCEFRAMEWORK
InChapter3,acasewasmadeforconsideringacarbontaxpolicybasedontheShared
ResponsibilityPrinciple(SRP)asameanstoreduceCO2emissions.Suchconsideration
would require the representation of various economic activities (for example,
electricity production) in terms of their energy and material input requirements, or
materialsbalance (as also shown in Figure A2 in Appendix A). There are several
methods for developing materialsbalances. Each of these methods poses some
challenges.
Theobjective ofthischapter is toreviewmethodsthatincorporatematerialsbalance,
tounderstandtheirrelativestrengthsandweaknesses,andtousethisunderstanding
to select an appropriate method for this research. Section 4.1 introduces the
background of the materialsbalance framework and describes the broad contours of
two materialsbalance frameworks. Before a review of these two materialsbalance
frameworksisconducted,asetofcriteriaisoutlinedinSection4.2.Themethodthat
will be selected from this review must satisfy these criteria. This is followed by a
review of studies adopting the materialsbalance framework. These studies are
grouped into two materialsbalance frameworks discussed in Sections 4.3 and 4.4. A
summaryofthemajorfindingsofthischapterarepresentedinSection4.5.
4.1
BackgroundofMaterialsbalanceFramework
Since the seminal work by Kneese, Ayers and d’Arge (1970), the need to include all
inputs–energyaswellasnonenergy(materials)–intheproductionsystemhasbeen
extensivelydiscussedinthecontextofenvironmentalpolicyanalysis(seeforexample,
Ayers1978,1999;Ayers&Kneese1969;Boulding1966;Fritsch,Schmidheiny&Seifritz
1994; GeorgescuRoegen 1971; Kneese, Ayers & dArge 1970; Pearce & Turner 1990;
Perrings 1987; Ruth 1993). This principle is called the materialsbalance in literature.
73
Thematerialsbalanceframeworkisfoundedonthephysicallawsofthermodynamics,
particularly the law of mass conservation. The law of mass conservation states that
energy and materials cannot be created or destroyed, but their characteristics change
from one state to another. This law implies that all of the energy and materials are
extracted from the environment, flow through the economic system in the form of
productionandconsumptionofgoodsandservices,andaredisposedofbackintothe
environment in the form of emissions and other waste products. This principle, in
contrast with the traditional economic view29, regards environmental problems as a
pervasiveandinevitablephenomenon.Itregardsenvironmentalproblemsasapartof
economicprocessesthatcanonlybeadequatelyassessedifthecompletematerialflow
intheeconomyisenvisioned(Pethig2003).Itfocusesonthecompleterepresentation
of the relationship between the economy and the environment. Every input into an
economic activity must be considered in order to understand the true environmental
impactassociatedwiththateconomicactivity.Thematerialsbalanceframeworkisalso
referred to, by Daly (2002), as the representation of materials throughput in the
economy.
Initsmostbasicform,thematerialsbalancecanberepresentedintheformofphysical
flowsofenergyandmaterials,withflowsexpressedintheiroriginal(thatis,physical)
units. The motivation for the physical flow approach is that the economy is
underpinnedby a physical worldofstocks andflows of energy andmaterials.These
stocks and flows are used to determine the economic choices and social behaviour
(Poldy 1998). In order to be better informed about this dimension of the physical
world,itisessentialtounderstandtheseflowsintheiroriginalforms.Thisapproachis
favouredbyenvironmentalistsandecologists,asitrepresentsthephysicalindicatorsof
sustainabledevelopment,whichcovera“broadersetofsocialvaluesandamenitiesanddo
nothaveanintegrativepowerofmonetaryaggregatesgeneratedinenvironmentalaccounting
systems” (Bartelmus & Vesper 2000). There are three methods that can be classified
In the traditional economic view, an economic system – comprising production and
consumptionactivities–isviewedincompleteisolationfromtheenvironmentalsystem.The
environmentisregardedasexternaltotheeconomicsystem.
29
74
under the physical flow approach – material flow analysis, lifecycle analysis, and
referenceenergy–materialsystemanalysis–asshowninFigure41.
Figure41
Aclassificationofmaterialsbalanceapproaches
Another approach to materialsbalance is to employ an embodied energy approach,
ratherthanthephysicalflowofmaterials.Theembodiedenergymethodsstartedinthe
late1970s,mainlyinanefforttoaddresstheproblemoffossilfuelsdepletionfollowing
the1973energycrisis,whichwasthemainconcernatthattime.Anumberofstudies
(for example, Bullard & Herendeen 1975; Chapman 1975; Chapman, Leach & Slesser
1974;Wright1974,1975)wereinitiatedatthattime;thesestudiesusedenergyflowsin
the economy, rather than monetary flows, to analyse the energy used for the
productionofenergyandmaterials.Theembodiedenergyapproachisdefinedas“the
computation and measurement of energy flows in society, and, in particular, as the
quantificationofthevolumeofenergyresourcessequestered,directlyandindirectly,invarious
commodities” (IFIAS 1978). The total embodied energy comprises energy required
directlyforthemainprocess(forexample,coalusedforelectricityproduction)andthe
indirect energy embodied in the material inputs to the process (for example, energy
used for readying coal needs for electricity production and energy used for the
construction of power stations). The embodied energy approach can be used as a
ctoral price effects are estimated using input–output price model. In the fourth
module,thesubstitutioneffects,inresponsenthematerials.Thesentimentbehindthis
argumentiscapturedinthefollowingstatementsbyFritsch,SchmidheinyandSeifritz
(1994,p.186):
75
…Ifacertainresourceisdepleted,itsmaterialcomponentshavenotceasedtoexist(law
ofconservation).Rather,thisresourceoritscomponentpartsarenotavailablewiththe
concentration,intheproperplace,andatthepropertime.Thisconditioncanbefulfilled
forpracticallyallelementsofthesystem.This,however,requiresenergy.Forthisreason,
the resource or raw material problem can be reduced to the problem of energy – ‘the
ultimateresource’.
Process analysis and input–output analysis can be classified as embodied energy
methods(seeFigure41).
Anumberofstudieshavebeencarriedoutusingphysicalflowandembodiedenergy
methodsfordevelopingmaterialsbalanceframeworks.Thesemethodsarereviewedin
Sections4.3and4.4.
4.2
CriteriaforExaminingMethodologicalApproaches
As shown in Figure 41, there are several methods that can be used to develop a
materialsbalance.Anumberofstudieshaveincorporatedthesemethodsforanalysing
different environmental issues, with the common single purpose of better
understandingtherelationshipbetweentheeconomyandtheenvironment.However,
before reviewing these studies, a set of criteria needs to be established in order to
examineeachmethodagainstthesecriteria.Themethodthatwillbeselectedfromthis
reviewmustsatisfythesecriteria.Thesecriteriaare:
i.
Goal: this research examines the economywide impacts of carbon tax as a
policy option for reducing CO2 emissions. Therefore, the selected framework
mustalsobe ableto analyse carbontax and assess its impactsonthenational
economy.
ii.
Spatial scope: the impact of carbon tax would vary across sectors in the
economy,dependingonthesectoralcontributiontoCO2emissions.Therefore,
the selected framework must allow the analysis to be performed at
disaggregatedlevels.
iii.
76
Temporalscope:becauseofthelongtermnatureofenvironmentalissues,the
frameworkmustallowtheanalysisoverthemediumtolongterm.
iv.
Dynamics: the dynamism of a model is an important characteristic in any
modelling study. Two aspects of dynamism need to be captured in this
research. First, the model must capture changing technological characteristics
over time. This can be achieved through the substitution of factor inputs in
responsetochangesinfactorpricesarisingasaresultoftheintroductionofa
carbontax.Second,themodelmustbeflexibleinallowingcapitalinvestmentto
be adjusted in response to the introduction of carbon tax. This would further
improvetheabilityoftheselectedframeworkforlongtermanalysisbecauseit
wouldallowthemodeltocapturechanginginvestmentpatterns(forexample,
incleanertechnologies).
v.
Price consideration: the inclusion of carbon tax would increase the cost of
production from an economic sector to the extent of its contribution to CO2
emissions,and henceraise the priceof outputfromthatsector.Therefore,the
selectedframeworkmustbeabletocapturepriceimpactsacrossvarioussectors
oftheeconomy.
vi.
Data requirement: the availability of data is always a challenge in any
empirical study. This is especially the case in this research, because detailed
data on material flows would be required. The framework selected for this
researchmustbeopeninusingthepubliclyavailableinformation.
4.3
PhysicalFlowMethods
As discussed in Section 4.1, the materialsbalance can be represented in terms of the
physicalflow approach.Anumberofstudies havebeenconductedinthepast,using
differentmethodsbasedonthephysicalflows.Theseare:MaterialFlowAnalysis,Life
cycleAnalysis,andReferenceEnergy–MaterialSystemanalysis(seeFigure41).Table
41providesasummaryofthesestudies,whicharediscussedindetailinthefollowing
subsections.
Australia
n.s.
Australia
USA
USA
Poland
ACARP(2002)
Gagnonetal.(2002)
GWA&ES(2002)
Meier(2002)
Stiegel(2002)
Góralczyk(2003)
Renewable
Electricity
Electricity
Energy
Electricity
Electricity
Electricity
Electricity
Economy
USA
Mann&Spath(2000)
Canada
Macdonaldetal.(1997)
EU
Bringezu&Schütz(2001)
Netherlands Economy
Guinéeetal.(1999)
3sectors
EU
Spangenbergetal.(1998)
Economy
Sector
4countries
Country
Scope
Adriaanseetal.(1997)
Author(Year*)
Table41
n.a.
n.a.
n.a.
1990&99
n.a.
n.s.
n.s.
1990
Focus
Identifylifecycleenvironmentalimpacts
LCAofgasfiredpowerplants
LCAofnaturalgas&photovoltaic
Allocatelifecycleemissionstoendusers
Compareenvironmentalperformanceof
electricitygenerations
ExamineLCAofelectricitytechnologies
Determiningelectricitysupplyoptionsin
marketbasedeconomiesbasedonLCA
Comparebiomass,coal,andNGelectricity
LifeCycleAnalysis(LCA)
Comparetotalwithdirectmaterialrequirement
Analyseenvironmentalimpactsofmetalflows
ComparematerialflowswithNational
Accounts
Developmaterialflows
MaterialFlowAnalysis(MFA)
1987&95
1990
1990
n.s.
Study
period
Studiesadoptingphysicalflowmethod
Providedlifecycleemissionsofgasfired
electricity
Providedlifecycleemissionsofrenewable
electricity
ProvidedlifecycleemissionsofNG&PV
Environmentalperformance–
hydro>wind>nuclear>gas>coal
Listoflifecycleemissionsatenduselevel
Providedalonglistoflifecycleemissions
LCAcanbeusedasanefficientmethodfor
internalisingenvironmentalexternalities
Environmentalperformance:Biomass>Coal
Directmaterialrequirementsdeclined,while
totalmaterialrequirementsincreased
UseofNationalAccountsunderestimates
environmentalimpacts
Environmentalimpactsfrommaterialflows
aresignificant
Emissionsfromindirectmaterialflows>direct
KeyFindings
77
Netherlands Manufacturing 1990–2040
Europe
Europe
Europe
Belgium
Europe
Gielen(1995)
Gielen&Kram(1998)
Gielen(1999a)
Gielen(1999b)
Nemryetal.(2001)
OECD(2001)
Economy
3products
Construction
IronandSteel
1990–2050
1990–2010
1990–2030
1990–2030
Manufacturing 1990–2050
1989
1977
Sweden
Papermill
Focus
Analysetwopolicyscope(Energyand
Energy+Material)foremissionsreduction
AnalyseCO2reductionfromenergy(E)and
materials(M)systemimprovement
AnalyseCO2reductionfromenergy(E)and
materials(M)systemimprovement
EvaluatelifecycleGHGemissions
AnalyseCO2reductionfromenergy(E)and
materials(M)systemimprovement
GHGreductionpotentialfrommaterialsystem
Maximiseprofitfrommaterialreduction
Minimisematerialscostinpackagingsector
ReferenceEnergyMaterialSystemAnalysis(REMS)
Study
period
Sundberg&Wene(1994)
Packaging
Sector
USA
Country
Scope
Hoffman(1980)
Author(Year*)
Notes: n.a.=Notapplicable,n.s.=Notspecified.
* Yearofpublications.
Costreductionachievedfromchangingcostof
otherinputs,ratherthanmaterialsubstitution
Costreductionachievedfromrecycled
material
CO2reductioncostsfromE+Marelowerthan
ifcomparedwithimprovementfromEalone
Materialsystemcancontributeupto50%to
totalemissionreduction
CO2reductioncostsfromE+Marelowerthan
ifcomparedwithimprovementfromEalone
CO2reductioncostsfromE+Marelowerthan
ifcomparedwithimprovementfromEalone
Productsubstitutionsignificantlyreduceslife
cycleemissions
Includingmaterialoptionsimprove
effectiveness&efficiencyofGHGmitigation
policies
KeyFindings
78
4.3.1
79
MaterialFlowAnalysis
Material Flow Analysis (MFA) is similar to the approach favoured by industrial
ecologists, for analysing how materials and energy flow within a system. This
approach describes the flow of one type of material through different sectors in any
giventimeperiod(Kandelaars1999).Inthisapproach,physicalquantitiesofdifferent
materialsaretracedwithinanindustryorasectorintheeconomywiththeuseofinput
andoutputratios(Boumanetal.2000).Becausethefocusinthisapproachisaspecific
material, only sectors that are directly involved in the life cycle of that material are
consideredintheanalysis.Also,thesystemboundaryofthisapproachrangesfroma
singleindustrytothewholeeconomy.
MFA has recently received a lot of attention. Adriaanse et al. (1997) adopted this
methodtomeasurethetotalmaterialrequirementsforGermany,Japan,Netherlands,
andtheUSA.Theyfoundthatabout55to70percentofmaterialflowsarenotshown
inthenationalaccounts,whichunderestimatestheuseofnaturalresources andtheir
environmental impacts. Spangenberg (1998) developed material flows for energy,
transport, and construction sectors in the European Union in 1990. These studies
showed that material flows in these sectors were significant and so were their
environmental impacts. The author suggested some material recycling options as
means to reduce environmental impacts. Guinée et al. (1999) analysed the flows of
metalsintheNetherlandseconomy.Theyfoundthatwhileemissionsfromdirectuse
of metals had declined, their use as inputs in other products have increased
significantly, which led to a net increase in emissions. Bringezu and Schütz (2001)
estimated the total material requirement for the European Union in 1985 and 1997.
Theyfoundthatwhiledirectmaterialconsumptionappearedtobedeclining,thetotal
materialconsumptionwasinfactincreasing.
The discussion above shows that MFA is a useful approach for assessing specific
technical options in terms of material substitution or recycling in reducing CO2
emissions from a particular sector. It can be used to identify areas where system
improvements would result in increased materials efficiency or reduced waste, or
80
other materials management objectives (Tisdale 2002). However, it requires a high
level of detail, incorporating all flows of materials in question. As a result, a large
amountofdataisrequiredtotracematerialflows.Thedatarequiredforsuchanalysis
isveryexpensiveand,inmanycases,difficulttoobtain.Furthermore,MFAisashort
term, static approach used to describe a current material system, which inhibits its
abilitytocapturethechangesineconomicsystem.
4.3.2
LifecycleAnalysis
Lifecycle Analysis (LCA) is a method that can be employed to assess the
environmentalconsequencesofaproductfromcradletograve(Boumanetal.2000).It
is similar to MFA in that it takes a productfocused approach in studying how a
particular product (or material) flows. However, LCA does not limit the flow of
productwithinanyparticularregionortimeperiod,butfocusesonitswholelifecycle.
This method was developed on the basis of process analysis (process analysis is
discussed in Section 4.4.1). The process analysis method has been refined and
expandedtoincludealltypesofenvironmentalimpacts.LCAcanbeusedforassessing
theenvironmentalimpactsofeachstepinvolvedincreatingaproduct.Asdefinedin
ISO1404030:
Life cycle analysis is a technique for assessing the environmental aspects and potential
impactsassociatedwithaproductbycompilinganinventoryofenvironmentallyrelevant
inputs and outputs of a system, evaluating the potential environmental impacts
associated with those inputs and outputs and interpreting the results of the inventory
andimpactphasesinrelationtotheobjectivesofthestudy.
LCAisamethodusedforidentifyingtheenvironmentalimpactsofvariousstagesofa
life cycle. In other words, it attempts to measure the “cradletograve” environmental
impacts of a product: from materials acquisition and production, through
ISO 14040 belongs to the ISO 14000 families of standards concerning environmental
management.Itprovidesaclearoverviewofthepractice,applicationsandlimitationsofLCA
(ISO1997).
30
81
manufacturing, system use and maintenance, and finally through the end of the
system’s life. In the electricitygeneration sector, for instance, such assessment would
include processes associated with the extraction, processing and transportation of
fuels,the buildingofpowerplants,productionofelectricityanddecommissioningof
power plants (Gagnon, Bélanger & Uchiyama 2002). The analysis of life cycle is
thereforebasedontheknowledgeofaccompanyingprocesses.
LCA has been used since the late 1960s for estimating the requirements of natural
resources for the production of various commodities. Its application in the electricity
sectorhasonlyrecentlybegun.SomeexamplesofsuchapplicationsincludeBergerson
andLave(2002),Gagnon,BélangerandUchiyama(2002),Góralczyk(2003),Mannand
Spath(2000),Meier(2002),andStiegel(2002).ThesestudieshaveessentiallyusedLCA
to assess a range of environmental impacts of different electricity generation
technologies.Forexample,Macdonaldetal.(1997)analysedelectricitysupplyoptions
inAlberta(inCanada)basedonLCAfortheyear1990andfoundthatthismethodis
appropriateforuseasanefficientmethodininternalisingenvironmentalexternalities.
Gagnonetal.(2002)adoptedLCAtocomparetheperformanceofdifferentelectricity
generationtechnologiesintermsoftheirenvironmentalimpacts.Thestudyfoundthat,
basedonlifecycleemissions,renewablepowerplantshaveanexcellentenvironmental
performance compared with fossilfuel power plants. Mann and Spath (2000) also
performed lifecycle assessments of biomass, coal, and gasfired power stations and
found that biomass provides significant environmental benefits over conventional
fossilbasedpowerstations.
The LCA approach has also been applied in Australia to determine total emissions
generated from the full fuelcycle of electricity generation. For example, Coal in a
SustainableSociety(CISS)isamajorprojectforexaminingthecradletograve,orfull
lifecycle, impacts of current and developing technologies for electricity generation
(ACARP 2002). This study has developed lifecycle analysis for several electricity
generationtechnologiesandfoundthatgasfiredelectricitygenerationhavesimilar(or
even higher than, in some case) greenhouse emissions to coalbased electricity
generation. The study by GWA and ES (2002) has also adopted a similar method,
82
calledthefuelcycleanalysisoftheenergysector,foreachoftheAustralianstates.This
studyhasalsoincludednaturalgasandpetroleum,solidfuels,andelectricitysectors.
Theprimaryobjectiveofthisstudywastocomputethefuelcycleoftheenergysector
that would “relate greenhousegas emission moredirectly to productionactivities and tothe
consumptionofgoodsandservices,sothattheimplicationsofemissionreductionstrategiescan
bebetterplannedandunderstood”(ibid,p.8).
Notwithstanding the usefulness of LCA, it suffers from several limitations, for
example:
itsinabilitytoperformtheanalysisforthewholeeconomy–thisisduetothe
arbitrarinessassociatedwiththedrawingoftheboundariesofthesystemthat
isbeinganalysed(Fiksel1996);
its inability to capture the dynamics of changing markets and technologies
(Fiksel1996);
the unavailability or poor quality of data to perform the analysis (Lave et al.
1995);and
itsexpensiveness(intermsofmoneyandtime)arisingfromtheneedtosource
input data and environmental burdens that have to be either empirically
gatheredorobtainedfromliterature(Hendriksonetal.1998).
4.3.3
ReferenceEnergy–materialSystemAnalysis
The REMS is similar to the Reference Energy System (RES); RES is a method to
representvariouselementsofanenergysystemfromprimaryenergyextractiontoend
uses.Togetherwiththeflowofenergythroughvariousstages(forexample,extraction,
conversion, transport, end use), REMS also includes the flow of materials from their
extraction to product development to end use. The energy and material system
represented in REMS can be analysed with the help of mathematical programming
techniques.
83
Hoffman (1980) was the first to adopt the REMS approach and use a mathematical
programming model to minimise material system cost for a hypothetical packaging
sector. Although this method was developed in 1980, it received greater attention in
themid1990sonly,withthedevelopmentoftwomodels–Modelfordescriptionand
optimisation of Integrated Material flows and Energy Systems (MIMES) and
MATerials Technologies for greenhousegas Emission Reduction (MATTER). MIMES,
developed by Sundberg and Wene (1994), is a static nonlinear programming
optimisation model used to estimate the optimal condition for the linked energy and
material systems. The purpose of developing this model was to examine materials
reduction strategy and waste management planning at the individual industry level.
MATTER is a linear optimisation model of the energy–materials system for the
WesternEuropeaneconomy(Gielen,Bos&Gerlagh1998).Thismodelistheextension
of a traditional energy system analysis model – MARKAL (MARKet ALlocation). It
considersmaterialflowsalongwithenergyflowsintheeconomy.Inaddition,another
energy system optimisation model – MESSAGE (Model for Energy Supply Strategy
AlternativesandtheirGeneralEnvironmentalimpacts)–isalsocapableofintegrating
material flows. However, no attempt has been made to date in order to represent
materialflowswiththeexistingenergyflow(Strubegger2003).
Unlike the optimisation models mentioned above, the Australian Stocks and Flows
Framework (ASFF) is a highly disaggregated simulation framework which can keep
trackofallphysicalstocksandflows(suchasland,livestock,people,buildings,etc.)in
the economy (Gault et al. 1987). This framework contains a simulation model and a
database,withmodulesorcalculatorsrepresentingphysicalprocessesintheeconomy.
Foran and Poldy (2002) applied this model to analyse the impact of longterm
migrationpolicyontheAustralianeconomyandtheenvironmentalsystem.Although
comprehensiveinitsrepresentationoftheeconomy,thismodel,however,ignoresthe
influence of prices and, hence, does not provide signals for interfuel substitution to
achievedesirableenvironmentaloutcomes.
AlthoughtherearemanymodelsavailableforanalysingmaterialsflowinREMS,only
MARKALMATTER is being used widely. Gielen (1995; 1999a; 1999b), Gielen and
84
Kram (1998), OECD (2001) and Nemry et al. (2001) used this model for analysing
emissions reduction potential from energy and material system improvements. All
these studies concluded that the inclusion of the material system (along with the
energy system) would provide greater opportunities in GHG reduction with lower
cost, compared with improvements from the energy system alone (see Table 41).
Further,MARKALMATTERhasbeenusedmainlyforanalysingemissionsreduction
potential from production processes in manufacturing industries (for example, iron
and steel, paper mill, packaging, etc.). Also, due to its huge data requirements, only
material chains with a significant potential to reduce GHG emissions are included in
theREMS(thatis,itincludesonlyGHGintensivematerialssuchasironandsteel).
The REMS approach is technologically detailed, representing all of the energy–
materials relevant processes in each sector of the economy. The energy and material
flowsbetweenindustriesarerepresentedintermsofinputsandoutputsspecifiedfor
eachtechnology.Thismeansthateachtechnologyhasacorrespondingsetofdatathat
details the incoming materials and outgoing products or materials. Because it
incorporates a high resolution of material flows, it is often more suitable for the
analysisofaparticularprocessorindustryratherthanpolicyanalysisforthenational
economy.
4.3.4
PhysicalFlowMethods:ASummaryofObservations
Areviewofthestudiesusingphysicalflowmethods(asdiscussedinSections4.3.1to
4.3.3)showsthateach methodhasitsownstrengthsandweaknesses.Theirstrengths
or weaknesses are summarised in Table 42, in accordance with the methodological
criteriaoutlinedinSection4.2.
85
Table42
PhysicalFlowMethods:KeyFeatures
Methods MaterialFlowanalysis
Features
Goal
Identifykeymaterials
flowsandpotentialfor
materialsubstitution
Lifecycleanalysis
Evaluatelifecycle
environmentalimpacts
ofaproduct
ReferenceMaterial
Systemanalysis
Examineleastcost
strategyforemission
reduction
1product
(x)
1product
(x)
Sectorspecific
(x)
Short
(x)
Short/Medium
(x)
Long
(9)
Dynamics
No
(x)
No
(x)
Yes
(9)
Priceconsideration
No
(x)
No
(x)
Yes
(9)
High
(x)
High
(x)
High
(x)
Spatialscope
Temporalscope
Datarequirement
Notes: SymbolsinparenthesesrepresentthecompatibilitywithcriteriaoutlinedinSection4.2.
‘9’denotescompatiblewhile‘x’denotesincompatible.
FromTable42,itisnoticedthat:
Noneofthephysicalflowmethodsfullysatisfiestherequirementsoutlinedearlierin
Section 4.2. Hence, they are not suitable for the analysis in this research. Some
reasoninginsupportofthisobservationisprovidedbelow.
In terms of a spatial scope, this research requires analysis for disaggregated
sectors forthewhole economy. The physicalflowmethodsfocus on anarrow
rangeofmaterialflows.MFAandLCAfocusontheflowofoneproduct,while
REMSfocusesonmaterialsflowinanyspecificsector.
Intermsoftemporalscope,thisresearchrequirestheanalysisforalongtime
frame.Ofallthephysicalflowmethods,REMSistheonlymethodthatcanbe
usedforthispurpose.
In the physical flow approach, REMS is the only method that can capture
economic dynamics. It is capable of capturing both changes in technology as
wellasallowingforadjustmentofcapitalinvestmentendogenouslywithinthe
model.
For this research, price consideration is an important aspect that needs to be
captured within the framework. MFA and LCA do not provide an economic
rationalising behaviour (that is, they can not be use to analyse the price
86
responsiveness of an economic agent). REMS is a suitable method for this
purpose.
Lastly,datarequirementsposeamajorproblemforthephysicalflowmethods.
All three methods discussed above require a high level of data for materials
flows.Inmanycasesthesedataaredifficulttoobtain.
4.4
EmbodiedEnergyMethods
AsdiscussedinSection4.1,embodiedenergymethodscanbeusedasanalternativeto
physical flow methods for developing a materialsbalance framework. A number of
studieshavebeenconductedusingembodiedenergymethods.Thesemethodscanbe
classifiedintermsofthosethatemployprocessanalysisandthosethatemployinput–
output analysis. Table 43 provides a summary of studies employing these methods.
Detailsarediscussedinthefollowingsubsections.
4.4.1
ProcessAnalysis
Process analysis is the traditional tool of an industrial engineer. It begins with the
examination of a process employed to produce a particular product. It then lists all
energyandnonenergyinputsrequiredtoproducethisproduct.Theenergyandnon
energy inputs are further examined to determine the energy and nonenergy inputs
requiredfortheirproduction.Thisprocesscontinues,tracingallenergyconsumptions
totheirorigins.
UK
Netherlands
Australia
Proopsetal.(1996)
Konijnetal.(1997)
Lenzen(1998)
45sectors
Metalindustry
1993
1990
1989
1968&88
UK/Germany Sectoral
Proopsetal.(1993)
Electricity
1974&80
Sectoral
Australia
Shariful&Morison(1992)
1987
Sectoral
Common&Salma(1992)
1972
Sectoral
New
Zealand
Australia
Carter,Peet&Baines(1981)
1973
Scotland
AlAli(1979)
42sectors
UK
Wright(1975)
Examinenetenergyuseofrenewable
electricity
Examinelifecycleemissions
Examinedirect&indirectenergy
consumption
Examineenergycostsofmaterials
Examineappropriatenessofmaterial
flowsusinginput–outputanalysis
Examineenergyuseinfinal
consumption&investment
Examineenergyuseinfinal
consumption&investment
Examineenergyuseinfinal
consumption
Analysechangesindirectindirect
energy
AnalysefuturescenariosforCO2
reduction
Examinelifecycleemissions
Examineenergyuseinfinal
consumption
Investigatestructureofenergydemand
Examinetotalenergyinfinal
consumption
Examineenergyrequiredinproducts
Input–OutputAnalysis
1963&68
USA
Bullard&Herendeen(1975)
1986
9commodities
USA
Wright(1974)
Electricity
n.s.
1967
USA
SanMartin(1989)
Electricity
357sectors
Japan
RRI(1983)
Focus
ProcessAnalysis
1963
UK
Chapman(1975)
Study
period
Energy
1968&72
industry
Manufacturing 1968
Sector
Scope
Input–outputissuitableforcalculatingtotal
materialorenergyintensities
Mostenergyassociatedwithindirectuse
Emissions:coal>gas>wind>solar>nuclear
Outoftotalincreaseinenergyconsumption,
31%areassociatedwithindirectenergy
DomesticCO2responsibility<CO2emission
Mostenergyassociatedwithindirectuse
Mostenergyassociatedwithindirectuse
Demandforindirectenergy>direct
Mostenergyassociatedwithindirectuse
Productscontainedmoreofindirectenergy
Mostenergyassociatedwithindirectuse
Materialrecycling&useofrenewable
energywouldreduceenergyconsumption
Energy&materialconservationinproduct
designwouldreduceitsenergycosts
Totalenergyuse:hydro>geothermal>wind>
tidal>wave
Providedlifecycleemissions
KeyFindings
Modellingstudiesadoptingembodiedenergymethod
363sectors
UK
Country
Chapmanetal.(1974)
Author(Year*)
Table43
87
USA
USA
n.s.
Japan
Australia
USA
Canada
Australia
Australia
Kuwait
Denmark
Herendeen&Plant(1981)
Uchiyama(1992)
Nishimuraetal.(1996)
Treloaretal.(2001)
Berndt&Wood(1975)
Fuss(1977)
Turnovskyetal.(1982)
Truong(1985)
Burney&AlMatrouk(1996)
Weir(2000)
Country
Bullardetal.(1978)
Author(Year*)
n.s.
1976
1967
1966–1990
1965–1990
Manufacturing 1969–1981
Manufacturing 1947–1975
Manufacturing 1961–1971
Electricity&
Water
Construction
Analysetotalenergyrequirement
Embodiedenergyinproduct
Develophybridprocess+Inputoutput
model
Examinenetenergyuseofgeothermal
electricity
Examinelifecycleemissions
Examinesubstitutionpossibility
betweenfactorinputs
Econometricestimatesofsubstitution
betweenplastic,cement&steel
Examinesubstitutionpossibility
betweenfactorinputs
Examinesubstitutionpossibility
betweenfactorinputs
Examinesubstitutionpossibility
betweenfactorinputs
Examinesubstitutionpossibility
betweenfactorinputs
ProductionFunctionStudies
1993
Manufacturing 1947–1971
Residential
building
Focus
HybridProcess&Input–OutputAnalysis
Study
period
Manufacturing 1985
Electricity
Electricity
Economy
Sector
Scope
Notes: n.a.=Notapplicable,n.s.=Notspecified.
* Yearofpublications.
Materialwithcapital,labour&energy:
strongsubstitution
Materialwithcapital:strongsubstitution
Materialwithlabour:weaksubstitution
Materialwithenergy:complements
Materialwithcapital,labour&energy:
strongsubstitution
Materialwithcapital:strongsubstitution
Materialwithlabour&energy:weak
substitution
Strongownprice&weaksubstitution
potentialwithcapital&energy
Existenceofsubstitutionpossibilitybetween
allmaterial;higherbetweencement&steel
Emissions:coal>oil>gas>wave>tide>
wind>geothermal>hydro
Existenceofsubstitutabilitybetween
materialusedinconsumergoods
Hybridapproachisbetterthanindividual
(ProcessorIO)approach
Combinedmodelcanincreaseaccuracyof
embodiedenergyanalysis
Energyoutput/inputratiogreaterthanunity
KeyFindings
88
89
Severalauthorshaveanalysedtherequirementsfornaturalresources,particularlythe
energy needed for the production of various commodities, using this approach. For
example, Chapman et al. (1974) analysed direct and indirect energy consumption by
theenergysupplysector.Chapman(1975)analysedtotalenergycosts(includingdirect
andindirectcostsformanufacturingindustries.Bothstudiesconcludedthatmaterials
recyclingandincreasingrenewableenergysourceswouldreduceenergyconsumption
andhenceitscosts.RRI(1983)andSanMartin(1989)adoptedthismethodtoexamine
lifecycleenergyuseandCO2emissionsforvariouselectricitygenerationtechnologies.
These studies show that renewable electricity generation also contributes to a
significantamountofemissions.IAEA(1994)providesacomprehensivelistofstudies
that have employed process analysis for determining net energy consumption for
differentelectricitygenerationtechnologies.
Processanalysis,likeMFAandLCA,isaverydetailedmethodforincludingmaterial
flows. It tracks down all inputs that are required to produce a targeted product.
Becauseofthelevelofdetailrequired,manyinputsareoftenexcludedfromtheflows.
Someattemptshavebeenmadetoimprovetheaccuracyandcompletenessofprocess
analysis(Bullard,Penner&Pilati1978).Severalstudieshaveadoptedacombinationof
processanalysisandinput–outputanalysis(input–outputanalysisisdiscussedinthe
nextsubsection)toanalyseanyparticularproductorprocess,forexample,Herendeen
andPlant(1981),Uchiyama(1992),Nishimuraetal.(1996),andTreloaretal.(2001).All
thesestudiesadoptedacombinationofbothmethodstoexaminetotalenergyuseand
its associated emissions. They concluded that hybrid methods could provide a
comprehensive representation of the materials chain and more accurately determine
the total energy requirements and associated emissions associated with a particular
process.
90
ProcessanalysishasalsobeenappliedinAustralia,intheformoftheOzECCOmodel.
This model is an Australian adaptation of the ECCO31 model developed by the
ResourceUseInstituteinEdinburg.Themodelintegratesthestructureofthenational
economy and its energy accounts. The capital stocks are expressed in equivalent
petajoulesofembodiedenergyratherthaninmonetaryterms(CSIRO1998).Activities
withintheeconomyareexpressedasenergyflows(inpetajoulesperyear).Inthisway,
alleconomicactivityisconvertedtophysicalactivity,expressedinenergyunits,which
is consistent with the first and second laws of thermodynamics. All economic
transactions are represented by their corresponding physical transformations. Foran
andCrane(2000)usedthismodeltoinvestigatetheuseofbiofuelsintheAustralian
energysector,particularlytheuseofethanolandmethanolintransportandtheuseof
biomass in the electricity sector. The investigation focused on determining forest
plantation areas and wood requirements to meet certain level of future biofuels
demand for these sectors. The analysis found that in order to meet energy demand
overthenext50years,croplandsof17–31millionhectareswouldberequired.
The foregoing discussion shows that process analysis potentially can produce very
accurate, reliable and specific results. However, it suffers from the following
shortcomings:
Since process analysis involves tracing the energy content of all energy and
nonenergy inputs into production processes, the data required for such
analysisareveryextensive.Thisdatainmanycasesmaybedifficulttoobtain.
Theapplicationofthismethod,likeLCA,suffersfromtheissueoftheselection
of appropriate boundaries for analysis. It invariably leads to the exclusion of
several small inputs. It is very difficult to determine all of the upstream
ECCO(originally:EvaluationofCarryingCapacityOptions;morerecently:Enhancementof
CapitalCreationOptions)isanembodiedenergymodelfocusingonidentifyingfeasiblerates
of change of economies under specified technological assumptions and resource and
environmentalconstraints(Slesser1992).
31
91
processes required indirectly by a process, let alone to quantify their direct
energyrequirements(Laveetal.1995).
4.4.2
Input–outputAnalysis
Input–output analysis can also be used for carrying out embodied energy analysis.
ThismethodwasfirstdevelopedbyWassilyLeontiefin1936asatooltorepresentthe
structureofaneconomybyexplicitlyrepresentingtheinterdependenciesofeconomic
sectorsandindustries(Duchin1998).Theinterindustryflowsofcommoditiesandraw
materials are central to this technique. The input–output method traces the flow of
commoditiesandrawmaterialsacrossvarioussectorsintheeconomy.Thisframework
can be adapted to analyse embodied energy flows by converting the economic
relationshipintoestimatesofassociateddirectandindirectenergyintensities(Bullard
&Herendeen1975).Thisapplicationallowsforthecalculationofembodiedenergyfor
anysectorintheeconomy.
Input–outputanalysishasbeenappliedbymanyresearchersforempiricalanalysisof
embodied energy. For example, Wright (1974; 1975), Bullard and Herendeen (1975),
Proops (1977), AlAli (1979), Carter, Peet andBaines (1981) and Shariful Islam and
Morison (1992) employed this method to examine direct and indirect energy
requirements for various economic sectors. Many of these studies found that most of
the energy flows are associated with indirect use, to produce goods and services
requiredintheeconomy.Further,CommonandSalma(1992),GayandProops(1993),
Proops et al. (1996) and Lenzen (1998) employed this method to examine direct and
indirect emissions associated with energy use. While many of the above studies
focused on the flows of direct–indirect energy to meet enduse demands for final
consumption, only Carter, Peet and Baines (1981), Proops et al. (1996) and Lenzen
(1998) have focused on these flows to also meet the demand required for capital
investment. The input–output method has not only been used to account for direct–
indirectenergyrequirementsandassociatedemissions,Proops,FaberandWagenhals
(1993)andCruz(2002)appliedthismethodforfuturescenarioanalysistoreduceCO2
emissions. Some of the scenarios focused on analysing technological improvements
92
through changes in energy and material inputs. However, owing to the fact that the
input–output method is characterised by fixed coefficients, both studies above have
arbitrarilyadjustedinputcoefficientstoreflectthechangesininputstructure,without
anyeconomicrationality.
The underlying production function of the traditional input–output method is
characterised by Leontief’s production function. This type of production function
assumes “zero” elasticity of substitution, which does not allow one input to be
substituted with another input. Due to this limitation, some question the
appropriatenessofinput–outputmethodforanalysingtheimpactofcarbontaxonthe
entireeconomy(whichisafocusofthisresearch)andinsteadsupporttheapplication
of ageneralequilibriumframeworkfor this purpose.But onecanalsoarguethatthe
general equilibrium framework is after all basically supported by input–output
representation of the economy! As noted by Dixon et al. (1992, p. 19) that, “The
prototype for modern applied general equilibrium models is Leontief’s input–output model”.
Moreover, input–output coefficients can be endogenously determined rather than
exogenouslygivenasfixedparameters(thatis,changesfromLeontief’stoothertypeof
productionfunction).Suchmodificationshouldenabletheinput–outputframeworkto
incorporateeconomicrationalityintermsofsubstitutioninresponsetopricechanges,
as is the case in a general equilibrium framework. This issue will be discussed in
greaterdetailinChapter5.
To date, there exists no study that uses the input–output method, employing
alternativeproductionfunctionspecifications,forembodiedenergyanalysis.However,
some studies have adopted other types of production functions in incorporating the
materialsbalance approach in another context. For example, Gross and Veendorp
(1990) adopted the CobbDouglas production function that satisfies the materials
balancetoshowthatsuchafunctionsetsalimittogrowthforthecaseofaneconomy
thatobtainsitsmaterialinputsfromnonrenewableresources.Weir(2000)studiedthe
useofplastic,cementandsteelintheDanishconstructionindustry,byemployingan
econometric model to evaluate the substitution possibilities between different
materials, in response to changes in material prices. Own and crossprice elasticities
93
wereusedtorepresent thepotentialforsubstitutionbetweendifferentmaterials.The
study shows that there are substantial substitution possibilities in the construction
sector, particularly between the use of concrete and metal. Other studies have used
alternative production functions to estimate elasticities of substitution between
aggregatevariables–material,energy,capitalandlabour(forexample,ErnstR.Berndt
& Wood 1975; Burney & AlMatrouk 1996; Fuss 1977; Hudson & Jorgenson 1974;
Truong 1985; and Turnovsky, Folie & Ulph 1982). These studies employed Translog
typeofproductionfunctiontoestimatesubstitutionpossibilities.Itwasfoundthat,at
an aggregate level, material inputs can be substituted with almost all other factor
inputs. These results implied that assumed “zero” substitution possibilities for input
coefficients in input–output analysis are inappropriate and other flexible types of
productionfunctionsshouldbeemployed.
An advantage of adopting approaches based on input–output analysis is that they
could make use of readily available input–output tables; statistical offices in most
countries periodically produce such tables. Although such tables may not contain
information at the level of individual companies or processes (IAEA 1994), they can
provide sufficient detail at disaggregate levels which could be adapted to the further
level of detail required for analysis. The inclusion of embodied energy flows at such
disaggregated levels ensures that all emissions are accounted for in the economy.
Further, the input–output method is flexible in the sense that it allows longerterm
analysis, by replacing Leontief’s type with other forms of production function. The
replacementofproductionfunctiondoesnotcaptureonlychangesinthebehaviourof
the agents in response to changes in prices; it can also capture changes in the input
structures of technologies used for production. Also, the input–output model is
capable of adjusting capitalrequirement withinthe model, whichmakes this method
appropriate for longterm analysis (further discussion on these issues is provided in
Section5.5.2).
94
4.4.3
EmbodiedEnergyMethods:ASummaryofObservations
Thereviewofstudiesusingembodiedenergymethods(asdiscussedinSections4.4.1
and4.4.2)showsthatbothmethods–processandinput–output–havetheirstrengths
and weaknesses. Their strengths or weaknesses are summarised in Table 44, in
accordancewithcertaincriteriaoutlinedinSection4.2.
Table44
Methods
Features
Goal
Spatialscope
Temporalscope
EmbodiedEnergyMethods:KeyFeatures
Processanalysis
Identifylifecycle
environmentalimpacts
ofaproductorprocess
Leontief’sInput–output
analysis
FlexibleInput–output
analysisa
Examineeconomywide Examineeconomywide
impactofenergy
impactofenergy
environmentalpolicy
environmentalpolicy
1product
(x)
Sectoral
(9)
Sectoral
(9)
Short
(x)
Short/Medium
(x)
Long
(9)
b
(x)
Yes
(9)
Dynamics
No
(x)
Priceconsideration
No
(x)
No
(x)
Yes
(9)
High
(x)
Low/Medium
(9)
Low/Medium
(9)
Datarequirement
Partly
Notes: SymbolsinparenthesesrepresentthecompatibilitywithcriteriaoutlinedinSection4.2.
‘9’denotescompatiblewhile‘x’denotesincompatible.
a
Theterm‘flexible’referstotheuseofothertypeofproductionfunction.
b
This‘partlydynamism’characteristicofLeontief’sinput–outputanalysisreflectonly
treatmentofcapitalinvestmentandnottechnologicalchangeasapartofthemodel.
FromTable44,itisnoticedthat:
Amongsttheembodiedenergymethods,theinput–outputmethod,withmoreflexible
type of production function, satisfies all the criteria outlined earlier in Section 4.2.
Somepointsinsupportofthisselectionarenotedbelow.
In terms of a spatial scope, this research requires analysis at disaggregated
levelsoftheeconomy.Input–outputisanappropriatemethodforthispurpose.
Although most of the published input–output tables do not provide much
detail, the user can further disaggregate it to the level of detail required for
analysis.
Intermsofatemporalscope,thisresearchrequirestheanalysisforalongtime
frame. A “flexible” input–output is the only method that is suitable for this
purpose. A “traditional” input–output has limitations for longterm analysis
95
due to its assumption of fixed input–output coefficients. Replacing “flexible”
forms of the production function with the “Leontief’s” production function
wouldallowtheanalysistobeperformedoverthelongterm.
A “flexible” input–output method can satisfactorily capture economic
dynamics. It is capable of capturing changes in technology (in terms of a
flexibleproductionfunction)andallowingforadjustmentofcapitalinvestment
endogenously.
Forthisresearch,particularlyinthecontextofanalysingtheimpactsofcarbon
tax,priceconsiderationisanimportantaspectthatneedstobecapturedwithin
theframework.A“flexible”input–outputsatisfiesthiscriterion.Thisisbecause
thereplacementofLeontiefwithotherformsofproductionfunctionsallowsthe
economicagentstomaketheirdecisionsbasedonchangesinprices.
Finally, regarding data requirements, input–output has an advantage over
othermethods.Allinformationrequiredfortheanalysiscanbeobtainedfrom
thenationalstatisticaloffices.
Therefore,theinput–outputmethod,withamoreflexibletypeofproductionfunction,
isselectedasaframeworkusefortheanalysisinthisresearch.
4.5
SummaryandConclusions
Thischapterhasreviewedvariousmethodologiesthathavebeenemployedtodevelop
the materialsbalance framework. The purpose of this review was to analyse their
strengthsandweaknessesandtousetheseinsightstoselectanappropriatemethodfor
thisresearch.Themainfindingsofthischapterinclude:
x
The methodologies that can be used for developing materialsbalance
frameworkcanbeclassifiedintotwo–physicalflowandembodiedenergy.The
physical flow method represents the flow of energy and materials in their
original units. The embodied energy method represents energy flows in the
96
same way as the physical flow method, but represents materials flows as the
flowsofindirectenergy.
x
The physical flow approach can be classified into three categories – Material
Flow Analysis (MFA), Lifecycle Analysis (LCA), and Reference Energy–
materialSystemanalysis(REMS).
- MFA is not a suitable method for this research. The spatial and temporal
scopeofthismethodislimited,thatis,itfocusesontheflowofoneproduct
over a short period of time. This method does not allow for technological
changes and does not allow for capital adjustment in response to price
changes (that is, for example, induced by the introduction of carbon tax).
Also,datarequirementsforthismethodarehigh.
- LCA is very similar to MFA and, therefore, not suitable for this research.
Although the timeperiod considered in LCA is longer than in the MFA, it
focusesontheflowofoneproductoveritsentirelife.Thismethodalsodoes
not capture technological changes, neither does it allow for any capital
adjustments.Thedatarequirementsforthismethodaswellarehigh.
- Ofthephysicalflowmethods,REMSisthemostappropriatemethodforthis
research. It can capture priceinduced effects, allows for autonomous
technological change, and has a mechanism for capital adjustments and,
therefore, is appropriate for longterm analysis. It, however, suffers from
intense data requirements, which limits its use for an economywide
analysis.
x
Theembodiedenergyapproachcanbeclassifiedintotwo:processanalysisand
input–outputanalysis.
- Processanalysisisnotasuitablemethodforthisresearch.Thesectoralscope
of this method is limited, that is, it focuses on the flow of various types of
energy and materials to produce one product. This method does not allow
for technological changes and for capital adjustment. Also, data
requirementsforthismethodarehigh.
97
- The traditional Leontief’s input–output method is appropriate for the
analysisofdisaggregatedeconomicsectors,bymakinguseofinput–output
tableswhicharepubliclyavailable.The“dynamic”versionofinput–output
method also allows for capital adjustments in response to price changes
induced by carbon tax. However, in order to capture other aspects of
economic reality (for example, producer/consumer behaviour in relation to
prices),theunderlyingLeontiefproductionfunctionmustbereplacedwith
other flexible forms of production functions. Such replacement of
production functions could allow input–output analysis to be used for
analysingtheimpactsofapricedrivenpolicylikecarbontax.
x
Based on the review in this chapter, the input–output method with a flexible
form of production function is selected as the methodological framework for
thisresearch.Furtherdetailsofthismethodologicalframeworkareprovidedin
thenextchapter.
98
CHAPTER5
5 METHODOLOGICALFRAMEWORKFORTHISRESEARCH
In Chapter 4, various methodologies for developing a materialsbalance framework
werereviewed.Basedonthisreview,itwasconcludedthattheinput–outputmethod,
withamodifiedproductionfunction,wouldbethemethodforthisresearch–inorder
toanalysetheeconomywideimpactsofacarbontax.Thismethodhasthepotentialto
consider the indirect energy embodied in materials; perform the analysis at
disaggregatedsectorallevels;analysethepriceimpactsofcarbontax;andprovidean
analysisoveralongtimeframe.Moreover,itisrelativelylessburdensomeintermsof
datarequirements.
The objective of this chapter is therefore to provide details of this methodological
framework. This chapter is divided into eight sections. Section 5.1 briefly introduces
the overall methodological framework employed in this research. This framework
comprises five modules, namely, emission allocation, tax imposition, price impact,
input substitution, and economywide impacts. Sections 5.2 to 5.6 provide details of
eachofthesefivemodules.Section5.7providesadescriptionofdatasourcesanddata
preparationforthismethod.Finally,Section5.8summarisesthemainfindingsofthis
chapter.
5.1
OverallMethodologicalFramework
This section presents an overview of the proposed methodological framework for
analysing the impacts of carbon tax in this research. This framework is developed
based on the input–output model with a flexible form of production function, as
suggestedinChapter4.
Theframeworkcomprisesfiveinterlinkedfunctionalmodules(Figure51).
99
Figure51
Schematicdiagramoftheoverallmethodologicalframework
A brief description of these modules, particularly the linkages of each module, is
providedbelow(detailsareprovidedinSections5.2to5.6).
Thefirstmoduleformsthecoreoftheanalysisinthisresearch.ItallocatesCO2
emissions to responsible sectors of the economy, based on both the Polluter
Pays Principle (PPP), using an energybalance approach; and Shared
Responsibility Principle (SRP), using an energy–materials balance approach
(see Section 3.3 for a discussion on these principles). CO2 emissions are
calculated from input–output tables for the base year (2004). CO2 emission
intensities32arealsoestimatedbasedontheseemissions.Adetaileddiscussion
andmathematicaldescriptionforthisstageispresentedinSection5.2.
ThesecondmoduleassignsacarbontaxforvariousCO2emittingsectorsofthe
economy, as identified in the previous module. For the PPP, carbon tax is
applied on the basis of direct emission intensity, and, for SRP, carbon tax is
appliedonthebasisoftotal(thatis,directandindirect)emissionintensity.The
outcomeofthisstageisthespecificationofcarbontaxratesforPPPandSRPfor
the base year. The mathematical specification for determining the appropriate
levelofcarbontaxisprovidedinSection5.3.
In the third module, the relative changes in energy and material prices in
responsetothecarbontaxareestimated.Theoutcomeofthisstageisthenew
CO2emissionintensityofeachsectorreferstotheamountofCO2emittedperdollarvalueof
thatsectoroutput.
32
100
price levels (for 2005) obtained as a consequence of the introduction of the
carbon tax. These sectoral price effects of carbon tax are estimated using the
input–outputpricemodel.Themathematicalspecificationsofthepriceimpact
modulearedetailedinSection5.4.
Next, the substitution effect in response to changes in energy and material
prices is analysed. The own and crossprice elasticities are employed for this
purpose. These elasticities are estimated by assuming Translog and Cobb
Douglas production functions to examine the relationship between factor
inputs, such as fossil energy, electricity, nonenergy materials, capital, and
labour. These elasticities are then used to modify the baseyear input–output
technical coefficients in order to give a new economic structure. The
mathematicalspecificationsofthesubstitutionmoduletogetherwithestimated
parametersareprovidedinSection5.5.
In the final module, the economywide impacts of carbon tax are analysed.
These impacts include energy, environmental, economic, and social. The new
economic structure (output of the previous module) would lead to different
patterns of energy consumption and associated emissions. These impacts are
analysed using an energyenvironmentoriented input–output model. The
mathematical specifications of this module are presented in Section 5.6. The
results from this module, that is, the economywide impacts due to the
introductionofcarbontax,arepresentedanddiscussedinChapter6.
5.2
AllocationofCarbondioxideEmissions
As mentioned in Section 5.1, this section provides a detailed discussion on the
methodologyusedtocalculateCO2emissionsfromvarioussectorsoftheeconomyand
to develop estimates of associated CO2 intensities, employing both Polluterpays and
SharedResponsibilityPrinciples.
101
5.2.1
EmissionsAllocation:PolluterPaysPrinciple
The allocation of CO2 emissions based on PPP is straightforward. As introduced in
Section3.3.2,CO2emissionsarebasedonthequantitiesandtypesoffossilfuelsused
directly at the point of combustion. Accordingly, CO2 intensities can be measured by
theamountofCO2emittedperunitofoutput.
Tobeginwith,letFfibethefossilfueloftypefconsumedbyproductionsectori.Also,
the total output (Xi) of production sector i goes to satisfy intermediate and final
demands(discussedinSectionB.1.2,AppendixB,p.217).Therefore,energyintensity
ofsectori–denotedbycfi–canbeexpressedas:
c fi
Ffi
Xi
(51)
Thisexpressioncanbewritteninamatrixnotationas:
C
F ˜ X 1 (52)
where
C:
matrixofenergyintensities(PJper$);
F:
matrixoftotalfossilfueluse(PJ);and
X:
vectoroftotaloutput($).
Equation52estimatesenergyintensitybasedonPPP,or“directenergyintensity”.
CO2 emissions from a particular activity can be determined by multiplying energy
consumptionbythatactivitywithfuelemissionfactors(thatis,E=eF),thatis,
EPPP
eCX where
EPPP: vectorofCO2emissionsfromeachsectorbasedonPPP(Mt);and
e:
vectoroffixedCO2emissionfactorforeachtypeoffuel(MtperPJ).
(53)
102
Similar to energy intensities, CO2 intensities (W) can be derived by dividing CO2
emissionsbysectoraloutputsX.Therefore,CO2intensitybasedondirectenergyinputs
(WPPP)canbewrittenas:
WPPP
eC (54)
Equations 53 and 54 are used to determine CO2 emissions and CO2 intensities,
respectively,basedonPPP.
5.2.2
EmissionsAllocation:SharedResponsibilityPrinciple
TheallocationofCO2emissionsbasedonSRPiscomparativelymorecomplicated.As
introduced in Section 3.3.3, CO2 emissions, according to this principle, also take into
accounttheindirectenergyusedbyasector,thatis,theenergyembodiedinthesupply
of other materials and services. The framework adopted in this research for such
allocation is based on the input–output model. The fundamental description of the
input–outputmodelisprovidedinSectionB.1,AppendixB,p.216.
The detailed manner in which the input–output model can be used for examining
economic activities opens the way for studies that deal not only with industrial
production,butincreasinglywithotheraspectsofhumanactivitiesaswell(Duchin&
Steenge1999).Input–outputtablesprovideausefulframeworkfortracingenergyuse
and environmental pollution for economic activities, through the extension of the
Leontief input–output model (Miller & Blair 1985). Energy and environmental
dimensions can be incorporated into the standard model in order to determine
embodiedenergyandassociatedemissionsfromanysector.
Energy and associated emission intensities can be calculated either by using the
“hybridunit” approach or the “energycoefficient” approach. In the hybridunit
approach, energy flows, which are expressed in the input–output table in monetary
units,aresimplyreplacedbyflowsexpressedinphysicalunits(Bullard&Herendeen
1975). In order to relate monetary value in the input–output table to the physical
quantityofenergy,priceassumptionsarerequired(Miller&Blair1985).TheLeontief’s
inverseisthencalculatedfromthisupdatedinput–outputtable,wherebyenergyflows
103
areexpressedinphysicalunitsandnonenergyflowsareexpressedinmonetaryunits.
However, Dietzenbacher and Stage (2006) have shown that this approach can
sometimeproducearbitraryresults.
Theenergycoefficientapproach,ontheotherhand,requiresasatelliteenergyaccount,
corresponding with the sector outlined in the input–output table (Proops, Faber &
Wagenhals 1993). This satellite energy account (called the energy dissipation table)
allows the calculation of energy consumed in the economy through the intersectoral
relationshipswithintheeconomy,withoutmakinganyadjustmenttotheinput–output
table, thus avoiding the need for arbitrary price assumptions. Therefore, the energy
coefficient approach is the preferred method in this research to determine CO2
emissionsandintensities.
The mathematical specification of the energy coefficient approach is discussed as
follows.Fromequation 52,theenergyrequirementforthe productionsectorscanbe
representedas:
F
CX (55)
Now, by substituting the identity of total output X
ª I A B º ˜ Y (see Section
¬
¼
1
B.1.5, Appendix B, p. 223, for the derivation of this identity) into equation 55, the
sectoralenergyrequirementcanbewrittenas:
F
C ˜ ª¬ I A B º¼ ˜ Y 1
(56)
where
A:
matrixofinput–outputtechnicalcoefficients;
B :
matrixofweightedmeancapitalcoefficients;and
Y*:
vectoroffinaldemands(excludingdemandforcapitalinvestment).
1
Theterm C ª¬ I A B º¼ inequation56representssectoralenergyintensitiesbased
onSRP.Thetotalenergyconsumptionpresentedinequation56canbedisaggregated
intoenergyuseddirectlytoproduceasector’soutputandtheinfiniteseriesofindirect
104
energyembodiedintheuseofmaterials(seeequationsB7toB9,AppendixB,p.221,
fortheprocedureofthisdecomposition).
F
CY C A B Y C A B Y ! C A B Y 2
f
(57)
Inequation57,CY*–theentityontherighthandsideoftheequationrepresentsdirect
energy consumption, whereas the rest of the entities represent an infinite series of
indirect energy consumption. In fact, all these indirect energy consumptions are
derived from energy consumed for the production of materials at each downstream
level,asshowninFigure52.
Figure52
*
[CY ]
Representationofdirectandindirectenergyconsumption
1 *
[C( B) Y ]
Stage 1
Stage0
Note:
2 *
[C( B) Y ]
Stage 2
f *
[C( B) Y ]
Stage f
AdaptedfromBousteadandHancock(1979),citedinTreloar(1998).
Asmentionedabove,CO2emissionsassociatedwiththecombustionoffossilfuelscan
beobtainedbymultiplying energyconsumptionby associated fuels’ emissionfactors
(thatis,E=eF).Therefore,usingenergyconsumptionfromequation56,CO2emissions
basedonSRPcanbewrittenas:
ESRP
e ˜ C ˜ ª¬ I A B º¼ ˜ Y 1
(58)
Similar to direct–indirect energy consumption, equation 58 can be decomposed into
directCO2emissionsandaninfiniteseriesofindirectCO2emissionsas:
E
eCY eC ( A B )Y eC ( A B ) 2 Y ! eC ( A B )f Y (59)
In equation 59, ‘eCY*’ – the entity on the righthand side of the equation represents
directCO2emissions,whereastherestoftheentitiesrepresentindirectCO2emissions.
105
1
Also, the term eC ª¬ I A B º¼ in equation 58 represents sectoral CO2 intensities
thattakeintoaccountbothdirectenergyandenergyembodiedintheuseofmaterials.
Therefore,CO2intensitiesbasedonSRP(WSRP)canbewrittenas:
e ˜ C ˜ ª¬ I A B º¼ 1
WSRP
(510)
Equations58and510areusedinthisresearchtodetermineCO2emissionsandCO2
intensities,basedonSRP.
5.3
DeterminationofCarbonTax
Carbontax,eitherbasedonPPPorSRP,isappliedinthisresearchonthesamebasis,
namely,inproportiontosectoralCO2intensities(estimatedinthepreviousstep).
Fordeterminingthelevelofcarbontax,thisresearchhasadoptedaproceduresimilar
totheoneemployedbySymonsetal.(1994),CornwellandCreedy(1995;1996;1997),
andCreedyandMartin(2000).Accordingly,itisassumedthatthecarbontaxisfully
transferredthroughenergyandmaterialprices.33Asaresult,carbontaxincreasesthe
priceoffactorinputsinproportiontotheirCO2emissions.Thesepricechangescanbe
regarded as being equivalent to indirect taxes (Cornwell & Creedy 1995). The ad
valorem tax rates (t), which is a percentage of the taxexclusive value of energy and
materialsgoods,canbedeterminedfrom:
tn
tn
P ˜WPPP P ˜ WSRP o
o
(511)
(512)
where
tn:
advaloremtaxrateforindustryiinthecurrentyear;
The assumption of full shifting requires competitive market and constant returns to scale.
However,itisthestandardassumptionusedinpartialequilibriumanalysesofindirecttaxes
(Creedy1997).
33
106
leveloftaxonCO2emissions(measuredindollarspertonneofCO2)34;
:
WPPPo : CO2intensitybasedonPPPinthepreviousyear,ascalculatedfromEquation5
4(measuredintonnesofCO2perdollarofsectoralproduction);
WSRPo : CO2intensitybasedonSRPinthepreviousyear,ascalculatedfromEquation5
10(measuredintonnesofCO2perdollarofsectoralproduction).
Thetermtncanbeconsideredasequivalenttoasetofindirecttaxesimposedoneach
sectori,whichwillbeused(inpriceimpactmodule)todeterminetheimpactofcarbon
taxonincreasesinenergyandmaterialprices.
5.4
AssessmentofPriceImpactofCarbonTax
In this module, the increase in energy and material prices, as a result of the
introductionofcarbontax,isestimated.Theintroductionofcarbontaxwouldhavea
similar impact to other indirect taxes, that is, it would increase the sectoral value
addedcosts.Thissectoralpriceeffectofcarbontaxisestimatedusingtheinput–output
price model (see Section B.1.4, Appendix B, p. 221, for theoretical discussion of the
input–outputpricemodel).
Becausecarbontaxwouldincreasetheenergyandmaterialpricesthroughincreasesin
sectoralvalueaddedcosts,thechangeinthesepricescanbedeterminedfromequation
513:
P
I Ac 1
V
(513)
Equation513isthestandardLeontief’sinput–outputpricemodel(seeequationB13,
Appendix B, p. 223, for the derivation of this equation). This equation is appropriate
for use in this research as it can be used to “assess the impact on prices throughout the
economyofanincreaseinvalueaddedcostsinoneormoresectors’(Dixon&Rimmer2000;
Kula1998;Melvin1979;Miller&Blair1985,p.356).
Forexample,=0.01impliesataxof$10pertonneofcarbondioxide.
34
107
First, the baseyear price level needs to be calculated. When applying equation 513
with baseyear data (including baseyear input–output technical coefficients and
sectoralvalueadded), oneobtains avectorof baseyear prices forallsectors equal to
one.
Next, the sectoral advalorem carbon tax rate (which is obtained from the tax
imposition module, from equation 511 and 512) is imposed on the sectoral value
added. The new energy and material prices can be endogenously determined by
addingthe advaloremtax rate, obtained from the previous module,tothebaseyear
valueadded,asshowninequation514.
Pn
I Aoc ˜ Vo tn 1
(514)
where
Pn:
vectorofnewsectoralpricelevel;
Ao:
matrixofinput–outputtechnicalcoefficientsforbaseyear;
Vo:
matrixofsectoralvalueaddedbytotaloutputforbaseyear;and
tn:
vectorofnewsectoraladvaloremcarbontaxrate(calculatedfromEquations5
11and512).
This would give the index of changes in prices of energy and materials compared to
thebaseyear:
P
P
Pn Po
Po
(515)
Equation515canalsobeinterpretedaschangesinthepriceofthesectorthatsupplies
energy and materials to the economy. It is also worthwhile to mention here that,
according to Valadkhani and Mitchell (2002), the weightedmean of prices from all
sectorswouldrepresentaseriesofconsumerpriceindices(inflation).
5.5
108
ExaminationofFactorSubstitutionduetoCarbonTax
Whenenergyandmaterialinputspricesincrease,basedonmicroeconomictheory,the
producerseekstosubstitutetheseinputswithoneanotherorwithotherfactorinputs
suchascapitalandlabour.However,thissubstitutioneffectcannotbecapturedwithin
thetraditionalLeontiefinput–outputmodel(seeSectionB.2.1,AppendixB,p.226,for
comparison between Leontief and neoclassical production functions). The input–
outputmodeldoesnot provideamechanismfor evaluatingtheimpactofchangesin
technology(throughitstechnicalcoefficients).Thisisduetoitsunderlyingassumption
about the fixed proportionality of input–output coefficients. In reality, these
coefficients are likely to undergo continual changes, for example, due to new
innovations, changes in consumer/producer preferences, and policyinduced changes
(Rose1984).Thesechangeswouldhaveanimpactoninputpricesandhencechanges
in technology through changes in factor inputs. Therefore, if one is to assess how
carbon tax would influence technological change, one must make the input–output
coefficients responsive to price changes. The method to modify these input–output
technical coefficients is discussed in Section 5.5.1. Further, this research assumes that
the substitution between factor inputs is limited only to the electricity industry (for
modelling producers’ behaviour) and final demand category, including consumption
and exports (for modelling consumer behaviour). The modelling of the electricity
industryandfinaldemandisdiscussedinSections5.5.2and5.5.3,respectively.Finally,
theeconometricspecificationandparameterestimationfortheelectricityindustryand
finaldemandarediscussedinSection5.5.4.
5.5.1
ModificationofInput–outputCoefficients
The underlying theory of Input–output analysis is represented in terms of perfect
complements(shownasrightangledisoquantsinFigureB2(a)inAppendixB,p.227)
which ignore the substitution effect. In reality, an increase in the price of one
productioninputwillcausesubstitutionbetweenvariousinputsandhencewillaffect
the overall input mix through substitution between various inputs. This economic
realitycanbecapturedinneoclassicalproductionfunctionsthatallowforsubstitution
109
between various inputs. Such a production function is shown in Figure 53. For
instance,whenthepriceofcommodity1increases,itsdemandwilldecreaseanditwill
be substituted with commodity 2. The proportions of inputs 1 and 2 are shown as a
movement from point A to B. This movement in the use of factor inputs can be
econometrically estimated in terms of elasticities of substitution, which can then be
used to modify input–output coefficients (Rose 1984). The process of such a
modification of input–output technical coefficients, used in this research, is based on
themethodproposedbyWuandChen(1990).Thisisoutlinedbelow.
Figure53
Substitutioneffectinneoclassicaleconomictheory
Supposethattheproductionfunctionfortheproductionofoutputj(Xj)frominputs1
and 2 is Xj = f(x1, x2). According to the cost minimisation theory of input use (Varian
1987),theconstantoutputtoproducejdependsonthepricesofitsinputs.Thiscanbe
shownas:
Xj
g Pi , Pj (516)
Bydifferentiatingequation516withregardtotime,gives:
wX j
wt
X j
§ wX j wPi · § wX j wPj ·
˜
˜
¸¸ ¨
¸ ¨¨
© wPi wt ¹ © wPj wt ¹
Dividingbothsidesofequation517byXj,gives:
(517)
110
X j
§ wX j Pi · Pi § wX j Pj
˜
˜
¨¨
¸¸ ˜ ¨¨
© X j wPi ¹ Pi © X j wPj
Xj
· Pj
¸¸ ˜ ¹ Pj
(518)
Thetermsinbracketsrepresentcrosspriceandownpriceelasticities(),respectively.
By substituting these terms with their respective elasticities, equation 518 can be
writtenas:
X j
Kij ˜
Xj
Pj
Pi
K jj ˜ Pi
Pj
(519)
where
X j
: percentagechangeindemandforinputj;
Xj
Pi
:
Pi
Pj
Pj
percentagechangeinpriceofiusedasinputtoproducej;and
:
percentagechangeinpriceofjusedasinputtoproducej.
When incorporating such effects into the input–output model, according to Wu and
Chen(1990),theinput–outputtechnicalcoefficientscanbemodifiedas:
aijn
§ X j ·
aijo ¨1 ¨ X j ¸¸
©
¹
(520)
where
aijo :
matrixofinput–outputtechnicalcoefficientsforthepreviousyear;and
aijn :
anupdatedmatrixofinput–outputtechnicalcoefficients.
Equations 519 and 520 make it particularly clear that if own and crossprice
elasticities of each input are available, the technical coefficients in the input–output
modelcanbeadjustedinresponsetotherelativechangesinfactorcosts(thatis,their
ownpricesandpricesofotherinputs)broughtaboutasaresultoftheintroductionof
carbontax.Thepercentagechangesininputpricesarederivedinthisresearchinthe
price impact module discussed earlier in Section 5.4. The own and crossprice
111
elasticities of substitution can be derived by assuming other types of production
functionratherthantheLeontiefproductionfunction.Thisisthemainpurposeofthis
module. Once the new sets of input–output technical coefficients are derived, these
willbeusedinthenextmoduleforanalysingtheeconomywideimpactsofacarbon
tax.
5.5.2
ModellingofElectricityGenerationMix
Theinput–outputtechnicalcoefficientsmentionedaboveshould,ideally,bemodified
for all sectors. That is to say that this method should be applied to all 28 sectors
(including five electricity generation technologies), as listed in Figure 15. However,
due to the excessive calculations involved, this research assumes that there is no
substitutionbetweenvariousinputsforotherproductionsectors,exceptforelectricity
generation (substitution between consumers’ goods and services is discussed in
Section 5.5.3). This means that except for five electricity generation technologies, all
other production sectors assumed zero elasticity of substitution based on the
underlying Leontief production function. This assumption of zero elasticity of
substitution for other sectors means that it will underestimate the CO2 reduction
potential andoverestimate the economiccoststo the economy.35This is becausesuch
anassumptiondoesnotallowotherproductionsectors(excepttheelectricitysector)to
substitute their emissionsintensive expensive inputs (due to carbon tax) with low
emissioncheaperinputs.Thehighpriceemissionintensiveinputsinthesesectorsare
continuously used in the same (Leontief) proportion in which they were used before
thecarbontaxisimposed.
In this research, five types of electricity generating technologies – conventional coal
fired (CF), internalcombustion (IC), gasturbine (GT), combinedcycle (CC), and
Amodelwasalsorun,asatest,byassumingotherproductionsectorstobeperfectsubstitutes
in the useoffactor inputsinresponsetochangesinprice duetothecarbontax.Theresults
show that, for the carbon tax of $10 per tonne, the model developed for this research
overestimates the total economic costs (GDP) by about 0.09 per cent ($5.6 billion in 1990
prices)andunderestimatestheCO2reductionpotentialbyabout15percent(58Mt).
35
112
renewable electricity (RE) – have been considered. These are the major current and
likely technologies for electricity production in Australia. The factor input mix for
variouselectricitytechnologiesconsideredinthisresearchisshowninFigure54.
Figure54
Inputstructureoftheelectricityindustry
These technologies differ from each other in terms of their use of inputs. Each
technology is characterised by five factor inputs – capital, labour, electricity, fossil
energy,andmaterials.Further,therearethreetypesoffossilfuels(thatis,coal,oil,and
gas) and twenty types of materials used as inputs for electricity production. These
materialsareprovidedbytwentynonenergysectors,asoutlinedearlierinFigure15.
Because a large number of inputs are included, the application of the production
function can be burdensome. Therefore, the use of all these inputs for any electricity
113
technology is constructed based on a nested structure, as suggested by Fuss (1977).
Based on this input structure, the use of the production function limits the direct
substitutionbetweenmajorfactor inputswithanyparticularenergyormaterials.For
example,itdoesnotallowadirectsubstitutionbetweencapitalandcoalorlabourand
steel.However,itallowsaninterfuelsubstitution(forexample,betweencoalandgas)
andinterfactorsubstitution(forexample,betweencapitalandaggregateenergy).The
application of the nested input structure and the selection of the appropriate
productionfunctionarediscussedindetailinSection5.5.4.
After accounting for substitution (or modification of input–output technical
coefficients) for each electricity generation technology, the electricity industry then
combines outputs from these five technologies to meet the electricity demand. The
share of electricity produced from each technology in the total electricity supply is
determinedonthebasisofshortrunmarginalcosts(SRMC).36TheaverageSRMCfor
each technology for the base year is predetermined from information provided in
Table22.TheseSRMCsforST,CC,GT,IC,andREforthebaseyearare3.6,5.8,6.8,12
and15¢/kWh,respectively.Thenewsetsofinput–outputtechnicalcoefficientsforthe
electricityindustry,togetherwiththecontributedsharesofelectricityproductionfrom
eachtechnology,arethenusedforanalysingtheeconomywideimpactsofcarbontax.
5.5.3
ModellingofFinalDemand
Finaldemandcomprisesdemandforfinalconsumption,netexports,andinvestment.
In this research, only final consumption and net exports are considered in terms of
consumers’ response to changes in prices. Demand for investment is, however,
modelledusinga“dynamic”versionofinput–outputanalysis(seeSection5.6).
The final consumption and exports are modelled in a similar way to the electricity
sector, in the form of nested structure of demand. However, instead of estimating
elasticities from the production (cost) function, the utility (expenditure) function for
ThisbasisiscurrentlyusedindeterminingtheshareofelectricityproductionintheNEM(see
Sections2.1.5and2.2.2forfurtherdiscussion).
36
114
eachdemandcategoryisconstructed.Theconsumptionof goodsandservices(inthe
formofenergyandmaterials)forbothdemandcategoriesisshowninFigure55.
Figure55
Consumptionpatternforfinaldemand
Consumption/Export
Translog
Ecoal
Energy
Material
Translog
CobbDouglas
Eoil
Egas
El
M1
...
E :Fuels
El:Electricity
M:Material
M20
Goods&
Services
Functional
form
At the top level, demands for energy and material are characterised by the Translog
function. Further, there are four types of fuels (that is, coal, oil, gas, and electricity)
consumed as a final energy, which are also characterised by the Translog function.
Also, there are twenty types of materials from which the consumer can choose.
However, because of a large number of materials considered in this research, its
demandisassumedtobecharacterisedastheCobbDouglasfunction.Theapplication
ofthisnesteddemandpatterntoestimateelasticitiesisdiscussedinSection5.5.4.
5.5.4
EconometricSpecificationandParameterEstimation
Thissectionpresentstheeconometricspecificationforestimatingownandcrossprice
elasticitiesofsubstitutions,basedontheinputmixoftheelectricityindustry,asshown
inFigure54,andthedemandpatternforconsumptionandexport,asshowninFigure
55(SeeSectionB.2inAppendixB,p.225,foradetaileddiscussionoftheeconometric
specificationsadoptedinthissection).Asmentionedintheprevioussection,theinput
mix for each type of electricity generation technology is based on a twolevel nested
productionfunction.Thefirstnestingleveliscalledaninterfactormodelcomprising
115
capital,labour,electricity,aggregateenergy,andaggregatematerialinputs.Thesecond
nestinglevelistheinterfuelorenergysubmodel(comprisingcoal,oil,andgas)and
intermaterial or material submodel (comprising twenty materials). Similarly, the
demandpatternoffinaldemandisalsobasedonatwolevelnestedstructure.Thefirst
nestingleveliscalledaninterfactormodelcomprisingenergyandmaterial(asgoods
and services). The second nesting level consistsof the energy submodel (comprising
coal,oil,gas,andelectricity)andmaterialsubmodel(comprisingtwentymaterials).
In order to perform an empirical analysis with this nested production/consumption
structure,itisnecessarytoimposeaprioriweakhomotheticseparabilityrestrictionin
energy and materials inputs. Weak homothetic separability requires that the macro
production/utility function (interfactor model) be weakly separable37 and that the
microproduction/utility functions (energy and material submodels) be homothetic.
This restriction means that the marginal rate of substitution between each type of
energy or material inputs is independent of the quantities of capital and labour
demanded. Also, the imposition of this restriction opens up the possibility for two
stage optimisation (1977, p. 91). This implies that the mix of inputs within each
aggregate at the bottom level of the nested production structure (that is, energy and
material submodels) is optimised in the first stage, and then this result is used
togetherwithotherinputs(suchascapital,labour,andelectricity)toestimatetheinter
factor model in the second stage. This procedure, in the context of this research, is
explainedbelow.
From Figure 54 and Figure 55, the production function for all types of electricity
generationtechnologies(X)andtheutilityfunctionforfinaldemand(Y)canbewritten
as:
According to Berndt and Christensen (1973, p. 404), “a production function x=f(a, b) is weakly
separablewithrespecttoagivenpartitionofthesetofallinputsinto–a1,a2,…,am–ifthemarginal
rateoftechnicalsubstitutionbetweenaiandaj,whichareelementsofthesameseparableinputvectorar,
isindependentofthequantitiesofallfactorsoutsidethataggregate,i.e.,independentoffactorb.”
37
116
f ª¬ K , L, E Ecoal , Eoil , Egas , El , M M 1 ,! , M 20 º¼
X
Y
f ª¬ E Ecoal , Eoil , Egas , Eelectricity , M M 1 ,! , M 20 º¼
(521)
Here E Ei and M M i areaggregatorfunctionsforbothenergyandmaterialsub
models,respectively,whichneedtobeoptimisedinthefirststage.Subsequently,the
dualcost(expenditure)functionofequation521isalsoweaklyseparabletothesame
inputsandcanbewrittenas:
G
g ª PK , PL , PE PEcoal , PEoil , PEgas , PEl , PM PM1 ,! , PM 20 º
¬
¼
H
g ª PE PEcoal , PEoil , PEgas , PEelectricity , PM PM1 ,! , PM 20 º
¬
¼
(522)
HerePEandPMrepresentaggregateenergyandmaterialpriceindices.Fromequation
522, the complete Translog cost (expenditure) functions38 for the interfactor model
and energy submodel and CobbDouglas cost (expenditure) function39 for material
submodelarethenexpressedinequations523to525,respectively.
ln Gelec
ln PE
ln PM
1
¦¦ J ij ln Pi ln Pj , i, j  ^K , L, E , El , M ` 2 i j
i
1
ln D 0 ¦ D i ln PEi ¦¦ J ij ln PEi ln PE j , i, j  ^coal , oil , gas` 2 i j
i
ln D 0 ¦ D i ln Pi ln D 0 ¦ D i ln PM i , i  ^M 1 ,! , M 20 ` (523)
(524)
(525)
i
The material submodel above is constrained by the CobbDouglas function because
the parameters estimated from the Translog function are statistically insignificant
(fromtheauthor’scalculation).Therefore,itisnotappropriatetoemploytheTranslog
production(utility)functionforthematerialsubmodel.
Using Shephard’s Lemma, the associated cost (expenditure) share equations for the
interfactormodelandtheenergyandmaterialsubmodelscanbewrittenas:
FordetailonthederivationofTranslogcostfunction,seeequationB25,AppendixB,p.228.
FordetailonthederivationoftheCobbDouglascostfunction,seeequationB29,Appendix
B,p.229.
38
39
Sielec
117
D i ¦ J ij ln Pj , i, j  ^ K , L, E , El , M ` (526)
j
SiE
D i ¦ J ij ln Pj , i, j  ^coal , oil , gas` (527)
D i , i  ^M 1 ,! , M 20 ` (528)
j
SiM
where
Si :
cost shares for the interfactor (elec) model and, energy (E) and material (M)
submodels.
Theestimationofthecompletemodelasshowninequation522isthenaccomplished
usingthefollowingthreestageprocedure:
i.
Inthefirststage,eachelectricitygeneratorchoosesanoptimalquantityoffossil
fuelsamongcoal,oil,andgaswhichminimisestheoverallcostofenergyinputs
toproduceaspecifiedquantityofelectricity.Similarly,forfinaldemand,both
demand categories chooseanoptimal quantityofenergy mixamong coal, oil,
gas, and electricity, which minimises their expenditure on energy. Given the
price indices of individual energy types and their associated cost shares,
parameters D and J can be estimated from equation 527. These parameters
arethenusedtoendogenouslydeterminetheaggregateenergypriceindexby
substituting parameters and energy price indices into equation 524. This
aggregate energy price index serves as an instrumental variable in the third
stage.
ii.
In the second stage, each electricity generator and final demand category
chooses an optimal quantity of each material component (M1, …, M20) within
the material composite. Because the material submodel employs the Cobb
Douglascostfunction,thereisnoneedforparameterestimation.Asshownin
equation 528, cost shares for each material can be used as parameters to
estimate aggregate material prices in equation 525. Like the first stage, this
aggregate material price index serves as an instrumental variable in the third
stage.
iii.
118
Inthethirdstage,eachelectricitygeneratorchoosesanoptimalmixofcapital,
labour, electricity, aggregate energy, and aggregate material to minimise the
costofelectricityproduction.Similarly,consumerschooseamixofenergyand
materials to minimise their budget on goods and services. Aggregate energy
and material prices indices determined in the previous stages, together with
capital, labour, electricity price indices and their associated cost shares, are
usedtoestimateparametersfromequation526.
The parameters for each cost (expenditure) share equation are estimated using the
threestage ordinary least squares (3OLS) method. Eviews version 5.1 – an
econometricssoftwareprogram–wasusedforthispurpose(Lilienetal.2005).Since
the factor cost (expenditure) share equations must sum to unity, the sum of the
disturbances across all equations will be zero for each observation. As a result, the
disturbancecovariancematrixwillbesingularandoneequationmustbedeletedfrom
the system of equations. Barten (1969) has shown that the maximum likelihood
estimates of a system of share equations with one equation deleted are invariant to
whicheverequationisdropped.Therefore,inthisresearch,thedecisionwasmade to
omit equations of the gas share in total energy, of M20 in total materials, and the
aggregate material share in the total factor from the energy and material submodels
andinterfactormodel,respectively.Theremainingn1factorcostshareequationsare
estimatedjointlyasamultivariateregressionsystembyiterationofaZellnerefficient
procedureuntilconvergenceisachieved(Zellner1962).
Using the procedure outlined above, the parameters estimated for the energy sub
modelandinterfactormodelfortheelectricitysectorareshowninTable51andTable
52,respectively.Becausetheparametersforthematerialsubmodelaretakendirectly
from their cost shares, this information (cost shares for the material submodel) is
provided in Appendix C, pp. 263269, together with cost shares for the energy sub
modelandinterfactormodel.
119
Table51
Parameterestimatesforelectricitysector:energysubmodel
Internal
combustion
ESI
Coalfired
0.6643*
0.7180*
(647.27)
(319.70)
0.1206*
0.0763*
(36.37)
(34.21)
0.2151
0.2057
0.0292*
0.1998*
(2.10)
(8.12)
0.2973*
0.2214*
(50.49)
(14.91)
Gas,Gas
0.0980
0.0899
Coal,Oil
0.0851*
0.0342
(17.53)
(1.56)
Coal,Gas
0.1143
Oil,Gas
0.2123
Gasturbine
(1980–1999)
Combined
Renewable
cycle
Interceptcoefficients( i )
Coal
Oil
Gas
0.0725
0.1656
0.2556
0.1061*
(7.99)
0.8939
Slopecoefficients( ij )
Coal,Coal
Oil,Oil
0.0725*
(2.18)
0.0725
Notes: Figuresinparenthesesaretstatistics
* Significantat95percentlevelofconfidence
NotAvailable
DetailedresultsforenergysubmodelareshowninTableE2,AppendixE,pp.283286.
Table51presentstheresultsforcoalfiredandgasturbineonly,asthesetechnologies
usemorethanonetypeofenergyinputforelectricityproduction.Internalcombustion
and combinedcycle consume only one type of energy input, that is, oil and gas,
respectively; whereas renewable does not consume any fossil energy. The results
indicate that the energy submodel performs considerably well, since almost all
estimatesaresignificantata95percentlevelofconfidence.Further,theseparameters
arealsosatisfiedforpositivityandmonotonicityconditions40,sinceall D i arepositive
and the estimation of cost shares from these parameters is also positive for all
observations.
See Section B.2.3 in Appendix B, p. 228, for assumptions of the production cost function
model.
40
120
Table52
Parameterestimatesforelectricitysector:interfactormodel
ESI
Coalfired
Internal
combustion
Gasturbine
Combined
cycle
(1980–1999)
Renewable
Interceptcoefficients( i )
0.4052*
0.3413*
0.2747*
0.4580*
0.2202*
(15.94)
(15.44)
(19.28)
(7.96)
(24.23)
(23.43)
L
0.1953*
0.2139*
0.0381*
0.1197*
0.2070*
0.1553*
(15.16)
(18.69)
(4.75)
(4.14)
(20.84)
(7.74)
E
0.1786*
0.2027*
0.5873*
0.2775*
0.4014*
(15.54)
(16.77)
(38.85)
(9.92)
(30.16)
0.0679*
0.0699*
0.0167*
0.0494*
0.0940*
(30.70)
(28.83)
(4.72)
(7.03)
(60.79)
(2.70)
M
0.1530
0.1722
0.0831
0.0954
0.0774
0.1154
K,K
0.0415
0.0024
0.1037*
0.1457
0.0457*
0.0047
(0.86)
(0.06)
(4.70)
(1.34)
(2.78)
(0.09)
L,L
0.0952*
0.0972*
0.0607*
0.2539*
0.2735*
0.0801*
(3.05)
(3.02)
(3.33)
(5.50)
(9.72)
(2.11)
E,E
0.1483*
0.1569*
0.1209*
0.0001
0.1448*
(7.55)
(7.43)
(5.04)
(0.00)
(2.38)
0.0648*
0.0676*
0.0342*
0.0402*
0.0079*
(6.20)
(5.15)
(2.26)
(5.57)
(2.07)
(2.95)
0.1043
0.0059
0.1201
0.0269
0.0117
0.0084
0.2826
0.0564
0.0244
0.0051
0.1311
0.0093
(0.26)
K
El
0.6960*
0.0333*
Slopecoefficients( ij )
El,El
M,M
K,L
0.1018*
(0.24)
(1.25)
(0.59)
(1.04)
(0.31)
0.0619*
0.0621*
0.1370*
0.0911
0.0922*
(2.97)
(2.85)
(7.72)
(1.72)
(3.52)
0.0060
0.0083
0.0084
0.0063
0.0157*
(1.34)
(1.74)
(0.95)
(0.48)
(5.46)
(1.35)
K,M
L,E
0.0205
0.0336*
0.0411
0.0282*
0.0334
0.0187
0.0081
0.1345*
0.0358
0.1483*
0.0372
(2.41)
(1.97)
(1.59)
(3.71)
(5.52)
L,El
0.0360*
0.0436*
0.0318*
0.0779*
0.0315*
(4.08)
(4.66)
(2.62)
(6.73)
(4.53)
(4.53)
L,M
E,El
0.0198
0.0351*
0.0015
0.0331*
0.0186
0.0066
0.2537
0.0301*
0.1617
0.0145
0.0048
(4.77)
(4.17)
(0.87)
(2.97)
(1.93)
E,M
El,M
0.0849
0.0597
0.0899
0.0697
0.0041
0.0678
0.0736
0.0944
0.2154
0.0066
K,E
K,El
0.0325
0.0942*
0.1635
Notes: K–Capital;L–Labour;E–Energy;El–Electricity;M–Materials
Figuresinparenthesesaretstatistics
* Significantat95percentlevelofconfidence
NotAvailable
DetailedresultsforInterfactormodelareshowninTableE1,AppendixE,pp.276282.
The interfactor model, as shown in Table 52, also performs reasonably well, as
indicatedbyalargenumberofstatisticallysignificantcoefficientsata95percentlevel
of confidence. The slope coefficients of capital–labour and capital–electricity for most
of the generation technologies are statistically insignificant; therefore, such results
must be interpreted with some caution. Again, the positivity and monotonicity
conditionsaresatisfiedforeachobservation.
121
Similartotheelectricitysector,theparametersestimatedfortheenergysubmodeland
interfactormodelforfinaldemandareshowninTable53andTable54,respectively.
Because the parameters for the material submodel are taken directly from their cost
shares, this information (cost shares for the material submodel) is provided in
AppendixC,pp.263269,togetherwiththecostsharesfortheenergysubmodeland
interfactormodel.
Table53
Parameterestimatesforfinaldemand:energysubmodel
Finalconsumption
(1980–1999)
Export
Interceptcoefficients( i )
Coal
Oil
0.0129*
0.8593*
(2.49)
(123.57)
0.3900*
0.1042*
(24.31)
(12.03)
Electricity
0.4774*
0.0035*
(52.62)
(14.90)
Gas
0.1197
0.0330
Slopecoefficients( ij )
Coal,Coal
Oil,Oil
0.0219
0.2453*
(0.58)
(7.37)
0.1484*
0.1723*
(3.51)
(6.49)
Electricity,Electricity
0.3453*
0.0006
(3.41)
(0.18)
Gas,Gas
0.3470
0.0571
Coal,Oil
0.0351*
0.0043
Coal,Electricity
(1.71)
(0.17)
0.1398*
0.0051*
(2.63)
(2.55)
Coal,Gas
0.1266
0.2360
Oil,Electricity
0.0406
0.0011*
Oil,Gas
Electricity,Gas
(1.26)
(2.22)
0.2241
0.1755
0.4445
0.0034
Notes: Figuresinparenthesesaretstatistics
* Significantat95percentlevelofconfidence
NotAvailable
DetailedresultsforEnergysubmodelareshowninTableE2,AppendixE,pp.283286.
Table53presentstheresultsforenergyconsumptionandexports.Theresultsindicate
that the energy submodel performs considerably well, since almost all estimates are
significant at a 95 per cent level of confidence. Further, these parameters are also
satisfied for positivity and monotonicity conditions, since all D i are positive and the
122
estimation of expenditure shares from these parameters are also positive for all
observations.
Table54
Parameterestimatesforfinaldemand:interfactormodel
Finalconsumption
(1980–1999)
Export
Interceptcoefficients( i )
0.0260*
Energy
0.1306*
(63.77)
(55.59)
Materials
0.9740
0.8694
Energy,Energy
0.0247*
Slopecoefficients( ij )
Materials,Materials
Energy,Materials
0.0086*
(14.37)
(1.42)
0.0247
0.0086
0.0247
0.0086
Notes: E–Energy;M–Materials
Figuresinparenthesesaretstatistics
* Significantat95percentlevelofconfidence
NotAvailable
DetailedresultsforInterfactormodelareshowninTableE1,AppendixE,pp.276282.
The interfactor model, as shown in Table 54, also performs reasonably well, as
indicatedbyalargenumberofstatisticallysignificantcoefficientsata95percentlevel
ofconfidence.Again,thepositivityandmonotonicityconditionsaresatisfiedforeach
observation.
All estimated parameters shown above can be used to determine price elasticities of
demand,asoutlinedindetailinSectionB.2.5,AppendixB,p.231.Inbrief,thiscanbe
achievedusingthemethodsimilartoBerndtandWood’s(1975),as:
Kii
SiV ii where V ii
Kij
S jV ij where V ij
J ii Si2 Si
Si2
J ij Si S j
Si S j
(529)
(530)
To complete the substitution module, the own and crossprice elasticities of
substitution are then used in equations 519 and 520, as discussed earlier, for
modifyingtheinput–outputtechnicalcoefficients.
123
5.6
EconomywideImpactModule
As mentioned in Section 5.1, in this final module, the economywide impacts of a
carbon tax are analysed. These impacts are analysed using an energyenvironment
orientedinput–outputframeworkspecificallydevelopedforthisresearch.
Following the substitution module, after the input–output technical coefficients,
electricity generation mix, and final demand response have been modified, these
changes will be incorporated into the baseyear input–output model to generate
different types of economywide impacts. These impacts, which include economic,
energy, environmental, and social aspects, would be generated for the carbon tax,
basedonbothPPPandSRPforthesucceedingyear.Theresultwillthenbefedintothe
first module again and impacts would be determined for the next year. The same
procedurewouldbefolloweduntilimpactsaredeterminedforallyearstotheendof
the study period, that is, 2020. The mathematical specifications for this module are
discussed below. The derivation and detailed explanation of the input–output model
areprovidedinSectionB.1.3andSectionB.1.5inAppendixB.
First,theeconomicimpactsofcarbontaxaredetermined.Theseimpactsarequantified
in terms of changes in gross domestic product, sectoral output/production, and
inflation. These variables are selected because they constitute major areas of concern
from economic and political perspectives. The starting point for this analysis (of
economicimpacts)isthebasicinput–outputidentity,namely:
X
I An 1
Y
(531)
where
X:
columnvectorofsectoraloutputs;
An:
matrixofupdatedinput–outputtechnicalcoefficients;and
Y:
columnvectorofsectoralfinaldemands.
Equation531canbedirectlyappliedfortheextensionofenergy,environmental,and
social attributes. However, as discussed earlier in Section 5.5.2, the electricity
124
generation mix would be endogenously determined within the model. In order to
allowthemodeltoexplicitlyaccountforthisinvestment,itwouldbemoreappropriate
totreatinvestmentdemand,whichistraditionallylocatedasapartoffinaldemandY,
tobeendogenouslydeterminedwithintheinput–outputmodelaswell.Followingthe
methodproposedbyLenzen(1998),thiscanbewrittenas:
X
ª I An B º ˜ Y ¬
¼
1
(532)
where
B :
matrixofweightedmeancapitalcoefficients;and
Y*:
vectorofsectoralfinaldemand,excludingdemandforcapitalinvestment.
Another conventional yet important variable for analysing economic impact is
economic growth, which is measured by the growth in GDP. By definition, GDP
comprisesdomesticconsumption,investment,governmentspending(forconsumption
and investment) and net exports. However, in this research, government spending is
includedwithprivateconsumptionandinvestment.ThechangesinGDP,estimatedin
this research, would be influenced by changes in domestic consumption and net
exports(fromthesubstitutionmodule)andchangesindemandforcapitalinvestment.
Thedemand(andsupply)forcapitalinvestmentcanbedeterminedfrom:
Investmentdemand
¦B˜X ¦B˜X (533)
i
Investmentsupply
(534)
j
Consequently,addingtheinvestmentdemanddeterminedfromequation533toother
domestic consumption and net exports would determine the GDP for each year.
Therefore, the differences in the GDP, sectoral outputs, and inflation (which was
determinedinthepriceimpactmodule)forbothtypesofcarbontax(thatis,basedon
PPPandSRP)canbecomparedandanalysed.
Oncetheeconomicimpactisdetermined,thisinformation(particularlysectoraloutput
variable)willbeusedtocalculateenergy,environmental,andsocialimpacts.Thebasic
125
economicinput–outputframeworkwillbeextendedtoexplicitlydeterminetheseother
impactsfollowingthemethoddevelopedbyProopsetal.(1993).
The primary energy consumption can be easily determined by referring back to
equation 52, where energy intensity was defined. By reorganising the term, the
primaryenergyrequirementintheeconomycanbegivenas:
F
CX (535)
The CO2 emissions can also be easily determined by using the expression given in
equation53.Theextensionofthatequation,bysubstitutingenergyconsumptionfrom
equation534,canbewrittenas:
E
eF
eCX (536)
Further, a similar extension is also applied for analysing the social impacts. In this
research, social impacts are assessed in terms of changes in the level of employment
triggeredbytheintroductionofacarbontax.Althoughthelevelofemploymentisnot
the only factor that reflects social impacts (other impacts could include, for example,
incomedistribution,povertylevel,etc.),itisoftenconsideredasthecoreoftheabove
noted and several other social problems (Atkinson et al. 1997). Therefore, it is
appropriatetoassessthesocialimpactofcarbontaxintermsofemployment.
The impact of carbon tax on employment can be straightforwardly assessed by
extending the economic input–output model, in a similar way as was done for the
assessmentofenergyimpact.Likeenergyintensity,labourintensity(orlabouroutput
ratio) can be defined as the amount of labour for the production of one unit of
economicoutput.Thiscanberepresentedas:
l
L
X
(537)
where
l:
matrixrepresentingpeopleemployedperunitofoutputineachsector;
L:
vectorrepresentingthelevelofemployment;and
X:
vectorrepresentingsectoraloutput.
126
By assuming a specific rate of improvement in labour productivity41, the sectoral
employmentintheeconomycanbedeterminedby:
L
lX (538)
Theresultsfromthismodulearepresentedanddiscussedinthenextchapter.
5.7
DataSourcesandPreparation
Themethodologicalframeworkasoutlinedinthischapterconsistsoftwotypesofcore
models,namely,input–outputandproductionfunctionmodels.Asaresult,twosetsof
dataareneededinthisresearch,onefortheinput–outputmodelandtheotherforthe
production function model. This section provides a description of data sources and
preparationofdataforuseinthesemodels.
5.7.1
DataPreparationforInput–outputModel
Inordertoobtaindatarequiredfortheinput–outputmodelwhichisusedforemission
allocationanddeterminationofpriceandothereconomywideimpacts,itisnecessary
to estimate e, C, A, B, and l from published statistics. These data were generally not
directlyavailableinanappropriateorconsistentform.Aconsiderableamountofdata
preparationeffortwasthereforerequiredbeforetheanalysiscouldcommence.
a)
Thethirteenyearlyinput–outputtablesusedinthisresearchwerepublishedby
the Australian Bureau of Statistics (ABS) (ABS various). These represent the
years 1980 to 1984, 1987, 1990, 1993 to 1995, 1997, 1999 and 2002. The inter
industry matrix in these tables ranged between 106 and 113 sectors. To make
meaningful comparisons, the input–output tables needed to be adjusted for
price variations over time using price indices obtained from the ABS (2003).
Furthermore, the tables needed to be aggregated in order to ensure sectoral
consistency and coherence with other data sources. This, however, required a
Labourproductivityisareciprocaloflabouroutputratio.Itrepresentstheoutputthatcanbe
producedbyoneperson.
41
127
considerableeffortintermsofinvestigatingthechangesthathavetakenplace
in sector definitions and classification systems over the period 1980–2002. In
viewofthefocusofthisresearch,varioussectorsweregroupedinaccordance
withtheirenergyintensiveness,thatis,thehighlyenergyintensivesectorsare
kept separate, while less energyintensive sectors are aggregated into one
sector. These groupings are also made consistent with the ANZSIC42 sectoral
classificationdefinedbyABS.Therefore,somegroupscompriseasinglesector,
whileotherscompriseasmanyas24sectors(asinthecaseofthecommercial
sector).Asummaryofthesegroupings,whichshowsthenumberofsubsectors
that areaggregatedinto 28sectors considered inthisresearch, is presented in
Table55(withdetailsofeachsubsectorshowninTableC1,AppendixC,pp.
234237).
Table55
Sectorconsideredinthisresearch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Coal sector
Petroleum and coal products
Gas sector
Renewable electricity
Coal-fired electricity
Internal-combustion electricity
Gas-turbine electricity
Combined-cycle electricity
Agriculture
Raw materials mining
Food industry
Textile industry
Wood and paper industry
Chemical industry
Summaryofsectoralclassification
No.ofsub
sectors
1
1
1
Sectorconsideredinthisresearch
15
16
17
18
19
20
21
22
23
24
25
26
27
28
1
10
4
12
611
79
9
Non-metal industry
Iron and steel industry
Non-ferrous metal industry
Fabricated metal industry
Machinery & equipment industry
Other manufacturing industry
Water supply
Construction
Road transport
Railway transport
Water transport
Air transport
Other transport
Commercial services
No.ofsub
sectors
6
1
1
3
11
2
1
3
1
1
1
1
3
1724 b)
Theelectricitysupplysector,asshowninSection3.1,isamajorcontributorto
CO2emissionsinAustralia.This,however,currentlyappearsasasinglesector
in the input–output tables. Given its importance in the estimation of CO2
This is referred to as the 1993 version of AustraliaNew Zealand Standard Industry
Classification.
42
128
emissions,andinordertobeabletoexaminealternativescenariosforelectricity
generation, this sector is disaggregated into five subsectors based on the
technologies used for electricity generation. The five electricitygeneration
technologies considered in this research are conventional coalfired, internal
combustion, gasturbine, combinedcycle, and renewable. The renewable
electricitygenerationisusedasaproxyforothertypesofelectricitygeneration
technologies available in Australia, such as hydro, wind and photovoltaic.
These renewable technologies do not consume energy directly for electricity
production and also are highly material intensive, compared to fossilfuel
power stations. Such a disaggregation of electricity supply sector in this
research has allowed the inclusion of more than 97 per cent of electricity
production capacity in Australia. The only data available for such
disaggregation represent energy consumption by the type of electricity
generation technology (as published annually by the Electricity Supply
Association of Australia). No data on the consumption of materials by these
generation technologies are available. Hence, this research has disaggregated
capital,labouranddifferentmaterialsinputintheelectricitysectoronthebasis
oftherecommendationsmadebyGayandProops(1993),Proopsetal.(1993),
Timilsina(2001),andCruz(2002)asfollows:
Capitalinputisapportionedtoeachelectricitygenerationtechnologybased
onitscapitalcostdistributionfactor.
Labour input is apportioned to each electricity generation technology in
proportiontoitsshareinelectricityproduction.
Inputsofmaterialsarevaried,dependingonthetypeofmaterial.
Materials from agricultural, food, textiles, wood and paper, and water
sectors are apportioned the same way as labour inputs, that is, in
proportiontosharesinelectricityproduction;
129
Materials from the transport sector are apportioned based on the
transport task provided to different electricity generation technologies
(ApelbaumConsultingGroup1997);
Materials from raw materials mining, chemical, nonmetal, iron and
steel, nonferrous metal, fabricated metal, machinery and equipment,
and commercial sectors are apportioned based on the “operation and
maintenance(O&M)cost”distributionfactorofeachtechnology;and
Material from construction sector is apportioned on the same basis as
capitalinput,thatis,disaggregatebasedonthecapitalcostdistribution
factorofeachelectricitygenerationtechnology.
While the disaggregation and apportioning based on shares in electricity generation
and transport needs are relatively straightforward; these are more complicated when
based on capital and O&M distribution factors. These factors need to be constructed,
based on the economic and technical characteristics of different electricitygeneration
technologies,asshowninTable56.
Table56
Economicandtechnicalcharacteristicsofpowerplants
Initialinvestmentcost†
†
AnnualO&Mcost (units)
CF
IC
($A/kW)
1430
1500
475
870
2020
37
39
9
12
32
($A/kW/year)
†
Plantlife ‡
Capitalrecoveryfactor GT
CC
RE
(years)
30
30
28
30
50
(percent)
8.9
8.9
9.1
8.9
8.2
Annualcapitalcost‡
($A/kW/year)
127
133
43
77
165
*
($AMn/year)
1094
9
26
8
236
($AMn/year)
3757
32
123
53
1217
CapacityO&Mcost *
Totalcapacitycost Installedcapacityin2002
(MW)
*
O&Mdistributionfactor *
31366
268
4313
1441
7387
0.793
0.007
0.026
0.012
0.162
Capitaldistributionfactor 0.720
0.006
0.034
0.020
0.220
Notes: CF:Coalfired,IC:Internalcombustion,GT:Gasturbine,CC:Combinedcycle,RE:Renewable;
Interestrate=8percent[Follow:Naughten(2003)];
†
Jones,Peng&Naughten(1994);Naughten(2003);Dalziell,Noble&OfeiMensah(1993);
‡
Author’scalculation;
* Author’scalculationforthecapacityin2002(seeTableC2,AppendixC,pp.238239for
capitalandO&Mdistributionfactorsfor1980–2002).
130
Thecapitalcostsoftheexistingcapacityarecalculatedbasedontheinstalledcapacity
inthatyear,initialinvestmentcostforthetechnology,anditsexpectedplantlife.The
capital distribution factor for each technology is expressed as its share in the total
annualcapacitycostof the electricitysector.The O&Mcosts for existing capacity are
calculatedbasedontheinstalledcapacityinthatyearandtheannualO&Mcostofthe
technology.TheO&Mdistributionfactorforanytechnologyisexpressedasitssharein
the total annual O&M costs of the existing electricity capacity in Australia. Table 56
shows the capital and O&M distribution factors for various technologies, using
installed capacity in 2002 as an example. Detailed lists of these factors for each
technologyforallotheryearsareprovidedinTableC2,AppendixC,pp.238239.
Thediscussionsofarhasfocusedontheaggregationanddisaggregationofpublished
input–outputtables,intothesectoralclassificationrequiredforthisresearch.Thishas
resulted in the creation of a 28sector input–output table for this research. The main
driver in this aggregation/disaggregation was the energy intensiveness of various
sectors, that is, energy intensive sectors were kept as separate sectors (and in fact, in
some cases, disaggregated, for example, the electricity sector), whereas lessenergy
intensive sectors were aggregated (see Table 55). This is only a part of the effort for
reorganisingtheinput–outputtablesrequiredforconstructinginput–outputtechnical
coefficients(matrixA).Thedetailedtechnicalcoefficientsderivedfromeachofthe28
sectorinput–outputtableareshowninTableC3,AppendixC,pp.240252).However,
inordertoendogenouslydeterminethedemandforcapitalinvestment,matrixBalso
needstobeconstructed.
c)
Regardingtheconstructionofthecapitalcoefficient(B)matrix,theuseofgross
fixedcapitalformationbyindustrieshadtobeestimatedfromaggregateddata
availablefromABS(Lenzen1998).TheAustralianinput–outputtablesprovide,
aspartofthefinaldemand,avectorYb (=BX)–oftotalsectoralsuppliesusedas
grossfixedcapitalexpendituresbytheprivatesector,publicenterprisesandthe
general government. These expenditures were allocated across the respective
industry divisions at the broadest levels (that is, at the ANZSIC 1digit level)
accordingtoaggregateddataontheconsumptionoffixedcapital(ABS2004f).
131
This was further disaggregated into the 28 sectors required for this research,
accordingtodataonthegrossfixedcapitalexpendituresofdifferentindustries
(ABS 2004a, 2004e, 2004g, 2004h, 2004j). This assumption might seem
unsatisfactory,butthe error associated withthisdisaggregationof grossfixed
capitalexpendituresisrelativelysmallinmostcases,since theseexpenditures
constituteonlyasmallshare(about7percent)oftotaloutput(Lenzen1998).
Theweightedmeanofthecapitalcoefficientsmatrixfromtwelveinput–output
tablesisshowninTableC4,AppendixC,p.253.
d)
Regarding the construction of the sectoral energy intensities (C) matrix,
information on primary energy use (F) – including black and brown coal,
naturalgas,andpetroleum–measuredinphysicalunitswasrequired.Thisis
availablefromannualsectoralenergyconsumptiondatapublishedbyABARE
(ABARE2006a).Again,theprimaryenergyconsumedineachtypeofelectricity
generationtechnologyisnotdirectlyavailablefromABARE.However,thiscan
be estimated by apportioning the energy consumed in the electricity sector
from ABARE, using the proportion of each fuel type consumed by each
technology obtained from ESAA. In addition, energy consumed by the road
transportsector,aspublishedbyABARE,includesbothprivateandcorporate
vehicles (Akmal et al. 2004). In order to relate energy data from ABARE with
thecorrespondinginput–outputtables,itwasrequiredtoseparatethesefigures
on the basis of the estimates of energy consumption from other sources (ABS
2004l).Thiswouldresultinenergyconsumptiontables(inPJ)whichconsistof
fourtypesofprimaryenergiesconsumedineachofthe28sectors.Theseenergy
consumption tables will be divided with sectoral outputs from input–output
tables to obtain the energy intensities (C) matrix. These matrices of historical
energyintensities(matrixC)areshowninTableC5,AppendixC,pp.254256.
e)
Furthermore,theemissionfactorforeachprimaryenergyisobtainedfromthe
AustralianGreenhouseOffice(NGGIC1996).Theseare95.7,90.4,69.3,and51.3
kg of CO2 for each GJ of brown coal, black coal, petroleum, and natural gas,
respectively(alsoseeSection3.1.2).
f)
132
Finally, the matrix of the labouroutput ratio can be constructed by using the
numberofemployeesineachsectordividedbytheoutputofthesector.These
sectoralemploymentfiguresaredirectlyavailablefromABS(ABS2004i).
5.7.2
DataPreparationforProductionFunctionModel
In order to obtain data required for the production function model, which is used in
thesubstitutionmodule,itisnecessarytoconstructtimeseriesdataonthefactorcost
shares and pricesofeachinput requiredby theelectricitysectorforthe period 1980–
1999. These data are required for all models, namely, the interfactor model, energy
submodel and material submodel (presented in Section 5.5.4). These data were
however, generally not directly available in an appropriate or consistent form. A
considerable amount of data preparation effort was therefore required before the
analysis could commence. These data are compiled from three major sources – ABS,
ABARE,andESAA.
a)
Forcostsharesoftheinterfactormodelandmaterialsubmodel,factorinputs
(excludingenergy)foreachelectricitysupplytechnologyaretakenfromtwelve
input–outputtablespublishedduringtheperiod1980–1999byABS(ABS2003,
2004b, 2004c). This is on the grounds that each column of input–output
technicalcoefficientsinthetabledenotesthecoststructureoftheindustry.Each
columnoftheinput–outputtabledescribesthecompositionofinputsrequired
by a particular industry. These inputs are supplied from the outputs of other
industries (in the form of intermediate inputs) and primary factors of
production (in the form of valueadded) (also see Section B.1.2, Appendix B,
p.217). The details of the organisation of these input–output tables, consistent
withthisresearch, havebeendiscussedintheprevioussubsection.ABSdoes
not publish input–outputtableson an annual basisand,therefore,cost shares
for the missing years (namely, 1985, 1986, 1988, 1989, 1991, 1992, 1996, and
1998)werecalculatedonthebasisofaveragesbetweenthefirstandlastyearfor
which an input–output table is available. For cost shares of the energy sub
133
model, the shares of energy inputs are taken from timeseries of annual data
publishedbyESAA(ESAAvarious).
For factor prices of the interfactor model, the timeseries data are required for the
pricesofcapital,labour,andelectricity.Thepricesofaggregateenergyandaggregate
material are endogenously determined from the energy submodel and material sub
model,respectively(seeSection5.5.4).
b)
The price of capital is estimated on the basis suggested by the Industry
Commission(1992),usingthefollowingequation:
Pik ( I G ) Pk
where
Pk:
capitalpriceindex;
Pik:
implicitcapitalpriceindex;
I:
realinterestrate;and
:
depreciationrate.
The implicit capital price index is taken directly from ABS (ABS 2004d). The
(539)
interest rates used in this research are real rates, which take into account
inflation,obtainedfromtheReserveBankofAustralia(RBA2004).Although,in
reality,eachindustryshouldhavebeenattachedtodifferentinterestrates,due
tothedifficultyinobtainingdata,thisresearchassumescommoninterestrates
acrossallindustries.Economicdepreciationischosen,inthisresearch,tobe6.7
per cent per annum. This rate is chosen based on a study by Burbridge et al.
(2000);inthisstudythisvalueisassumedasanaveragedepreciationrateused
for depreciating the value of the electricity industry’s infrastructures in
Australia.
c)
Thepriceoflabourisdeterminedbydividingthetotallabourcostwiththetotal
number of persons employed in the electricity industry (Westoby & McGuire
1984). The labour cost for each industry is available from input–output tables
134
publishedbyABS,whiledataforthenumberofemployeesaretakenfromABS
(ABS2004i)andESAA(ESAAvarious).
d)
For electricity prices, the timeseries of electricity price indices are developed
from electricity prices published by ESAA (ESAA various). For prices of non
electric energy, the prices of various forms of primary energies are obtained
fromABARE(ABAREvarious;Tedescoetal.2004).
e)
For material prices, this research has used the producer price indices for each
industry, published by ABS (ABS 2004k), as a proxy for prices of material
inputs. Unfortunately, ABS does not publish the producer price index for
agricultureorthewaterindustry.Thepriceindicesforthesetwoindustriesare
assumedtobeequaltotheconsumerpriceindices.
Allfactorpricesdiscussedabovehavebeenassumedasthesameacrossallelectricity
generationsubsectorsandalsoconvertedintotimeseriesofindices,with1990asthe
baseyear.Thedetailsofcostssharesandpriceindicesofallfactorinputsusedinthis
researcharepresentedinTableC6toTableC8,AppendixC,pp.257269.
5.8
SummaryandConclusions
Theobjectivesofthischapterwerei)todevelopamethodologicalframeworkbasedon
an input–output model with a modified production function – for the analysis of the
impactofcarbontaxonthewidereconomy,andii)describethesourcesofdataaswell
asthemethodologyusedinthisresearchtodeveloprawdataintoaformthatcouldbe
employed for constructing various empirical analyses in this research. The major
conclusionsfromthischapteraresummarisedasfollows:
x
The methodological framework developed in this research comprises five
interlinkedfunctionalmodules.
a) Inthefirstmodule,thesectoralcarbondioxideemissionsandintensitiesare
calculated, based on both the Polluter Pays Principle (PPP) and Shared
Responsibility Principle (SRP). The CO2 emissions and intensities for the
135
PPParesimplycalculated,basedondirectenergyconsumptionrepresented
inthetraditionalenergybalance.Ontheotherhand,theCO2emissionsand
intensities for SRP are calculated from direct as well as indirect energy
consumption, represented in materialsbalance. CO2 emissions and
intensities for SRP are determined from the energyoriented input–output
methoddevelopedonthebasisofthe“energycoefficient”approach.
b) Inthesecondmodule,acarbontaxisintroducedbasedonsectoralcarbon
dioxide intensities. This tax is introduced on the top of the existing value
addedtax.
c) In the third module, the impact of carbon tax, in terms of changes in
sectoralprices,isestimated.ThisisestimatedusingthestandardLeontief’s
input–output price model, which is appropriate for analysing changes in
valueaddedtax.
d) Inthefourthmodule,theelectricitysectorisallowedtosubstituteitsfactor
inputs in response to changes in sectoral prices brought about by the
application of a carbon tax. This is achieved by assuming a nested input
structureforeachelectricitygenerationtechnologyandreplacementofthe
Leontief’s production function with the Translog and CobbDouglas
production functions. Further, the final demand category (including final
consumption and exports) is also allowed to change its consumption
patterns in response to increases in energy and material prices due to the
introduction of a carbon tax. It is also assumed that the input–output
relationshipsforotherproductionsectorsremainconstant.
e) In the final module, based on the new input–output coefficients, the
economywide impacts of carbon tax are assessed. These impacts are
classified into energy, environmental, economic, and social impacts. The
resultoftheseimpactsisdiscussedinthenextchapter.
136
CHAPTER6
6 ASSESSMENTOFTHEIMPACTSOFCARBONTAX
InChapter5,amethodologicalframeworkforassessingtheimpactsofcarbontaxwas
developed. The objective of this chapter is to employ this framework to assess the
energy, environmental, economic and social impacts of carbon tax on the Australian
economy. This assessment will be carried out separately, based on two approaches,
namely, the energybalance approach (underpinned by PPP) and materialsbalance
approach (underpinned by SRP). The method for carrying out the assessment by the
firstapproachwasexplainedinSection5.2.1andforthesecond,inSection5.2.2.
This chapter is organised as follows. Section 6.1 presents the outline of the generic
framework used in this research for the assessment of the impacts of carbon tax. In
particular,thisoutlineshowstheattributesintermsofwhichvariousimpactswillbe
measured.Section6.2describestherangeofcarbontaxlevelsanalysedinthisresearch,
along withtheunderlyingassumptions.Section6.3presentsandanalysesthe results,
in terms of the attributes noted above, of various levels of carbon tax. While the
analysesinSection6.3focusesonassessingtheenergy,environmental(CO2 emissions),
economic, and social impacts of various levels of carbon tax in a situation in which
there is no apriori limit of CO2 emissions, Section 6.4 places an apriori limit on CO2
emissions(equivalenttotheKyotoprotocollevel)andassessestheenergy,economic,
andsocialimpactsofmeetingthisemissionlimit.Section6.5providesacomparisonof
theseresults(particularlytheresultsofSection6.4)withthoseofotherstudies.Section
6.6 provides further analyses of these results in a wider policy context. Section 6.7
summarisesthemajorfindingsofthisChapter.
6.1
FrameworkforAssessingImpactsofCarbonTax
This section provides an outline of the framework for assessing the energy,
environmental,economic,andsocialimpactsofcarbontax.ItwasdiscussedinChapter
137
5 (especially in Section 5.5.2), that the application of a carbon tax would result in a
change in the composition of fuel and technologymix for electricity generation. The
impact of this change would then become evident in the wider realms, for example,
changes in primary energy requirements, CO2 emissions, economic output, and
employment. The key attributes employed in this research to measure these impacts
areshowninFigure61.
Attributesforassessingimpactsofcarbontax
ImpactofCarbonTaxon:
Figure61
ItisalsoimportanttonotethattheimpactofcarbontaxanalysedinSection6.3isnot
meanttodemonstratehowmuchemissionreductionispossibleinresponsetocarbon
tax.Instead,itismeanttodemonstratehowtheelectricityindustrywouldbeimpacted
upon in response to different carbon tax rates, both from energybalance (PPP) and
materialsbalance(SRP)approaches.Theeconomywideimpactsofdifferentcarbontax
approaches for achieving a predetermined emissions level (that is, Kyoto target) is
discussedinSection6.4(asnotedearlier).
138
6.2
AlternativeCarbonTaxRegimes
A key focus of this research is to analyse the impacts of carbon tax based on the
materialsbalance approach (that is, Shared Responsibility Principle)43 and on the
energybalanceapproach(thatis,PolluterPaysPrinciple).Theseimpactsarecompared
with the impacts that would be experienced in the businessasusual state of affairs,
thatis,whenpresenttrendscontinueandnocarbontaxisintroduced.Thisbusiness
asusualsituationiscalled,inthisresearch,theBaseCasescenario(BC).Twolevelsof
carbontaxratesareanalysedinthisresearch,foreachoftheseapproaches.Theseare
$10and$20pertonneofCO2emissions.Thesecarbontaxratesareinasimilarrangeto
thoseconsideredinpreviouscarbontaxstudies(seeTable32).
TheBaseCasescenario(BC)isbasedonthefollowingassumptions:
i.
Theeconomywouldgrowatanannualrateof3.1percentbetween2004to2010
and 2.3 per cent between 2010 to 2020 (Costello 2002). In this research, these
ratesareappliedtoestimateincreasedconsumptionlevelsandnetexportsonly
(as investment, which is a part of economic growth, is endogenously
determinedwithinthemodel);
ii.
Energy efficiency would improve by 0.5 per cent per annum over the period
2004 to 2020, across all energy consumption sectors. This rate of growth is
applied to determine changes in energy intensities (C matrix). This rate is in
accord with those adopted by most developed countries (for example, Cruz
2002;Hoeller,Dean&Nicolaisen1991;Nakicenovic&Swart2000);
iii.
Labour productivitywouldimprove by 1.7 per cent peryearinthe2000sand
1.75percentinthe2010s(Costello2002).Theseratesareappliedtodevelopthe
labouroutputratios(thatis,matrixl);and
SeeSection3.3.3foradiscussionofcarbontax,basedontheSharedResponsibilityPrinciple.
43
139
iv.
The existing nationbased Mandatory Renewable Energy Target (MRET)
schemewouldexpirein2010.Thisisinaccordwiththecurrentgovernment’s
intentionofnotextendingthescheme.TheMRETrequireselectricityretailersto
source2percentoftotalelectricityfromrenewablesources(Roarty2001).
Further,itshouldbenotedherethattheBaseCase(notedabove)isdevelopedinthis
research with the sole objective of providing a basis for comparing the impacts of a
carbontaxbasedonPPPandSRPprinciples,thatis,itactsasacomparisonbenchmark.
In addition to the above cases (that is, PPP1, SRP1, PPP2, and SRP2)44, analysis is
performed in Section 6.4 to assess the impacts of achieving a predetermined CO2
emissions reduction target. This target is set to allow total CO2 emissions from the
electricity sector to increase to 108 per cent of 1990 levels by the year 2020. This
emissionstargetisset,inthisresearch,tobeachievedfromtheelectricitysectoralone
becauseofthefocusofthisresearch,namely,thattheelectricitysectorwouldreorient
its technology and fuel mix for electricity generation in response to a carbon tax. For
otherproductionsectors,thisresearchassumedazeroelasticityofsubstitution,which
implies that these sectors will not adjust their production levels in response to the
introduction of a carbon tax. This assumption means that the analysis will
underestimatetheCO2reductionpotentialandoverestimatetheeconomiccoststothe
economy.45Thisisbecausesuchanassumptiondoesnotallowotherproductionsectors
(except the electricity sector) to substitute their emissionintensive expensive inputs
(due to the carbon tax) with lowemission cheaper inputs. The highprice emission
intensive inputs in these sectors are continuously used in the same (Leontief)
proportioninwhichtheywereusedbeforethecarbontaxisimposed.
DefinedinSection6.3
Amodelwasalsorun,asatest,byassumingotherproductionsectorstobeperfectsubstitutes
inthe use of factorinputs in responsetochanges in price duetothecarbon tax. The results
showthat,inthecaseofPPP1,themodeloverestimatestotaleconomiccosts(GDP)by0.09per
cent($5.6billionin1990prices)andunderestimatesCO2reductionpotentialby15percent(58
Mt).
44
45
140
The target, analysed in this research, is deliberately selected reflecting the level
requiredfortheAustralianeconomytomeettheinternationalobligationsoftheKyoto
Protocol.46
6.3
AnalysisoftheImpactsofAlternativeCarbonTaxRegimes
This section analyses energy, environmental, economic, and social impacts of
alternative carbon tax regimes. This analysis is carried out separately for energy
balance (Polluter Pays Principle) and materialsbalance (Shared Responsibility
Principle)approaches.Fourcases,denotedPPP1,SRP1,PPP2,andSRP2,areanalysedin
thisresearch.PPP1andSRP1refertothecaseofacarbontaxof$10 pertonneofCO2
emissions,basedontheenergybalance(PPP)andmaterialsbalance(SRP)approaches,
respectively. PPP2 and SRP2 refer to the case of a carbon tax of $20 per tonne of CO2
emissions,basedontheenergybalance(PPP)andmaterialsbalance(SRP)approaches,
respectively.Section6.3.1discussesenergyandenvironmentalimpacts.Theeconomic
andsocialimpactsarediscussedinSection6.3.2.Theseimpactsareassessedbasedon
attributespresentedearlierinFigure61.
6.3.1
EnergyandEnvironmentalImpacts
This section estimates changes in primary energy requirements and associated CO2
emissionsinresponsetotheintroductionofcarbontax.Theseestimationsarebasedon
the application of equations 534 and 535, as discussed in Section 5.6. As mentioned
earlier,theintroductionofacarbontaxwouldresultinchangesinthecompositionof
the fuel and technologymix for electricity generation. These changes would then
influence the primary energies required to produce electricity, and hence CO2
emissions.Thereforethissectioncommenceswithadiscussionofchangesthatacarbon
taxwouldinduceinthecompositionofelectricitygenerationtechnologyandfuelmix
TheKyoto targetrequiredtheAustralianeconomytoreachthislevelby2008–12.However,
thisresearchextendsthistargetto2020,sothatmorerealisticanalysiscanbeperformed(that
is,meetingthetargetin15years).
46
141
(Section 6.3.1.1). This is followed by an analysis of the changes in primary energy
requirements (Section 6.3.1.2). The issue of energy diversity is briefly discussed in
Section6.3.1.3.Finally,theenvironmentalimpacts,intermsofCO2emissions,ofeach
carbontaxregimeareanalysedinSection6.3.1.4.
6.3.1.1
ChangesintheCompositionofElectricityGenerationTechnology
Thetechnologymixforelectricitygenerationwouldbeinfluencedbytheintroduction
of carbon tax. Each approach to carbon tax (that is, based on PPP and SRP) would,
however,resultinadifferentlevelofincreaseinthecostofelectricitygenerationand
hence a different level of change in the technologymix. The increase in the cost of
electricity would clearly depend on the CO2intensiveness of various inputs used for
electricity production. The determination of the shares of electricity production by
differenttechnologies(asdefinedinTable56)isbasedontheleastcostcriteria,thatis,
thelowestcosttechnologywouldbeselectedfirst,andhighest,thelast.Thechangein
electricitygenerationtechnologymixinresponsetotheintroductionofcarbontax,in
this research, includes a switch from highemission technology (such as coalfired) to
lowemissiontechnology(suchascombinedcycle)orrenewablegeneration.Electricity
generatedfrominternalcombustionisassumed,inthisresearch,toretainitsshareof
the overall generation, as this technology supplies electricity mainly in remote areas
where electricity demand is rather insignificant. Further, the rate of switch between
varioustechnologiesisconstrained,inthisresearch,toamaximumof2.6percentper
year.Thisrateisusedbecausethisistheaveragerateofannualcapacityreplacement
inAustraliaoverthelast30years(Creedy&Martin2000).
The technologymix for electricity generation under different carbon tax rates is
presentedinTable61.
0.2
1.7
3.6
8.6
IC
GT
CC
RE
10.2
3.6
1.7
0.2
84.2
BC
10.2
3.6
1.7
0.2
84.2
PPP1
10.2
3.6
1.7
0.2
84.2
SRP1
2010
10.2
3.6
1.7
0.2
84.2
PPP2
10.2
5.9
1.7
0.2
81.9
SRP2
Table61
10.2
3.6
1.7
0.2
84.2
BC
10.2
3.6
1.7
0.2
84.2
PPP1
10.2
11.4
1.7
0.2
76.4
SRP1
2015
15.4
8.8
1.7
0.2
73.8
PPP2
15.4
13.7
1.7
0.2
68.9
SRP2
10.2
3.6
1.7
0.2
84.2
BC
Technologymixforelectricitygeneration
10.2
14.0
1.7
0.2
73.8
PPP1
12.8
21.8
1.7
0.2
63.4
SRP1
2020
28.4
8.8
1.7
0.2
60.8
PPP2
28.4
13.7
1.7
0.2
55.9
SRP2
(Percent)
142
BCsfortheyears2010,2015and2020aredifferentfromtheyear2005becauseoftheexpirationoftheMRETschemein2010;
CF:Coalfired,IC:Internalcombustion,GT:Gasturbine,CC:Combinedcycle,RE:Renewableelectricity;
BC:BaseCase;PPP1&PPP2:carbontaxof$10and$20pertonneofCO2emissions,basedonthePPP(orenergybalanceapproach);SRP1&SRP2:carbontaxof$10
and$20pertonneofCO2emissions,basedonSRP(ormaterialsbalanceapproach);
ThistableisobtainedfromdetailedresultspresentedinTablesF8,AppendixF,p.343.
85.8
BC
2005
CF
Notes: 143
Thetableshowsthat:
i.
Ingeneral,theintroductionofacarbontaxwouldcausetheshareofcoalfired
powergenerationtodecrease.Thisisbecausetheincreaseinthecarbontaxrate
wouldincreasethecostofelectricitygeneratedfromcoalfiredtechnologyata
higherratecomparedtootherlessCO2intensivetechnologies.Forexample,for
the case PPP1, the share of coalfired power generation would decrease by 12
per cent (from 85.8 per cent in 2005, to 73.8 per cent in 2020); whereas for the
casePPP2,itwoulddecreaseby25percent(to60.8percentin2020).
ii.
AcarbontaxbasedonSRPwouldgenerallyleadtoalargerreductionincoal
fired power generation compared to that based on PPP, for the same level of
tax. For example, for a carbon tax of $20 per tonne of CO2, the share of coal
fired power generation would decrease to 55.9 and 60.8 per cent for the cases
SRP2andPPP2,respectively.Further,inthecaseofSRP2,theshareofcoalfired
powergenerationwouldstarttodeclineasearlyas2009(seeTable62),which
showsareductionof3.9percent(from85.8percentin2005,to81.9percentin
2010).
iii.
A carbon tax of $10 per tonne of CO2, applied on the basis of PPP, does not
result in the introduction of renewable power generation in the electricity
market. For example, the share of renewable electricity in 2010, 2015, 2020
remains at 10.2 per cent. This is because renewable technology is unable to
compete with any other technology at this tax rate. A tax of $20 per tonne of
CO2,ontheotherhand,whilehavingnoeffectfortheyear2010(withashareof
10.2 per cent), would result in a sharp increase after the year 2013 (see Table
62). The share of renewable electricity, in the case of PPP2, would reach 28.4
percentintheyear2020.
iv.
A carbon tax based on SRP has more potential in attracting cleaner electricity
generationtechnologytotheelectricitymarketcomparedtothatbasedonPPP.
Forexample,foracarbontaxof$10pertonneofCO2,thesharesofrenewable
electricitywouldincrease,from8.6percentin2005,to12.8and10.2percentin
144
2020forthecasesSRP1andPPP1,respectively.Thecorrespondingincreasesin
thesharesofcombinedcycleelectricityforthecasesSRP1andPPP1arefrom3.6
percentin2005to21.8and14percent,respectively.
These reductions in coalfired technology are due to the cost disadvantage this
technologywouldsufferasaresultofcarbontax.Thiscostdisadvantagewouldresult
in their replacement by either naturalgasbased combinedcycle or renewablebased
technologies.
The foregoing discussion also suggests that the question of changes in the electricity
technologymix should be discussed together with the increase in electricity supply
costs because the costs associated with changes in technologymix are likely to be
reflected in the changes in the cost of electricity. The cost of electricity is expected to
increase when the entry of new coalfired plants (which is currently the leastcost
technology) is restricted due to the carbon tax and/or MRET scheme. It is also
importanttonoteherethatthecostofelectricity,consideredinthisresearch,doesnot
takeintoaccounttheautonomouscostreductionofnewtechnologiesastheybecome
more mature in the future. In reality, it is expected that the future renewable
technologywouldbecheaperthanthatatthepresenttime.
The impact of the different cases of carbon tax on total electricity supply costs is
presentedinTable62.
Table61and62showsthat:
i.
IntheBaseCase(BC),thereductionintheshareofcoalfiredpowergeneration
from 85.8 per centin2005to84.2 per centin each ofthe years2010, 2015and
2020isduetoamodestpenetrationbyrenewabletechnology,drivenmainlyby
the MRET scheme. The increase in cost, over the period 2004–2020, of 0.22
¢/kWh(from4.7¢/kWhin2004to4.92¢/kWhin2020)(Table62),inthiscaseis
145
attributed only to the replacement of cheaper technology with the expensive
technologythroughenforcement.47
Table62
Electricitysupplycosts
(¢/kWh,2004prices)
SRP1
PPP1
BC
PPP2
SRP2
2004
CF
4.70
CF
4.70
CF
4.70
CF
4.70
CF
4.70
2005
CF
4.74
CF
5.30
CF
5.59
CF
5.89
CF
6.48
2006
CF
4.77
CF
5.89
CF
6.46
CF
7.07
CF
8.20
2007
CF
4.81
CF
6.47
CF
7.32
CF
8.22
CF
9.87
2008
CF
CF
4.84
4.88
CF
CF
7.04
7.60
CF
CF
8.15
8.97
CF
CF
9.35
10.45
CF
CF
11.48
13.04
2011
CF
CF
4.92
4.92
CF
CF
8.16
8.71
CF
CF
9.77
10.56
CF
CF
11.54
12.61
CC
CC
14.53
15.96
2012
CF
4.92
CF
9.26
CF
11.34
CC
13.65
CC
17.32
2013
CF
4.92
CF
9.80
CC
12.08
CC
14.67
CC
18.63
2014
CF
4.92
CF
10.34
CC
12.81
RE
15.64
RE
19.86
2015
2016
CF
CF
4.92
4.92
CF
CF
10.87
11.39
CC
CC
13.51
14.18
RE
RE
16.56
17.43
RE
RE
21.02
22.12
2017
CF
4.92
CC
11.91
CC
14.84
RE
18.27
RE
23.15
2018
2019
CF
CF
4.92
4.92
CC
CC
12.41
12.90
CC
CC
15.47
16.09
RE
RE
19.06
19.82
RE
RE
24.12
25.03
2020
CF
4.92
CC
13.38
RE
16.67
RE
20.53
RE
25.90 2009
2010
Notes: CF:Coalfired,IC:Internalcombustion,GT:Gasturbine,CC:Combinedcycle,RE:
Renewable;
BC:BaseCase;PPP1&PPP2:carbontaxof$10and$20pertonneofCO2emissions,basedon
thePPP;SRP1&SRP2:carbontaxof$10and$20pertonneofCO2emissions,basedonSRP;
Foreachcase,thefirstcolumnisthetechnologythatpresentstheleastcosttechnologyfor
thatyearandthesecondcolumnisthetotalelectricitysupplycost;
ThistableisobtainedfromdetailedresultspresentedinTablesF9,AppendixF,p.345.
ii.
For PPP1, the combinedcyclebased electricity becomes costcompetitive
compared with coalfired electricity in the year 2017. As a result, its share
increasesby10.4percent(from3.6percentintheyear2005to14percentinthe
year 2020) (see Table 61). The replacement of coalfired with the combined
Thisincreaseincostof0.22¢/kWhintheBCcasedoesnotreflectthemarketbasedselection
of electricity generation technology and, hence, the real cost is hidden somewhere in the
economy.
47
146
cycle would increase the cost of electricity by 8.7 ¢/kWh (from 4.7 to 13.4
¢/kWh)overtheperiod2004–2020.
iii.
For the case of PPP2, combinedcycle and renewable technologies would
penetrate in the market in the years 2012 and 2014, respectively. This would
resultinanincreaseintheshareofcombinedcycleby5.2percent(from3.6per
cent in 2005 to 8.8 per cent in the year 2020), and renewable by 19.8 per cent
(from 8.6 per cent in the year 2005 to 28.4 per cent in 2020) (Table 61). This
change in electricity technologymix would increase its cost by 15.8 ¢/kWh
(from4.7¢/kWhin2004,to20.5¢/kWhin2020)(Table62).
iv.
For the case of SRP1, combinedcycle and renewable electricity would become
competitive in the years 2013 and 2020, respectively. As a result, the share of
combinedcycleelectricitywouldincreaseby18.2percent(from3.6percentin
2005to21.8percentin2020),andrenewableby4.2percent(from8.6percent
in2005to12.8percentin2020)(Table61).Thereplacementofcoalfiredwith
combinedcycleandrenewablewouldincreasetheelectricitysupplycostby12
¢/kWh over the period 2004–2020 (from 4.7 ¢/kWh in 2004 to 16.7 ¢/kWh in
2020)(Table62).
v.
For SRP2, combinedcycle and renewable electricity would penetrate in the
market in the years 2010 and 2014, respectively. As a result, the share of
combinedcycle would increase by 10.1 per cent (from 3.6 per cent in 2005 to
13.7percentin2020),andrenewableby19.8percent(from8.6percentin2005
to 28.4 per cent in 2020) (Table 61). This change in electricity technologymix
would increase its cost by 22.2 ¢/kWh over the period 2004–2020 (from 4.7
¢/kWhin2004to25.9¢/kWhin2020)(Table62).
It can also be seen that when a higher level of tax (that is, $20 per tonne of CO2) is
imposedbasedonthe directuseof fossilfuel (thatis,PPP2),there wouldbe an early
change in the composition of the electricity technologymix. For example, electricity
producedfromcombinedcycletechnologybecomesacosteffectiveoptionin2012and
2013 and, in 2014, it loses its position to renewable technology. In contrast, when
147
carbontaxisimposedbasedonthematerialsbalanceapproach(thatis,SRP2),thereisa
steady transition from highly polluting coalfired technology to less polluting
combinedcycleandthentorenewabletechnology.Thishappensbecausethemarginal
costs of electricity generated from both combinedcycle (4.1–6.7 ¢/kWh) and other
fossilfuelbasedtechnologies(3.5–4.0¢/kWh)areverysmall(seealsoTable22).When
a carbon tax is introduced, the threshold of competition between different fossilfuel
technologiesisalsosmall,particularlywhencomparingthemwiththemarginalcostof
renewable technologies (7.3–54.9 ¢/kWh). If a tax of more than $20 is introduced, it
would clearly show that – based on the energybalance approach – combinedcycle
wouldneverbecomeacompetingtechnology.
It is clear from discussion in this subsection that changes in the composition of the
electricity technologymix, brought about by the application of different carbon tax
approaches,wouldhavedifferentramificationsintermsofthefuelmixforelectricity
generation, primary energy requirements, CO2 emissions and the consequential
economywideimpacts.Theseimpactsarediscussedinthefollowingsubsections.
6.3.1.2
PrimaryEnergyConsumption
Over the past 25 years (1980 to 2005), primary energy consumption for electricity
productionhasbeenincreasingatanaveragerateofabout3percentperannum,from
1,138 PJ in 1980 to 2,404 PJ in 2005 (see Figure 62). This increasing trend is likely to
continuetotheyear2020intheBC,althoughtherateofannualgrowthislikelytobe2
per cent between 2004 and 2020. This is equivalent to 3,248 PJ of primary energy in
2020 (see Figure 62). This reduction in the rate of growth from 3 per cent over the
period1980–2004to2 percentoverthe period2004–2020is due to: i)aslowdown in
economicactivityfrom3.3percentperyearduring1980–2004to2.5percentperyear
during 2004–2020; and ii) improvements in energy efficiency of 0.5 per cent per year
(seeassumptionsinSection6.2).
Figure62comparestheprimaryenergymixforelectricityproductionforvariouscases
analysedinthisresearch.
1980
BC
2000
BC
BlackCoal
1990
BC
Figure62
BC
2010
BC
NaturalGas
P P P 1 S RP 1 P P P 2 S RP 2
BrownCoal
2005
BC
Petroleum
2015
P P P 1 S RP 1 P P P 2 S RP 2
Primaryenergyconsumptionforelectricityproduction
BC
Renewable
2020
P P P 1 S RP 1 P P P 2 S RP 2
148
Thisfigurepresentsthesummaryofresultsobtainedfromtheapplicationofequation534,asdetailedinChapter5,Section5.6.Fordetailresults–seeTablesF10,
AppendixF,pp.346348.
0
500
1,000
1,500
2,000
2,500
3,000
3,500
Notes: (Petajoules)
149
Thefigureshowsthat:
i.
In the BC scenario (without carbon tax), coal continues to play an important
roleintheelectricityindustry.48Forexample,itaccountsfor75percentofthe
totalprimaryenergyconsumedin2020(thatis,2422outof3248PJ).
ii.
The impact of carbon tax on primary energy consumption is very significant.
Forexample,theintroductionofcarbontaxwouldresultinareductionof10.2
(330PJ),19.9(647PJ),20.1(653PJ),and35.4(1148PJ)percentforPPP1,SRP1,
PPP2,andSRP2,respectively,ascomparedtotheBC(3248PJ).Thisisduetoa
switchfromhighemissiontolowemissionfossilfueltechnologyforelectricity
production.
iii.
The role of coal in electricity production is considerably reduced with the
introduction of a carbon tax. For example, a carbon tax of $10 and $20 per
tonne, based on the energybalance approach (PPP1 and PPP2) would reduce
theshareofcoalby13and24percent,respectively,fromtheyear2005when
coalaccountedfor76percentoftotalprimaryenergyconsumedforelectricity
production. When a carbon tax is imposed based on the materialsbalance
approach,theshareofcoalwoulddecreaseby24and31percent,respectively,
for SRP1 and SRP2. This shows that the rate of reduction in the use of coal is
fasterwhentaxisimposedontotalfueluse(thatis,materialsbalance),which
wouldresultinsubstantialincreaseinnaturalgas(from15percentin2005to
35percentin2020inthecaseSRP1)andrenewable(from9percentin2005to
28percentin2020inthecaseSRP2).
iv.
The extent of substitution of coal with either natural gas or renewable varies,
depending on the rate of technology penetration in each carbon tax case. For
example, in the case PPP1,theuse ofnaturalgas would be282PJ higher than
the BC. This is because of the increased share of natural gasbased combined
cycleinthetotalelectricitygeneration.Incontrast,theuseofrenewableenergy
Thisresultreinforcestheinfluenceofthecoal–electricitycompact,asdiscussedinChapter2.
48
150
inthecasePPP2wouldbe406PJhigherthantheBCduetoanincreaseinthe
shareofrenewabletechnologyforelectricityproduction.Similarly,inthecase
of SRP1, the use of natural gas would be 441 PJ higher than the BC; while the
useofrenewableenergyinthecaseofSRP2wouldbe265PJhigherthantheBC.
6.3.1.3
EnergyDiversity
Energydiversityplaysanimportantrole,notjustinrelationtothesecurityofenergy
supply,butalsointermsofthelevelofenvironmentalemissions.Thissectionanalyses
the impact of various carbon tax regimes (PPP1, SRP1, PPP2 and SRP2) on energy
diversity.
Thecompositionofprimaryenergyconsumption(forelectricityproduction)isusedas
amainindicatorforassessingenergydiversity.Asimplediversityindex,basedonthe
classic Herfindahl measure of market concentration, is used to quantify energy
diversity(Neff1997).TheHerfindahldiversificationindexisexpressedas:
H
¦x
2
i
(61)
i
where
H:
Herfindahlenergydiversificationindex;and
xi:
afractionoftotalenergysupplyfromeachisource.
TheHerfindahlindexrangesbetween0and1,withanumberclosertozerosignifying
largediversity,andnumbercloserto1alowdiversity.
Inthisresearch,fivetypeofprimaryenergiesareconsidered.Theseincludeblackcoal,
browncoal,naturalgas,petroleum,andrenewableenergy.
151
Table63
Primaryenergyconsumptionandenergydiversity
2020
1980
2000
SRP1 PPP2
PPP1
BC
PrimaryEnergyConsumption(PJ) 1,138
2,180 3,248 2,918 2,601 2,595
Blackcoal(%)
47.9
49.8
45.9
39.1
31.8
32.2
Browncoal(%)
25.3
30.5
28.6
24.3
19.8
20.1
Naturalgas(%)
6.7
10.0
14.4
25.6
34.9
18.6
Petroleum(%)
4.5
1.1
0.9
0.8
0.7
0.7
Renewable(%)
15.6
8.6
10.2
10.2
12.8
28.4
HerfindahlIndex
0.57
0.66
0.59
0.48
0.40
0.39
SRP2
2,100
27.7
17.3
26.0
0.7
28.4
0.35
The fractions of different types of primary energy consumption for electricity
production and associated energy diversity index are summarised in Table 63. The
tableshowsthat:
i.
Duringtheperiod1980–2000,theshareoffossilfuels(thatis,blackandbrown
coal,naturalgas,andpetroleum)intotalelectricityproductionincreasedfrom
84percentin1980,to91percentin2000.Overthisperiod,theshareofcoalin
electricityproductionincreasedfrom73percentto80percent,andofgasfrom
7to10percent.Theshareofoildecreasedfrom4percentin1980to1percent
in2000.Thesechangesinthesharesoffossilfuelshaveresultedinanincrease
inthevalueoftheHerfindahlindexfrom0.57in1980,to0.66in2000.
ii.
Theshares ofvariousfuelsinelectricityproduction –intheBCscenario–are
likelytochangeonlyslightlyby2020.Thesechangesareexpectedtobepartly
due to the increasing use of natural gas in the recent years as combinedcycle
power plants enter the electricity market, and partly to the increase in
renewableelectricity,duetotheMRETscheme.Thischangeinfuelmixwould
result in a Herfindahl index of 0.59 in the year 2020, thus signifying a small
improvementinenergydiversity.
iii.
Each of the carbon tax cases would result in decreased shares of fossil fuels,
particularly coal. This is replaced by natural gas and renewable for all cases,
exceptanincreaseinrenewableenergyinthecaseofPPP1.Thiswouldresultin
152
fueldiversityindicesof0.48,0.40,0.39,and0.35forPPP1,SRP1,PPP2,andSRP2,
respectively.
iv.
Themostnotableresultoftheanalysisinthissectionisthatthehigherthelevel
of carbon tax, the higher the energy diversity. For example, for the case PPP1,
the Herfindahl index would be 0.48 (compared to 0.59 in the BC case). When
the level of tax is raised to $20 per tonne (PPP2), energy diversity would
increase,(thevalueofindexwouldbe0.39).
v.
Also, a higher energy diversity would be achieved in the case of SRP as
comparedtothePPP.Forexample,thediversityindicesinthecaseofSRP1and
SRP2are0.4and0.35,respectively(thecorrespondingvaluesforPPP1andPPP2
are0.48and0.39,respectively).
6.3.1.4
CarbondioxideEmissions
InthissectiontheimpactofcarbontaxonCO2emissionsispresented.Includedinthis
presentationareCO2emissionsforthefourcases,namely,PPP1,SRP1,PPP2,andSRP2.
These emissions are then compared with the emissions in the BC scenario. Also
includedinthepresentationisacomparisonoffourcasesofCO2emissionswithCO2
emissionsatthe1990level(thatis,Kyototargets).Thiswouldenableanassessmentto
bemadeofhoweachofthefourcasesofcarbontaxcompareswiththeKyototargets.
TheresultsareshowninFigure63andTable64.
153
Figure63
(Milliontonnes)
Carbondioxideemissionsfromfossilfuelcombustion
300
250
200
150
108%of1990levels,
fromtheelectricitysector
100
50
1980 1985 1990 1995 2000 2005 2010 2015 2020
(Milliontonnes)
a)Electricitysector
450
400
350
300
BC
250
PPP1
Kyototarget
SRP1
200
PPP2
150
SRP2
1980 1985 1990 1995 2000 2005 2010 2015 2020
b)Economy
Notes: Thisfigurepresentthesummaryofresultsobtainedfromtheapplicationofequation535,as
detailedinChapter5,Section5.6.Fordetailedresults,seeTablesF11,AppendixF,pp.351
352.
154
Table64
BC
2005
2010
2015
2020
2005
2010
2015
2020
47
63
78
95
Notes: Percentagechangesincarbondioxideemissions
PPP1
SRP1
PPP2
SRP2
BC
PPP1
SRP1
PPP2
Electricitysector
Economywide
ComparisonwithBCscenario
–
–
–
–
–
–
–
3.9
8.9
7.6
17.7
3.1
6.9
6.0
7.5
19.6
21.9
36.4
5.9
14.5
15.5
15.6
31.2
39.3
53.5
11.2
22.4
26.6
Comparisonwith1990level
47
47
47
44
38
38
38
38
57
49
51
35
54
50
44
45
65
44
39
14
69
59
44
43
65
34
18
9
84
64
43
35
SRP2
–
13.5
26.6
38.3
38
34
24
14
ThistablepresentsthepercentagechangesinCO2emissions,calculatedfrominformation
containedinFigure6.3.Forbackgrounddataandfurtherdetails,seeTablesF11,AppendixF,
pp.251252.
Figure63andTable64showthat:
i.
In 1990, CO2 emissions from fossil fuel combustion in Australia (as estimated
fromequation535)totalled234Mt.Theelectricityindustryaccountedforover
50percentoftheseemissions(128Mt).49
ii.
IntheBCscenario,totalCO2emissionsfromfossilfuelcombustionareexpected
toincreasesignificantly,reaching432Mtby2020.Thisrepresents184percent
of 1990 emissions level (234 Mt). CO2 emissions from the electricity sector
would increase to 250 Mt, which is approximately 58 per cent of total CO2
emissions. The strong growth in electricitysector CO2 emissions occurs even
undertheexistingMRETscheme.
iii.
ThegrowthrateofCO2emissionsreducessubstantiallyduetotheintroduction
of a carbon tax. For example, the CO2 emissions from the electricity sector
wouldbe211,172,152,and116Mt,respectively,forPPP1,SRP1,PPP2,andSRP2
–thusrepresentingareductionintherangeof15.6to53.5percentfromtheBC
NationalGreenhouseGasInventoryestimatesofCO2emissionsin1990fromfuelcombustion
activitywere254Mt,withtheelectricitysectorcontributingto129Mt(AGO2005).However,
thisresearchisconcernedwithpercentagereductionandthesmalldifferenceintheestimates
doesnotaffecttheresults.
49
155
scenario.Thisisbecausetheapplicationofcarbontaxinducesashiftawayfrom
carbonintensiveenergy.
iv.
Also,CO2emissionsreducemorewhenacarbontaxisappliedbasedonSRP,
comparedwithwhenitisbasedonPPP.Forexample,CO2emissionsfromthe
electricitysectordecline,by2020,by31.2and53.5percentoftheBClevel,for
SRP1andSRP2.ThecorrespondingfiguresforPPP1 andPPP2are15.6and39.3
per cent, respectively. Further, it is noticed that the rate of CO2 emission
reduction from SRP1 is closer to the emissions reduction achieved from PPP2.
ThisissobecauseacarbontaxbasedonSRPalsotakesintoaccountofenergy
embodied in materials and, therefore, penalise the emitters from indirect
energy consumption. The introduction of such tax would increase the cost of
electricityproductionatahigherratethanifacarbontaxisimposedunderPPP
(see Table 62). As a result, it would allow cleaner electricity production
technologytopenetratethemarketearlierthanifcarbontaxisbasedonPPP.
v.
ExceptforSRP2,theimpactintermsofCO2emissionreductionforothercases
(thatis,PPP1,SRP1,andPPP2),willbegintobefeltonlyintheyearsafter2010.
Forexample,inthecasePPP2,CO2emissionsfromtheelectricitysectorin2010
wouldbe51percent(anetincreaseof65Mt)abovethe1990emissionlevel,but
woulddeclineto39percent(anetincreaseof50Mt)in2015and18percentin
2020(anetincreaseof23Mtcomparedwith1990).Thisisbecause,inthecase
PPP2, combinedcycle and renewable technologies would penetrate in the
electricitymarketin2012and2014,respectively.
vi.
InthecaseSRP2,CO2emissionsfromtheelectricitysectorfallbelowtheKyoto
target. For example, the total CO2 emissions from the electricity sector from
SRP2in2020wouldbe91percent(116Mt)ofthe1990level.Incontrast,inthe
casePPP2,CO2emissionswouldbe118percent(152Mt)ofthe1990level.This
impliesthat,inordertoachievetheKyototargetof108percent(138Mt)ofthe
1990levelfromtheelectricitysector,ahigherlevelofcarbontax(morethan$20
per tonne) would be required if carbon tax is based on PPP than when the
carbontaxisbasedonSRP(thispointisfurtherdiscussedinSection6.4).
vii.
156
Further,changesinthemixofelectricitytechnologyalone,whenacarbontaxof
$20 per tonne of CO2 is applied based on SRP, would almost achieve total
economywideKyototargetof108percent(253Mt)ofthe1990level(234Mt).
Atthisrate,economywideCO2emissionswouldbejust14MtabovetheKyoto
target (or 114 per cent of the 1990 level). This implies that if the response of
carbon tax from other sectors is also captured (that is, by employing flexible
production function for other sectors instead of the Leontief’s), it would have
shown that even a carbon tax of less than $20 would be able to achieve the
economywideKyototarget,whenacarbontaxisbasedonSRP.
6.3.2
EconomicandSocialImpacts
This section analyses economic and social impacts of carbon tax (based on the
application of equations 532 and 537, discussed in Section 5.6). These impacts, like
energyandenvironmentalimpacts(analysedinSection6.3.1),aremainlydrivenbythe
changesininvestmentdemandduetotheapplicationofacarbontaxthatisexpected
to result in a change in electricitygeneration technology and fuel mix. This section
starts with a discussion on the economic impacts of carbon tax, both on the overall
economyandonindividualeconomicsectors(Section6.3.2.1).Then,thesocialimpacts
(that is, the impact on employment) of each carbon tax case are presented in Section
6.3.2.2.
6.3.2.1
EconomicImpacts
Theresultsobtained,usingthemethodologyexplainedinChapter5(Section5.6),are
presentedinTable65andFigures64to610.Thefollowingdiscussionanalysesthese
results.
Overall Economic Output: the total economic output, as mentioned in Section 5.6,
refers to the sum of the output of each economic sector to fulfil the demand for
domestic final as well as intermediate consumption, investment, and net exports.
However,intermediateconsumptionisnotincludedinGDPaccount.Theimpactofa
carbon tax on economic output, in this research, is assumed to be influenced by the
157
changes in various final demand categories. This impact is shown in Table 65 and
Figure64.
Table65
Impactsofcarbontaxoneconomicoutput:2005–2020
BC
PPP1
SRP1
PPP2
SRP2
($Billion1990)
†
PPP1
SRP1
PPP2
SRP2
(percentagechangesfromBC)
6,325
6,270
6,205
6,223
6,106
0.88
1.90
1.62
12,592
12,446
12,279
12,321
12,023
1.16
2.49
2.16
4.52
Finalconsumption
4,940
4,887
4,822
4,842
4,725
1.08
2.39
2.00
4.37
Investment
1,666
1,665
1,663
1,666
1,663
0.08
0.21
0.03
0.20
Exports
1,135
1,113
1,086
1,091
1,045
2.01
4.31
3.88
7.96
Imports
1,417
1,395
1,367
1,376
1,326
1.55
3.52
2.90
6.41
Intermediateconsumption
6,267
6,177
6,075
6,098
5,917
1.45
3.07
2.71
5.59 GDP
‡
Totaloutput
3.46
Notes: † GDP=Finalconsumption+Investment+(Exports–Imports)
‡ Totaloutput=GDP+Intermediateconsumption
Thistablesummarisesthepresentvalueofeachoftheeconomicvariable,fortheperiod2005–
2020,usingadiscountrateof8percent;
TheresultspresentedinthistablearecalculatedfrominformationcontainedinTablesF1to
F5,AppendixF,pp.288332,usingequation532asdetailedinChapter5,Section5.6.
Theresultsuggestthat:
i.
In general, the introduction of a carbon tax would lead to a slowdown in
economicactivity(thatis,GDP),withasignificantlygreaterimpactoccurringat
ahighertaxrate(thatis,$20pertonne)(Figure64a).Forexample,acarbontax
based on PPP1 would cause GDP over the period 2005–2020 to reduce by $56
billion(0.88percent),comparedtotheBCscenario;whereas,inthecasePPP2,
theeconomywouldlose$102billion(1.62percent)ofGDP.50Also,acarbontax
based on SRP would cause a higher negative impact on economic growth,
comparedwiththeonebasedonPPP.Forexample,atacarbontaxrateof$10
per tonne, GDP in the case SRP1 would decline by $120 billion (1.9 per cent),
andby$219billion(3.46percent)inthecaseofSRP2.
The economic impact in the case of PPP, calculated in this research, is of an order of
magnitudethatiscomparabletootherstudiesshowninTable32,Chapter3.
50
158
Figure64
Annualpercentagechangesineconomicparameters
0
0
2005
2010
2015
2020
-1
-1
2005
2010
2015
2020
-2
-2
-3
-3
-4
-4
-5
-5
-6
-7
-6
-8
-7
-9
-8
-10
a) Gross Domestic Product
-9
-11
b) Total Output
0
0
2005
2010
2015
2005
2020
2010
2015
2020
-2
-2
-4
-4
-6
-6
-8
-8
-10
-10
-12
c) Final consumption
d) Intermediate consumption
-12
-14
0.4
0
-2
2005
2010
2015
2020
0.2
-4
-6
0.0
-8
-10
-0.2 2005
2010
2015
2020
-12
-0.4
-14
-16
-18
-0.6
e) Export
-20
Notes: f) Investment
-0.8
ThesefiguresshowannualpercentagechangeofeachcarbontaxcasecomparedwiththeBC;
Fordetailedresults,seeTableF1toF5,AppendixF,pp.288332.
ii.
159
The introduction of a carbon tax would have a larger effect on industry (in
termsofintermediateconsumption,Figure64d)thanonhouseholds(interms
of final consumption, Figure 64c). This would be the case for both types of
carbontaxes(thatis,PPPandSRP).Forexample,asshowninTable65,whena
carbon tax of $10 per tonne is imposed based on PPP, households and
industrieswouldreducetheirconsumption,overtheperiod2005–2020,by1.08
and1.45percent,respectively.Thecorrespondingfiguresforsuchataxbased
onSRPare2.39and3.07percent,respectively.
iii.
Theimpactofacarbontaxwouldbemostsignificant(inpercentageterms)for
the export sector (Figure 64e). For example, in the case PPP1, while the
economic output (GDP) over the period 2005–2020 declines by 0.88 per cent,
exports reduce by 2.01 per cent. Also, a carbon tax based on SRP would have
higherimpactonexportsthanataxthatisbasedonPPP.Whenacarbontaxof
$10 per tonne is imposed based on SRP (i.e., SRP1), exports would decline by
4.31percent(comparedwith2.01percentinthecasePPP1).
iv.
Incontrasttotheimpactofcarbontaxonexportsandconsumption,investment
wouldbeleastaffectedbytheintroductionofcarbontax.Forexample,overthe
period2005–2020,thevalueofinvestmentwouldreducebyjust0.08($1billion)
and 0.21($3billion) percentforthecasesPPP1andSRP1,respectively.Thisis
because a reduction in coalfired electricity, due to the introduction of carbon
tax, would be replaced by an investment in cleaner technologies, such as
combinedcycle and renewable electricity. Interestingly, when the level of
carbon tax increases, the impact on investment would be even lower (for
example, it would be 0.03 per cent in the case of PPP2). This is because an
increaseinthelevelofcarbontaxwouldsignificantlyacceleratetheinvestment
incleanerelectricitytechnologies(atratesfasterthanthecasewithlowerlevels
ofcarbontax)(seeTable62).
v.
ItisalsonoticedfromFigure64thattheeconomicimpactofacarbontaxof$10
per tonne based on SRP is of a similar magnitude to that of a tax of $20 per
tonnebasedonPPP.Forexample,a$10pertonneofcarbontaxbasedonSRP
160
would cause GDP over the period 2005–2020 to reduce by 1.9 per cent,
comparedtotheBCscenario;whereas,inthecasePPP2,theGDPwoulddecline
by 1.62 per cent. This is so because a carbon tax based on PPP would be
imposed on direct fuel consumption only; whereas, for SRP, it would impose
on direct as well as indirect fuel consumption. As a result, a smaller tax rate
basedonSRPwouldhaveasimilarimpactontheeconomy,comparedwitha
highertaxratebasedonPPP.
SectoralEconomicOutputs:Theimpactofcarbontaxoneconomicactivity(GDP),as
discussedabove,istheaggregateofimpactsonindividualsectorsoftheeconomy.As
discussed above, a carbon tax would result in a reduction in economic growth.
However, not all sectors of the economy would be equally affected. The outputs of
some sectors would, in fact, increase in response to the introduction of a carbon tax.
TheresultsoftheimpactsonindividualsectoraloutputsarepresentedinFigures65to
610.
50
(-46.3)
(-42.1)
40
(-34.6)
30
(-25.0)
(-23.5)
(-26.3)
(-27.2)
(-14.1)
(-13.4)
(-15.2)
20
(-19.3)
10
(-8.3)
(5.1)
(10.5)
(-1.3)
(-0.6)
(9.8)
10
(4.6)
(6.9)
(2.7)
0
($billion1990)
(-8.4)
(-7.8)
(-4.7)
(-6.2)
(-7.1)
(-4.2)
(-5.2)
20
10,000
6,000
4,000
(-5,413)
(-4,478)
(-47)
(-58)
(636)
(1,251)
(628)
(237)
(638)
(130)
(-6)
2,000
0
2,000
($million1990)
(-1,183)
(-1,845)
(-1,073)
(-1,011)
(-382)
(-89)
(-33)
(-78)
4,000
(2,371)
(2,759)
Figure66Sectoraldemandforinvestment
8,000
(-8,229)
PPP1
SRP1
(-2.6)
(-5.4)
(-2.2)
(-7.7)
SRP2
PPP2
(-8.4)
Figure65Sectoraloutputs
161
6,000
(4,905)
(5,145)
Thesefiguresshowchangesinpresentvalues(estimatedat8percentdiscountrate)overtheperiod2005–2020,correspondingtoeachcarbontaxscenario,as
comparedwithBCscenario
ThesefiguresaredevelopedfrominformationcontainedinTablesF1toF5,AppendixF,pp.288332.
PPP1
SRP1
PPP2
SRP2
Notes: 18
14
12
10
(-8.6)
(-8.6)
8
(-6.9)
6
(-4.9)
(-4.8)
(-4.9)
4
(2.0)
(1.9)
(0.8)
(1.3)
(0.5)
(1.0)
2
0
2
($billion1990)
(-1.7)
(-0.3)
(-0.1)
(-0.9)
(-1.4)
(-0.5)
(-3.0)
(-2.8)
(-2.5)
(-2.1)
(-2.7)
(-2.9)
4
40
(-33.4)
PPP1
SRP1
PPP2
SRP2
30
(-27.1)
20
(-20.0)
(-18.8)
(-22.9)
(-14.2)
(-13.4)
(-12.5)
(-15.0)
(-6.6)
(-7.3)
10
(-0.7)
(-1.2)
(-3.6)
(-1.8)
(-2.0)
(-1.0)
(-1.0)
(-0.5)
(-5.0)
(-2.5)
(-2.8)
(-1.4)
(-6.8)
0
(4.2)
(8.5)
(7.9)
10
($billion1990)
(3.8)
(5.6)
(2.2)
(1.1)
(0.2)
20
162
Figure68Sectoraloutputsforintermediateconsumption
Thesefiguresshowchangesinpresentvalues(estimatedat8percentdiscountrate)overtheperiod2005–2020,correspondingtoeachcarbontaxscenario,as
comparedwithBCscenario
ThesefiguresaredevelopedfrominformationcontainedinTablesF1toF5,AppendixF,pp.288332.
16
PPP1
SRP1
PPP2
(-11.5)
(-8.1)
(-7.4)
(-6.7)
(-5.7)
(-8.7)
(-5.6)
Figure67Sectoraloutputsforfinalconsumption
SRP2
(-16.4)
Notes: 35
(-34.0)
25
20
(-19.3)
(-16.3)
15
10
(-8.7)
(-5.5)
(-2.7)
5
0
($billion1990)
(-1.4)
(-0.5)
(-1.2)
(-1.0)
(-2.2)
(-1.1)
(-2.3)
(-2.1)
(-2.9)
(-4.4)
Figure69Sectoraloutputsforexports
2,500
(2,239)
PPP1
SRP1
PPP2
SRP2
2,000
(1,841)
1,500
1,000
(811)
(207)
0
163
(65)
(179)
(304)
(435)
(267)
500
($million1990)
(788)
(845)
(626)
Figure610Sectoralsupplyofinvestmentgoods
Thesefiguresshowchangesinpresentvalues(estimatedat8percentdiscountrate)overtheperiod2005–2020,correspondingtoeachcarbontaxscenario,as
comparedwithBCscenario
ThesefiguresaredevelopedfrominformationcontainedinTablesF1toF5,AppendixF,pp.288332.
30
PPP1
SRP1
PPP2
SRP2
Notes: 164
Thefollowingobservationscanbedrawnfromtheabovenotedfigures(Figures65to
610):
i.
Carbon tax would mainly affect the outputs of coal, gas, electricity, and
constructionsectors.Forexample,inthecasePPP1,thetotaloutputofthecoal
sector, over the period 2005–2020, would reduce by $14 billion (1990 prices)
(Figure 65) as compared with the output in the BC scenario. Of this, over $7
billion would be due to the reduced demand for coal by other industries
(Figure 68), $1.4 billion due to the reduction in exports (Figure 69), and $2.1
billionduetothereductioninhouseholdconsumption(Figure67).
Althoughthetotal outputofthegassector,overthe period 2005–2020, would
alsoreduce by $5.2billion(Figure 65),itsusebyotherindustrieswouldonly
reduceby$0.7billion(Figure68),ascomparedtotheBCscenario.Infact,the
demand for gas by other industries would increase after the year 2017 when
combinedcycle technology penetrates the market (see Table 62). In a single
year, in 2020, the demand for gas by other industries would increase by $515
million($4090millionfromPPP1less$3575millionfromBCscenario,seeTable
F5, Appendix F, pp. 324325). The reduction in the use of domestic coal and
increase in the use of gas are due partly to the replacement of conventional
coalfired with natural gasbased combinedcycle electricity generation
technology.Forexample,inthecaseofPPP1,theoutputofelectricityproduced
from coalfired technology would reduce by $8.3 billion, while the electricity
producedfromcombinedcyclewouldincreaseby$2.7billion,ascomparedto
the BC scenario (Figure 65). Also, in the case of PPP2, while the output of
electricityproducedfromcoalfiredtechnologywouldreduceby$25billion,it
wouldbereplacedwithelectricityproducedfromcombinedcycle($5.1billion)
and renewabletechnologies($6.9 billion), respectively, ascomparedtotheBC
scenario (Figure 65). Because of these shifts in electricity generation
technologies,therewouldbechangesinthepatternofdemandforinvestment.
For example, over the period 2005–2020, renewable and combinedcycle
electricity technologies would require investments of $5.1 and $1.3 billion,
165
respectively, while the demand for investment in coalfired power generation
would reduce by $5.4 billion (Figure 66). As renewable power generation
technology is the most capital intensive technology amongst the existing
electricitytechnologies(seeTable56),itssubstitutionforcoalfiredtechnology
would require increased outputs from construction and machinery and
equipment sectors. However, such increases would not occur until after 2016,
after renewable electricity penetrates into the electricity market. For example,
overtheperiod2005–2020,thepresentvaluesofoutputsfromtheconstruction
and the machinery and equipment sectors would decrease by about $65 and
$207 million, respectively (Figure 610). However, in the year 2020 alone, the
requirement of outputs from both – construction and machineryequipment –
sectors would increase by $660 and $109 million, respectively ($121142 less
$120482 million for construction sector and $53803 less $53694 million for
machineryequipmentsector,seeTableF3,AppendixF,pp.306and310).
ii.
Byasimilarreasoning,theintroductionofcarbontaxbasedonSRPwouldalso
affecttheoutput ofvarioussectors.Forexample,inthecaseofSRP1,the total
output of the coal sector, over the period 2005–2020, would reduce by $27
billion(Figure65)ascomparedwiththeBCscenario.Ofthis,almost$14billion
wouldbeduetothereduceddemandforcoalbyotherindustries(Figure68),
$2.9billionduetothereductioninexports(Figure69),and$2.5billiondueto
thereductioninhouseholdconsumption(Figure67).
Althoughthetotal outputofthegassector,overthe period 2005–2020, would
alsoreduceby$4.2billion(Figure65),itsusebyotherindustrieswouldinfact
increase by $1.1 billion (Figure 68), as compared to the BC scenario. The
reductionintheuseofdomesticcoalandincreaseintheuseofgasaredueto
thesubstitutionofelectricityproducedfromconventionalcoalfiredtechnology
withnaturalgasbasedcombinedcycletechnology.Forexample,theoutputof
electricity produced from coalfired technology would reduce by $23 billion,
whiletheelectricityproducedfromcombinedcycletechnologywouldincrease
by$9.8billion,ascomparedtotheBC(Figure65).Becauseofthis,therewould
166
be changes in the annual investment demand. For example, over the period
2005–2020,combinedcycleelectricitygenerationtechnologieswouldrequirean
investmentofabout$2.4billion,whilethedemandforinvestmentincoalfired
power generation technology would reduce by $4.5 billion (Figure 66). As
conventional coal power plant is more capital intensive as compared with
natural gas basedpower plant (see Table 56), this would also result in
reductions in the value of outputs from the construction and machinery and
equipmentsectors.Forexample,overtheperiod2005–2020,thepresentvalues
of outputs from the construction and the machinery and equipment sectors
woulddecreaseby$2.2and$0.7billion,respectively(Figure610).
iii.
Irrespectiveofthemethodusedforapplyingcarbontax(i.e.,PPPorSRP),CO2
emission intensive sectors would have higher negative impacts than the ones
withlessemissionsintensiveinputs.However,themagnitudeoftheseimpacts
would vary depending on which method is adopted for determining carbon
tax.Forexample,whiletheoutputofcoalandpetroleumsectors,andcoalfired
electricitygenerationsectorwoulddeclineinbothcases,thedeclineinthecase
ofcarbontaxbasedonSRPisalmosttwiceofthecorrespondingdeclinewhen
carbontaxisbasedonPPP(Figure65).
Further,theoutputofthegassector,usedbyotherindustries,wouldincrease
in both cases. However, the magnitude of this increase would depend on the
levelofpenetrationbynaturalgasbasedcombinedcycleelectricitygeneration.
For example, the output of electricity from gasfired combinedcycle would
increase by about $9.8 billion in the case SRP1, and by $2.7 billion in the case
PPP1 (Figure 65). This would require the output of gas sector to increase by
$1.1and$0.5billion,forSRP1andPPP1,respectively(Figure68).
The changes in the outputs of construction and machinery and equipment
sectors would depend on how carbon tax changes the cost competitiveness of
variouselectricityoptionsandhowthisinducesashiftinelectricitygeneration
technologies. If capital intensive technology, such as renewable, becomes
competitive, as happen in the case of PPP2, then the outputs from both
167
construction($424million)andmachineryandequipment($15million)sectors
wouldalsoincrease(Figure610).Ontheotherhand,theincreasedpenetration
by less capital intensive technology such as combinedcycle, as in the case of
SRP2,wouldresultinareductioninoutputsfromconstructionandmachinery
andequipmentsectors,by$1.8and$0.8billion,respectively(Figure610).
Sectoral Prices and Inflation: The introduction of carbon tax would result in an
increaseinsectoralprices.Suchincreasewoulddependonthecarbonintensivenessof
energy and materials that flow in the economy. Also, the weighted average of these
sectoral pricescanbeusedasanindicatorofinflationintheeconomy(Valadkhani&
Mitchell2002).Thissectiondiscussestheimpactofcarbontaxonthepricesofsectoral
outputs and, more generally, inflation. The percentage increases in prices for the
outputs of various sectors over the period 2005–2020 are presented in Table 66. The
increaseingeneralinflationoverthisperiodisshowninFigure611.
Table66
Increaseinsectoralprices:2005–2020
Coalsector
Petroleumsector
Gassector
Electricitysector
Agriculture,forestryandfishing
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather
Wood,paperandprintingproducts
Basicchemicals
Nonmetallicmineralproducts
Basicironandsteel
Basicnonferrousmetals
Fabricatedmetalproducts
Machineryandequipment
Miscellenousmanufacturing
Water,sewerageanddrainage
Construction
Roadtransport
Railwaytransport
Watertransport
Airtransport
Othertransport,servicesandstorage
Commercialservices
Notes: PPP1
SRP1
12.1
21.9
8.0
184.6
6.3
10.6
7.6
3.9
6.0
9.1
16.7
34.1
37.6
11.2
4.0
2.0
7.6
5.4
21.1
11.3
25.0
17.6
5.5
3.4
23.9
44.3
21.7
254.7
18.1
27.2
23.9
12.3
18.0
19.3
36.7
65.6
75.4
34.5
12.9
7.0
22.7
18.1
31.7
28.5
44.8
26.6
17.5
12.5
(Percent)
PPP2
SRP2
23.5
43.1
15.6
336.9
12.2
20.2
14.4
7.4
11.4
17.7
32.3
66.6
73.1
21.6
7.7
3.9
14.1
10.4
41.8
21.6
49.6
35.1
10.3
6.3
Thistablepresentstheresultsobtainedfromtheapplicationofequations514and515,as
detailedinChapter5,Section5.4,p.106.Fordetailedresults,seeTableF6,AppendixF,
p.333.
Thevaluesinthistablerefertothepercentagechangesinsectoralprices,overtheperiod
2005–2020.Forexample,electricitypriceforPPP1in2020is184.6percenthigherthanthe
pricein2005.
45.1
85.1
41.0
450.9
34.2
50.6
44.7
22.9
33.7
36.7
69.3
125.1
142.3
65.3
24.2
13.1
41.6
34.3
61.7
52.9
87.4
51.9
32.0
23.2 168
Index
Figure611
Increasesininflationrates
1.4
1.3
1.2
1.1
1.0
2005
Notes: 2010
2015
2020
Thisfigurepresentstheresultsobtainedfromtheapplicationofequations514and515,as
detailedinChapter5,Section5.4,p.106.Fordetailedresults,seeTableF6,AppendixF,
p.334.
Theindexvaluesinthisfigurecanbeinterpretedasapercentagechangesininflationfrom
thebaseyear,2005.Forexample,theindexvalueof1.203inthecaseofSRP1in2020,isreadas
anincreaseof20.3percentfromtheyear2005.
Theresultssuggestthat:
i.
In general, carbon tax based on PPP would have a lesser impact on sectoral
pricesandinflationratethanthatbasedonSRP.Forexample,whencarbontax
of$10pertonneisapplied,itwouldcauseinflationtoincrease,overtheperiod
2005–2020, by 8.8 and 20.3 per cent, for PPP1 and SRP1, respectively (Figure
611).ThecorrespondingfiguresforPPP2andSRP2are16.5and37.5percent,
respectively.
ii.
The increases in the prices of energy, manufacturing (particularly chemicals,
metal,andnonmetalindustry),andtransportsectorsaresignificantlyhigherin
the case of SRP as compared with PPP. For example, electricity price would
increaseby185percentinthecaseofPPP1and255percentinthecaseofSRP1
(Table66).Also,pricesforroadtransport,basedonPPP1,wouldincreaseby21
percent,comparedto32percentforSRP1.Asimilarimpactoccursintheiron
andsteelindustry,wherepriceswouldincreaseby34percentforPPP1and66
169
per cent for SRP1. This is due to the direct use of fossil energy as inputs for
sectoral activities (such as coal for electricity production and steel making
processes, and petroleum usedin road transport).The priceincreasesinthese
sectors also reflect their contribution to CO2 emissions when applying the
PolluterPaysPrinciple(seeTable33).
iii.
When carbon tax is imposed based on SRP, the commercial, food and textile
industry, agriculture, mining, and water sectors become more susceptible to
price increases. Further, the increase in prices of these sectors is much higher
thantheincreasesthatwouldtakeplacewhencarbontaxisbasedonPPP.For
example,pricesofthecommercialsectoroutputwouldincreaseby3and6per
centforPPP1andPPP2,respectively;thecorrespondingincreasesforSRP1and
SRP2are12.5and23percent,respectively(Table66).Also,foodprices,based
onPPP1,wouldincreaseby8percent,comparedtoanincreaseof24percent
for SRP1. A similar magnitude is also observed for the water sector, where
water prices increase by 8 per cent for PPP1 and 23 per cent for SRP1. This is
becausethesesectorsconsumelesseramountsofdirectfossilenergyasinputs
and more of indirect energy embodied in materials for undertaking their
sectoral activities. The price increases from these sectors also reflect their
contribution to CO2 emissions when applying the Shared Responsibility
Principle(seeTable33).
Carbon Tax Revenue: The introduction of carbon tax is likely to generate significant
revenueforthegovernment.This(fiscal)revenuecanbeestimatedbymultiplyingthe
advaloremtaxratefacedbyeachindustry(equations511and512)withitssectoral
output(equation532).Theestimatesofthisfiscalrevenue,overtheperiod2005–2020,
expressedintermsofpresentvalues(in1990prices),areshowninTable67.
170
Table67
Fiscalrevenuefromcarbontax:2005–2020
PPP 1
1.Coal
2.Petroleum
3.Gas
4.RenewableElectricity
5.CoalfiredElectricity
6.InternalcombustionElectricity
7.GasturbineElectricity
8.CombinedcycleElectricity
9.Agriculture,forestryandfishing
10.Mining
11.Food,beveragesandtobacco
12.Textile,clothing,footwearandleather
13.Wood,paperandprintingproducts
14.Basicchemicals
15.Nonmetallicmineralproducts
16.Basicironandsteel
17.Basicnonferrousmetals
18.Fabricatedmetalproducts
19.Machineryandequipment
20.Miscellenousmanufacturing
21.Water,sewerageanddrainage
22.Construction
23.Roadtransport
24.Railwaytransport
25.Watertransport
26.Airtransport
27.Othertransport,servicesandstorage
28.Commercialservices
Totalfiscalrevenuefromcarbontax
Notes: 900
644
56
0
15,241
45
302
640
422
417
279
45
187
1,029
497
1,381
1,419
38
56
2
7
334
1,985
169
382
1,414
78
388
28,356
SRP 1
PPP2
SRP 2
($Million 1990 prices)
1,671
1,312
172
523
19,699
53
326
1,275
1,630
1,778
2,773
443
1,526
2,222
1,294
2,724
3,005
1,365
2,568
57
333
3,204
2,533
585
599
1,841
2,236
16,089
73,834
1,671
1,215
103
0
27,375
87
586
1,550
830
819
549
88
368
2,026
979
2,720
2,792
75
110
3
14
660
3,911
329
750
2,790
153
769
53,320
2,856
2,358
306
1,147
33,715
98
608
2,603
3,045
3,282
5,109
812
2,834
4,175
2,438
5,158
5,647
2,558
4,761
105
601
6,014
4,841
1,067
1,139
3,532
4,076
29,971
134,857
PPP 1
SRP 1
PPP2
SRP2
(percentage contribution)
3.2
2.3
0.2
0.0
53.8
0.2
1.1
2.3
1.5
1.5
1.0
0.2
0.7
3.6
1.8
4.9
5.0
0.1
0.2
0.0
0.0
1.2
7.0
0.6
1.3
5.0
0.3
1.4
100.0
2.3
1.8
0.2
0.7
26.7
0.1
0.4
1.7
2.2
2.4
3.8
0.6
2.1
3.0
1.8
3.7
4.1
1.8
3.5
0.1
0.5
4.3
3.4
0.8
0.8
2.5
3.0
21.8
100.0
3.1
2.3
0.2
0.0
51.3
0.2
1.1
2.9
1.6
1.5
1.0
0.2
0.7
3.8
1.8
5.1
5.2
0.1
0.2
0.0
0.0
1.2
7.3
0.6
1.4
5.2
0.3
1.4
100.0
2.1
1.7
0.2
0.9
25.0
0.1
0.5
1.9
2.3
2.4
3.8
0.6
2.1
3.1
1.8
3.8
4.2
1.9
3.5
0.1
0.4
4.5
3.6
0.8
0.8
2.6
3.0
22.2
100.0 Thistablesummarisesthepresentvaluesofcarbontaxrevenuethatislikelytobecollected
duringtheperiod2005–2020,usingadiscountrateof8percent.Fordetailedresults,seeTable
F7,AppendixF,pp.335338.
Thetableshowsthat:
i.
APPPbasedcarbontaxof$10and$20pertonneofCO2wouldyieldrevenues
for the government of $28.4 and $53.3 billion, respectively, over the period
2005–2020.Outofthis,approximately54percentwouldbecollectedfromthe
electricity industry alone, particularly from coalfired generators. Renewable
electricity generators would understandably not yield any revenue for the
government as they do not use coal. The commercial sector would contribute
justover1per cent($388and$769millionforPPP1andPPP2,respectively)to
the total tax revenue. In general, based on PPP, the contribution by various
sectorstocarbontaxrevenueisinproportiontotheircontributiontoCO2.
171
ii.
When carbon tax is based on SRP, carbon tax revenues of $73.8 and $134.9
billion are expected to be generated over the period 2005–2020, at tax rates of
$10and$20pertonneofCO2,respectively.Here,theelectricityindustrywould
beresponsibleforapproximately25percentofthetotaltaxrevenue.Although
coalfiredgeneratorswouldstillberesponsibleformostoftherevenuepaidby
theelectricityindustry($19.7and$33.7billionforSRP1andSRP2,respectively),
renewableelectricitygeneratorswouldalsohavetopaytaxonaccountoftheir
use of materials whose manufacture produces CO2 emissions. These revenues
would be approximately $523 and $1147 million for SRP1 and SRP2,
respectively. The commercial sector, which is a large consumer of electricity,
duetoitslargevalueadded,wouldcontributeover20percenttothetotaltax
revenue.
iii.
When a higher level of carbon tax is applied, the contribution to total tax
revenue from the electricity industry would reduce. For example, when a
carbontaxrateisincreasedfrom$10to$20pertonneofCO2,thecontribution
totaxrevenuefromcoalfiredelectricitywouldreducefrom54to51percentin
thecaseofPPP,and27to25percentinthecaseofSRP.Thisisbecauseahigher
level of tax would cause a higher reduction in output from coalfired
technology, which inturn leads to a higher reduction in CO2 emissions. As a
result,theshareofrevenuethatwouldbecollectedfromcoalfiredtechnology
wouldalsoreduce.
Theaboveanalysisshowsthattherevenuesfromcarbontaxaresubstantialandthey
could be used by the government for either subsidising or financing various
sustainable development projects. However, the analysis of the use of carbon tax
revenueanditsassociatedimpactsisnotinthescopeofthisresearch.51
For an analysis of the use of tax revenue, see, for example, Whalley and Wigle (1991)
CornwellandCreedy(1997).
51
172
Net Impact of Carbon Tax: The net impact of carbon tax on the overall economy is
showninTable68.
Table68
Neteconomicimpactsofcarbontax:2005–2020
PPP1
SRP1
PPP2
SRP2
PPP1
($Billion1990)
LossofGDP†
NetEconomicImpacts‡
PPP2
SRP2
(Percent)
55.6
120.4
102.2
218.7
28.4
73.8
53.3
134.9
27.2
46.6
48.9
83.9
Carbontaxrevenue
SRP1
0.88
1.90
1.65
3.51
0.43
0.74
0.78
1.34
Notes: ThistablesummarisesresultspresentedinTables65(GDP)and67(carbontaxrevenue).
† GDPloss,ascomparedwiththeBCoutcome.
‡ NeteconomicimpactsrefertonetofcarbontaxrevenueandGDPloss.
Thetableshowsthat:
i.
Theoveralleconomicimpactofcarbontaxwouldbesignificantlylowerwhen
gains from tax revenue are also considered. For example, in the case of PPP1,
whiletheeconomywouldlosetotalof$55.6billionofGDP,itwouldalsogains
$28.4 billion of tax revenue over the period 2005–2020. The net loss to the
economywouldthereforebeonly$27.2billion,whichisapproximately0.43per
centoftheGDPinthebaseyear.Thecorrespondingvaluesofnetlossestothe
economyforPPP2,SRP1,andSRP2are0.78,0.74,and1.34percent,respectively.
ii.
Further,itisnoticedthatwhilethenetimpactontheeconomyishigherinthe
caseofSRPascomparedwiththePPP(0.78and0.43percent,respectively,for
taxof$10pertonne),overalltheimpactofSRPbasedcarbontaxisstilllowfor
aneconomyofAustralia’ssizeandstrength.
6.3.2.2
SocialImpacts
AsmentionedinSection5.6,socialimpactsareanalysedinthisresearchintermsofthe
levelofemployment.Theunderlyinglogicisasfollows:theapplicationofcarbontax
would cause changes in the level and composition of sectoral outputs, which would
inturn influence the employment required to produce those outputs. The results
173
obtained,byusingthemethodologyexplainedinChapter5(Section5.6),arepresented
inFigure612andFigure613.
Figure612
Percentagechangesintotalemployment
0.0
-1.0 2005
2010
2015
2020
-2.0
-3.0
-4.0
-5.0
-6.0
Notes: Thisfigureshowspercentagechangesinthelevelofemployment,overtheperiod2005–2020,
foreachcarbontaxcase,ascomparedwiththeBCscenario.Itpresentsresultsobtainedfrom
theapplicationofequation537,asdetailedinChapter5,Section5.6.Fordetailresults,see
TableF12,AppendixF,p.353.
Figure613
Changesinsectoralemployment
(persons)
(1,801)
(2,016)
(3,941)
(4,555)
(-10,078)
(-14,736)
(-7,773)
(-7,513)
(3,059)
(7,201)
(206)
(-343)
(-944)
(-2,313)
(-58)
(-1,020)
(-975)
(-1,295)
(-647)
(-780)
(-7,460)
(-8,790)
(-5,030)
(-5,105)
20,000
15,000
PPP1
Notes: 10,000
SRP1
5,000
0
PPP2
5,000
10,000
SRP2
Thisfigureshowschangesinthelevelofemployment(inpersons),overtheperiod2005–2020,
foreachcarbontaxcase,comparedwiththeBC.Itpresentsresultsobtainedfromthe
applicationofequation537,asdetailedinChapter5,Section5.6.Fordetailresults,seeTable
F12,AppendixF,p.354.
174
Thesefiguresshowthat:
i.
The introduction of carbon tax has a marked impact on employment levels
(Figure64a).Forexample,intheBCscenario(thatis,nocarbontax),thelevel
ofemploymentintheyear2020wouldbe9,444,354persons(anincreaseof12
percentfrom2005)(TableF12,AppendixF,p.353).Theintroductionofcarbon
taxwouldhoweverreducetheemploymentlevelsintherangeof2.8to5.5per
cent(Figure612).
ii.
AcarbontaxbasedonPPPwouldhavelessimpactonthelevelofemployment
ascomparedtothecaseofSRP.Forexample,atcarbontaxof$10pertonne,the
employmentlevelswouldreduceby2.8and3.2percentinthecaseofPPPand
SRP,respectively.Thisisequivalenttoabout34,000jobs.Atacarbontaxof$20
per tonne, job losses would be 5.1 and 5.5 per cent for the PPP and SRP,
respectively. This is also equivalent to 35,000 jobs. The impact on the level of
employment is lower in the case of PPP because of the higher penetration of
cleaner electricity technologies, such as combinedcycle and renewable
electricity(Figure613).
iii.
Whenacarbontaxisintroduced,employmentwouldshiftfromthecoalsector
tothegassector.Forexample,theemploymentinthecoalsectorwoulddecline
intherangeof4,500to8,800persons(Figure613).Someofthelabourfromthe
coal sector (502,000 persons) would shift to the gas sector. However, most of
thelabourfromthecoalsectorwouldbereducedinresponsetoareductionin
coalconsumptionandexports(seeFigure67andFigure69).
iv.
Therewouldbeashiftofemploymentwithintheelectricitysector(thatis,from
conventionalcoalfiredtocombinedcycleandrenewable).Forexample,dueto
a large increase in combinedcycle power plants in SRP1, approximately 4,000
persons from coalfired sector would be shifted to the combinedcycle sector.
Likewise, a large increase in the share of renewable energy in electricity
production,inthecasesPPP2andSRP2,wouldcauseashiftof7,000and3,000
persons,respectively,fromconventionalcoaltorenewablepowerplants.
6.4
175
CarbonTaxtoAchieveAnAprioriEmissionTarget
In the previous section, the energy, environmental, economic, and social impacts of
carbontax,basedonPPPandSRP,wereanalysed.Inthatanalysis,noapriorilimitwas
placedonthelevelofCO2emissions.Inthissection,anapriorilimitisplacedonCO2
emissions. This limit is broadly equivalent to Kyoto target, namely, 108 per cent
increaseinCO2emissionsfromtheelectricitysectorascomparedwith1990levels,by
theyear2020.52Thisemissionstargetissetonlyfortheelectricitysectorbecause,inthis
research, only electricity sector is assumed to adapt (through changes in mix of
technologiesandfuels)inresponsetocarbontax.Itwasnotedintheprevioussection
that CO2 emissions from the electricity sector were 128 Mt in 1990. To achieve the
specified target, the emissions would be allowed to increase to 138 Mt by 2020. This
amountisequivalenttoareductionof45percentofCO2emissionsascomparedwith
theBCscenario(intheBC,totalemissionsfromtheelectricitysectorareexpectedtobe
250Mt).
Analysisisthencarriedout,inthisresearch,todeterminethelevelofcarbontaxthat
would be required in order to meet this target, and the consequential economic and
social impacts. The methodology underpinning this assessment was explained in
Section5.6,Chapter5.Twosetsofanalysesarecarriedoutinthisresearch.Inthefirst
set (Section 6.4.1), the level of carbon tax and associated impacts are determined in a
situationwhereanearlyintroductionofcarbontaxisenvisaged(intheyear2005)53.In
thesecondsetofanalysis(Section6.4.2), theintroductionof carbontax isdeferredto
theyear2010,inrecognitionofthepoliticaldifficultyofintroducingacarbontaxinthe
near future (that is, in the year 2005). As an illustration, emissions pathways of
achievinganapriorilimitfromthesetwosets,forbothtypesofcarbontax(thatis,PPP
andSRP),isshowninFigure614.
Infact,theKyototargetrequiresthelevelofemissionstobeachievedby200812.Thistarget
isassumedtobeextendedto2020inthisresearch,inordertoallowalongertimeframefor
theanalysis.
53 The selection of this year is in accord with the stagewise progress of this doctoral
dissertation.
52
176
Figure614
EmissionspathwayofachievingaprioriCO2limit
300
250
Earlyintroduction
ofcarbontax
Deferredintroduction
ofcarbontax
200
150
108%of1990levels,
fromtheelectricitysector
100
50
0
2000
BC
2005
PPPEarly
2010
SRPEarly
2015
2020
PPP Delay
SRPDelay
TheresultsofanalysesinthisSectionarepresentedinTable69andFigure615.
177
Table69
Impactsofcarbontaxtoachieveanaprioriemissiontarget
BC
PPP
25
Earlyaction
SRP
15
Taxrate($/tonne)
0
†$
CO2emissions (Mtonnes)
(8)
Electricitysector
250
138
(28)
Economy
432
300
†
Electricitytechnologymix (percent)
Coalfired
84.2
58.2 (2005)
Combinedcycle
3.6
8.8 (2011)
Renewable
10.2
31.0 (2013)
†#
5
24 (380)
Costofelectricity (¢/kWh)
†#
Shareofprimaryenergyforelectricityproduction
Blackcoal
45.9
30.7 (15)
Browncoal
28.6
19.1 (10)
Oil
0.9
0.7 (0.2)
(4)
Gas
14.4
18.5
(21)
Renewable
10.2
31.0
EconomicImpact($Bn1990)
‡#
6,325 6,200 (2.0)
GDP
‡
0
65
CarbontaxRevenue
Electricitysector
‡§
Commercialsector
‡§
‡#
Neteconomicgrowth
Neteconomiccost
‡#
Sectoraloutput ($Bn)
Electricity
Steamturbine
(8)
(25)
139
296
(8)
(26)
138
291
(8)
(24)
58.2 (2005)
16.6 (2011)
23.2 (2016)
21 (320)
66.0 (2005)
6.2 (2014)
25.8 (2015)
31 (520)
66.0 (2005)
11.4 (2014)
20.6 (2017)
24 (380)
29.0
18.1
0.7
29.0
23.2
35.5
22.1
0.8
15.9
25.8
34.0
21.2
0.7
23.5
20.6
(17)
(11)
(0.2)
(15)
(13)
(10)
(7)
(0.1)
(2)
(16)
(12)
(7)
(0.1)
(9)
(10)
6,155
135
(2.7)
6,225
73
(1.6)
6,207
102
(1.9)
(29)
0
36
(55)
25
(19)
40
(54)
29
0
1
(1)
48
(35)
1
(2)
23
(22)
6,325
6,266
60
(0.9)
6,290
35
(0.5)
6,298
27
(0.4)
6,308
17
(0.3)
58
55
(5.7)
54
(7.9)
55
(4.6)
55
(5.6)
49
43 (12.3)
7 (30.5)
42 (14.2)
(5.2)
6
46
(7.7)
45
(8.5)
6
(14.8)
6
(2.7)
(52.4)
4 (104.1)
66 (22.1)
2
(14.6)
3
(40.8)
Renewables
6
Combinedcycle
2
Coal
Otherenergy(oilandgas)
Water
Agriculture
Mining
Manufacturing
Construction
Transport
Services
Inflation(Index)
†#
Employment
Electricity(persons)
138
294
Deferredaction
PPP
SRP
51
26
85
35
32
121
114
1,152
970
332
3,424
1.00
3
71 (17.0)
22 (37.4)
31 (3.6)
117 (3.4)
111 (3.2)
1,128 (2.1)
970 (0.1)
322 (3.2)
3,375 (1.4)
1.21
22 (36.2)
30 (6.5)
115 (5.1)
110 (4.0)
1,112 (3.4)
966 (0.4)
314 (5.3)
3,365 (1.7)
1.30
74 (13.1)
26 (26.4)
31 (2.9)
118 (2.8)
111 (2.6)
1,132 (1.7)
970 (0.1)
324 (2.6)
3,383 (1.2)
1.29
72 (15.2)
27 (23.8)
31 (4.6)
117 (3.6)
111 (2.9)
1,124 (2.4)
968 (0.2)
320 (3.7)
3,382 (1.2)
1.36
47,399 40,629 (14.3) 41,533 (12.4) 39,494 (16.7) 41,563 (12.3)
Coalfired
40,713
Renewable
4,925
Combinedcycle
1,760
22,443 (44.9)
14,615 (196.7)
3,571 (102.8)
23,225 (43.0)
11,283 (129.1)
7,026 (299.1)
25,045 (38.5)
11,969 (143.0)
2,480 (40.9)
26,578 (34.7)
10,110 (105.3)
4,875 (176.9)
(6)
(3)
(8)
(4) Total(000persons)
9,444 8,890
9,135
8,719
9,090
Notes: InformationcontainedinthistableisassembledfromvariousTablesinAppendixF
† Resultfortheyear2020
Resultovertheperiod2005–2020
‡ Presentvalue,fortheperiod2005–2020,usingadiscountrateof8percent
$ Numbersinbracketsshowpercentageincreasefromthe1990level
# NumbersinbracketsshowpercentagechangesfromtheBC
Numbersinbracketsrepresentyearinwhichtheparticulartechnologybecomescostefficient
§ Numbersinbracketsshowcontributionsofthesectortothetotal
¥ seefurtherdiscussiononeconomicimpactsinSection6.5.
178
Figure615
Economicimpactsofachievingemissionstargetfromelectricitysector
(Annual,percent)
0
0
2005
2010
2015
2005
2020
2010
2015
2020
-2
-2
-4
-4
-6
-6
-8
b) Final consumption
a) Gross Domestic Product
-10
-8
0
0.6
2005
2010
2015
2020
0.4
-2
0.2
-4
0.0
-0.2
2005
2010
2015
-6
2020
-0.4
-8
-0.6
-0.8
-10
-1.0
c) Investment
d) Intermediate consumption
-1.2
-12
0
2005
2010
2015
2020
-2
-4
-6
-8
-10
-12
-14
-16
e) Export
-18
Notes: ThesefiguresshowannualpercentagechangesascomparedwiththeBC;
Fordetailedresults,seeTableF1toF5,AppendixF,pp.288332.
6.4.1
179
EarlyIntroductionofCarbonTax
Forthecaseofearlyaction,theresultsfromTable69andFigure615suggestthat:
i.
A carbon tax of $25, based on PPP, would be required in order to limit CO2
emissionsfromtheelectricitysectorto138Mtby2020(apriorilimitsetinthis
research). In this case, total nationwide CO2 emissions from fossil fuel
combustion wouldincreaseby28percent(300 Mt)of1990level(234Mt).On
theotherhand,basedonSRP,acarbontaxof$15 pertonneof CO2wouldbe
required to achieve apriori CO2 emissions (that is, 138 Mt from the electricity
sector).Inthiscase,economywideemissionsinthe2020wouldbe294Mt–25
per cent of 1990 levels. These reductions in CO2 emissions look rather
favourable when compared with the increase (of 84 per cent) that would
happenifnocarbontaxisintroduced.
ii.
In the case of carbon tax based on PPP, combinedcycle and renewable
electricitywouldbecomecompetitivebytheyears2011and2013,respectively.
By2020,theshareofelectricityproducedfromcoalfiredtechnologywouldbe
reduced by 26 per cent (from 84 per cent in 2005, to 58 per cent in 2020). The
reductionincoalfiredelectricitywouldbereplacedbyrenewable(21percent)
andnaturalgasfiredcombinedcycle(5percent)electricity.Consequently,the
cost of electricity supply would increase by almost fourtimes as compared to
the BC value (5 ¢/kWh), reaching 24 ¢/kWh in 2020. These changes in
technologymix would influence changes in demand for primary energy used
for electricity production. The demand for brown coal and black coal would
reduceby 10and15 percent,respectively. The demandforrenewable energy
and natural gas resources would however increase by 21 and 4 per cent,
respectively.Further,thistax(i.e.,$25pertonne)wouldcausethepresentvalue
ofGDP,overtheperiod2005–2020,todecreaseby2percent($125billion),as
comparedtotheBCscenario(alsoseeFigure615).MostofareductioninGDP
($120 billion) would come from final consumption. The changing mix of
electricity generation technologies would result in a small reduction ($400
million) in demand for investment, over the period 2005–2020. In fact, the
180
demandforinvestmentwouldincreasefollowingthepenetrationofrenewable
electricityintheelectricitymarketin2013(alsoseeFigure615).Also,thistax
(thatis,$25pertonneofCO2)wouldcauseemploymentlevelin2020tobe6per
centbelowtheemploymentlevelinBC(thatis,nocarbontax).Further,thistax
would generate $65 billion of fiscal revenue for the government, of which 55
percent($36 billion) wouldbecollected fromtheelectricitysector alone. This
alsosuggeststhatthenetoverallimpactofacarbontaxof$25pertonne,based
onPPP,wouldbeapproximately$60billion($125billionlossinGDPand$65
gaininfiscalrevenue).
iii.
For a carbon tax based on the SRP ($15 per tonne, as noted above), the
responsibility for CO2 emissions is fairly distributed across all (goods and
services)sectorsoftheeconomy.Inthiscase,theanalysisshows,thecombined
cycle and renewable electricity would become competitive by the years 2011
and 2016, respectively. By 2020, the share of electricity produced from coal
would be reduced by 26 per cent (from 84 per cent in 2005, to 58 per cent in
2020). Such reduction in coalfired electricity is exactly the same as for PPP
because, in both cases (that is PPP and SRP), this technology would start to
phaseoutfromtheelectricitymarketatthesametimein2011whencombined
cycletechnologybecomescostcompetitive.However,unlikePPP,thereduction
in coalfired technology, in the case of SRP, would be equally replaced by
combinedcycle and renewable (both 13 per cent) technology. Because of the
large increase in electricity produced from combinedcycle (in this case as
compared to the PPP), the demand for natural gas would also increase,
providing 29 per cent of total primary energy requirements in the electricity
sector in 2020. Consequently, the cost of electricity supply would increase by
approximatelyjustabovethreetimesascomparedtotheBCscenario,reaching
21 ¢/kWh in 2020. Further, this tax (that is, $15 per tonne) would cause GDP,
over the period 2005–2020, to decrease by 2.7 per cent ($170 billion), as
compared to the BC (also see Figure 615). The impact on GDP in the case of
SRPis higherthanthat inthe case ofPPPbecausea carbon tax based on PPP
would affect economic sectors based on their direct fuel consumption only;
181
whereas, for SRP, it would be based on direct as well as indirect fuel
consumption.MostofareductioninGDPwouldcomefromareductioninfinal
consumption ($167 billion). The changing mix of electricity generation
technologies would result in a small reduction ($3.7 billion) in demand for
investment. However, as shown in Figure 615c, the trend in demand for
investmentwouldincreaseafter2015,ascapitalintensiverenewableelectricity
generation penetrates the electricity market. Also, this tax would reduce the
employmentin2020by3percentoftheBClevel.Atotaltaxrevenueof$135
billion would be collected by the government, out of which 35 per cent ($48
billion) would be collected from the commercial sector. The net cost of this
policy would therefore be $35 billion ($170 billion loss of GDP minus $135
billiongainsintaxrevenue).
iv.
AcomparisonofacarbontaxbasedonPPPandSRPsuggeststhat,inorderto
meet an apriori CO2 emissions target for the electricity sector, a carbon tax
basedonSRPispreferablethantheonebasedonPPP.Itwouldneedalower
levelofcarbontaxtobeintroduced(thatis,$15pertonneascomparedwith$25
per tonne for PPP). Although a carbon tax based on SRP would cause high
inflation54(1.9percentperyear),ascomparedtothePPP(1.3percentperyear),
thecostofelectricityinthecaseofSRPwouldbelower(21¢/kWh),compared
with PPP (24 ¢/kWh). The net economic impacts of carbon tax based on SRP
wouldbe$25billionlowerthanthosebasedonPPP($60billionforPPPminus
$35billionlossesforSRP).AcarbontaxbasedonSRPwouldalsohaveamilder
impact in terms of job losses; 3 per cent jobs will be lost in SRP as compared
with6percentinthecaseofPPP,overtheperiod2005–2020.
The inflation is the weightedmean of price increases from all sectors over the period 2005–
2020,ascalculatedfromEquation515.
54
6.4.2
182
DeferredIntroductionofCarbonTax
Whentheimplementationofcarbontaxisdeferredtotheyear2010,thecostofmeeting
emissionstargetwouldbeconsiderablyhigherascomparedwiththecasewhencarbon
tax is introduced early (in 2005) as discussed above. The impact of delaying the
implementation of carbon tax is also shown in Table 69 and Figure 615. The main
resultsarediscussedbelow:
i.
The tax rates required for achieving the target (i.e., 138 Mt of CO2 emissions
from the electricity sector in 2020) would be much higher – $51 and $26 per
tonneofCO2inthecaseofPPPandSRP,respectively(thecorrespondingvalues
inthecaseofearlyintroductionofcarbontaxwere$25and$15,respectively).
ii.
ForacarbontaxbasedonPPP,renewableelectricitygenerationwouldbecome
competitive by the year 2015, whereas combinedcycle would penetrate the
electricity market only in 2014. This is because the marginal cost of electricity
production from combinedcycle (4.16.7 ¢/kWh) is only slightly higher than
conventionalcoaltechnology(3.54.0¢/kWh).Applyingcarbontaxdirectlyon
fuelconsumptionwouldincreasethecostofelectricityfromconventionalcoal
fired plants at a slightly higher rate than from combinedcycle plants.
Therefore, the threshold between these technologies is smaller than when
compared with renewable technologies (7.354.9 ¢/kWh). Therefore, by 2020,
the share of electricity produced from coal would be reduced by 18 per cent
(from84percentin2005,to66percentin2020).Thereductionintheshareof
coalfired electricity would be almost made up by the increased share of
renewable electricity (16 per cent). Accordingly, it would increase the cost of
electricity supply by more than fivetimes as compared to the BC scenario,
reaching 31 ¢/kWh in 2020. Further, this tax (i.e., $51 per tonne) would cause
GDP, over the period 2005–2020, to decrease by 1.6 per cent ($100 billion), as
comparedtotheBC.MostofareductioninGDPwouldcomefromareduction
in final consumption ($96 billion). The changing mix of electricity generation
technologieswouldresultinanegligiblereduction($415million)indemandfor
investment. Also, this tax would cause employment in 2020 to be 8 per cent
183
belowtheemploymentinBC(thatis,nocarbontax).Thetotalrevenueforthe
governmentwouldbe$73billion,outofwhich54percent($40billion)would
be collected from the electricity sector alone. This also suggests that the net
overall impact of a carbon tax of $51 per tonne, based on PPP, would be
approximately $27 billion ($100 billion loss in GDP and $73 gain in fiscal
revenue).
iii.
On the other hand, based on SRP, a carbon tax of $25 per tonne would be
requiredtoachievethesameenvironmentalgoal(i.e.,138MtofCO2emissions
fromtheelectricitysectorin2020).Thistaxlevelislowerthanthepreviouscase
(thatis,basedonPPP)because,inthiscase,fossilfuelintensiveindustriesare
not considered as solely responsible for CO2 emissions. Instead the
responsibility is fairly attributed across all (goods and services) consuming
sectorsoftheeconomy.Theanalysisshowsthatcombinedcycleandrenewable
electricitywouldbecomecompetitivebytheyears2014and2017,respectively.
By2020,theshareofelectricityproducedfromcoalwouldbereducedby18per
cent(from84percentin2005,to66percentin2020).Areductionincoalfired
electricitywouldbereplacedbyrenewable(10percent)andcombinedcycle(8
percent).Consequently,thecostofelectricitysupplywouldincreasebyalmost
fourtimesascomparedtotheBC,reaching24¢/kWhin2020.Further,thistax
(i.e., $26 per tonne) would cause GDP, over the period 2005–2020, to decrease
by1.9percent($118billion),ascomparedtotheBC.TheimpactonGDPinthe
caseofSRPishigherthanPPPbecauseacarbontaxbasedonPPPwouldaffect
economicsectorsbasedontheirdirectfuelconsumptiononly;whereas,forSRP,
itwouldimposebasedondirectaswellasindirectfuelconsumption.Mostofa
reduction in GDP would come from a reduction in demand for final
consumption($116billion).SimilartoPPP,thechangeinthemixofelectricity
generation technologies would result in a small reduction ($2 billion) in
demand for investment. However, as shown in Figure 615c, the trend in
demand for investment increases beyond 2017, when capital intensive
renewable technology begins to penetrate the market. Also, this tax would
causetheemploymentin2020tobe4percentbelowwhatitwouldhavebeenif
184
nocarbontaxisintroduced.Thetotalrevenuethatthegovernmentcancollect
fromcarbontaxinthiscasewouldbe$102billion,outofwhich29percent($29
billion) would come from the electricity sector and 22 per cent ($23 billion)
would come from the commercial sector. The net cost of this policy would
thereforebe$17billion($118billionlossofGDPminus$102billiongainsintax
revenue).
iv.
AcomparisonofacarbontaxbasedonPPPandSRPsuggeststhat,inorderto
meet an apriori CO2 emissions target for the electricity sector, a carbon tax
basedonSRPispreferablethantheonebasedonPPP.Itwouldneeda lower
levelofcarbontaxtobeintroduced(thatis,$26pertonneascomparedwith$51
per tonne for PPP). Although a carbon tax based on SRP would cause high
inflation55(2.2percentperyear),ascomparedtothePPP(1.8percentperyear),
thecostofelectricityinthecaseofSRPwouldbelower(24¢/kWh),compared
with PPP (31 ¢/kWh). The net economic impacts of carbon tax based on SRP
wouldbe$10billionlowerthanthosebasedonPPP($27billionforPPPminus
$17billionlossesforSRP).AcarbontaxbasedonSRPwouldalsohaveamilder
impact in terms of job losses; 4 per cent jobs will be lost in SRP as compared
with8percentinthecaseofPPP,overtheperiod2005–2020.
6.4.3
EarlyActionvsDeferredAction:SomeEarlyResults
Areview ofthe impacts ofearly anddeferred introductionofcarbon tax(inorderto
achieveanapriorireductioninemissionsfromtheelectricitysector)–aspresentedin
Sections 6.4.1 and 6.4.2 – appears to provide somewhat contradictory messages. For
example, an early introduction of carbon tax seems to be desirable from the
considerations of electricity price increases, inflation and employment levels. The
electricityprices,intheyear2020,forexample,arelikelytobe24¢/kWhand21¢/kWh
ascomparedwiththeBaseCasepriceof4.9¢/kWh,forPPPandSRP,respectively,in
The inflation is the weightedmean of price increases from all sectors over the period 2005–
2020,ascalculatedfromEquation515.
55
185
thecase of earlyaction. Inthecase ofdeferred action,these prices are likelytobe 31
and24¢/kWhforPPPandSRP,respectively.Similarly,earlyactionislikelytoresultin
lowerinflationarypressures(21and30percent),ascomparedwithdeferredaction(29
and36percent),forPPPandSRP,respectively.Intermsofthelevelsofemployment,
the job losses in the case of early action are likely to be lower – 6 and 3 per cent, as
comparedwith8and4percent,forPPPandSRP,respectively.
From the perspective of the entire economy though, it appears that deferred
introductionofcarbontaxismoredesirable.Theneteconomiccostofdeferredaction
are $27 and $17 billion, for PPP and SRP, respectively. In comparison, the
correspondingneteconomiccostofearlyactionare$60and$35billion(Table69).
These results however present only one possible interpretation of the underlying
argument and hence need to be interpreted with caution. For example, it is noticed
fromFigure615athattheannualeconomiccostofcarbontaxinthecaseofearlyaction
wouldbehigherthanthedeferredactiononlyintheperiodpriorto2015(forPPP)and
2017(forSRP).Butafter2015(forPPP)and2017(forSRP),thecostofdeferredaction
wouldbehigherthanthecaseofearlyaction.Clearly,theshortandlongtermimpacts
of early and deferred action appear to be different. Could a longer term analysis
providedifferentoutcomes?
Moreover,aquestionalsoarisesabouttheinfluenceofspecificapproach(forexample,
Net Present Value) on the final results. For example, if the results were presented in
Future Value terms (rather than the Present Value terms) would the results be similar?
Answering these questions would require some further analysis. Such analysis is
carriedoutinthenextsection.
6.4.4
EarlyActionvsDeferredAction:SomeFurtherAnalysis
The analysis in the previous section showed that in present value terms the economic
cost,overtheperiod2005–2020,ofdeferredactionis$27billionascomparedwith$60
billionforearlyaction,inthecaseofPPP.However,itisalsoclearfromFigure615a
that, during the period 2005–2010, when carbon tax has not yet been introduced
186
(deferred action), the economic cost of such inaction would appear as an economic
benefit(in terms ofnolossinGDP).In contrast,when carbontax isadopted in 2005,
the economy would immediately face economic losses. One can therefore argue that
the use of present value as an indicator of economic cost favours deferred action.
Theoretically, the concept of present value gives more importance (or weights) to the
valuesthatareclosertothepresentperiodthantothevaluesthatwouldoccurinthe
laterperiods.Thismeansthatthefurtherintothefuturethecostoccurs(whichislikely
tobethecaseforglobalwarminginducedimpacts),thelowertheweightattachedtoit.
Forexample,anyhypotheticalcostthatoccursin2020wouldbevaluedat32percent
in 2005, assuming discount rate of 8 per cent.56 Referring to Figure 615a, this means
that thecostofearly actionduringthe period2005–2010 would be much higher than
thecostofdeferredactionduringtheperiod2015–2020.
Incontrast,theconceptoffuturevaluegivesmoreimportancetothevaluesinthefuture
years,thantothevaluesintheearlieryears.Ifeconomicimpactsaremeasuredinterms
oftheir futurevalues, itis possiblethatthecostofearly action would be lessthanthe
case of deferred action. However, as shown in Table 610, the cost of deferred action
would still be less than that of early action. But the gap between early and deferred
actionbecomesnarrowerwhenimpactsareassessedintermsoftheirfuturevalue.For
example,inpresentvalueterms,thecostofearlyactionis119percenthigherthanthe
cost of deferred action, in the case of PPP. However, the difference reduces to 44 per
centwhenexpressedinfuturevalueterms.ThecorrespondingfiguresforSRPwouldbe
109and55percent,respectively.
The present value in 2005 is achieved by multiplying the future value in 2020 with Present
ValueFactor(PVF)usingthediscountrate(i)of8percentfortheperiod(t)of15years.
56
187
Table610
Comparisonofeconomiccosts:PresentandFuturevalues
Earlyaction
Deferredaction
($billion)
PPP
SRP
Notes: Percentagedifference
(EarlyDeferred)
Presentvalue
60
27
119
Futurevalue
456
317
44
Presentvalue
35
17
109
Futurevalue
445
287
55
Presentvaluereferstotheyear2005;Futurevaluereferstotheyear2020.
Bothpresentandfuturevaluesarecalculated,fortheperiod2005–2020,assumingadiscount
rateof8percent.
PresentvalueforeachcategoryistakenfromTable69;Futurevalueiscalculatedfromnetof
GDPandtaxrevenueforeachcarbontaxcase,containedinTableF13,AppendixF,p.355.
Further,itisalsoclearfromFigure615athattherateofincreaseinneteconomiccostsof
deferred action is higher than in the case with early action. Although the cost of
deferred action emerges five years later (that is, in 2010, instead of 2005 for early
action),itisexpectedtoovertaketheannualcostofearlyactionby2015and2017,for
PPP and SRP, respectively. This implies that if the time period for analysis is further
extended, the present value of the cost of deferred action would be higher than the
corresponding costs of early action. An analysis is carried out in this research by
extendingthetimeframetotheyear2040.Itisassumedthataftermeetingtheapriori
emissions target in 2020 (equivalent to 138 Mt of CO2 emissions from the electricity
sector),acarbontaxineachcase(thatis,PPPandSRPforearlyanddeferredactions)is
retainedattheirexistinglevelsinordertomaintainCO2emissionsatthislevel(thatis,
138Mt)until2040.TheresultsofthisanalysisareshowninTable611.
188
Table611Comparisonofeconomiccosts:Shortterm(2020)andLongterm(2040)
Earlyaction
Deferredaction
($billion)
PPP
SRP
Notes: Difference
($billion)
Shortterm
60
27
32
Longterm
303
327
24
Shortterm
35
17
18
Longterm
333
352
18
(10)
(8)
Shorttermreferstotheperiod2005–2020;Longtermreferstotheperiod2005–2040.
Valueinbrackets,inthecaseoflongterm,areadjustedvalues,toallowadirectcomparison
withthevaluesfortheshortterm.Thevalueof$10billion,forexample,isobtainedby
dividing$24billionwiththenumberofyearsoverthelongterm(thatis,35years)andthen
multiplyingitwiththenumberofyearsfortheshortterm(thatis,15years).
Bothshortandlongtermimpactsarecalculatedintermsofpresentvalues,overthespecified
period,assumingadiscountrateof8percent.
PresentvalueforshorttermistakenfromTable69;Presentvalueforlongtermiscalculated
fromnetofGDPandtaxrevenueforeachcarbontaxcase,containedinTableF13,Appendix
F,p.355.
Thetableshowsthatwhiletheneteconomiccostofearlyaction,duringtheshortterm
(thatis,overtheperiod2005–2020),wouldbehigherthanthecostofdeferredaction,
over the longterm (that is, over the period 2005–2040), the cost of deferred action
wouldbecomehigher.Forexample,inthecaseofPPP,theneteconomiccostofearly
action would be $32billion higher than the cost of deferred action, when considering
these costs over the shortterm. However, over the longterm, the cost of early action
wouldbe$24billionlessthanthecostofdeferredaction.Similarsituationwouldalso
occur in the case of SRP, with the cost of early action $18 billion less than that of
deferred action (see Table 611). To allow a comparison of economic costs from
differentcarbontaxregimesdiscussedthroughoutinthisChapter(thatis,PPP1,PPP2,
SRP1, SRP2, PPPEarly, PPPDelay, SRPEarly, and SRPDelay), the net economic costs over the
longterm are adjusted so that they reflects the net costs that would occur over the
period 2005–2020. The adjusted economic costs of early action, over the period 2005–
2020,wouldthereforebe$10and$8billionlessthanthecostofdeferredaction,inthe
caseofPPPandSRP,respectively.
Tosummarise,overtheshortterm(thatis,theperiodupto2020),theeconomiccostof
earlyactionwouldbehigherthanthecostofdeferredaction.Thisisbecausethezero
economiclossduringtheperiod2005–2010fromdeferredactionwouldnotbefeltby
189
the economy, to any appreciable extent, during the period 2010–2020. This impact
wouldhoweverbegintoaccelerateclosertotheyear2020andwouldovertakethecost
duetoearlyactionintheyearsbeyond2020.Overall,therefore,earlyactionappearsto
bemoredesirablethandeferredaction.
6.5
ComparisonwithOtherStudies
Thissectioncomparestheimpactsofcarbontax,estimatedinthisresearchinSection
6.4,withotherstudies.Table612providesasummaryoftheseresults.
Thetableshowsthat,ingeneral,theintroductionofcarbontaxwouldhaveanegative
impactontheAustralianeconomy.Theseimpactsarewithintherangeof0.3to2.5per
cent reduction in GDP, compared with the base scenario of each study. For example,
accordingtoIndustryCommission(1991a),ataxof$21.75pertonneofCO2wouldbe
requiredtomeettheTorontotargetandthatthisleveloftaxwouldresultina2.1per
cent loss of the Australian economic growth over the period 19912005. According to
McDougal(1993),acarbontaxof$19pertonneofCO2wouldresultinaGDPlossof
0.9percentovertheperiod19932005.Thisresearchhasalsoshownthat,tomeetthe
Kyototarget(whichissetonlyfortheelectricitysector),theGDPwouldreduceby0.9
percent(forPPP)and0.6percent(forSRP).
Sources:
Notes: g
2.2
1.8
24
1
1
22
14
Early
(implement
in2005)
Delay
(implement
in2010)
F(forSRP)
22
1
1
22
14
28
26
45
1.7%
e
77
17
5.7
0.1
3.7
2.1
1.4
31
9
58
0.9%
f
25
13.1
4.6
0.1
3.1
1.7
1.2
26
6
66
0.4%
f
51
22
7.9
0.7
5.6
3.6
1.8
23
17
58
0.6%
f
15
15.2
5.6
0.4
4.0
2.5
1.2
21
11
66
0.3%
f
26
35%by 30%of1990 31%of1990 32%of1990 32%of1990
2050
levelby2020 levelby2020 levelby2020 levelby2020
Delay
(implement
in2010)
F(forPPP)
190
Services
A:IndustryCommission(1991a);B:McDougall(1993);C:NIEIR(1995);D:McKibbinandPearce(1996);E:Ahammadetal.(2006);F:Thisresearch(Table69).
a:reduceGHGemissionsto20percentbelow1988levelbytheyear2005;b:1988prices;c:1987prices;d:consideredcarbontaxincombinationwithotherpolicy
measures;e:$1.25/tonnein1995andincreasesgraduallyuntilitreaches$13.8/tonnein2005,thenmaintainedatthisrateto2010;f:presentvaluewith8percent
discountrate;g:reductionofGDPby0.62percentin2004,0.13percentin2014,andincreaseinGDPby0.01percentin2024
Manufacturing
Nonferrousmetal
Construction
Electricity
Coal
27
Renewable
2.5%
e
99
26
4.3%pa
g
$(61bn)
d
1.2513.8
40%by
2050
Gas
$(179bn)
14
target
E
Early
Delay
Early
(implement (implement (implement
in2010)
in2030)
in2005)
46
20.8
4.8
1.3
6.5
2.1to0.2
0.2
0.9%
c
19
target
1990levelby
2005
D
Coal
26.2
7.6
3.1
2.1%
ChangeinGDP
b
21.75
target
a
Toronto
a
Toronto
Toronto
a
C
B
ComparisonsofresearchresultsfromcarbontaxstudiesforAustralia
A
Table612
Emissiontax($/tonne
CO2)
CO2emissionsreduction
Sectoraloutput Electricity
(%)
mix
191
Further, these studies have shown that the introduction of carbon tax would
particularlyadverselyaffectfossilfuelindustries.Forexample,Ahammadetal.(2006)
estimatedthat,by2050,coalfiredelectricitygenerationwouldrepresentaround45to
46 per cent of electricity generation. Most of the reduction in coalfired electricity
wouldbereplacedbyrenewableelectricity;renewablewouldaccountfor27to28per
centoftotalelectricityproduction.Despitethisshiftinelectricitymix,thesamestudy
estimated that the overall electricity production would decline by 14 per cent. This
researchhasalsoshownthattheelectricityproductionwouldreduceby5to9percent,
withsubstantialreductionincoalfiredpowergeneration(approximately58and66per
cent for early and delayed action, respectively). The reduction in coalfired electricity
would be replaced largely by gasfired electricity (for SRP) and renewable electricity
(for PPP). Industry Commission (1991a) and McDougall (1993) also estimated
reductionsincoalbasedelectricityof26and21percent,respectively.
Not only would the fossil fuel production sectors be heavily affected, fossil fuel
consumptionsectors,suchasenergyintensivemetalsprocessingindustries,wouldalso
beaffectedbycarbontax.Forexample,McDougall(1993)estimatedthat,inresponseto
acarbontaxof$19pertonneofCO2,theoutputsofnonferrousmetalindustrywould
declineby6.5percent.Ahammadetal.(2006)alsoestimatedthattheoutputsofnon
ferrousmetalindustrywoulddeclineby22to24percent.Thisresearchestimatedthat
the outputs of this industry would reduce in the range of 3 to 7 per cent. While the
outputs of the energyintensive industries faced significant decline in most cases, the
output of the construction sector would have a negligible impact. For example,
McDougall (1993) estimated that the outputs of this sector would increase by 1.3 per
cent. This research estimated that the construction sector would face a reduction in
output, over the period 2005–2020, of between 0.1 and 0.7 per cent. The Industry
Commission’s (1991a) analysis indicates a 3.1 per cent reduction in the output of the
constructionsector.
Oneoftheresultsofthisresearch,namely,thatearlyintroductionofcarbontaxisless
desirable than its deferred introduction (as discussed in Section 6.4.3), resonates with
theresultsofAhammadetal.(2006).AccordingtoAhammadetal.(2006),thecostof
192
earlyactionwouldbehigher(2.5percentGDPloss)thanthatofthedelayedaction(1.7
percentGDPloss).
Further analysis however showed that this (in the context of this research) was due
mainlytotheuseoftheconceptofpresentvaluetoexpressthenetcostsofcarbontax,
and also due to the rather short timeperiod (that is, 2005–2020) considered in this
research.Theanalysisalsoshowedthatanextensioninthetimeperiodforanalysis,to
theyear2040,wouldmakeitattractivetointroducecarbontaxearly.
6.6
PolicyImplicationsofCarbonTax:Someadditional
discussion
In the previous sections of this chapter, the economywide impacts of a carbon tax,
basedonPPPandSRP,wereassessed.Theseimpactswereassessedwithoutimposing
any apriori limits on the amounts of CO2 emissions (Section 6.3). Also assessed (in
Section 6.4) were the economywide impacts of a carbon tax, based on PPP and SRP,
for meeting an apriori emission target – equivalent to 108 per cent increase in CO2
emissionsfromtheelectricitysector,ascomparedwith1990levels,bytheyear2020.In
this section, the implications of these taxes is further analysed within a wider policy
context.
InthePPPapproach,directfossilfuelconsumersareconsideredassolelyresponsible
forCO2emissions.Theelectricitysectorisresponsibleformost(about50percent)of
the total CO2 emissions. Adopting a carbon tax based on this principle implies that,
withintheelectricitysector,electricityproducedfromcoalfiredtechnologywouldbe
taxedmorethanthatproducedfromcombinedcycletechnology.Renewableelectricity
technologiesdonotconsume fossilfuelsand,therefore,attractnopenalty.Therefore,
the adoption of this type of carbon tax would trigger big changes in investment
patterns, especially in the form of investments in cleaner electricity production
technologies,withinashortrun.Thiswouldbringasignificantshorttermreductionin
CO2 emissions. However, because of the sudden change in technologymix for
electricityproduction,itwouldsignificantlydriveuptheelectricityprices.Itwouldbe
193
difficult for the economy and society to adapt quickly to such a change. This would
furtherprovoketheoppositiontocarbontaxanddelayitsintroduction,ashasalways
beenthecaseinAustralia(seeSection3.2,Chapter3formorediscussion).
Based on the SRP approach, indirect fossil fuel consumers are also considered as a
responsible party for CO2 emissions. In this approach, the electricity sector is
responsibleforabout2030percentoftotalnationwideCO2emissions.Thecommercial
sector,amajorconsumerofmaterialsandelectricity,isresponsibleforonethirdofCO2
emissions. Renewable electricity technologies are also considered as responsible for
CO2emissionsonaccountoftheemissionsthatareembeddedinthematerialsusedto
build these technologies and the materials consumed by these technologies during
theiroperation.Adoptingacarbontaxbasedonthisprincipleimpliesthattheclimate
changeproblemisnottheconcernofdirectpollutersofCO2only,buttheresponsibility
of the whole economy. This type of carbon tax provides fairness; it penalises each
sector based on their direct and indirect contribution to CO2 emissions. By
implementingthistypeofcarbontax,therewouldbeanincentiveforallsectorstoseek
cleanerenergysources.Therefore,theadoptionofthistypeofcarbontaxwouldleadto
significantly higher reduction in CO2 emissions, as compared with an equivalent tax
basedonPPP.Adoptingthistypeofcarbontaxwould,however,havehighereconomic
andsocialimpacts,buttheseimpacts,foraneconomyofAustralia’ssizeandstrength,
should not be considered high, especially if one takes note of the fact that this tax
would result in higher reduction in CO2 emissions. Table 613 also shows that the
economicandsocialimpactsarisingfromaSRPbasedcarbontaxareinfactlowerthan
would be the case of a tax based on PPP – $83 million (565 minus 482) less in net
economiccostsand2299(5291minus2992)lessjobslosses,foracarbontaxof$10per
tonneofCO2.
Further,theanalyseshasshownthatifanapriorilimit(roughlyequaltoKyototarget)
is set for CO2 emissions from the electricity sector, a much higher level of carbon tax
wouldbeneededinthecaseofPPP($25pertonne)andmuchlowerlevelofcarbontax
wouldbeneededinthecaseofSRP($15pertonne).Whiletheneteconomiccostofa
carbon tax based on PPP would be considerable ($60 billion, over the period 2005–
194
2020),suchcostinthecaseofSRPwouldbelower($35billion,overtheperiod2005–
2020).Theanalysesinthisresearchalsoshowthatdelayingtheintroductionofcarbon
tax has considerably higher economic and social costs. In contrast, the unquestioning
pursuance of economic growth objectives (as in the BC scenario) would cause
significantincreaseinCO2emissions(84percentabovethe1990levels).
Itisalwaysdifficulttochooseamongcompetingobjectivesandoptions.Thisresearch
hasattemptedtodevelopinsightsintothetradeoffsbetweeneconomic,environmental,
and social objectives that might assist the policy makers as they endeavour to make
policychoicestoachieveabalancedandsustainablegrowth.Selectsuchtradeoffsare
summarisedinTable613.
Table613
Summaryofenvironmentaleconomicsocialtradeoffs
$10pertonne
$20pertonne
apriori (Early)
apriori (Delay)
PPP
SRP
PPP
PPP
PPP
TotalCO2savings(Mtonnes)
48
(11)
97
(22)
115
(27)
165
(38)
131
(30)
138
(32)
135
(31)
140
(33)
Neteconomiccosts($Bn)
27
(0.4)
47
(0.7)
49
(0.8)
84
(1.3)
60
(0.9)
35
(0.5)
70
(1.1)
43
(0.7)
Lossinemployment(000persons) 255
(2.7)
289
(3.1)
455
(4.8)
490
(5.2)
555
(5.9)
309
(3.3)
726
(7.7)
355
(3.8)
Neteconomiccosts($Mn/Mt)
SRP
SRP
SRP
565
482
426
507
454
252
516
303
Lossinemployment(persons/Mt) 5291
2992
3965
2963
4234
2239
5360
2528
Notes: Theinformationcontainedinthefirstthreerowsinthistableisassembledfromvarious
tablesinthisChapter.
Thelasttworowssummariseenvironmentaleconomicsocialtradeoffs.Forexample,undera
carbontaxof$10pertonneinthecaseofPPP,1MtonneofreductioninCO2wouldimply
$565millionofneteconomiccost,and5291foregonejobs.
NumberinbracketsindicatespercentagedifferencesascomparedwiththeBCscenario.
ThetableshowsthattheearlyintroductionofcarbontaxbasedonSRPprincipleoffers
a relatively more attractive approach to simultaneously meeting environmental,
economic, and social objectives. Adopting this approach would lead to highest
emissions reductions, from lowest money spent, and the lowest number of jobs
foregone. For example, every million tonne of reduction of CO2 would incur an
economiclossof$252millionandalossof2239jobs.Further,introducingcarbontax
based on SRP in 2010 (that is, deferred action) would still be superior to other
approaches. For example, every million tonne of reduction in CO2 would incur an
economic loss of $303 million and loss of 2528 jobs in the economy. However,
195
comparedtotheearlyaction,areductionofeverymilliontonneofCO2,inthedeferred
action,wouldcost$51million(303minus252)moreand289(2528minus2239)more
jobs losses. If carbon tax based on PPP is adopted immediately, it would cost an
additional$202(454minus252)millionandresultin1995(4234minus2239)morejobs
lossesforeverymilliontonneofreductioninCO2.
Therefore,acarbontaxbasedonSRPprincipleshouldbeadoptedimmediately.Ifthe
decisionforadoptingcarbontaxisdeferred,itwouldberatherdifficulttoachievenot
onlyenvironmentalobjectivesbuteconomicandsocialobjectivesaswell.
6.7
SummaryandConclusions
In this chapter, a carbon tax policy based on two different principles – Polluterpays
(PPP) and Sharedresponsibility (SRP) – is analysed, and its impact on energy,
environment,economy,andsocietyareassessed.Themajorconclusionsofthischapter
aresummarisedasfollows:
x
In the absence of carbon tax (BC scenario), total CO2 emissions from the
electricity sector are expected to increase, by the year 2020, by 95 per cent (to
250 Mt) above the 1990 level (128 Mt). Electricity produced from coal is
expectedtodominatetheelectricitymixin2020,contributingnearly84percent
to total electricity generation. The small increase in the share of renewable
electricity due to the ongoing MRET scheme would increase the cost of
electricity production from 4.7 ¢/kWh in 2004, to 4.92 ¢/kWh in 2020. The
economy would grow at an average rate of 2.57 per cent per year to the year
2020, reaching $808 billion (1990 prices) in 2020. The economywide
employmentwouldincreaseatanannualaveragerateof0.8percentreaching
9,444thousandpersonsin2020.
x
The analysis of the impacts of carbon tax, using a uniform tax rate, based on
PPPandSRPshowsthat:
A carbon tax based on SRP would result in an increase in the cost of
electricity at a higher rate than that based on PPP. For a carbon tax of $20
196
per tonne, the cost of electricity production would reach, in the year 2020,
20.5¢/kWhinthecaseofPPP,and25.9¢/kWhinthecaseofSRP(in 2004
prices)(Table62).Thisisbecause,inthecaseofPPP,theelectricitysector(a
directfossilfuelconsumer)isconsideredasthemainresponsiblepartyfor
CO2 emissions, whereas in the case of SRP, indirect fossil fuel consumers,
including renewable electricity sector, are also considered responsible for
CO2emissions.
The introduction of carbon tax would yield, for the government, revenues
of$28and$53billion(1990prices),forPPP1andPPP2,respectively,overthe
period2005–2020.ThecorrespondingfiguresforSRP1andSRP2are$74and
$135 billion (see Table 67). Of these, the electricity sector would be
responsible for approximately 50 and 20 per cent of total revenue, in the
caseofPPPandSRP,respectively.Therevenuefromcarbontaxishigherin
thecaseofSRPbecause,inthiscase,revenuewouldbecollectedfromboth
directaswellasindirectfossilfuelconsumers,comparedwiththecollection
ofrevenuefromjustdirectfossilfuelconsumersinthecaseofPPP.
A carbon tax based on SRP would cause a larger reduction in coalfired
power generation than would be the case with PPP. For example, for a
carbon tax of $20 per tonne based on SRP, coalfired electricity would
reduceby28percentascomparedtotheBCscenario,representing56per
cent of total electricity generation in 2020. The same carbon tax rate in the
caseofPPPwouldinsteadcausetheshareofcoalfiredelectricitytoreduce
by23percent.
The growth rate of CO2 emissions reduces substantially due to the
introductionofcarbontax,withmorereductionsforthcomingwhencarbon
taxisappliedbasedonSRP,ascomparedwiththecasewhenitisapplied
basedonPPP.Forexample,foracarbontaxof$20pertonne,CO2emissions
fromtheelectricitysectorwoulddeclineby53percent(or134Mt)fromthe
BC level, when carbon tax is applied based on SRP. The corresponding
figure for the PPP is 39.3 per cent (98 Mt). This is so because a carbon tax
197
basedonSRPalsotakesintoaccounttheenergyembodiedinmaterialsand,
therefore, penalises the emitters from indirect energy consumption. The
introductionofsuchataxwouldincreasethecostofelectricityproduction
atahigherratethanifacarbontaxisimposedunderPPP(seeTable62).As
a result, it would allow cleaner electricity production technology to
penetratethemarketearlierthanifcarbontaxisbasedonPPP.
The application of $10 per tonne of carbon tax would have net economic
cost, over the period 2005–2020, of 0.4 and 0.7 per cent, in the case of PPP
andSRP,respectively.Thecorrespondingvaluesforataxof$20pertonne
are0.8and1.3percent.Thisisbecause,whenahigherlevelofcarbontaxis
imposed, the cost of electricity from coal would increase considerably,
which would induce more investment in cleaner electricity technologies.
Because of this investment, carbon tax based on PPP would have slightly
lesseconomicimpactthanthatbasedonSRP.
Areductionineconomicoutputfromtheintroductionofcarbontaxwould
alsocauseareductioninthelevelofemployment,intherangeof2.8to5.5
percent,withslightlymorereductioninthecaseofSRPthaninthecaseof
PPP. For a carbon tax of $10 per tonne, the employment would reduce by
2.8percent(fromtheBCscenario)forthePPP,whileitwouldreduceby3.2
percent fortheSRP.However,thechangesin technologymixinducedby
carbon tax would cause a shift of employment from the coal to the gas
sector and from coalfired electricity technology to combinedcycle and
renewabletechnology.
x
Ifanaprioriemissionslimit(equivalentto108percentof1990level)issetfor
the electricity sector (that is, if CO2 emissions from the electricity sector are
limitedto138Mtby2020),taxratesof$25and$15pertonneofCO2wouldbe
required in the case of PPP and SRP approaches, respectively. The total
economywide CO2 emissions in these cases would range between 291 (SRP)
and300(PPP)Mt–approximately24(SRP)and28(PPP)percenthigherthan
198
the1990economywideCO2emissions(234Mt)andabout30percentlessthan
theBCscenario(432Mt).
AhigherleveloftaxwouldberequiredinthecaseofPPPbecause,basedon
this principle, only direct fossil fuel consumers would be penalised;
whereas, in the case of SRP, both direct and indirect fossil fuel consumers
would be penalised. Therefore, a higher level of tax is needed for PPP to
accelerateinvestmentincleanerelectricitytechnology.
The accelerated rate of investment in cleaner electricity technology in the
caseofPPPwouldcausethecost(in2004prices)ofelectricitytoincrease,by
theyear2020,to24¢/kWhascomparedwith21¢/kWhinthecaseofSRP.
A carbon tax based on PPP would have higher net economic and social
impacts ascompared witha taxbased on SRP. The net economic lossesin
the case of PPP ($60 billion) would exceed such losses in the case of SRP
($35 billion) by $25 billion. Further, 245 thousand more jobs (2.6 per cent)
wouldbelostunderthePPPcase,ascomparedwiththeSRP.
If the introduction of carbon tax is deferred by 5 years (that is, the tax is
introducedintheyear2010),theoverallimpactswouldbemuchhigher.For
example, to achieve the apriori limit, a tax of $51 per tonne in the case of
PPP, and $26 per tonne in the case of SRP would be required. This would
further accelerate investment in cleaner electricity technologies.
Consequently,thecostofelectricitywouldbehigherthanwouldbethecase
ifcarbontaxisintroducedimmediately.Thecostofelectricity,inthecaseof
PPP and SRP, are expected to reach 31 and 24 ¢/kWh by the year 2020,
comparedwith24and21¢/kWhinthecaseofearlyaction.
The social impacts of deferred action would be higher, with 45,000 and
171,000morejobslosses,inthecaseofSRPandPPP,respectively.Interms
of the economic impacts, an initial estimate, using present value for the
period2005–2020,showsthatdelayingtheintroductionofcarbontaxwould
save$18and$32billion,forSRPandPPP,respectively.
199
x
This research has also demonstrated the pitfalls associated with the use of
conventionalmethodsfor quantifying the impactsofcarbontax.Forexample,
thisresearchhasshownthattheuseoftheconceptsofpresentvalueandfuture
valuearelikelytoprovidesignificantlydifferentpolicyrecommendations.Ina
similarvein,theextensionofthelifespanofanalysistotheyear2040islikely
toresultinthestrengtheningofthecaseforanearlyintroductionofcarbontax.
x
The analysis in this chapter suggests that a carbon tax based on SRP offers a
relatively more attractive approach to simultaneously meeting environmental,
economic, and social objectives. By adopting such an approach immediately,
every million tonne of reduction in CO2 would incur a cost $252 million and
wouldresultin2239joblosses.Ifhowevertheadoptionofsuchanapproachis
deferred, it would cost an additional $51 million and result in 289 more jobs
lossestoachieveeverymilliontonneofreductionofCO2.Ifacarbontax,based
on PPP, is adopted immediately, it would cost an additional $202 million and
resultin1995morejoblossesforeverymilliontonneofCO2reduction.
x
Therefore, a carbon tax, based on SRP principle, should be introduced
immediately.Ifthisdecisionisdeferred,itwouldberatherdifficulttoachieve
notonlyenvironmentalobjectivesbuteconomicandsocialobjectivesaswell.
200
CHAPTER7
7 CONCLUSIONSANDRECOMMENDATIONSFOR
FURTHERRESEARCH
7.1
Conclusions
Themajorconclusionsofthisresearch,insummary,areasfollows:
x
Carbondioxide emissions (a major greenhousegas) from the electricity
industryinAustraliaaresubstantialandincreasing.
In1990,CO2emissionsfromfossilfuelcombustioninAustraliatotalled234
Mt. The electricity industry accounted for 55 per cent (128 Mt) of these
emissions. The contribution of electricity industry to total CO2 emissions
increasedto58percentin2004(184Mt).Thisrepresentsanincreaseof44
percent(from128to184MtinCO2emissionsfromtheelectricitysector),as
compared with an increase of 35 per cent (from 234 to 316 Mt) in CO2
emissionsfromfossilfuelcombustion.
Ifcurrenttrendscontinue,CO2emissionsfromfossilfuelcombustionwould
reach 432 Mt by the year 2020 – an increase of 84 per cent above the 1990
level. Over the same period, CO2 emissions from the electricity sector are
expectedtoincreaseby95percent(to250Mt)abovethe1990level.
x
Coalfired power stations account for approximately 95 per cent of total CO2
emissionsfromtheelectricitysector.
Coal has always been the dominant fuel for electricity production in
Australia, accounting, on average, for about 80 per cent of total electricity
production over the last several decades. If present policy trends (for
example,a continuinggovernmentfundingforthedevelopmentofcarbon
201
capturetechnologywitharelativelysmallmandatorytargetforrenewable
energy)continue,theshareofcoalisexpectedtodeclineonlyslightlybythe
year2020–to75percent.
The abundance of indigenous coal resources provided initial incentive for
the establishment of the coal–electricity compact. Over time, this compact
wasstrengthenedbyeconomicandpoliticalinterests.Bythemid1900s,the
ownershipoftheearlierpartprivateelectricityinterestsinvariousstatesin
Australia had transferred to the state governments. These governments
developedtheirpowerstationsbasedoncoalfieldslocatedwithinthestate.
This marked the beginning of the technological lockin of coalbased
infrastructures.Inthesecondhalfofthetwentiethcentury,aseriesoflarge
coalfired power stations were built, with government subsidies, in
anticipationofamineralsboom.Thisfurtherconsolidatedthetechnological
lockinofcoalbasedtechnology.
The economic and political interests soon transformed the technological
lockin into an institutional lockin. The use of significant public funds in
the form of subsidies in the development of power stations in the earlier
decades has allowed the direct involvement of political interests into the
electricity industry. The influence of these interests became evident in the
investment strategies, including the selection of fuel (coal) for electricity
generation. Even in the recent restructure of the electricity industry, rules
which govern the national electricity market (for example, dispatching
criteria) indirectly favour coalbased electricity generation. This
demonstrates the significance of the institutional lockin of the coal–
electricitycompactinAustralia.
x
Thecoal–electricitycompacthastraditionallyexertedastronginfluenceonthe
developmentofenvironmentalpoliciesinAustralia,includingthegreenhouse
gasreductionpolicies.
202
In the initial years of the international dialogue regarding climate change
issue, Australia acted as a global leader in proposing strategies to combat
this problem. A carbon tax was among the initial strategies that the
Australiangovernmenthadconsideredinits“interimplanningtarget”,inthe
early1990s,forreducinggreenhousegases.Later,however,astheeconomic
impacts of carbon tax became clearer, especially on fossil fuel industries,
Australiadrasticallychangeditsenvironmentalstance.
The key policy initiatives thereafter (for example, National Greenhouse
Response Strategy, Greenhouse Challenge Program, and Energy White Paper)
firmly established the stance that favoured economic objectives over
environmental objectives. Such initiatives have relied mainly on voluntary
initiatives for the reduction of greenhousegases. Overall, Australia’s
greenhousegasreductionpolicieswerecharacterisedbyafragmentedarray
of shortterm commercial and economic interests and generally lacked
considerationoflongtermenvironmentalsustainability.
The use of marketbased approach, particularly carbon tax, has been
continually rejected by the Australian federal political parties, on the
grounds that it would impede economic growth. Perspectives on these
expected impacts have created a “carbon tax phobia” among the coal
electricity interests, which have significantly influenced the government’s
greenhousepolicythinking.
x
A major premise of this research is that the opposition to carbon tax in
Australiaisbasedonlessthanadequateunderstandingaboutitsvariousfacets,
includingalternativeconceptionsofcarbontaxanditseconomywideimpacts.
Traditionally, the notion of carbon tax – as generally debated – is
formulated on the basis of Polluter Pays Principle (PPP). Based on this
principle, the polluter (emitter) is defined as the consumer of primary
energy(calleddirectenergy)wherecombustiontakesplace.CO2emissions
resultingfromthecombustionprocessesarethereforeconsideredasthesole
203
responsibility of such a consumer. A carbon tax, by this reasoning, is
expected to result in changing the behaviour of such a consumer (for
example, coalbased electricity industry) – away from the use of CO2
producing fuels. The application of carbon tax, based on this principle, is
consideredinequitablebysomeonthegroundsthatittendstopenalisebig
fossilfuel industries (such as coalbased electricity industry) and not
industries who consume the output produced by such products (for
example,householdsandcommercialsectors).
This criticism could be overcome to a large extent, it is argued in this
research,byconsideringanalternativeconceptionofcarbontax–basedon
Shared Responsibility Principle (SRP). This principle assigns the
responsibility for CO2 emissions not only to the consumer of primary
energy, but also the consumer of the products and services (for example,
electricity consumed by commercial sectors or material inputs used by
electricity sector for electricity production) whose production would have
caused CO2 emissions (such inputs are called indirect energy inputs). This
principle therefore provides a more complete representation of energy
economyenvironmental interactions. This method also promotes fairness
(intermsofemissionsaccreditation)betweenallactorsinvolved.
x
Againstthisbackground, thisresearch analysedtheeconomywideimpactsof
carbon tax, based on PPP and SRP, for reducing CO2 emissions in Australia.
These impacts included impacts on energy and nonenergy sectors of the
economy.
Theenergyimpactsareanalysedintermsofthechangesinthecomposition
of fuel and technologymix for electricity generation, arising from the
increases in the cost of electricity due to the introduction of carbon tax.
These changes are quantified in terms of primary energies required to
produceelectricity,andhenceCO2emissions.
204
Nonenergy economywide impacts are analysed in terms of net economic
costs(thatis,thenetoflossofGDPandfiscalrevenuegain), inflation,and
employment.
Twocasesareconsideredinthisresearch:
a) noapriorilimitonCO2emissions.Forthiscase,foursubcasesdenoted
PPP1, SRP1, PPP2, and SRP2, are analysed. PPP1 and SRP1 refer to the
case of a carbon tax of $10 per tonne of CO2 emissions, based on PPP
andSRP,respectively.PPP2andSRP2refertothecaseofacarbontaxof
$20pertonneofCO2emissions,basedonPPPandSRP,respectively.
b) apriori limit – equivalent to 108 per cent of CO2 emissions from the
electricity sector, as compared with 1990 level (that is 138 Mt), by the
year2020.
Thevariousimpactsarequantified,inthisresearch,intermsofdifferences
from the values that would be obtained in the businessasusual state of
affairs,calledtheBaseCasescenario(BC).
x
Themajorimpactsofcarbontax(basedonPPPandSRP)ontheenergysector
inasituationofnoaprioriemissionslimitarepresentedbelow:
The technologymix for electricity generation would be appreciably
influencedbytheintroductionofcarbontax.Particularly,carbontaxwould
resultinadeclineintheshareofcoalfiredelectricitytechnology.Acarbon
tax based on SRP would generally lead to a larger reduction (between 21
and28percent)incoalfiredpowergeneration,comparedtothatbasedon
PPP,forthesameleveloftax.Forexample,intheBaseCase(BC),coalfired
generationisexpectedtocomprise84percentoftotalgenerationintheyear
2020.InthecaseofSRP1andSRP2,thispercentageisexpectedtoreduceto
63 and 56 per cent, respectively. The corresponding values for PPP are 74
and61percent.
205
The reduction in coalfired electricity would be replaced mainly by
renewable technology. For example, in the case of a carbon tax of $20, for
bothPPP2andSRP2,theshareofrenewableisexpectedtoincreaseto28per
centin2020(ascomparedwith10percentinBC).Ontheotherhand,inthe
caseofa carbontaxof $10 (forbothPPP1andSRP1),coalfiredtechnology
wouldbereplacedmainlybynaturalgasbasedcombinedcycletechnology;
theshare ofcombinedcycletechnologywould, intheyear2020, be 14per
centforPPP1and22percentforSRP1(ascomparedwith4percentinBC).
These changes in technologymix would significantly increase the cost of
electricity, more in the case of SRP, especially at higher tax rates. For
example,in thecaseof PPP,the costof electricity,in2020,wouldincrease
from4.7¢/kWhin2004,to13.4(PPP1)and20.5(PPP2)¢/kWh.TheBCvalue
in2020isestimatedtobe4.9¢/kWh.ThecorrespondingvaluesforSRP1and
SRP2areexpectedtobe16.7and25.9¢/kWh,respectively.
Carbontaxisexpectedtoresultinasignificantdeclineintherequirements
ofprimaryenergyforelectricityproduction.Suchdeclinesareestimatedto
be 10.2, 19.9, 20.1, and 35.4 per cent for PPP1, SRP1, PPP2, and SRP2,
respectively.
Theuseofcoal(bothblackandbrowncoal)inelectricityproductionwould
reduceconsiderably,withmorereductionsinthecaseofSRP(24and31per
cent,forSRP1andSRP2,respectively)thaninthecaseofPPP(13and24per
cent,forPPP1andPPP2,respectively).Theextentofsubstitutionofcoalwith
either naturalgasor renewable varies,depending onthe rate ofchangein
technologymixfor eachcaseof carbontax.For example, inthe casePPP1,
theuseofnaturalgaswouldbe282PJhigherthantheBC.Thisisbecauseof
the increased share of natural gasbased combinedcycle in the total
electricity generation. In contrast, the use of renewable energy in the case
PPP2wouldbe406PJhigherthantheBCduetoanincreaseintheshareof
renewable technology for electricity production. Similarly, in the case of
SRP1,theuseofnaturalgaswouldbe441PJhigherthantheBC;whilethe
206
useofrenewableenergyinthecaseofSRP2wouldbe265PJhigherthanthe
BC.
ThegrowthrateofCO2emissionsfromtheelectricitysectorwouldreduce
substantially due to the introduction of carbon tax, with more reductions
forthcoming when carbon tax is applied based on SRP, as compared with
thecasewhenitisappliedbasedonPPP.InthecaseSRP2,forexample,the
CO2emissionsfromtheelectricitysector(116Mt)wouldfallbeloweventhe
Kyototarget(138Mt).Incontrast,CO2emissionsinthecasePPP2wouldbe
118percent(152Mt)ofthe1990level.Thisimpliesthat,inordertoachieve
the Kyoto target of 108 per cent (138 Mt) of the 1990 level from the
electricity sector, a higher level of carbon tax (more than $20 per tonne)
wouldberequiredifcarbontaxisbasedonPPPthanwhenthecarbontaxis
basedonSRP.
x
Major nonenergy impacts of carbon tax, based on PPP and SRP, with no a
prioriCO2emissionslimitaresummarisedbelow:
In general, the introduction of carbon tax would lead to a slowdown in
economicactivity(thatis,GDP).Forexample,inthecaseofSRP,carbontax
wouldcausetheeconomicoutputtoreduceintherangeof1.9($120billion)
to3.5($219billion)percentofitsexpectedvalueintheBC($6325billion),
over the period 2005–2020. The corresponding reductions for PPP are 0.9
($56billion)and1.6($102billion)percent.
However,overthisperiod,theintroductionofcarbontaxwouldyield,for
thegovernment,ataxrevenueofbetween$28and$53billioninthecaseof
PPP,and$74to$135billion,inthecaseofSRP.Foracarbontaxbasedon
PPP, more than 50 per cent of tax revenue would be collected from the
electricitysectoralone,particularlyfromcoalfiredgenerators.Inthecaseof
SRP, the commercial sector (a major electricity and materials consumer)
would be penalised significantly. Its share of tax revenue would increase
from1percent(forPPP)toover20percentforSRP.
207
Considering both economic impacts, namely, the reduction in GDP and
gainintaxrevenue,theneteconomiccostsfromtheintroductionofcarbon
taxwouldbeintherangeof$27to$49billionforPPP,and$47to$84billion
forSRP.
A reduction in economic output due to the introduction of carbon tax
wouldalsocauseareductioninthelevelofemployment,intherangeof2.8
to5.5percent,withslightlymorereductioninthecaseofSRPthaninthe
caseofPPP.Foracarbontaxof$10pertonne,theemploymentwouldbe2.8
per cent less, as compared with the BC scenario, for PPP,and 3.2 per cent
less for SRP. Further, the technologymix induced by the introduction of
carbon tax would cause a shift of employment from the coal sector to the
gas sector, and from coalfired electricity sector, to combinedcycle and
renewableelectricitysectors.
x
Themajorimpactsofcarbontax–inasituationofanaprioriCO2emissions
limit equivalent to 108 per cent CO2 emissions from the electricity sector as
comparedwith1990level(thatis138Mt)bytheyear2020–arenotedbelow:
Whenacarbontaxisintroducedin2005(earlyaction),taxratesof$25and
$15 per tonne of CO2 would be required in the PPP and SRP approaches,
respectively. The total economywide CO2 emissions in these cases would
rangebetween291(SRP)and300(PPP)Mt–approximately24(SRP)and28
(PPP)percenthigherthanthe1990economywideCO2emissions(234Mt)
and about 30 per cent less than the BC scenario (432 Mt). This carbon tax
(bothPPPandSRP)wouldcausetheshareofcoalfiredpowergenerationto
reduce to 58 per cent of total generation. In the case of PPP, the share of
renewable and naturalgasfired combinedcycle electricity would increase
to 31 and 9 per cent, respectively. The corresponding shares in the case of
SRPwouldbe23and17percent.Consequently,thiswouldcausethecost
ofelectricitytoincreaseto23.9¢/kWh,inthecaseofPPP,and21.3¢/kWhin
thecaseofSRP.CarbontaxbasedonSRPwouldhaverelativelymildernet
economicandsocialimpactsascomparedwithataxbasedonPPP.Thisis
208
because,forSRP,thehigherimpactonGDP($170billionreduction)would
be offset by high revenues ($135 billion) received by the Government. The
overallneteconomiclosseswouldbe$35and$60billion,forSRPandPPP,
respectively. Further, 245 thousand more jobs (2.6 per cent) would be lost
underthePPP,ascomparedwithSRP.
When a carbon tax is introduced in 2010 (deferred action), the impacts
wouldbemuchhigher–ataxof$51pertonnewouldbeneededinthecase
ofPPPtoachievetheaprioriCO2emissionstarget.InthecaseofSRP,atax
of $26 per tonne would be needed to meet the CO2 emissions target. The
costofelectricity,inthecaseofPPPandSRP,areexpectedtoreach30.8and
24.3¢/kWhintheyear2020,comparedwith23.9and21.3¢/kWhinthecase
ofearlyaction.Thesocialimpactsofdeferredactionwouldalsobehigher.
Nearly45,000and171,000morejobslosseswouldoccurinthecaseofSRP
and PPP, respectively. However, the overall economic impacts of deferred
action, expressed in present value terms, for the period 2005–2020, are $18
and$32billionlowerascomparedwiththecaseofearlyaction,forSRPand
PPP,respectively.Onemightthereforeinferthatadelayedintroductionof
carbontaxismoredesirable.Suchinferencewouldhoweverbeerroneous,
this research has shown. For example, if the overall economic impacts are
expressedinfuturevalueterms,oriftheperiodofanalysisisextendedtothe
year 2040, entirely different inferences could be drawn – such analysis
suggeststhattheearlyintroductionofcarbontaxisabetterproposition.
x
Overall, the analysis in this research suggests that a carbon tax based on SRP
offers a relatively more attractive approach to simultaneously meeting
environmental,economic,andsocialobjectives.Byadoptingsuchanapproach
immediately,everymilliontonneofreductioninCO2wouldincuracost$252
millionandwouldresultin2239joblosses.Ifhowevertheadoptionofsuchan
approachisdeferred,itwouldcostanadditional$51millionandresultin289
morejobslossestoachieveeverymilliontonneofreductionofCO2.Ifacarbon
tax, based on PPP, is adopted immediately, it would cost an additional $202
209
million and result in 1995 more job losses for every million tonne of CO2
reduction.
x
Therefore, this research recommends an early introduction of a carbon tax,
basedonSRP.Ifthedecisionforintroducingsuchataxisdeferred,itwouldbe
ratherdifficulttoachievenotonlyenvironmentalobjectivesbuteconomicand
socialobjectivesaswell.
7.2
SomeRecommendationsforFurtherResearch
Somesuggestionsforfurtherresearchincludethefollowing:
a)
Theeconomicimpactsofcarbontaxanalysedinthisresearchpresentsonlyone
side of the story, that is, costs imposed on the economy if a carbon tax is
introduced, or simply – the cost of action. The cost of inaction, and the
consequentialdamagethatcouldbecausedbyincreasedglobalwarming,was
not considered in this research. Such cost may include cost of remedy or
economic adaptation to the new environmental settings which would result
from the climate change. It is suggested that future research should analyse
both–theeconomicandenvironmentalcostsofactionaswellasinaction.This
would enhance the policy maker’s appreciation for the wide impacts of their
policychoices.
b)
This research has applied essentially topdown approaches (for example,
Input–outputandProductionfunction)fortheanalysisoftheimpactsofcarbon
tax.Theenergysystemhasbeenrepresentedintheformofenergyandmaterial
flowsintheeconomy.Anintegrationofbottomupapproach(suchasReference
EnergyMaterialSystemAnalysis,seeSection4.3.3),withtopdownapproaches
developed in this research, could allow a wide range of environmental policy
options (for example, supply and demandside management, material
substitution,materialrecycling,etc.)tobeassessed.However,lackofdatamay
beamajorchallengeforsuchanapproach.
c)
210
The analysis of embodied energy has been computed, in this research, from
monetaryinput–outputtables.Formoreaccurateanalysis,Input–Outputtables
expressedinphysicalunits(forexample,kWh,ton,m3,m2,etc.)shouldbeused.
However,thislevelofdetailiscurrentlyunavailableforAustralia.
d)
Themultilevelproduction(cost)functionmodelemployedinthisresearchwas
applied for the electricity industry only. Although the utility (expenditure)
function model was also applied in this research to allow for the changes in
finaldemand(suchasconsumptionandexports),thisstilllimitstheassessment
of full economic response to the introduction of carbon tax. Future research
shouldemploysuchanalysisforallproductionsectorsoftheeconomy(notjust
electricity). This can be done by applying a “flexible” form of production
function for all production sectors (as was done, in this research, for the
electricitysector).
e)
In this research, the electricity sector has been disaggregated into five
generation technologies to allow for technological shifts between emission
intensiveandcleanertechnologies.Similarapproachofdisaggregationforother
economic sectors could also be considered. This would deepen the scope of
technological adjustments in the economy, for example, in response to the
increases in the prices of emissionintensive technologies due to the
introduction of carbon tax. For example, road transport can be disaggregated
intodifferenttypesofvehiclemodes,suchascars,buses,trucks,trains,etc.,in
ordertoallowshiftsbetweendifferenttypesofvehiclesinresponsetoacarbon
tax.
f)
Thisresearchusedacommoninterestratetoestimatesthepriceofcapital(for
use in the production function model) for different types of electricity
technologies(seeSection5.7.2,p.132).Inreality,differenttypesoftechnologies
arelikelytobefacedwithdifferentinterestrates.Theuseofsuchrateswould
improvethequalityofanalysis.
g)
211
This research has analysed carbon tax based on CO2 emissions. It is
recommendedthatothertypesofemissions(suchasSO2,N2O,NOx,CH4,etc.)
should also be included in the analysis. Further, if all types of environmental
emissions (and negative externalities) are considered, it would be worthwhile
to analyse the impact of replacing existing tax system (that is, tax based on
labour or income) with a comprehensive environmental tax (that is, tax based
onenvironmentaldisruptions).
h)
Thepossiblealternativeusesofcarbontaxrevenue havenotbeenanalysedin
this research. Such analysis could provide valuable insights for formulating
policyprioritiesfordevelopingsustainabilityenhancingprojects.
i)
This research has considered the impacts arising from the introduction of a
(domestic) carbon tax in Australia. For climate change (which is a global
problem),aworldwideanalysisshouldbecarriedout;thiscouldprovidebetter
insights for developing multilateral responses to redress the environmental
problems.
j)
Although this research has analysed the impacts of carbon tax, the ideas
developed in this research (that is, the idea of Shared Responsibility Principle
based on materialsbalance framework) could also be applied to analyse
alternative environmental policies, such as, emissions trading. In this case, it
canbedoneviatheconceptof“reallocation”ofpermitsandtheimpactsofsuch
reallocation.
212
APPENDIXA
ExampleofEmissionsAllocation:PPPvs.SRP
This appendix presents a simplified numerical example for apportioning the
responsibility for CO2 emissions to various economic sectors based on the Polluter
PaysPrinciple(PPP)andtheSharedResponsibilityPrinciple(SRP).
Assumesahypotheticaleconomyconsistingoffoursectors:primaryenergy,electricity,
industry (I), and household (H). Two types of primary energy – fossil (F) and
renewable (R) – are available in the economy. Electricity is produced from this
hypothetical economy using two types of technologies – fossilfuelbased (ESIF) and
renewablebased(ESIR).Emissionsfactorsforfossilandrenewableenergyareassumed
tobe100and0ktonnesperPJ,respectively.
WithreferencetoPPP,asdiscussedinSection3.3.2,energyconsumedintheeconomy
canberepresentedinanenergybalanceframework,asshowninFigureA1.Here,the
flowofenergyisrelativelystraightforward,beginningwithprimaryenergyextraction
from the environment, to energy conversion (in power plants), and ending with its
consumptionsinvariousenduses(forexample,cookinginhouseholds,motivepower
inindustries).
FigureA1
Energybalanceframework
213
Emissions,basedonPPP,areasfollows:
kt
PJ
ESI R
20 PJ u 0
ESI F
80 PJ u100
I
H
50 PJ u100
kt
PJ
0Mt
kt
PJ
8Mt
5Mt
0Mt
TotalEmissions=13Mt
As shown in the above calculation, fossilfuel consumers are responsible for most of
theemissionsintheeconomy(thatis,fossilfuelbasedelectricityproductionsectoris
responsible for 62 per cent (8 Mt), and industrial sector for 38 per cent (5 Mt), of
emissions).
Incontrast,emissionsallocationaccordingtoSRPcanberepresentedinanmaterials
balance framework, as shown in Figure A2. Here, in addition to energy flows as
shown in energybalance framework, material flows in the economy are also shown.
For example, renewable electricity industry is shown as the consumer of primary
renewable energy, electricity from its own production, and materials from industrial
output. For simplicity, it is assumed that the production of primary energy does not
require any input. The input pattern of each production and consumption sector
withinmaterialsbalanceframeowrkisshowninFigureA3.
214
FigureA2
Materialsbalanceframework
FigureA3
Specificationofproduction/consumptionpattern
FromFigureA3,inordertoproduce1TWhofelectricityfromrenewabletechnology,
0.1TWh of electricity and 0.56tons of material are consumed; fossilfuel based
technologyconsumes0.1TWhofelectricityand0.3tonsofmaterial;onetonofmaterial
production would require 1.6TWh of electricity and 0.07tons of material; and each
householdwouldconsume0.2TWhofelectricityand0.07tonsofmaterialfor$1oftheir
consumptionexpenditure.
215
Emissions,basedonSRP,areasfollows:
ESI R
ª§
kt
kt
· §
·º
«¨ 20 PJ u 0 PJ u 0.1¸ ¨ 50 PJ u 100 PJ u 0.56 ¸ »
¹ ©
¹¼
©
ESI F
ª§
kt
kt
· §
·º
«¨ 80 PJ u 100 PJ u 0.1¸ ¨ 50 PJ u 100 PJ u 0.3 ¸ »
¹ ©
¹¼
©
I
H
3.1Mt
2.1Mt
ª§
kt
kt
kt
· §
· §
·º
«¨ 80 PJ u 100 PJ u 0.8 ¸ ¨ 20 PJ u 0 PJ u 0.8 ¸ ¨ 50 PJ u 100 PJ u 0.07 ¸ »
¹ ©
¹ ©
¹¼
©
6.7Mt
ª§
kt
kt
kt
· §
· §
·º
«¨ 80 PJ u 100 PJ u 0.1¸ ¨ 20 PJ u 0 PJ u 0.1¸ ¨ 50 PJ u 100 PJ u 0.07 ¸ » 1.1Mt
¹ ©
¹ ©
¹¼
©
TotalEmissions=13Mt
As shown in the above calculation, emissions based on SRP are allocated differently
from emissionsthatarebasedonPPP. SRPconsidersboth directandindirectenergy
consumption. Here, industrial, renewable electricity, fossilfuel based electricity, and
householdsareresponsiblefor52,24,16,and8percent,respectivelyoftotalemissions
intheeconomy.Thecontributiontoemissionsofrenewableelectricityisgreaterthan
fossilfuel based electricity. This is because the former consumes more emission
intensivematerialsperunitofelectricityproducedthanthelatter.
216
APPENDIXB
DescriptionofInput–outputandProductionFunctionModels
This appendix describes the key elements of input–output model and production
functionmodel–twomodelsusedinthisresearch.
B.1 Input–outputModel
Thissectionpresentsthefundamentalstructureofinput–outputmodel.Thisstructure
servesasthebasisforallinput–outputanalysisinthisresearch.Thedescriptioninthis
section mainly draws from wellestablished literature on this topic, for example,
Miernyk (1965), BulmerThomas (1982), and Miller & Blair (1985). First, a brief
backgroundofinput–outputmodelisprovided.Then,therelationshipbetweeninput–
output table and national accounts is discussed. This is followed by a discussion of
basicinput–outputmodel.Next,theinput–outputpricemodelisdiscussed.Finally,a
dynamicversionofinput–outputmodelispresented.
B.1.1 BackgroundofInput–outputModel
Input–outputmodelhasitsoriginsintheeighteenthcentury–‘TableauÉconomique’of
FrançoisQuesnay(1758).Quesnayshowedhowsalesandexpenditurescouldbetraced
in an economy in a systematic way. The next major contribution in this regard was
made by Léon Walras (1874), who developed a general equilibrium model in an
attempt to solve simultaneously the demand and supply balance of all economic
sectors.Thisworkemployedasetofproductioncoefficientsthatrelatedthequantities
of factors required to produce a unit of a particular product to the levels of total
productionofthatproduct.Bothworksdemonstratedthepracticalusefulnessofbeing
abletodescribeinterindustrylinkages.However,thelackofsophisticatedmethodsto
compilecomprehensivedatarequiredforanalysisandthedifficultiesinmanipulating
vastamountsofinformationlimitedthepotentialusefulnessofthistypeofanalysis.It
was only when Wassily Leontief (1936) presented an input–output system of the US
217
economy and developed a more rigorous analytical framework that the use of this
techniquebecamepopular.Somuchsothatovertheyearsthismethodhasbecomeone
ofthemostwidelyappliedmethodineconomics.
B.1.2 Input–outputTableandNationalAccounts
The basic Leontief input–output analysis is generally constructed from observed
economic data for a specific geographic region. It includes the activities of industries
thatbothproducegoods(outputs)andconsumegoodsfromotherindustries(inputs)
in the process of production. The fundamental information with which one deals in
input–outputanalysisiscontainedininput–outputtable.
The input–output table constitutes a concise and systematic database that provides
usefulinformationonacompletesetofincomeandproductsaccountinaneconomy.
This input–output table describes the flow of goods and services between all the
individual sectors of an economy over a particular time period. The schematic of
input–outputtableispresentedinFigureB1.
SchematicrepresentationofInput–outputtable
TotalOutput
Producers(i)
FigureB1
218
Each rows of this table describes the allocation of a sector’s output throughout the
economy. The output of sectors from row i that are distributed to other production
sectorsineachcolumnjarecalledintermediategoods.Thisislocatedinquadrant‘A’
ofinput–outputtable.Thisinterindustryflowisregardedasthecoreofinput–output
analysis.Further,theoutputofsectorithatdistributedtofinalmarkets(suchasoutput
required for final consumption, investment, and exports) are called final demand
goods. These final demand sectors represent household consumption, government
consumption, consumption for investment purposes, and exports. This final demand
category constitutes the gross national product of the economy and is located in
quadrant ‘B’ of input–output table. If the economy is divided into n sectors, the
relationshipofeachrowinFigureB1canbeexpressedas:
Xi
n
¦x
ij
Yi (B1)
j 1
where
Xi:
totaloutput(production)ofsectori;
xij:
outputofsectoriusedbysectorj(orintermediategoods);and
Yi:
totalfinaldemandforsectori.
Ontheotherhand,eachcolumnoftheinput–outputtabledescribesthecompositionof
inputsrequiredbyaparticularindustry.Theseinputsaresuppliedbyotherindustries
(intheformofintermediateinputs),fromprimaryfactorsofproduction(intheformof
valueadded), and from imports. The primary production factor and purchases of
imported inputs are located in quadrant ‘C’. If the imports row in quadrant ‘C’ is
movedtotheappropriateexportscolumninquadrant‘B’tomakea‘net’exports,the
onlyremainingvalueaddedwouldrepresentsthegrossnationalincome(i.e.,income
totheownersofprimaryproductionfactors)intheeconomy.SimilartoequationB1,
therelationshipofeachcolumninFigureB1canbeexpressedas:
Xj
n
¦x
ij
i 1
where
Vj (B2)
219
Xj:
totalinputofsectorj;
xij:
outputofsectoriusedbysectorj(orintermediategoods);and
Vj:
totalvalueaddedforsectorj.
TheexpressionsinequationB1andequationB2constitutetherelationshipbetween
input–output table and the national account in terms of gross national income and
grossnationalproducts.Thisrelationshipwouldallowtheanalysistobecarriedoutat
adisaggregatedmicroeconomiclevelandatanaggregatemacroeconomiclevelatthe
sametime(Proops,Faber&Wagenhals1993).
Inordertocompletethediscussiononthestructureofinput–outputtable,itisworth
mentioning that the elements in quadrant ‘D’ (the intersection of the final demand
column and the valueadded row) represent payments by final consumers for value
addeditems(Miller&Blair1985).
B.1.3 BasicInput–outputModel
TheexpressioninequationB1providesausefulrepresentationofeconomicactivities
atdisaggregatelevels.However,itisinsufficientforthepurposeofempiricaleconomic
analysis (Proops, Faber & Wagenhals 1993). For example, it is not possible for using
expressioninequationB1todeterminethesectoraloutputandinputrequirementsto
meetacertainlevelofeconomicgrowthfromdemandsidepolicyinitiatives.
InordertomakeuseoftheexpressioninequationB1forempiricaleconomicanalysis,
it is necessary to modify the economic representation in input–output table into an
appropriate functional form. This is typically accomplished by assuming a linear
production function57 called Leontief production function (further discussion on
productionfunctionispresentedinSectionB.2).
In basic microeconomics theory, a production function denotes that maximum output that
couldbeproducedfromagivensetofinputswiththehelpoftheexistingtechnology(Miller
&Blair1985).
57
220
Thisassumptionimpliesthatthereexistsafixedrelationshipbetweenasector’soutput
anditsinputs.Inotherwords,itimpliesafixedproportionalityofinputswithoutputs
in each sector. As a result, the input–output model ignores the economies of scale in
productionaswellasthepossibilityofsubstitutionbetweenfactorsofproduction.
Assuming Leontief production function, the inputs to a particular sector can be
expressedbythelinearrelations:
xij
aij X j œ aij
xij
Xj
(B3)
where
aij:
Input–output(technicalortechnological)coefficients.
These coefficients define the inputs purchased by sector j from sector i per monetary
unitofsector’sjoutput.Thetechnicalcoefficientsareassumedtobeconstantininput–
outputanalysis.
BysubstitutingrelationshipB3intoequationB1,theoutputequationbecomes:
Xi
n
¦a
ij
X j Yi (B4)
j 1
Here the output of sector i is the sum of final demand for that sector and its
intermediate demand required by sector j. The equation B4 illustrates the
interdependence between all sectors in an economy in terms of interindustry flows
(Miller & Blair 1985). For a n sector economy, equation B4 will have a system of n
(linear) simultaneous equations, describing the use of each sector’s output in the
economy.ThesystemofnsimultaneousequationsforexpressionB4canbewrittenin
amatrixformas:
ª X1 º
«X »
« 2»
« # »
« »
¬Xn ¼
ª a11
«a
« 21
« #
«
¬ an1
a12
a22
#
an 2
! a1n º ª X 1 º ª Y1 º
! a2 n »» «« X 2 »» ««Y2 »»
˜
% # » « # » «#»
» « » « »
! ann ¼ ¬ X n ¼ ¬Yn ¼
(B5)
221
TheequationB5canbesimplifiedinitscondensedmatrixformas:
X
AX Y œ X AX
Y
(B6)
where
X:
columnvectorsofsectoraloutputs;
Y:
columnvectorsofsectoralfinaldemand;
A:
matrixoftechnicalcoefficients.
Usingthebasicconceptsofmatrixalgebra,with‘I’astheunitidentitymatrix,equation
B5canbereorganisedtogive:
X
I A
1
Y
(B7)
Equation B7 is the fundamental matrix representation of input–output model. The
inverse matrix ( I A) 1 is known as the ‘Leontief inverse matrix’. This matrix is a
complicated expression indicating all of the direct and indirect requirements for
productionintheeconomy(Cruz2002).Tomaketheabovestatementclearer,equation
B7isdecomposedintoinfiniteseriesofmatrixproductsas:
X
I A A
X
Y AY A Y A Y ! A Y 2
A3 ! Af ˜ Y 2
3
f
(B8)
(B9)
AspointedoutbyProopsetal.(1993,p.112),Y–theentityontherighthandsideto
theequationB9–representsthedirecteffectrequiredtofulfiltheincreaseinthefinal
demand,whereastherestoftheentitiesrepresentindirecteffectoftheincreaseinfinal
demand.
B.1.4 PricesinInput–outputModel
Thediscussionofinput–outputmodelinSectionB.1.3focusedonoutputidentity(that
is, it focused on total output derived from equation B1). In fact, the specification of
input–output model allows the consideration of duality – quantity and price –
problem.Theflowswithintheinput–outputtable,asdiscussedearlier,arerepresented
222
in value terms (that is, quantity x price). Therefore, the price identity can also be
representedintheinput–outputmodel.
Using primaldual relationship within input–output model, equation B2 can be
writteninpriceformas:
n
¦ a P V
Pj
ij i
j
(B10)
i 1
where
Pj:
pricesofsectorjproducts;
Pi:
priceofinputipaidbysectorj;and
Vj:
ratioofsector’sjvalueaddedtoitstotaloutput.
From equation B10, the price of any particular sector j depends on the use of
intermediateinputsandtheuseofprimaryinputsasafactorofproduction.
SimilartoequationB5,thecompletepricesystemcanbewritteninmatrixnotationas:
ª P1 º
«P »
« 2»
«#»
« »
¬ Pn ¼
ª a11
«a
« 12
« #
«
¬ a1n
a21 ! an1 º ª P1 º ªV1 º
a22 ! an 2 »» «« P2 »» ««V2 »»
˜
# % # » «#» «#»
» « » « »
a2 n ! ann ¼ ¬ Pn ¼ ¬Vn ¼
(B11)
EquationB11canbesimplifiedinitscondensedmatrixform,similartoequationB6
as:
P
AcP V œ P AcP V (B12)
where
P:
vectorofsectoralpriceindices;and
V:
matrixwhosegenericelements–vij–representtheratioofsectoralvalueadded
tototaloutput.
Usingthebasicconceptsofmatrixalgebra,with‘I’astheidentitymatrix,equationB12
canbereorganisedas:
223
P
I Ac
1
V
(B13)
EquationB13istheLeontief’spricemodel.Thismodelcanbeusedto‘assesstheimpact
on prices throughout the economy of an increase in valueadded costs in one or more sectors’
(Dixon&Rimmer2000;Kula1998;Melvin1979;Miller&Blair1985,p.356).
Additionally, the impact of changes in the cost of a particular product (instead of
valueaddedcosts)onothersectorpricescanbeanalysedwithininput–outputmodel.
Thiscanbedoneby exogenouslyspecifyingsuchproductpricesandexcludingthem
from the traditional Leontief’s price model discussed above (Miller & Blair 1985;
Valadkhani&Mitchell2002).Forinstance,theimpactofchangesinenergyprice(PE)
on other material prices (PM) can be analysed by assuming PE as exogenous and
estimating PM endogenously. Thus, according to Valadkhani and Mitchell (2002),
equationB12canbeseparatedintoexogenousandendogenouscomponents:
ª PE º
«P »
¬ M¼
c
ª AEE
« Ac
¬ EM
c º ª PE º ª VE º
AME
˜
c »¼ «¬ PM »¼ «¬VM »¼
AMM
(B14)
With PE omitted from the traditional price model, in order to find PM, equation B14
canbewrittenas:
PM
c PE AMM
c PM VM AEM
(B15)
SimilartoequationB13,equationB15canbewrittenas:
PM
1
1
ª I AMM
c AEM
c PE º ª I AMM
c VM º ¬
¼ ¬
¼
(B16)
Equation B16 can be used to assess the impact of changes in price of one or more
sectorthroughouttheeconomy.
B.1.5 CapitalStocksinInput–outputModel
The discussion of input–output model so far has focused on current flows of goods,
needed for current production. The technical coefficients ‘A’ reflect the (fixed)
relationshipbetweenthesecurrentflows.However,goodsproducedintheeconomyat
aparticulartimenotonlyfulfilcurrentdemandbutalsocontributetothebuildupof
224
capitalstock.Inthebasicinput–outputmodel,thiscapitalstockisconsideredasapart
offinaldemand(inquadrant‘B’,inFigureB1).Itislumpedtogetherinasinglesector
called“grossfixedcapitalexpenditure(investment)”.Sincetheseinvestmentgoodsare
ultimately used as inputs in production processes, they can be treated as a part of
intermediatedemand(forcapital)ratherthanoffinaldemand.Followingthemethod
proposed by Lenzen (1998), the investment vector needs to be internalised into the
intermediatedemandmatrixandsubtractedfromthefinaldemandmatrix.
Lettheoutputofsector ithatisheldbysectorjascapitalstockbedenotedaszij.An
extensionofequationB1,byexplicitlyconsideringinvestment,canbewrittenas:
Xi
n
n
¦x ¦z
ij
j 1
ij
Yi (B17)
j 1
Here, Yi referstoallfinaldemandcategoriesexcludingthedemandforinvestment.
Again,assumingaLeontiefproductionfunction,thecapitalstockheldbyaparticular
sectorcanbeexpressedbythelinearrelations:
zij
zij
kij X j œ kij
Xj
(B18)
where
kij:
capitalcoefficients.
These capital coefficients are defined as the quantities of capital required by sector j
thataresuppliedfromsectoripermonetaryunitofsector’sjoutput(Miernyk1965).
Similartothetableoftechnicalcoefficients,atableofcapitalcoefficientsshowscapital
requirementsperunitofcapacitybyindustryoforigin,foreachindustryintheinput–
outputmodel.
BysubstitutingrelationshipB18intoequationB17,theoutputequationbecomes:
Xi
n
n
j 1
j 1
¦ aij X j ¦ kij X j Yi (B19)
225
Heretheoutputofsectoriisthesumfinaldemandforthatsector,theoutputrequired
forproductiondemandforallsectors,andtheoutputrequiredforinvestmentdemand
forallsectors.
For a n sector economy, equation B19 will have a system of n (linear) simultaneous
equations,describingtheuseofeachsector’soutputthroughouttheeconomy.Thiscan
bewritteninacondensedmatrixformas:
X
AX KX Y œ X AX KX
Y (B20)
where
X:
columnvectorsofsectoraloutputs;
Y*:
columnvectorsofsectoralfinaldemandexcludingdemandforinvestment;
A:
matrixoftechnicalcoefficients;and
K:
matrixofcapitalcoefficients.
Usingthebasicconceptsofmatrixalgebra,with‘I’astheunitidentitymatrix,equation
B20canbereorganisedtogive:
X
1
ª¬ I A K º¼ ˜ Y (B21)
Becausethe‘K’matrix,derivedfrominput–outputtable,givestheoriginofinvestment
inputs to each sector in the year of the survey, there can be severe distortions in the
analysisifthismatrixisadoptedforoneyear.Toavoidsuchdistortion,Miernyk(1965)
andPeet(1993)suggestedtheuseofweightedmeancapitalcoefficientsderivedfrom
several input–output tables. This would levelise the use of investment input, over a
certainperiod,forvariousproductionprocessesintheeconomy.
B.2 ProductionFunctionModel
Thissectiondescribestheconceptualunderpinningsoftheproductionfunctionmodel
employedinthisresearch.Themodeldescribesinthissectionmainlydrawsfromwell
knownliteratureonproductionfunctionmodels,forexample,Christensenetal.(1971;
1973), Binswanger (1974), Berndt and Wood (1975), and Jorgenson (2000). First, a
226
comparison is made between the general Leontief production function and other
neoclassicalproductionfunctions.Then,abriefbackgroundofneoclassicalproduction
function is given. This is followed by a discussion of production function model that
couldusetheconceptofdualitybetween‘cost’and‘production’forempiricalanalysis.
Then the econometric specification of the cost function model employed in this
researchisdiscussed.Finally,thederivationofelasticitiesfromthecostfunctionmodel
ispresented.
B.2.1 Leontiefvs.NeoclassicalProductionFunctions
In microeconomics theory, a production function denotes that maximum output that
couldbeproducedfromagivensetofinputswiththehelpoftheexistingtechnology
(Miller&Blair1985).Ageneralformofproductionfunctionwhichrelatestheinputsof
capital,labour,energy,andmaterialstotheproductioninanysector(oranycolumnof
input–outputtable)canbewrittenas:
X
f xK , x L , x E , xM (B22)
where
X:
totalsectoraloutput;
xK :
capitalinput;
xL :
labourinput;
xE :
energyinput;and
xM :
materialinput.
AsmentionedinSectionB.1,theinput–outputmodelassumesafixedproportionality
of input–output (technical) coefficients. This assumption implies a linear (and fixed)
relationshipbetweenasector’soutputanditsinputs.Thistypeofproductionfunction
iscalledaLeontiefproductionfunction.Fromthedefinitionoftechnicalcoefficientsin
equationB3,theLeontiefproductionfunctioncanbewrittenas:
X
§x x x x ·
f¨ K, L, E, M ¸
© c K c L a E aM ¹
§x x x x ·
min ¨ K , L , E , M ¸ © c K c L a E aM ¹
(B23)
227
FortheproductionfunctiongiveninequationB23,whenthedenominatorisnotzero,
the ratios of all elements will be constant and equal to X. This clearly reflects the
assumptionofconstantreturntoscale.ThisLeontiefproductionfunctionisshownin
Figure B2 (a). The isoquants (curve of constant output), using a combination of two
inputs,areshownasrightangledstraightlines.Here,theproportionofinputsx1and
x2toproduceaparticularlevelofoutputisconstant.Inputsubstitutionisnotpossible.
Whenonefactorinputisdecreased,itcannotbesubstitutedwithotherinput.Rather,
the producer has to decrease the level of production, for instance, shift of isoquant
from‘b’to‘a’.
FigureB2
Productionfunctions:(a)Leontief;(b)Neoclassical
Ontheotherhand,aneoclassicalproductionfunctioncanberepresentedasinFigure
B2 (b). Here, in contrast with the Leontief production function, input substitution is
possible.Thisisindicatedbytheisoquantshowingalternativeinputcombinationsthat
can producethesameamountofoutput.The negativeslopesofthe isoquantsmeans
that when one input is decreased, it will be substituted with other input in order to
maintainthesamelevelofproduction.
Hence, the neoclassical production function is more flexible than the Leontief
productionfunction.Itreflectseconomicrationalisingbehaviourparticularlyinthatit
allowstheproducer(andconsumer)tosubstitutesoneinputwithanother.
228
B.2.2 BackgroundofNeoclassicalProductionFunction
TheneoclassicalproductionfunctionwasfirstdevelopedbyCobbandDouglasinthe
year 1928 (Cobb & Douglas 1928). The CobbDouglas production function relates
physical output to capital and labour inputs. This type of production function has a
constant (equalto 1) elasticityofsubstitution.Thenext majorcontribution wasmade
byArrowetal.intheyear1961(Arrowetal.1961).Theproductionfunctiondeveloped
byArrowetal.alsohasaconstantelasticityofsubstitution,butitwasnotrestrictedto
unity. This type of production function is known as the Constant Elasticity of
Substitution(CES)productionfunction.Thelimitationofbothfunctionalforms(Cobb
Douglas and CES), especially the underlying constant elasticity of substitution, have
arbitrarily restricted the patterns of producer behaviour (Jorgenson 2000). This
limitation has led to the development of a more flexible form of production function
that allows the elasticity of substitution between inputs to vary. This type of
production function is called the Transcendental Logarithmic (Translog) production
functiondevelopedbyChristensenetal.(1971;1973).Sinceitsinception,theTranslog
hasbecomethemostfrequentlyappliedfunctionalformforestimatingtheelasticities
ofsubstitution.
B.2.3 ProductionCostFunction
Ratherthantodirectlyemployaproductionfunctionwhichdescribestherelationship
betweenquantityofoutputandinput(seeequationB22),itismoreusefultousethe
dualcostfunctionwhichsetsupsuchrelationshipintermsofcostsandprices.Thisis
mainly because each production sector chooses its level of output based on factor
prices.Thereforefactorprices,ratherthanquantitiesofinputs,shouldbeconsideredas
independent variables. Also, the costprice data are easily available as compared to
quantitydata.Ifthefactorpricesareavailable,thetheoryofdualitybetweencostand
production (Shephard 1953) implies that, given costminimising behaviour, the
characteristicsofproductionimpliedbyequation(B22)canberepresentedbyaunit
outputcostfunctionintheformof:
G
g PK , PL , PE , PM (B24)
229
where
G:
costofproducing1unitofoutput;
PK :
priceofcapital;
PL :
priceoflabour;
PE :
priceofenergy;and
PM :
priceofmaterial.
The cost function is theoretically consistent if it satisfies the following assumptions
(Jorgenson2000):
Positivity:Thecostfunctionispositiveforpositiveinputpricesandapositive
levelofoutput.Thismeansthatthefittedcostsharesininputdemandfunction
arenonnegative.
Homogeneity: The cost function is homogenous of degree one in the input
prices.Thismeansthatanequiproportionateincreaseinthefactorpricesofall
inputswillincreasecostsbythesameproportionateamount.
Monotonicity:Thecostfunctionisnondecreasingintheinputpricesandinthe
levelofoutput.Thisimpliesthatparametersestimatedfromcostfunctionmust
bepositive.
Concavity: The cost function is concave in the factor prices. This implies that
the Hessian matrix within the range of factor prices is negative semidefinite,
i.e.estimatedownpriceelasticitymustbenegative.
B.2.4 EconometricSpecification
The Translog cost function is a secondorder approximation in logarithms to an
arbitrary cost function and it imposes no prior restrictions on the elasticities of
substitutionandthepriceelasticitiesofdemand.ThefunctioninequationB24canbe
expressedas:
230
ln D 0 ¦ D i ln Pi ln G
i
1
¦¦ J ij ln Pi ln Pj , i, j  ^K , L, E , M ` 2 i j
(B25)
where
unitcost;
G:
Pi,Pj: factorprices;and
D , J : parameterstobeestimated.
The assumption of linear homogeneity in factor prices, as discussed earlier, imposes
thefollowingparameterrestrictions:
¦D
i
1,
ij
¦J
i
¦J
i
0, ij
(B26)
j
J ij z J ji ,
iz j
BylogarithmicallydifferentiatingequationB25,weget:
w ln G
w ln Pi
wG Pi
˜
wPi G
D i ¦ J ij ln Pj , i, j  ^ K , L, E , M ` (B27)
j
Shephard’sLemmadealswiththepartialderivativeofthecostfunctionwithrespectto
the price of the ith input, i.e., wG wPi
X i (Diewert 1974). Applying this lemma to
equationB27leadstothefactorsharesystem:
Pi X i
G
Si
D i ¦ J ij ln Pj , i, j  ^ K , L, E , M ` (B28)
j
where
Si:
costsharesoftheithinputforunitproduction.
Duetotherestrictionoflinearhomogeneityinfactorprices,allcostsharesalsosumup
tounity,i.e.,
¦S
i
1 wheni=K,L,E,M.
i
ItisalsoworthwhiletofurthermentionherethattheTranslogcostfunctionturnsinto
the CobbDouglas form if substitution elasticities are restricted to unity. This,
231
accordingtoBinswanger(1974),ariseswhenparameters J ij inequationB25equalto
zero.Accordingly,thelogarithmiccostfunctioninCobbDouglassformcanbewritten
as:
ln D 0 ¦ D i ln Pi , i, j  ^ K , L, E , M ` ln G
(B29)
i
Again,bylogarithmicallydifferentiatingequationB29,weget:
w ln G
w ln Pi
wG Pi
˜
wPi G
D i , i, j  ^ K , L, E , M ` (B30)
ApplyingShephard’sLemmatoequationB30,costsharesequationyields:
Pi X i
G
D i , i, j  ^ K , L, E , M ` Si
(B31)
B.2.5 Elasticities
Afterall parameters discussedinthe previoussection have been estimated,theown
andcrosspriceselasticitiesofsubstitutioncanbederivedfromAllenpartialElasticities
ofSubstitution(AES).
Uzawa(1962)proposedthatAESbetweeninputsiandjis:
V ij
G ˜ Gij
Gi ˜ G j
, V ij
V ji (B32)
where
Gi
wG
and Gij
wPi
w 2G
wPi wPj
Therefore,theAESderivedfromtheTranslogcostfunctioncanbedefinedas;
V ii
V ij
J ii Si2 Si
Si2
J ij Si S j
Si S j
, i, j  ^ K , L, E , M ` and i z j (B33)
232
From equation B33, it shows that these AES are not constrained to be constant with
parameters J ij ,butitvarieswiththevaluesofcostshares.
Berndt and Wood (1975) suggested that the price elasticity of demand ( K ) derived
fromtheTranslogcostfunctioncanbeexpressedas;
Kii
Kij
SiV ii
S jV ij
, i, j  ^ K , L, E , M ` (B34)
Contrarily to equation B34, Binswanger (1974) suggested that the price elasticities of
demandderivedfromCobbDouglascostfunctioncanbeexpressedas:
Kii V i 1 Si 1
, i, j  ^ K , L, E , M ` Kij V j S j
(B35)
Although the price elasticities of demand derived from CobbDouglas production
function have limitations as compared with those derived on the basis of Translog
function, they are still superior than assuming zero elasticities as is the case with
Leontiefproductionfunction.
233
APPENDIXC
DatasetsrequiredforThisResearch
This appendix presents all dataset required for this research. The data sources and
preparationmethodisdiscussedinSection5.7.ItcontainsthefollowingTables:
Table
Title
Page
C1
Sectoralclassificationof28sectorinput–output
234
C2
CapitalandO&Mdistributionfactors
238
C3
Matricesofinput–outputtechnicalcoefficients
240
C4
Matrixofcapitalcoefficients
253
C5
Matricesofsectoralenergyintensities
254
C6
InputfactorcostsandpricesforInterfactormodel
257
C7
InputfactorcostsandpricesforEnergysubmodel
260
C8
InputfactorcostsandpricesforMaterialsubmodel
262
Primaryenergy
Petroleumrefining
GasIndustry
Renewableelectricity
Coalfiredelectricity
Internalcombustion
Gasturbine
Combinedcycle
Agriculture
0101Sheep
0102Cerealgrains
0103Meatcattle
0104Milkcattleandpigs
0101Sheep
0102Cerealgrains
0103Meatcattle
0104Milkcattleandpigs
1993
1100Coal;oilandgas
2501Petroleumandcoal
3602Gassupply
3601Electricity
0101Sheep
0102Grains
0103Beefcattle
0104Dairycattle
0105Pigs
0105Poultry
0105Poultry
0106Poultry
0106Agriculturenec
0106Agriculturenec
0107Otheragriculture
0200Servicestoagriculture
0200Servicestoagriculture
0200Servicesto
0300Forestryandlogging
0300Forestryandlogging
0300Forestryandlogging
0400Fishingandhunting
0400Fishingandhunting
0400Commercialfishing
1101Ferrousmetalores
1101Ferrousmetalores
1301Ironores
1102Nonferrousmetalores
1102Nonferrousmetalores
1302Nonferrousmetalores
1400Otherminerals
1400Mineralsnec
1400Othermining
1600Servicestominingnec
1600Servicestominingnec
1500Servicestomining
2101Meatproducts
2101Meatproducts
2101Meatandmeatproducts
2102Milkproducts
2102Milkproducts
2102Dairyproducts
2103Fruit,vegetableproducts 2103Fruit,vegetableproducts 2103Fruitandvegetable
2104Margarine;oils,fatsnec
2104Margarine;oils,fatsnec
2104Oilsandfats
2105Flourmill,cerealproducts 2105Flourmill,cerealproducts 2105Flourmillproductsand
2106Bread,cakes,biscuits
2106Bread,cakes,biscuits
2106Bakeryproducts
2107Confectionery,etcproducts 2107Confectionery,etcproducts 2107Confectionery
2108Foodproductsnec
2108Foodproductsnec
2108Otherfoodproducts
2109Softdrinks,cordialsetc
2109Softdrinks,cordialsetc
2109Softdrinks,cordialsand
2110Beerandmalt
2110Beerandmalt
2110Beerandmalt
2111Alcoholicbeveragesnec
2111Alcoholicbeveragesnec
2111Wineandspirits
2201Tobaccoproducts
2201Tobaccoproducts
2112Tobaccoproducts
19841990
1200Coal,oilandgas
2708Petroleum,coalproducts
3602Gas
3601Electricity
0101Sheep
0102Grains
0103Beefcattle
0104Dairycattle
0105Pigs
0106Poultry
0107Otheragriculture
0200Servicesto
0300Forestryandlogging
0400Commercialfishing
1301Ironores
1302Nonferrousmetalores
1400Othermining
1500Servicestomining
2101Meatandmeatproducts
2102Dairyproducts
2103Fruitandvegetable
2104Oilsandfats
2105Flourmillproductsand
2106Bakeryproducts
2107Confectionery
2108Otherfoodproducts
2109Softdrinks,cordialsand
2110Beerandmalt
2111Wineandspirits
2112Tobaccoproducts
1100Coal;oilandgas
2501Petroleumandcoal
3602Gassupply
3601Electricity
19941999
2002
234
0101Sheep
0102Grains
0103Beefcattle
0104Dairycattle
0105Pigs
0106Poultry
0107Otheragriculture
0200Servicesto
0300Forestryandlogging
0400Commercialfishing
1301Ironores
1302Nonferrousmetalores
1400Othermining
1500Servicestomining
2101Meatandmeatproducts
2102Dairyproducts
2103Fruitandvegetable
2104Oilsandfats
2105Flourmillproductsand
2106Bakeryproducts
2107Confectionery
2108Otherfoodproducts
2109Softdrinks,cordialsand
2110Beerandmalt
2113 Wine,spiritsandtobacco
1100Coal;oilandgas
2501Petroleumandcoal
3602Gassupply
3601Electricity
Sectoralclassificationof28sectorgroupsforAustraliannationalinput–outputtables
19801983
1200Coal,oilandgas
2708Petroleum,coalproducts
3602Gas
3601Electricity
TableC1
(continuedonnextpage)
11 Foodindustry
10 Rawmaterialsmining
1
2
3
4
5
6
7
8
9
SECTORS
(continuedonnextpage)
15 Nonmetallicmineral
products
14 Basicchemicals
13 Wood&paperindustry
Sectoralclassificationof28sectorgroupsforAustraliannationalinput–outputtables(continued)
235
19801983
19841990
1993
19941999
2002
2301Cottonginningetc
2301Cottonginningetc
2201Woolscouring
2302Manmadefibresetc
2302Manmadefibresetc
2202Textilefibres,yarnsand
2201Textilefibres,yarnsand
2201Textilefibres,yarnsand
2303Cottonfabricsetc
2303Cottonfabricsetc
2304Wool,worstedfabricsetc 2304Wool,worstedfabricsetc
2305Textilefinishing
2305Textilefinishing
2306Floorcoveringsetc
2306Floorcoveringsetc
2307Textileproductsnec
2307Textileproductsnec
2202Textileproducts
2202Textileproducts
2203Textileproducts
2401Knittingmills
2401Knittingmills
2204Knittingmillproducts
2203Knittingmillproducts
2203Knittingmillproducts
2402Clothing
2402Clothing
2205Clothing
2204Clothing
2204Clothing
2403Footwear
2403Footwear
2206Footwear
2205Footwear
2205Footwear
3401Leatherproducts
3401Leatherproducts
2207Leatherandleather
2206Leatherandleather
2206Leatherandleather
2501Sawmillproducts
2501Sawmillproducts
2301Sawmillproducts
2301Sawmillproducts
2301Sawmillproducts
2502Veneers,mfd.woodboards 2502Veneers,mfd.woodboards 2302Plywood,veneerand
2503Joinery,woodproductsnec 2503Joinery,woodproductsnec 2303Otherwoodproducts
2302Otherwoodproducts
2302Otherwoodproducts
2504Furnitureandmattresses
2504Furnitureandmattresses
2902Furniture
2902Furniture
2902Furniture
2601Pulp,paper,paperboard
2601Pulp,paper,paperboard
2304Pulp,paperand
2303Pulp,paperand
2303Pulp,paperand
2602Bagsandcontainers
2602Bagsandcontainers
2305Paperboard
2304Papercontainersand
2304Papercontainersand
2603Paperproductsnec
2603Paperproductsnec
2306Otherpaperproducts
2604Publishing,printing
2604Publishing,printing
2401Printingandservicesto
2401Printingandservicesto
2401Printingandservicesto
2605Printing,stationeryetc
2605Printing,stationeryetc
2402Publishing;recordedmedia 2402Publishing;recordedmedia 2402Publishing;recordedmedia
2701Chemicalfertilisers
2701Chemicalfertilisers
2502Fertilisers
2702Basicchemicalsnec
2702Basicchemicalsnec
2503Otherbasicchemicals
2502Basicchemicals
2502Basicchemicals
2703Paints
2703Paints
2504Paints
2503Paints
2503Paints
2704Pharmaceuticalsnec
2704Pharmaceuticalsnec
2505Medicinaland
2504Medicinaland
2504Medicinaland
2705Soapanddetergentsnec
2705Soapanddetergentsnec
2506Soapandotherdetergents 2505Soapanddetergents
2505Soapanddetergents
2706Cosmeticsetc
2706Cosmeticsetc
2507Cosmeticsandtoiletry
2506Cosmeticsandtoiletry
2506Cosmeticsandtoiletry
2707Chemicalproductsnec
2707Chemicalproductsnec
2508Otherchemicalproducts
2507Otherchemicalproducts
2507Otherchemicalproducts
3402Rubberproducts
3402Rubberproducts
2509Rubberproducts
2508Rubberproducts
2508Rubberproducts
3403Plastic,relatedproducts
3403Plastic,relatedproducts
2510Plasticproducts
2509Plasticproducts
2509Plasticproducts
2801Glassandglassproducts
2801Glassandglassproducts
2601Glassandglassproducts
2601Glassandglassproducts
2601Glassandglassproducts
2802Clayproducts,refractories 2802Clayproducts,refractories 2602Ceramicproducts
2602Ceramicproducts
2602Ceramicproducts
2803Cement
2803Cement
2603Cementandlime
2603Cement,limeandconcrete 2603Cement,limeandconcrete
2804Readymixedconcrete
2804Readymixedconcrete
2604Concreteslurry
2805Concreteproducts
2805Concreteproducts
2605Plasterandotherconcrete 2604Plasterandotherconcrete 2604Plasterandotherconcrete
2806Nonmetallicmin.products 2806Nonmetallicmin.products 2606Othernonmetallic
2605Othernonmetallic
2605Othernonmetallic
TableC1
12 Textileindustry
SECTORS(Cont.)
TableC1
Roadtransport
Railwaytransport
Watertransport
AirTransport
Othertransport,services
andstorage
5101Roadtransport
5201Rail,transportnec
5301Watertransport
5401Airtransport
5701Servicestotransport
4901Mechanicalrepairs
4902Repairsnec
4901Mechanicalrepairs
4902Repairsnec
5101Roadtransport
5201Rail,transportnec
5301Watertransport
5401Airtransport
5402Otherrepairs
2901Prefabricatedbuildings
6101Roadtransport
6201Rail,pipelineandother
6301Watertransport
6401Airandspacetransport
6601Servicesto
5401Mechanicalrepairs
3701Water,sewerage,drainage 3701Water,sewerage,drainage 3701Watersupply;sewerage
anddrainageservices
4101Residentialbuilding
4101Residentialbuilding
4101Residentialbuilding
4102Constructionnec
4102Constructionnec
4102Otherconstruction
(continuedonnextpage)
23
24
25
26
27
22 Construction
21 Water,sewerage&
drainage
SECTORS(Cont.)
2903Othermanufacturing
3701Watersupply;sewerage
anddrainageservices
2903Othermanufacturing
3701Watersupply;sewerage
anddrainageservices
5402Otherrepairs
2901Prefabricatedbuildings
6101Roadtransport
6201Rail,pipelineandother
6301Watertransport
6401Airandspacetransport
6601Servicesto
5401Mechanicalrepairs
4101Residentialbuilding
4102Otherconstruction
4201 Constructiontradeservices
2901Prefabricatedbuildings
6101Roadtransport
6201Rail,pipelineandother
6301Watertransport
6401Airandspacetransport
6601Servicesto
4502 Wholesalemechanical
5101 Retailmechanicalrepairs
4503 Otherwholesalerepairs
5103 Otherretailrepairs
2810Othermachineryand
2810Othermachineryand
4101Residentialbuilding
4102Otherconstruction
2002
2701Ironandsteel
2702Basicnonferrousmetal
2703Structuralmetalproducts
2704Sheetmetalproducts
2705Fabricatedmetalproducts
2801Motorvehiclesand
2802Shipsandboats
2803Railwayequipment
2804Aircraft
2805Photographicand
2806Electronicequipment
2807Householdappliances
2808Otherelectricalequipment
2809Agricultural,miningandc
19941999
236
2701Ironandsteel
2702Basicnonferrousmetal
2703Structuralmetalproducts
2704Sheetmetalproducts
2705Fabricatedmetalproducts
2801Motorvehiclesand
2802Shipsandboats
2803Railwayequipment
2804Aircraft
2805Photographicand
2806Electronicequipment
2807Householdappliances
2808Otherelectricalequipment
2809Agricultural,miningandc
Sectoralclassificationof28sectorgroupsforAustraliannationalinput–outputtables(continued)
19801983
19841990
1993
2901Basicironandsteel
2901Basicironandsteel
16 Basicironandsteel
2701Ironandsteel
2902Nonferrousmetalsetc
17 Basicnonferrousmetals 2902Nonferrousmetalsetc
2702Basicnonferrousmetal
18 Fabricatedmetalproducts 3101Structuralmetalproducts 3101Structuralmetalproducts 2703Structuralmetalproducts
3102Sheetmetalproducts
3102Sheetmetalproducts
2704Sheetmetalproducts
3103Metalproductsnec
3103Metalproductsnec
2705Fabricatedmetalproducts
3201Motorvehiclesnec
3201Motorvehiclesnec
2801Motorvehiclesand
19 Machineryand
3202Shipsandboats
3202Shipsandboats
2802Shipsandboats
equipment
3203Railwayrollingstocketc
3203Railwayrollingstocketc
2803Railwayequipment
3204Aircraft
3204Aircraft
2804Aircraft
3301Scientificetcequipment
3301Scientificetcequipment
2805Photographicand
3302Electronicequipment
3302Electronicequipment
2806Electronicequipment
3303Householdappliances
3303Householdappliances
2807Householdappliances
3304Electricalequipmentnec
3304Electricalequipmentnec
2808Otherelectricalequipment
3305Agriculturalmachinery
3305Agriculturalmachinery
2809Agriculturalmachinery
3306Constructionetcmachinery 3306Constructionetcmachinery 2810Miningandconstruction
3307Machinery,equipmentetc 3307Machinery,equipmentnec 2811Othermachineryand
3404Signs,writingequipment 3404Signs,writingequipment
20 Miscellenous
3405Manufacturingnec
3405Manufacturingnec
2903Othermanufacturing
manufacturing
Note:
28
7101Publicadministration
7201Defence
8101Health
8201Education,librariesetc
8301Welfareetcservices
9101Entertainmentetc
9201Restaurants,hotels,clubs
9301Personalservices
7101Publicadministration
7201Defence
8101Health
8201Education,librariesetc
8301Welfareetcservices
9101Entertainmentetc
9201Restaurants,hotels,clubs
9301Personalservices
1993
19941999
2002
4501Wholesaletrade
4501Wholesaletrade
4501 Wholesaletrade
5101Retailtrade
5101Retailtrade
5101Retailtrade
7101Communicationservices 7101Communicationservices 7101 Communicationservices
7301Banking
7301Banking
7301Banking
7302Nonbankfinance
7302Nonbankfinance
7302Nonbankfinance
7303Financialassetinvestors
7401Insurance
7401Insurance
7401 Insurance
7501Servicestofinance,investm 7501Servicestofinance,investm 7501 Servicestofinance,
7701Ownershipofdwellings
7701Ownershipofdwellings
7701 Ownershipofdwellings
7702Otherpropertyservices
7702Otherpropertyservices
7702 Otherpropertyservices
7801Scientificresearch,technica 7801Scientificresearch,technica 7801 Scientificresearch,
7802Legal,accounting,marketin7802Legal,accounting,marketin7802 Legal,accounting,
7803Otherbusinessservices
7803Otherbusinessservices
7803 Otherbusinessservices
8101Governmentadministration8101Governmentadministration8101 Government
8201Defence
8201Defence
8201 Defence
8601Healthservices
8601Healthservices
8601Healthservices
8401Education
8401 Education
8401Education
9201Libraries,museumsandthe 9201Libraries,museumsandthe 9201 Libraries,museumsand
8701Communityservices
8701Communityservices
8701 Communityservices
9101Motionpicture,radioandte9101Motionpicture,radioandte9101 Motionpicture,radioand
9301Sport,gamblingandrecreat 9301Sport,gamblingandrecreat 9301 Sport,gamblingand
5701Accommodation,cafesand 5701Accommodation,cafesand 5701 Accommodation,cafesand
9501Personalservices
9501Personalservices
9501 Personalservices
9601Otherservices
9601Otherservices
9601 Otherservices
237
ThecolumnonthelefthandsideofthisTablerepresentssectoralclassificationinthisresearch.Theothercolumnsrepresentsectoralclassification(withcodesand
titles)takenfromtheAustralianBureauofStatistics(ABSvarious).
19841990
4701Wholesaletrade
4801Retailtrade
5901Communication
6101Banking
6102Nonbankfinance
6103Investmentetc
6104Insuranceetc
6105Businessservicesnec
6106Ownershipofdwellings
Sectoralclassificationof28sectorgroupsforAustraliannationalinput–outputtables(continued)
19801983
4701Wholesaletrade
4801Retailtrade
5601Communication
6101Banking
6102Nonbankfinance
6103Investmentetc
6104Insuranceetc
6105Businessservicesnec
6106Ownershipofdwellings
TableC1
Commercialservices
SECTORS(Cont.)
238
TableC2Capitaldistributionfactorsforeachelectricitygenerationtechnology
CF
IC
GT
CC
RE
1980
0.6623
0.0118
0.0129
0.3129
1981
0.6765
0.0126
0.0120
0.2989
1982
0.6901
0.0123
0.0147
0.2829
1983
0.6958
0.0126
0.0146
0.2770
1984
0.7062
0.0117
0.0143
0.2678
1985
0.7080
0.0110
0.0139
0.2672
1986
0.7103
0.0109
0.0136
0.2652
1987
0.7142
0.0110
0.0142
0.2606
1988
0.7120
0.0102
0.0140
0.0016
0.2622
1989
0.7136
0.0102
0.0140
0.0016
0.2606
1990
0.7054
0.0111
0.0160
0.0016
0.2658
1991
0.7002
0.0107
0.0171
0.0017
0.2704
1992
0.6965
0.0105
0.0196
0.0016
0.2718
1993
0.7072
0.0093
0.0190
0.0016
0.2629
1994
0.7153
0.0093
0.0194
0.0015
0.2544
1995
0.7205
0.0089
0.0193
0.0016
0.2497
1996
0.7205
0.0089
0.0193
0.0016
0.2497
1997
0.7231
0.0085
0.0204
0.0020
0.2459
1998
0.7277
0.0066
0.0204
0.0019
0.2435
1999
0.7250
0.0062
0.0237
0.0102
0.2349
2000
0.7218
0.0073
0.0261
0.0101
0.2347
2001
0.7222
0.0062
0.0253
0.0168
0.2294
2002
0.7195
0.0064
0.0337
0.0201
0.2203
Notes: CF:Coalfired,IC:Internalcombustion,GT:Gasturbine,CC:Combinedcycle,RE:
Renewable;
TheinformationcontainedinthisTableiscalculatedfromeconomicandtechnical
characteristicsofpowerplants(giveninTable56)andannualinstalledcapacityofeach
technology,publishedbytheElectricitySupplyAssociationofAustralia(ESAAvarious).
239
TableC2O&Mdistributionfactorsforeachelectricitygenerationtechnology
CF
IC
GT
CC
RE
1980
0.7428
0.0134
0.0104
0.2335
1981
0.7545
0.0141
0.0096
0.2218
1982
0.7658
0.0137
0.0117
0.2088
1983
0.7704
0.0140
0.0115
0.2041
1984
0.7792
0.0130
0.0113
0.1966
1985
0.7808
0.0122
0.0110
0.1961
1986
0.7827
0.0121
0.0107
0.1945
1987
0.7859
0.0121
0.0111
0.1908
1988
0.7845
0.0113
0.0110
0.0009
0.1922
1989
0.7858
0.0113
0.0111
0.0009
0.1910
1990
0.7787
0.0123
0.0127
0.0010
0.1953
1991
0.7746
0.0118
0.0135
0.0010
0.1991
1992
0.7715
0.0117
0.0155
0.0010
0.2003
1993
0.7806
0.0103
0.0150
0.0009
0.1931
1994
0.7872
0.0103
0.0153
0.0009
0.1863
1995
0.7915
0.0098
0.0152
0.0009
0.1825
1996
0.7915
0.0098
0.0152
0.0009
0.1825
1997
0.7938
0.0094
0.0160
0.0012
0.1796
1998
0.7980
0.0073
0.0160
0.0011
0.1776
1999
0.7968
0.0068
0.0186
0.0060
0.1718
2000
0.7938
0.0081
0.0205
0.0059
0.1717
2001
0.7953
0.0069
0.0199
0.0099
0.1681
2002
0.7930
0.0071
0.0265
0.0118
0.1615
Notes: CF:Coalfired,IC:Internalcombustion,GT:Gasturbine,CC:Combinedcycle,RE:
Renewable;
TheinformationcontainedinthisTableiscalculatedfromeconomicandtechnical
characteristicsofpowerplants(giveninTable56)andannualelectricitygenerationfrom
eachtechnology,publishedbytheElectricitySupplyAssociationofAustralia(ESAAvarious).
0.0003 0.0003
0.0003 0.0001
11 0.0009 0.0002
12 0.0008 0.0004
0.0010 0.0003
0.0838 0.0987
0.0027 0.0034
0.0005 0.0002
0.0094 0.0021
0.0011 0.0013
0.0041 0.0115
0.0010 0.0005
0.0056 0.0066
0.0002 0.0003
0.0049
0.0653
0.0019
0.0005
0.0043
0.0012
0.0043
0.0009
0.0044
0.0002
0.0006
0.0007
0.0000
0.0003
0.0010
0.0004
0.0003
0.0001
0.0002
0.2565
0.0280
0.1183
7
8
0.0141
0.0653
0.0009
0.0019
0.0030
0.0019
0.0147
0.0071
0.0116
0.0008
0.0010
0.0001
0.0001
0.0004
0.0065
0.0461
0.0404
0.0020
0.0004
0.0656
0.0001
0.0051
0.0000
0.0010
0.0396
0.0001
0.0000
9
11
0.0087 0.0034
0.1286 0.0844
0.0163 0.0009
0.0080 0.0016
0.0078 0.0086
0.0141 0.0017
0.0196 0.0254
0.0020 0.0032
0.0498 0.0033
0.0003 0.0013
0.0086 0.0289
0.0103 0.0007
0.0011 0.0003
0.0016 0.0089
0.0036 0.0233
0.0210 0.0319
0.0045 0.1515
0.0010 0.0028
0.0797 0.0004
0.0003 0.3280
0.0004 0.0001
0.0211 0.0069
0.0002 0.0001
0.0040 0.0013
0.0309 0.0076
0.0001 0.0011
13
0.0004
0.0003 0.0019
0.0784 0.0878
0.0010 0.0021
0.0029 0.0023
0.0020 0.0039
0.0010 0.0013
0.0070 0.0210
0.0005 0.0009
0.0012 0.0089
0.0005 0.0017
0.0019 0.0051
0.0001 0.0065
0.0004 0.0047
0.0008 0.0035
0.0052 0.2329
0.0274 0.0416
0.0058 0.0016
0.2764 0.0136
0.0475 0.0248
0.0001 0.0001
0.0056 0.0071
0.0000 0.0001
0.0011 0.0013
0.0049 0.0090
0.0005 0.0006
0.0002 0.0010
12
15
0.0011 0.0025
0.0772 0.0641
0.0024 0.0058
0.0022 0.0028
0.0029 0.0131
0.0012 0.0026
0.0155 0.0682
0.0023 0.0042
0.0024 0.0040
0.0018 0.0010
0.0075 0.0032
0.0021 0.0180
0.0070 0.0035
0.0048 0.0893
0.0141 0.0142
0.2765 0.0415
0.0147 0.0010
0.0124 0.0019
0.0072 0.0971
0.0006 0.0001
0.0002 0.0003
0.0102 0.0169
0.0001 0.0001
0.0019 0.0032
0.0145 0.0263
0.0023 0.0104
0.0011 0.0092
14
17
0.0006 0.0002
0.0421 0.0304
0.0284 0.0055
0.0008 0.0012
0.0140 0.0217
0.0005 0.0001
0.0151 0.0088
0.0026 0.0006
0.0071 0.0008
0.0018 0.0055
0.0118 0.0029
0.2490 0.0047
0.0385 0.1321
0.0177 0.0035
0.0030 0.0008
0.0130 0.0115
0.0034 0.0002
0.0036 0.0003
0.0414 0.3570
0.0001 0.0000
0.0004 0.0003
0.0241 0.0165
0.0002 0.0001
0.0046 0.0031
0.0202 0.0410
0.0010 0.0008
0.0442 0.0118
16
19
0.0015 0.0009
0.0679 0.0581
0.0039 0.0013
0.0018 0.0020
0.0037 0.0022
0.0008 0.0004
0.0096 0.0073
0.0009 0.0004
0.0092 0.1745
0.0007 0.0010
0.0831 0.0279
0.2322 0.0386
0.0768 0.0315
0.0052 0.0033
0.0100 0.0092
0.0239 0.0324
0.0008 0.0008
0.0064 0.0037
0.0001 0.0002
0.0001 0.0000
0.0001 0.0001
0.0056 0.0033
0.0000 0.0000
0.0011 0.0006
0.0056 0.0022
0.0015 0.0006
0.0001 0.0001
18
21
22
0.0013
0.0006 0.0011 0.0031
0.0689 0.0877 0.0918
0.0011 0.0003 0.0017
0.0052 0.0021 0.0016
0.0057 0.0008 0.0035
0.0003 0.0111 0.0070 0.0033 0.0305
0.0003 0.0041 0.0111 0.0743
0.0473 0.0004 0.0003
0.0135 0.0279 0.0971
0.0108 0.0013 0.0254
0.0118 0.0004 0.0083
0.0005 0.0054 0.1056
0.0186 0.0037 0.0626
0.0698 0.0190 0.0290
0.0008 0.0011 0.0012
0.0124 0.0003 0.0018
0.0765 0.0005 0.0110
0.0020 0.0001 0.0011
0.0001 0.0004 0.0000
0.0046 0.0258 0.0011
0.0000 0.0002 0.0000
0.0009 0.0049 0.0002
0.0053 0.0220 0.0151
0.0003 0.0003
0.0056 0.0005 0.0001
20
Matrixofinput–outputtechnicalcoefficients(A)
0.0009 0.0007
10
TableC3
24
0.0425 0.0132
0.1290 0.1079
0.0009 0.0008
0.0015 0.0037
0.0024 0.0024
0.0006 0.0634
0.0186 0.0048
0.0001 0.0050
0.0550 0.0739
0.0003 0.0013
0.0005 0.0039
0.0003 0.0017
0.0000 0.0000
0.0010 0.0002
0.0034 0.0350
0.0377 0.0043
0.0011 0.0016
0.0045 0.0148
0.0004 0.0006
0.0002 0.0030
0.0000 0.0002
0.0017 0.0092
0.0000 0.0001
0.0003 0.0017
0.1131 0.0297
0.0009 0.0002
0.0002 0.0073
23
26
0.0010 0.0014
0.1154 0.0892
0.1333 0.0007
0.0012 0.0612
0.0073 0.0463
0.0006 0.0000
0.0038 0.0054
0.0081 0.0000
0.0311 0.0640
0.0005 0.0004
0.0029 0.0008
0.0003 0.0000 0.0000
0.0103 0.0161
0.0062 0.0060
0.0006 0.0016
0.0089 0.0022
0.0004 0.0001 0.0003
0.0002 0.0000
0.0103 0.0019
0.0001 0.0000
0.0019 0.0004
0.0910 0.1401
0.0009 0.0004
0.0070 25
0.0005
28
(1980)
0.0001
0.0006 0.0062
0.1254 0.1598
0.0007 0.0013
0.0009 0.0053
0.0020 0.0043
0.0110
0.0069 0.0054
0.0015 0.0126
0.1951 0.0171
0.0004 0.0022
0.0038 0.0063
0.0001 0.0013
0.0001 0.0003
0.0024 0.0019
0.0032 0.0267
0.0091 0.0124
0.0012 0.0027
0.0008 0.0032
0.0001 0.0010
0.0002 0.0001
0.0109 0.0072
0.0001 0.0001
0.0021 0.0014
0.0083 0.0071
0.0003 0.0008
27
240
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1980,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0006 0.0004
0.0904 0.1060
27 0.0027 0.0001
28 0.0300 0.0249
0.0006 0.0021
0.0012 0.0015
22 0.0069 0.0002
23 0.0071 0.0042
0.0418 0.0032
0.0017 0.0008
21 0.0005 0.0006
0.0003 0.0010
0.0009 0.0004
0.0017 0.0071
0.0005 0.0003
24 0.0056 0.0010
0.0008 0.0009
0.0121 0.0010
18 0.0037 0.0000
19 0.0207 0.0007
20 0.0001 0.0000
25 0.0006 0.0053
26 0.0019 0.0002
0.0009 0.0011
0.0001 0.0001
0.0005 0.0012
0.0003 0.0001
16 0.0053 0.0001
17 0.0001 0.0012
0.0004 0.0004
0.0011 0.0005
0.0005 0.0006
0.0012 0.0008
0.0033 0.0006
0.0007 0.0004
13 0.0032 0.0006
14 0.0105 0.0130
0.0004 0.0002
0.0001 0.0001
(continuedonnextpage)
0.0002 0.0001
15 0.0005 0.0000
10 0.0538 0.0015
0.0001 0.0000 0.0001
7 0.0002 0.0001
8 9 0.0042 0.0000
0.2705 0.1288
0.0008 0.2056
0.0042 0.0000 4 0.0018 0.0006
5 0.0097 0.0034
6 0.0001 0.0000
0.0273 0.3295
0.0077 6
0.0853 5
0.0214 0.0005 4
2 0.0047 0.0813
3 0.0000 0.0006
3
0.1540 2
1 0.0280 0.3524
1
Sources:
Notes: 0.0007
0.0029
0.0129
0.0004
0.0059
0.0001
0.0036
0.0228
0.0001
0.0004
0.0073
0.0069
0.0064
0.0005
0.0047
0.0032
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0156
0.0037
0.0007
0.0015
0.0003
0.0014
0.0016
0.0061
0.0019
0.0001
0.0010
0.0081
0.0002
0.0016
0.0008
0.0005
0.0002
0.0005
0.2562
7
8
0.0091
0.0029
0.0009
0.0081
0.0002
0.0016
0.0011
0.0068
0.0010
0.0000
0.0005
0.0041
0.0002
0.0019
0.0004
0.0002
0.0002
0.0007
0.3094
0.0374 0.0196 0.0032
0.0043
0.0003
0.0004
0.0003
0.0006
0.0015
0.0159
0.0018
0.0001
0.0010
0.0079
0.0001
0.0007
0.0007
0.0005
0.0001
0.0002
0.1088
0.4598 0.0091 0.1579 6
9
10
0.0072
0.0226
0.0096
0.0107
0.0004
0.0020
0.0196
0.0247
0.0137
0.0032
0.0086
0.0568
0.0011
0.0039
0.0242
0.0016
0.0003
0.0944
0.0042
0.0043
0.0221
0.0002
0.0007
0.0690 0.1629
0.0030
0.0009
0.0015
0.0132
0.0008
0.0060
0.0015
0.0149
0.0001
0.0001
0.0008
0.0116
0.0021
0.0063
0.0506
0.0003
0.0879
0.0004
0.0440
0.0010
0.0050
0.0000
0.0002
0.0915
0.0106
0.0010
0.0016
0.0038
0.0013
0.0031
0.0017
0.0266
0.0010
0.0004
0.0281
0.0035
0.0029
0.0230
0.0328
0.0091
0.3239
0.0004
0.1507
0.0014
0.0073
0.0001
0.0002
0.0009
0.0085
0.0014
11
13
0.0039
0.0022
0.0025
0.0022
0.0016
0.0008
0.0013
0.0209
0.0076
0.0053
0.0053
0.0088
0.0122
0.2245
0.0418
0.0034
0.0235
0.0005
0.0015
0.0015
0.0077
0.0001
0.0002
0.0896 0.0960
0.0019
0.0010
0.0032
0.0003
0.0005
0.0005
0.0016
0.0088
0.0001
0.0004
0.0007
0.0013
0.2690
0.0056
0.0253
0.0002
0.0397
0.0156
0.0017
0.0090
0.0001
0.0003
0.0002 0.0010
0.0091 0.0132
0.0007 0.0006
12
15
0.0141
0.0058
0.0025
0.0027
0.0009
0.0041
0.0026
0.0726
0.0196
0.0038
0.0029
0.0036
0.0015
0.0143
0.0393
0.0849
0.0001
0.1004
0.0010
0.0034
0.0175
0.0001
0.0005
0.0834 0.0656
0.0029
0.0023
0.0021
0.0011
0.0018
0.0020
0.0011
0.0166
0.0032
0.0084
0.0072
0.0023
0.0122
0.0138
0.2735
0.0048
0.0007
0.0093
0.0125
0.0020
0.0105
0.0001
0.0003
0.0015 0.0108
0.0235 0.0254
0.0025 0.0114
14
0.0446
0.0147
0.0233
0.0008
0.0007
0.0015
0.0023
0.0004
0.0163
0.2412
0.0487
0.0121
0.0068
0.0034
0.0027
0.0124
0.0174
0.0001
0.0330
0.0030
0.0046
0.0238
0.0002
0.0007
0.0464
0.0314
0.0011
16
18
0.0038
0.0041
0.0017
0.0015
0.0006
0.0008
0.0007
0.0100
0.2355
0.0822
0.0813
0.0086
0.0062
0.0094
0.0221
0.0044
0.0001
0.0001
0.0008
0.0011
0.0054
0.0000
0.0002
0.0424 0.0709
0.0190
0.0060
0.0012
0.0002
0.0049
0.0006
0.0001
0.0102
0.0052
0.1669
0.0038
0.0009
0.0003
0.0007
0.0166
0.0037
0.0000
0.3074
0.0002
0.0034
0.0173
0.0001
0.0005
0.0120 0.0005
0.0539 0.0068
0.0009 0.0016
17
20
21
0.0060
0.0012
0.0050
0.0007
0.0478
0.0002
0.0003
0.0074
0.0117
0.0120
0.0126
0.0042
0.0194
0.0188
0.0690
0.0005
0.0023
0.0571
0.0008
0.0009
0.0048
0.0000
0.0001
0.0009
0.0003
0.0025
0.0013
0.0004
0.0128
0.0037
0.0016
0.0004
0.0330
0.0138
0.0004
0.0043
0.0220
0.0061
0.0001
0.0006
0.0013
0.0063
0.0323
0.0003
0.0010
0.0565 0.0724 0.0613
0.0020
0.0012
0.0018
0.0009
0.0010
0.0003
0.0004
0.0068
0.0365
0.0303
0.0241
0.1615
0.0031
0.0078
0.0286
0.0025
0.0000
0.0002
0.0007
0.0006
0.0030
0.0000
0.0001
0.0002 0.0064 0.0006
0.0023 0.0058 0.0242
0.0005 0.0004 19
23
0.0020
0.0008
0.0012
0.0339
0.0002
0.0001
0.0005
0.0161
0.0005
0.0000
0.0004
0.0526
0.0037
0.0027
0.0411
0.0007
0.0002
0.0004
0.0009
0.0003
0.0014
0.0000
0.0000
0.1112 0.1709
0.0038
0.0018
0.0018
0.0038
0.0005
0.0013
0.0307
0.0285
0.0085
0.1005
0.0731
0.0022
0.0628
0.0312
0.1019
0.0010
0.0107
0.0013
0.0002
0.0013
0.0000
0.0000
0.0003 0.0028
0.0197 0.0994
0.0004 0.0008
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0002 0.0014
0.0396 0.0384
0.0001 0.0001
TableC3
25
26
0.0075
0.1182
0.0012
0.0010
0.0005
0.0073
0.0005
0.0034
0.0005
0.0000
0.0033
0.0319
0.0094
0.0101
0.0059
0.0000
0.0005
0.0006
0.0021
0.0106
0.0001
0.0003
0.0471
0.0007
0.0628
0.0017
0.0005
0.0000
0.0000
0.0055
0.0000
0.0009
0.0680
0.0024
0.0189
0.0066
0.0004
0.0018
0.0004
0.0019
0.0000
0.0001
0.1279 0.1114 0.0920
0.0018
0.0005
0.0041
0.0150
0.0014
0.0051
0.0672
0.0052
0.0020
0.0000
0.0041
0.0783
0.0175
0.0398
0.0044
0.0003
0.0028
0.0007
0.0017
0.0021
0.0107
0.0001
0.0003
0.0013 0.0078 0.0346 0.0827 0.1506
0.0003 0.0011 0.0005
24
28
(1981)
0.0046
0.0011
0.0050
0.0061
0.0021
0.0127
0.0108
0.0054
0.0016
0.0003
0.0056
0.0188
0.0031
0.0257
0.0124
0.0018
0.0009
0.0002
0.0026
0.0015
0.0076
0.0001
0.0002
0.1273 0.1666
0.0019
0.0007
0.0009
0.0006
0.0003
0.0012
0.0068
0.0001
0.0000
0.0037
0.2043
0.0008
0.0030
0.0092
0.0018
0.0001
0.0011
0.0020
0.0103
0.0001
0.0003
0.0008
0.0073 0.0080
0.0004 0.0009
27
241
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1981,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0489 0.0384
0.0059
0.0014
0.0006
0.0006
0.0004
0.0011
0.0030
0.0024
0.0024
0.0001
0.0013
0.0104
0.0002
0.0013
0.0010
0.0006
5
0.1202
0.0360
0.0099
(continuedonnextpage)
0.0404
0.0006
0.0013
0.0009
0.0007
0.0023
0.0008
0.0031
0.0009
0.0003
0.0178
0.0022
0.0004
0.0019
0.0044
0.0009
0.0000
0.0005
28 0.0308 0.0115 0.0619
0.0005
0.0046
0.0000
0.0000
0.0000
0.0000
0.0000
0.0011
0.0000
0.0001
0.0000
0.0001
0.0000
0.0000
0.0010
0.0000
0.0000
0.0001
0.0000
0.0002
0.0005
0.0034
0.0595
0.0008
8
9
10
11
0.0012
0.0063
0.0001
0.0002
0.2161
0.0001
0.0003
0.0000
0.0000
0.0018
0.0091
0.0001
0.0003
4
4
5
6
7
3
2
1 0.0479 0.3806 0.2041
2 0.0052 0.0319 0.0505
3 0.0000 0.0001 0.0009
1
Sources:
Notes: 0.0009
0.0031
0.0166
0.0004
0.0068
0.0002
0.0038
0.0315
0.0001
0.0005
0.0024
0.0075
0.0066
0.0008
0.0046
0.0034
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0132
0.0042
0.0009
0.0019
0.0003
0.0015
0.0017
0.0063
0.0023
0.0001
0.0012
0.0094
0.0002
0.0020
0.0009
0.0006
0.0002
0.0007
0.2658
7
8
0.0071
0.0032
0.0010
0.0086
0.0002
0.0017
0.0013
0.0067
0.0012
0.0000
0.0007
0.0051
0.0003
0.0022
0.0005
0.0003
0.0002
0.0008
0.2934
0.0463 0.0269 0.0029
0.0053
0.0004
0.0006
0.0003
0.0007
0.0016
0.0169
0.0021
0.0001
0.0011
0.0088
0.0001
0.0009
0.0009
0.0005
0.0001
0.0003
0.1237
0.4805 0.0219 0.1848 6
9
10
0.0078
0.0360
0.0115
0.0125
0.0004
0.0022
0.0067
0.0258
0.0163
0.0011
0.0093
0.0684
0.0014
0.0049
0.0327
0.0020
0.0004
0.1188
0.0051
0.0034
0.0189
0.0002
0.0006
0.0744 0.2168
0.0034
0.0011
0.0017
0.0143
0.0009
0.0059
0.0014
0.0162
0.0001
0.0001
0.0008
0.0141
0.0023
0.0066
0.0527
0.0003
0.0920
0.0006
0.0428
0.0012
0.0065
0.0001
0.0002
0.0904
0.0104
0.0012
0.0015
0.0036
0.0013
0.0028
0.0015
0.0307
0.0008
0.0002
0.0271
0.0034
0.0031
0.0240
0.0324
0.0099
0.3041
0.0004
0.1557
0.0011
0.0061
0.0001
0.0002
0.0008
0.0077
0.0015
11
13
0.0040
0.0021
0.0027
0.0023
0.0016
0.0009
0.0013
0.0207
0.0078
0.0057
0.0052
0.0091
0.0111
0.2211
0.0411
0.0037
0.0230
0.0005
0.0018
0.0014
0.0076
0.0001
0.0002
0.0888 0.0967
0.0013
0.0010
0.0032
0.0003
0.0005
0.0005
0.0021
0.0088
0.0001
0.0004
0.0012
0.0017
0.2616
0.0062
0.0258
0.0004
0.0382
0.0107
0.0008
0.0041
0.0000
0.0001
0.0002 0.0011
0.0109 0.0129
0.0009 0.0009
12
15
0.0134
0.0056
0.0028
0.0029
0.0009
0.0043
0.0025
0.0702
0.0174
0.0024
0.0030
0.0035
0.0011
0.0170
0.0382
0.0934
0.0001
0.0940
0.0011
0.0026
0.0146
0.0001
0.0005
0.0858 0.0702
0.0028
0.0019
0.0023
0.0011
0.0018
0.0020
0.0010
0.0164
0.0028
0.0062
0.0070
0.0026
0.0131
0.0142
0.2717
0.0049
0.0006
0.0082
0.0102
0.0015
0.0080
0.0001
0.0002
0.0012 0.0106
0.0225 0.0234
0.0031 0.0147
14
0.0464
0.0135
0.0232
0.0008
0.0007
0.0012
0.0024
0.0004
0.0164
0.2615
0.0313
0.0126
0.0069
0.0037
0.0030
0.0145
0.0163
0.0001
0.0274
0.0035
0.0055
0.0303
0.0003
0.0009
0.0544
0.0298
0.0015
16
18
0.0034
0.0042
0.0019
0.0016
0.0007
0.0008
0.0007
0.0097
0.2290
0.0663
0.0901
0.0090
0.0059
0.0100
0.0214
0.0048
0.0001
0.0001
0.0008
0.0010
0.0053
0.0000
0.0002
0.0482 0.0730
0.0152
0.0065
0.0022
0.0003
0.0056
0.0010
0.0002
0.0119
0.0102
0.1524
0.0074
0.0013
0.0005
0.0013
0.0279
0.0055
0.0000
0.2614
0.0005
0.0053
0.0290
0.0003
0.0009
0.0176 0.0003
0.0796 0.0072
0.0020 0.0020
17
20
21
0.0052
0.0012
0.0049
0.0007
0.0457
0.0002
0.0003
0.0102
0.0112
0.0089
0.0116
0.0033
0.0098
0.0186
0.0624
0.0005
0.0022
0.0374
0.0008
0.0005
0.0029
0.0000
0.0001
0.0009
0.0003
0.0025
0.0013
0.0004
0.0108
0.0032
0.0014
0.0003
0.0310
0.0108
0.0004
0.0043
0.0197
0.0057
0.0001
0.0006
0.0013
0.0065
0.0355
0.0003
0.0011
0.0570 0.0667 0.0622
0.0018
0.0012
0.0018
0.0009
0.0009
0.0003
0.0003
0.0067
0.0333
0.0237
0.0221
0.1707
0.0029
0.0083
0.0291
0.0025
0.0000
0.0002
0.0006
0.0006
0.0031
0.0000
0.0001
0.0001 0.0063 0.0006
0.0024 0.0056 0.0191
0.0007 0.0004 19
23
0.0012
0.0006
0.0007
0.0199
0.0001
0.0000
0.0002
0.0212
0.0002
0.0000
0.0002
0.0341
0.0023
0.0016
0.0257
0.0004
0.0001
0.0003
0.0005
0.0002
0.0009
0.0000
0.0000
0.1033 0.1129
0.0026
0.0020
0.0018
0.0040
0.0003
0.0012
0.0284
0.0307
0.0083
0.1051
0.0746
0.0021
0.0655
0.0309
0.1000
0.0009
0.0104
0.0013
0.0003
0.0014
0.0000
0.0000
0.0002 0.0011
0.0112 0.0712
0.0005 0.0005
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0001 0.0015
0.0555 0.0455
0.0001 0.0002
TableC3
25
26
0.0072
0.1363
0.0013
0.0011
0.0005
0.0072
0.0005
0.0101
0.0004
0.0000
0.0028
0.0308
0.0100
0.0114
0.0078
0.0001
0.0007
0.0006
0.0024
0.0132
0.0001
0.0004
0.0445
0.0007
0.0444
0.0011
0.0003
0.0000
0.0000
0.0081
0.0000
0.0005
0.0570
0.0017
0.0133
0.0043
0.0002
0.0013
0.0003
0.0014
0.0000
0.0000
0.1558 0.1249 0.0680
0.0023
0.0006
0.0051
0.0191
0.0019
0.0058
0.0736
0.0065
0.0016
0.0000
0.0048
0.0716
0.0213
0.0521
0.0052
0.0004
0.0032
0.0008
0.0023
0.0028
0.0152
0.0001
0.0005
0.0011 0.0088 0.0491 0.0737 0.1364
0.0004 0.0014 0.0004
24
28
(1982)
0.0046
0.0013
0.0049
0.0059
0.0020
0.0108
0.0126
0.0065
0.0012
0.0002
0.0051
0.0157
0.0030
0.0264
0.0126
0.0016
0.0009
0.0001
0.0025
0.0015
0.0083
0.0001
0.0003
0.1255 0.1642
0.0016
0.0007
0.0007
0.0007
0.0003
0.0010
0.0061
0.0000
0.0001
0.0030
0.1921
0.0007
0.0031
0.0090
0.0016
0.0001
0.0010
0.0020
0.0109
0.0001
0.0003
0.0006
0.0071 0.0084
0.0004 0.0010
27
242
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1982,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0680 0.0495
0.0055
0.0018
0.0008
0.0009
0.0004
0.0014
0.0035
0.0028
0.0031
0.0001
0.0017
0.0130
0.0002
0.0018
0.0013
0.0008
5
0.1296
0.0383
0.0147
(continuedonnextpage)
0.0311
0.0008
0.0026
0.0017
0.0013
0.0039
0.0013
0.0050
0.0014
0.0005
0.0191
0.0031
0.0007
0.0037
0.0084
0.0017
0.0001
0.0009
28 0.0336 0.0194 0.1103
0.0005
0.0046
0.0001
0.0000
0.0000
0.0002
0.0000
0.0024
0.0000
0.0004
0.0000
0.0002
0.0001
0.0002
0.0037
0.0000
0.0000
0.0004
0.0000
0.0002
0.0006
0.0036
0.0847
0.0009
8
9
10
11
0.0024
0.0133
0.0001
0.0004
0.2435
0.0004
0.0024
0.0000
0.0001
0.0018
0.0099
0.0001
0.0003
4
4
5
6
7
3
2
1 0.0330 0.3856 0.1963
2 0.0072 0.0550 0.0686
3 0.0000 0.0002 0.0020
1
Sources:
Notes: 0.0009
0.0037
0.0173
0.0007
0.0078
0.0002
0.0043
0.0361
0.0001
0.0007
0.0042
0.0086
0.0067
0.0008
0.0056
0.0044
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0113
0.0036
0.0012
0.0023
0.0004
0.0019
0.0021
0.0057
0.0015
0.0001
0.0012
0.0109
0.0002
0.0025
0.0009
0.0006
0.0003
0.0008
0.2801
7
8
0.0050
0.0023
0.0010
0.0088
0.0003
0.0017
0.0022
0.0053
0.0011
0.0001
0.0009
0.0083
0.0002
0.0022
0.0007
0.0004
0.0002
0.0007
0.2522
0.0503 0.0425 0.0023
0.0042
0.0005
0.0006
0.0003
0.0008
0.0018
0.0149
0.0013
0.0001
0.0011
0.0098
0.0001
0.0010
0.0008
0.0005
0.0001
0.0003
0.1182
0.5115 0.0275 0.2031 6
9
10
0.0068
0.0298
0.0105
0.0120
0.0004
0.0023
0.0082
0.0216
0.0140
0.0014
0.0072
0.0588
0.0012
0.0044
0.0240
0.0017
0.0004
0.1095
0.0049
0.0030
0.0195
0.0002
0.0003
0.0947 0.2092
0.0044
0.0014
0.0021
0.0178
0.0012
0.0085
0.0019
0.0219
0.0001
0.0001
0.0009
0.0141
0.0025
0.0081
0.0547
0.0002
0.1093
0.0004
0.0592
0.0016
0.0105
0.0001
0.0002
0.0972
0.0105
0.0012
0.0018
0.0039
0.0013
0.0033
0.0017
0.0320
0.0006
0.0002
0.0262
0.0050
0.0028
0.0243
0.0308
0.0099
0.2886
0.0003
0.1572
0.0011
0.0071
0.0001
0.0001
0.0007
0.0079
0.0017
11
13
0.0042
0.0021
0.0034
0.0027
0.0019
0.0012
0.0016
0.0211
0.0072
0.0051
0.0050
0.0122
0.0089
0.2202
0.0424
0.0036
0.0222
0.0005
0.0021
0.0015
0.0100
0.0001
0.0002
0.0955 0.1135
0.0018
0.0011
0.0037
0.0004
0.0005
0.0006
0.0014
0.0099
0.0001
0.0005
0.0010
0.0028
0.2697
0.0068
0.0250
0.0004
0.0415
0.0124
0.0008
0.0051
0.0000
0.0001
0.0002 0.0012
0.0080 0.0140
0.0010 0.0012
12
15
0.0147
0.0061
0.0035
0.0033
0.0011
0.0056
0.0029
0.0695
0.0197
0.0023
0.0026
0.0044
0.0009
0.0193
0.0360
0.0989
0.0001
0.0981
0.0012
0.0028
0.0183
0.0002
0.0003
0.0981 0.0817
0.0029
0.0018
0.0029
0.0013
0.0021
0.0025
0.0013
0.0173
0.0020
0.0057
0.0074
0.0045
0.0105
0.0164
0.2707
0.0058
0.0005
0.0081
0.0125
0.0017
0.0110
0.0001
0.0002
0.0013 0.0108
0.0226 0.0254
0.0038 0.0179
14
0.0572
0.0140
0.0276
0.0012
0.0010
0.0016
0.0035
0.0006
0.0177
0.2607
0.0295
0.0135
0.0083
0.0039
0.0041
0.0170
0.0186
0.0001
0.0432
0.0045
0.0048
0.0312
0.0003
0.0006
0.0568
0.0338
0.0021
16
18
0.0033
0.0038
0.0024
0.0019
0.0008
0.0010
0.0008
0.0101
0.2205
0.0642
0.0862
0.0106
0.0063
0.0121
0.0225
0.0052
0.0001
0.0001
0.0010
0.0010
0.0066
0.0001
0.0001
0.0522 0.0866
0.0142
0.0066
0.0026
0.0003
0.0064
0.0012
0.0002
0.0114
0.0068
0.1517
0.0066
0.0015
0.0004
0.0014
0.0224
0.0047
0.0000
0.2764
0.0005
0.0050
0.0326
0.0003
0.0006
0.0160 0.0004
0.0740 0.0083
0.0023 0.0026
17
20
21
0.0050
0.0011
0.0056
0.0007
0.0518
0.0003
0.0003
0.0099
0.0100
0.0076
0.0105
0.0034
0.0113
0.0195
0.0638
0.0005
0.0019
0.0310
0.0008
0.0005
0.0033
0.0000
0.0001
0.0008
0.0003
0.0025
0.0013
0.0004
0.0105
0.0028
0.0012
0.0003
0.0251
0.0122
0.0003
0.0042
0.0153
0.0050
0.0001
0.0004
0.0012
0.0060
0.0391
0.0003
0.0007
0.0605 0.0749 0.0620
0.0017
0.0010
0.0019
0.0008
0.0009
0.0003
0.0004
0.0064
0.0266
0.0216
0.0199
0.1730
0.0026
0.0086
0.0273
0.0023
0.0000
0.0001
0.0007
0.0006
0.0037
0.0000
0.0001
0.0001 0.0051 0.0004
0.0025 0.0065 0.0177
0.0008 0.0005 19
23
0.0009
0.0004
0.0006
0.0160
0.0001
0.0000
0.0002
0.0187
0.0001
0.0000
0.0001
0.0246
0.0016
0.0014
0.0178
0.0003
0.0001
0.0002
0.0004
0.0001
0.0008
0.0000
0.0000
0.1147 0.0891
0.0028
0.0018
0.0022
0.0046
0.0004
0.0016
0.0274
0.0303
0.0095
0.1010
0.0769
0.0018
0.0595
0.0301
0.0920
0.0007
0.0106
0.0014
0.0003
0.0020
0.0000
0.0000
0.0003 0.0009
0.0121 0.0577
0.0006 0.0004
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0002 0.0012
0.0693 0.0406
0.0001 0.0002
TableC3
25
26
0.0067
0.1289
0.0014
0.0011
0.0005
0.0079
0.0005
0.0093
0.0002
0.0000
0.0028
0.0427
0.0083
0.0112
0.0066
0.0001
0.0007
0.0006
0.0024
0.0156
0.0001
0.0003
0.0463
0.0006
0.0475
0.0015
0.0004
0.0000
0.0000
0.0087
0.0000
0.0005
0.0561
0.0019
0.0184
0.0049
0.0003
0.0018
0.0003
0.0022
0.0000
0.0000
0.1658 0.1359 0.0831
0.0022
0.0005
0.0055
0.0207
0.0020
0.0066
0.0808
0.0064
0.0015
0.0000
0.0042
0.0757
0.0185
0.0539
0.0047
0.0003
0.0027
0.0008
0.0023
0.0029
0.0189
0.0002
0.0003
0.0012 0.0068 0.0525 0.0731 0.1225
0.0005 0.0015 0.0006
24
28
(1983)
0.0035
0.0011
0.0048
0.0056
0.0019
0.0116
0.0129
0.0059
0.0010
0.0003
0.0046
0.0173
0.0027
0.0245
0.0113
0.0014
0.0009
0.0001
0.0023
0.0015
0.0097
0.0001
0.0002
0.1290 0.1664
0.0016
0.0006
0.0008
0.0007
0.0003
0.0012
0.0058
0.0000
0.0000
0.0026
0.1819
0.0006
0.0033
0.0078
0.0015
0.0001
0.0010
0.0021
0.0135
0.0001
0.0002
0.0005
0.0071 0.0082
0.0004 0.0010
27
243
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1983,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0819 0.0561
0.0044
0.0014
0.0010
0.0010
0.0005
0.0016
0.0045
0.0023
0.0021
0.0001
0.0017
0.0160
0.0002
0.0021
0.0013
0.0008
5
0.1167
0.0322
0.0202
(continuedonnextpage)
0.0306
0.0008
0.0031
0.0020
0.0014
0.0048
0.0015
0.0049
0.0012
0.0005
0.0169
0.0036
0.0007
0.0044
0.0079
0.0017
0.0001
0.0010
28 0.0447 0.0316 0.1236
0.0006
0.0044
0.0002
0.0001
0.0000
0.0004
0.0001
0.0043
0.0000
0.0007
0.0000
0.0008
0.0002
0.0004
0.0082
0.0000
0.0000
0.0008
0.0001
0.0002
0.0007
0.0029
0.1000
0.0013
8
9
10
11
0.0002
0.0015
0.0000
0.0000
0.2372
0.0005
0.0030
0.0000
0.0001
0.0018
0.0118
0.0001
0.0002
4
4
5
6
7
3
2
1 0.0288 0.3538 0.2386
2 0.0075 0.0824 0.0764
3 0.0001 0.0007 0.0024
1
Sources:
Notes: 0.0011
0.0040
0.0193
0.0006
0.0102
0.0002
0.0044
0.0292
0.0001
0.0008
0.0025
0.0080
0.0042
0.0003
0.0029
0.0138
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0136
0.0005
0.0021
0.0043
0.0006
0.0036
0.0011
0.0045
0.0008
0.0001
0.0018
0.0139
0.0004
0.0033
0.0014
0.0009
0.0003
0.0016
0.2783
7
8
0.0068
0.0003
0.0021
0.0182
0.0005
0.0036
0.0014
0.0045
0.0007
0.0001
0.0016
0.0123
0.0004
0.0033
0.0013
0.0008
0.0003
0.0016
0.2796
0.0585 0.0610 0.0029
0.0006
0.0009
0.0012
0.0005
0.0016
0.0010
0.0122
0.0007
0.0001
0.0015
0.0118
0.0002
0.0015
0.0012
0.0008
0.0001
0.0007
0.1227
0.4923 0.0166 0.0803 6
9
10
0.0030
0.0158
0.0081
0.0129
0.0003
0.0028
0.0053
0.0186
0.0095
0.0014
0.0070
0.0374
0.0010
0.0035
0.0240
0.0013
0.0004
0.1359
0.0044
0.0029
0.0205
0.0002
0.0003
0.0788 0.1505
0.0022
0.0003
0.0019
0.0173
0.0010
0.0089
0.0006
0.0136
0.0001
0.0001
0.0009
0.0110
0.0027
0.0054
0.0453
0.0002
0.0711
0.0006
0.0412
0.0012
0.0086
0.0001
0.0001
0.1087
0.0073
0.0003
0.0017
0.0092
0.0007
0.0025
0.0007
0.0268
0.0007
0.0003
0.0260
0.0037
0.0029
0.0261
0.0332
0.0123
0.2847
0.0001
0.1414
0.0011
0.0078
0.0001
0.0001
0.0007
0.0059
0.0022
11
13
0.0019
0.0007
0.0027
0.0088
0.0012
0.0017
0.0009
0.0174
0.0056
0.0042
0.0084
0.0107
0.0147
0.1989
0.0424
0.0038
0.0236
0.0013
0.0031
0.0015
0.0101
0.0001
0.0002
0.1013 0.1181
0.0012
0.0003
0.0032
0.0010
0.0016
0.0005
0.0006
0.0092
0.0003
0.0003
0.0029
0.0008
0.2724
0.0077
0.0242
0.0002
0.0402
0.0063
0.0007
0.0051
0.0000
0.0001
0.0002 0.0013
0.0028 0.0071
0.0015 0.0023
12
15
0.0091
0.0023
0.0025
0.0157
0.0011
0.0012
0.0010
0.0505
0.0254
0.0033
0.0030
0.0044
0.0011
0.0300
0.0427
0.1126
0.0001
0.0746
0.0013
0.0027
0.0187
0.0002
0.0003
0.1013 0.0965
0.0012
0.0006
0.0031
0.0045
0.0017
0.0014
0.0005
0.0121
0.0026
0.0075
0.0061
0.0018
0.0103
0.0143
0.2597
0.0048
0.0010
0.0061
0.0093
0.0016
0.0114
0.0001
0.0002
0.0013 0.0089
0.0214 0.0101
0.0037 0.0209
14
0.0577
0.0145
0.0121
0.0010
0.0119
0.0008
0.0019
0.0002
0.0114
0.2673
0.0364
0.0132
0.0045
0.0035
0.0035
0.0119
0.0100
0.0001
0.0499
0.0002
0.0034
0.0236
0.0002
0.0004
0.0338
0.0069
0.0061
16
18
0.0019
0.0011
0.0025
0.0043
0.0003
0.0002
0.0003
0.0096
0.2039
0.0734
0.0896
0.0113
0.0095
0.0106
0.0264
0.0069
0.0001
0.0019
0.0009
0.0010
0.0068
0.0001
0.0001
0.0691 0.0957
0.0141
0.0119
0.0009
0.0066
0.0026
0.0012
0.0000
0.0086
0.0029
0.1725
0.0038
0.0011
0.0003
0.0016
0.0124
0.0012
0.0000
0.2269
0.0001
0.0052
0.0365
0.0003
0.0006
0.0091 0.0005
0.1190 0.0048
0.0144 0.0017
17
20
21
0.0013
0.0003
0.0038
0.0062
0.0301
0.0001
0.0001
0.0093
0.0082
0.0069
0.0113
0.0037
0.0157
0.0219
0.0716
0.0083
0.0038
0.0311
0.0017
0.0005
0.0036
0.0000
0.0001
0.0004
0.0001
0.0016
0.0010
0.0002
0.0020
0.0020
0.0007
0.0001
0.0128
0.0043
0.0002
0.0019
0.0104
0.0026
0.0000
0.0004
0.0007
0.0029
0.0202
0.0002
0.0003
0.0640 0.0778 0.0434
0.0008
0.0003
0.0018
0.0024
0.0010
0.0003
0.0001
0.0052
0.0294
0.0205
0.0196
0.1677
0.0036
0.0074
0.0303
0.0044
0.0000
0.0003
0.0004
0.0006
0.0042
0.0000
0.0001
0.0001 0.0024 0.0004
0.0016 0.0031 0.0381
0.0007 0.0003 19
23
0.0006
0.0001
0.0015
0.0425
0.0006
0.0000
0.0034
0.0037
0.0000
0.0000
0.0022
0.0145
0.0011
0.0039
0.0209
0.0001
0.0000
0.0002
0.0002
0.0003
0.0021
0.0000
0.0000
0.0974 0.1168
0.0012
0.0005
0.0022
0.0058
0.0003
0.0016
0.0244
0.0269
0.0076
0.0889
0.0608
0.0017
0.0555
0.0282
0.0909
0.0006
0.0143
0.0013
0.0002
0.0016
0.0000
0.0000
0.0002 0.0003
0.0111 0.0701
0.0007 0.0001
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0001 0.0006
0.0642 0.0248
0.0002 0.0001
TableC3
25
26
0.0012
0.0874
0.0020
0.1085
0.0004
0.0032
0.0100
0.0056
0.0000
0.0000
0.0068
0.0483
0.0034
0.0129
0.0050
0.0000
0.0007
0.0006
0.0001
0.0009
0.0000
0.0000
0.0009
0.0002
0.0025
0.0891
0.0003
0.0000
0.0037
0.0044
0.0000
0.0006
0.0638
0.0012
0.0090
0.0091
0.0005
0.0008
0.0002
0.0015
0.0000
0.0000
0.1212 0.1220 0.0907
0.0010
0.0011
0.0007
0.0156
0.0025
0.0000
0.0757
0.0072
0.0016
0.0000
0.0100
0.1939
0.0045
0.0291
0.0078
0.0003
0.0038
0.0042
0.0027
0.0030
0.0207
0.0002
0.0003
0.0012 0.0038 0.0738 0.0882 0.1097
0.0002 0.0000 0.0002
24
28
(1984)
0.0005
0.0007
0.0054
0.0140
0.0022
0.0125
0.0107
0.0061
0.0008
0.0002
0.0051
0.0169
0.0037
0.0274
0.0116
0.0013
0.0010
0.0002
0.0030
0.0017
0.0116
0.0001
0.0002
0.1367 0.1663
0.0023
0.0002
0.0030
0.0239
0.0003
0.0007
0.0119
0.0078
0.0001
0.0000
0.0015
0.0900
0.0008
0.0022
0.0055
0.0006
0.0000
0.0007
0.0022
0.0156
0.0001
0.0003
0.0009
0.0108 0.0109
0.0006 0.0018
27
244
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1984,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0955 0.0690
0.0049
0.0002
0.0016
0.0016
0.0008
0.0028
0.0024
0.0017
0.0011
0.0002
0.0025
0.0193
0.0003
0.0026
0.0020
0.0012
5
0.1140
0.0272
0.0070
(continuedonnextpage)
0.0224
0.0002
0.0045
0.0033
0.0024
0.0071
0.0007
0.0031
0.0014
0.0005
0.0205
0.0055
0.0010
0.0051
0.0106
0.0018
0.0003
0.0016
28 0.0508 0.0390 0.1454
0.0068
0.0127
0.0002
0.0053
0.0000
0.0007
0.0002
0.0070
0.0037
0.0018
0.0001
0.0016
0.0008
0.0009
0.0196
0.0000
0.0000
0.0047
0.0001
0.0002
0.0013
0.0033
0.1063
0.0016
8
9
10
11
0.0002
0.0013
0.0000
0.0000
0.2190
0.0005
0.0035
0.0000
0.0001
0.0020
0.0136
0.0001
0.0002
4
4
5
6
7
3
2
1 0.0358 0.3112 0.2439
2 0.0068 0.0940 0.0284
3 0.0001 0.0018 0.0047
1
Sources:
Notes: 0.0020
0.0055
0.0267
0.0007
0.0154
0.0002
0.0066
0.0369
0.0002
0.0013
0.0031
0.0113
0.0023
0.0009
0.0027
0.0154
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0169
0.0004
0.0014
0.0046
0.0005
0.0030
0.0007
0.0049
0.0005
0.0001
0.0015
0.0133
0.0004
0.0029
0.0011
0.0009
0.0003
0.0011
0.2617
7
8
0.0042
0.0001
0.0007
0.0097
0.0007
0.0015
0.0014
0.0030
0.0008
0.0002
0.0021
0.0191
0.0002
0.0014
0.0016
0.0012
0.0001
0.0005
0.1291
0.0601 0.0785 0.0031
0.0004
0.0005
0.0011
0.0005
0.0011
0.0007
0.0122
0.0006
0.0001
0.0016
0.0146
0.0002
0.0011
0.0012
0.0009
0.0001
0.0004
0.0962
0.4666 0.0278 0.1358 6
9
10
0.0045
0.0053
0.0077
0.0143
0.0004
0.0037
0.0056
0.0239
0.0086
0.0030
0.0083
0.0415
0.0013
0.0041
0.0297
0.0016
0.0006
0.1018
0.0043
0.0026
0.0198
0.0001
0.0001
0.0928 0.1340
0.0014
0.0004
0.0017
0.0198
0.0016
0.0093
0.0005
0.0169
0.0001
0.0001
0.0009
0.0099
0.0045
0.0059
0.0575
0.0002
0.0789
0.0006
0.0423
0.0014
0.0104
0.0001
0.0001
0.1122
0.0078
0.0004
0.0012
0.0071
0.0007
0.0022
0.0004
0.0284
0.0006
0.0003
0.0246
0.0032
0.0027
0.0199
0.0301
0.0119
0.2867
0.0003
0.1285
0.0010
0.0079
0.0000
0.0000
0.0015
0.0037
0.0025
11
13
0.0011
0.0006
0.0021
0.0069
0.0013
0.0018
0.0006
0.0181
0.0045
0.0044
0.0074
0.0124
0.0204
0.1998
0.0374
0.0039
0.0206
0.0013
0.0032
0.0013
0.0097
0.0001
0.0000
0.0960 0.1249
0.0009
0.0003
0.0017
0.0015
0.0011
0.0003
0.0001
0.0143
0.0002
0.0002
0.0013
0.0005
0.2624
0.0041
0.0134
0.0001
0.0640
0.0202
0.0006
0.0049
0.0000
0.0000
0.0004 0.0014
0.0010 0.0053
0.0015 0.0019
12
15
0.0076
0.0022
0.0021
0.0118
0.0013
0.0013
0.0007
0.0524
0.0235
0.0041
0.0031
0.0055
0.0015
0.0358
0.0429
0.1166
0.0001
0.0535
0.0011
0.0022
0.0173
0.0001
0.0001
0.1074 0.1134
0.0011
0.0006
0.0024
0.0033
0.0018
0.0013
0.0004
0.0123
0.0026
0.0073
0.0056
0.0018
0.0121
0.0132
0.2412
0.0041
0.0008
0.0064
0.0143
0.0013
0.0097
0.0000
0.0000
0.0037 0.0110
0.0083 0.0095
0.0037 0.0216
14
0.0628
0.0145
0.0115
0.0010
0.0044
0.0011
0.0022
0.0001
0.0139
0.2713
0.0494
0.0149
0.0065
0.0076
0.0038
0.0133
0.0119
0.0001
0.0637
0.0002
0.0028
0.0214
0.0001
0.0001
0.0164
0.0074
0.0092
16
18
0.0019
0.0012
0.0020
0.0038
0.0003
0.0002
0.0002
0.0105
0.1850
0.0817
0.0851
0.0127
0.0128
0.0101
0.0264
0.0084
0.0001
0.0011
0.0007
0.0008
0.0060
0.0000
0.0000
0.0605 0.1079
0.0086
0.0131
0.0006
0.0030
0.0028
0.0009
0.0000
0.0086
0.0021
0.1574
0.0027
0.0009
0.0004
0.0013
0.0100
0.0007
0.0000
0.2376
0.0000
0.0059
0.0455
0.0002
0.0002
0.0141 0.0012
0.0710 0.0034
0.0286 0.0016
17
20
21
0.0010
0.0002
0.0023
0.0032
0.0234
0.0001
0.0001
0.0096
0.0068
0.0053
0.0080
0.0031
0.0370
0.0175
0.0631
0.0043
0.0028
0.0458
0.0010
0.0004
0.0031
0.0000
0.0000
0.0002
0.0001
0.0011
0.0009
0.0002
0.0013
0.0019
0.0006
0.0001
0.0123
0.0038
0.0001
0.0019
0.0083
0.0022
0.0000
0.0002
0.0005
0.0027
0.0209
0.0001
0.0001
0.0715 0.0700 0.0402
0.0005
0.0003
0.0014
0.0020
0.0012
0.0003
0.0001
0.0050
0.0241
0.0208
0.0200
0.1472
0.0041
0.0070
0.0302
0.0050
0.0000
0.0003
0.0004
0.0005
0.0036
0.0000
0.0000
0.0004 0.0039 0.0001
0.0011 0.0018 0.0250
0.0006 0.0003 19
23
0.0003
0.0001
0.0010
0.0372
0.0005
0.0000
0.0014
0.0037
0.0000
0.0000
0.0019
0.0091
0.0014
0.0037
0.0144
0.0001
0.0000
0.0001
0.0002
0.0003
0.0021
0.0000
0.0000
0.0996 0.1237
0.0008
0.0005
0.0019
0.0057
0.0004
0.0017
0.0249
0.0251
0.0079
0.0813
0.0760
0.0013
0.0533
0.0302
0.0882
0.0004
0.0095
0.0009
0.0003
0.0020
0.0000
0.0000
0.0002 0.0005
0.0092 0.0557
0.0003 0.0000
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0003 0.0015
0.0570 0.0166
0.0001 0.0002
TableC3
25
26
0.0007
0.0497
0.0018
0.1832
0.0004
0.0039
0.0067
0.0072
0.0000
0.0000
0.0093
0.0827
0.0099
0.0155
0.0056
0.0000
0.0005
0.0007
0.0002
0.0012
0.0000
0.0000
0.0005
0.0002
0.0022
0.0781
0.0004
0.0000
0.0025
0.0059
0.0000
0.0007
0.0636
0.0013
0.0099
0.0105
0.0007
0.0008
0.0003
0.0021
0.0000
0.0000
0.1179 0.1543 0.1097
0.0006
0.0006
0.0008
0.0196
0.0023
0.0000
0.0712
0.0079
0.0013
0.0000
0.0103
0.1598
0.0060
0.0285
0.0072
0.0004
0.0036
0.0028
0.0021
0.0031
0.0240
0.0001
0.0001
0.0022 0.0014 0.0680 0.0792 0.0891
0.0001 0.0000 0.0001
24
28
(1987)
0.0004
0.0007
0.0051
0.0146
0.0023
0.0110
0.0101
0.0071
0.0007
0.0002
0.0052
0.0203
0.0033
0.0283
0.0121
0.0013
0.0030
0.0001
0.0061
0.0015
0.0118
0.0001
0.0001
0.1493 0.1775
0.0017
0.0004
0.0020
0.0153
0.0003
0.0008
0.0066
0.0073
0.0001
0.0000
0.0017
0.0873
0.0011
0.0025
0.0053
0.0009
0.0000
0.0006
0.0023
0.0178
0.0001
0.0001
0.0007
0.0083 0.0092
0.0003 0.0008
27
245
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1987,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0787 0.0546
0.0061
0.0001
0.0010
0.0017
0.0007
0.0023
0.0015
0.0018
0.0008
0.0002
0.0021
0.0192
0.0003
0.0023
0.0016
0.0012
5
0.1382
0.0190
0.0244
(continuedonnextpage)
0.0972
0.0001
0.0016
0.0017
0.0010
0.0034
0.0002
0.0016
0.0006
0.0003
0.0082
0.0030
0.0010
0.0024
0.0048
0.0010
0.0001
0.0006
28 0.0517 0.1457 0.0783
0.0007
0.0243
0.0017
0.0083
0.0004
0.0063
0.0013
0.0340
0.0040
0.0081
0.0010
0.0142
0.0070
0.0081
0.0882
0.0003
0.0004
0.0252
0.0011
0.0002
0.0008
0.0030
0.0344
0.0018
8
9
10
11
0.0001
0.0007
0.0000
0.0000
0.2018
0.0004
0.0032
0.0000
0.0000
0.0019
0.0150
0.0001
0.0001
4
4
5
6
7
3
2
1 0.0180 0.2042 0.2845
2 0.0052 0.1172 0.0050
3 0.0001 0.0023 0.0009
1
Sources:
Notes: 0.0009
0.0037
0.0230
0.0010
0.0153
0.0002
0.0079
0.0330
0.0001
0.0003
0.0029
0.0110
0.0017
0.0005
0.0048
0.0142
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0157
0.0003
0.0021
0.0027
0.0003
0.0029
0.0006
0.0048
0.0005
0.0000
0.0012
0.0090
0.0003
0.0025
0.0014
0.0019
0.0003
0.0012
0.2601
7
8
0.0053
0.0001
0.0014
0.0078
0.0003
0.0019
0.0007
0.0034
0.0004
0.0000
0.0010
0.0075
0.0002
0.0017
0.0012
0.0015
0.0002
0.0008
0.1733
0.0084
0.0002
0.0023
0.0098
0.0001
0.0031
0.0003
0.0044
0.0001
0.0000
0.0003
0.0025
0.0003
0.0027
0.0004
0.0005
0.2834
0.0004
0.0013
0.0784 0.0450 0.0148
0.0028
0.0003
0.0008
0.0007
0.0005
0.0010
0.0009
0.0129
0.0007
0.0001
0.0017
0.0131
0.0001
0.0009
0.0020
0.0027
0.0001
0.0004
0.0946
0.2889 0.0054 0.2847 0.3447
6
9
10
0.0033
0.0079
0.0139
0.0128
0.0003
0.0019
0.0082
0.0346
0.0078
0.0026
0.0197
0.0439
0.0010
0.0043
0.0412
0.0029
0.0001
0.0012
0.0885
0.0045
0.0021
0.0179
0.0001
0.0002
0.0924 0.1218
0.0011
0.0003
0.0025
0.0146
0.0015
0.0100
0.0005
0.0195
0.0000
0.0002
0.0008
0.0162
0.0047
0.0044
0.0549
0.0039
0.0001
0.0910
0.0013
0.0415
0.0013
0.0112
0.0000
0.0001
0.0898
0.0051
0.0003
0.0010
0.0032
0.0002
0.0007
0.0001
0.0326
0.0001
0.0010
0.0183
0.0015
0.0016
0.0194
0.0252
0.0083
0.0000
0.2884
0.0000
0.1321
0.0008
0.0070
0.0000
0.0001
0.0008
0.0022
0.0022
11
13
0.0008
0.0003
0.0025
0.0060
0.0008
0.0013
0.0005
0.0226
0.0075
0.0031
0.0118
0.0100
0.0120
0.1917
0.0447
0.0034
0.0000
0.0192
0.0009
0.0032
0.0011
0.0095
0.0000
0.0001
0.1178 0.1218
0.0006
0.0002
0.0017
0.0011
0.0022
0.0008
0.0009
0.0140
0.0004
0.0004
0.0015
0.0009
0.2335
0.0104
0.0247
0.0000
0.0000
0.0339
0.0000
0.0077
0.0005
0.0046
0.0000
0.0001
0.0003 0.0011
0.0011 0.0033
0.0015 0.0015
12
15
0.0043
0.0010
0.0012
0.0035
0.0004
0.0004
0.0003
0.0718
0.0090
0.0021
0.0124
0.0022
0.0008
0.0232
0.0311
0.1175
0.0001
0.0011
0.0675
0.0005
0.0019
0.0164
0.0001
0.0002
0.1053 0.0790
0.0008
0.0003
0.0017
0.0024
0.0011
0.0008
0.0002
0.0148
0.0023
0.0124
0.0058
0.0012
0.0060
0.0168
0.2110
0.0032
0.0000
0.0025
0.0091
0.0160
0.0009
0.0078
0.0000
0.0001
0.0018 0.0041
0.0068 0.0082
0.0036 0.0228
14
0.0667
0.0124
0.0176
0.0012
0.0043
0.0010
0.0022
0.0001
0.0171
0.1586
0.1164
0.0063
0.0040
0.0051
0.0035
0.0200
0.0174
0.0000
0.0002
0.0606
0.0002
0.0009
0.0076
0.0000
0.0001
0.0095
0.0093
0.0038
16
18
0.0019
0.0011
0.0015
0.0032
0.0002
0.0001
0.0002
0.0115
0.1690
0.0749
0.1048
0.0093
0.0085
0.0150
0.0235
0.0095
0.0000
0.0004
0.0039
0.0008
0.0005
0.0045
0.0000
0.0001
0.0511 0.1102
0.0062
0.0059
0.0008
0.0016
0.0023
0.0008
0.0000
0.0093
0.0038
0.1371
0.0020
0.0005
0.0002
0.0011
0.0184
0.0017
0.0002
0.0017
0.2531
0.0001
0.0046
0.0391
0.0002
0.0005
0.0143 0.0002
0.0160 0.0021
0.0198 0.0014
17
20
21
0.0004
0.0001
0.0019
0.0019
0.0262
0.0000
0.0000
0.0101
0.0202
0.0164
0.0163
0.0056
0.0135
0.0131
0.0465
0.0051
0.0000
0.0021
0.0603
0.0005
0.0003
0.0026
0.0000
0.0000
0.0003
0.0001
0.0037
0.0015
0.0003
0.0027
0.0045
0.0011
0.0001
0.0206
0.0086
0.0002
0.0039
0.0313
0.0074
0.0002
0.0001
0.0016
0.0015
0.0053
0.0454
0.0002
0.0006
0.0715 0.0833 0.0766
0.0006
0.0001
0.0017
0.0019
0.0012
0.0004
0.0001
0.0061
0.0436
0.0176
0.0230
0.1039
0.0031
0.0117
0.0356
0.0031
0.0000
0.0001
0.0003
0.0005
0.0003
0.0028
0.0000
0.0000
0.0001 0.0003 0.0002
0.0008 0.0008 0.0191
0.0007 0.0002 19
23
0.0004
0.0003
0.0044
0.0615
0.0011
0.0000
0.0055
0.0066
0.0000
0.0000
0.0023
0.0546
0.0023
0.0068
0.0274
0.0006
0.0000
0.0001
0.0000
0.0004
0.0006
0.0056
0.0000
0.0001
0.1214 0.1811
0.0006
0.0003
0.0012
0.0084
0.0010
0.0005
0.0001
0.0315
0.0276
0.0049
0.0748
0.0705
0.0018
0.0429
0.0217
0.0878
0.0000
0.0009
0.0085
0.0013
0.0004
0.0037
0.0000
0.0000
0.0001 0.0001
0.0105 0.0543
0.0010 0.0002
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0000 0.0022
0.0242 0.0140
0.0001 0.0003
TableC3
25
26
0.0004
0.0745
0.0034
0.2024
0.0003
0.0044
0.0097
0.0063
0.0000
0.0000
0.0104
0.0577
0.0081
0.0097
0.0057
0.0000
0.0000
0.0000
0.0008
0.0002
0.0014
0.0000
0.0000
0.0005
0.0006
0.0035
0.0584
0.0003
0.0000
0.0029
0.0066
0.0000
0.0006
0.0517
0.0002
0.0055
0.0102
0.0000
0.0019
0.0005
0.0002
0.0020
0.0000
0.0000
0.1190 0.1854 0.1164
0.0004
0.0009
0.0009
0.0196
0.0019
0.0000
0.0658
0.0055
0.0018
0.0001
0.0463
0.0554
0.0121
0.0279
0.0111
0.0004
0.0001
0.0052
0.0000
0.0035
0.0034
0.0294
0.0001
0.0004
0.0008 0.0013 0.0289 0.0323 0.0932
0.0002 0.0000 0.0002
24
28
(1990)
0.0003
0.0006
0.0076
0.0125
0.0016
0.0117
0.0054
0.0062
0.0008
0.0002
0.0046
0.0195
0.0031
0.0268
0.0120
0.0024
0.0001
0.0030
0.0003
0.0066
0.0013
0.0113
0.0000
0.0001
0.1173 0.2105
0.0014
0.0002
0.0031
0.0133
0.0002
0.0006
0.0068
0.0076
0.0000
0.0000
0.0021
0.1067
0.0006
0.0015
0.0049
0.0009
0.0001
0.0001
0.0006
0.0018
0.0157
0.0001
0.0002
0.0002
0.0038 0.0042
0.0004 0.0013
27
246
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1990,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0741 0.0540
0.0047
0.0001
0.0013
0.0009
0.0005
0.0018
0.0013
0.0015
0.0007
0.0001
0.0016
0.0124
0.0002
0.0016
0.0019
0.0025
5
0.1350
0.0109
0.0365
(continuedonnextpage)
0.0874
0.0000
0.0028
0.0012
0.0007
0.0035
0.0002
0.0014
0.0006
0.0001
0.0098
0.0029
0.0008
0.0024
0.0120
0.0021
0.0000
0.0001
0.0008
28 0.0528 0.0628 0.1153
0.0003
0.0210
0.0013
0.0051
0.0002
0.0002
0.0006
0.0122
0.0011
0.0007
0.0006
0.0019
0.0010
0.0031
0.0666
0.0001
0.0000
0.0001
0.0031
0.0004
0.0002
0.0008
0.0001
0.0030
0.0479
0.0016
8
9
10
11
0.0001
0.0008
0.0000
0.0000
0.1654
0.0002
0.0016
0.0000
0.0000
0.0014
0.0122
0.0000
0.0002
4
4
5
6
7
3
2
1 0.0098 0.3850 0.3712
2 0.0039 0.0531 0.0036
3 0.0001 0.0020 0.0016
1
Sources:
Notes: 0.0010
0.0026
0.0184
0.0008
0.0053
0.0001
0.0069
0.0247
0.0001
0.0005
0.0021
0.0044
0.0010
0.0008
0.0037
0.0119
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0137
0.0004
0.0008
0.0039
0.0001
0.0061
0.0026
0.0024
0.0006
0.0000
0.0008
0.0096
0.0001
0.0005
0.0030
0.0032
0.0000
0.0001
0.3495
7
8
0.0036
0.0001
0.0004
0.0097
0.0001
0.0032
0.0041
0.0014
0.0007
0.0000
0.0010
0.0110
0.0000
0.0003
0.0035
0.0036
0.0000
0.0000
0.1809
0.0076
0.0002
0.0009
0.0162
0.0000
0.0069
0.0013
0.0024
0.0002
0.0000
0.0002
0.0027
0.0001
0.0006
0.0008
0.0009
0.3958
0.0000
0.0001
0.0380 0.0285 0.0069
0.0029
0.0004
0.0004
0.0011
0.0001
0.0026
0.0039
0.0083
0.0010
0.0000
0.0013
0.0147
0.0000
0.0002
0.0046
0.0048
0.0000
0.0000
0.1495
0.1997 0.0034 0.1378 0.2219
6
9
10
0.0021
0.0095
0.0114
0.0184
0.0003
0.0034
0.0100
0.0156
0.0075
0.0021
0.0168
0.0428
0.0014
0.0035
0.0367
0.0037
0.0002
0.0012
0.0872
0.0020
0.0040
0.0320
0.0001
0.0003
0.1101 0.1418
0.0024
0.0005
0.0035
0.0293
0.0029
0.0109
0.0057
0.0295
0.0001
0.0006
0.0025
0.0172
0.0047
0.0066
0.0659
0.0071
0.0000
0.0780
0.0005
0.0417
0.0012
0.0097
0.0000
0.0001
0.1148
0.0035
0.0003
0.0016
0.0070
0.0016
0.0009
0.0001
0.0336
0.0001
0.0016
0.0239
0.0028
0.0031
0.0256
0.0336
0.0091
0.0000
0.2717
0.0000
0.1209
0.0009
0.0070
0.0000
0.0001
0.0029
0.0061
0.0027
11
13
0.0007
0.0003
0.0033
0.0127
0.0012
0.0014
0.0003
0.0179
0.0096
0.0046
0.0102
0.0148
0.0098
0.1869
0.0476
0.0042
0.0000
0.0187
0.0005
0.0031
0.0008
0.0065
0.0000
0.0001
0.0795 0.1292
0.0015
0.0002
0.0017
0.0011
0.0022
0.0004
0.0000
0.0076
0.0004
0.0005
0.0021
0.0014
0.2191
0.0130
0.0226
0.0001
0.0000
0.0664
0.0000
0.0134
0.0004
0.0028
0.0000
0.0000
0.0006 0.0020
0.0010 0.0045
0.0010 0.0013
12
15
0.0030
0.0007
0.0018
0.0074
0.0008
0.0004
0.0001
0.0801
0.0112
0.0017
0.0168
0.0030
0.0018
0.0224
0.0453
0.1173
0.0001
0.0016
0.0835
0.0004
0.0017
0.0134
0.0000
0.0001
0.1029 0.0866
0.0006
0.0005
0.0021
0.0040
0.0017
0.0008
0.0001
0.0076
0.0026
0.0088
0.0121
0.0016
0.0076
0.0217
0.2231
0.0049
0.0000
0.0051
0.0027
0.0123
0.0008
0.0061
0.0000
0.0001
0.0039 0.0101
0.0113 0.0099
0.0033 0.0247
14
0.1294
0.0109
0.0063
0.0016
0.0081
0.0016
0.0024
0.0001
0.0163
0.1771
0.0774
0.0078
0.0064
0.0039
0.0043
0.0265
0.0223
0.0000
0.0003
0.0613
0.0002
0.0007
0.0058
0.0000
0.0001
0.0137
0.0127
0.0037
16
18
0.0022
0.0008
0.0015
0.0048
0.0009
0.0002
0.0034
0.0097
0.1261
0.0605
0.1543
0.0088
0.0077
0.0189
0.0270
0.0092
0.0000
0.0005
0.0061
0.0007
0.0004
0.0033
0.0000
0.0000
0.0938 0.0970
0.0063
0.0082
0.0012
0.0015
0.0040
0.0011
0.0000
0.0100
0.0051
0.0771
0.0030
0.0009
0.0002
0.0014
0.0274
0.0025
0.0002
0.0023
0.2700
0.0001
0.0044
0.0353
0.0001
0.0003
0.0297 0.0012
0.0307 0.0032
0.0225 0.0015
17
20
21
0.0006
0.0002
0.0025
0.0048
0.0156
0.0000
0.0002
0.0065
0.0457
0.0190
0.0328
0.0465
0.0154
0.0231
0.0552
0.0094
0.0000
0.0029
0.0577
0.0012
0.0003
0.0026
0.0000
0.0000
0.0004
0.0002
0.0047
0.0035
0.0005
0.0013
0.0052
0.0020
0.0001
0.0274
0.0120
0.0003
0.0050
0.0406
0.0102
0.0002
0.0002
0.0025
0.0011
0.0043
0.0349
0.0001
0.0003
0.0769 0.0947 0.0923
0.0006
0.0001
0.0021
0.0027
0.0023
0.0008
0.0001
0.0042
0.0457
0.0150
0.0260
0.1094
0.0018
0.0128
0.0315
0.0046
0.0000
0.0003
0.0004
0.0005
0.0003
0.0021
0.0000
0.0000
0.0003 0.0020 0.0000
0.0011 0.0019 0.0263
0.0006 0.0004 19
23
0.0004
0.0003
0.0042
0.0574
0.0013
0.0000
0.0019
0.0049
0.0000
0.0000
0.0022
0.0317
0.0015
0.0051
0.0147
0.0004
0.0000
0.0001
0.0004
0.0003
0.0004
0.0032
0.0000
0.0000
0.1476 0.1544
0.0005
0.0003
0.0009
0.0092
0.0008
0.0003
0.0003
0.0218
0.0188
0.0028
0.0615
0.0695
0.0020
0.0464
0.0141
0.0930
0.0000
0.0005
0.0069
0.0007
0.0002
0.0013
0.0000
0.0000
0.0001 0.0003
0.0064 0.0562
0.0005 0.0001
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0002 0.0018
0.0355 0.0297
0.0002 0.0027
TableC3
25
26
0.0001
0.1686
0.0030
0.0897
0.0003
0.0034
0.0027
0.0024
0.0000
0.0000
0.0083
0.0488
0.0036
0.0056
0.0048
0.0000
0.0000
0.0007
0.0004
0.0001
0.0008
0.0000
0.0000
0.0005
0.0004
0.0048
0.0728
0.0004
0.0000
0.0013
0.0067
0.0000
0.0009
0.0655
0.0007
0.0060
0.0125
0.0000
0.0030
0.0007
0.0002
0.0016
0.0000
0.0000
0.1154 0.1223 0.1035
0.0002
0.0013
0.0005
0.0196
0.0016
0.0000
0.0143
0.0028
0.0015
0.0000
0.0366
0.0345
0.0043
0.0143
0.0067
0.0006
0.0001
0.0031
0.0000
0.0015
0.0014
0.0117
0.0000
0.0001
0.0008 0.0001 0.0210 0.0307 0.0844
0.0001 0.0000 0.0002
24
28
(1993)
0.0003
0.0012
0.0079
0.0156
0.0016
0.0119
0.0060
0.0054
0.0008
0.0002
0.0044
0.0178
0.0031
0.0254
0.0122
0.0026
0.0000
0.0036
0.0004
0.0068
0.0011
0.0088
0.0000
0.0001
0.1595 0.2207
0.0023
0.0005
0.0063
0.0353
0.0005
0.0007
0.0042
0.0092
0.0000
0.0000
0.0025
0.1080
0.0019
0.0027
0.0053
0.0014
0.0001
0.0001
0.0000
0.0006
0.0020
0.0163
0.0001
0.0001
0.0000 0.0002
0.0135 0.0048
0.0005 0.0012
27
247
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1993,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0311 0.0250
0.0040
0.0001
0.0005
0.0012
0.0001
0.0038
0.0048
0.0007
0.0008
0.0000
0.0011
0.0120
0.0001
0.0003
0.0038
0.0039
5
0.0775
0.0059
0.0180
(continuedonnextpage)
0.0793
0.0006
0.0044
0.0053
0.0004
0.0056
0.0000
0.0012
0.0007
0.0000
0.0024
0.0005
0.0003
0.0023
0.0148
0.0021
0.0000
0.0000
0.0001
28 0.0852 0.0414 0.0946
0.0002
0.0428
0.0007
0.0060
0.0001
0.0001
0.0001
0.0057
0.0008
0.0005
0.0003
0.0014
0.0005
0.0020
0.0340
0.0000
0.0000
0.0001
0.0020
0.0002
0.0000
0.0001
0.0001
0.0016
0.0321
0.0006
8
9
10
11
0.0002
0.0015
0.0000
0.0000
0.2187
0.0001
0.0005
0.0000
0.0000
0.0022
0.0174
0.0001
0.0002
4
4
5
6
7
3
2
1 0.0053 0.5064 0.3914
2 0.0095 0.0903 0.0028
3 0.0001 0.0008 0.0022
1
Sources:
Notes: 0.0007
0.0016
0.0148
0.0007
0.0042
0.0001
0.0060
0.0260
0.0000
0.0003
0.0028
0.0034
0.0009
0.0004
0.0016
0.0075
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0147
0.0003
0.0005
0.0031
0.0000
0.0043
0.0010
0.0026
0.0004
0.0000
0.0010
0.0156
0.0001
0.0004
0.0043
0.0039
0.0000
0.0001
0.3293
7
8
0.0040
0.0001
0.0003
0.0079
0.0000
0.0023
0.0018
0.0015
0.0006
0.0000
0.0013
0.0205
0.0000
0.0002
0.0056
0.0051
0.0000
0.0000
0.1474
0.0093
0.0002
0.0007
0.0143
0.0000
0.0055
0.0006
0.0029
0.0001
0.0000
0.0003
0.0046
0.0001
0.0005
0.0013
0.0012
0.4922
0.0000
0.0001
0.0333 0.0295 0.0066
0.0035
0.0004
0.0003
0.0010
0.0000
0.0020
0.0015
0.0090
0.0006
0.0000
0.0015
0.0232
0.0000
0.0002
0.0063
0.0058
0.0000
0.0000
0.1245
0.2032 0.0041 0.0499 0.0870
6
9
10
0.0016
0.0199
0.0067
0.0173
0.0001
0.0018
0.0109
0.0126
0.0096
0.0008
0.0129
0.0382
0.0009
0.0025
0.0305
0.0035
0.0001
0.0002
0.1421
0.0015
0.0025
0.0215
0.0001
0.0002
0.1115 0.1479
0.0025
0.0006
0.0023
0.0356
0.0034
0.0049
0.0089
0.0252
0.0001
0.0007
0.0039
0.0207
0.0034
0.0054
0.0598
0.0022
0.0000
0.0934
0.0002
0.0334
0.0010
0.0081
0.0000
0.0001
0.1018
0.0044
0.0003
0.0013
0.0067
0.0011
0.0008
0.0000
0.0314
0.0002
0.0010
0.0248
0.0032
0.0037
0.0277
0.0373
0.0087
0.0000
0.2813
0.0000
0.1146
0.0008
0.0066
0.0000
0.0001
0.0042
0.0032
0.0022
11
13
0.0009
0.0003
0.0024
0.0118
0.0009
0.0011
0.0003
0.0170
0.0121
0.0067
0.0119
0.0180
0.0074
0.1778
0.0490
0.0046
0.0000
0.0274
0.0005
0.0020
0.0007
0.0059
0.0000
0.0000
0.0750 0.1164
0.0030
0.0002
0.0017
0.0011
0.0015
0.0004
0.0000
0.0075
0.0004
0.0004
0.0027
0.0015
0.2386
0.0119
0.0288
0.0001
0.0000
0.0421
0.0000
0.0109
0.0004
0.0035
0.0000
0.0000
0.0015 0.0023
0.0009 0.0034
0.0008 0.0011
12
15
0.0046
0.0007
0.0012
0.0063
0.0009
0.0003
0.0001
0.0849
0.0084
0.0056
0.0159
0.0027
0.0020
0.0209
0.0421
0.1105
0.0001
0.0016
0.0790
0.0003
0.0015
0.0127
0.0001
0.0001
0.0999 0.0732
0.0028
0.0006
0.0017
0.0037
0.0015
0.0006
0.0000
0.0087
0.0020
0.0097
0.0136
0.0019
0.0081
0.0208
0.2185
0.0045
0.0000
0.0046
0.0082
0.0080
0.0007
0.0062
0.0000
0.0000
0.0062 0.0266
0.0094 0.0070
0.0024 0.0298
14
0.1162
0.0092
0.0017
0.0011
0.0063
0.0009
0.0018
0.0000
0.0164
0.2199
0.0771
0.0073
0.0092
0.0028
0.0031
0.0245
0.0218
0.0000
0.0002
0.0660
0.0002
0.0006
0.0053
0.0000
0.0000
0.0164
0.0099
0.0030
16
18
0.0024
0.0005
0.0011
0.0035
0.0005
0.0002
0.0037
0.0107
0.1368
0.0471
0.1305
0.0112
0.0067
0.0173
0.0246
0.0096
0.0000
0.0005
0.0078
0.0005
0.0004
0.0031
0.0000
0.0000
0.0789 0.0901
0.0090
0.0091
0.0010
0.0015
0.0018
0.0009
0.0000
0.0091
0.0061
0.1636
0.0020
0.0011
0.0002
0.0012
0.0262
0.0022
0.0002
0.0026
0.2038
0.0000
0.0043
0.0367
0.0002
0.0003
0.0451 0.0019
0.0203 0.0027
0.0187 0.0011
17
20
21
0.0005
0.0001
0.0008
0.0019
0.0053
0.0000
0.0000
0.0033
0.0217
0.0087
0.0161
0.0210
0.0056
0.0097
0.0259
0.0025
0.0000
0.0014
0.0804
0.0005
0.0001
0.0010
0.0000
0.0000
0.0003
0.0001
0.0036
0.0035
0.0003
0.0005
0.0055
0.0017
0.0003
0.0311
0.0118
0.0003
0.0047
0.0439
0.0098
0.0002
0.0001
0.0028
0.0010
0.0043
0.0363
0.0002
0.0003
0.0681 0.0523 0.0907
0.0008
0.0001
0.0013
0.0019
0.0015
0.0007
0.0000
0.0036
0.0400
0.0131
0.0231
0.1206
0.0013
0.0102
0.0261
0.0026
0.0000
0.0001
0.0025
0.0004
0.0002
0.0016
0.0000
0.0000
0.0005 0.0010 0.0000
0.0007 0.0004 0.0189
0.0005 0.0002 19
23
0.0004
0.0003
0.0048
0.0716
0.0005
0.0000
0.0021
0.0060
0.0000
0.0000
0.0054
0.0357
0.0020
0.0075
0.0247
0.0005
0.0000
0.0001
0.0002
0.0004
0.0006
0.0051
0.0000
0.0000
0.1507 0.2014
0.0004
0.0002
0.0008
0.0223
0.0016
0.0009
0.0003
0.0228
0.0138
0.0011
0.0681
0.0534
0.0033
0.0481
0.0164
0.0946
0.0000
0.0011
0.0076
0.0002
0.0002
0.0016
0.0000
0.0000
0.0001 0.0007
0.0065 0.0627
0.0000 0.0001
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0007 0.0023
0.0364 0.0156
0.0002 0.0022
TableC3
25
26
0.0002
0.1711
0.0029
0.1164
0.0002
0.0037
0.0024
0.0025
0.0001
0.0000
0.0331
0.0349
0.0036
0.0102
0.0062
0.0000
0.0000
0.0004
0.0007
0.0001
0.0010
0.0000
0.0000
0.0006
0.0006
0.0035
0.0741
0.0001
0.0000
0.0009
0.0076
0.0000
0.0028
0.0397
0.0008
0.0064
0.0116
0.0000
0.0006
0.0004
0.0002
0.0017
0.0000
0.0000
0.0973 0.1338 0.1030
0.0007
0.0011
0.0004
0.0164
0.0010
0.0000
0.0179
0.0029
0.0019
0.0001
0.0554
0.0615
0.0027
0.0156
0.0070
0.0007
0.0001
0.0038
0.0000
0.0013
0.0016
0.0132
0.0001
0.0001
0.0008 0.0002 0.0001
0.0164 0.0286 0.1084
0.0003 0.0000 0.0001
24
28
(1994)
0.0007
0.0013
0.0068
0.0175
0.0012
0.0116
0.0061
0.0056
0.0009
0.0003
0.0053
0.0201
0.0032
0.0267
0.0122
0.0026
0.0000
0.0034
0.0005
0.0062
0.0012
0.0097
0.0000
0.0001
0.1120 0.2260
0.0010
0.0002
0.0023
0.0146
0.0003
0.0007
0.0013
0.0050
0.0001
0.0001
0.0030
0.1074
0.0014
0.0020
0.0044
0.0011
0.0001
0.0001
0.0000
0.0005
0.0014
0.0115
0.0000
0.0001
0.0002 0.0009
0.0072 0.0052
0.0003 0.0011
27
248
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1994,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0278 0.0224
0.0043
0.0001
0.0003
0.0010
0.0000
0.0026
0.0019
0.0008
0.0005
0.0000
0.0012
0.0194
0.0001
0.0002
0.0053
0.0048
5
0.0954
0.0060
0.0069
(continuedonnextpage)
0.0836
0.0004
0.0025
0.0047
0.0002
0.0036
0.0000
0.0011
0.0004
0.0001
0.0018
0.0004
0.0002
0.0014
0.0103
0.0016
0.0000
0.0000
0.0000
28 0.0591 0.0256 0.0725
0.0006
0.0356
0.0003
0.0035
0.0001
0.0000
0.0000
0.0037
0.0001
0.0002
0.0003
0.0007
0.0003
0.0009
0.0190
0.0000
0.0000
0.0000
0.0012
0.0001
0.0000
0.0000
0.0001
0.0012
0.0522
0.0004
8
9
10
11
0.0001
0.0011
0.0000
0.0000
0.1910
0.0000
0.0003
0.0000
0.0000
0.0014
0.0120
0.0001
0.0001
4
4
5
6
7
3
2
1 0.0052 0.5012 0.0150
2 0.0042 0.0633 0.0019
3 0.0001 0.0007 0.0054
1
Sources:
Notes: 0.0004
0.0013
0.0122
0.0005
0.0031
0.0001
0.0045
0.0350
0.0000
0.0003
0.0035
0.0084
0.0569
0.0000
0.0017
0.0101
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0095
0.0001
0.0019
0.0042
0.0001
0.0077
0.0009
0.0016
0.0006
0.0000
0.0009
0.0226
0.0002
0.0013
0.0055
0.0039
0.0000
0.0001
0.3264
7
8
0.0045
0.0000
0.0017
0.0174
0.0001
0.0071
0.0016
0.0017
0.0008
0.0000
0.0013
0.0310
0.0001
0.0012
0.0075
0.0054
0.0000
0.0001
0.1270
0.0060
0.0001
0.0024
0.0182
0.0000
0.0097
0.0005
0.0018
0.0002
0.0000
0.0003
0.0068
0.0002
0.0017
0.0016
0.0012
0.5107
0.0000
0.0001
0.0776 0.0615 0.0136
0.0024
0.0001
0.0010
0.0015
0.0001
0.0039
0.0015
0.0071
0.0011
0.0000
0.0016
0.0391
0.0001
0.0007
0.0094
0.0068
0.0000
0.0001
0.1305
0.1819 0.0031 0.0747 0.0748
6
9
10
0.0057
0.0121
0.0052
0.0127
0.0001
0.0011
0.0110
0.0249
0.0070
0.0012
0.0122
0.0639
0.0005
0.0027
0.0229
0.0027
0.0001
0.0004
0.0819
0.0009
0.0019
0.0167
0.0001
0.0002
0.1378 0.1584
0.0044
0.0002
0.0030
0.0271
0.0017
0.0049
0.0080
0.0287
0.0001
0.0005
0.0055
0.0336
0.0019
0.0049
0.0645
0.0015
0.0000
0.1216
0.0006
0.0368
0.0007
0.0060
0.0000
0.0001
0.1073
0.0063
0.0001
0.0025
0.0121
0.0005
0.0022
0.0000
0.0513
0.0000
0.0001
0.0211
0.0018
0.0024
0.0203
0.0253
0.0067
0.0000
0.2648
0.0041
0.1103
0.0007
0.0067
0.0000
0.0001
0.0023
0.0015
0.0019
11
13
0.0021
0.0001
0.0057
0.0227
0.0006
0.0012
0.0003
0.0222
0.0089
0.0032
0.0122
0.0092
0.0087
0.1917
0.0459
0.0025
0.0000
0.0149
0.0001
0.0003
0.0009
0.0078
0.0000
0.0001
0.0922 0.1248
0.0039
0.0001
0.0046
0.0035
0.0005
0.0015
0.0000
0.0110
0.0004
0.0005
0.0010
0.0014
0.2467
0.0064
0.0176
0.0001
0.0000
0.0728
0.0000
0.0118
0.0005
0.0042
0.0000
0.0001
0.0011 0.0024
0.0003 0.0023
0.0005 0.0014
12
15
0.0166
0.0002
0.0015
0.0073
0.0013
0.0012
0.0001
0.1010
0.0073
0.0019
0.0134
0.0049
0.0014
0.0126
0.0148
0.1262
0.0001
0.0998
0.0001
0.0016
0.0142
0.0001
0.0002
0.1165 0.0685
0.0051
0.0002
0.0033
0.0126
0.0018
0.0018
0.0000
0.0116
0.0005
0.0024
0.0047
0.0051
0.0061
0.0139
0.2284
0.0019
0.0000
0.0062
0.0034
0.0076
0.0010
0.0089
0.0000
0.0001
0.0039 0.0192
0.0085 0.0069
0.0016 0.0184
14
0.0946
0.0223
0.0248
0.0011
0.0049
0.0006
0.0019
0.0000
0.0159
0.2198
0.0135
0.0064
0.0060
0.0010
0.0022
0.0142
0.0121
0.0001
0.0000
0.0688
0.0000
0.0019
0.0165
0.0001
0.0002
0.0229
0.0070
0.0032
16
18
0.0017
0.0022
0.0031
0.0127
0.0003
0.0010
0.0044
0.0121
0.1701
0.0557
0.1295
0.0131
0.0037
0.0118
0.0193
0.0111
0.0000
0.0000
0.0037
0.0001
0.0006
0.0057
0.0000
0.0001
0.0730 0.0853
0.0313
0.0038
0.0016
0.0029
0.0020
0.0012
0.0000
0.0123
0.0076
0.1954
0.0035
0.0075
0.0004
0.0024
0.0149
0.0086
0.0002
0.0004
0.2503
0.0000
0.0057
0.0505
0.0002
0.0007
0.0219 0.0008
0.0083 0.0014
0.0099 0.0005
17
20
21
0.0012
0.0000
0.0014
0.0038
0.0045
0.0005
0.0000
0.0039
0.0223
0.0092
0.0154
0.0204
0.0112
0.0109
0.0605
0.0012
0.0000
0.0062
0.0490
0.0001
0.0003
0.0025
0.0000
0.0000
0.0001
0.0000
0.0057
0.0041
0.0002
0.0006
0.0057
0.0028
0.0005
0.0391
0.0172
0.0004
0.0058
0.0568
0.0165
0.0001
0.0002
0.0074
0.0013
0.0015
0.0130
0.0000
0.0002
0.0822 0.0657 0.1281
0.0009
0.0000
0.0020
0.0020
0.0001
0.0006
0.0000
0.0032
0.0420
0.0141
0.0149
0.1337
0.0007
0.0054
0.0194
0.0029
0.0000
0.0001
0.0009
0.0001
0.0004
0.0040
0.0000
0.0001
0.0004 0.0009 0.0001
0.0003 0.0006 0.0113
0.0002 0.0007 19
23
0.0004
0.0001
0.0018
0.0455
0.0004
0.0000
0.0017
0.1285
0.0000
0.0000
0.0066
0.0553
0.0010
0.0051
0.0223
0.0004
0.0000
0.0001
0.0001
0.0004
0.0003
0.0029
0.0000
0.0000
0.1543 0.2393
0.0002
0.0000
0.0007
0.0188
0.0013
0.0007
0.0005
0.0184
0.0180
0.0015
0.0705
0.0681
0.0027
0.0573
0.0156
0.0954
0.0000
0.0011
0.0133
0.0002
0.0001
0.0013
0.0000
0.0000
0.0001 0.0009
0.0034 0.0318
0.0000 0.0000
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0011 0.0016
0.0234 0.0318
0.0004 0.0008
TableC3
25
26
0.0001
0.1495
0.0023
0.1298
0.0001
0.0019
0.0010
0.0016
0.0001
0.0000
0.0132
0.0387
0.0008
0.0073
0.0038
0.0000
0.0000
0.0001
0.0005
0.0001
0.0005
0.0000
0.0000
0.0004
0.0002
0.0724
0.1130
0.0001
0.0000
0.0006
0.0050
0.0000
0.0019
0.0603
0.0005
0.0058
0.0066
0.0000
0.0000
0.0007
0.0002
0.0014
0.0000
0.0000
0.1974 0.0957 0.1337
0.0012
0.0011
0.0005
0.0181
0.0009
0.0000
0.0228
0.0024
0.0036
0.0000
0.0590
0.0787
0.0028
0.0181
0.0080
0.0004
0.0002
0.0030
0.0000
0.0013
0.0035
0.0309
0.0001
0.0004
0.0015 0.0002 0.0001
0.0097 0.0137 0.0944
0.0005 0.0000 0.0001
24
28
(1995)
0.0023
0.0009
0.0093
0.0226
0.0015
0.0042
0.0065
0.0083
0.0009
0.0002
0.0046
0.0187
0.0031
0.0269
0.0106
0.0022
0.0000
0.0041
0.0007
0.0147
0.0007
0.0059
0.0000
0.0001
0.1398 0.2653
0.0037
0.0000
0.0022
0.0226
0.0005
0.0003
0.0021
0.0093
0.0001
0.0001
0.0030
0.0927
0.0012
0.0027
0.0048
0.0007
0.0001
0.0002
0.0000
0.0005
0.0013
0.0112
0.0000
0.0001
0.0002 0.0011
0.0054 0.0030
0.0002 0.0007
27
249
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1995,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0629 0.0450
0.0030
0.0000
0.0013
0.0014
0.0001
0.0052
0.0018
0.0005
0.0009
0.0000
0.0013
0.0317
0.0001
0.0009
0.0076
0.0055
5
0.1354
0.0043
0.0061
(continuedonnextpage)
0.0061
0.0001
0.0047
0.0252
0.0003
0.0034
0.0000
0.0009
0.0007
0.0002
0.0070
0.0007
0.0001
0.0027
0.0224
0.0003
0.0000
0.0000
0.0001
28 0.0877 0.0368 0.2663
0.0016
0.0127
0.0019
0.0048
0.0002
0.0014
0.0000
0.0065
0.0001
0.0003
0.0009
0.0003
0.0016
0.0206
0.0000
0.0000
0.0000
0.0017
0.0001
0.0000
0.0001
0.0000
0.0003
0.0262
0.0002
8
9
10
11
0.0004
0.0035
0.0000
0.0000
0.2133
0.0005
0.0047
0.0000
0.0001
0.0011
0.0099
0.0000
0.0001
4
4
5
6
7
3
2
1 0.0097 0.5823 0.0125
2 0.0117 0.0603 0.0019
3 0.0001 0.0012 0.0066
1
Sources:
Notes: 0.0009
0.0023
0.0167
0.0006
0.0034
0.0000
0.0077
0.0383
0.0001
0.0004
0.0047
0.0096
0.0191
0.0005
0.0023
0.0111
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0075
0.0006
0.0024
0.0066
0.0002
0.0058
0.0009
0.0021
0.0006
0.0000
0.0026
0.0204
0.0004
0.0017
0.0076
0.0058
0.0000
0.0001
0.3295
7
8
0.0028
0.0003
0.0018
0.0289
0.0002
0.0043
0.0015
0.0018
0.0007
0.0000
0.0031
0.0241
0.0003
0.0013
0.0090
0.0069
0.0000
0.0001
0.1138
0.0041
0.0004
0.0027
0.0327
0.0000
0.0064
0.0005
0.0021
0.0002
0.0000
0.0007
0.0058
0.0005
0.0019
0.0022
0.0017
0.4297
0.0001
0.0001
0.1259 0.0868 0.0209
0.0016
0.0009
0.0010
0.0022
0.0003
0.0025
0.0016
0.0085
0.0011
0.0000
0.0045
0.0349
0.0002
0.0007
0.0130
0.0100
0.0000
0.0000
0.1009
0.1969 0.0027 0.1884 0.2064
6
9
10
0.0025
0.0057
0.0067
0.0145
0.0002
0.0010
0.0101
0.0189
0.0099
0.0006
0.0169
0.0585
0.0010
0.0044
0.0256
0.0027
0.0001
0.0004
0.1029
0.0007
0.0018
0.0161
0.0000
0.0002
0.1178 0.1576
0.0033
0.0003
0.0024
0.0230
0.0016
0.0038
0.0053
0.0251
0.0000
0.0000
0.0052
0.0210
0.0025
0.0056
0.0660
0.0011
0.0000
0.1183
0.0005
0.0409
0.0005
0.0045
0.0000
0.0001
0.1291
0.0052
0.0007
0.0030
0.0176
0.0007
0.0030
0.0000
0.0502
0.0000
0.0002
0.0198
0.0033
0.0029
0.0215
0.0329
0.0056
0.0001
0.2341
0.0026
0.0999
0.0011
0.0100
0.0000
0.0001
0.0025
0.0016
0.0019
11
13
0.0013
0.0006
0.0076
0.0267
0.0010
0.0012
0.0002
0.0207
0.0086
0.0027
0.0110
0.0090
0.0077
0.1754
0.0540
0.0023
0.0000
0.0123
0.0002
0.0002
0.0009
0.0076
0.0000
0.0001
0.1107 0.1427
0.0044
0.0007
0.0078
0.0053
0.0056
0.0020
0.0000
0.0110
0.0004
0.0005
0.0021
0.0019
0.1926
0.0093
0.0167
0.0002
0.0000
0.0698
0.0000
0.0096
0.0007
0.0058
0.0000
0.0001
0.0020 0.0017
0.0004 0.0023
0.0006 0.0010
12
15
0.0153
0.0011
0.0020
0.0094
0.0021
0.0013
0.0001
0.1070
0.0059
0.0014
0.0174
0.0061
0.0014
0.0113
0.0198
0.1269
0.0001
0.0894
0.0001
0.0019
0.0168
0.0000
0.0002
0.1225 0.0792
0.0046
0.0004
0.0034
0.0143
0.0026
0.0017
0.0000
0.0106
0.0003
0.0031
0.0054
0.0045
0.0053
0.0136
0.2237
0.0016
0.0000
0.0043
0.0025
0.0056
0.0010
0.0086
0.0000
0.0001
0.0088 0.0188
0.0057 0.0054
0.0011 0.0163
14
0.0988
0.0199
0.0023
0.0018
0.0086
0.0039
0.0028
0.0000
0.0201
0.1939
0.0249
0.0084
0.0082
0.0027
0.0041
0.0198
0.0121
0.0001
0.0000
0.0794
0.0000
0.0028
0.0249
0.0001
0.0003
0.0309
0.0145
0.0036
16
18
0.0017
0.0011
0.0039
0.0168
0.0004
0.0013
0.0035
0.0135
0.1506
0.0503
0.0977
0.0151
0.0073
0.0145
0.0250
0.0113
0.0000
0.0001
0.0033
0.0001
0.0008
0.0070
0.0000
0.0001
0.0613 0.1179
0.0208
0.0056
0.0017
0.0033
0.0147
0.0011
0.0000
0.0105
0.0034
0.2317
0.0020
0.0063
0.0015
0.0024
0.0166
0.0063
0.0003
0.0003
0.2499
0.0000
0.0054
0.0475
0.0001
0.0006
0.0155 0.0008
0.0078 0.0024
0.0070 0.0005
17
20
21
0.0007
0.0007
0.0014
0.0043
0.0074
0.0005
0.0000
0.0032
0.0157
0.0075
0.0149
0.0168
0.0090
0.0114
0.0350
0.0007
0.0000
0.0058
0.0253
0.0001
0.0003
0.0023
0.0000
0.0000
0.0001
0.0000
0.0054
0.0042
0.0002
0.0688
0.0005
0.0042
0.0022
0.0001
0.0298
0.0160
0.0006
0.0054
0.0601
0.0106
0.0001
0.0003
0.0057
0.0009
0.0026
0.0233
0.0001
0.0003
0.0706 0.0533 0.1616
0.0010
0.0002
0.0032
0.0031
0.0003
0.0008
0.0000
0.0039
0.0449
0.0109
0.0186
0.1406
0.0013
0.0069
0.0212
0.0031
0.0000
0.0001
0.0012
0.0001
0.0006
0.0052
0.0000
0.0001
0.0004 0.0005 0.0002
0.0004 0.0004 0.0106
0.0002 0.0005 19
23
0.0002
0.0001
0.0016
0.0598
0.0003
0.0000
0.0010
0.1085
0.0000
0.0000
0.0090
0.0369
0.0016
0.0055
0.0205
0.0005
0.0000
0.0001
0.0003
0.0002
0.0003
0.0025
0.0000
0.0000
0.1607 0.2319
0.0002
0.0001
0.0008
0.0159
0.0015
0.0006
0.0003
0.0159
0.0181
0.0006
0.0647
0.0685
0.0027
0.0477
0.0160
0.0863
0.0000
0.0020
0.0115
0.0002
0.0002
0.0015
0.0000
0.0000
0.0001 0.0007
0.0048 0.0313
0.0000 0.0000
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0007 0.0021
0.0197 0.0316
0.0002 0.0006
TableC3
25
26
0.0001
0.2017
0.0027
0.1347
0.0001
0.0020
0.0009
0.0012
0.0001
0.0000
0.0281
0.0274
0.0019
0.0062
0.0041
0.0000
0.0000
0.0005
0.0004
0.0001
0.0006
0.0000
0.0000
0.0006
0.0003
0.0634
0.0870
0.0001
0.0000
0.0005
0.0065
0.0000
0.0032
0.0592
0.0007
0.0048
0.0054
0.0000
0.0000
0.0004
0.0002
0.0014
0.0000
0.0000
0.1904 0.0893 0.1484
0.0009
0.0001
0.0004
0.0100
0.0004
0.0000
0.0193
0.0051
0.0034
0.0001
0.0664
0.0906
0.0062
0.0148
0.0071
0.0001
0.0002
0.0022
0.0000
0.0009
0.0030
0.0266
0.0001
0.0003
0.0010 0.0003 0.0001
0.0087 0.0157 0.1172
0.0003 0.0000 0.0001
24
28
(1997)
0.0013
0.0004
0.0091
0.0268
0.0014
0.0037
0.0050
0.0071
0.0006
0.0001
0.0043
0.0168
0.0037
0.0258
0.0095
0.0015
0.0000
0.0033
0.0005
0.0100
0.0006
0.0056
0.0000
0.0001
0.1612 0.2554
0.0010
0.0001
0.0021
0.0294
0.0009
0.0004
0.0015
0.0079
0.0001
0.0000
0.0044
0.0772
0.0021
0.0044
0.0043
0.0010
0.0001
0.0003
0.0000
0.0003
0.0012
0.0108
0.0000
0.0001
0.0002 0.0009
0.0050 0.0033
0.0001 0.0005
27
250
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1997,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.1011 0.0734
0.0024
0.0002
0.0017
0.0023
0.0002
0.0040
0.0019
0.0007
0.0009
0.0000
0.0036
0.0281
0.0003
0.0011
0.0105
0.0080
5
0.1301
0.0045
0.0105
(continuedonnextpage)
0.0197
0.0008
0.0040
0.0234
0.0001
0.0072
0.0000
0.0012
0.0006
0.0000
0.0040
0.0005
0.0002
0.0022
0.0183
0.0001
0.0000
0.0000
0.0001
28 0.0805 0.0245 0.2407
0.0015
0.0148
0.0023
0.0060
0.0002
0.0016
0.0000
0.0066
0.0000
0.0006
0.0008
0.0004
0.0020
0.0293
0.0000
0.0000
0.0000
0.0012
0.0001
0.0000
0.0001
0.0001
0.0003
0.0433
0.0002
8
9
10
11
0.0002
0.0021
0.0000
0.0000
0.2123
0.0006
0.0054
0.0000
0.0001
0.0014
0.0121
0.0000
0.0002
4
4
5
6
7
3
2
1 0.0164 0.6226 0.0505
2 0.0138 0.0361 0.0019
3 0.0001 0.0011 0.0241
1
Sources:
Notes: 0.0005
0.0023
0.0142
0.0006
0.0038
0.0000
0.0084
0.0358
0.0000
0.0003
0.0119
0.0066
0.0441
0.0004
0.0020
0.0201
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0211
0.0009
0.0053
0.0603
0.0003
0.0089
0.0015
0.0012
0.0071
0.0009
0.0021
0.0036
0.0279
0.0003
0.0001
0.0076
0.0005
0.0022
0.0166
0.0001
0.0048
0.0012
0.0023
0.0007
0.0026
0.0179
0.0003
0.0019
0.0066
0.0056
0.1101 0.0754
0.0024
0.0001
0.0015
0.0059
0.0002
0.0032
0.0027
0.0008
0.0010
0.0038
0.0261
0.0002
0.0013
0.0097
0.0082
0.0000
0.0001
0.3067
0.1704
0.0050
0.0159
5
7
8
0.0023
0.0002
0.0013
0.0563
0.0001
0.0029
0.0020
0.0017
0.0008
0.0031
0.0209
0.0002
0.0011
0.0077
0.0066
0.0000
0.0001
0.0989
0.0046
0.0004
0.0027
0.0898
0.0001
0.0060
0.0010
0.0025
0.0003
0.0012
0.0079
0.0004
0.0023
0.0029
0.0025
0.1293
0.0001
0.0001
0.1181 0.0880 0.0332
0.0019
0.0006
0.0011
0.0062
0.0002
0.0024
0.0019
0.0085
0.0011
0.0041
0.0280
0.0002
0.0010
0.0104
0.0088
0.0000
0.0000
0.1048
0.2652 0.0024 0.2405 0.3723
6
9
10
0.0024
0.0033
0.0049
0.0220
0.0001
0.0009
0.0375
0.0113
0.0079
0.0006
0.0153
0.0489
0.0005
0.0037
0.0239
0.0026
0.0004
0.0006
0.0988
0.0009
0.0019
0.0194
0.0001
0.0002
0.1055 0.1401
0.0029
0.0002
0.0020
0.0431
0.0003
0.0107
0.0060
0.0216
0.0001
0.0051
0.0220
0.0034
0.0049
0.0676
0.0011
0.0001
0.1105
0.0004
0.0431
0.0004
0.0042
0.0000
0.0001
0.1175
0.0040
0.0003
0.0022
0.0274
0.0003
0.0024
0.0333
0.0002
0.0177
0.0031
0.0044
0.0241
0.0299
0.0049
0.0002
0.2252
0.0025
0.1230
0.0010
0.0104
0.0000
0.0001
0.0022
0.0012
0.0032
11
13
0.0013
0.0005
0.0059
0.0453
0.0002
0.0010
0.0004
0.0143
0.0088
0.0029
0.0101
0.0051
0.0079
0.1593
0.0618
0.0020
0.0002
0.0146
0.0002
0.0003
0.0008
0.0084
0.0000
0.0001
0.0827 0.1325
0.0046
0.0004
0.0052
0.0075
0.0025
0.0017
0.0095
0.0004
0.0005
0.0018
0.0016
0.1946
0.0069
0.0176
0.0002
0.0001
0.0598
0.0103
0.0006
0.0060
0.0000
0.0001
0.0023 0.0019
0.0003 0.0017
0.0010 0.0019
12
15
0.0131
0.0007
0.0018
0.0157
0.0002
0.0011
0.0582
0.0074
0.0012
0.0180
0.0081
0.0038
0.0120
0.0193
0.1424
0.0004
0.0660
0.0001
0.0018
0.0178
0.0000
0.0002
0.1221 0.0857
0.0032
0.0002
0.0027
0.0211
0.0004
0.0012
0.0069
0.0002
0.0027
0.0050
0.0032
0.0040
0.0119
0.1988
0.0013
0.0002
0.0050
0.0037
0.0062
0.0007
0.0074
0.0000
0.0001
0.0054 0.0241
0.0042 0.0053
0.0016 0.0302
14
0.1083
0.0143
0.0025
0.0015
0.0130
0.0019
0.0022
0.0136
0.2168
0.0257
0.0078
0.0086
0.0025
0.0041
0.0198
0.0121
0.0005
0.0678
0.0025
0.0257
0.0001
0.0003
0.0324
0.0139
0.0063
16
18
0.0013
0.0009
0.0033
0.0246
0.0002
0.0009
0.0035
0.0096
0.1396
0.0547
0.0979
0.0095
0.0048
0.0142
0.0222
0.0125
0.0001
0.0023
0.0001
0.0007
0.0068
0.0000
0.0001
0.0559 0.1258
0.0161
0.0055
0.0011
0.0044
0.0055
0.0006
0.0064
0.0032
0.1729
0.0014
0.0062
0.0006
0.0016
0.0134
0.0052
0.0008
0.0003
0.3380
0.0038
0.0385
0.0001
0.0005
0.0103 0.0008
0.0052 0.0018
0.0096 0.0008
17
20
21
0.0005
0.0003
0.0005
0.0044
0.0013
0.0003
0.0015
0.0077
0.0041
0.0064
0.0098
0.0049
0.0057
0.0263
0.0003
0.0000
0.0015
0.0528
0.0001
0.0014
0.0000
0.0000
0.0047
0.0075
0.0002
0.0534
0.0006
0.0024
0.0024
0.0002
0.0269
0.0168
0.0006
0.0053
0.0569
0.0096
0.0005
0.0003
0.0045
0.0011
0.0023
0.0233
0.0001
0.0003
0.0701 0.0544 0.1602
0.0009
0.0001
0.0024
0.0095
0.0001
0.0006
0.0029
0.0360
0.0097
0.0151
0.1299
0.0010
0.0046
0.0194
0.0027
0.0001
0.0000
0.0025
0.0001
0.0005
0.0046
0.0000
0.0001
0.0003 0.0003 0.0002
0.0003 0.0003 0.0071
0.0004 0.0005 19
23
0.0001
0.0001
0.0012
0.1171
0.0002
0.0010
0.0680
0.0000
0.0060
0.0258
0.0019
0.0046
0.0169
0.0004
0.0000
0.0000
0.0000
0.0002
0.0002
0.0023
0.0000
0.0000
0.1780 0.2304
0.0003
0.0000
0.0007
0.0277
0.0012
0.0005
0.0004
0.0093
0.0142
0.0007
0.0669
0.0538
0.0015
0.0456
0.0158
0.0846
0.0000
0.0019
0.0069
0.0002
0.0001
0.0014
0.0000
0.0000
0.0001 0.0002
0.0044 0.0184
0.0000 0.0000
22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0003 0.0024
0.0130 0.0211
0.0003 0.0011
TableC3
25
26
0.2444
0.0022
0.2372
0.0016
0.0009
0.0009
0.0201
0.0470
0.0025
0.0047
0.0044
0.0000
0.0001
0.0006
0.0000
0.0000
0.0004
0.0002
0.0319
0.0894
0.0001
0.0003
0.0054
0.0013
0.0448
0.0019
0.0024
0.0028
0.0000
0.0003
0.0001
0.0007
0.0000
0.0000
0.1864 0.1006 0.0998
0.0008
0.0001
0.0004
0.0123
0.0008
0.0663
0.0042
0.0027
0.0001
0.0542
0.0751
0.0034
0.0114
0.0060
0.0005
0.0022
0.0010
0.0023
0.0235
0.0001
0.0003
0.0005 0.0003 0.0001
0.0051 0.0103 0.0584
0.0004 0.0001
24
28
(1999)
0.0010
0.0003
0.0077
0.0353
0.0014
0.0025
0.0056
0.0054
0.0005
0.0001
0.0042
0.0182
0.0028
0.0233
0.0101
0.0013
0.0001
0.0041
0.0003
0.0152
0.0006
0.0059
0.0000
0.0001
0.1964 0.2633
0.0013
0.0001
0.0025
0.0714
0.0003
0.0006
0.0032
0.0081
0.0001
0.0000
0.0047
0.0991
0.0014
0.0055
0.0068
0.0026
0.0003
0.0004
0.0000
0.0007
0.0015
0.0156
0.0000
0.0002
0.0003 0.0008
0.0052 0.0026
0.0004 0.0008
27
251
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear1999,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
28 0.0649 0.0386 0.3043
0.0014
0.0171
0.0027
0.0105
0.0017
0.0059
0.0006
0.0013
0.0007
0.0023
0.0424
0.0002
0.0011
0.0001
0.0000
0.0001
0.0003
0.0004
0.0390
0.0004
8
9
10
11
0.0003
0.0034
0.0000
0.0000
0.2154
0.0007
0.0073
0.0000
0.0001
0.0012
0.0124
0.0000
0.0001
4
4
5
6
7
3
2
1 0.0249 0.5914 0.0895
2 0.0099 0.0458 0.0021
3 0.0002 0.0024 0.0645
1
Sources:
Notes: 0.0016
0.0035
0.0194
0.0010
0.0070
0.0004
0.0085
0.0447
0.0003
0.0205
0.0057
0.0306
0.0013
0.0014
0.0217
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
0.0004
0.0018
0.0022
0.0283
0.0007
0.0015
0.0617
0.0007
0.0011
0.0011
0.0098
0.0047
0.0022
0.0025
0.0185
0.0007
0.0001
0.0004
0.0262
0.0034
0.0037
0.0224
0.0004
0.0034
0.0725
0.0112
0.0026
0.0005
0.0068
0.0682
0.0014
0.0055
0.0186
0.0120
0.0508 0.1956
0.0014
0.0002
0.0004
0.0015
0.0001
0.0004
0.0283
0.0006
0.0007
0.0001
0.0018
0.0177
0.0002
0.0006
0.0048
0.0031
0.0002
0.0002
0.2510
0.2708
0.0102
0.0087
5
7
8
0.0056
0.0012
0.0016
0.0543
0.0003
0.0015
0.0735
0.0070
0.0019
0.0003
0.0049
0.0495
0.0006
0.0023
0.0135
0.0087
0.0001
0.0001
0.1074
0.0034
0.0006
0.0010
0.0258
0.0000
0.0009
0.0127
0.0026
0.0002
0.0000
0.0006
0.0064
0.0004
0.0014
0.0017
0.0011
0.0663
0.0001
0.0001
0.0475 0.1419 0.0183
0.0010
0.0006
0.0003
0.0013
0.0001
0.0003
0.0175
0.0056
0.0006
0.0001
0.0016
0.0165
0.0001
0.0004
0.0045
0.0029
0.0000
0.0000
0.0194
0.4056 0.1649 0.1213 0.0558
6
9
10
0.0024
0.0074
0.0035
0.0175
0.0019
0.0223
0.0094
0.0106
0.0010
0.0114
0.0358
0.0012
0.0048
0.0220
0.0020
0.0005
0.0007
0.1423
0.0008
0.0012
0.0131
0.0000
0.0003
0.1190 0.1590
0.0013
0.0004
0.0013
0.0227
0.0003
0.0078
0.0065
0.0210
0.0002
0.0006
0.0041
0.0221
0.0024
0.0052
0.0843
0.0008
0.0001
0.1958
0.0002
0.0371
0.0003
0.0029
0.0000
0.0001
0.1466
0.0026
0.0015
0.0017
0.0262
0.0002
0.0023
0.0021
0.0355
0.0001
0.0004
0.0113
0.0052
0.0035
0.0302
0.0282
0.0070
0.0003
0.2861
0.0027
0.1172
0.0007
0.0076
0.0000
0.0001
0.0049
0.0021
0.0024
11
13
0.0018
0.0014
0.0042
0.0375
0.0002
0.0014
0.0015
0.0195
0.0130
0.0051
0.0125
0.0103
0.0107
0.1902
0.0729
0.0039
0.0003
0.0214
0.0005
0.0008
0.0007
0.0076
0.0000
0.0001
0.1179 0.1773
0.0030
0.0015
0.0037
0.0168
0.0008
0.0027
0.0005
0.0082
0.0007
0.0018
0.0023
0.0033
0.1521
0.0080
0.0289
0.0008
0.0002
0.0894
0.0066
0.0004
0.0049
0.0000
0.0001
0.0035 0.0041
0.0007 0.0031
0.0015 0.0021
12
15
0.0180
0.0021
0.0010
0.0151
0.0025
0.0012
0.0028
0.0522
0.0173
0.0032
0.0085
0.0138
0.0029
0.0125
0.0307
0.1469
0.0005
0.0542
0.0001
0.0012
0.0131
0.0000
0.0003
0.1458 0.1136
0.0040
0.0010
0.0020
0.0234
0.0009
0.0020
0.0025
0.0097
0.0005
0.0047
0.0128
0.0066
0.0052
0.0165
0.2098
0.0043
0.0006
0.0083
0.0029
0.0068
0.0012
0.0136
0.0000
0.0003
0.0082 0.0498
0.0099 0.0076
0.0020 0.0286
14
0.1686
0.0215
0.0029
0.0012
0.0137
0.0008
0.0031
0.0020
0.0294
0.1991
0.0342
0.0084
0.0079
0.0029
0.0096
0.0141
0.0089
0.0010
0.0819
0.0001
0.0021
0.0233
0.0001
0.0005
0.0317
0.0091
0.0065
16
18
0.0031
0.0021
0.0024
0.0248
0.0001
0.0006
0.0056
0.0123
0.1437
0.0500
0.0979
0.0121
0.0062
0.0146
0.0273
0.0120
0.0003
0.0033
0.0011
0.0006
0.0069
0.0000
0.0001
0.0605 0.1772
0.0167
0.0061
0.0006
0.0039
0.0014
0.0007
0.0013
0.0123
0.0087
0.2045
0.0029
0.0040
0.0007
0.0034
0.0086
0.0034
0.0011
0.0003
0.4579
0.0023
0.0257
0.0001
0.0005
0.0147 0.0019
0.0034 0.0025
0.0073 0.0010
17
20
21
0.0012
0.0019
0.0012
0.0098
0.0064
0.0005
0.0012
0.0059
0.0250
0.0152
0.0183
0.0549
0.0081
0.0205
0.0576
0.0024
0.0001
0.0128
0.0404
0.0043
0.0002
0.0025
0.0000
0.0000
0.0003
0.0035
0.0140
0.0006
0.0311
0.0379
0.0046
0.0038
0.0008
0.0336
0.0227
0.0011
0.0060
0.0614
0.0111
0.0009
0.0005
0.0013
0.0016
0.0019
0.0219
0.0001
0.0004
0.1146 0.0882 0.1900
0.0014
0.0004
0.0017
0.0082
0.0002
0.0006
0.0007
0.0046
0.0426
0.0111
0.0144
0.1575
0.0013
0.0094
0.0176
0.0051
0.0002
0.0001
0.0008
0.0007
0.0003
0.0038
0.0000
0.0001
0.0007 0.0021 0.0002
0.0005 0.0007 0.0165
0.0004 0.0012 19
23
0.0003
0.0003
0.0009
0.1385
0.0003
0.0056
0.0016
0.0346
0.0001
0.0003
0.0032
0.0358
0.0028
0.0061
0.0171
0.0005
0.0001
0.0002
0.0012
0.0002
0.0020
0.0000
0.0000
0.1860 0.2790
0.0007
0.0001
0.0009
0.0191
0.0019
0.0014
0.2910
0.0135
0.0170
0.0008
0.0453
0.0363
0.0053
0.0350
0.0255
0.0550
0.0001
0.0009
0.0023
0.0023
0.0002
0.0024
0.0000
0.0000
0.0000 0.0001
0.0045 0.0907
0.0000 22
Matrixofinput–outputtechnicalcoefficients(A)(continued)
0.0005 0.0021
0.0310 0.0509
0.0003 0.0008
TableC3
25
26
0.0003
0.1983
0.0015
0.2398
0.0006
0.0023
0.0038
0.0058
0.0915
0.0029
0.0078
0.0052
0.0000
0.0012
0.0000
0.0005
0.0000
0.0000
0.0004
0.0003
0.0206
0.0592
0.0001
0.0001
0.0006
0.0087
0.0003
0.0783
0.0014
0.0030
0.0506
0.0000
0.0011
0.0000
0.0004
0.0000
0.0000
0.2028 0.1254 0.0914
0.0009
0.0003
0.0005
0.0271
0.0011
0.0005
0.1005
0.0088
0.0045
0.0006
0.0338
0.0998
0.0045
0.0143
0.0074
0.0009
0.0030
0.0010
0.0019
0.0215
0.0001
0.0004
0.0009 0.0003 0.0001
0.0246 0.0677 0.1053
0.0005 0.0001
24
28
(2002)
0.0013
0.0009
0.0062
0.0352
0.0010
0.0032
0.0125
0.0053
0.0011
0.0003
0.0057
0.0225
0.0034
0.0277
0.0140
0.0019
0.0002
0.0044
0.0002
0.0222
0.0005
0.0055
0.0000
0.0001
0.3025 0.3492
0.0009
0.0001
0.0018
0.0555
0.0011
0.0035
0.0079
0.0055
0.0002
0.0003
0.0036
0.1260
0.0020
0.0059
0.0085
0.0030
0.0006
0.0005
0.0010
0.0012
0.0132
0.0000
0.0003
0.0007 0.0034
0.0107 0.0049
0.0004 0.0009
27
252
ABS(various)
Input–outputcoefficientsshowninthisTableiscalculatedfromanadaptedversionofinput–outputtable,fortheyear2002,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
28 0.0837 0.0812 0.3282
0.0010
0.0218
0.0008
0.0071
0.0010
0.0234
0.0042
0.0001
0.0051
0.0004
0.0010
0.0311
0.0001
0.0002
0.0001
0.0000
0.0000
0.0004
0.0005
0.0853
0.0003
8
9
10
11
0.0002
0.0022
0.0000
0.0000
0.0282
0.0003
0.0030
0.0000
0.0001
0.0009
0.0105
0.0000
0.0002
4
4
5
6
7
3
2
1 0.0069 0.6177 0.0011
2 0.0252 0.0610 0.0022
3 0.0001 0.0010 1
Sources:
Notes: 0.0000 0.0000
0.0151 0.0269
27 0.0006 0.0000
28 0.0366 0.0036
6
0.0000 0.0000
0.0139 0.0167
0.0002 0.0002
0.0003 0.0004
0.0003 0.0004
0.2861 0.3385
0.0011 0.0014
0.0769 0.0909
0.0000 0.0000
0.0027 0.0032
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0016 0.0020
0.0000 0.0000
0.0006 0.0007
0.0000 0.0000
0.0000 0.0000
5
0.0000
0.0180
0.0002
0.0004
0.0004
0.3669
0.0015
0.0986
0.0000
0.0035
0.0000
0.0000
0.0000
0.0021
0.0001
0.0008
0.0000
0.0000
7
9
0.0000 0.0005
0.0104 0.0290
0.0001 0.0001
0.0002 0.0002
0.0002 0.0003
0.1960 0.1091
0.0009 0.0013
0.0527 0.0583
0.0000 0.0002
0.0019 0.0056
0.0000 0.0001
0.0000 0.0001
0.0000 0.0002
0.0012 0.0034
0.0000 0.0005
0.0004 0.0005
0.0000 0.0018
0.0000 0.0007
8
11
0.0004 0.0001
0.0290 0.0056
0.0001 0.0000
0.0001 0.0000
0.0002 0.0000
0.0937 0.0193
0.0011 0.0002
0.0510 0.0105
0.0001 0.0000
0.0040 0.0009
0.0000 0.0000
0.0000 0.0000
0.0001 0.0000
0.0036 0.0007
0.0004 0.0001
0.0003 0.0001
0.0019 0.0003
13
0.0000 0.0001
0.0025 0.0060
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0085 0.0205
0.0001 0.0002
0.0046 0.0111
0.0000 0.0000
0.0004 0.0009
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0003 0.0007
0.0000 0.0001
0.0000 0.0001
0.0002 0.0004
0.0001 0.0002
12
15
0.0001 0.0001
0.0058 0.0080
0.0000 0.0000
0.0000 0.0000
0.0000 0.0001
0.0199 0.0284
0.0002 0.0003
0.0107 0.0152
0.0000 0.0000
0.0009 0.0013
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0007 0.0010
0.0001 0.0001
0.0001 0.0001
0.0004 0.0005
0.0002 0.0002
14
17
0.0001 0.0003
0.0059 0.0116
0.0000 0.0001
0.0000 0.0001
0.0001 0.0002
0.0208 0.0489
0.0002 0.0006
0.0110 0.0253
0.0000 0.0001
0.0010 0.0028
0.0000 0.0000
0.0000 0.0000
0.0000 0.0001
0.0007 0.0013
0.0001 0.0002
0.0001 0.0003
0.0004 0.0011
0.0002 0.0003
16
19
0.0001 0.0001
0.0058 0.0034
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0188 0.0124
0.0002 0.0001
0.0100 0.0067
0.0000 0.0000
0.0008 0.0006
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0007 0.0004
0.0001 0.0001
0.0001 0.0001
0.0004 0.0002
0.0002 0.0001
18
21
22
0.0001 0.0000 0.0001
0.0058 0.0173 0.0054
0.0000 0.0001 0.0000
0.0000 0.0002 0.0000
0.0000 0.0001 0.0000
0.0176 0.1544 0.0197
0.0002 0.0008 0.0002
0.0094 0.0577 0.0101
0.0000 0.0000 0.0000
0.0006 0.0020 0.0009
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0008 0.0031 0.0007
0.0001 0.0001 0.0001
0.0001 0.0006 0.0001
0.0004 0.0005 0.0003
0.0002 0.0003 0.0002
20
Weightedmeancapitalcoefficientsmatrix(B)
0.0009 0.0002
10
TableC4
24
0.0001 0.0004
0.0075 0.0396
0.0000 0.0001
0.0001 0.0003
0.0001 0.0003
0.0567 0.2853
0.0004 0.0018
0.0186 0.0954
0.0000 0.0002
0.0012 0.0056
0.0000 0.0000
0.0000 0.0000
0.0000 0.0001
0.0015 0.0079
0.0001 0.0003
0.0003 0.0013
0.0003 0.0013
0.0004 0.0018
23
26
0.0001 0.0002
0.0083 0.0164
0.0000 0.0001
0.0001 0.0001
0.0000 0.0001
0.0537 0.1316
0.0004 0.0008
0.0182 0.0429
0.0000 0.0001
0.0010 0.0028
0.0000 0.0000
0.0000 0.0000
0.0000 0.0001
0.0016 0.0034
0.0001 0.0002
0.0002 0.0006
0.0003 0.0006
0.0003 0.0009
25
27
28
0.0001 0.0003
0.0114 0.0181
0.0001 0.0001
0.0001 0.0001
0.0001 0.0001
0.1056 0.0782
0.0006 0.0008
0.0334 0.0368
0.0001 0.0001
0.0024 0.0031
0.0000 0.0000
0.0000 0.0000
0.0001 0.0001
0.0024 0.0027
0.0001 0.0002
0.0005 0.0004
0.0004 0.0010
0.0008 0.0006
253
(19801999)
ABS(various)
CapitalcoefficientsshowninthisTableareaweightedaverageofcapitalcoefficientsforvariousinput–outputtables,publishedbytheAustralianBureauof
Statistics,inaccordancewithsectoralclassificationinthisresearch;
seeTableC1,pp.234237fordescriptionofsector1to28.
0.0001 0.0006
0.0001 0.0003
0.0002 0.0006
24 0.0004 0.0000
25 0.0002 0.0000
26 0.0002 0.0000
0.1553 0.5569
0.0007 0.0022
22 0.1355 0.0114
23 0.0016 0.0001
21 0.0022 0.0053
0.0594 0.1496
0.0000 0.0000
18 0.0069 0.0004
0.0000 0.0000
0.0000 0.0000
16 0.0001 0.0000
17 0.0001 0.0000
19 0.0727 0.0063
20 0.0002 0.0000
0.0027 0.0032
0.0001 0.0001
0.0000 0.0000
13 0.0043 0.0005
14 0.0006 0.0000
0.0006 0.0012
11 12 0.0006 0.0000
15 0.0002 0.0000
0.0004 0.0000
0.0002 0.0001
4
8 9 0.0009 0.0001
7 3
10 0.0026 0.0002
2 3 4 1 5 6 2
1
Sources:
Notes: 2
1
0.0062
2
0.0039
1
Energy
2
1
0.0052
0.0060
0.0019
0.0153
0.0134
0.0001
3
0.0022
0.0174
0.0150
0.0001
3
0.0192
0.0160
0.0030
0.0002
3
0.0038
0.0227
0.0183
0.0006
3
0.0045
0.0268
0.0217
0.0006
3
4
4
4
4
4
(continuedonnextpage)
0.0004
0.0048
Petroleum
Energy
0.0008
0.0013
0.0029
BrownCoal
0.0001
NaturalGas
BlackCoal
0.0049
0.0057
0.0003
0.0038
0.0008
0.0012
0.0022
BrownCoal
NaturalGas
Petroleum
Energy
0.0001
BlackCoal
0.0009
0.0053
0.0017
0.0019
0.0003
BrownCoal
0.0001
NaturalGas
Petroleum
BlackCoal
0.0058
0.0064
0.0003
0.0042
Petroleum
Energy
0.0006
0.0020
0.0018
BrownCoal
0.0001
NaturalGas
BlackCoal
2
1
0.0004
0.0066
0.0070
0.0026
0.0022
0.0005
0.0053
BrownCoal
NaturalGas
2
0.0001
1
Petroleum
Energy
BlackCoal
0.0028
0.0935
0.0089
0.0253
0.0564
5
0.0033
0.1005
0.0293
0.0093
0.0587
5
0.1167
0.0108
0.0046
0.0369
0.0644
5
0.0046
0.1186
0.0093
0.0347
0.0700
5
0.0052
0.1202
0.0077
0.0371
0.0702
5
0.1659
0.1659
6
0.1708
0.1708
6
0.1763
0.1763
6
0.2128
0.2128
6
0.2069
0.2069
6
0.0020
0.1040
0.1019
7
0.0037
0.1116
0.1079
7
0.1208
0.1180
0.0027
7
0.0011
0.1160
0.1148
7
0.0075
0.1344
0.1269
7
8
8
8
8
8
0.0020
0.0020
9
0.0021
0.0021
9
0.0019
0.0019
9
0.0017
0.0017
9
0.0016
0.0016
9
0.0015
0.0016
0.0001
0.0000
0.0000
10
0.0017
0.0018
0.0001
0.0001
0.0000
10
0.0021
0.0001
0.0020
0.0001
0.0000
10
0.0024
0.0025
0.0001
0.0001
0.0000
10
0.0030
0.0031
0.0001
0.0001
0.0000
10
TableC5
0.0003
0.0011
0.0006
0.0003
11
0.0003
0.0010
0.0005
0.0002
11
0.0011
0.0005
0.0003
0.0002
11
0.0004
0.0011
0.0005
0.0002
11
0.0006
0.0012
0.0004
0.0002
11
0.0001
0.0005
0.0004
0.0000
12
0.0001
0.0005
0.0004
0.0000
12
0.0005
0.0004
0.0001
0.0000
12
0.0001
0.0006
0.0004
0.0000
12
0.0002
0.0006
0.0004
0.0000
12
0.0002
0.0016
0.0009
0.0002
0.0004
13
0.0003
0.0017
0.0002
0.0008
0.0004
13
0.0017
0.0008
0.0004
0.0002
0.0003
13
0.0005
0.0018
0.0009
0.0002
0.0003
13
0.0006
0.0020
0.0009
0.0002
0.0003
13
14
14
14
14
0.0035
0.0062
0.0025
0.0002
0.0032
0.0060
0.0026
0.0002
0.0055
0.0019
0.0034
0.0002
0.0036
0.0057
0.0020
0.0002
0.0040
0.0061
0.0019
0.0002
14
0.0008
0.0114
0.0073
0.0032
15
0.0009
0.0126
0.0078
0.0039
15
0.0129
0.0078
0.0013
0.0038
15
0.0017
0.0145
0.0090
0.0038
15
0.0019
0.0137
0.0082
0.0036
15
0.0003
0.0217
0.0022
0.0192
16
0.0004
0.0229
0.0020
0.0205
16
0.0240
0.0018
0.0007
0.0216
16
0.0012
0.0266
0.0016
0.0238
16
0.0020
0.0249
0.0009
0.0220
16
0.0082
0.0164
0.0041
0.0041
17
0.0075
0.0168
0.0049
0.0045
17
0.0167
0.0038
0.0089
0.0041
17
0.0087
0.0155
0.0032
0.0036
17
0.0086
0.0150
0.0029
0.0035
17
0.0001
0.0005
0.0004
0.0000
18
0.0001
0.0005
0.0004
0.0000
18
0.0005
0.0004
0.0001
0.0000
18
0.0001
0.0005
0.0004
0.0000
18
0.0001
0.0005
0.0004
0.0000
18
0.0000
0.0002
0.0001
0.0000
19
0.0000
0.0002
0.0001
0.0000
19
0.0002
0.0001
0.0000
0.0000
19
0.0000
0.0002
0.0002
0.0000
19
0.0001
0.0002
0.0001
0.0000
19
Matrixofsectoralenergyintensities(C)
0.0000
0.0000
0.0000
20
0.0000
0.0000
0.0000
20
0.0000
0.0000
0.0000
20
0.0001
0.0000
0.0000
20
0.0000
0.0000
0.0000
20
0.0001
0.0002
0.0001
21
0.0002
0.0002
0.0001
21
0.0003
0.0001
0.0002
21
0.0002
0.0003
0.0001
0.0001
21
0.0002
0.0004
0.0001
0.0001
21
0.0007
0.0007
0.0000
22
0.0008
0.0008
0.0000
22
0.0009
0.0000
0.0009
22
0.0010
0.0010
0.0000
22
0.0011
0.0011
22
0.0194
0.0194
23
0.0166
0.0166
23
0.0161
0.0161
23
0.0161
0.0161
23
0.0165
0.0165
23
0.0055
0.0055
0.0000
0.0000
24
0.0043
0.0043
0.0000
24
0.0046
0.0045
0.0000
24
0.0048
0.0048
0.0000
24
0.0052
0.0052
0.0000
24
0.0228
0.0240
0.0000
0.0013
25
0.0142
0.0143
0.0001
25
0.0128
0.0128
25
0.0176
0.0176
25
0.0171
0.0171
25
0.0134
0.0134
26
0.0121
0.0121
26
0.0125
0.0125
26
0.0117
0.0117
26
0.0122
0.0122
26
0.0000
0.0004
0.0003
27
0.0000
0.0007
0.0006
27
0.0006
0.0005
0.0001
27
0.0001
0.0005
0.0004
27
0.0001
0.0005
0.0004
27
0.0000
0.0002
0.0001
0.0000
28
(1984)
0.0001
0.0002
0.0001
0.0000
28
(1983)
0.0002
0.0001
0.0001
0.0000
28
(1982)
0.0001
0.0002
0.0001
0.0000
28
(1981)
0.0001
0.0002
0.0001
0.0000
28
(1980)
254
2
1
0.0090
2
0.0060
1
Energy
0.0104
0.0115
0.0007
0.0108
0.0101
3
0.0005
0.0085
0.0080
3
0.0066
0.0060
0.0005
3
0.0006
0.0080
0.0073
3
0.0008
0.0120
0.0112
3
4
4
4
4
4
(continuedonnextpage)
0.0007
0.0076
Petroleum
Energy
0.0011
0.0006
0.0058
BrownCoal
0.0004
NaturalGas
BlackCoal
2
1
0.0010
0.0088
0.0099
0.0005
0.0044
0.0006
0.0057
BrownCoal
NaturalGas
Petroleum
Energy
0.0002
BlackCoal
0.0010
0.0080
0.0005
0.0046
0.0006
BrownCoal
0.0003
NaturalGas
Petroleum
BlackCoal
0.0083
0.0096
0.0005
0.0068
Petroleum
Energy
0.0000
0.0013
0.0010
0.0049
BrownCoal
0.0004
NaturalGas
BlackCoal
2
1
0.0000
0.0006
0.0057
0.0064
0.0013
0.0035
0.0005
0.0055
BrownCoal
NaturalGas
2
0.0002
1
Petroleum
Energy
BlackCoal
0.0017
0.1113
0.0096
0.0336
0.0664
5
0.0015
0.1047
0.0316
0.0087
0.0629
5
0.1010
0.0078
0.0015
0.0307
0.0611
5
0.0022
0.1064
0.0100
0.0322
0.0620
5
0.0015
0.0993
0.0097
0.0303
0.0578
5
0.2158
0.2158
6
0.1714
0.1714
6
0.1828
0.1828
6
0.2443
0.2443
6
0.1581
0.1581
6
0.0019
0.1708
0.1689
7
0.0022
0.1288
0.1266
7
0.1301
0.1281
0.0020
7
0.0021
0.1365
0.1344
7
0.0068
0.1355
0.1287
7
0.0307
0.0307
8
0.0301
0.0301
8
0.0360
0.0360
8
0.0411
0.0411
8
8
0.0021
0.0021
0.0000
9
0.0021
0.0021
0.0000
9
0.0022
0.0000
0.0022
9
0.0018
0.0018
0.0000
9
0.0021
0.0021
9
TableC5
0.0020
0.0032
0.0010
0.0001
0.0001
10
0.0020
0.0042
0.0002
0.0019
0.0001
10
0.0037
0.0015
0.0019
0.0002
0.0001
10
0.0019
0.0033
0.0011
0.0002
0.0001
10
0.0016
0.0021
0.0003
0.0001
0.0000
10
0.0002
0.0011
0.0007
0.0003
11
0.0002
0.0012
0.0007
0.0003
11
0.0011
0.0007
0.0002
0.0003
11
0.0002
0.0011
0.0007
0.0000
0.0003
11
0.0002
0.0012
0.0007
0.0003
11
0.0001
0.0005
0.0004
0.0000
12
0.0001
0.0006
0.0005
0.0000
12
0.0006
0.0005
0.0001
0.0000
12
0.0001
0.0005
0.0004
0.0001
12
0.0001
0.0005
0.0004
0.0001
12
0.0001
0.0010
0.0007
0.0000
0.0003
13
0.0001
0.0012
0.0000
0.0007
0.0003
13
0.0012
0.0007
0.0001
0.0000
0.0003
13
0.0001
0.0013
0.0008
0.0000
0.0004
13
0.0002
0.0015
0.0008
0.0001
0.0004
13
14
14
14
14
0.0032
0.0054
0.0021
0.0001
0.0033
0.0055
0.0021
0.0001
0.0054
0.0020
0.0033
0.0001
0.0032
0.0057
0.0023
0.0001
0.0031
0.0056
0.0023
0.0002
14
0.0005
0.0079
0.0052
0.0000
0.0022
15
0.0005
0.0087
0.0000
0.0057
0.0024
15
0.0084
0.0056
0.0005
0.0000
0.0023
15
0.0006
0.0107
0.0072
0.0000
0.0029
15
0.0006
0.0114
0.0083
0.0026
15
0.0002
0.0172
0.0024
0.0146
16
0.0002
0.0212
0.0027
0.0183
16
0.0222
0.0026
0.0002
0.0194
16
0.0002
0.0207
0.0026
0.0180
16
0.0002
0.0243
0.0037
0.0204
16
0.0037
0.0184
0.0098
0.0049
17
0.0041
0.0201
0.0106
0.0053
17
0.0196
0.0101
0.0042
0.0053
17
0.0040
0.0146
0.0065
0.0040
17
0.0046
0.0171
0.0073
0.0052
17
0.0001
0.0004
0.0003
18
0.0001
0.0004
0.0003
18
0.0004
0.0003
0.0001
18
0.0001
0.0004
0.0004
0.0000
18
0.0001
0.0005
0.0004
0.0000
18
0.0000
0.0001
0.0001
19
0.0000
0.0001
0.0001
19
0.0002
0.0001
0.0000
0.0000
19
0.0000
0.0002
0.0001
0.0000
19
0.0000
0.0002
0.0001
0.0000
19
0.0001
0.0001
20
0.0001
0.0001
20
0.0001
0.0001
20
0.0001
0.0001
20
0.0001
0.0001
20
21
0.0001
0.0002
0.0001
21
0.0001
0.0002
0.0001
21
0.0002
0.0001
0.0001
21
0.0001
0.0002
0.0001
21
0.0001
0.0002
0.0001
Matrixofsectoralenergyintensities(C)(continued)
0.0007
0.0007
0.0000
22
0.0008
0.0008
0.0000
22
0.0008
0.0000
0.0007
22
0.0008
0.0008
0.0000
22
0.0007
0.0007
0.0000
22
0.0133
0.0133
0.0000
23
0.0182
0.0182
0.0000
23
0.0178
0.0000
0.0178
23
0.0166
0.0166
23
0.0176
0.0176
23
0.0033
0.0033
0.0000
24
0.0046
0.0046
0.0000
24
0.0050
0.0000
0.0050
0.0000
24
0.0054
0.0054
0.0000
0.0000
24
0.0058
0.0058
0.0000
0.0000
24
0.0165
0.0177
0.0000
0.0011
25
0.0095
0.0104
0.0000
0.0009
25
0.0114
0.0000
0.0103
0.0010
25
0.0228
0.0243
0.0000
0.0015
25
0.0210
0.0225
0.0000
0.0015
25
0.0127
0.0127
26
0.0139
0.0139
26
0.0130
0.0130
26
0.0120
0.0120
26
0.0126
0.0126
26
0.0000
0.0003
0.0003
27
0.0000
0.0003
0.0003
27
0.0003
0.0002
0.0000
27
0.0000
0.0004
0.0003
27
0.0000
0.0003
0.0003
27
0.0000
0.0001
0.0001
0.0000
28
(1995)
0.0000
0.0001
0.0001
0.0000
28
(1994)
0.0002
0.0001
0.0000
0.0000
28
(1993)
0.0000
0.0002
0.0001
0.0000
28
(1990)
0.0000
0.0002
0.0001
0.0000
28
(1987)
255
2
1
Sources:
Notes: 0.004
0.005
0.005
0.000
3
0.000
0.005
0.004
3
0.0007
0.0105
0.0097
3
4
4
4
0.078
0.004
0.000
0.026
0.048
5
0.001
0.115
0.007
0.040
0.066
5
0.0014
0.1126
0.0070
0.0363
0.0679
5
0.157
0.157
6
0.164
0.164
6
0.2037
0.2037
6
0.152
0.142
0.010
7
0.001
0.236
0.234
7
0.0016
0.2291
0.2275
7
0.111
0.111
8
0.168
0.168
8
0.0540
0.0540
8
0.001
0.000
0.001
9
0.002
0.002
0.000
9
0.0020
0.0020
0.0000
9
TableC5
0.002
0.000
0.001
0.000
0.000
10
0.002
0.003
0.001
0.000
0.000
10
0.0022
0.0032
0.0008
0.0001
0.0000
10
0.000
0.000
0.000
0.000
11
0.000
0.001
0.001
0.000
11
0.0001
0.0011
0.0006
0.0003
11
0.000
0.000
0.000
0.000
12
0.000
0.001
0.000
0.000
12
0.0001
0.0006
0.0005
0.0000
12
0.000
0.000
0.000
0.000
13
0.000
0.001
0.001
0.000
13
0.0001
0.0012
0.0008
0.0000
0.0003
13
14
14
0.002
0.001
0.001
0.000
0.002
0.005
0.002
0.000
0.0023
0.0047
0.0024
0.0001
14
0.004
0.000
0.002
0.000
0.001
15
0.000
0.007
0.005
0.000
0.002
15
0.0005
0.0080
0.0053
0.0000
0.0022
15
0.007
0.002
0.000
0.005
16
0.000
0.017
0.002
0.015
16
0.0002
0.0181
0.0026
0.0153
16
0.007
0.004
0.002
0.002
17
0.004
0.018
0.010
0.005
17
0.0039
0.0189
0.0101
0.0049
17
0.000
0.000
0.000
18
0.000
0.000
0.000
18
0.0001
0.0004
0.0003
18
0.000
0.000
0.000
19
0.000
0.000
0.000
19
0.0000
0.0001
0.0001
0.0000
19
0.000
0.000
0.000
20
0.000
0.000
20
0.0001
0.0001
20
21
0.000
0.000
0.000
21
0.000
0.000
0.000
21
0.0001
0.0002
0.0001
Matrixofsectoralenergyintensities(C)(continued)
0.000
0.000
0.000
22
0.001
0.001
0.000
22
0.0007
0.0007
0.0000
22
0.008
0.000
0.008
23
0.017
0.017
0.000
23
0.0145
0.0145
0.0000
23
0.002
0.000
0.002
24
0.004
0.004
0.000
24
0.0037
0.0037
0.0000
0.0000
24
0.014
0.000
0.013
0.001
25
0.014
0.015
0.000
0.001
25
0.0170
0.0183
0.0000
0.0013
25
0.020
0.020
26
0.013
0.013
26
0.0137
0.0137
26
27
0.000
0.000
0.000
27
0.000
0.000
0.000
27
0.0000
0.0003
0.0003
ABARE(2006a)andABS(various).
TheenergyintensitiespresentedintheseTablesarecalculatedbasedonEquation52,fromenergyconsumption(publishedbytheAustralianBureauof
AgriculturalandResourceEconomics)andsectoraloutputdata(publishedbytheAustralianBureauofStatistics);
seeTableC1,pp.234237fordescriptionofsector1to28.
0.003
Energy
0.001
0.004
0.000
0.002
0.000
BrownCoal
0.000
NaturalGas
Petroleum
BlackCoal
0.010
0.012
0.001
0.008
Petroleum
Energy
0.002
0.000
0.006
BrownCoal
0.000
NaturalGas
BlackCoal
2
1
0.0088
0.0101
0.0009
0.0078
0.0013
0.0006
0.0059
BrownCoal
NaturalGas
2
0.0004
1
Petroleum
Energy
BlackCoal
0.000
0.000
0.000
0.000
28
(2002)
0.000
0.000
0.000
0.000
28
(1999)
0.0000
0.0001
0.0001
0.0000
28
(1997)
256
257
TableC6
InputfactorcostsandpricesforInterfactormodel:Coalfired
PK
PL
PE
P El
PM
SK
SL
SE
SEl
SM
1980
1981
1982
1983
0.4347
0.5530
0.6591
0.5731
0.8279
0.8910
1.0793
1.1096
1.3139
1.3405
1.5234
1.5455
1.0024
1.0314
1.0961
1.2334
0.8678
0.8872
0.9018
0.9400
0.2621
0.2915
0.2185
0.2190
0.2276
0.2262
0.2541
0.2662
0.3104
0.3103
0.3428
0.3128
0.0703
0.0732
0.0717
0.0755
0.1296
0.0989
0.1130
0.1265
1984
1985
1986
1987
1988
1989
1990
1991
1992
0.6020
0.7633
0.8500
0.8126
0.8201
1.0981
1.0000
0.7923
0.6037
0.9930
1.0207
1.0491
1.0796
1.0520
1.0252
1.0000
1.0184
1.0371
1.3963
1.3846
1.2866
1.1421
0.9502
0.9312
1.0000
0.9966
0.9689
1.2120
1.1983
1.1547
1.1039
1.0708
1.0402
1.0000
0.9919
1.0070
0.9285
0.9387
0.9490
0.9603
0.9725
0.9849
1.0000
1.0026
1.0053
0.2549
0.2697
0.2849
0.3011
0.3291
0.3578
0.3882
0.4056
0.4229
0.2444
0.2409
0.2370
0.2324
0.2083
0.1858
0.1669
0.1678
0.1683
0.2721
0.2595
0.2471
0.2352
0.2349
0.2334
0.2291
0.2241
0.2187
0.0744
0.0773
0.0802
0.0831
0.0817
0.0799
0.0773
0.0776
0.0777
0.1542
0.1526
0.1507
0.1483
0.1460
0.1430
0.1385
0.1248
0.1123
1993
1994
1995
1996
1997
1998
1999
0.5457
0.5769
0.6793
0.6508
0.5506
0.5328
0.5361
1.0567
0.9831
1.2883
1.3696
1.4617
1.4392
1.4175
0.9865
0.9291
0.8466
0.8995
0.8499
0.8421
0.7949
0.9995
0.9729
0.9134
0.8574
0.8261
0.8536
0.8655
1.0105
0.9738
1.0714
1.0965
1.1240
1.1331
1.1446
0.4398
0.4580
0.3716
0.3702
0.3647
0.3628
0.3600
0.1680
0.1552
0.1874
0.1696
0.1534
0.1468
0.1403
0.2126
0.2058
0.2023
0.2018
0.1990
0.1931
0.1871
0.0774
0.0766
0.0781
0.0742
0.0699
0.0745
0.0796
0.1022
0.1043
0.1606
0.1843
0.2130
0.2229
0.2331
Sources:ABS(2004d;2004i;various),(ESAAvarious).
Notes: Pi=Priceoffactori,Si=Costshareoffactori;
K=Capital,L=Labour,E=Primaryenergy,El=Electricity,M=Materials.
TableC6InputfactorcostsandpricesforInterfactormodel:Internalcombustion
PK
PL
PE
P El
PM
SK
SL
SE
SEl
SM
1980
1981
1982
1983
1984
1985
1986
0.4347
0.5530
0.6591
0.5731
0.6020
0.7633
0.8500
0.8279
0.8910
1.0793
1.1096
0.9930
1.0207
1.0491
1.7791
1.8878
1.9332
2.1410
2.1122
2.0665
1.2626
1.0024
1.0314
1.0961
1.2334
1.2120
1.1983
1.1547
0.8935
0.9134
0.8998
0.9249
0.9436
0.9493
0.9550
0.1481
0.1438
0.1133
0.1065
0.1113
0.1495
0.1963
0.0522
0.0490
0.0658
0.0612
0.0557
0.0621
0.0677
0.7158
0.7468
0.7463
0.7567
0.7553
0.6935
0.6225
0.0161
0.0158
0.0185
0.0174
0.0170
0.0198
0.0227
0.0677
0.0446
0.0561
0.0583
0.0607
0.0751
0.0908
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
0.8126
0.8201
1.0981
1.0000
0.7923
0.6037
0.5457
0.5769
0.6793
0.6508
0.5506
0.5328
0.5361
1.0796
1.0520
1.0252
1.0000
1.0184
1.0371
1.0567
0.9831
1.2883
1.3696
1.4617
1.4392
1.4175
1.0997
0.8137
0.8870
1.0000
1.1911
1.1991
1.2030
1.1055
1.0190
1.0672
1.0976
0.9282
1.0637
1.1039
1.0708
1.0402
1.0000
0.9919
1.0070
0.9995
0.9729
0.9134
0.8574
0.8261
0.8536
0.8655
0.9615
0.9734
0.9855
1.0000
1.0080
1.0161
1.0268
1.0178
1.0711
1.0886
1.1076
1.1195
1.1342
0.2671
0.2843
0.3009
0.3166
0.2817
0.2458
0.2126
0.2157
0.1553
0.1626
0.1692
0.1812
0.1933
0.0692
0.0534
0.0410
0.0343
0.0305
0.0265
0.0229
0.0235
0.0234
0.0203
0.0179
0.0208
0.0246
0.5319
0.5397
0.5445
0.5438
0.6093
0.6697
0.7172
0.7110
0.7569
0.7416
0.7212
0.6951
0.6655
0.0247
0.0212
0.0181
0.0159
0.0141
0.0122
0.0106
0.0116
0.0097
0.0089
0.0081
0.0104
0.0139
0.1071
0.1014
0.0954
0.0894
0.0645
0.0457
0.0368
0.0382
0.0547
0.0666
0.0836
0.0925
0.1026
Sources:ABS(2004d;2004i;various),(ESAAvarious).
Notes: Pi=Priceoffactori,Si=Costshareoffactori;
K=Capital,L=Labour,E=Primaryenergy,El=Electricity,M=Materials.
(continuedonnextpage)
258
TableC6InputfactorcostsandpricesforInterfactormodel:Gasturbine
PK
PL
PE
P El
PM
SK
SL
SE
SEl
SM
1980
1981
1982
1983
0.4347
0.5530
0.6591
0.5731
0.8279
0.8910
1.0793
1.1096
0.8923
0.9330
0.9964
1.1739
1.0024
1.0314
1.0961
1.2334
0.9512
0.9726
0.9816
1.0157
0.2607
0.1938
0.1579
0.2183
0.1975
0.2557
0.2676
0.2264
0.3916
0.4058
0.4280
0.3996
0.0610
0.0827
0.0755
0.0642
0.0892
0.0620
0.0710
0.0915
1984
1985
1986
1987
1988
1989
1990
1991
1992
0.6020
0.7633
0.8500
0.8126
0.8201
1.0981
1.0000
0.7923
0.6037
0.9930
1.0207
1.0491
1.0796
1.0520
1.0252
1.0000
1.0184
1.0371
1.2568
1.2736
1.1873
1.0855
1.0355
0.9741
1.0000
1.1022
1.0781
1.2120
1.1983
1.1547
1.1039
1.0708
1.0402
1.0000
0.9919
1.0070
0.9481
0.9568
0.9656
0.9752
0.9828
0.9903
1.0000
1.0035
1.0070
0.2497
0.3274
0.4128
0.5058
0.4822
0.4566
0.4264
0.4724
0.5186
0.1951
0.1581
0.1232
0.0959
0.0999
0.1034
0.1051
0.0921
0.0799
0.3831
0.3354
0.2822
0.2264
0.2557
0.2868
0.3218
0.3018
0.2805
0.0594
0.0515
0.0429
0.0343
0.0387
0.0434
0.0487
0.0426
0.0369
0.1127
0.1276
0.1389
0.1376
0.1234
0.1098
0.0980
0.0912
0.0841
1993
1994
1995
1996
1997
1998
1999
0.5457
0.5769
0.6793
0.6508
0.5506
0.5328
0.5361
1.0567
0.9831
1.2883
1.3696
1.4617
1.4392
1.4175
1.0924
1.0495
1.0315
1.0602
1.0422
0.8993
0.8818
0.9995
0.9729
0.9134
0.8574
0.8261
0.8536
0.8655
1.0128
0.9619
1.0348
1.0552
1.0775
1.0797
1.0838
0.5638
0.6043
0.4048
0.3857
0.3624
0.3792
0.3921
0.0700
0.0601
0.0996
0.0822
0.0692
0.0621
0.0557
0.2573
0.2287
0.3373
0.3632
0.3861
0.3554
0.3252
0.0322
0.0297
0.0415
0.0361
0.0315
0.0318
0.0316
0.0767
0.0773
0.1167
0.1328
0.1508
0.1715
0.1954
Sources:ABS(2004d;2004i;various),(ESAAvarious).
Notes: Pi=Priceoffactori,Si=Costshareoffactori;
K=Capital,L=Labour,E=Primaryenergy,El=Electricity,M=Materials.
TableC6InputfactorcostsandpricesforInterfactormodel:Combinedcycle
PK
PL
PE
P El
PM
SK
SL
SE
SEl
SM
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
0.8201
1.0981
1.0000
0.7923
0.6037
0.5457
0.5769
0.6793
0.6508
0.5506
0.5328
0.5361
1.0520
1.0252
1.0000
1.0184
1.0371
1.0567
0.9831
1.2883
1.3696
1.4617
1.4392
1.4175
1.0625
0.9845
1.0000
1.0918
1.0640
1.0794
1.0429
1.0330
1.0594
1.0356
0.8959
0.8608
1.0708
1.0402
1.0000
0.9919
1.0070
0.9995
0.9729
0.9134
0.8574
0.8261
0.8536
0.8655
0.9595
0.9776
1.0000
1.0009
1.0019
1.0048
0.9391
1.0873
1.1208
1.1580
1.1586
1.1622
0.2150
0.2164
0.2176
0.2189
0.2200
0.2208
0.2274
0.1786
0.1716
0.1614
0.1842
0.2064
0.2082
0.2036
0.1990
0.1944
0.1898
0.1852
0.1780
0.2022
0.1682
0.1417
0.1326
0.1209
0.3989
0.4084
0.4179
0.4274
0.4369
0.4463
0.4496
0.4566
0.4977
0.5329
0.4891
0.4392
0.0968
0.0945
0.0922
0.0899
0.0876
0.0853
0.0879
0.0843
0.0739
0.0646
0.0676
0.0686
0.0811
0.0771
0.0733
0.0694
0.0658
0.0625
0.0572
0.0783
0.0886
0.0993
0.1265
0.1648
Sources:ABS(2004d;2004i;various),(ESAAvarious).
Notes: Pi=Priceoffactori,Si=Costshareoffactori;
K=Capital,L=Labour,E=Primaryenergy,El=Electricity,M=Materials.
(continuedonnextpage)
259
TableC6InputfactorcostsandpricesforInterfactormodel:Renewableelectricity
PK
PL
P El
PM
SK
SL
SEl
SM
1980
1981
1982
1983
0.4347
0.5530
0.6591
0.5731
0.8279
0.8910
1.0793
1.1096
PE
1.0024
1.0314
1.0961
1.2334
0.8969
0.9080
0.9192
0.9579
0.6190
0.6407
0.5465
0.5588
0.2157
0.2201
0.2831
0.2634
SE
0.0667
0.0712
0.0798
0.0747
0.0986
0.0680
0.0906
0.1031
1984
1985
1986
1987
1988
1989
1990
1991
1992
0.6020
0.7633
0.8500
0.8126
0.8201
1.0981
1.0000
0.7923
0.6037
0.9930
1.0207
1.0491
1.0796
1.0520
1.0252
1.0000
1.0184
1.0371
1.2120
1.1983
1.1547
1.1039
1.0708
1.0402
1.0000
0.9919
1.0070
0.9434
0.9507
0.9581
0.9662
0.9765
0.9869
1.0000
1.0094
1.0188
0.5996
0.6193
0.6385
0.6564
0.6998
0.7390
0.7689
0.7783
0.7868
0.2185
0.2053
0.1926
0.1810
0.1485
0.1207
0.1024
0.1024
0.1023
0.0665
0.0661
0.0655
0.0647
0.0587
0.0528
0.0474
0.0473
0.0472
0.1154
0.1094
0.1034
0.0979
0.0930
0.0875
0.0813
0.0720
0.0637
1993
1994
1995
1996
1997
1998
1999
0.5457
0.5769
0.6793
0.6508
0.5506
0.5328
0.5361
1.0567
0.9831
1.2883
1.3696
1.4617
1.4392
1.4175
0.9995
0.9729
0.9134
0.8574
0.8261
0.8536
0.8655
1.0308
0.9970
1.0752
1.0983
1.1237
1.1276
1.1331
0.7937
0.8086
0.7306
0.7272
0.7188
0.7207
0.7214
0.1019
0.0915
0.1199
0.1099
0.1009
0.0928
0.0859
0.0469
0.0452
0.0500
0.0480
0.0460
0.0473
0.0487
0.0575
0.0548
0.0996
0.1149
0.1344
0.1391
0.1439
Sources:ABS(2004d;2004i;various),(ESAAvarious).
Notes: Pi=Priceoffactori,Si=Costshareoffactori;
K=Capital,L=Labour,E=Primaryenergy,El=Electricity,M=Materials.
TableC6InputfactorcostsandpricesforInterfactormodel:Finaldemand
PE
Finalconsumption
PM
SE
Export
SM
PE
PM
SE
SM
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1.2740
1.3301
1.3953
1.5570
1.5390
1.5173
1.2025
1.1023
0.9616
0.9711
0.9358
0.9508
0.9575
0.9838
0.9638
0.9691
0.9745
0.9803
0.9866
0.9929
0.0339
0.0353
0.0352
0.0371
0.0358
0.0349
0.0340
0.0331
0.0308
0.0286
0.9661
0.9647
0.9648
0.9629
0.9642
0.9651
0.9660
0.9669
0.9692
0.9714
1.3996
1.4216
1.6338
1.6241
1.4304
1.4140
1.3094
1.1541
0.9221
0.9192
0.7312
0.7840
0.8294
0.9158
0.9046
0.9303
0.9567
0.9870
0.9895
0.9925
0.1017
0.1134
0.1259
0.1551
0.1559
0.1533
0.1507
0.1482
0.1353
0.1234
0.8983
0.8866
0.8741
0.8449
0.8441
0.8467
0.8493
0.8518
0.8647
0.8766
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1.0000
1.0752
1.0836
1.0826
1.0277
0.9607
0.9514
0.9432
0.8851
0.9387
1.0000
1.0052
1.0104
1.0166
0.9891
1.0313
1.0459
1.0616
1.0542
1.0477
0.0268
0.0268
0.0268
0.0268
0.0247
0.0220
0.0213
0.0206
0.0213
0.0220
0.9732
0.9732
0.9732
0.9732
0.9753
0.9780
0.9787
0.9794
0.9787
0.9780
1.0000
0.9798
0.9524
0.9703
0.9088
0.8134
0.8705
0.8179
0.8322
0.7838
1.0000
1.0362
1.0692
1.1174
1.0658
1.2232
1.2428
1.2621
1.2705
1.2881
0.1136
0.1230
0.1330
0.1449
0.1251
0.1237
0.1254
0.1271
0.1232
0.1194
0.8864
0.8770
0.8670
0.8551
0.8749
0.8763
0.8746
0.8729
0.8768
0.8806
Sources:ABS(2004d;2004i;various),(ESAAvarious).
Notes: Pi=Priceoffactori,Si=Expenditureshareoffactori;
K=Capital,L=Labour,E=Primaryenergy,El=Electricity,M=Materials.
1.0637
1.5504
1.3309
1.3209
1.3230
1.1647
0.9262
0.9199
1.0000
0.9545
0.9234
0.9427
0.8856
0.7917
0.8487
0.7898
0.8197
0.7510
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
0.9282
1.6211
1982
0.8608
0.8959
1.0356
1.0594
1.0330
1.0429
1.0794
1.0640
1.0918
1.0000
0.9845
1.0625
1.0838
1.1785
1.1876
1.1648
1.0720
0.8994
0.8353
0.8012
PGas
0.8048
0.8111
0.7903
0.7619
0.7341
0.7563
0.7653
0.7750
0.7049
0.7059
0.7411
0.7325
0.7355
0.6980
0.6557
0.6153
0.6433
0.6476
0.6292
0.6338
SCoal
TableC7
0.0513
0.0363
0.0456
0.0638
0.0486
0.0512
0.0599
0.0609
0.1466
0.1176
0.0729
0.0513
0.0877
0.1268
0.2152
0.2461
0.2459
0.2623
0.2894
0.3027
SOil
Steam
0.1439
0.1525
0.1641
0.1743
0.2173
0.1926
0.1748
0.1641
0.1485
0.1766
0.1860
0.2162
0.1769
0.1752
0.1291
0.1386
0.1108
0.0900
0.0814
0.0635
SGas
SCoal
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
SOil
SGas
Internalcombustion
SCoal
0.1613
0.1941
0.0867
0.0787
0.0934
0.0953
0.1099
0.0558
0.1065
0.0737
0.1060
0.0926
0.1449
0.1177
0.1626
0.1023
0.1765
0.1361
0.0669
0.2953
SOil
Gasturbine
0.8387
0.8059
0.9133
0.9213
0.9066
0.9047
0.8901
0.9442
0.8935
0.9263
0.8940
0.9074
0.8551
0.8823
0.8374
0.8977
0.8235
0.8639
0.9331
0.7047
SGas
SCoal
SOil
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
SGas
Combinedcycle
InputfactorcostsandpricesforEnergysubmodel:Electricitysector
ABARE(various),ESAA(various),Tedescoetal.(2004).
Pi=Priceoffactori,Si=Costshareoffactori.
1.0976
1.0672
1.0190
1.1055
1.2030
1.1991
1.1911
1.0000
0.8870
0.8137
1.0997
1.2626
2.0665
2.1122
2.1410
1.9332
1.8878
1.3545
1.7791
1.3536
POil
1981
P Coal
1980
Sources:
Note: SCoal
SOil
Renewable
SGas
260
0.8197
0.7510
1998
1999
1.0637
0.9282
1.0976
1.0672
1.0190
1.1055
1.2030
1.1991
1.1911
1.0000
0.8870
0.8137
1.0997
1.2626
2.0665
2.1122
2.1410
1.9332
1.8878
1.7791
POil
0.8655
0.8536
0.8261
0.8574
0.9134
0.9729
0.9995
1.0070
0.9919
1.0000
1.0402
1.0708
1.1039
1.1547
1.1983
1.2120
1.2334
1.0961
1.0314
1.0024
PElectricity
TableC7
0.8608
0.8959
1.0356
1.0594
1.0330
1.0429
1.0794
1.0640
1.0918
1.0000
0.9845
1.0625
1.0838
1.1785
1.1876
1.1648
1.0720
0.8994
0.8353
0.8012
P Gas
0.0371
0.0452
0.0541
0.0501
0.0465
0.0653
0.0153
0.0097
0.0072
0.0053
0.0061
0.0076
0.0095
0.0081
0.0072
0.0063
0.0071
0.0079
0.0099
0.0050
SCoal
0.3305
0.3126
0.2932
0.3082
0.3241
0.3384
0.3618
0.3810
0.3988
0.4166
0.4370
0.4600
0.4830
0.4892
0.4950
0.5009
0.5233
0.5416
0.5525
0.5553
SOil
0.5357
0.5751
0.6012
0.5923
0.5821
0.5378
0.5178
0.5122
0.5038
0.4945
0.4779
0.4582
0.4381
0.4356
0.4327
0.4298
0.4013
0.3795
0.3736
0.3722
SElectricity
Finalconsumption
0.0966
0.0671
0.0515
0.0494
0.0473
0.0586
0.1051
0.0971
0.0902
0.0836
0.0790
0.0741
0.0694
0.0671
0.0651
0.0630
0.0683
0.0710
0.0640
0.0675
SGas
0.9241
0.9072
0.8803
0.9096
0.9266
0.9100
0.9071
0.8929
0.8795
0.8647
0.8699
0.8754
0.8807
0.8566
0.8249
0.7880
0.7622
0.7387
0.7260
0.7277
SCoal
InputfactorcostsandpricesforEnergysubmodel:Finaldemand
ABARE(various),ABS(various),ESAA(various),Tedescoetal.(2004).
Pi=Priceoffactori,Si=Expenditureshareoffactori.
0.8487
0.7917
0.7898
0.8856
1994
1995
1997
0.9427
1993
1996
0.9545
0.9234
1991
1990
1992
0.9199
1.0000
1989
1.1647
0.9262
1987
1988
1.3209
1.3230
1986
1.3309
1984
1985
1.6211
1.5504
1982
1.3545
1981
1983
1.3536
PCoal
1980
Sources:
Note: Export
0.0735
0.0903
0.1171
0.0878
0.0708
0.0879
0.0909
0.1045
0.1170
0.1307
0.1262
0.1212
0.1164
0.1404
0.1719
0.2087
0.2324
0.2547
0.2695
0.2681
SOil
0.0023
0.0024
0.0025
0.0026
0.0026
0.0021
0.0020
0.0026
0.0035
0.0046
0.0039
0.0033
0.0028
0.0030
0.0032
0.0033
0.0054
0.0066
0.0045
0.0042
SElectricity
0.0001
0.0001
0.0001
SGas
261
0.6508
0.7167
0.7671
0.9743
0.7935
0.8532
0.9174
0.9944
0.9963
0.9981
1.0000
1.0893
1.1865
1.3071
1.2529
1.6276
1.5309
1.4452
1.4573
1.4695
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
P M1
1980
1.1347
1.1257
1.1300
1.1215
1.0934
1.0702
1.0690
1.0505
1.0418
1.0000
0.9526
0.9209
0.8936
0.8749
0.8567
0.8388
0.8213
0.8041
0.7873
0.7709
P M2
1.2901
1.3106
1.3318
1.2891
1.2490
1.0697
1.1441
1.0918
1.0449
1.0000
0.9993
0.9986
0.9979
0.9525
0.9118
0.8728
0.8268
0.7796
0.7213
0.6804
PM3
P M4
1.2194
1.2883
1.3658
1.2475
1.1476
0.8663
0.9189
0.9444
0.9718
1.0000
0.9093
0.8359
0.7684
0.7720
0.7756
0.7792
0.8003
0.6766
0.6649
0.5914
P M5
1.2269
1.2333
1.2397
1.1561
1.0829
0.9705
1.0631
1.0412
1.0204
1.0000
0.9797
0.9604
0.9415
0.9310
0.9209
0.9109
0.9249
0.7815
0.7747
0.7384
1.2149
1.2172
1.2195
1.2012
1.1835
0.9939
1.0171
1.0113
1.0056
1.0000
0.9895
0.9792
0.9691
0.9603
0.9517
0.9432
0.9721
0.8245
0.8036
0.7580
P M6
1.6601
1.6677
1.6753
1.5022
1.3607
1.1474
1.2407
1.1490
1.0719
1.0000
1.0603
1.1313
1.2069
1.1649
1.1263
1.0889
1.0396
0.8294
0.7996
0.7442
P M7
TableC8
2.1823
2.0121
1.8659
1.6919
1.5468
1.6863
1.8325
1.4446
1.2019
1.0000
1.0288
1.0598
1.0918
1.0192
0.9572
0.8989
1.0035
0.6790
0.6154
0.5883
P M8
2.0930
2.0225
1.9566
1.9034
1.8529
1.5166
1.6833
1.3773
1.1736
1.0000
1.0781
1.1750
1.2806
1.2935
1.3067
1.3201
1.4932
1.3105
0.9776
0.7868
P M9
1.7737
1.6718
1.5807
1.4642
1.3634
1.1792
1.2502
1.1544
1.0744
1.0000
1.0128
1.0261
1.0395
1.0026
0.9688
0.9361
0.8620
0.6745
0.6659
0.6448
PM10
1.1145
1.1174
1.1203
1.1204
1.1206
1.0332
1.1021
1.0658
1.0324
1.0000
1.0014
1.0028
1.0041
1.0020
0.9999
0.9978
0.9639
0.9013
0.8995
0.8977
PM11
0.7158
0.7017
0.6882
0.8312
1.0604
0.8534
1.2270
1.1410
1.0682
1.0000
0.9066
0.8315
0.7626
0.7707
0.7790
0.7875
0.8050
0.6986
0.7162
0.6424
PM12
(continuedonnextpage)
2.2818
2.1940
2.1126
1.8309
1.6134
1.0814
1.1284
1.0822
1.0403
1.0000
0.8016
0.6740
0.5667
0.5625
0.5583
0.5541
0.7762
0.8406
0.7382
0.8842
PM13
1.5390
1.5108
1.4836
1.4561
1.4296
1.2903
1.3210
1.1942
1.0928
1.0000
0.9753
0.9521
0.9295
0.9137
0.8986
0.8837
0.9042
0.8291
0.8419
0.8263
PM14
InputfactorpricesforMaterialsubmodel
Source: ABS(2004k).
Notes: Pi=Priceoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
1.7042
1.5570
1.4328
1.4091
1.3862
1.2654
1.0361
1.0238
1.0118
1.0000
0.9051
0.8291
0.7594
0.7535
0.7478
0.7421
0.5704
0.6321
0.8150
0.6997
PM15
1.4661
1.3928
1.3264
1.2549
1.1906
0.8027
0.8824
0.9184
0.9583
1.0000
0.9714
0.9447
0.9187
0.8716
0.8300
0.7904
0.7322
0.6588
0.5780
0.5158
PM16
1.3048
0.8596
0.6303
0.5971
0.5673
0.4790
0.4892
0.5802
0.7617
1.0000
0.8861
0.7985
0.7196
0.5949
0.5104
0.4379
0.2390
0.1982
0.1772
0.1700
PM17
0.9343
1.0766
1.2746
1.2217
1.1729
0.9048
0.9204
0.9455
0.9723
1.0000
1.0177
1.0363
1.0551
1.0293
1.0050
0.9813
0.8313
0.7353
0.8423
0.7905
PM18
0.8043
0.8252
0.8472
0.8301
0.8137
0.7241
0.9227
0.9471
0.9732
1.0000
1.0120
1.0243
1.0367
1.0127
0.9900
0.9678
1.7411
1.7398
1.6842
1.5547
PM19
0.9880
0.9931
0.9982
0.9886
0.9792
0.9863
0.9989
0.9992
0.9996
1.0000
0.9985
0.9971
0.9956
0.9975
0.9994
1.0013
1.0206
1.0165
1.0138
1.0166
PM20
262
0.0005
1992
0.0003
0.0003
0.0003
1997
1998
1999
0.0003
0.0003
1995
1996
0.0005
0.0013
1991
0.0003
0.0032
1990
1993
0.0029
1989
1994
0.0024
0.0026
0.0024
1987
0.0024
1985
1986
1988
0.0023
0.0024
0.0021
1982
1983
0.0020
1981
1984
0.0015
SM1
1980
SM2
0.0006
0.0006
0.0007
0.0008
0.0009
0.0008
0.0011
0.0006
0.0026
0.0112
0.0106
0.0100
0.0094
0.0102
0.0111
0.0120
0.0072
0.0065
0.0060
0.0029
SM3
0.0020
0.0024
0.0030
0.0019
0.0014
0.0011
0.0011
0.0014
0.0020
0.0029
0.0031
0.0034
0.0037
0.0033
0.0030
0.0027
0.0021
0.0022
0.0022
0.0011
SM4
0.0119
0.0117
0.0111
0.0117
0.0117
0.0047
0.0071
0.0091
0.0147
0.0228
0.0237
0.0244
0.0251
0.0251
0.0250
0.0247
0.0220
0.0188
0.0172
0.0083
SM5
TableC8
0.0461
0.0512
0.0558
0.0556
0.0527
0.0591
0.0434
0.0290
0.0207
0.0143
0.0128
0.0116
0.0105
0.0110
0.0114
0.0119
0.0090
0.0098
0.0094
0.0043
SM6
0.0394
0.0416
0.0427
0.0413
0.0380
0.0539
0.0452
0.0339
0.0258
0.0188
0.0134
0.0104
0.0081
0.0079
0.0077
0.0074
0.0057
0.0061
0.0060
0.0032
SM7
0.0048
0.0047
0.0045
0.0053
0.0060
0.0060
0.0090
0.0076
0.0062
0.0048
0.0050
0.0050
0.0051
0.0055
0.0059
0.0064
0.0145
0.0241
0.0233
0.0082
SM8
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0000
0.0000
0.0001
0.0004
0.0005
0.0007
0.0010
0.0010
0.0010
0.0010
0.0009
0.0008
0.0010
0.0006
SM9
0.0183
0.0190
0.0192
0.0129
0.0092
0.0136
0.0121
0.0130
0.0126
0.0118
0.0126
0.0133
0.0141
0.0144
0.0146
0.0148
0.0117
0.0129
0.0123
0.0068
SM10
0.1249
0.1380
0.1495
0.1817
0.2188
0.2163
0.1377
0.1276
0.1102
0.0915
0.1014
0.1132
0.1260
0.1232
0.1196
0.1158
0.1093
0.1007
0.1011
0.0503
SM11
0.0008
0.0010
0.0012
0.0010
0.0008
0.0003
0.0008
0.0010
0.0019
0.0035
0.0038
0.0040
0.0043
0.0045
0.0046
0.0046
0.0037
0.0033
0.0038
0.0020
SM12
(continuedonnextpage)
SM14
0.0071
0.0079
0.0307
0.0062
0.0070
0.0075
0.0125
0.0334
0.0156
0.0096
0.0057
0.0058
0.0058
0.0058
0.0065
0.0074
0.0085
0.0185
0.0164
0.0175
0.0086
0.0347
0.0386
0.0499
0.0672
0.0536
0.0787
0.0528
0.0379
0.0261
0.0261
0.0259
0.0255
0.0260
0.0264
0.0266
0.0174
0.0143
0.0149
0.0079
SM13
0.0149
0.0148
0.0143
0.0146
0.0142
0.0324
0.0313
0.0374
0.0414
0.0441
0.0439
0.0432
0.0424
0.0393
0.0364
0.0336
0.0507
0.0602
0.0673
0.0328
SM15
0.0484
0.0499
0.0499
0.0636
0.0835
0.1848
0.1767
0.1773
0.1626
0.1435
0.1451
0.1452
0.1448
0.1281
0.1145
0.1021
0.1012
0.1262
0.1722
0.0744
SM16
InputfactorcostsforMaterialsubmodel:Coalfiredelectricity
Source: ABS(various).
Notes: Si=Costshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
SM17
0.0030
0.0035
0.0042
0.0012
0.0006
0.0039
0.0046
0.0042
0.0036
0.0029
0.0030
0.0031
0.0031
0.0033
0.0035
0.0038
0.0320
0.0406
0.0410
0.0217
SM18
0.0139
0.0151
0.0160
0.0166
0.0164
0.0067
0.0108
0.0135
0.0164
0.0192
0.0160
0.0136
0.0116
0.0128
0.0141
0.0156
0.0103
0.0086
0.0080
0.0039
SM19
0.1058
0.0645
0.0443
0.0410
0.0364
0.0395
0.0497
0.0408
0.0325
0.0250
0.0285
0.0336
0.0393
0.0368
0.0343
0.0320
0.0209
0.0179
0.0165
0.0081
0.5261
0.5399
0.5385
0.4935
0.4344
0.3104
0.3568
0.4348
0.4978
0.5483
0.5420
0.5308
0.5178
0.5388
0.5570
0.5740
0.5606
0.5287
0.4782
0.7535
SM20
263
0.0002
1992
0.0001
0.0001
0.0001
1997
1998
1999
0.0001
0.0001
1995
1996
0.0002
0.0005
1991
0.0001
0.0010
1990
1993
0.0010
1989
1994
0.0010
0.0010
0.0011
1987
0.0012
1985
1986
1988
0.0011
0.0014
0.0011
1982
1983
0.0009
1981
1984
0.0006
SM1
1980
SM2
0.0002
0.0002
0.0002
0.0002
0.0003
0.0003
0.0004
0.0003
0.0010
0.0036
0.0037
0.0038
0.0039
0.0045
0.0056
0.0069
0.0036
0.0034
0.0029
0.0013
SM3
0.0008
0.0008
0.0009
0.0007
0.0005
0.0005
0.0004
0.0005
0.0007
0.0009
0.0011
0.0013
0.0015
0.0016
0.0016
0.0016
0.0011
0.0011
0.0010
0.0005
SM4
0.0047
0.0039
0.0033
0.0038
0.0043
0.0019
0.0027
0.0035
0.0051
0.0073
0.0081
0.0092
0.0103
0.0114
0.0128
0.0143
0.0110
0.0098
0.0082
0.0037
SM5
TableC8
0.0534
0.0581
0.0627
0.0634
0.0614
0.0722
0.0554
0.0355
0.0250
0.0171
0.0152
0.0137
0.0122
0.0123
0.0124
0.0125
0.0090
0.0097
0.0098
0.0044
SM6
0.0456
0.0471
0.0480
0.0471
0.0443
0.0658
0.0576
0.0416
0.0311
0.0226
0.0158
0.0122
0.0094
0.0089
0.0083
0.0078
0.0057
0.0060
0.0063
0.0032
SM7
0.0055
0.0053
0.0051
0.0060
0.0070
0.0073
0.0115
0.0094
0.0075
0.0058
0.0059
0.0059
0.0059
0.0062
0.0065
0.0067
0.0145
0.0239
0.0242
0.0084
SM8
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0001
0.0000
0.0001
0.0005
0.0006
0.0008
0.0012
0.0011
0.0011
0.0010
0.0009
0.0008
0.0010
0.0006
SM9
0.0212
0.0215
0.0215
0.0148
0.0107
0.0166
0.0154
0.0160
0.0153
0.0142
0.0150
0.0157
0.0164
0.0162
0.0159
0.0156
0.0117
0.0127
0.0128
0.0070
SM10
0.1446
0.1564
0.1679
0.2062
0.2548
0.2642
0.1757
0.1574
0.1332
0.1097
0.1208
0.1335
0.1469
0.1380
0.1299
0.1220
0.1095
0.0998
0.1051
0.0517
SM11
0.0010
0.0011
0.0014
0.0012
0.0010
0.0003
0.0010
0.0012
0.0023
0.0042
0.0045
0.0048
0.0050
0.0050
0.0050
0.0049
0.0037
0.0033
0.0039
0.0020
SM12
(continuedonnextpage)
SM14
0.0084
0.0097
0.0122
0.0073
0.0084
0.0092
0.0160
0.0449
0.0200
0.0122
0.0072
0.0072
0.0072
0.0071
0.0077
0.0086
0.0095
0.0195
0.0171
0.0191
0.0093
0.0119
0.0115
0.0156
0.0246
0.0222
0.0298
0.0181
0.0125
0.0083
0.0090
0.0098
0.0105
0.0118
0.0135
0.0154
0.0087
0.0075
0.0072
0.0035
SM13
0.0426
0.0410
0.0390
0.0426
0.0447
0.0977
0.0947
0.1043
0.1052
0.1033
0.1084
0.1129
0.1171
0.1185
0.1194
0.1201
0.1578
0.1810
0.1986
0.0846
SM15
0.0095
0.0084
0.0074
0.0099
0.0152
0.0377
0.0331
0.0308
0.0268
0.0227
0.0247
0.0270
0.0294
0.0293
0.0291
0.0288
0.0246
0.0315
0.0394
0.0157
SM16
InputfactorcostsforMaterialsubmodel:Internalcombustion
Source: ABS(various).
Notes: Si=Costshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
SM17
0.0031
0.0035
0.0040
0.0013
0.0007
0.0043
0.0051
0.0042
0.0034
0.0027
0.0029
0.0032
0.0034
0.0040
0.0048
0.0058
0.0440
0.0563
0.0537
0.0252
SM18
0.0055
0.0051
0.0048
0.0054
0.0060
0.0028
0.0041
0.0049
0.0055
0.0061
0.0056
0.0052
0.0048
0.0056
0.0071
0.0090
0.0051
0.0045
0.0038
0.0017
SM19
0.0311
0.0161
0.0103
0.0099
0.0092
0.0107
0.0129
0.0095
0.0072
0.0053
0.0063
0.0081
0.0103
0.0108
0.0114
0.0120
0.0068
0.0061
0.0054
0.0024
0.6091
0.6110
0.6047
0.5634
0.5059
0.3790
0.4551
0.5423
0.6054
0.6576
0.6441
0.6249
0.6037
0.6060
0.6059
0.6046
0.5615
0.5243
0.4967
0.7742
SM20
264
0.0002
1992
0.0002
0.0002
0.0001
1997
1998
1999
0.0002
0.0002
1995
1996
0.0003
0.0007
1991
0.0001
0.0028
1990
1993
0.0019
1989
1994
0.0011
0.0014
0.0013
1987
0.0019
1985
1986
1988
0.0027
0.0026
0.0035
1982
1983
0.0035
1981
1984
0.0018
SM1
1980
SM2
0.0003
0.0003
0.0004
0.0005
0.0006
0.0004
0.0006
0.0000
0.0007
0.0099
0.0071
0.0055
0.0042
0.0052
0.0084
0.0131
0.0085
0.0109
0.0109
0.0037
SM3
SM4
0.0009
0.0013
0.0019
0.0013
0.0010
0.0006
0.0006
0.0007
0.0014
0.0025
0.0022
0.0019
0.0016
0.0020
0.0025
0.0030
0.0025
0.0037
0.0039
0.0014
0.0056
0.0064
0.0071
0.0080
0.0086
0.0025
0.0039
0.0045
0.0097
0.0203
0.0165
0.0136
0.0112
0.0140
0.0197
0.0270
0.0258
0.0315
0.0310
0.0105
SM5
0.0397
0.0460
0.0519
0.0535
0.0523
0.0698
0.0491
0.0313
0.0219
0.0147
0.0142
0.0134
0.0125
0.0123
0.0115
0.0106
0.0082
0.0075
0.0066
0.0041
SM6
TableC8
0.0339
0.0374
0.0397
0.0397
0.0377
0.0636
0.0511
0.0367
0.0272
0.0193
0.0150
0.0121
0.0097
0.0087
0.0077
0.0066
0.0052
0.0046
0.0042
0.0030
SM7
0.0041
0.0043
0.0042
0.0051
0.0059
0.0071
0.0102
0.0083
0.0066
0.0050
0.0054
0.0058
0.0061
0.0062
0.0060
0.0057
0.0132
0.0184
0.0164
0.0078
SM8
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0000
0.0000
0.0001
0.0004
0.0005
0.0008
0.0012
0.0011
0.0010
0.0009
0.0008
0.0006
0.0007
0.0005
SM9
0.0157
0.0171
0.0178
0.0125
0.0091
0.0160
0.0137
0.0142
0.0134
0.0122
0.0137
0.0153
0.0169
0.0160
0.0147
0.0132
0.0107
0.0098
0.0086
0.0065
SM10
0.1075
0.1240
0.1390
0.1731
0.2173
0.2552
0.1557
0.1390
0.1169
0.0941
0.1099
0.1296
0.1511
0.1359
0.1197
0.1028
0.0997
0.0766
0.0710
0.0482
SM11
0.0007
0.0009
0.0011
0.0010
0.0008
0.0003
0.0009
0.0011
0.0020
0.0036
0.0041
0.0046
0.0052
0.0050
0.0046
0.0041
0.0034
0.0025
0.0027
0.0019
SM12
(continuedonnextpage)
SM14
0.0097
0.0103
0.0145
0.0087
0.0101
0.0113
0.0222
0.0570
0.0252
0.0153
0.0089
0.0096
0.0101
0.0104
0.0112
0.0114
0.0114
0.0255
0.0188
0.0185
0.0124
0.0185
0.0246
0.0330
0.0492
0.0280
0.0436
0.0369
0.0299
0.0233
0.0179
0.0143
0.0113
0.0142
0.0206
0.0291
0.0204
0.0240
0.0269
0.0100
SM13
0.0088
0.0096
0.0102
0.0110
0.0114
0.0185
0.0192
0.0248
0.0328
0.0414
0.0338
0.0281
0.0231
0.0272
0.0319
0.0366
0.0616
0.0970
0.1117
0.0449
SM15
InputfactorcostsforMaterialsubmodel:Gasturbine
Source: ABS(various).
Notes: Si=Costshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
SM16
0.0115
0.0137
0.0160
0.0212
0.0307
0.0485
0.0491
0.0577
0.0622
0.0642
0.0501
0.0405
0.0324
0.0388
0.0469
0.0554
0.0589
0.1029
0.1503
0.0457
SM17
0.0010
0.0014
0.0019
0.0006
0.0003
0.0014
0.0018
0.0019
0.0019
0.0018
0.0015
0.0013
0.0010
0.0013
0.0019
0.0028
0.0266
0.0464
0.0486
0.0199
SM18
0.0066
0.0082
0.0102
0.0113
0.0120
0.0035
0.0060
0.0078
0.0118
0.0171
0.0104
0.0074
0.0052
0.0064
0.0106
0.0171
0.0121
0.0144
0.0144
0.0049
SM19
0.2858
0.2146
0.1642
0.1424
0.1200
0.0960
0.1337
0.1275
0.1124
0.0947
0.0894
0.0823
0.0750
0.0919
0.1183
0.1484
0.1029
0.1246
0.1343
0.0516
0.4528
0.4866
0.5008
0.4755
0.4314
0.3661
0.4035
0.4821
0.5330
0.5638
0.5967
0.6120
0.6209
0.6013
0.5606
0.5097
0.5113
0.4024
0.3357
0.7211
SM20
265
1984
1985
1986
1987
0.0006
0.0005
0.0003
1999
1996
1997
0.0007
1995
1998
0.0006
0.0007
1994
0.0008
0.0009
1992
1993
0.0071
0.0025
1990
1991
0.0111
1983
1989
1982
0.0163
1981
1988
SM1
1980
SM2
0.0007
0.0009
0.0013
0.0016
0.0019
0.0016
0.0020
0.0006
0.0041
0.0251
0.0429
0.0695
SM3
0.0024
0.0034
0.0059
0.0042
0.0030
0.0024
0.0019
0.0025
0.0042
0.0064
0.0084
0.0103
SM4
0.0145
0.0181
0.0221
0.0248
0.0259
0.0098
0.0127
0.0163
0.0300
0.0513
0.0693
0.0889
SM5
TableC8
0.0189
0.0229
0.0268
0.0276
0.0262
0.0270
0.0180
0.0140
0.0107
0.0076
0.0050
0.0031
SM6
0.0161
0.0187
0.0205
0.0205
0.0189
0.0246
0.0188
0.0163
0.0133
0.0101
0.0073
0.0051
SM7
0.0020
0.0021
0.0022
0.0026
0.0030
0.0027
0.0037
0.0036
0.0032
0.0026
0.0021
0.0016
SM8
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0000
0.0000
0.0000
0.0002
0.0004
0.0006
SM9
0.0075
0.0086
0.0092
0.0064
0.0046
0.0062
0.0050
0.0060
0.0064
0.0063
0.0063
0.0059
SM10
0.0511
0.0619
0.0717
0.0896
0.1089
0.0988
0.0572
0.0600
0.0562
0.0489
0.0428
0.0355
SM11
0.0003
0.0004
0.0006
0.0005
0.0004
0.0001
0.0003
0.0004
0.0009
0.0019
0.0027
0.0038
SM12
(continuedonnextpage)
0.0064
0.0064
0.0374
0.0059
0.0068
0.0074
0.0113
0.0275
0.0152
0.0099
0.0061
0.0028
0.0012
SM14
0.0510
0.0766
0.1033
0.1488
0.1120
0.1419
0.1092
0.0831
0.0589
0.0384
0.0237
SM13
0.0159
0.0200
0.0248
0.0272
0.0277
0.0591
0.0492
0.0627
0.0747
0.0828
0.0897
0.0921
SM15
InputfactorcostsforMaterialsubmodel:Combinedcycle
Source: ABS(various).
Notes: Si=Costshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
0.0291
0.0375
0.0487
0.0651
0.0913
0.1905
0.1567
0.1749
0.1732
0.1595
0.1480
0.1303
SM16
0.0022
0.0031
0.0051
0.0016
0.0008
0.0050
0.0051
0.0052
0.0047
0.0040
0.0034
0.0028
SM17
0.0170
0.0226
0.0317
0.0352
0.0363
0.0140
0.0194
0.0258
0.0346
0.0432
0.0505
0.0560
SM18
0.5627
0.4780
0.3883
0.3373
0.2778
0.2924
0.3317
0.2926
0.2410
0.1847
0.1370
0.0965
SM19
0.2154
0.2438
0.2582
0.2449
0.2163
0.1418
0.1481
0.1939
0.2473
0.2932
0.3320
0.3567
SM20
266
0.0006
1992
0.0003
0.0003
0.0003
1997
1998
1999
0.0003
0.0003
1995
1996
0.0006
0.0014
1991
0.0003
0.0033
1990
1993
0.0031
1989
1994
0.0028
0.0030
0.0028
1987
0.0028
1985
1986
1988
0.0028
0.0028
0.0029
1982
1983
0.0028
1981
1984
0.0018
SM1
1980
SM2
0.0006
0.0006
0.0007
0.0008
0.0009
0.0009
0.0012
0.0007
0.0029
0.0117
0.0116
0.0114
0.0111
0.0120
0.0131
0.0143
0.0087
0.0090
0.0085
0.0036
SM3
0.0020
0.0024
0.0031
0.0020
0.0014
0.0013
0.0011
0.0015
0.0022
0.0030
0.0034
0.0038
0.0044
0.0040
0.0036
0.0033
0.0026
0.0030
0.0030
0.0014
SM4
0.0118
0.0118
0.0116
0.0121
0.0121
0.0053
0.0076
0.0102
0.0159
0.0238
0.0257
0.0276
0.0296
0.0297
0.0297
0.0295
0.0267
0.0262
0.0243
0.0104
SM5
TableC8
0.0502
0.0545
0.0585
0.0586
0.0561
0.0667
0.0468
0.0329
0.0236
0.0161
0.0144
0.0129
0.0116
0.0119
0.0122
0.0125
0.0094
0.0102
0.0101
0.0045
SM6
0.0429
0.0442
0.0448
0.0435
0.0404
0.0608
0.0487
0.0385
0.0293
0.0213
0.0150
0.0116
0.0089
0.0086
0.0082
0.0078
0.0059
0.0064
0.0065
0.0033
SM7
0.0052
0.0050
0.0048
0.0056
0.0063
0.0068
0.0097
0.0086
0.0070
0.0055
0.0056
0.0056
0.0056
0.0060
0.0064
0.0068
0.0152
0.0252
0.0250
0.0085
SM8
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0000
0.0000
0.0001
0.0005
0.0006
0.0008
0.0011
0.0011
0.0011
0.0011
0.0009
0.0008
0.0010
0.0006
SM9
0.0199
0.0202
0.0201
0.0136
0.0098
0.0153
0.0130
0.0146
0.0143
0.0134
0.0142
0.0149
0.0156
0.0157
0.0157
0.0156
0.0123
0.0135
0.0132
0.0071
SM10
0.1360
0.1469
0.1567
0.1911
0.2328
0.2440
0.1483
0.1442
0.1251
0.1035
0.1141
0.1265
0.1397
0.1339
0.1280
0.1221
0.1148
0.1054
0.1084
0.0524
SM11
0.0009
0.0011
0.0013
0.0011
0.0009
0.0003
0.0008
0.0010
0.0021
0.0039
0.0042
0.0045
0.0048
0.0049
0.0049
0.0049
0.0039
0.0035
0.0040
0.0021
SM12
(continuedonnextpage)
SM14
0.0224
0.0258
0.0304
0.0194
0.0219
0.0239
0.0419
0.1073
0.0529
0.0327
0.0193
0.0194
0.0192
0.0190
0.0211
0.0238
0.0268
0.0579
0.0511
0.0558
0.0266
0.0349
0.0403
0.0517
0.0693
0.0602
0.0849
0.0576
0.0406
0.0273
0.0284
0.0293
0.0301
0.0308
0.0313
0.0318
0.0211
0.0199
0.0211
0.0099
SM13
0.0072
0.0073
0.0072
0.0074
0.0072
0.0176
0.0163
0.0199
0.0216
0.0223
0.0231
0.0237
0.0242
0.0226
0.0210
0.0196
0.0299
0.0400
0.0452
0.0194
SM15
0.0225
0.0236
0.0244
0.0309
0.0404
0.0972
0.0890
0.0908
0.0817
0.0702
0.0738
0.0769
0.0799
0.0705
0.0631
0.0563
0.0564
0.0790
0.1092
0.0419
SM16
InputfactorcostsforMaterialsubmodel:Renewableelectricity
Source: ABS(various).
Notes: Si=Costshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
SM17
0.0014
0.0017
0.0021
0.0006
0.0003
0.0021
0.0023
0.0022
0.0018
0.0014
0.0015
0.0016
0.0017
0.0019
0.0020
0.0021
0.0183
0.0261
0.0266
0.0124
SM18
0.0138
0.0152
0.0167
0.0172
0.0169
0.0075
0.0116
0.0149
0.0177
0.0200
0.0176
0.0156
0.0137
0.0151
0.0168
0.0186
0.0125
0.0119
0.0113
0.0049
SM19
0.0562
0.0341
0.0236
0.0214
0.0188
0.0218
0.0264
0.0220
0.0173
0.0130
0.0151
0.0183
0.0221
0.0209
0.0198
0.0187
0.0124
0.0125
0.0117
0.0049
0.5729
0.5737
0.5645
0.5203
0.4621
0.3501
0.3843
0.4867
0.5625
0.6204
0.6093
0.5926
0.5739
0.5866
0.5965
0.6053
0.5884
0.5534
0.5123
0.7844
SM20
267
0.0158
0.0150
0.0152
0.0145
0.0135
0.0137
0.0140
0.0143
0.0139
0.0134
0.0130
0.0133
0.0136
0.0137
0.0130
0.0130
0.0130
0.0130
0.0126
0.0122
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
SM1
1980
SM2
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0004
0.0004
0.0003
0.0003
0.0632
0.0687
0.0741
0.0701
0.0666
0.0762
0.0795
0.0797
0.0793
0.0785
0.0797
0.0808
0.0817
0.0847
0.0876
0.0905
0.1032
0.1031
0.1099
0.1117
SM3
0.0195
0.0199
0.0202
0.0222
0.0244
0.0247
0.0236
0.0259
0.0284
0.0309
0.0322
0.0334
0.0346
0.0352
0.0358
0.0363
0.0328
0.0367
0.0387
0.0397
SM4
0.0164
0.0157
0.0151
0.0157
0.0163
0.0184
0.0139
0.0153
0.0168
0.0185
0.0182
0.0179
0.0176
0.0171
0.0167
0.0163
0.0161
0.0176
0.0171
0.0170
SM5
TableC8
0.0190
0.0191
0.0191
0.0189
0.0187
0.0150
0.0144
0.0142
0.0138
0.0134
0.0134
0.0133
0.0132
0.0131
0.0131
0.0130
0.0135
0.0146
0.0149
0.0160
SM6
0.0004
0.0005
0.0008
0.0008
0.0008
0.0009
0.0006
0.0007
0.0008
0.0009
0.0010
0.0010
0.0011
0.0011
0.0011
0.0011
0.0011
0.0013
0.0014
0.0014
SM7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0001
SM8
0.0000
0.0000
0.0003
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0003
0.0003
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
SM9
0.0012
0.0015
0.0020
0.0017
0.0015
0.0015
0.0009
0.0012
0.0019
0.0031
0.0030
0.0030
0.0029
0.0026
0.0024
0.0022
0.0025
0.0029
0.0030
0.0030
SM10
0.0396
0.0336
0.0293
0.0303
0.0313
0.0228
0.0245
0.0274
0.0308
0.0345
0.0337
0.0329
0.0321
0.0349
0.0380
0.0413
0.0391
0.0438
0.0447
0.0470
SM11
0.0043
0.0042
0.0041
0.0046
0.0051
0.0047
0.0034
0.0036
0.0038
0.0039
0.0042
0.0044
0.0047
0.0044
0.0041
0.0039
0.0046
0.0049
0.0055
0.0060
SM12
(continuedonnextpage)
0.0082
0.0081
0.0081
0.0088
0.0095
0.0017
0.0006
0.0006
0.0006
0.0005
0.0007
0.0010
0.0016
0.0015
0.0015
0.0014
0.0014
0.0014
0.0018
0.0015
SM13
0.0065
0.0071
0.0077
0.0071
0.0065
0.0054
0.0054
0.0067
0.0099
0.0147
0.0162
0.0179
0.0197
0.0200
0.0204
0.0207
0.0203
0.0180
0.0000
0.0000
SM14
0.0124
0.0120
0.0116
0.0117
0.0117
0.0140
0.0149
0.0152
0.0155
0.0157
0.0155
0.0153
0.0151
0.0151
0.0150
0.0150
0.0181
0.0181
0.0209
0.0207
SM15
InputfactorcostsforMaterialsubmodel:Finalconsumption
Source: ABS(various).
Notes: Si=Expenditureshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
SM16
0.0040
0.0053
0.0078
0.0068
0.0061
0.0064
0.0061
0.0063
0.0065
0.0066
0.0069
0.0072
0.0076
0.0080
0.0085
0.0090
0.0099
0.0090
0.0076
0.0074
SM17
0.0030
0.0030
0.0030
0.0029
0.0028
0.0035
0.0034
0.0021
0.0016
0.0012
0.0011
0.0010
0.0010
0.0011
0.0013
0.0015
0.0022
0.0022
0.0019
0.0021
SM18
0.0111
0.0113
0.0115
0.0110
0.0106
0.0113
0.0122
0.0127
0.0132
0.0135
0.0139
0.0142
0.0146
0.0141
0.0137
0.0134
0.0157
0.0158
0.0164
0.0165
SM19
0.0289
0.0311
0.0331
0.0336
0.0341
0.0353
0.0372
0.0295
0.0246
0.0204
0.0207
0.0209
0.0211
0.0217
0.0222
0.0227
0.0179
0.0177
0.0187
0.0199
0.7498
0.7460
0.7391
0.7403
0.7404
0.7449
0.7450
0.7449
0.7388
0.7299
0.7258
0.7215
0.7167
0.7107
0.7045
0.6979
0.6866
0.6769
0.6821
0.6738
SM20
268
0.2068
0.1892
0.1869
0.1532
0.1814
0.1743
0.1672
0.1583
0.1442
0.1307
0.1169
0.1065
0.0964
0.0865
0.0872
0.0738
0.0834
0.0963
0.0936
0.0900
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
SM1
1980
SM2
0.1491
0.1474
0.1444
0.1352
0.1269
0.1563
0.1532
0.1550
0.1546
0.1531
0.1426
0.1331
0.1237
0.1229
0.1215
0.1198
0.1257
0.1015
0.0896
0.0892
0.1228
0.1239
0.1238
0.1343
0.1440
0.1513
0.1493
0.1446
0.1388
0.1324
0.1373
0.1400
0.1420
0.1438
0.1444
0.1447
0.1673
0.1675
0.1941
0.1864
SM3
SM4
0.0250
0.0284
0.0320
0.0323
0.0322
0.0287
0.0262
0.0273
0.0279
0.0284
0.0309
0.0329
0.0350
0.0315
0.0290
0.0266
0.0291
0.0265
0.0257
0.0227
0.0168
0.0166
0.0162
0.0161
0.0159
0.0161
0.0158
0.0153
0.0146
0.0140
0.0145
0.0149
0.0152
0.0148
0.0144
0.0140
0.0135
0.0137
0.0154
0.0132
SM5
0.0361
0.0352
0.0341
0.0332
0.0323
0.0342
0.0299
0.0267
0.0241
0.0217
0.0203
0.0190
0.0177
0.0184
0.0189
0.0195
0.0203
0.0190
0.0182
0.0167
SM6
TableC8
0.0029
0.0033
0.0038
0.0036
0.0034
0.0035
0.0034
0.0029
0.0025
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0021
0.0019
0.0021
0.0022
0.0019
SM7
0.0170
0.0182
0.0193
0.0207
0.0219
0.0231
0.0214
0.0234
0.0253
0.0270
0.0228
0.0199
0.0172
0.0175
0.0176
0.0176
0.0232
0.0225
0.0255
0.0302
SM8
0.0928
0.0904
0.0875
0.0947
0.1013
0.0993
0.1195
0.1257
0.1301
0.1338
0.1262
0.1189
0.1114
0.1169
0.1212
0.1254
0.1169
0.1109
0.1131
0.1288
SM9
0.0046
0.0056
0.0070
0.0074
0.0078
0.0082
0.0078
0.0098
0.0153
0.0235
0.0159
0.0123
0.0094
0.0078
0.0068
0.0060
0.0065
0.0079
0.0062
0.0066
SM10
0.0749
0.0823
0.0897
0.0845
0.0797
0.0797
0.0771
0.0677
0.0604
0.0535
0.0540
0.0537
0.0531
0.0523
0.0513
0.0503
0.0461
0.0506
0.0450
0.0385
SM11
0.0116
0.0086
0.0068
0.0069
0.0070
0.0072
0.0071
0.0056
0.0046
0.0038
0.0039
0.0039
0.0039
0.0042
0.0044
0.0046
0.0035
0.0040
0.0038
0.0031
SM12
0.0001
0.0001
0.0001
0.0001
0.0001
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0002
0.0002
0.0002
SM13
0.0006
0.0008
0.0012
0.0014
0.0018
0.0005
0.0012
0.0012
0.0011
0.0011
0.0010
0.0009
0.0009
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
SM14
InputfactorcostsforMaterialsubmodel:Export
Source: ABS(various).
Notes: Si=Expenditureshareoffactori;
M1toM20correspondstosector9to28.SeeTableC1pp.234237fordescriptionofsector9to28.
SM15
0.0250
0.0234
0.0219
0.0216
0.0211
0.0241
0.0264
0.0259
0.0251
0.0242
0.0237
0.0230
0.0222
0.0222
0.0220
0.0218
0.0262
0.0242
0.0234
0.0215
SM16
0.0239
0.0176
0.0139
0.0145
0.0150
0.0288
0.0330
0.0331
0.0328
0.0322
0.0354
0.0383
0.0412
0.0421
0.0425
0.0429
0.0359
0.0339
0.0336
0.0304
SM17
0.0113
0.0122
0.0132
0.0139
0.0145
0.0209
0.0179
0.0183
0.0183
0.0183
0.0213
0.0248
0.0288
0.0323
0.0360
0.0400
0.0840
0.0863
0.0852
0.0810
SM18
0.0595
0.0518
0.0457
0.0505
0.0553
0.0674
0.0639
0.0555
0.0492
0.0432
0.0466
0.0494
0.0521
0.0457
0.0412
0.0372
0.0436
0.0416
0.0394
0.0352
SM19
0.0255
0.0234
0.0216
0.0218
0.0218
0.0297
0.0308
0.0334
0.0358
0.0380
0.0389
0.0392
0.0393
0.0405
0.0413
0.0420
0.0002
0.0002
0.0005
0.0005
0.2106
0.2172
0.2217
0.2240
0.2243
0.1337
0.1292
0.1320
0.1328
0.1327
0.1318
0.1292
0.1262
0.1177
0.1108
0.1042
0.1029
0.1005
0.0897
0.0869
SM20
269
270
APPENDIXD
CO2EmissionsforPPPandSRP
This appendix presents the result of CO2 emissions and percentage responsibility of
theseemissionsbasedonPPPandSRP.ItcontainsthefollowingTables:
Table
Title
Page
D1
CO2emissions:PPP
271
D2
CO2responsibility:PPP
272
D3
CO2emissions:SRP
273
D4
CO2responsibility:SRP
274
Note:
1980
4,337
6,969
1,383
82,697
677
910
na
2,919
2,365
2,842
525
2,538
7,774
5,242
21,855
10,392
336
544
6
108
2,647
12,720
1,966
6,764
5,583
171
2,702
186,974
1981
3,868
6,652
1,327
85,153
818
1,584
na
3,019
1,764
2,624
478
2,406
7,312
5,487
22,925
10,261
337
511
7
82
2,599
12,958
1,951
6,705
5,565
175
2,503
189,070
1982
3,779
6,701
1,380
91,781
817
1,804
na
3,316
1,545
2,465
446
2,451
7,170
5,581
20,613
9,452
321
491
6
58
2,696
13,503
1,935
5,096
5,947
196
2,496
192,046
1983
3,491
6,259
1,368
92,921
873
1,049
na
3,012
1,389
2,280
396
2,349
6,909
5,021
15,937
8,748
286
430
4
48
2,411
13,436
1,760
5,162
5,763
225
2,374
183,903
1984
4,093
6,460
1,369
95,465
957
1,037
na
3,444
1,226
2,359
415
2,307
7,561
4,628
16,274
9,788
271
432
5
47
2,296
14,070
1,891
4,802
5,754
255
2,329
189,534
1987
4,737
6,292
1,229
110,358
583
368
na
3,422
1,693
2,501
489
2,357
7,752
4,844
17,529
11,070
300
425
7
44
2,408
15,162
1,981
4,077
6,716
249
2,538
209,132
1990
5,463
6,587
1,022
126,105
671
1,076
294
3,384
3,341
2,580
462
2,113
8,636
5,372
18,337
12,127
337
485
13
55
2,832
16,868
1,733
3,926
7,525
281
2,808
234,437
TableD1
CO2emissions:PPP
1993
6,112
7,063
844
132,824
486
779
317
3,580
3,721
2,671
459
1,955
9,269
4,822
17,635
13,255
313
463
12
54
2,875
17,234
1,630
3,193
9,652
313
3,011
244,544
ThisTableshowstheresultsobtainedbytheapplicationofEquation53,asdetailedinSection5.2.1,p.101.
1.Coalsector
2.Petroleumsector
3.Gassector
4.Renewableelectricity
5.Coalfiredelectricity
6.Internalcombustionelectricity
7.Gasturbineelectricity
8.Combinedcycleelectricity
9.Agriculture,forestryandfishing
10.RawmaterialsMining
11.Food,beveragesandtobacco
12.Textile,clothing,footwearandleather
13.Wood,paperandprintingproducts
14.Basicchemicals
15.Nonmetallicmineralproducts
16.Basicironandsteel
17.Basicnonferrousmetals
18.Fabricatedmetalproducts
19.Machineryandequipment
20.Miscellenousmanufacturing
21.Water,sewerageanddrainage
22.Construction
23.Roadtransport
24.Railwaytransport
25.Watertransport
26.Airtransport
27.Othertransport,servicesandstorage
28.Commercialservices
Total
1994
5,620
7,287
783
135,018
490
712
315
3,696
4,615
2,839
467
2,100
9,510
5,086
18,108
13,559
322
472
15
56
2,971
17,740
1,595
3,261
10,010
371
3,036
250,054
1995
7,657
7,452
771
140,143
553
1,224
334
3,812
3,510
2,935
493
2,112
9,890
5,210
18,049
13,697
358
507
15
58
3,058
18,249
1,545
4,357
11,238
414
3,181
260,820
1997
9,178
6,912
737
151,026
457
1,669
546
3,974
3,911
2,900
478
2,308
8,949
4,869
17,635
13,797
351
521
15
63
3,142
19,145
1,555
4,288
12,630
453
3,305
274,817
1999
9,341
7,216
690
168,101
399
1,811
2,358
4,151
3,913
2,859
450
2,171
9,448
5,070
17,013
13,899
372
542
15
69
3,365
19,848
1,733
3,577
12,415
550
3,542
294,918
2002
9,174
7,958
931
178,187
607
3,374
4,868
5,465
4,644
2,458
410
1,826
8,898
6,182
14,894
14,406
131
322
16
84
1,905
20,524
1,554
3,779
11,961
1,018
3,748
309,323 (‘000tonnes)
271
Note:
1980
2.32
3.73
0.74
44.23
0.36
0.49
na
1.56
1.27
1.52
0.28
1.36
4.16
2.80
11.69
5.56
0.18
0.29
0.00
0.06
1.42
6.80
1.05
3.62
2.99
0.09
1.44
1981
2.05
3.52
0.70
45.04
0.43
0.84
na
1.60
0.93
1.39
0.25
1.27
3.87
2.90
12.13
5.43
0.18
0.27
0.00
0.04
1.37
6.85
1.03
3.55
2.94
0.09
1.32
1982
1.97
3.49
0.72
47.79
0.43
0.94
na
1.73
0.80
1.28
0.23
1.28
3.73
2.91
10.73
4.92
0.17
0.26
0.00
0.03
1.40
7.03
1.01
2.65
3.10
0.10
1.30
1984
2.16
3.41
0.72
50.37
0.50
0.55
na
1.82
0.65
1.24
0.22
1.22
3.99
2.44
8.59
5.16
0.14
0.23
0.00
0.02
1.21
7.42
1.00
2.53
3.04
0.13
1.23
1987
2.27
3.01
0.59
52.77
0.28
0.18
na
1.64
0.81
1.20
0.23
1.13
3.71
2.32
8.38
5.29
0.14
0.20
0.00
0.02
1.15
7.25
0.95
1.95
3.21
0.12
1.21
1990
2.33
2.81
0.44
53.79
0.29
0.46
0.13
1.44
1.43
1.10
0.20
0.90
3.68
2.29
7.82
5.17
0.14
0.21
0.01
0.02
1.21
7.20
0.74
1.67
3.21
0.12
1.20
CO2responsibility:PPP
1983
1.90
3.40
0.74
50.53
0.47
0.57
na
1.64
0.76
1.24
0.22
1.28
3.76
2.73
8.67
4.76
0.16
0.23
0.00
0.03
1.31
7.31
0.96
2.81
3.13
0.12
1.29
TableD2
ThisTableshowsthepercentageofsectoralCO2emissions,calculatedfromTableD1.
1.Coalsector
2.Petroleumsector
3.Gassector
4.Renewableelectricity
5.Coalfiredelectricity
6.Internalcombustionelectricity
7.Gasturbineelectricity
8.Combinedcycleelectricity
9.Agriculture,forestryandfishing
10.RawmaterialsMining
11.Food,beveragesandtobacco
12.Textile,clothing,footwearandleather
13.Wood,paperandprintingproducts
14.Basicchemicals
15.Nonmetallicmineralproducts
16.Basicironandsteel
17.Basicnonferrousmetals
18.Fabricatedmetalproducts
19.Machineryandequipment
20.Miscellenousmanufacturing
21.Water,sewerageanddrainage
22.Construction
23.Roadtransport
24.Railwaytransport
25.Watertransport
26.Airtransport
27.Othertransport,servicesandstorage
28.Commercialservices
1993
2.50
2.89
0.35
54.31
0.20
0.32
0.13
1.46
1.52
1.09
0.19
0.80
3.79
1.97
7.21
5.42
0.13
0.19
0.00
0.02
1.18
7.05
0.67
1.31
3.95
0.13
1.23
1994
2.25
2.91
0.31
54.00
0.20
0.28
0.13
1.48
1.85
1.14
0.19
0.84
3.80
2.03
7.24
5.42
0.13
0.19
0.01
0.02
1.19
7.09
0.64
1.30
4.00
0.15
1.21
1995
2.94
2.86
0.30
53.73
0.21
0.47
0.13
1.46
1.35
1.13
0.19
0.81
3.79
2.00
6.92
5.25
0.14
0.19
0.01
0.02
1.17
7.00
0.59
1.67
4.31
0.16
1.22
1997
3.34
2.51
0.27
54.96
0.17
0.61
0.20
1.45
1.42
1.06
0.17
0.84
3.26
1.77
6.42
5.02
0.13
0.19
0.01
0.02
1.14
6.97
0.57
1.56
4.60
0.16
1.20
1999
3.17
2.45
0.23
57.00
0.14
0.61
0.80
1.41
1.33
0.97
0.15
0.74
3.20
1.72
5.77
4.71
0.13
0.18
0.01
0.02
1.14
6.73
0.59
1.21
4.21
0.19
1.20
2002
2.97
2.57
0.30
57.61
0.20
1.09
1.57
1.77
1.50
0.79
0.13
0.59
2.88
2.00
4.81
4.66
0.04
0.10
0.01
0.03
0.62
6.64
0.50
1.22
3.87
0.33
1.21 (percent)
272
Note:
1980
3,416
5,094
886
300
31,004
256
358
na
6,465
3,884
20,863
3,088
2,377
3,862
650
6,645
11,641
1,353
5,669
571
215
7,354
2,821
6,859
6,319
1,932
53,095
186,974
1981
3,220
4,417
856
343
32,267
311
642
na
5,597
3,855
21,551
3,770
2,632
3,805
630
5,105
10,071
1,416
5,351
561
308
7,374
2,991
6,592
6,357
1,856
57,193
189,070
1982
3,477
4,788
970
352
35,000
316
734
na
6,606
4,204
19,567
2,828
2,594
3,336
733
2,875
10,175
1,356
5,265
416
253
2,994
6,494
3,604
5,376
6,341
1,808
59,585
192,046
1984
4,523
4,533
693
285
35,117
357
395
na
7,302
3,442
18,148
2,560
2,395
3,323
365
2,673
10,960
858
3,346
385
156
2,904
6,580
4,308
3,653
5,382
2,875
62,018
189,534
1987
6,322
5,245
684
254
38,723
209
132
na
6,588
4,581
17,615
3,048
2,681
3,209
462
2,779
12,362
1,330
3,279
380
188
2,963
6,520
4,426
2,979
7,029
3,155
71,987
209,132
1990
5,401
5,075
668
180
42,057
171
351
249
7,688
6,962
17,059
2,846
3,046
3,847
611
4,243
14,891
1,948
4,816
427
131
2,401
7,982
4,199
2,644
6,859
3,249
84,437
234,437
CO2emissions:SRP
1983
4,135
4,745
835
324
35,412
337
426
na
5,564
4,189
19,814
2,651
2,321
3,121
466
790
9,395
724
3,455
350
248
3,215
6,146
3,670
5,257
6,095
1,806
58,412
183,903
TableD3
1993
7,349
4,488
780
175
49,715
150
360
270
6,158
9,426
18,852
2,363
2,554
4,823
457
3,293
16,145
787
4,047
677
137
785
8,412
3,091
2,376
8,605
5,981
82,288
244,544
ThisTableshowstheresultsobtainedbytheapplicationofEquation58,asdetailedinSection5.2.2,p.104.
1.Coalsector
2.Petroleumsector
3.Gassector
4.Renewableelectricity
5.Coalfiredelectricity
6.Internalcombustionelectricity
7.Gasturbineelectricity
8.Combinedcycleelectricity
9.Agriculture,forestryandfishing
10.RawmaterialsMining
11.Food,beveragesandtobacco
12.Textile,clothing,footwearandleather
13.Wood,paperandprintingproducts
14.Basicchemicals
15.Nonmetallicmineralproducts
16.Basicironandsteel
17.Basicnonferrousmetals
18.Fabricatedmetalproducts
19.Machineryandequipment
20.Miscellenousmanufacturing
21.Water,sewerageanddrainage
22.Construction
23.Roadtransport
24.Railwaytransport
25.Watertransport
26.Airtransport
27.Othertransport,servicesandstorage
28.Commercialservices
Total
1994
6,111
3,961
306
166
49,417
136
336
253
5,989
9,017
19,668
2,409
2,999
5,037
629
4,265
15,319
700
3,739
512
394
786
8,840
3,102
2,624
9,482
4,441
89,418
250,054
1995
7,329
5,096
292
185
53,257
174
439
273
5,450
7,087
19,049
3,126
3,074
6,606
714
3,994
19,930
1,008
5,638
659
1,556
1,051
6,984
3,199
3,003
9,290
4,661
87,696
260,820
1997
9,333
5,190
329
198
55,900
162
590
414
7,006
8,281
21,790
3,093
2,926
6,391
832
3,555
19,830
1,265
6,333
535
1,915
1,259
7,616
3,920
3,610
10,241
4,813
87,492
274,817
1999
9,850
6,247
585
193
58,481
142
630
831
6,798
10,204
20,622
2,924
3,831
6,581
905
4,257
19,693
805
6,693
422
2,026
1,067
9,885
3,450
3,366
10,428
6,262
97,742
294,918
2002
9,995
6,650
670
195
61,890
212
1,153
1,674
7,553
11,025
21,582
3,055
3,882
6,565
1,019
4,001
20,748
790
6,710
437
2,141
1,065
10,246
3,467
3,549
10,260
6,718
102,073
309,323 (‘000tonnes)
273
Note:
1980
1.83
2.72
0.47
0.16
16.58
0.14
0.19
na
3.46
2.08
11.16
1.65
1.27
2.07
0.35
3.55
6.23
0.72
3.03
0.31
0.11
3.93
1.51
3.67
3.38
1.03
28.40
1981
1.70
2.34
0.45
0.18
17.07
0.16
0.34
na
2.96
2.04
11.40
1.99
1.39
2.01
0.33
2.70
5.33
0.75
2.83
0.30
0.16
3.90
1.58
3.49
3.36
0.98
30.25
1982
1.81
2.49
0.51
0.18
18.22
0.16
0.38
na
3.44
2.19
10.19
1.47
1.35
1.74
0.38
1.50
5.30
0.71
2.74
0.22
0.13
1.56
3.38
1.88
2.80
3.30
0.94
31.03
1984
2.39
2.39
0.37
0.15
18.53
0.19
0.21
na
3.85
1.82
9.58
1.35
1.26
1.75
0.19
1.41
5.78
0.45
1.77
0.20
0.08
1.53
3.47
2.27
1.93
2.84
1.52
32.72
1987
3.02
2.51
0.33
0.12
18.52
0.10
0.06
na
3.15
2.19
8.42
1.46
1.28
1.53
0.22
1.33
5.91
0.64
1.57
0.18
0.09
1.42
3.12
2.12
1.42
3.36
1.51
34.42
1990
2.30
2.16
0.28
0.08
17.94
0.07
0.15
0.11
3.28
2.97
7.28
1.21
1.30
1.64
0.26
1.81
6.35
0.83
2.05
0.18
0.06
1.02
3.40
1.79
1.13
2.93
1.39
36.02
CO2responsibility:SRP
1983
2.25
2.58
0.45
0.18
19.26
0.18
0.23
na
3.03
2.28
10.77
1.44
1.26
1.70
0.25
0.43
5.11
0.39
1.88
0.19
0.13
1.75
3.34
2.00
2.86
3.31
0.98
31.76
TableD4
ThisTableshowsthepercentageofsectoralCO2emissions,calculatedfromTableD3.
1.Coalsector
2.Petroleumsector
3.Gassector
4.Renewableelectricity
5.Coalfiredelectricity
6.Internalcombustionelectricity
7.Gasturbineelectricity
8.Combinedcycleelectricity
9.Agriculture,forestryandfishing
10.RawmaterialsMining
11.Food,beveragesandtobacco
12.Textile,clothing,footwearandleather
13.Wood,paperandprintingproducts
14.Basicchemicals
15.Nonmetallicmineralproducts
16.Basicironandsteel
17.Basicnonferrousmetals
18.Fabricatedmetalproducts
19.Machineryandequipment
20.Miscellenousmanufacturing
21.Water,sewerageanddrainage
22.Construction
23.Roadtransport
24.Railwaytransport
25.Watertransport
26.Airtransport
27.Othertransport,servicesandstorage
28.Commercialservices
1993
3.00
1.84
0.32
0.07
20.33
0.06
0.15
0.11
2.52
3.85
7.71
0.97
1.04
1.97
0.19
1.35
6.60
0.32
1.66
0.28
0.06
0.32
3.44
1.26
0.97
3.52
2.45
33.65
1994
2.44
1.58
0.12
0.07
19.76
0.05
0.13
0.10
2.40
3.61
7.87
0.96
1.20
2.01
0.25
1.71
6.13
0.28
1.50
0.20
0.16
0.31
3.54
1.24
1.05
3.79
1.78
35.76
1995
2.81
1.95
0.11
0.07
20.42
0.07
0.17
0.10
2.09
2.72
7.30
1.20
1.18
2.53
0.27
1.53
7.64
0.39
2.16
0.25
0.60
0.40
2.68
1.23
1.15
3.56
1.79
33.62
1997
3.40
1.89
0.12
0.07
20.34
0.06
0.21
0.15
2.55
3.01
7.93
1.13
1.06
2.33
0.30
1.29
7.22
0.46
2.30
0.19
0.70
0.46
2.77
1.43
1.31
3.73
1.75
31.84
1999
3.34
2.12
0.20
0.07
19.83
0.05
0.21
0.28
2.30
3.46
6.99
0.99
1.30
2.23
0.31
1.44
6.68
0.27
2.27
0.14
0.69
0.36
3.35
1.17
1.14
3.54
2.12
33.14
2002
3.23
2.15
0.22
0.06
20.01
0.07
0.37
0.54
2.44
3.56
6.98
0.99
1.26
2.12
0.33
1.29
6.71
0.26
2.17
0.14
0.69
0.34
3.31
1.12
1.15
3.32
2.17
33.00 (percent)
274
275
APPENDIXE
ComputerProgramOutputforProductionFunctionModel
ThisappendixpresentstheoutputofEviewsprogramfortheapplicationTranslogcost
function for five electricity generation technologies – coalfired, internal combustion,
gasturbine,combinedcycle,andrenewable–andtwofinaldemandcategories–final
consumptionandexport.ItcontainsthefollowingTables:
Table Title Page
E1
ResultsforInterFactorModel
276
E2
ResultsforEnergysubModel
283
276
TableE1Interfactormodel:Coalfiredelectricitygeneration
System: ST_KLEM
Estimation Method: Three-Stage Least Squares
Date: 05/10/05 Time: 16:51
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 100
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(1)
0.341274
0.022098
15.443940
C(6)
0.002371
0.041725
0.056823
C(7)
0.026931
0.021534
1.250598
C(8)
-0.062110
0.021807
-2.848145
C(9)
-0.008275
0.004756
-1.739860
C(2)
0.213863
0.011443
18.689290
C(11)
-0.097195
0.032152
-3.023023
C(12)
0.028219
0.014294
1.974128
C(13)
0.043551
0.009346
4.659846
C(3)
0.202706
0.012089
16.767580
C(15)
0.156924
0.021127
7.427672
C(16)
-0.033098
0.007946
-4.165156
C(4)
0.069920
0.002425
28.829910
C(18)
0.067566
0.013123
5.148619
Determinant residual covariance
3.81E-24
Equation: SK = C(1) + C(6)*LOG(PK) + C(7)*LOG(PL) + C(8)*LOG(PE) + C(9)*LOG(PEL)
+ (-(C(6)+C(7)+C(8)+C(9)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.848170
Mean dependent var
Adjusted R-squared
0.829016
S.D. dependent var
S.E. of regression
0.065431
Sum squared resid
Durbin-W atson stat
1.335308
Equation: SL = C(2) + C(7)*LOG(PK) + C(11)*LOG(PL) + C(12)*LOG(PE) + C(13)*LOG(PEL)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.910381
Mean dependent var
Adjusted R-squared
0.879816
S.D. dependent var
S.E. of regression
0.031690
Sum squared resid
Durbin-W atson stat
1.562673
Equation: SE = C(3) + C(8)*LOG(PK) + C(12)*LOG(PL) + C(15)*LOG(PE) + C(16)*LOG(PEL)
+ (-(C(8)+C(12)+C(15)+C(16)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.868023
Mean dependent var
Adjusted R-squared
0.806163
S.D. dependent var
S.E. of regression
0.024739
Sum squared resid
Durbin-W atson stat
1.611085
Equation: SEL = C(4) + C(9)*LOG(PK) + C(13)*LOG(PL) + C(16)*LOG(PE) + C(18)*LOG(PEL)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.784782
Mean dependent var
Adjusted R-squared
0.768057
S.D. dependent var
S.E. of regression
0.004366
Sum squared resid
Durbin-W atson stat
1.814149
Equation: SM = (1 - (C(1)+C(2)+C(3)+C(4))) + (-(C(6)+C(7)+C(8)+C(9)))*LOG(PK)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PL) + (-(C(8)+C(12)+C(15)+C(16)))*LOG(PE)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PEL) + (-((-(C(6)+C(7)+C(8)+C(9))) +(-(C(7)+C(11)+C(12)
+C(13)))+(-(C(8)+C(12)+C(15)+C(16)))+(-(C(9)+C(13)+C(16)+C(18)))))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.827909
Mean dependent var
Adjusted R-squared
0.808288
S.D. dependent var
S.E. of regression
0.061870
Sum squared resid
Durbin-W atson stat
1.287121
Prob.
0.0000
0.9548
0.2145
0.0055
0.0855
0.0000
0.0033
0.0516
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.336620
0.070929
0.064219
0.197330
0.040240
0.015063
0.241605
0.045638
0.009180
0.076510
0.003579
0.000286
0.147940
0.039066
0.022968
277
TableE1Interfactormodel:Internalcombustionelectricitygeneration
System: IC_KLEM
Estimation Method: Three-Stage Least Squares
Date: 05/10/05 Time: 17:47
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 100
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(1)
0.274725
0.014247
19.282880
C(6)
0.103652
0.022054
4.699826
C(7)
-0.008415
0.014363
-0.585858
C(8)
-0.137018
0.017750
-7.719166
C(9)
0.008393
0.008851
0.948238
C(2)
0.038132
0.008035
4.745692
C(11)
-0.060663
0.018200
-3.333131
C(12)
0.018685
0.011781
1.585988
C(13)
0.031825
0.012165
2.616200
C(3)
0.587325
0.015119
38.845680
C(15)
0.120893
0.023985
5.040244
C(16)
-0.006641
0.007673
-0.865393
C(4)
0.016725
0.003541
4.722773
C(18)
0.034174
0.015091
2.264541
Determinant residual covariance
3.53E-25
Equation: SK = C(1) + C(6)*LOG(PK) + C(7)*LOG(PL) + C(8)*LOG(PE) + C(9)*LOG(PEL)
+ (-(C(6)+C(7)+C(8)+C(9)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.809896
Mean dependent var
Adjusted R-squared
0.732534
S.D. dependent var
S.E. of regression
0.039762
Sum squared resid
Durbin-W atson stat
1.849748
Equation: SL = C(2) + C(7)*LOG(PK) + C(11)*LOG(PL) + C(12)*LOG(PE) + C(13)*LOG(PEL)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.905126
Mean dependent var
Adjusted R-squared
0.846493
S.D. dependent var
S.E. of regression
0.016035
Sum squared resid
Durbin-W atson stat
1.627766
Equation: SE = C(3) + C(8)*LOG(PK) + C(12)*LOG(PL) + C(15)*LOG(PE) + C(16)*LOG(PEL)
+ (-(C(8)+C(12)+C(15)+C(16)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.965889
Mean dependent var
Adjusted R-squared
0.876792
S.D. dependent var
S.E. of regression
0.052200
Sum squared resid
Durbin-W atson stat
1.676302
Equation: SEL = C(4) + C(9)*LOG(PK) + C(13)*LOG(PL) + C(16)*LOG(PE) + C(18)*LOG(PEL)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.896719
Mean dependent var
Adjusted R-squared
0.862511
S.D. dependent var
S.E. of regression
0.003762
Sum squared resid
Durbin-W atson stat
1.020955
Equation: SM = (1 - (C(1)+C(2)+C(3)+C(4))) + (-(C(6)+C(7)+C(8)+C(9)))*LOG(PK)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PL) + (-(C(8)+C(12)+C(15)+C(16)))*LOG(PE)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PEL) + (-((-(C(6)+C(7)+C(8)+C(9))) +(-(C(7)+C(11)+C(12)
+C(13)))+(-(C(8)+C(12)+C(15)+C(16)))+(-(C(9)+C(13)+C(16)+C(18)))))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.807753
Mean dependent var
Adjusted R-squared
0.788781
S.D. dependent var
S.E. of regression
0.035590
Sum squared resid
Durbin-W atson stat
1.409083
Prob.
0.0000
0.0000
0.5595
0.0000
0.3457
0.0000
0.0013
0.1164
0.0105
0.0000
0.0000
0.3892
0.0000
0.0261
0.197755
0.065594
0.023716
0.041100
0.018473
0.003857
0.674215
0.080241
0.040873
0.015335
0.004711
0.000212
0.071590
0.022470
0.007600
278
TableE1Interfactormodel:Gasturbineelectricitygeneration
System: GT_KLEM
Estimation Method: Three-Stage Least Squares
Date: 05/11/05 Time: 14:33
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 100
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(1)
0.458010
0.057537
7.960307
C(6)
0.145719
0.108343
1.344971
C(7)
-0.056441
0.054153
-1.042246
C(8)
-0.091127
0.052867
-1.723705
C(9)
-0.006290
0.013148
-0.478419
C(2)
0.119654
0.028927
4.136385
C(11)
-0.253854
0.046172
-5.497960
C(12)
0.134530
0.036259
3.710238
C(13)
-0.077934
0.011584
-6.727491
C(3)
0.277487
0.027973
9.919891
C(15)
0.000131
0.045034
0.002915
C(16)
0.030061
0.010108
2.974029
C(4)
0.049438
0.007030
7.032161
C(18)
-0.040218
0.007217
-5.572764
Determinant residual covariance
7.71E-24
Equation: SK = C(1) + C(6)*LOG(PK) + C(7)*LOG(PL) + C(8)*LOG(PE) + C(9)*LOG(PEL)
+ (-(C(6)+C(7)+C(8)+C(9)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.870281
Mean dependent var
Adjusted R-squared
0.857644
S.D. dependent var
S.E. of regression
0.134278
Sum squared resid
Durbin-W atson stat
1.395485
Equation: SL = C(2) + C(7)*LOG(PK) + C(11)*LOG(PL) + C(12)*LOG(PE) + C(13)*LOG(PEL)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.887505
Mean dependent var
Adjusted R-squared
0.829160
S.D. dependent var
S.E. of regression
0.068256
Sum squared resid
Durbin-W atson stat
1.439771
Equation: SE = C(3) + C(8)*LOG(PK) + C(12)*LOG(PL) + C(15)*LOG(PE) + C(16)*LOG(PEL)
+ (-(C(8)+C(12)+C(15)+C(16)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.947993
Mean dependent var
Adjusted R-squared
0.879209
S.D. dependent var
S.E. of regression
0.063485
Sum squared resid
Durbin-W atson stat
1.538049
Equation: SEL = C(4) + C(9)*LOG(PK) + C(13)*LOG(PL) + C(16)*LOG(PE) + C(18)*LOG(PEL)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.890397
Mean dependent var
Adjusted R-squared
0.852163
S.D. dependent var
S.E. of regression
0.016490
Sum squared resid
Durbin-W atson stat
1.499896
Equation: SM = (1 - (C(1)+C(2)+C(3)+C(4))) + (-(C(6)+C(7)+C(8)+C(9)))*LOG(PK)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PL) + (-(C(8)+C(12)+C(15)+C(16)))*LOG(PE)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PEL) + (-((-(C(6)+C(7)+C(8)+C(9))) +(-(C(7)+C(11)+C(12)
+C(13)))+(-(C(8)+C(12)+C(15)+C(16)))+(-(C(9)+C(13)+C(16)+C(18)))))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.857954
Mean dependent var
Adjusted R-squared
0.841478
S.D. dependent var
S.E. of regression
0.038914
Sum squared resid
Durbin-W atson stat
1.756093
Prob.
0.0000
0.1822
0.3002
0.0884
0.6336
0.0001
0.0000
0.0004
0.0000
0.0000
0.9977
0.0038
0.0000
0.0000
0.388745
0.123737
0.270460
0.124940
0.067282
0.069883
0.327595
0.061111
0.060456
0.045810
0.015363
0.004079
0.112910
0.034925
0.009086
279
TableE1Interfactormodel:Combinedcycleelectricitygeneration
System: CC_KLEM
Estimation Method: Three-Stage Least Squares
Date: 05/11/05 Time: 14:47
Sample: 1988 1999
Included observations: 12
Total system (balanced) observations 60
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(1)
0.220200
0.009089
24.226140
C(6)
0.045698
0.016425
2.782258
C(7)
-0.005053
0.016177
-0.312376
C(8)
-0.092215
0.026179
-3.522459
C(9)
0.015730
0.002881
5.459862
C(2)
0.206960
0.009931
20.840380
C(11)
-0.273499
0.028134
-9.721330
C(12)
0.148319
0.026875
5.518749
C(13)
-0.031467
0.006952
-4.526143
C(3)
0.401449
0.013309
30.164640
C(15)
0.144785
0.060750
2.383303
C(16)
0.014494
0.007501
1.932279
C(4)
0.093999
0.001546
60.790880
C(18)
0.007851
0.003795
2.068732
Determinant residual covariance
5.67E-28
Equation: SK = C(1) + C(6)*LOG(PK) + C(7)*LOG(PL) + C(8)*LOG(PE) + C(9)*LOG(PEL)
+ (-(C(6)+C(7)+C(8)+C(9)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 12
R-squared
0.903423
Mean dependent var
Adjusted R-squared
0.833950
S.D. dependent var
S.E. of regression
0.029889
Sum squared resid
Durbin-W atson stat
1.809763
Equation: SL = C(2) + C(7)*LOG(PK) + C(11)*LOG(PL) + C(12)*LOG(PE) + C(13)*LOG(PEL)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 12
R-squared
0.908620
Mean dependent var
Adjusted R-squared
0.827832
S.D. dependent var
S.E. of regression
0.026198
Sum squared resid
Durbin-W atson stat
1.547499
Equation: SE = C(3) + C(8)*LOG(PK) + C(12)*LOG(PL) + C(15)*LOG(PE) + C(16)*LOG(PEL)
+ (-(C(8)+C(12)+C(15)+C(16)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 12
R-squared
0.886778
Mean dependent var
Adjusted R-squared
0.863509
S.D. dependent var
S.E. of regression
0.035206
Sum squared resid
Durbin-W atson stat
1.941757
Equation: SEL = C(4) + C(9)*LOG(PK) + C(13)*LOG(PL) + C(16)*LOG(PE) + C(18)*LOG(PEL)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 12
R-squared
0.915463
Mean dependent var
Adjusted R-squared
0.867156
S.D. dependent var
S.E. of regression
0.004071
Sum squared resid
Durbin-W atson stat
1.376993
Equation: SM = (1 - (C(1)+C(2)+C(3)+C(4))) + (-(C(6)+C(7)+C(8)+C(9)))*LOG(PK)
+ (-(C(7)+C(11)+C(12)+C(13)))*LOG(PL) + (-(C(8)+C(12)+C(15)+C(16)))*LOG(PE)
+ (-(C(9)+C(13)+C(16)+C(18)))*LOG(PEL) + (-((-(C(6)+C(7)+C(8)+C(9))) +(-(C(7)+C(11)+C(12)
+C(13)))+(-(C(8)+C(12)+C(15)+C(16)))+(-(C(9)+C(13)+C(16)+C(18)))))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PE) LOG(PEL) LOG(PM) C
Observations: 12
R-squared
0.740004
Mean dependent var
S.D. dependent var
0.030764
Sum squared resid
Durbin-W atson stat
1.277807
Prob.
0.0000
0.0078
0.7562
0.0010
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0213
0.0595
0.0000
0.0442
0.203192
0.022698
0.006253
0.176983
0.029813
0.004804
0.450075
0.039202
0.008676
0.082767
0.011169
0.000116
0.086992
0.002707
280
TableE1Interfactormodel:Renewableelectricitygeneration
System: RE_KLEM
Estimation Method: Three-Stage Least Squares
Date: 05/11/05 Time: 16:42
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 80
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
Prob.
C(1)
0.696047
0.029709
23.428720
0.0000
C(6)
0.004691
0.054898
0.085447
0.9321
C(7)
-0.009330
0.036465
-0.255852
0.7988
C(9)
-0.032514
0.024044
-1.352280
0.1806
C(2)
0.155272
0.020058
7.741284
0.0000
C(11)
-0.080099
0.037929
-2.111804
0.0382
C(13)
0.094229
0.020799
4.530461
0.0000
C(4)
0.033256
0.012339
2.695307
0.0088
C(18)
0.101763
0.034530
2.947095
0.0043
Determinant residual covariance
1.00E-19
Equation: SK = C(1) + C(6)*LOG(PK) + C(7)*LOG(PL) + C(9)*LOG(PEL)
+ (-(C(6)+C(7)+C(9)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.892588
Mean dependent var
0.693630
Adjusted R-squared
0.877552
S.D. dependent var
0.078962
S.E. of regression
0.081967
Sum squared resid
0.107496
Durbin-W atson stat
1.210336
Equation: SL = C(2) + C(7)*LOG(PK) + C(11)*LOG(PL) + C(13)*LOG(PEL)
+ (-(C(7)+C(11)+C(13)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.844972
Mean dependent var
0.152940
Adjusted R-squared
0.822155
S.D. dependent var
0.063191
S.E. of regression
0.055731
Sum squared resid
0.049695
Durbin-W atson stat
1.301576
Equation: SEL = C(4) + C(9)*LOG(PK) + C(13)*LOG(PL) + C(18)*LOG(PEL)
+ (-(C(9)+C(13)+C(18)))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.936649
Mean dependent var
0.057035
Adjusted R-squared
0.909770
S.D. dependent var
0.011219
S.E. of regression
0.008322
Sum squared resid
0.001108
Durbin-W atson stat
1.759978
Equation: SM = (1 - (C(1)+C(2)+C(4))) + (-(C(6)+C(7)+C(9)))*LOG(PK) + (-(C(7)+C(11)+C(13)))*LOG(PL)
+ (-(C(9)+C(13)+C(18)))*LOG(PEL) + (-((-(C(6)+C(7)+C(9)))+(-(C(7)+C(11)+C(13)))+(-(C(9)
+C(13)+C(18)))))*LOG(PM)
Instruments: LOG(PK) LOG(PL) LOG(PEL) LOG(PM) C
Observations: 20
R-squared
0.876104
Mean dependent var
0.096405
Adjusted R-squared
0.847816
S.D. dependent var
0.025726
S.E. of regression
0.040658
Sum squared resid
0.018184
Durbin-W atson stat
1.300820
281
TableE1Interfactormodel:Finalconsumption
System: EM_CONSUMPTION
Estimation Method: Three-Stage Least Squares
Date: 02/25/07 Time: 03:53
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 40
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(2)
C(7)
Determinant residual covariance
0.000408
0.001718
0.000000
63.774988
14.370906
Equation: SE = C(2) + C(7)*LOG(PE) +
Instruments: LOG(PE) LOG(PM) C
Observations: 20
R-squared
Adjusted R-squared
S.E. of regression
Durbin-Watson stat
0.025993
0.024696
(-(C(7)))*LOG(PM)
0.837743
0.828729
0.002362
1.533159
Mean dependent var
S.D. dependent var
Sum squared resid
Equation: SM = (1-(C(2))) + (-(C(7)))*LOG(PE) + (C(7))*LOG(PM)
Instruments: LOG(PE) LOG(PM) C
Observations: 20
R-squared
0.837743
Mean dependent var
Adjusted R-squared
0.828729
S.D. dependent var
S.E. of regression
0.002362
Sum squared resid
Durbin-Watson stat
1.533159
Prob.
0.000000
0.000000
0.028890
0.005707
0.000100
0.971110
0.005707
0.000100
282
TableE1Interfactormodel:Export
System: EM_EXPORT
Estimation Method: Three-Stage Least Squares
Date: 02/25/07 Time: 05:22
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 40
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(2)
C(7)
Determinant residual covariance
0.002349
0.006015
0.000000
55.585228
1.423244
Equation: SE = C(2) + C(7)*LOG(PE) +
Instruments: LOG(PE) LOG(PM) C
Observations: 20
R-squared
Adjusted R-squared
S.E. of regression
Durbin-Watson stat
0.130592
0.008560
Prob.
0.000000
0.032824
(-(C(7)))*LOG(PM)
0.848200
0.804678
0.015505
1.542990
Mean dependent var
S.D. dependent var
Sum squared resid
Equation: SM = (1-(C(2))) + (-(C(7)))*LOG(PE) + (C(7))*LOG(PM)
Instruments: LOG(PE) LOG(PM) C
Observations: 20
R-squared
0.848200
Mean dependent var
Adjusted R-squared
0.804678
S.D. dependent var
S.E. of regression
0.015505
Sum squared resid
Durbin-Watson stat
1.542990
0.131065
0.015469
0.004327
0.868935
0.015469
0.004327
283
TableE2Energysubmodel:Coalfiredelectricitygeneration
System: ST_ENERGY
Estimation Method: Three-Stage Least Squares
Date: 05/06/05 Time: 13:57
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 60
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
C(1)
0.717991
0.002246
319.697700
C(4)
-0.199790
0.024618
-8.115529
C(5)
0.034164
0.021953
1.556223
C(2)
0.076284
0.002230
34.208880
C(7)
0.221408
0.014854
14.906050
Determinant residual covariance
2.26E-15
Equation: E1 = C(1) + C(4)*LOG(P1) + C(5)*LOG(P2) + (-(C(4)+C(5)))*LOG(P3)
Instruments: LOG(P1) LOG(P2) LOG(P3) C
Observations: 20
R-squared
0.888702
Mean dependent var
Adjusted R-squared
0.862667
S.D. dependent var
S.E. of regression
0.040783
Sum squared resid
Durbin-W atson stat
1.961381
Equation: E2 = C(2) + C(5)*LOG(P1) + C(7)*LOG(P2) + (-(C(5)+C(7)))*LOG(P3)
Instruments: LOG(P1) LOG(P2) LOG(P3) C
Observations: 20
R-squared
0.868327
Mean dependent var
Adjusted R-squared
0.852836
S.D. dependent var
S.E. of regression
0.036027
Sum squared resid
Durbin-W atson stat
1.693205
Equation: E3 = (1-(C(1)+C(2))) + (-(C(4)+C(5)))*LOG(P1) + (-(C(5)+C(7)))*LOG(P2)
+ (-((-(C(4)+C(5)))+(-(C(5)+C(7)))))*LOG(P3)
Instruments: LOG(P1) LOG(P2) LOG(P3) C
Observations: 20
R-squared
0.789991
Mean dependent var
Adjusted R-squared
0.777989
S.D. dependent var
S.E. of regression
0.035593
Sum squared resid
Durbin-W atson stat
1.007455
Prob.
0.0000
0.0000
0.1254
0.0000
0.0000
0.717080
0.061670
0.028275
0.129105
0.093914
0.022066
0.153820
0.041888
0.019003
284
TableE2Energysubmodel:Gasturbineelectricitygeneration
System: GT_ENERGY
Estimation Method: Three-Stage Least Squares
Date: 05/11/05 Time: 14:13
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 40
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
C(2)
0.106130
0.013279
C(7)
0.072482
0.033198
Determinant residual covariance
0
Equation: E2 = C(2) + C(7)*LOG(P2) + (-(C(7)))*LOG(P3)
Instruments: LOG(P2) LOG(P3) C
Observations: 20
R-squared
0.892473
Mean dependent var
Adjusted R-squared
0.847610
S.D. dependent var
S.E. of regression
0.051195
Sum squared resid
Durbin-W atson stat
1.976739
Equation: E3 = (1-(C(2))) + (-(C(7)))*LOG(P2) + (C(7))*LOG(P3)
Instruments: LOG(P2) LOG(P3) C
Observations: 20
R-squared
0.892473
Mean dependent var
Adjusted R-squared
0.847610
S.D. dependent var
S.E. of regression
0.051195
Sum squared resid
Durbin-W atson stat
1.976739
t-Statistic
7.992205
2.183339
Prob.
0.0000
0.0353
0.122815
0.055451
0.047177
0.877185
0.055451
0.047177
285
TableE2Energysubmodel:Finalconsumption
System: FINAL_CONSUMPTION
Estimation Method: Three-Stage Least Squares
Date: 02/25/07 Time: 02:05
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 80
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
Prob.
C(1)
0.012923
0.005198
2.486259
0.015264
C(5)
-0.021889
0.037623
-0.581808
0.562539
C(6)
0.035129
0.020567
1.708062
0.091994
C(7)
-0.139821
0.053228
-2.626817
0.010552
C(2)
0.389976
0.016045
24.305824
0.000000
C(9)
0.148386
0.042307
3.507396
0.000789
C(10)
0.040564
0.032217
1.259116
0.212113
C(3)
0.477390
0.009072
52.622505
0.000000
C(12)
-0.345279
0.101119
-3.414566
0.001060
Determinant residual covariance
6.09E-17
Equation: S1 = C(1) + C(5)*LOG(P1) + C(6)*LOG(P2) + C(7)*LOG(P3) + (-(C(5)+C(6)+C(7)))*LOG(P4)
Instruments: LOG(P1) LOG(P2) LOG(P3) LOG(P4) C
Observations: 20
R-squared
0.713738
Mean dependent var
0.020450
Adjusted R-squared
0.703813
S.D. dependent var
0.020226
S.E. of regression
0.016876
Sum squared resid
0.004557
Durbin-W atson stat
1.127280
Equation: S2 = C(2) + C(6)*LOG(P1) + C(9)*LOG(P2) + C(10)*LOG(P3) + (-(C(6)+C(9)+C(10)))*LOG(P4)
Instruments: LOG(P1) LOG(P2) LOG(P3) LOG(P4) C
Observations: 20
R-squared
0.866219
Mean dependent var
0.425200
Adjusted R-squared
0.884885
S.D. dependent var
0.089733
S.E. of regression
0.064403
Sum squared resid
0.066364
Durbin-W atson stat
2.075819
Equation: S3 = C(3) + C(7)*LOG(P1) + C(10)*LOG(P2) + C(12) *LOG(P3) + (-(C(7)+C(10)+C(12)))*LOG(P4)
Instruments: LOG(P1) LOG(P2) LOG(P3) LOG(P4) C
Observations: 20
R-squared
0.855803
Mean dependent var
0.482650
Adjusted R-squared
0.828766
S.D. dependent var
0.074084
S.E. of regression
0.030656
Sum squared resid
0.015037
Durbin-W atson stat
1.846605
Equation: S4 = (1 - (S1+S2+S3))
Observations: 20
R-squared
0.998370
Mean dependent var
0.071700
Adjusted R-squared
0.998452
S.D. dependent var
0.016073
S.E. of regression
0.000632
Sum squared resid
0.000008
Durbin-W atson stat
1.375000
286
TableE2Energysubmodel:Export
System: EXPORT
Estimation Method: Three-Stage Least Squares
Date: 02/25/07 Time: 02:36
Sample: 1980 1999
Included observations: 20
Total system (balanced) observations 80
Linear estimation after one-step weighting matrix
Coefficient
Std. Error
t-Statistic
Prob.
C(1)
0.859332
0.006954
123.567943
0.000000
C(5)
-0.245345
0.033311
-7.365364
0.000000
C(6)
0.004316
0.025337
0.170358
0.865365
C(7)
0.005070
0.001985
2.553837
0.013510
C(2)
0.104191
0.008660
12.031253
0.000000
C(9)
0.172348
0.026570
6.486448
0.000000
C(10)
-0.001146
0.000944
-2.215023
0.029643
C(3)
0.003474
0.000233
14.897789
0.000000
C(12)
-0.000553
0.003138
-0.176200
0.860796
Determinant residual covariance
4.75E-46
Equation: S1 = C(1) + C(5)*LOG(P1) + C(6)*LOG(P2) + C(7)*LOG(P3) + (-(C(5)+C(6)+C(7)))*LOG(P4)
Instruments: LOG(P1) LOG(P2) LOG(P3) LOG(P4) C
Observations: 20
R-squared
0.890951
Mean dependent var
0.852605
Adjusted R-squared
0.870505
S.D. dependent var
0.067154
S.E. of regression
0.024166
Sum squared resid
0.009344
Durbin-W atson stat
1.799922
Equation: S2 = C(2) + C(6)*LOG(P1) + C(9)*LOG(P2) + C(10)*LOG(P3) + (-(C(6)+C(9)+C(10)))*LOG(P4)
Instruments: LOG(P1) LOG(P2) LOG(P3) LOG(P4) C
Observations: 20
R-squared
0.791911
Mean dependent var
0.144000
Adjusted R-squared
0.752894
S.D. dependent var
0.066223
S.E. of regression
0.032919
Sum squared resid
0.017339
Durbin-W atson stat
1.708313
Equation: S3 = C(3) + C(7)*LOG(P1) + C(10)*LOG(P2) + C(12) *LOG(P3) + (-(C(7)+C(10)+C(12)))*LOG(P4)
Instruments: LOG(P1) LOG(P2) LOG(P3) LOG(P4) C
Observations: 20
R-squared
0.867510
Mean dependent var
0.003370
Adjusted R-squared
0.805168
S.D. dependent var
0.001191
S.E. of regression
0.000748
Sum squared resid
0.000009
Durbin-W atson stat
1.863667
Equation: S4 = (1 - (S1+S2+S3))
Observations: 20
R-squared
0.997740
Mean dependent var
0.082400
Adjusted R-squared
0.997442
S.D. dependent var
0.017177
S.E. of regression
0.000432
Sum squared resid
0.000008
Durbin-W atson stat
1.680000
287
APPENDIXF
ResultsfromEconomywideImpactofCarbonTax
ThisappendixpresentstheresultfromtheapplicationofcarbontaxbasedonPPPand
SRPforvariouscasesdiscussedinChapter6.ItcontainsthefollowingTables:
Table
Title
Page
F1
Sectoraloutputsforfinalconsumption
288
F2
Sectoraloutputsfor(net)exports
297
F3
Sectoralsupplyofinvestmentgoods
306
F4
Sectoraldemandforinvestment
315
F5
Sectoraloutputsforintermediateconsumption
324
F6
Changeinsectoralpricesandinflation
333
F7
Carbontaxrevenue
335
F8
Shareofelectricitygeneration
343
F9
Costofelectricity
345
F10
Primaryenergyconsumption
346
F11
CO2emissions
351
F12
Employment
353
F13
Neteconomicimpacts
355
Notes: 2010
2011
450
4,002
1,169
661
5,462
16
111
236
6,557
140
34,041
10,519
8,830
10,254
205
25
644
21,347
2,296
4,401
3,495
6,694
2,129
1,612
5,961
15,575
403,830
550,663
2014
460
4,094
1,196
676
5,587
17
114
242
6,708
144
34,824
10,761
9,033
10,490
210
26
659
21,838
2,348
4,503
3,575
6,848
2,178
1,649
6,098
15,933
413,118
563,328
2015
471
4,188
1,223
691
5,716
17
116
247
6,862
147
35,625
11,008
9,241
10,731
214
26
674
22,341
2,402
4,606
3,657
7,006
2,229
1,687
6,238
16,299
422,620
576,284
2016
2018
481 492
4,284 4,383
1,252 1,280
707 724
5,847 5,982
17 18
119 122
253 259
7,020 7,181
150 154
36,444 37,282
11,261 11,520
9,454 9,671
10,978 11,230
219 224
27 27
690 706
22,854 23,380
2,458 2,514
4,712 4,820
3,741 3,827
7,167 7,332
2,280 2,332
1,726 1,766
6,382 6,529
16,674 17,058
432,340 442,284
589,539 603,098
2017
2020
288
504 515
4,484 4,587
1,310 1,340
740 757
6,119 6,260
18 19
124 127
265 271
7,347 7,516
157 161
38,140 39,017
11,785 12,056
9,893 10,121
11,489 11,753
229 235
28 29
722 739
23,918 24,468
2,572 2,631
4,931 5,045
3,915 4,005
7,501 7,673
2,386 2,441
1,806 1,848
6,679 6,832
17,450 17,851
452,457 462,863
616,970 631,160
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedconstant,accordingtofixedLeontiefcoefficientspresentedinquadrantBofFigureB1,p.217;
TheshareofelectricitymixinfinalconsumptionreflectschangesduetoMRETscheme.
2009
440
3,912
1,143
646
5,339
16
109
231
6,410
137
33,275
10,282
8,632
10,023
200
24
630
20,867
2,244
4,302
3,416
6,544
2,082
1,576
5,827
15,224
394,751
538,282
2008
352 363 375 386 398 411 420 430
3,137 3,234 3,334 3,437 3,544 3,654 3,738 3,824
916 945 974 1,004 1,035 1,067 1,092 1,117
437 467 499 532 567 603 617 631
4,362 4,480 4,602 4,727 4,855 4,987 5,102 5,219
13 13 13 14 14 15 15 15
87 90 92 95 98 101 104 106
185 191 197 203 209 216 221 226
5,139 5,299 5,463 5,632 5,807 5,987 6,125 6,266
110 113 117 121 124 128 131 134
26,681 27,508 28,361 29,240 30,146 31,081 31,796 32,527
8,245 8,500 8,764 9,035 9,315 9,604 9,825 10,051
6,921 7,136 7,357 7,585 7,820 8,062 8,248 8,438
8,037 8,286 8,543 8,808 9,081 9,363 9,578 9,798
161 166 171 176 181 187 191 196
20 20 21 21 22 23 23 24
505 521 537 554 571 588 602 616
16,732 17,251 17,785 18,337 18,905 19,491 19,940 20,398
1,799 1,855 1,913 1,972 2,033 2,096 2,144 2,194
3,450 3,557 3,667 3,781 3,898 4,019 4,111 4,206
2,739 2,824 2,912 3,002 3,095 3,191 3,264 3,339
5,247 5,410 5,577 5,750 5,929 6,112 6,253 6,397
1,669 1,721 1,774 1,829 1,886 1,944 1,989 2,035
1,264 1,303 1,343 1,385 1,428 1,472 1,506 1,541
4,672 4,817 4,966 5,120 5,279 5,443 5,568 5,696
12,207 12,586 12,976 13,378 13,793 14,221 14,548 14,882
316,521
326,333 336,450 346,880 357,633 368,720 377,200 385,876
431,608
444,988 458,783 473,005 487,668 502,786 514,350 526,180
2007
2013
2006
Sectoraloutputsforfinalconsumption:BCscenario($million)
2012
2005
TableF1
Present
value
4,034
Coalsector
35,902
Petroleumsector
10,488
Gassector
5,624
RenewableElectricity
49,306
CoalfiredElectricity
145
InternalcombustionElectricity
996
GasturbineElectricity
2,119
CombinedcycleElectricity
58,828
Agriculture,forestryandfishing
1,259
Mining
305,403
Food,beveragesandtobacco
Textile,clothing,footwearandleather 94,372
79,222
Wood,paperandprintingproducts
91,996
Basicchemicals
1,838
Nonmetallicmineralproducts
Basicironandsteel
224
Basicnonferrousmetals
5,782
Fabricatedmetalproducts
191,523
Machineryandequipment
20,596
Miscellenousmanufacturing
39,488
Water,sewerageanddrainage
31,353
Construction
60,061
Roadtransport
19,105
Railwaytransport
14,465
Watertransport
53,480
Airtransport
Othertransport,servicesandstorage 139,731
3,623,056
Commercialservices
Total
4,940,397
Notes: 2007
302 260
3,146 3,157
774 656
466 495
4,461 4,563
13 13
89 92
190 195
5,285 5,434
113 116
27,434 28,209
8,477 8,717
7,116 7,318
8,264 8,497
165 170
20 21
519 534
17,204 17,690
1,850 1,902
3,547 3,647
2,816 2,896
5,396 5,550
1,716 1,765
1,299 1,336
4,805 4,941
12,553 12,909
325,992 335,748
444,015 456,833
2006
225
3,170
557
526
4,668
14
94
200
5,587
120
29,007
8,963
7,524
8,738
175
21
549
18,191
1,956
3,751
2,978
5,708
1,815
1,374
5,082
13,275
345,799
470,066
2008
2010
194 169
3,183 3,198
475 406
558 591
4,775 4,884
14 14
97 99
206 211
5,746 5,908
123 126
29,828 30,673
9,217 9,478
7,737 7,957
8,985 9,240
179 185
22 23
565 581
18,706 19,236
2,012 2,069
3,857 3,966
3,062 3,149
5,871 6,038
1,866 1,919
1,413 1,453
5,227 5,375
13,652 14,041
356,153 366,821
483,722 497,809
2009
2012
146 126
3,189 3,180
345 294
602 613
4,976 5,070
15 15
101 103
215 219
6,029 6,152
129 132
31,298 31,937
9,671 9,869
8,119 8,284
9,428 9,620
188 192
23 23
593 605
19,628 20,028
2,111 2,154
4,047 4,129
3,213 3,279
6,163 6,290
1,959 1,999
1,483 1,513
5,486 5,599
14,328 14,622
374,879 383,117
508,362 519,163
2011
109
3,173
251
625
5,166
15
105
223
6,277
134
32,589
10,070
8,454
9,817
196
24
617
20,437
2,198
4,214
3,346
6,420
2,040
1,544
5,714
14,922
391,538
530,215
2013
2015
95 82
3,166 3,160
214 184
637 649
5,263 5,363
16 16
107 109
228 232
6,406 6,537
137 140
33,255 33,935
10,276 10,486
8,626 8,803
10,017 10,222
200 204
24 25
630 642
20,855 21,281
2,243 2,289
4,300 4,388
3,414 3,484
6,552 6,687
2,081 2,124
1,576 1,608
5,831 5,951
15,228 15,541
400,147 408,947
541,523 553,090
2014
Sectoraloutputsforfinalconsumption:PPP1 ($million)
2017
72 62
3,155 3,151
158 136
661 674
5,465 5,397
16 16
111 113
236 413
6,671 6,807
143 146
34,630 35,340
10,701 10,920
8,983 9,167
10,432 10,645
208 213
25 26
656 669
21,717 22,162
2,335 2,383
4,478 4,569
3,555 3,628
6,826 6,967
2,168 2,212
1,641 1,674
6,074 6,200
15,860 16,187
417,944 427,141
564,921 577,019
2016
55
3,148
117
686
5,324
17
115
596
6,947
149
36,066
11,145
9,355
10,864
217
26
683
22,617
2,432
4,663
3,702
7,111
2,258
1,709
6,328
16,521
436,545
589,397
2018
2020
289
48 42
3,147 3,148
102 88
700 713
5,247 5,165
17 17
118 120
786 983
7,090 7,236
152 155
36,807 37,566
11,374 11,608
9,548 9,745
11,087 11,316
221 226
27 28
697 711
23,082 23,558
2,482 2,533
4,759 4,857
3,779 3,856
7,259 7,410
2,304 2,352
1,744 1,780
6,459 6,593
16,862 17,210
446,160 455,991
602,058 615,008
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
2005
TableF1
Present
value
1,922
Coalsector
31,044
Petroleumsector
4,783
Gassector
5,484
RenewableElectricity
47,583
CoalfiredElectricity
142
InternalcombustionElectricity
972
GasturbineElectricity
2,633
CombinedcycleElectricity
57,945
Agriculture,forestryandfishing
1,240
Mining
300,819
Food,beveragesandtobacco
Textile,clothing,footwearandleather 92,955
78,033
Wood,paperandprintingproducts
90,615
Basicchemicals
1,810
Nonmetallicmineralproducts
Basicironandsteel
221
Basicnonferrousmetals
5,695
Fabricatedmetalproducts
188,648
Machineryandequipment
20,286
Miscellenousmanufacturing
38,895
Water,sewerageanddrainage
30,882
Construction
59,230
Roadtransport
18,824
Railwaytransport
14,251
Watertransport
52,724
Airtransport
Othertransport,servicesandstorage 137,708
3,601,547
Commercialservices
Total
4,886,891
Notes: 2007
272 212
3,100 3,066
687 520
463 489
4,434 4,508
13 13
89 91
189 193
5,253 5,371
112 115
27,272 27,881
8,427 8,615
7,075 7,232
8,215 8,398
164 168
20 20
516 528
17,103 17,484
1,839 1,880
3,526 3,605
2,800 2,862
5,365 5,487
1,706 1,745
1,292 1,321
4,777 4,885
12,482 12,764
325,616 334,982
442,809 454,434
2006
166
3,035
396
516
4,585
13
92
197
5,491
118
28,506
8,809
7,395
8,587
172
21
540
17,877
1,922
3,686
2,926
5,611
1,784
1,350
4,995
13,055
344,626
466,470
2008
2010
131 104
3,007 2,982
304 235
544 574
4,662 4,742
14 14
94 96
201 205
5,615 5,742
120 123
29,149 29,810
9,007 9,212
7,561 7,733
8,781 8,980
175 179
21 22
552 564
18,280 18,694
1,966 2,010
3,769 3,854
2,992 3,060
5,740 5,872
1,825 1,866
1,381 1,412
5,109 5,226
13,353 13,660
354,557 364,784
478,912 491,757
2009
2012
82 66
2,936 2,893
181 140
581 589
4,804 4,868
14 14
98 99
208 210
5,828 5,915
125 127
30,253 30,706
9,348 9,488
7,848 7,965
9,113 9,249
182 185
22 23
573 581
18,972 19,256
2,040 2,071
3,912 3,970
3,106 3,152
5,961 6,052
1,894 1,923
1,433 1,455
5,305 5,386
13,867 14,079
372,403 380,189
501,090 510,650
2011
52
2,852
110
597
4,780
15
100
366
6,004
128
31,168
9,631
8,085
9,389
188
23
590
19,546
2,102
4,030
3,200
6,145
1,952
1,477
5,468
14,295
388,146
520,436
2013
2015
42 34
2,816 2,783
86 69
605 613
4,690 4,598
15 15
102 103
525 688
6,095 6,189
130 132
31,642 32,128
9,778 9,928
8,208 8,334
9,531 9,678
190 193
23 24
599 608
19,843 20,148
2,134 2,167
4,091 4,154
3,248 3,298
6,240 6,338
1,982 2,013
1,499 1,523
5,552 5,639
14,516 14,744
396,282 404,603
530,467 540,744
2014
Sectoraloutputsforfinalconsumption:SRP1($million)
2017
28 23
2,753 2,727
55 45
621 630
4,503 4,405
15 15
104 106
857 1,029
6,285 6,383
135 137
32,627 33,138
10,082 10,240
8,463 8,596
9,828 9,982
196 199
24 24
618 627
20,461 20,781
2,200 2,235
4,219 4,285
3,349 3,402
6,438 6,541
2,044 2,076
1,546 1,571
5,728 5,819
14,976 15,215
413,111 421,810
551,268 562,043
2016
20
2,704
36
639
4,303
16
107
1,207
6,484
139
33,662
10,402
8,732
10,140
203
25
637
21,110
2,270
4,352
3,456
6,646
2,109
1,596
5,912
15,459
430,705
573,071
2018
2020
290
16 14
2,684 2,666
30 25
648 825
4,199 4,091
16 16
109 110
1,389 1,409
6,587 6,693
141 143
34,198 34,747
10,567 10,737
8,871 9,013
10,301 10,467
206 209
25 25
647 658
21,446 21,790
2,306 2,343
4,422 4,493
3,511 3,567
6,754 6,865
2,143 2,178
1,621 1,647
6,007 6,105
15,710 15,966
439,800 449,099
584,357 595,904
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
2005
TableF1
Present
value
1,526
Coalsector
29,036
Petroleumsector
3,758
Gassector
5,350
RenewableElectricity
44,556
CoalfiredElectricity
137
InternalcombustionElectricity
941
GasturbineElectricity
4,012
CombinedcycleElectricity
56,144
Agriculture,forestryandfishing
1,202
Mining
291,468
Food,beveragesandtobacco
Textile,clothing,footwearandleather 90,066
75,607
Wood,paperandprintingproducts
87,799
Basicchemicals
1,754
Nonmetallicmineralproducts
Basicironandsteel
214
Basicnonferrousmetals
5,518
Fabricatedmetalproducts
182,784
Machineryandequipment
19,656
Miscellenousmanufacturing
37,686
Water,sewerageanddrainage
29,922
Construction
57,423
Roadtransport
18,248
Railwaytransport
13,810
Watertransport
51,107
Airtransport
Othertransport,servicesandstorage 133,583
3,579,125
Commercialservices
Total
4,822,431
Notes: 2007
242 167
3,059 2,986
603 401
464 491
4,442 4,525
13 13
89 91
189 193
5,270 5,405
113 116
27,360 28,058
8,454 8,670
7,097 7,278
8,242 8,452
165 169
20 21
518 531
17,158 17,596
1,845 1,892
3,538 3,628
2,809 2,880
5,383 5,523
1,712 1,756
1,296 1,329
4,793 4,916
12,521 12,843
325,650 335,048
443,042 454,978
2006
117
2,918
269
519
4,609
14
93
198
5,543
119
28,777
8,892
7,465
8,668
173
21
545
18,046
1,941
3,721
2,954
5,666
1,801
1,363
5,044
13,174
344,723
467,372
2008
2010
82 58
2,855 2,796
183 125
548 579
4,695 4,783
14 14
95 97
202 207
5,685 5,832
122 125
29,515 30,274
9,120 9,355
7,656 7,853
8,891 9,119
178 182
22 22
559 573
18,509 18,985
1,990 2,042
3,816 3,914
3,030 3,108
5,814 5,966
1,847 1,895
1,398 1,434
5,175 5,309
13,514 13,864
354,684 364,940
480,200 493,453
2009
2012
42 30
2,719 2,646
86 59
587 596
4,854 4,773
14 15
99 100
210 365
5,936 6,042
127 129
30,814 31,365
9,522 9,692
7,993 8,136
9,282 9,448
185 189
23 23
583 594
19,324 19,669
2,078 2,115
3,984 4,055
3,163 3,220
6,075 6,186
1,929 1,964
1,460 1,486
5,406 5,504
14,114 14,369
372,585 380,396
503,193 513,166
2011
22
2,579
41
605
4,690
15
102
525
6,150
132
31,928
9,866
8,282
9,618
192
23
604
20,023
2,153
4,128
3,278
6,300
1,999
1,513
5,605
14,630
388,380
523,381
2013
2015
16 12
2,517 2,462
29 21
770 941
4,604 4,514
15 15
103 105
533 541
6,261 6,375
134 136
32,504 33,095
10,044 10,227
8,432 8,585
9,791 9,969
196 199
24 24
615 627
20,384 20,754
2,192 2,232
4,203 4,279
3,337 3,398
6,416 6,535
2,035 2,072
1,540 1,569
5,707 5,813
14,896 15,169
396,539 404,883
533,838 544,551
2014
Sectoraloutputsforfinalconsumption:PPP2($million)
2017
9 7
2,413 2,370
16 12
1,117 1,298
4,422 4,326
15 16
106 108
549 557
6,492 6,611
139 141
33,700 34,321
10,414 10,606
8,742 8,903
10,152 10,339
203 207
25 25
638 650
21,134 21,523
2,273 2,315
4,357 4,438
3,460 3,523
6,657 6,782
2,111 2,150
1,597 1,627
5,921 6,032
15,449 15,736
413,414 422,137
555,523 566,758
2016
5
2,332
9
1,484
4,226
16
110
566
6,734
144
34,957
10,802
9,068
10,530
210
26
662
21,922
2,357
4,520
3,589
6,911
2,190
1,657
6,145
16,030
431,057
578,260
2018
2020
291
4 3
2,300 2,272
7 5
1,677 1,875
4,123 4,016
16 16
111 113
575 584
6,859 6,988
147 150
35,609 36,278
11,004 11,210
9,237 9,410
10,727 10,928
214 218
26 27
674 687
22,331 22,750
2,401 2,446
4,604 4,691
3,656 3,724
7,042 7,177
2,231 2,273
1,688 1,720
6,262 6,381
16,331 16,640
440,177 449,502
590,034 602,084
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
2005
TableF1
Present
value
1,260
Coalsector
27,329
Petroleumsector
3,117
Gassector
6,949
RenewableElectricity
44,365
CoalfiredElectricity
138
InternalcombustionElectricity
950
GasturbineElectricity
3,108
CombinedcycleElectricity
57,113
Agriculture,forestryandfishing
1,222
Mining
296,496
Food,beveragesandtobacco
Textile,clothing,footwearandleather 91,620
76,912
Wood,paperandprintingproducts
89,313
Basicchemicals
1,784
Nonmetallicmineralproducts
Basicironandsteel
218
Basicnonferrousmetals
5,613
Fabricatedmetalproducts
185,937
Machineryandequipment
19,995
Miscellenousmanufacturing
38,336
Water,sewerageanddrainage
30,438
Construction
58,447
Roadtransport
18,559
Railwaytransport
14,048
Watertransport
52,011
Airtransport
Othertransport,servicesandstorage 135,797
3,580,632
Commercialservices
Total
4,841,708
Notes: 2007
181 96
2,965 2,812
430 210
458 479
4,388 4,416
13 13
88 89
187 189
5,208 5,280
111 113
27,037 27,408
8,355 8,469
7,013 7,110
8,144 8,256
163 165
20 20
512 519
16,955 17,188
1,823 1,848
3,496 3,544
2,776 2,814
5,321 5,397
1,692 1,716
1,281 1,298
4,737 4,804
12,378 12,556
324,899 333,525
440,631 450,335
2006
53
2,673
106
501
4,447
13
90
191
5,354
115
27,795
8,589
7,210
8,373
167
20
526
17,431
1,874
3,594
2,853
5,477
1,740
1,317
4,874
12,741
342,407
460,531
2008
2010
30 17
2,549 2,436
55 30
523 546
4,478 4,390
13 13
91 92
193 317
5,431 5,512
116 118
28,197 28,615
8,713 8,842
7,314 7,423
8,494 8,620
170 172
21 21
534 542
17,683 17,945
1,902 1,930
3,646 3,700
2,895 2,938
5,560 5,645
1,766 1,793
1,336 1,356
4,947 5,023
12,933 13,133
351,551 360,964
471,140 482,131
2009
2012
10 6
2,318 2,213
16 9
548 550
4,267 4,144
13 13
92 92
458 601
5,553 5,596
119 120
28,827 29,051
8,908 8,977
7,478 7,536
8,683 8,751
173 175
21 21
546 550
18,078 18,218
1,944 1,959
3,727 3,756
2,959 2,982
5,691 5,739
1,806 1,821
1,366 1,377
5,062 5,104
13,237 13,348
367,788 374,771
489,689 497,483
2011
4
2,119
6
553
4,022
14
93
745
5,642
121
29,289
9,050
7,598
8,823
176
21
555
18,367
1,975
3,787
3,007
5,789
1,836
1,389
5,148
13,464
381,916
505,506
2013
2015
3 2
2,035 1,961
3 2
697 844
3,900 3,779
14 14
93 94
748 752
5,690 5,741
122 123
29,538 29,804
9,128 9,210
7,662 7,731
8,898 8,978
178 179
22 22
559 564
18,524 18,691
1,992 2,010
3,819 3,854
3,032 3,060
5,842 5,898
1,852 1,869
1,401 1,413
5,194 5,243
13,586 13,715
389,225 396,713
513,756 522,265
2014
Sectoraloutputsforfinalconsumption:SRP2($million)
2017
1 1
1,896 1,839
1 1
992 1,142
3,658 3,537
14 14
94 95
757 762
5,795 5,853
124 125
30,087 30,385
9,297 9,389
7,805 7,882
9,063 9,153
181 183
22 22
570 575
18,868 19,055
2,029 2,049
3,890 3,929
3,089 3,119
5,957 6,020
1,888 1,907
1,427 1,441
5,295 5,350
13,851 13,995
404,383 412,238
531,033 540,061
2016
1
1,790
1
1,295
3,415
14
96
767
5,913
127
30,699
9,486
7,963
9,248
185
23
581
19,252
2,070
3,969
3,152
6,085
1,927
1,456
5,407
14,146
420,282
549,350
2018
2020
292
0 0
1,747 1,709
0 0
1,451 1,609
3,293 3,170
14 14
96 97
772 778
5,977 6,043
128 129
31,029 31,374
9,588 9,695
8,049 8,139
9,347 9,451
187 189
23 23
587 594
19,459 19,675
2,093 2,116
4,012 4,057
3,185 3,221
6,154 6,226
1,948 1,970
1,472 1,489
5,468 5,531
14,304 14,469
428,518 436,948
558,901 568,716
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
2005
TableF1
Present
value
984
Coalsector
24,435
Petroleumsector
2,428
Gassector
6,415
RenewableElectricity
40,682
CoalfiredElectricity
130
InternalcombustionElectricity
893
GasturbineElectricity
4,079
CombinedcycleElectricity
53,804
Agriculture,forestryandfishing
1,151
Mining
279,317
Food,beveragesandtobacco
Textile,clothing,footwearandleather 86,311
72,455
Wood,paperandprintingproducts
84,138
Basicchemicals
1,681
Nonmetallicmineralproducts
Basicironandsteel
205
Basicnonferrousmetals
5,288
Fabricatedmetalproducts
175,164
Machineryandequipment
18,836
Miscellenousmanufacturing
36,115
Water,sewerageanddrainage
28,675
Construction
55,121
Roadtransport
17,499
Railwaytransport
13,238
Watertransport
49,037
Airtransport
Othertransport,servicesandstorage 128,207
3,538,242
Commercialservices
Total
4,724,530
Notes: 2005
2007
211 128
3,014 2,901
516 296
463 489
4,433 4,505
13 13
89 91
189 193
5,263 5,390
113 115
27,322 27,982
8,443 8,647
7,088 7,259
8,230 8,429
164 168
20 21
517 530
17,134 17,548
1,843 1,887
3,533 3,618
2,805 2,873
5,376 5,509
1,709 1,751
1,294 1,326
4,786 4,904
12,504 12,809
325,476 334,692
442,547 454,071
2006
79
2,797
172
516
4,579
13
92
197
5,521
118
28,660
8,856
7,434
8,633
172
21
543
17,973
1,933
3,706
2,942
5,645
1,794
1,358
5,025
13,122
344,178
466,079
2008
2010
49 31
2,700 2,610
102 61
544 573
4,655 4,733
14 14
94 96
201 205
5,655 5,793
121 124
29,357 30,074
9,072 9,293
7,615 7,801
8,843 9,059
177 181
22 22
556 569
18,410 18,860
1,980 2,028
3,796 3,888
3,014 3,087
5,785 5,930
1,838 1,883
1,391 1,425
5,149 5,276
13,445 13,776
353,941 363,990
478,524 491,383
2009
2012
20 13
2,507 2,412
37 23
580 587
4,645 4,554
14 14
97 99
355 510
5,889 5,987
126 128
30,572 31,081
9,447 9,604
7,930 8,063
9,209 9,363
184 187
22 23
579 588
19,172 19,492
2,062 2,096
3,953 4,019
3,138 3,191
6,031 6,135
1,914 1,946
1,449 1,473
5,366 5,457
14,007 14,244
371,428 379,030
500,733 510,318
2011
8
2,326
14
747
4,461
15
100
516
6,087
130
31,603
9,765
8,198
9,520
190
23
598
19,819
2,131
4,086
3,244
6,241
1,979
1,498
5,551
14,486
386,798
520,134
2013
2015
6 4
2,249 2,180
9 6
910 1,078
4,366 4,268
15 15
101 103
523 530
6,191 6,297
132 135
32,138 32,688
9,931 10,101
8,337 8,479
9,681 9,847
193 197
24 24
608 619
20,154 20,499
2,167 2,204
4,155 4,226
3,299 3,356
6,350 6,461
2,013 2,047
1,523 1,550
5,647 5,746
14,734 14,989
394,741 402,862
530,198 540,510
2014
2017
3 2
2,120 2,066
4 3
1,250 1,427
4,167 4,063
15 15
104 105
537 544
6,405 6,517
137 139
33,252 33,831
10,275 10,454
8,626 8,776
10,017 10,191
200 204
24 25
630 641
20,853 21,216
2,242 2,281
4,299 4,374
3,414 3,473
6,576 6,694
2,083 2,120
1,576 1,604
5,847 5,951
15,251 15,519
411,166 419,657
551,074 561,894
2016
Sectoraloutputsforfinalconsumption:PPPforEarlyaction($million)
2
2,019
2
1,609
3,957
16
107
552
6,631
142
34,425
10,638
8,930
10,370
207
25
652
21,589
2,322
4,451
3,534
6,815
2,157
1,632
6,058
15,794
428,338
572,973
2018
2020
293
1 1
1,978 1,941
2 1
1,796 1,988
3,847 3,734
16 16
108 110
559 567
6,749 6,869
144 147
35,035 35,660
10,826 11,019
9,088 9,250
10,554 10,742
211 215
26 26
663 675
21,971 22,363
2,363 2,405
4,530 4,611
3,597 3,661
6,939 7,066
2,195 2,235
1,661 1,691
6,167 6,279
16,077 16,366
437,214 446,289
584,315 595,926
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
TableF1
Present
value
1,091
Coalsector
25,756
Petroleumsector
2,702
Gassector
7,336
RenewableElectricity
43,232
CoalfiredElectricity
137
InternalcombustionElectricity
939
GasturbineElectricity
3,229
CombinedcycleElectricity
56,705
Agriculture,forestryandfishing
1,214
Mining
294,383
Food,beveragesandtobacco
Textile,clothing,footwearandleather 90,966
76,363
Wood,paperandprintingproducts
88,677
Basicchemicals
1,771
Nonmetallicmineralproducts
Basicironandsteel
216
Basicnonferrousmetals
5,573
Fabricatedmetalproducts
184,611
Machineryandequipment
19,852
Miscellenousmanufacturing
38,063
Water,sewerageanddrainage
30,221
Construction
58,064
Roadtransport
18,429
Railwaytransport
13,950
Watertransport
51,662
Airtransport
Othertransport,servicesandstorage 134,861
3,570,188
Commercialservices
Total
4,820,193
Notes: 2005
2007
228 150
3,034 2,940
562 351
460 484
4,412 4,463
13 13
88 90
188 191
5,231 5,326
112 114
27,158 27,649
8,392 8,544
7,045 7,172
8,181 8,329
163 166
20 20
514 523
17,031 17,339
1,831 1,865
3,511 3,575
2,788 2,838
5,343 5,443
1,699 1,730
1,286 1,310
4,757 4,845
12,431 12,663
325,267 334,271
441,747 452,405
2006
100
2,854
223
509
4,517
13
91
194
5,424
116
28,157
8,701
7,304
8,482
169
21
533
17,657
1,899
3,641
2,891
5,545
1,763
1,334
4,936
12,901
343,540
463,512
2008
2010
68 46
2,775 2,702
144 94
534 560
4,572 4,628
13 14
93 94
197 200
5,524 5,628
118 120
28,680 29,219
8,862 9,029
7,440 7,579
8,639 8,802
173 176
21 21
543 553
17,985 18,323
1,934 1,970
3,708 3,778
2,944 3,000
5,651 5,760
1,796 1,830
1,359 1,385
5,029 5,126
13,146 13,399
353,084 362,909
475,031 486,945
2009
2012
32 23
2,614 2,535
62 42
565 570
4,523 4,418
14 14
95 96
346 494
5,691 5,756
122 123
29,543 29,879
9,129 9,233
7,664 7,751
8,899 9,001
178 180
22 22
559 566
18,527 18,738
1,992 2,015
3,820 3,863
3,033 3,067
5,826 5,895
1,850 1,872
1,400 1,416
5,184 5,245
13,554 13,714
370,129 377,515
495,373 504,041
2011
16
2,464
29
575
4,311
14
97
645
5,823
125
30,227
9,341
7,841
9,105
182
22
572
18,956
2,038
3,908
3,103
5,967
1,894
1,433
5,308
13,879
385,070
512,945
2013
2015
12 9
2,399 2,340
20 14
580 586
4,203 4,093
14 14
97 98
800 957
5,892 5,963
126 128
30,587 30,959
9,452 9,566
7,934 8,031
9,214 9,326
184 186
22 23
579 586
19,182 19,415
2,063 2,088
3,955 4,003
3,140 3,178
6,041 6,117
1,917 1,941
1,450 1,468
5,373 5,440
14,050 14,226
392,796 400,697
522,081 531,451
2014
2017
6 5
2,287 2,240
10 8
742 902
3,982 3,870
14 15
99 100
966 976
6,037 6,114
129 131
31,342 31,740
9,685 9,808
8,130 8,233
9,441 9,561
189 191
23 23
593 601
19,655 19,905
2,114 2,140
4,052 4,104
3,218 3,258
6,195 6,276
1,965 1,990
1,486 1,505
5,509 5,581
14,408 14,596
408,776 417,046
541,054 550,919
2016
Sectoraloutputsforfinalconsumption:SRPforearlyaction($million)
4
2,199
6
1,065
3,756
15
101
986
6,194
133
32,153
9,936
8,341
9,685
193
24
609
20,164
2,168
4,157
3,301
6,361
2,016
1,525
5,655
14,791
425,511
561,048
2018
2020
294
3 2
2,164 2,134
4 3
1,232 1,403
3,640 3,523
15 15
102 104
996 1,007
6,276 6,362
134 136
32,582 33,025
10,068 10,205
8,452 8,567
9,815 9,948
196 199
24 24
617 625
20,432 20,711
2,197 2,227
4,213 4,270
3,345 3,390
6,448 6,539
2,044 2,072
1,545 1,566
5,732 5,812
14,993 15,202
434,175 443,041
571,445 582,113
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
TableF1
Present
value
1,187
Coalsector
26,598
Petroleumsector
2,919
Gassector
5,914
RenewableElectricity
42,302
CoalfiredElectricity
133
InternalcombustionElectricity
917
GasturbineElectricity
4,325
CombinedcycleElectricity
54,969
Agriculture,forestryandfishing
1,176
Mining
285,366
Food,beveragesandtobacco
Textile,clothing,footwearandleather 88,180
74,024
Wood,paperandprintingproducts
85,960
Basicchemicals
1,717
Nonmetallicmineralproducts
Basicironandsteel
209
Basicnonferrousmetals
5,403
Fabricatedmetalproducts
178,957
Machineryandequipment
19,244
Miscellenousmanufacturing
36,897
Water,sewerageanddrainage
29,296
Construction
56,267
Roadtransport
17,872
Railwaytransport
13,523
Watertransport
50,068
Airtransport
Othertransport,servicesandstorage 130,885
3,558,893
Commercialservices
Total
4,773,201
Notes: 2005
2007
363 375
3,234 3,334
945 974
467 499
4,480 4,602
13 13
90 92
191 197
5,299 5,463
113 117
27,508 28,361
8,500 8,764
7,136 7,357
8,286 8,543
166 171
20 21
521 537
17,251 17,785
1,855 1,913
3,557 3,667
2,824 2,912
5,410 5,577
1,721 1,774
1,303 1,343
4,817 4,966
12,586 12,976
326,333 336,450
444,988 458,783
2006
386
3,437
1,004
532
4,727
14
95
203
5,632
121
29,240
9,035
7,585
8,808
176
21
554
18,337
1,972
3,781
3,002
5,750
1,829
1,385
5,120
13,378
346,880
473,005
2008
2010
398 411
3,544 3,654
1,035 1,067
567 603
4,855 4,987
14 15
98 101
209 216
5,807 5,987
124 128
30,146 31,081
9,315 9,604
7,820 8,062
9,081 9,363
181 187
22 23
571 588
18,905 19,491
2,033 2,096
3,898 4,019
3,095 3,191
5,929 6,112
1,886 1,944
1,428 1,472
5,279 5,443
13,793 14,221
357,633 368,720
487,668 502,786
2009
2012
77 16
3,245 2,894
129 19
604 605
4,995 5,004
15 15
102 102
216 216
6,044 6,102
129 131
31,375 31,680
9,695 9,789
8,139 8,218
9,451 9,543
189 191
23 23
594 600
19,676 19,867
2,116 2,136
4,057 4,096
3,221 3,252
6,177 6,243
1,963 1,983
1,486 1,501
5,498 5,556
14,362 14,508
375,246 381,911
508,823 516,203
2011
4
2,593
3
607
5,015
15
102
217
6,163
132
31,995
9,887
8,300
9,638
193
23
606
20,064
2,158
4,137
3,285
6,312
2,003
1,516
5,616
14,659
388,718
523,958
2013
2015
1 0
2,332 2,109
1 0
608 765
4,872 4,729
15 15
102 102
373 374
6,226 6,291
133 135
32,320 32,659
9,987 10,092
8,384 8,472
9,736 9,838
194 197
24 24
612 618
20,268 20,481
2,180 2,202
4,179 4,223
3,318 3,353
6,383 6,456
2,024 2,046
1,532 1,548
5,677 5,741
14,815 14,976
395,670 402,775
531,963 540,218
2014
2017
0 0
1,921 1,763
0 0
924 1,084
4,588 4,447
15 15
103 103
375 376
6,359 6,431
136 138
33,014 33,385
10,201 10,316
8,564 8,660
9,945 10,057
199 201
24 24
625 632
20,703 20,937
2,226 2,251
4,269 4,317
3,389 3,427
6,533 6,613
2,068 2,092
1,565 1,583
5,808 5,877
15,145 15,322
410,046 417,486
548,745 557,538
2016
Sectoraloutputsforfinalconsumption:PPPforDelayaction($million)
0
1,629
0
1,245
4,306
15
103
377
6,506
139
33,774
10,436
8,761
10,174
203
25
639
21,180
2,278
4,367
3,467
6,696
2,117
1,602
5,950
15,506
425,098
566,594
2018
2020
295
0 0
1,515 1,417
0 0
1,408 1,573
4,166 4,027
15 15
104 104
379 381
6,584 6,665
141 143
34,178 34,599
10,561 10,691
8,866 8,975
10,295 10,422
206 208
25 25
647 655
21,434 21,697
2,305 2,333
4,419 4,474
3,509 3,552
6,783 6,873
2,143 2,170
1,621 1,641
6,026 6,104
15,697 15,896
432,884 440,847
575,910 585,486
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
TableF1
Present
value
2,147
Coalsector
28,202
Petroleumsector
5,523
Gassector
6,453
RenewableElectricity
45,523
CoalfiredElectricity
138
InternalcombustionElectricity
950
GasturbineElectricity
2,429
CombinedcycleElectricity
57,102
Agriculture,forestryandfishing
1,222
Mining
296,440
Food,beveragesandtobacco
Textile,clothing,footwearandleather 91,602
76,897
Wood,paperandprintingproducts
89,296
Basicchemicals
1,784
Nonmetallicmineralproducts
Basicironandsteel
218
Basicnonferrousmetals
5,612
Fabricatedmetalproducts
185,902
Machineryandequipment
19,991
Miscellenousmanufacturing
38,329
Water,sewerageanddrainage
30,433
Construction
58,437
Roadtransport
18,555
Railwaytransport
14,046
Watertransport
52,002
Airtransport
Othertransport,servicesandstorage 135,769
3,579,637
Commercialservices
Total
4,844,637
Notes: 2007
386
3,437
1,004
532
4,727
14
95
203
5,632
121
29,240
9,035
7,585
8,808
176
21
554
18,337
1,972
3,781
3,002
5,750
1,829
1,385
5,120
13,378
346,880
473,005
2008
2010
398 411
3,544 3,654
1,035 1,067
567 603
4,855 4,987
14 15
98 101
209 216
5,807 5,987
124 128
30,146 31,081
9,315 9,604
7,820 8,062
9,081 9,363
181 187
22 23
571 588
18,905 19,491
2,033 2,096
3,898 4,019
3,095 3,191
5,929 6,112
1,886 1,944
1,428 1,472
5,279 5,443
13,793 14,221
357,633 368,720
487,668 502,786
2009
2012
159 65
3,353 3,089
354 126
601 600
4,970 4,956
15 15
101 101
215 214
5,993 6,003
128 128
31,114 31,164
9,615 9,630
8,071 8,084
9,373 9,387
187 188
23 23
589 590
19,512 19,543
2,098 2,102
4,023 4,029
3,194 3,199
6,124 6,139
1,947 1,951
1,474 1,476
5,452 5,464
14,247 14,281
375,119 381,669
508,051 514,215
2011
28
2,856
47
598
4,944
15
100
214
6,015
129
31,228
9,650
8,101
9,407
188
23
591
19,584
2,106
4,038
3,206
6,157
1,956
1,480
5,478
14,322
388,373
520,833
2013
2015
13 6
2,650 2,471
19 8
597 596
4,782 4,623
15 15
100 100
366 517
6,031 6,050
129 129
31,308 31,407
9,674 9,705
8,121 8,147
9,431 9,461
188 189
23 23
593 595
19,634 19,696
2,111 2,118
4,048 4,061
3,214 3,224
6,177 6,202
1,961 1,968
1,484 1,489
5,496 5,516
14,369 14,425
395,232 402,264
527,765 535,005
2014
2017
3 2
2,316 2,179
4 2
596 747
4,468 4,314
15 15
100 100
669 669
6,072 6,098
130 131
31,525 31,659
9,741 9,783
8,178 8,212
9,496 9,537
190 191
23 23
597 599
19,769 19,854
2,126 2,135
4,076 4,093
3,236 3,250
6,230 6,261
1,976 1,985
1,495 1,501
5,540 5,567
14,489 14,561
409,468 416,846
542,526 550,315
2016
1
2,062
1
900
4,164
15
100
669
6,129
131
31,817
9,832
8,253
9,584
191
23
602
19,953
2,146
4,114
3,266
6,297
1,996
1,509
5,598
14,643
424,417
558,411
2018
2020
296
1 0
1,960 1,872
1 0
1,053 1,207
4,016 3,870
15 15
100 100
670 671
6,163 6,202
132 133
31,996 32,196
9,887 9,949
8,300 8,352
9,638 9,698
193 194
23 24
606 610
20,065 20,191
2,158 2,171
4,137 4,163
3,285 3,305
6,337 6,381
2,008 2,021
1,518 1,527
5,632 5,671
14,734 14,835
432,182 440,144
566,808 575,501
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotalfinalconsumptionisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110;
TheshareofelectricitymixinfinalconsumptionreflectchangesduetoMRETschemeaswellasinputssubstitution,calculatedfromEquation520,p.110.
363 375
3,234 3,334
945 974
467 499
4,480 4,602
13 13
90 92
191 197
5,299 5,463
113 117
27,508 28,361
8,500 8,764
7,136 7,357
8,286 8,543
166 171
20 21
521 537
17,251 17,785
1,855 1,913
3,557 3,667
2,824 2,912
5,410 5,577
1,721 1,774
1,303 1,343
4,817 4,966
12,586 12,976
326,333 336,450
444,988 458,783
2006
Sectoraloutputsforfinalconsumption:SRPforDelayaction($million)
2005
352
3,137
916
437
4,362
13
87
185
5,139
110
26,681
8,245
6,921
8,037
161
20
505
16,732
1,799
3,450
2,739
5,247
1,669
1,264
4,672
12,207
316,521
431,608
TableF1
Present
value
2,243
Coalsector
29,534
Petroleumsector
5,749
Gassector
5,776
RenewableElectricity
45,122
CoalfiredElectricity
137
InternalcombustionElectricity
941
GasturbineElectricity
2,984
CombinedcycleElectricity
56,119
Agriculture,forestryandfishing
1,201
Mining
291,338
Food,beveragesandtobacco
Textile,clothing,footwearandleather 90,026
75,574
Wood,paperandprintingproducts
87,760
Basicchemicals
1,753
Nonmetallicmineralproducts
Basicironandsteel
214
Basicnonferrousmetals
5,516
Fabricatedmetalproducts
182,702
Machineryandequipment
19,647
Miscellenousmanufacturing
37,669
Water,sewerageanddrainage
29,909
Construction
57,398
Roadtransport
18,239
Railwaytransport
13,804
Watertransport
51,085
Airtransport
Othertransport,servicesandstorage 133,520
3,577,714
Commercialservices
Total
4,823,672
Notes: 7,324
825
197
5,017
9,221
547
3,869
1,600
3,185
15
905
5,732
76
9,589
1,019
635
425
1,005
971
255
869
401
35,689
25,495
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
7,551
847
203
5,176
9,506
570
3,985
1,643
3,276
19
936
5,910
80
9,885
1,052
655
438
1,036
1,001
263
896
413
36,795
26,248
2007
7,784
869
209
5,339
9,801
594
4,104
1,688
3,370
23
967
6,093
83
10,191
1,086
675
451
1,068
1,033
271
924
426
37,935
27,024
2008
8,025
892
215
5,507
10,104
619
4,227
1,734
3,468
27
1,000
6,281
87
10,506
1,121
696
465
1,102
1,065
280
953
439
39,110
27,824
2009
8,274
915
222
5,681
10,417
645
4,353
1,782
3,568
32
1,033
6,476
91
10,831
1,157
717
480
1,136
1,098
289
982
453
40,322
28,649
2010
8,464
933
227
5,813
10,656
664
4,450
1,819
3,645
35
1,058
6,625
94
11,079
1,185
734
491
1,162
1,123
295
1,005
463
41,249
29,279
2011
8,659
952
232
5,949
10,901
684
4,549
1,856
3,723
39
1,085
6,777
97
11,333
1,213
751
502
1,189
1,149
302
1,028
474
42,197
29,924
2012
8,857
971
238
6,088
11,152
705
4,650
1,894
3,803
42
1,111
6,933
100
11,593
1,242
768
513
1,216
1,176
309
1,051
485
43,166
30,584
2013
9,061
990
243
6,230
11,408
726
4,754
1,933
3,886
46
1,139
7,092
103
11,859
1,272
786
525
1,244
1,203
316
1,076
496
44,158
31,259
2014
9,269
1,010
249
6,375
11,670
748
4,860
1,973
3,970
50
1,166
7,255
106
12,131
1,302
804
537
1,273
1,231
323
1,100
507
45,173
31,949
2015
Sectoraloutputsfor(net)exports:BCscenario($million)
9,482
1,030
255
6,524
11,938
770
4,968
2,014
4,055
54
1,195
7,422
110
12,410
1,333
822
549
1,302
1,259
331
1,126
519
46,212
32,655
2016
9,700
1,050
260
6,676
12,213
792
5,079
2,056
4,143
58
1,224
7,592
113
12,694
1,365
841
562
1,332
1,288
338
1,151
531
47,274
33,378
2017
9,923
1,072
266
6,832
12,493
815
5,193
2,098
4,233
62
1,254
7,767
117
12,986
1,398
861
575
1,363
1,318
346
1,178
543
48,360
34,117
2018
10,151
1,093
273
6,991
12,780
839
5,309
2,142
4,325
66
1,285
7,945
120
13,284
1,431
880
588
1,394
1,348
354
1,205
556
49,472
34,873
2019
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedconstant,accordingtofixedLeontiefcoefficientspresentedinquadrantBofFigureB1,p.217.
2006
2005
TableF2
Present
value
81,301
Coalsector
8,997
Petroleumsector
2,183
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
55,815
Agriculture,forestryandfishing
102,358
Mining
6,331
Food,beveragesandtobacco
42,777
Textile,clothing,footwearandleather
17,516
Wood,paperandprintingproducts
35,065
Basicchemicals
310
Nonmetallicmineralproducts
10,147
Basicironandsteel
63,634
Basicnonferrousmetals
892
Fabricatedmetalproducts
106,423
Machineryandequipment
11,371
Miscellenousmanufacturing
7,049
Water,sewerageanddrainage
4,714
Construction
11,160
Roadtransport
10,788
Railwaytransport
2,836
Watertransport
9,650
Airtransport
4,450
Othertransport,servicesandstorage
396,199
Commercialservices
Total
281,524
10,384
1,115
279
7,154
13,074
863
5,427
2,187
4,419
70
1,316
8,128
124
13,589
1,465
901
601
1,426
1,379
362
1,233
569
50,609
35,647
2020
297
Notes: 2006
7,253
797
161
5,004
9,197
546
3,859
1,596
3,176
14
903
5,718
76
9,563
1,016
633
424
1,003
969
255
869
399
35,666
25,483
2005
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
TableF2
7,403
790
136
5,149
9,458
569
3,964
1,635
3,259
18
931
5,880
79
9,832
1,046
651
436
1,032
997
263
895
410
36,749
26,233
2007
7,554
783
116
5,298
9,726
593
4,072
1,676
3,345
22
959
6,047
82
10,109
1,077
669
448
1,062
1,026
271
922
421
37,864
27,015
2008
7,707
776
98
5,451
10,002
617
4,183
1,717
3,432
26
989
6,219
86
10,393
1,109
688
460
1,093
1,056
279
950
433
39,013
27,829
2009
7,861
770
84
5,609
10,287
641
4,297
1,760
3,523
30
1,019
6,396
89
10,687
1,141
707
473
1,124
1,087
287
978
445
40,198
28,676
2010
7,956
758
71
5,725
10,497
660
4,381
1,792
3,589
33
1,042
6,527
92
10,904
1,166
722
483
1,148
1,109
294
1,000
453
41,098
29,333
2011
8,051
747
61
5,845
10,712
679
4,467
1,824
3,658
36
1,065
6,661
95
11,125
1,190
736
493
1,172
1,133
300
1,022
462
42,017
30,010
2012
8,147
736
52
5,966
10,931
698
4,555
1,857
3,727
39
1,088
6,798
97
11,351
1,215
751
503
1,197
1,156
307
1,045
471
42,958
30,706
2013
8,243
726
44
6,091
11,156
718
4,645
1,891
3,799
43
1,112
6,938
100
11,582
1,241
767
513
1,222
1,181
313
1,068
480
43,920
31,422
2014
2015
8,341
715
38
6,218
11,385
739
4,737
1,925
3,871
46
1,136
7,080
103
11,818
1,268
782
523
1,248
1,206
320
1,092
490
44,904
32,157
Sectoraloutputsfor(net)exports:PPP1 ($million)
8,440
704
32
6,348
11,618
759
4,831
1,960
3,945
49
1,161
7,226
106
12,059
1,294
798
534
1,274
1,231
328
1,116
499
45,909
32,911
2016
8,541
694
28
6,481
11,859
784
4,926
1,996
4,021
53
1,187
7,377
109
12,304
1,322
814
544
1,301
1,257
335
1,141
508
46,916
33,645
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
Present
value
76,555
Coalsector
7,460
Petroleumsector
992
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
55,005
Agriculture,forestryandfishing
100,891
Mining
6,298
Food,beveragesandtobacco
42,143
Textile,clothing,footwearandleather
17,267
Wood,paperandprintingproducts
34,554
Basicchemicals
290
Nonmetallicmineralproducts
9,993
Basicironandsteel
62,741
Basicnonferrousmetals
875
Fabricatedmetalproducts
104,803
Machineryandequipment
11,191
Miscellenousmanufacturing
6,935
Water,sewerageanddrainage
4,641
Construction
11,033
Roadtransport
10,661
Railwaytransport
2,821
Watertransport
9,609
Airtransport
4,352
Othertransport,servicesandstorage
394,733
Commercialservices
Total
282,299
8,644
683
24
6,617
12,105
809
5,024
2,032
4,097
57
1,214
7,532
112
12,555
1,350
830
555
1,329
1,285
342
1,167
516
47,945
34,398
2018
8,748
674
20
6,756
12,356
835
5,123
2,069
4,176
60
1,241
7,690
116
12,811
1,378
846
566
1,358
1,312
350
1,193
525
48,997
35,170
2019
8,855
664
18
6,899
12,613
861
5,225
2,106
4,256
64
1,268
7,851
119
13,073
1,408
863
578
1,387
1,341
358
1,220
533
50,073
35,960
2020
298
Notes: 2006
7,132
787
143
4,992
9,169
565
3,834
1,585
3,155
14
900
5,701
76
9,500
1,009
629
421
1,003
968
256
873
391
35,636
25,443
2005
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
TableF2
7,157
770
108
5,124
9,401
607
3,913
1,612
3,215
17
925
5,845
79
9,705
1,032
643
430
1,031
995
264
903
394
36,688
26,162
2007
7,179
755
82
5,259
9,639
651
3,995
1,641
3,277
21
950
5,994
83
9,915
1,055
657
440
1,061
1,023
273
934
397
37,771
26,918
2008
7,201
740
63
5,398
9,884
695
4,079
1,670
3,341
25
976
6,146
86
10,131
1,079
672
449
1,091
1,052
282
966
400
38,887
27,709
2009
7,223
726
48
5,542
10,135
741
4,165
1,701
3,407
29
1,003
6,303
90
10,354
1,104
687
459
1,122
1,081
291
999
403
40,038
28,532
2010
7,189
709
37
5,644
10,313
780
4,221
1,720
3,450
31
1,022
6,415
93
10,500
1,120
697
466
1,145
1,103
298
1,025
403
40,903
29,166
2011
7,156
692
29
5,749
10,495
820
4,279
1,739
3,493
34
1,042
6,528
96
10,650
1,136
707
472
1,169
1,125
305
1,052
403
41,787
29,818
2012
7,125
676
22
5,856
10,682
863
4,338
1,759
3,537
37
1,062
6,646
99
10,802
1,153
717
479
1,193
1,148
313
1,079
402
42,674
30,456
2013
7,096
661
17
5,965
10,873
907
4,398
1,779
3,582
40
1,082
6,766
102
10,959
1,171
727
486
1,218
1,172
321
1,107
401
43,582
31,112
2014
2015
7,071
648
14
6,078
11,069
952
4,460
1,800
3,628
43
1,103
6,889
105
11,119
1,189
738
493
1,243
1,196
328
1,136
400
44,510
31,785
Sectoraloutputsfor(net)exports:SRP1($million)
7,048
635
11
6,192
11,269
997
4,523
1,821
3,676
46
1,125
7,015
108
11,284
1,207
749
501
1,269
1,220
336
1,165
399
45,460
32,474
2016
7,028
624
9
6,309
11,473
1,043
4,588
1,843
3,725
50
1,147
7,144
111
11,453
1,226
760
508
1,295
1,245
344
1,194
398
46,432
33,181
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
Present
value
69,952
Coalsector
7,096
Petroleumsector
779
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
54,276
Agriculture,forestryandfishing
99,250
Mining
7,383
Food,beveragesandtobacco
40,709
Textile,clothing,footwearandleather
16,620
Wood,paperandprintingproducts
33,301
Basicchemicals
275
Nonmetallicmineralproducts
9,820
Basicironandsteel
61,741
Basicnonferrousmetals
883
Fabricatedmetalproducts
101,192
Machineryandequipment
10,782
Miscellenousmanufacturing
6,709
Water,sewerageanddrainage
4,487
Construction
11,007
Roadtransport
10,607
Railwaytransport
2,861
Watertransport
9,834
Airtransport
3,896
Othertransport,servicesandstorage
392,825
Commercialservices
Total
280,507
7,011
613
7
6,429
11,682
1,089
4,655
1,865
3,775
53
1,169
7,275
114
11,626
1,245
771
516
1,322
1,271
353
1,224
398
47,425
33,904
2018
6,997
604
6
6,551
11,895
1,136
4,723
1,888
3,826
56
1,192
7,409
118
11,804
1,265
783
524
1,350
1,297
361
1,255
397
48,442
34,645
2019
6,984
596
5
6,674
12,111
1,180
4,794
1,913
3,880
60
1,215
7,544
121
11,987
1,285
796
532
1,377
1,323
370
1,286
399
49,506
35,447
2020
299
Notes: 2006
7,183
769
125
4,991
9,174
546
3,849
1,592
3,168
14
900
5,704
75
9,537
1,013
631
423
1,001
967
255
868
398
35,644
25,470
2005
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
TableF2
7,251
735
83
5,122
9,410
568
3,943
1,627
3,242
17
926
5,851
78
9,778
1,040
647
433
1,028
993
262
894
407
36,703
26,239
2007
7,314
703
56
5,257
9,653
591
4,040
1,663
3,319
21
952
6,002
82
10,027
1,068
664
444
1,056
1,020
270
920
416
37,794
27,059
2008
7,373
673
38
5,396
9,902
614
4,139
1,700
3,398
25
978
6,158
85
10,283
1,096
680
455
1,084
1,047
278
947
426
38,919
27,923
2009
7,431
644
25
5,538
10,158
637
4,242
1,739
3,479
28
1,006
6,318
88
10,546
1,126
698
467
1,113
1,075
286
975
437
40,077
28,826
2010
7,430
612
17
5,639
10,341
654
4,315
1,766
3,536
31
1,025
6,432
90
10,733
1,147
710
475
1,134
1,096
292
995
444
40,950
29,545
2011
7,431
582
12
5,743
10,528
675
4,388
1,793
3,594
34
1,045
6,550
93
10,923
1,168
722
483
1,156
1,117
298
1,017
449
41,823
30,249
2012
7,432
554
8
5,849
10,720
696
4,464
1,821
3,653
37
1,066
6,671
95
11,117
1,189
734
492
1,179
1,139
305
1,039
455
42,715
30,974
2013
7,434
527
6
5,957
10,914
713
4,541
1,850
3,715
40
1,087
6,792
98
11,316
1,212
747
501
1,201
1,160
311
1,061
464
43,653
31,765
2014
2015
7,439
504
4
6,067
11,112
730
4,621
1,880
3,778
42
1,108
6,915
100
11,522
1,235
761
510
1,224
1,182
317
1,083
472
44,613
32,579
Sectoraloutputsfor(net)exports:PPP2($million)
7,447
482
3
6,179
11,314
747
4,703
1,911
3,843
45
1,129
7,041
103
11,732
1,258
775
519
1,247
1,204
324
1,106
481
45,595
33,415
2016
7,459
463
2
6,293
11,521
763
4,787
1,942
3,910
48
1,151
7,170
105
11,948
1,282
789
528
1,271
1,227
331
1,129
490
46,600
34,273
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
Present
value
71,959
Coalsector
6,331
Petroleumsector
645
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
54,220
Agriculture,forestryandfishing
99,475
Mining
6,229
Food,beveragesandtobacco
41,551
Textile,clothing,footwearandleather
17,038
Wood,paperandprintingproducts
34,081
Basicchemicals
270
Nonmetallicmineralproducts
9,844
Basicironandsteel
61,873
Basicnonferrousmetals
859
Fabricatedmetalproducts
103,285
Machineryandequipment
11,022
Miscellenousmanufacturing
6,830
Water,sewerageanddrainage
4,573
Construction
10,906
Roadtransport
10,535
Railwaytransport
2,804
Watertransport
9,561
Airtransport
4,272
Othertransport,servicesandstorage
393,385
Commercialservices
Total
284,477
7,473
445
1
6,410
11,732
780
4,874
1,975
3,978
51
1,174
7,302
108
12,169
1,307
804
538
1,295
1,250
338
1,153
499
47,629
35,154
2018
7,491
429
1
6,529
11,948
796
4,962
2,008
4,048
55
1,197
7,436
110
12,396
1,332
819
548
1,320
1,274
345
1,176
509
48,682
36,059
2019
7,511
415
1
6,651
12,169
812
5,053
2,043
4,121
58
1,221
7,573
113
12,629
1,358
834
558
1,345
1,298
352
1,201
520
49,759
36,986
2020
300
Notes: 2006
6,940
749
89
4,966
9,117
584
3,799
1,569
3,125
13
894
5,669
76
9,412
999
624
417
1,000
965
256
876
382
35,584
25,390
2005
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
TableF2
6,763
699
43
5,072
9,296
643
3,843
1,582
3,155
16
914
5,781
79
9,527
1,012
632
423
1,026
989
265
910
375
36,582
26,118
2007
6,585
654
22
5,181
9,480
704
3,890
1,596
3,188
19
933
5,897
82
9,649
1,025
640
428
1,053
1,014
274
944
369
37,612
26,904
2008
6,413
614
11
5,293
9,670
764
3,938
1,610
3,221
22
954
6,015
86
9,775
1,039
649
434
1,080
1,039
283
979
363
38,672
27,728
2009
6,250
578
6
5,408
9,866
828
3,988
1,624
3,256
26
975
6,139
89
9,906
1,053
658
440
1,108
1,065
293
1,014
356
39,751
28,555
2010
6,051
543
3
5,483
9,990
884
4,010
1,629
3,270
28
988
6,218
92
9,966
1,060
662
443
1,129
1,084
300
1,043
347
40,545
29,187
2011
5,865
512
2
5,560
10,118
939
4,034
1,634
3,285
30
1,002
6,299
94
10,031
1,067
666
446
1,149
1,103
308
1,072
338
41,357
29,832
2012
5,691
485
1
5,639
10,250
994
4,060
1,639
3,301
32
1,016
6,383
97
10,100
1,074
671
449
1,170
1,122
316
1,101
330
42,189
30,489
2013
5,527
462
0
5,719
10,383
1,045
4,088
1,647
3,320
35
1,031
6,466
100
10,175
1,083
677
452
1,191
1,140
323
1,129
323
43,063
31,199
2014
2015
5,376
441
0
5,802
10,521
1,096
4,119
1,655
3,340
37
1,045
6,552
102
10,256
1,091
683
456
1,212
1,160
331
1,158
317
43,958
31,925
Sectoraloutputsfor(net)exports:SRP2($million)
5,237
424
0
5,886
10,663
1,145
4,152
1,664
3,363
39
1,060
6,641
105
10,343
1,101
689
460
1,234
1,179
338
1,188
311
44,876
32,667
2016
5,109
409
0
5,973
10,809
1,195
4,187
1,674
3,387
42
1,076
6,732
108
10,435
1,111
696
464
1,255
1,199
346
1,217
305
45,817
33,425
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
Present
value
60,933
Coalsector
5,913
Petroleumsector
502
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
52,843
Agriculture,forestryandfishing
96,400
Mining
8,147
Food,beveragesandtobacco
38,927
Textile,clothing,footwearandleather
15,862
Wood,paperandprintingproducts
31,792
Basicchemicals
242
Nonmetallicmineralproducts
9,518
Basicironandsteel
59,986
Basicnonferrousmetals
870
Fabricatedmetalproducts
96,674
Machineryandequipment
10,274
Miscellenousmanufacturing
6,421
Water,sewerageanddrainage
4,292
Construction
10,847
Roadtransport
10,421
Railwaytransport
2,874
Watertransport
9,956
Airtransport
3,458
Othertransport,servicesandstorage
389,987
Commercialservices
Total
281,065
4,990
396
0
6,062
10,960
1,243
4,225
1,685
3,413
44
1,092
6,826
110
10,534
1,122
703
469
1,278
1,220
354
1,247
301
46,780
34,202
2018
4,880
385
0
6,153
11,114
1,292
4,265
1,697
3,441
46
1,109
6,922
113
10,638
1,133
710
474
1,301
1,240
362
1,277
296
47,767
34,996
2019
4,779
376
0
6,247
11,274
1,340
4,307
1,710
3,471
49
1,126
7,021
116
10,748
1,145
718
479
1,324
1,261
370
1,308
292
48,777
35,809
2020
301
Notes: 7,147
755
107
4,985
9,162
546
3,844
1,590
3,164
14
899
5,696
75
9,523
1,012
630
422
1,000
966
255
868
397
35,632
25,464
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
7,172
708
61
5,109
9,385
567
3,932
1,623
3,234
17
923
5,836
78
9,751
1,037
645
432
1,026
991
262
893
405
36,680
26,249
2007
7,189
665
35
5,237
9,615
589
4,024
1,657
3,306
20
948
5,979
81
9,986
1,063
661
442
1,052
1,017
270
919
414
37,759
27,097
2008
7,201
624
21
5,367
9,851
612
4,118
1,692
3,380
24
973
6,127
84
10,227
1,090
677
453
1,080
1,043
277
945
423
38,871
27,992
2009
7,212
586
12
5,502
10,093
635
4,214
1,728
3,456
27
999
6,278
87
10,476
1,118
693
464
1,107
1,070
285
973
433
40,016
28,929
2010
7,168
547
7
5,596
10,264
654
4,281
1,752
3,509
30
1,017
6,386
89
10,647
1,137
704
471
1,128
1,089
291
993
438
40,857
29,643
2011
7,126
511
4
5,693
10,438
674
4,349
1,777
3,562
33
1,036
6,496
92
10,822
1,157
715
479
1,148
1,109
297
1,014
443
41,716
30,378
2012
7,085
478
2
5,790
10,613
690
4,419
1,804
3,618
35
1,055
6,605
94
11,003
1,177
726
487
1,169
1,129
303
1,035
450
42,619
31,180
2013
7,049
449
1
5,889
10,792
705
4,492
1,831
3,675
38
1,074
6,717
96
11,189
1,198
739
495
1,190
1,149
309
1,057
457
43,544
32,004
2014
7,017
422
1
5,991
10,976
720
4,566
1,859
3,734
40
1,093
6,831
98
11,380
1,219
751
503
1,211
1,169
316
1,078
465
44,491
32,851
2015
6,989
399
0
6,094
11,163
735
4,642
1,888
3,795
43
1,113
6,948
101
11,576
1,241
764
512
1,233
1,190
322
1,100
474
45,460
33,719
2016
6,965
378
0
6,200
11,355
749
4,721
1,917
3,857
46
1,134
7,067
103
11,778
1,263
777
521
1,255
1,211
329
1,122
483
46,452
34,610
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
2006
Sectoraloutputsfor(net)exports:PPPforEarlyaction($million)
2005
TableF2
Present
value
69,773
Coalsector
5,868
Petroleumsector
558
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
53,829
Agriculture,forestryandfishing
98,772
Mining
6,185
Food,beveragesandtobacco
41,262
Textile,clothing,footwearandleather
16,927
Wood,paperandprintingproducts
33,851
Basicchemicals
261
Nonmetallicmineralproducts
9,770
Basicironandsteel
61,442
Basicnonferrousmetals
851
Fabricatedmetalproducts
102,546
Machineryandequipment
10,940
Miscellenousmanufacturing
6,779
Water,sewerageanddrainage
4,540
Construction
10,842
Roadtransport
10,471
Railwaytransport
2,796
Watertransport
9,535
Airtransport
4,235
Othertransport,servicesandstorage
392,722
Commercialservices
Total
285,704
6,945
359
0
6,308
11,550
763
4,802
1,948
3,921
49
1,155
7,189
105
11,985
1,286
791
530
1,278
1,233
335
1,145
492
47,467
35,524
2018
6,928
342
0
6,419
11,751
777
4,885
1,979
3,987
52
1,176
7,314
108
12,197
1,310
805
539
1,301
1,255
342
1,168
501
48,505
36,462
2019
6,915
327
0
6,532
11,955
790
4,970
2,012
4,055
55
1,198
7,441
110
12,416
1,334
819
549
1,324
1,277
349
1,191
511
49,567
37,422
2020
302
Notes: 7,039
768
117
4,980
9,144
574
3,817
1,577
3,140
14
897
5,685
76
9,457
1,004
626
419
1,001
967
256
874
387
35,610
25,415
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
6,965
735
73
5,099
9,350
625
3,879
1,598
3,186
17
919
5,814
79
9,618
1,022
637
426
1,029
993
265
906
385
36,635
26,132
2007
6,888
704
46
5,221
9,561
677
3,943
1,619
3,233
20
942
5,946
83
9,784
1,040
649
434
1,057
1,019
274
939
383
37,690
26,898
2008
6,811
676
29
5,347
9,779
730
4,009
1,640
3,282
24
965
6,082
86
9,955
1,059
660
442
1,086
1,046
283
973
381
38,778
27,702
2009
6,736
650
19
5,476
10,002
784
4,077
1,663
3,333
27
989
6,222
90
10,132
1,079
673
450
1,115
1,074
292
1,007
380
39,899
28,539
2010
6,613
621
12
5,565
10,154
834
4,116
1,674
3,360
30
1,006
6,319
92
10,234
1,090
679
454
1,137
1,094
299
1,035
374
40,717
29,153
2011
6,497
596
8
5,656
10,310
884
4,156
1,686
3,388
32
1,022
6,417
95
10,339
1,102
686
459
1,160
1,115
307
1,063
369
41,553
29,782
2012
6,388
573
6
5,750
10,470
935
4,198
1,698
3,418
35
1,040
6,518
98
10,449
1,114
693
464
1,182
1,136
315
1,091
363
42,408
30,426
2013
6,284
552
4
5,845
10,633
986
4,241
1,711
3,449
38
1,057
6,622
101
10,563
1,126
701
469
1,205
1,158
322
1,120
358
43,282
31,085
2014
6,187
533
3
5,943
10,801
1,037
4,286
1,724
3,481
40
1,075
6,728
104
10,681
1,139
709
474
1,229
1,180
330
1,149
353
44,176
31,757
2015
6,094
517
2
6,042
10,970
1,084
4,334
1,739
3,515
43
1,093
6,834
107
10,804
1,153
717
480
1,253
1,201
338
1,178
350
45,118
32,492
2016
6,009
502
1
6,143
11,143
1,131
4,383
1,755
3,551
46
1,112
6,942
110
10,933
1,167
726
486
1,277
1,224
346
1,208
347
46,083
33,245
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
2006
Sectoraloutputsfor(net)exports:SRPforearlyaction($million)
2005
TableF2
Present
value
65,291
Coalsector
6,458
Petroleumsector
604
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
53,571
Agriculture,forestryandfishing
97,843
Mining
7,802
Food,beveragesandtobacco
39,809
Textile,clothing,footwearandleather
16,233
Wood,paperandprintingproducts
32,536
Basicchemicals
259
Nonmetallicmineralproducts
9,672
Basicironandsteel
60,883
Basicnonferrousmetals
878
Fabricatedmetalproducts
98,913
Machineryandequipment
10,526
Miscellenousmanufacturing
6,561
Water,sewerageanddrainage
4,388
Construction
10,931
Roadtransport
10,520
Railwaytransport
2,870
Watertransport
9,902
Airtransport
3,663
Othertransport,servicesandstorage
391,277
Commercialservices
Total
280,549
5,931
490
1
6,246
11,322
1,177
4,435
1,772
3,589
49
1,131
7,053
113
11,067
1,182
736
492
1,301
1,246
354
1,238
345
47,071
34,017
2018
5,859
479
1
6,353
11,504
1,224
4,488
1,789
3,628
52
1,150
7,167
116
11,207
1,197
745
498
1,326
1,269
362
1,268
343
48,083
34,808
2019
5,794
470
0
6,461
11,691
1,271
4,544
1,808
3,669
54
1,170
7,284
119
11,352
1,213
755
505
1,352
1,293
371
1,299
342
49,119
35,618
2020
303
Notes: 7,324
825
197
5,017
9,221
547
3,869
1,600
3,185
15
905
5,732
76
9,589
1,019
635
425
1,005
971
255
869
401
35,689
25,495
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
7,551
847
203
5,176
9,506
570
3,985
1,643
3,276
19
936
5,910
80
9,885
1,052
655
438
1,036
1,001
263
896
413
36,795
26,248
2007
7,784
869
209
5,339
9,801
594
4,104
1,688
3,370
23
967
6,093
83
10,191
1,086
675
451
1,068
1,033
271
924
426
37,935
27,024
2008
8,025
892
215
5,507
10,104
619
4,227
1,734
3,468
27
1,000
6,281
87
10,506
1,121
696
465
1,102
1,065
280
953
439
39,110
27,824
2009
8,274
915
222
5,681
10,417
645
4,353
1,782
3,568
32
1,033
6,476
91
10,831
1,157
717
480
1,136
1,098
289
982
453
40,322
28,649
2010
8,060
775
26
5,739
10,522
661
4,392
1,796
3,598
33
1,044
6,543
92
10,931
1,169
724
484
1,150
1,112
294
1,001
455
41,121
29,217
2011
7,773
656
3
5,799
10,629
676
4,432
1,810
3,629
35
1,056
6,611
94
11,034
1,180
730
489
1,165
1,125
299
1,020
457
41,940
30,078
2012
7,489
556
0
5,860
10,739
691
4,474
1,825
3,662
37
1,068
6,680
95
11,142
1,192
737
493
1,180
1,139
305
1,039
460
42,778
30,997
2013
7,219
470
0
5,923
10,853
708
4,517
1,840
3,695
39
1,080
6,754
97
11,253
1,205
743
498
1,195
1,154
310
1,059
461
43,613
31,902
2014
6,966
398
0
5,987
10,968
721
4,562
1,857
3,731
40
1,092
6,826
98
11,369
1,218
751
503
1,211
1,169
316
1,078
465
44,495
32,876
2015
6,732
339
0
6,052
11,086
731
4,610
1,875
3,769
42
1,105
6,900
100
11,492
1,231
759
508
1,226
1,183
321
1,098
470
45,399
33,873
2016
6,516
290
0
6,120
11,208
741
4,660
1,894
3,809
44
1,118
6,977
101
11,622
1,246
767
514
1,242
1,198
327
1,117
475
46,324
34,892
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
2006
Sectoraloutputsfor(net)exports:PPPforDelayaction($million)
2005
TableF2
Present
value
72,010
Coalsector
6,654
Petroleumsector
1,147
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
54,186
Agriculture,forestryandfishing
99,419
Mining
6,185
Food,beveragesandtobacco
41,549
Textile,clothing,footwearandleather
17,042
Wood,paperandprintingproducts
34,083
Basicchemicals
269
Nonmetallicmineralproducts
9,837
Basicironandsteel
61,833
Basicnonferrousmetals
857
Fabricatedmetalproducts
103,278
Machineryandequipment
11,021
Miscellenousmanufacturing
6,831
Water,sewerageanddrainage
4,573
Construction
10,897
Roadtransport
10,525
Railwaytransport
2,802
Watertransport
9,550
Airtransport
4,285
Othertransport,servicesandstorage
393,417
Commercialservices
Total
285,509
6,315
250
0
6,188
11,334
748
4,713
1,914
3,851
46
1,132
7,056
103
11,757
1,261
776
520
1,258
1,213
332
1,137
481
47,272
35,932
2018
6,129
216
0
6,259
11,463
755
4,768
1,935
3,895
48
1,146
7,137
104
11,899
1,277
785
526
1,274
1,228
338
1,156
488
48,242
36,994
2019
5,956
189
0
6,332
11,596
761
4,826
1,957
3,941
49
1,160
7,220
106
12,047
1,293
794
532
1,291
1,244
344
1,176
496
49,236
38,077
2020
304
Notes: 7,324
825
197
5,017
9,221
547
3,869
1,600
3,185
15
905
5,732
76
9,589
1,019
635
425
1,005
971
255
869
401
35,689
25,495
7,104
804
191
4,864
8,944
524
3,757
1,558
3,096
11
876
5,560
73
9,301
987
616
412
975
942
248
843
389
34,616
24,765
7,551
847
203
5,176
9,506
570
3,985
1,643
3,276
19
936
5,910
80
9,885
1,052
655
438
1,036
1,001
263
896
413
36,795
26,248
2007
7,784
869
209
5,339
9,801
594
4,104
1,688
3,370
23
967
6,093
83
10,191
1,086
675
451
1,068
1,033
271
924
426
37,935
27,024
2008
8,025
892
215
5,507
10,104
619
4,227
1,734
3,468
27
1,000
6,281
87
10,506
1,121
696
465
1,102
1,065
280
953
439
39,110
27,824
2009
8,274
915
222
5,681
10,417
645
4,353
1,782
3,568
32
1,033
6,476
91
10,831
1,157
717
480
1,136
1,098
289
982
453
40,322
28,649
2010
7,907
824
73
5,740
10,507
717
4,349
1,775
3,558
34
1,043
6,533
93
10,823
1,156
717
480
1,155
1,115
297
1,014
436
41,096
29,131
2011
7,524
744
26
5,800
10,600
788
4,346
1,768
3,550
35
1,053
6,593
96
10,821
1,156
718
480
1,174
1,132
305
1,047
420
41,890
29,773
2012
7,154
676
9
5,863
10,696
858
4,347
1,763
3,545
37
1,063
6,654
99
10,825
1,156
719
480
1,194
1,149
313
1,079
405
42,703
30,469
2013
6,808
616
3
5,928
10,797
930
4,349
1,758
3,540
39
1,074
6,719
101
10,834
1,157
719
481
1,214
1,167
321
1,112
389
43,516
31,150
2014
6,489
565
1
5,995
10,903
1,001
4,353
1,754
3,538
41
1,086
6,788
104
10,850
1,158
721
482
1,234
1,185
329
1,144
373
44,348
31,844
2015
6,195
521
0
6,064
11,013
1,070
4,361
1,751
3,538
44
1,098
6,858
107
10,873
1,161
722
483
1,255
1,204
338
1,177
358
45,201
32,548
2016
5,923
484
0
6,134
11,125
1,133
4,372
1,751
3,542
46
1,110
6,929
109
10,904
1,164
725
484
1,276
1,222
346
1,209
346
46,102
33,311
2017
ThisTableshowstheresultscalculatedusingtheassumptionofeconomicgrowthgiveninSection6.2,pp.138139;
Theshareofeachsectorintotal(net)exportsisassumedtovaryaccordingtoinputssubstitution,calculatedfromEquation520,p.110.
2006
Sectoraloutputsfor(net)exports:SRPforDelayaction($million)
2005
TableF2
Present
value
70,153
Coalsector
7,272
Petroleumsector
1,195
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
54,226
Agriculture,forestryandfishing
99,166
Mining
7,334
Food,beveragesandtobacco
40,698
Textile,clothing,footwearandleather
16,620
Wood,paperandprintingproducts
33,296
Basicchemicals
274
Nonmetallicmineralproducts
9,811
Basicironandsteel
61,683
Basicnonferrousmetals
881
Fabricatedmetalproducts
101,160
Machineryandequipment
10,779
Miscellenousmanufacturing
6,709
Water,sewerageanddrainage
4,486
Construction
10,995
Roadtransport
10,594
Railwaytransport
2,858
Watertransport
9,821
Airtransport
3,907
Othertransport,servicesandstorage
392,819
Commercialservices
Total
281,144
5,676
453
0
6,207
11,242
1,195
4,386
1,752
3,548
48
1,122
7,002
112
10,943
1,168
728
486
1,297
1,241
354
1,241
335
47,028
34,090
2018
5,451
428
0
6,282
11,364
1,255
4,403
1,754
3,557
50
1,135
7,078
115
10,991
1,173
732
489
1,318
1,260
363
1,274
324
47,977
34,885
2019
5,244
406
0
6,360
11,490
1,314
4,424
1,757
3,568
52
1,149
7,158
117
11,046
1,179
737
491
1,339
1,279
371
1,306
315
48,952
35,696
2020
305
Note:
579
978
386
2,563
241
89
35
35
3,043
37,905
99
85,023
775
151
76
121
250
17,784
150,133
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
597
1,008
398
2,642
248
91
37
36
3,137
39,077
102
87,659
799
156
79
125
258
18,332
154,780
2007
2009
615 634
1,039 1,071
410 423
2,724 2,808
256 263
94 97
38 39
37 38
3,233 3,333
40,286 41,532
105 108
90,377 93,180
824 849
160 165
81 84
129 133
266 274
18,898 19,481
159,572 164,513
2008
2011
654 669
1,104 1,129
436 446
2,895 2,961
272 278
100 102
40 41
39 40
3,436 3,515
42,817 43,796
112 114
96,070 98,269
876 896
170 174
86 88
137 140
282 289
20,082 20,542
169,608 173,489
2010
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
2006
684
1,155
456
3,029
284
105
42
41
3,595
44,799
117
100,519
916
178
90
143
296
21,012
177,461
2012
700
1,182
466
3,098
291
107
43
42
3,677
45,824
119
102,820
937
182
92
146
302
21,493
181,523
2013
716
1,209
477
3,169
297
110
44
43
3,762
46,873
122
105,175
959
187
95
150
309
21,985
185,679
2014
732
1,236
488
3,242
304
112
45
44
3,848
47,946
125
107,583
981
191
97
153
316
22,488
189,931
2015
2016
749
1,265
499
3,316
311
115
46
45
3,936
49,044
128
110,047
1,003
195
99
156
324
23,003
194,280
Sectoralsupplyofinvestmentgoods:BCscenario($million)
2005
TableF3
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,423
Agriculture,forestryandfishing
10,850
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,282
28,443
Wood,paperandprintingproducts
2,669
Basicchemicals
983
Nonmetallicmineralproducts
394
Basicironandsteel
387
Basicnonferrousmetals
33,762
Fabricatedmetalproducts
420,660
Machineryandequipment
1,096
Miscellenousmanufacturing
Water,sewerageanddrainage
943,745
Construction
8,603
Roadtransport
1,675
Railwaytransport
848
Watertransport
1,342
Airtransport
Othertransport,servicesandstorage 2,776
197,323
Commercialservices
Total
1,666,260
2018
766 783
1,294 1,323
511 522
3,392 3,469
318 325
117 120
47 48
46 47
4,026 4,118
50,167 51,316
131 134
112,568 115,146
1,026 1,049
200 204
101 103
160 164
331 339
23,529 24,068
198,729 203,281
2017
2020
801 820
1,354 1,385
534 547
3,549 3,630
333 341
123 125
49 50
48 49
4,212 4,309
52,492 53,694
137 140
117,784 120,482
1,073 1,098
209 214
106 108
168 171
346 354
24,620 25,183
207,938 212,701
2019
306
Note:
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
2005
2007
615
1,039
410
2,723
256
94
38
37
3,233
40,275
105
90,352
824
160
81
129
266
18,893
159,527
2008
2010
634 653
1,071 1,104
423 436
2,807 2,893
263 271
97 100
39 40
38 39
3,332 3,435
41,517 42,797
108 111
93,146 96,027
849 875
165 170
84 86
132 137
274 282
19,474 20,073
164,453 169,531
2009
2012
668 684
1,129 1,155
446 456
2,959 3,027
278 284
102 105
41 42
40 41
3,513 3,593
43,773 44,771
114 117
98,217 100,457
895 916
174 178
88 90
140 143
289 295
20,531 20,999
173,397 177,352
2011
699
1,181
466
3,096
290
107
43
42
3,675
45,792
119
102,749
937
182
92
146
302
21,478
181,397
2013
2015
715 731
1,208 1,235
477 488
3,167 3,239
297 304
109 112
44 45
43 44
3,759 3,844
46,837 47,906
122 125
105,093 107,491
958 980
186 191
94 97
149 153
309 316
21,968 22,470
185,536 189,770
2014
Sectoralsupplyofinvestmentgoods:PPP1 ($million)
579 597
978 1,008
386 398
2,563 2,642
241 248
89 91
35 37
35 36
3,043 3,136
37,902 39,070
99 102
85,015 87,642
775 799
151 156
76 79
121 125
250 258
17,782 18,329
150,119 154,751
2006
TableF3
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,420
Agriculture,forestryandfishing
10,844
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,280
28,428
Wood,paperandprintingproducts
2,667
Basicchemicals
983
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,740
Fabricatedmetalproducts
420,356
Machineryandequipment
1,095
Miscellenousmanufacturing
Water,sewerageanddrainage
942,933
Construction
8,598
Roadtransport
1,674
Railwaytransport
847
Watertransport
1,341
Airtransport
Othertransport,servicesandstorage 2,774
197,206
Commercialservices
Total
1,664,965
2017
748 765
1,264 1,292
499 510
3,313 3,388
311 318
115 117
46 47
45 46
3,932 4,020
48,999 50,089
128 130
109,945 112,352
1,002 1,024
195 199
99 101
156 160
323 331
22,982 23,500
194,101 198,391
2016
783
1,321
522
3,465
325
120
48
47
4,111
51,204
133
114,814
1,047
204
103
163
338
24,030
202,778
2018
2020
800 819
1,351 1,382
533 545
3,544 3,624
332 340
122 125
49 50
48 49
4,203 4,297
52,344 53,511
136 140
117,332 119,906
1,071 1,095
208 213
105 108
167 171
346 353
24,572 25,126
207,265 211,853
2019
307
Note:
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
2005
2007
615
1,039
410
2,722
255
94
38
37
3,231
40,261
105
90,320
823
160
81
128
266
18,887
159,473
2008
2010
634 653
1,070 1,103
422 435
2,806 2,892
263 271
97 100
39 40
38 39
3,331 3,433
41,498 42,774
108 111
93,104 95,974
849 875
165 170
84 86
132 136
274 282
19,466 20,063
164,380 169,440
2009
2012
668 683
1,128 1,154
445 455
2,958 3,025
277 284
102 105
41 42
40 41
3,511 3,590
43,745 44,738
114 117
98,154 100,383
895 915
174 178
88 90
140 143
289 295
20,519 20,985
173,287 177,223
2011
699
1,180
466
3,093
290
107
43
42
3,670
45,729
119
102,571
935
182
92
146
302
21,455
181,121
2013
2015
714 731
1,206 1,233
476 487
3,163 3,235
297 303
109 112
44 45
43 44
3,752 3,836
46,743 47,779
122 125
104,807 107,095
956 977
186 190
94 96
149 152
309 315
21,937 22,430
185,108 189,185
2014
Sectoralsupplyofinvestmentgoods:SRP1($million)
579 597
978 1,008
386 398
2,563 2,641
240 248
89 91
35 37
35 36
3,042 3,135
37,897 39,061
99 102
85,004 87,621
775 799
151 156
76 79
121 125
250 258
17,780 18,325
150,100 154,715
2006
TableF3
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,416
Agriculture,forestryandfishing
10,835
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,276
28,408
Wood,paperandprintingproducts
2,665
Basicchemicals
982
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,707
Fabricatedmetalproducts
419,872
Machineryandequipment
1,094
Miscellenousmanufacturing
Water,sewerageanddrainage
941,505
Construction
8,589
Roadtransport
1,671
Railwaytransport
846
Watertransport
1,340
Airtransport
Othertransport,servicesandstorage 2,772
197,039
Commercialservices
Total
1,662,798
2017
747 764
1,261 1,290
498 509
3,308 3,383
310 317
114 117
46 47
45 46
3,922 4,010
48,839 49,924
127 130
109,433 111,825
999 1,021
194 199
98 101
156 159
323 330
22,934 23,449
193,355 197,620
2016
782
1,319
520
3,459
324
119
48
47
4,100
51,033
133
114,270
1,044
203
103
163
337
23,977
201,982
2018
2020
799 817
1,349 1,379
532 545
3,538 3,619
332 339
122 125
49 50
48 49
4,192 4,288
52,167 53,396
136 139
116,771 119,593
1,068 1,092
207 212
105 108
166 170
345 353
24,517 25,081
206,442 211,356
2019
308
Note:
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
2005
2007
615
1,039
410
2,723
255
94
38
37
3,232
40,264
105
90,327
824
160
81
128
266
18,888
159,485
2008
2010
634 653
1,070 1,103
422 435
2,806 2,892
263 271
97 100
39 40
38 39
3,331 3,433
41,502 42,779
108 111
93,113 95,987
849 875
165 170
84 86
132 137
274 282
19,468 20,065
164,396 169,461
2009
2012
668 683
1,128 1,154
445 455
2,958 3,025
278 284
102 105
41 42
40 41
3,511 3,590
43,752 44,721
114 117
98,169 100,310
895 915
174 178
88 90
140 143
289 295
20,522 20,982
173,313 177,128
2011
699
1,180
466
3,093
290
107
43
42
3,670
45,713
119
102,499
935
182
92
146
302
21,453
181,030
2013
2015
715 731
1,206 1,234
476 488
3,164 3,237
297 303
109 112
44 45
43 44
3,754 3,841
46,788 47,890
122 125
104,975 107,511
957 979
186 191
94 97
149 153
309 316
21,946 22,450
185,335 189,744
2014
Sectoralsupplyofinvestmentgoods:PPP2($million)
579 597
978 1,008
386 398
2,563 2,641
240 248
89 91
35 37
35 36
3,042 3,136
37,898 39,063
99 102
85,006 87,626
775 799
151 156
76 79
121 125
250 258
17,780 18,326
150,104 154,722
2006
TableF3
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,417
Agriculture,forestryandfishing
10,836
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,280
28,420
Wood,paperandprintingproducts
2,665
Basicchemicals
982
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,730
Fabricatedmetalproducts
420,452
Machineryandequipment
1,094
Miscellenousmanufacturing
Water,sewerageanddrainage
943,680
Construction
8,597
Roadtransport
1,674
Railwaytransport
848
Watertransport
1,342
Airtransport
Othertransport,servicesandstorage 2,772
197,151
Commercialservices
Total
1,665,722
2017
747 764
1,261 1,290
499 511
3,311 3,387
310 317
114 117
46 47
45 46
3,929 4,019
49,017 50,172
127 130
110,109 112,769
1,002 1,025
195 200
99 101
156 160
323 330
22,967 23,495
194,258 198,881
2016
782
1,319
523
3,465
325
120
48
47
4,112
51,354
133
115,494
1,049
204
104
164
337
24,036
203,615
2018
2020
800 818
1,349 1,380
535 547
3,545 3,626
332 339
122 125
49 50
48 49
4,207 4,304
52,564 53,803
136 139
118,284 121,142
1,074 1,099
209 214
106 108
168 172
345 353
24,589 25,155
208,461 213,424
2019
309
Note:
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
2005
2007
614
1,038
410
2,721
255
94
38
37
3,230
40,237
105
90,268
823
160
81
128
266
18,876
159,380
2008
2010
633 653
1,070 1,102
422 435
2,804 2,889
263 271
97 100
39 40
38 39
3,328 3,429
41,467 42,715
108 111
93,035 95,812
848 874
165 170
84 86
132 136
274 282
19,452 20,041
164,259 169,184
2009
2012
667 682
1,127 1,152
445 455
2,954 3,021
277 283
102 104
41 42
40 41
3,505 3,582
43,654 44,616
114 116
97,885 100,005
893 913
174 178
88 90
139 142
288 295
20,488 20,945
172,880 176,661
2011
698
1,178
465
3,088
290
107
43
42
3,662
45,599
119
102,173
933
181
92
145
301
21,413
180,529
2013
2015
713 730
1,204 1,231
476 487
3,159 3,231
296 303
109 112
44 45
43 44
3,746 3,832
46,667 47,762
122 124
104,630 107,147
955 977
186 190
94 96
149 152
308 315
21,903 22,405
184,803 189,181
2014
Sectoralsupplyofinvestmentgoods:SRP2($million)
579 596
978 1,007
386 397
2,562 2,640
240 248
89 91
35 37
35 36
3,041 3,134
37,889 39,045
99 102
84,986 87,585
775 799
151 155
76 79
121 125
250 258
17,776 18,318
150,068 154,651
2006
TableF3
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,411
Agriculture,forestryandfishing
10,824
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,275
28,391
Wood,paperandprintingproducts
2,662
Basicchemicals
981
Nonmetallicmineralproducts
393
Basicironandsteel
386
Basicnonferrousmetals
33,686
Fabricatedmetalproducts
419,815
Machineryandequipment
1,093
Miscellenousmanufacturing
Water,sewerageanddrainage
941,904
Construction
8,585
Roadtransport
1,671
Railwaytransport
846
Watertransport
1,340
Airtransport
Othertransport,servicesandstorage 2,769
196,916
Commercialservices
Total
1,662,949
2017
746 763
1,259 1,287
498 510
3,305 3,381
310 317
114 117
46 47
45 46
3,920 4,010
48,883 50,031
127 130
109,726 112,368
999 1,023
194 199
98 101
156 160
322 329
22,918 23,444
193,667 198,262
2016
780
1,316
521
3,459
324
119
48
47
4,102
51,207
133
115,076
1,046
204
103
163
337
23,983
202,969
2018
2020
798 816
1,346 1,377
534 546
3,538 3,619
331 339
122 125
49 50
48 49
4,197 4,293
52,411 53,644
136 139
117,850 120,691
1,071 1,096
208 213
106 108
167 171
344 352
24,534 25,099
207,790 212,728
2019
310
Note:
2007
579 596
978 1,008
386 398
2,563 2,641
240 248
89 91
35 37
35 36
3,042 3,135
37,896 39,059
99 102
85,002 87,618
775 799
151 156
76 79
121 125
250 258
17,780 18,324
150,097 154,708
2006
615
1,038
410
2,722
255
94
38
37
3,231
40,258
105
90,315
823
160
81
128
266
18,886
159,464
2008
2010
634 653
1,070 1,103
422 435
2,806 2,892
263 271
97 100
39 40
38 39
3,330 3,432
41,495 42,771
108 111
93,098 95,967
849 875
165 170
84 86
132 136
274 282
19,465 20,062
164,369 169,427
2009
2012
668 683
1,128 1,153
445 455
2,957 3,024
277 284
102 104
41 42
40 41
3,509 3,587
43,717 44,684
114 116
98,056 100,192
894 914
174 178
88 90
139 143
289 295
20,511 20,971
173,150 176,956
2011
698
1,179
466
3,093
290
107
43
42
3,670
45,734
119
102,609
935
182
92
146
302
21,452
181,159
2013
2015
714 730
1,206 1,233
477 488
3,164 3,237
297 303
109 112
44 45
43 44
3,754 3,840
46,809 47,910
122 125
105,085 107,621
957 979
186 191
94 97
149 153
308 315
21,944 22,448
185,463 189,871
2014
2017
747 764
1,261 1,289
499 511
3,311 3,387
310 317
114 117
46 47
45 46
3,929 4,019
49,037 50,192
127 130
110,219 112,879
1,002 1,025
195 200
99 101
157 160
323 330
22,964 23,492
194,385 199,007
2016
Sectoralsupplyofinvestmentgoods:PPPforEarlyaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
2005
TableF3
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,415
Agriculture,forestryandfishing
10,833
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,280
28,417
Wood,paperandprintingproducts
2,665
Basicchemicals
982
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,725
Fabricatedmetalproducts
420,457
Machineryandequipment
1,094
Miscellenousmanufacturing
Water,sewerageanddrainage
943,852
Construction
8,597
Roadtransport
1,674
Railwaytransport
848
Watertransport
1,342
Airtransport
Othertransport,servicesandstorage 2,771
197,123
Commercialservices
Total
1,665,854
781
1,318
523
3,465
324
120
48
47
4,112
51,373
133
115,605
1,049
204
104
164
337
24,032
203,740
2018
2020
799 817
1,348 1,379
535 547
3,544 3,626
332 339
122 125
49 50
48 49
4,206 4,303
52,583 53,822
136 139
118,396 121,254
1,074 1,099
209 214
106 109
168 172
345 353
24,586 25,152
208,587 213,550
2019
311
Note:
2007
579 596
978 1,008
386 398
2,563 2,641
240 248
89 91
35 37
35 36
3,042 3,135
37,893 39,053
99 102
84,995 87,604
775 799
151 156
76 79
121 125
250 258
17,778 18,321
150,085 154,683
2006
615
1,038
410
2,722
255
94
38
37
3,231
40,249
105
90,294
823
160
81
128
266
18,881
159,427
2008
2010
633 653
1,070 1,103
422 435
2,805 2,891
263 271
97 100
39 40
38 39
3,329 3,431
41,483 42,755
108 111
93,070 95,932
848 874
165 170
84 86
132 136
274 282
19,459 20,054
164,319 169,365
2009
2012
668 683
1,127 1,153
445 455
2,956 3,022
277 283
102 104
41 42
40 41
3,507 3,586
43,698 44,663
114 116
98,014 100,142
894 914
174 178
88 90
139 142
288 295
20,503 20,961
173,075 176,870
2011
698
1,178
465
3,091
290
107
43
42
3,665
45,650
119
102,319
934
182
92
146
301
21,430
180,752
2013
2015
714 730
1,205 1,232
476 486
3,160 3,232
296 303
109 112
44 45
43 44
3,747 3,831
46,659 47,692
122 124
104,546 106,822
955 976
186 190
94 96
149 152
308 315
21,911 22,402
184,723 188,783
2014
2017
747 764
1,260 1,288
498 509
3,306 3,381
310 317
114 117
46 47
45 46
3,919 4,009
48,812 49,959
127 130
109,397 112,035
999 1,022
194 199
98 101
156 159
322 330
22,916 23,442
193,265 197,854
2016
Sectoralsupplyofinvestmentgoods:SRPforearlyaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
2005
TableF3
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,413
Agriculture,forestryandfishing
10,829
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,275
28,399
Wood,paperandprintingproducts
2,663
Basicchemicals
981
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,694
Fabricatedmetalproducts
419,788
Machineryandequipment
1,094
Miscellenousmanufacturing
Water,sewerageanddrainage
941,510
Construction
8,586
Roadtransport
1,671
Railwaytransport
846
Watertransport
1,339
Airtransport
Othertransport,servicesandstorage 2,770
196,963
Commercialservices
Total
1,662,601
781
1,317
521
3,459
324
119
48
47
4,101
51,134
133
114,737
1,046
203
103
163
337
23,981
202,555
2018
2020
799 817
1,347 1,378
533 546
3,538 3,620
331 339
122 125
49 50
48 49
4,196 4,292
52,338 53,570
136 139
117,505 120,341
1,070 1,095
208 213
105 108
167 171
345 352
24,532 25,097
207,370 212,301
2019
312
Note:
2005
2007
579 597
978 1,008
386 398
2,563 2,642
241 248
89 91
35 37
35 36
3,043 3,137
37,905 39,077
99 102
85,023 87,659
775 799
151 156
76 79
121 125
250 258
17,784 18,332
150,133 154,780
2006
615
1,039
410
2,724
256
94
38
37
3,233
40,286
105
90,377
824
160
81
129
266
18,898
159,572
2008
2010
634 654
1,071 1,104
423 436
2,808 2,895
263 272
97 100
39 40
38 39
3,333 3,436
41,532 42,817
108 112
93,180 96,070
849 876
165 170
84 86
133 137
274 282
19,481 20,082
164,513 169,608
2009
2012
668 683
1,129 1,154
446 456
2,960 3,026
278 284
102 105
41 42
40 41
3,513 3,592
43,776 44,759
114 117
98,223 100,430
895 915
174 178
88 90
140 143
289 295
20,532 20,994
173,408 177,304
2011
699
1,180
466
3,094
290
107
43
42
3,673
45,766
119
102,690
936
182
92
146
302
21,467
181,294
2013
2015
715 731
1,207 1,234
476 487
3,164 3,236
297 303
109 112
44 45
43 44
3,754 3,840
46,770 47,862
122 125
104,907 107,422
957 979
186 191
94 96
149 153
309 316
21,944 22,444
185,247 189,618
2014
2017
747 764
1,261 1,289
499 510
3,310 3,385
310 317
114 117
46 47
45 46
3,927 4,017
48,981 50,127
127 130
110,000 112,642
1,001 1,025
195 200
99 101
156 160
323 330
22,956 23,481
194,098 198,688
2016
Sectoralsupplyofinvestmentgoods:PPPforDelayaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
TableF3
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,417
Agriculture,forestryandfishing
10,838
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,280
28,422
Wood,paperandprintingproducts
2,666
Basicchemicals
982
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,735
Fabricatedmetalproducts
420,484
Machineryandequipment
1,095
Miscellenousmanufacturing
Water,sewerageanddrainage
943,736
Construction
8,598
Roadtransport
1,674
Railwaytransport
848
Watertransport
1,342
Airtransport
Othertransport,servicesandstorage 2,773
197,173
Commercialservices
Total
1,665,845
781
1,318
522
3,462
324
120
48
47
4,109
51,301
133
115,349
1,048
204
103
164
337
24,018
203,391
2018
2020
799 817
1,348 1,379
534 547
3,542 3,623
332 339
122 125
49 50
48 49
4,204 4,300
52,504 53,736
136 139
118,124 120,967
1,073 1,097
209 214
106 108
168 172
345 353
24,568 25,132
208,210 213,146
2019
313
Note:
2005
2007
579 597
978 1,008
386 398
2,563 2,642
241 248
89 91
35 37
35 36
3,043 3,137
37,905 39,077
99 102
85,023 87,659
775 799
151 156
76 79
121 125
250 258
17,784 18,332
150,133 154,780
2006
615
1,039
410
2,724
256
94
38
37
3,233
40,286
105
90,377
824
160
81
129
266
18,898
159,572
2008
2010
634 654
1,071 1,104
423 436
2,808 2,895
263 272
97 100
39 40
38 39
3,333 3,436
41,532 42,817
108 112
93,180 96,070
849 876
165 170
84 86
133 137
274 282
19,481 20,082
164,513 169,608
2009
2012
668 683
1,129 1,154
446 456
2,959 3,026
278 284
102 105
41 42
40 41
3,513 3,591
43,773 44,753
114 117
98,216 100,415
895 915
174 178
88 90
140 143
289 295
20,531 20,991
173,396 177,279
2011
699
1,180
466
3,094
290
107
43
42
3,672
45,756
119
102,667
936
182
92
146
302
21,462
181,255
2013
2015
714 730
1,206 1,233
476 487
3,163 3,234
297 303
109 112
44 45
43 44
3,753 3,836
46,757 47,782
122 125
104,877 107,138
956 977
186 190
94 96
149 152
309 315
21,938 22,426
185,195 189,227
2014
2017
747 764
1,261 1,289
498 509
3,306 3,382
310 317
114 117
46 47
45 46
3,921 4,010
48,831 49,972
127 130
109,451 112,075
999 1,022
194 199
98 101
156 159
322 330
22,925 23,448
193,352 197,915
2016
Sectoralsupplyofinvestmentgoods:SRPforDelayaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation534,p.124.
562
949
374
2,487
233
86
34
34
2,952
36,769
96
82,466
752
146
74
117
243
17,252
145,626
TableF3
Present
value
Coalsector
Petroleumsector
Gassector
RenewableElectricity
CoalfiredElectricity
InternalcombustionElectricity
GasturbineElectricity
CombinedcycleElectricity
6,416
Agriculture,forestryandfishing
10,837
Mining
Food,beveragesandtobacco
Textile,clothing,footwearandleather 4,278
28,414
Wood,paperandprintingproducts
2,665
Basicchemicals
982
Nonmetallicmineralproducts
393
Basicironandsteel
387
Basicnonferrousmetals
33,720
Fabricatedmetalproducts
420,160
Machineryandequipment
1,094
Miscellenousmanufacturing
Water,sewerageanddrainage
942,581
Construction
8,593
Roadtransport
1,673
Railwaytransport
847
Watertransport
1,341
Airtransport
Othertransport,servicesandstorage 2,772
197,098
Commercialservices
Total
1,664,252
781
1,318
521
3,459
324
119
48
47
4,102
51,140
133
114,764
1,046
203
103
163
337
23,983
202,592
2018
2020
799 817
1,347 1,378
533 545
3,538 3,619
331 339
122 125
49 50
48 49
4,196 4,292
52,338 53,565
136 139
117,521 120,346
1,070 1,095
208 213
105 108
167 171
345 352
24,532 25,094
207,385 212,297
2019
314
Note:
6,386
248
826
1,463
7,204
25
185
211
7,622
4,901
2,200
305
1,641
1,611
731
568
1,276
762
2,523
147
1,529
3,538
1,780
3,300
346
3,423
9,174
86,208
150,133
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
6,578
255
851
1,561
7,395
26
191
218
7,854
5,052
2,267
314
1,691
1,660
753
586
1,316
785
2,601
152
1,576
3,648
1,834
3,401
356
3,529
9,457
88,875
154,780
2007
2009
6,775 6,979
263 270
876 903
1,663 1,771
7,591 7,793
26 27
196 202
224 231
8,092 8,338
5,209 5,370
2,336 2,408
324 333
1,742 1,795
1,711 1,763
776 799
603 622
1,356 1,398
809 834
2,681 2,764
156 161
1,625 1,675
3,761 3,877
1,891 1,949
3,505 3,613
367 379
3,638 3,751
9,749 10,050
91,624 94,458
159,572 164,513
2008
2011
7,189 7,353
279 285
930 951
1,883 1,926
7,999 8,182
28 29
209 213
238 243
8,592 8,786
5,536 5,663
2,481 2,537
344 351
1,850 1,892
1,816 1,857
823 841
640 655
1,442 1,475
860 879
2,850 2,915
166 170
1,727 1,766
3,998 4,089
2,009 2,055
3,723 3,809
390 399
3,867 3,956
10,360 10,597
97,380 99,614
169,608 173,489
2010
7,520
291
973
1,970
8,370
29
218
249
8,984
5,793
2,595
359
1,934
1,899
860
669
1,509
899
2,982
174
1,807
4,183
2,102
3,896
408
4,047
10,840
101,900
177,461
2012
7,691
298
995
2,015
8,561
30
223
255
9,187
5,925
2,654
367
1,978
1,942
879
685
1,543
920
3,050
178
1,848
4,279
2,150
3,985
418
4,139
11,088
104,239
181,523
2013
7,866
304
1,018
2,062
8,757
31
228
260
9,395
6,061
2,714
376
2,023
1,986
898
700
1,579
941
3,120
183
1,891
4,376
2,199
4,076
427
4,235
11,342
106,631
185,679
2014
8,046
311
1,041
2,109
8,958
31
234
266
9,607
6,201
2,776
384
2,069
2,031
918
716
1,615
962
3,191
187
1,934
4,477
2,249
4,169
437
4,332
11,602
109,079
189,931
2015
Sectoraldemandforinvestment:BCscenario($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
2006
2005
TableF4
Present
value
70,708
Coalsector
2,738
Petroleumsector
9,148
Gassector
17,565
RenewableElectricity
79,151
CoalfiredElectricity
275
InternalcombustionElectricity
2,051
GasturbineElectricity
2,340
CombinedcycleElectricity
84,426
Agriculture,forestryandfishing
54,394
Mining
24,381
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,376
18,177
Wood,paperandprintingproducts
17,849
Basicchemicals
8,085
Nonmetallicmineralproducts
6,292
Basicironandsteel
14,164
Basicnonferrousmetals
8,448
Fabricatedmetalproducts
27,999
Machineryandequipment
1,636
Miscellenousmanufacturing
16,967
Water,sewerageanddrainage
39,272
Construction
19,740
Roadtransport
36,596
Railwaytransport
3,836
Watertransport
37,997
Airtransport
Othertransport,servicesandstorage 101,799
956,851
Commercialservices
Total
1,666,260
8,229
318
1,065
2,157
9,163
32
239
273
9,824
6,343
2,839
393
2,115
2,077
939
732
1,652
984
3,265
191
1,978
4,579
2,301
4,264
447
4,431
11,868
111,582
194,280
2016
2018
8,417 8,608
325 332
1,089 1,114
2,207 2,257
9,373 9,587
33 34
244 250
279 285
10,046 10,274
6,489 6,637
2,903 2,969
402 411
2,163 2,212
2,124 2,172
960 981
748 765
1,690 1,729
1,006 1,029
3,339 3,416
196 200
2,024 2,070
4,684 4,791
2,353 2,407
4,362 4,461
457 468
4,533 4,637
12,140 12,418
114,144 116,764
198,729 203,281
2017
2020
8,805 9,006
340 347
1,140 1,166
2,309 2,362
9,807 10,032
34 35
256 262
292 298
10,506 10,744
6,790 6,946
3,036 3,105
420 430
2,262 2,313
2,222 2,272
1,003 1,025
782 800
1,768 1,809
1,053 1,077
3,494 3,574
205 209
2,118 2,166
4,901 5,013
2,462 2,518
4,563 4,668
479 490
4,744 4,853
12,703 12,994
119,444 122,186
207,938 212,701
2019
315
Note:
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
2007
6,761
263
872
1,663
7,589
26
196
224
8,092
5,208
2,336
324
1,742
1,710
775
603
1,356
809
2,681
156
1,624
3,760
1,890
3,503
367
3,638
9,745
91,612
159,527
2008
2010
6,960 7,165
270 278
897 923
1,770 1,882
7,790 7,996
27 28
202 208
231 238
8,338 8,591
5,369 5,534
2,408 2,481
333 344
1,795 1,849
1,762 1,816
799 822
621 640
1,398 1,441
834 859
2,763 2,848
161 166
1,674 1,726
3,876 3,996
1,949 2,008
3,610 3,720
379 390
3,750 3,866
10,045 10,354
94,442 97,360
164,453 169,531
2009
2012
7,323 7,485
285 291
942 963
1,925 1,969
8,178 8,365
29 29
213 218
243 249
8,785 8,983
5,661 5,791
2,537 2,595
351 359
1,891 1,934
1,857 1,899
840 859
654 669
1,474 1,508
879 899
2,913 2,980
170 174
1,765 1,805
4,087 4,180
2,054 2,101
3,804 3,890
399 408
3,955 4,046
10,590 10,832
99,590 101,872
173,397 177,352
2011
7,651
297
983
2,014
8,555
30
223
254
9,186
5,923
2,654
367
1,977
1,941
878
684
1,543
919
3,048
178
1,847
4,276
2,149
3,978
418
4,138
11,079
104,206
181,397
2013
2015
7,820 7,993
304 311
1,004 1,026
2,060 2,107
8,751 8,950
31 31
228 233
260 266
9,394 9,606
6,059 6,198
2,714 2,775
376 384
2,022 2,068
1,985 2,030
897 917
699 715
1,578 1,615
940 961
3,118 3,189
182 187
1,889 1,932
4,373 4,473
2,198 2,248
4,068 4,160
427 437
4,233 4,330
11,332 11,590
106,594 109,037
185,536 189,770
2014
Sectoraldemandforinvestment:PPP1 ($million)
6,381 6,568
248 255
824 848
1,463 1,561
7,203 7,394
25 26
185 191
211 217
7,622 7,854
4,901 5,052
2,200 2,267
305 314
1,641 1,691
1,611 1,660
731 753
568 585
1,276 1,315
762 785
2,523 2,600
147 152
1,529 1,576
3,538 3,647
1,779 1,834
3,299 3,400
346 356
3,423 3,529
9,173 9,455
86,204 88,867
150,119 154,751
2006
TableF4
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
Present
value
70,326
Coalsector
2,735
Petroleumsector
9,278
Gassector
17,507
RenewableElectricity
77,968
CoalfiredElectricity
275
InternalcombustionElectricity
2,044
GasturbineElectricity
2,976
CombinedcycleElectricity
84,420
Agriculture,forestryandfishing
54,374
Mining
24,380
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,376
18,172
Wood,paperandprintingproducts
17,841
Basicchemicals
8,076
Nonmetallicmineralproducts
6,288
Basicironandsteel
14,162
Basicnonferrousmetals
8,441
Fabricatedmetalproducts
27,981
Machineryandequipment
1,635
Miscellenousmanufacturing
16,958
Water,sewerageanddrainage
39,239
Construction
19,734
Roadtransport
36,547
Railwaytransport
3,835
Watertransport
37,990
Airtransport
Othertransport,servicesandstorage 101,769
956,638
Commercialservices
Total
1,664,965
2017
8,170 8,317
318 324
1,047 1,135
2,155 2,189
9,155 9,013
32 33
239 242
272 474
9,823 10,045
6,340 6,483
2,838 2,903
393 402
2,114 2,162
2,076 2,123
938 957
731 747
1,652 1,689
983 1,005
3,262 3,335
191 195
1,976 2,022
4,575 4,675
2,299 2,352
4,255 4,350
447 457
4,430 4,531
11,855 12,135
111,536 114,094
194,101 198,391
2016
8,467
332
1,225
2,224
8,864
33
246
682
10,272
6,630
2,969
411
2,210
2,170
978
764
1,728
1,027
3,410
200
2,068
4,778
2,405
4,447
468
4,636
12,422
116,711
202,778
2018
2020
8,621 8,778
339 346
1,318 1,413
2,260 2,296
8,709 8,547
34 34
250 254
897 1,118
10,505 10,743
6,780 6,934
3,036 3,105
420 430
2,260 2,311
2,219 2,269
999 1,020
781 798
1,767 1,808
1,050 1,074
3,487 3,565
205 209
2,116 2,165
4,883 4,991
2,460 2,515
4,546 4,647
478 489
4,742 4,851
12,716 13,016
119,387 122,126
207,265 211,853
2019
316
Note:
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
2007
6,742
262
868
1,662
7,586
26
196
224
8,092
5,207
2,336
324
1,742
1,710
775
603
1,356
809
2,680
156
1,623
3,758
1,890
3,500
367
3,637
9,742
91,598
159,473
2008
2010
6,935 7,133
270 278
892 916
1,769 1,881
7,786 7,991
27 28
202 208
231 238
8,337 8,591
5,367 5,532
2,408 2,481
333 343
1,794 1,849
1,762 1,815
798 822
621 640
1,398 1,441
833 859
2,762 2,847
161 166
1,673 1,724
3,874 3,994
1,948 2,008
3,605 3,714
379 390
3,750 3,865
10,040 10,348
94,424 97,337
164,380 169,440
2009
2012
7,284 7,439
284 291
935 953
1,924 1,968
8,172 8,358
29 29
213 218
243 249
8,784 8,983
5,659 5,788
2,537 2,595
351 359
1,890 1,933
1,856 1,897
840 858
654 669
1,474 1,508
878 898
2,911 2,978
170 174
1,763 1,803
4,084 4,177
2,053 2,100
3,797 3,882
399 408
3,954 4,044
10,583 10,823
99,563 101,841
173,287 177,223
2011
7,568
297
1,032
1,998
8,226
30
221
433
9,185
5,919
2,653
367
1,976
1,940
876
683
1,542
918
3,044
178
1,845
4,268
2,148
3,968
418
4,137
11,078
104,172
181,121
2013
2015
7,700 7,835
303 310
1,113 1,197
2,029 2,061
8,088 7,944
30 31
225 228
623 818
9,392 9,605
6,053 6,189
2,714 2,775
376 384
2,021 2,066
1,984 2,028
895 913
698 714
1,578 1,614
938 959
3,112 3,182
182 187
1,887 1,931
4,362 4,457
2,196 2,246
4,055 4,145
427 437
4,232 4,329
11,338 11,605
106,557 108,997
185,108 189,185
2014
Sectoraldemandforinvestment:SRP1($million)
6,375 6,556
248 255
823 845
1,462 1,560
7,202 7,392
25 26
185 191
211 217
7,622 7,853
4,900 5,051
2,200 2,267
305 314
1,641 1,690
1,611 1,660
731 753
568 585
1,276 1,315
762 785
2,522 2,600
147 152
1,528 1,575
3,537 3,646
1,779 1,834
3,298 3,397
346 356
3,423 3,528
9,172 9,452
86,200 88,858
150,100 154,715
2006
TableF4
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
Present
value
69,697
Coalsector
2,732
Petroleumsector
9,785
Gassector
17,518
RenewableElectricity
74,673
CoalfiredElectricity
272
InternalcombustionElectricity
2,027
GasturbineElectricity
4,710
CombinedcycleElectricity
84,414
Agriculture,forestryandfishing
54,341
Mining
24,379
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,375
18,164
Wood,paperandprintingproducts
17,832
Basicchemicals
8,062
Nonmetallicmineralproducts
6,282
Basicironandsteel
14,158
Basicnonferrousmetals
8,432
Fabricatedmetalproducts
27,954
Machineryandequipment
1,635
Miscellenousmanufacturing
16,949
Water,sewerageanddrainage
39,182
Construction
19,724
Roadtransport
36,475
Railwaytransport
3,834
Watertransport
37,982
Airtransport
Othertransport,servicesandstorage 101,785
956,421
Commercialservices
Total
1,662,798
2017
7,974 8,116
317 324
1,282 1,370
2,093 2,126
7,793 7,636
31 32
232 235
1,020 1,227
9,822 10,044
6,329 6,473
2,838 2,902
393 402
2,112 2,160
2,074 2,120
933 953
729 745
1,650 1,688
980 1,002
3,253 3,326
191 195
1,975 2,021
4,555 4,655
2,297 2,349
4,237 4,331
447 457
4,428 4,530
11,877 12,156
111,493 114,046
193,355 197,620
2016
8,263
331
1,460
2,159
7,472
32
239
1,441
10,271
6,619
2,968
411
2,208
2,168
973
762
1,727
1,024
3,401
200
2,067
4,757
2,402
4,427
467
4,634
12,441
116,659
201,982
2018
2020
8,412 8,563
338 345
1,553 1,581
2,193 2,804
7,300 7,146
33 33
243 247
1,662 1,693
10,503 10,741
6,769 6,924
3,036 3,105
420 430
2,258 2,309
2,217 2,267
994 1,017
778 796
1,766 1,807
1,047 1,071
3,477 3,558
205 209
2,115 2,162
4,861 4,978
2,457 2,513
4,525 4,623
478 489
4,740 4,849
12,732 13,021
119,331 122,074
206,442 211,356
2019
317
Note:
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
2007
6,748
262
868
1,663
7,587
26
196
224
8,092
5,207
2,336
324
1,742
1,710
775
603
1,356
809
2,680
156
1,624
3,759
1,890
3,501
367
3,637
9,742
91,601
159,485
2008
2010
6,942 7,141
270 278
892 916
1,770 1,882
7,787 7,992
27 28
202 208
231 238
8,337 8,591
5,368 5,533
2,408 2,481
333 344
1,795 1,849
1,762 1,815
798 822
621 640
1,398 1,441
834 859
2,762 2,847
161 166
1,673 1,725
3,875 3,994
1,948 2,008
3,607 3,716
379 390
3,750 3,866
10,041 10,349
94,427 97,342
164,396 169,461
2009
2012
7,295 7,421
284 291
934 1,011
1,924 1,955
8,174 8,047
29 29
213 216
243 423
8,785 8,983
5,659 5,787
2,537 2,595
351 359
1,891 1,933
1,856 1,898
840 858
654 668
1,474 1,508
878 898
2,912 2,977
170 174
1,764 1,805
4,085 4,174
2,054 2,100
3,799 3,883
399 408
3,954 4,045
10,584 10,834
99,569 101,849
173,313 177,128
2011
7,551
297
1,089
1,985
7,913
30
220
609
9,185
5,918
2,653
367
1,976
1,940
876
683
1,542
918
3,044
178
1,846
4,266
2,148
3,969
418
4,138
11,089
104,181
181,030
2013
2015
7,681 7,814
303 310
1,108 1,128
2,540 3,114
7,798 7,676
30 31
224 228
621 633
9,393 9,605
6,053 6,191
2,714 2,775
376 384
2,021 2,067
1,984 2,029
896 917
699 715
1,578 1,614
939 961
3,114 3,187
182 187
1,888 1,931
4,368 4,473
2,197 2,247
4,054 4,142
427 437
4,232 4,329
11,341 11,598
106,574 109,022
185,335 189,744
2014
Sectoraldemandforinvestment:PPP2($million)
6,377 6,559
248 255
823 845
1,463 1,560
7,203 7,392
25 26
185 191
211 217
7,622 7,853
4,900 5,051
2,200 2,267
305 314
1,641 1,691
1,611 1,660
731 753
568 585
1,276 1,315
762 785
2,522 2,600
147 152
1,529 1,575
3,537 3,646
1,779 1,834
3,299 3,398
346 356
3,423 3,529
9,172 9,453
86,200 88,859
150,104 154,722
2006
TableF4
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
Present
value
69,635
Coalsector
2,732
Petroleumsector
9,385
Gassector
22,710
RenewableElectricity
73,738
CoalfiredElectricity
273
InternalcombustionElectricity
2,029
GasturbineElectricity
3,591
CombinedcycleElectricity
84,418
Agriculture,forestryandfishing
54,351
Mining
24,379
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,376
18,171
Wood,paperandprintingproducts
17,837
Basicchemicals
8,078
Nonmetallicmineralproducts
6,287
Basicironandsteel
14,162
Basicnonferrousmetals
8,441
Fabricatedmetalproducts
27,978
Machineryandequipment
1,635
Miscellenousmanufacturing
16,948
Water,sewerageanddrainage
39,265
Construction
19,730
Roadtransport
36,462
Railwaytransport
3,834
Watertransport
37,984
Airtransport
Othertransport,servicesandstorage 101,745
956,549
Commercialservices
Total
1,665,722
2017
7,950 8,090
317 324
1,148 1,169
3,710 4,327
7,547 7,411
31 32
233 237
645 657
9,823 10,045
6,332 6,477
2,838 2,903
393 402
2,114 2,162
2,075 2,122
938 959
731 748
1,651 1,690
983 1,005
3,261 3,336
191 195
1,974 2,019
4,581 4,691
2,298 2,351
4,231 4,322
447 457
4,429 4,530
11,861 12,131
111,527 114,090
194,258 198,881
2016
8,232
331
1,190
4,967
7,266
32
242
669
10,272
6,625
2,969
411
2,211
2,170
981
765
1,728
1,029
3,414
200
2,065
4,803
2,405
4,416
467
4,634
12,407
116,713
203,615
2018
2020
8,378 8,528
338 345
1,212 1,235
5,630 6,316
7,113 6,953
33 34
246 251
682 695
10,505 10,743
6,776 6,931
3,036 3,105
420 430
2,262 2,313
2,219 2,270
1,004 1,027
782 800
1,768 1,809
1,053 1,077
3,493 3,574
205 209
2,111 2,159
4,919 5,037
2,460 2,516
4,512 4,610
478 489
4,740 4,849
12,689 12,978
119,396 122,141
208,461 213,424
2019
318
Note:
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
2007
6,711
262
860
1,661
7,582
26
196
224
8,091
5,205
2,336
323
1,741
1,709
774
603
1,356
808
2,678
156
1,622
3,756
1,889
3,495
367
3,636
9,735
91,575
159,380
2008
2010
6,893 7,056
270 278
882 953
1,768 1,868
7,780 7,719
27 28
202 207
231 384
8,337 8,590
5,365 5,528
2,407 2,481
333 343
1,794 1,848
1,761 1,814
797 820
621 639
1,398 1,441
833 858
2,760 2,843
161 166
1,671 1,723
3,871 3,987
1,947 2,007
3,598 3,704
378 390
3,748 3,864
10,032 10,345
94,394 97,302
164,259 169,184
2009
2012
7,170 7,289
284 290
1,026 1,101
1,896 1,925
7,588 7,451
28 29
210 213
561 743
8,783 8,981
5,653 5,780
2,537 2,594
351 359
1,889 1,931
1,854 1,896
837 854
653 667
1,474 1,507
876 896
2,907 2,971
170 174
1,762 1,802
4,074 4,162
2,052 2,098
3,785 3,867
399 408
3,952 4,043
10,586 10,833
99,523 101,796
172,880 176,661
2011
7,411
296
1,178
1,954
7,308
29
216
931
9,184
5,911
2,653
367
1,974
1,938
872
682
1,541
915
3,037
178
1,843
4,253
2,145
3,951
417
4,135
11,085
104,121
180,529
2013
2015
7,534 7,662
303 309
1,197 1,218
2,499 3,064
7,184 7,053
30 30
220 225
948 966
9,391 9,603
6,045 6,183
2,713 2,775
376 384
2,019 2,065
1,982 2,026
892 913
697 713
1,577 1,613
936 958
3,108 3,179
182 187
1,885 1,927
4,354 4,459
2,194 2,244
4,035 4,122
427 437
4,230 4,327
11,335 11,591
106,508 108,950
184,803 189,181
2014
Sectoraldemandforinvestment:SRP2($million)
6,364 6,535
248 255
820 840
1,462 1,559
7,201 7,389
25 26
185 190
211 217
7,622 7,853
4,900 5,050
2,200 2,267
305 314
1,641 1,690
1,611 1,659
731 752
568 585
1,276 1,315
762 785
2,522 2,599
147 152
1,528 1,574
3,537 3,645
1,779 1,833
3,296 3,394
346 356
3,423 3,528
9,169 9,448
86,191 88,842
150,068 154,651
2006
TableF4
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
Present
value
68,863
Coalsector
2,728
Petroleumsector
9,775
Gassector
22,470
RenewableElectricity
70,922
CoalfiredElectricity
270
InternalcombustionElectricity
2,013
GasturbineElectricity
5,098
CombinedcycleElectricity
84,407
Agriculture,forestryandfishing
54,309
Mining
24,377
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,375
18,159
Wood,paperandprintingproducts
17,823
Basicchemicals
8,058
Nonmetallicmineralproducts
6,279
Basicironandsteel
14,157
Basicnonferrousmetals
8,428
Fabricatedmetalproducts
27,940
Machineryandequipment
1,635
Miscellenousmanufacturing
16,928
Water,sewerageanddrainage
39,194
Construction
19,716
Roadtransport
36,357
Railwaytransport
3,832
Watertransport
37,969
Airtransport
Othertransport,servicesandstorage 101,701
956,165
Commercialservices
Total
1,662,949
2017
7,793 7,928
316 323
1,239 1,261
3,649 4,255
6,915 6,769
31 31
229 233
984 1,003
9,820 10,043
6,324 6,468
2,838 2,902
393 402
2,112 2,160
2,072 2,119
933 955
729 746
1,650 1,688
980 1,003
3,253 3,328
191 195
1,970 2,015
4,565 4,675
2,295 2,348
4,210 4,300
446 457
4,426 4,527
11,854 12,122
111,450 114,007
193,667 198,262
2016
8,068
330
1,284
4,884
6,616
32
238
1,022
10,270
6,616
2,968
411
2,209
2,167
977
763
1,727
1,026
3,405
200
2,060
4,787
2,401
4,393
467
4,631
12,396
116,624
202,969
2018
2020
8,211 8,359
337 344
1,307 1,332
5,534 6,208
6,455 6,285
33 33
242 247
1,041 1,061
10,503 10,740
6,767 6,921
3,035 3,104
420 430
2,259 2,310
2,216 2,266
999 1,022
780 798
1,767 1,808
1,049 1,074
3,484 3,564
205 209
2,107 2,154
4,901 5,019
2,456 2,513
4,488 4,586
478 489
4,737 4,845
12,678 12,965
119,302 122,041
207,790 212,728
2019
319
Note:
2007
6,375 6,555
248 255
822 844
1,462 1,560
7,202 7,392
25 26
185 191
211 217
7,622 7,853
4,900 5,051
2,200 2,267
305 314
1,641 1,690
1,611 1,660
731 753
568 585
1,276 1,315
762 785
2,522 2,600
147 152
1,528 1,575
3,537 3,646
1,779 1,834
3,298 3,397
346 356
3,423 3,528
9,171 9,452
86,198 88,855
150,097 154,708
2006
6,741
262
866
1,662
7,586
26
196
224
8,092
5,207
2,336
324
1,742
1,710
775
603
1,356
809
2,679
156
1,623
3,758
1,890
3,500
367
3,637
9,741
91,595
159,464
2008
2010
6,932 7,130
270 278
889 912
1,769 1,881
7,786 7,991
27 28
202 208
231 238
8,337 8,591
5,367 5,532
2,407 2,481
333 343
1,794 1,849
1,762 1,815
798 822
621 640
1,398 1,441
833 859
2,762 2,847
161 166
1,673 1,724
3,874 3,993
1,948 2,008
3,605 3,714
379 390
3,750 3,865
10,039 10,347
94,420 97,334
164,369 169,427
2009
2012
7,251 7,376
284 290
987 1,063
1,911 1,941
7,866 7,735
28 29
212 215
414 595
8,784 8,982
5,657 5,785
2,537 2,595
351 359
1,890 1,932
1,856 1,897
839 857
654 668
1,474 1,508
878 897
2,910 2,975
170 174
1,764 1,805
4,081 4,170
2,053 2,100
3,796 3,879
399 408
3,954 4,045
10,590 10,839
99,560 101,838
173,150 176,956
2011
7,501
297
1,081
2,482
7,622
29
219
607
9,185
5,917
2,653
367
1,976
1,940
876
683
1,542
918
3,044
178
1,845
4,270
2,148
3,962
418
4,137
11,085
104,176
181,159
2013
2015
7,629 7,761
303 310
1,099 1,118
3,044 3,626
7,503 7,376
30 31
223 227
618 630
9,393 9,605
6,052 6,190
2,714 2,775
376 384
2,021 2,067
1,984 2,029
896 917
699 715
1,578 1,614
939 961
3,115 3,187
182 187
1,887 1,930
4,372 4,477
2,197 2,247
4,047 4,134
427 437
4,232 4,329
11,336 11,593
106,568 109,016
185,463 189,871
2014
2016
2017
7,895 8,034
316 323
1,138 1,159
4,229 4,854
7,242 7,101
31 32
232 236
642 654
9,822 10,045
6,331 6,475
2,838 2,903
393 402
2,114 2,162
2,075 2,122
938 960
731 748
1,651 1,690
983 1,006
3,261 3,336
191 195
1,973 2,018
4,585 4,695
2,298 2,351
4,224 4,315
447 457
4,428 4,529
11,856 12,126
111,520 114,082
194,385 199,007
Sectoraldemandforinvestment:PPPforEarlyaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
TableF4
Present
value
69,391
Coalsector
2,731
Petroleumsector
9,406
Gassector
24,308
RenewableElectricity
72,437
CoalfiredElectricity
272
InternalcombustionElectricity
2,025
GasturbineElectricity
3,775
CombinedcycleElectricity
84,416
Agriculture,forestryandfishing
54,343
Mining
24,379
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,375
18,170
Wood,paperandprintingproducts
17,835
Basicchemicals
8,077
Nonmetallicmineralproducts
6,287
Basicironandsteel
14,161
Basicnonferrousmetals
8,440
Fabricatedmetalproducts
27,975
Machineryandequipment
1,635
Miscellenousmanufacturing
16,943
Water,sewerageanddrainage
39,271
Construction
19,728
Roadtransport
36,431
Railwaytransport
3,834
Watertransport
37,981
Airtransport
Othertransport,servicesandstorage 101,730
956,496
Commercialservices
Total
1,665,854
8,175
330
1,180
5,501
6,951
32
241
667
10,272
6,623
2,968
411
2,211
2,170
982
765
1,728
1,029
3,414
200
2,063
4,807
2,404
4,408
467
4,633
12,402
116,703
203,740
2018
2020
8,320 8,469
338 345
1,201 1,224
6,172 6,866
6,794 6,628
33 34
245 250
679 692
10,505 10,743
6,775 6,929
3,036 3,105
420 430
2,262 2,313
2,219 2,269
1,005 1,028
782 800
1,768 1,809
1,053 1,077
3,493 3,574
205 209
2,110 2,158
4,923 5,041
2,459 2,516
4,504 4,601
478 489
4,740 4,848
12,684 12,972
119,386 122,130
208,587 213,550
2019
320
Note:
2007
6,370 6,546
248 255
822 843
1,462 1,560
7,201 7,390
25 26
185 191
211 217
7,622 7,853
4,900 5,051
2,200 2,267
305 314
1,641 1,690
1,611 1,659
731 752
568 585
1,276 1,315
762 785
2,522 2,599
147 152
1,528 1,575
3,537 3,645
1,779 1,834
3,297 3,396
346 356
3,423 3,528
9,171 9,450
86,196 88,850
150,085 154,683
2006
6,727
262
864
1,662
7,584
26
196
224
8,091
5,206
2,336
324
1,741
1,709
775
603
1,356
809
2,679
156
1,623
3,757
1,890
3,497
367
3,637
9,738
91,587
159,427
2008
2010
6,914 7,107
270 278
887 910
1,769 1,880
7,783 7,987
27 28
202 208
231 238
8,337 8,590
5,366 5,531
2,407 2,481
333 343
1,794 1,848
1,761 1,814
797 821
621 639
1,398 1,441
833 858
2,761 2,846
161 166
1,672 1,723
3,873 3,992
1,948 2,007
3,602 3,710
379 390
3,749 3,865
10,036 10,343
94,409 97,319
164,319 169,365
2009
2012
7,225 7,346
284 290
984 1,060
1,909 1,939
7,860 7,727
28 29
211 215
414 595
8,784 8,982
5,656 5,783
2,537 2,594
351 359
1,890 1,932
1,855 1,896
838 856
653 668
1,474 1,507
877 897
2,909 2,974
170 174
1,763 1,803
4,079 4,168
2,053 2,099
3,791 3,874
399 408
3,953 4,044
10,585 10,833
99,543 101,819
173,075 176,870
2011
7,471
296
1,138
1,969
7,588
29
218
782
9,184
5,914
2,653
367
1,975
1,939
874
682
1,542
916
3,040
178
1,844
4,259
2,146
3,959
417
4,136
11,087
104,147
180,752
2013
2015
7,600 7,733
303 309
1,219 1,301
1,999 2,030
7,443 7,291
30 30
221 225
974 1,172
9,392 9,604
6,047 6,184
2,713 2,775
376 384
2,019 2,065
1,982 2,027
892 911
697 712
1,577 1,613
937 957
3,108 3,178
182 187
1,887 1,930
4,352 4,447
2,195 2,245
4,046 4,135
427 437
4,231 4,328
11,346 11,611
106,529 108,966
184,723 188,783
2014
2016
2017
7,866 8,003
316 323
1,324 1,347
2,596 3,183
7,157 7,016
31 31
229 233
1,194 1,217
9,821 10,043
6,325 6,469
2,838 2,902
393 402
2,111 2,159
2,073 2,119
932 953
729 745
1,650 1,688
979 1,002
3,251 3,326
191 195
1,973 2,018
4,553 4,662
2,296 2,348
4,223 4,314
447 457
4,427 4,528
11,873 12,142
111,467 114,025
193,265 197,854
Sectoraldemandforinvestment:SRPforearlyaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
TableF4
Present
value
69,218
Coalsector
2,730
Petroleumsector
9,888
Gassector
19,959
RenewableElectricity
72,197
CoalfiredElectricity
271
InternalcombustionElectricity
2,017
GasturbineElectricity
5,238
CombinedcycleElectricity
84,410
Agriculture,forestryandfishing
54,322
Mining
24,378
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,375
18,161
Wood,paperandprintingproducts
17,827
Basicchemicals
8,058
Nonmetallicmineralproducts
6,280
Basicironandsteel
14,157
Basicnonferrousmetals
8,429
Fabricatedmetalproducts
27,945
Machineryandequipment
1,635
Miscellenousmanufacturing
16,939
Water,sewerageanddrainage
39,181
Construction
19,719
Roadtransport
36,412
Railwaytransport
3,833
Watertransport
37,976
Airtransport
Othertransport,servicesandstorage 101,756
956,290
Commercialservices
Total
1,662,601
8,144
330
1,372
3,791
6,867
32
238
1,240
10,270
6,617
2,968
411
2,209
2,167
975
762
1,727
1,025
3,403
200
2,063
4,774
2,402
4,407
467
4,632
12,417
116,644
202,555
2018
2020
8,288 8,437
337 345
1,397 1,422
4,421 5,074
6,711 6,546
33 33
242 247
1,263 1,287
10,503 10,741
6,768 6,923
3,036 3,105
420 430
2,259 2,310
2,217 2,267
998 1,021
780 797
1,767 1,808
1,049 1,073
3,482 3,563
205 209
2,110 2,158
4,889 5,006
2,457 2,513
4,503 4,600
478 489
4,738 4,847
12,699 12,987
119,323 122,064
207,370 212,301
2019
321
Note:
2007
6,386 6,578
248 255
826 851
1,463 1,561
7,204 7,395
25 26
185 191
211 218
7,622 7,854
4,901 5,052
2,200 2,267
305 314
1,641 1,691
1,611 1,660
731 753
568 586
1,276 1,316
762 785
2,523 2,601
147 152
1,529 1,576
3,538 3,648
1,780 1,834
3,300 3,401
346 356
3,423 3,529
9,174 9,457
86,208 88,875
150,133 154,780
2006
6,775
263
876
1,663
7,591
26
196
224
8,092
5,209
2,336
324
1,742
1,711
776
603
1,356
809
2,681
156
1,625
3,761
1,891
3,505
367
3,638
9,749
91,624
159,572
2008
2010
6,979 7,189
270 279
903 930
1,771 1,883
7,793 7,999
27 28
202 209
231 238
8,338 8,592
5,370 5,536
2,408 2,481
333 344
1,795 1,850
1,763 1,816
799 823
622 640
1,398 1,442
834 860
2,764 2,850
161 166
1,675 1,727
3,877 3,998
1,949 2,009
3,613 3,723
379 390
3,751 3,867
10,050 10,360
94,458 97,380
164,513 169,608
2009
2012
7,328 7,470
285 291
944 958
1,925 1,969
8,179 8,362
29 29
213 218
243 249
8,785 8,983
5,661 5,790
2,537 2,595
351 359
1,891 1,933
1,857 1,898
841 859
654 669
1,474 1,508
879 898
2,914 2,979
170 174
1,765 1,805
4,087 4,179
2,054 2,101
3,804 3,887
399 408
3,955 4,045
10,590 10,828
99,592 101,860
173,408 177,304
2011
7,616
297
973
2,013
8,551
30
223
254
9,186
5,921
2,653
367
1,977
1,940
877
684
1,543
918
3,046
178
1,845
4,273
2,148
3,973
418
4,137
11,072
104,181
181,294
2013
2015
7,734 7,855
303 310
1,049 1,063
2,044 2,614
8,415 8,300
30 31
226 231
443 451
9,393 9,605
6,054 6,192
2,714 2,775
376 384
2,021 2,067
1,984 2,028
895 916
699 714
1,578 1,614
939 960
3,114 3,185
182 187
1,887 1,930
4,366 4,470
2,197 2,247
4,058 4,144
427 437
4,232 4,329
11,330 11,586
106,557 108,996
185,247 189,618
2014
2016
2017
7,979 8,108
317 323
1,079 1,095
3,205 3,817
8,178 8,048
32 32
235 239
459 468
9,822 10,044
6,333 6,477
2,838 2,902
393 402
2,113 2,161
2,074 2,121
937 958
730 747
1,651 1,689
982 1,005
3,259 3,334
191 195
1,973 2,017
4,576 4,686
2,298 2,350
4,231 4,321
447 457
4,428 4,529
11,847 12,114
111,493 114,048
194,098 198,688
Sectoraldemandforinvestment:PPPforDelayaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
TableF4
Present
value
69,871
Coalsector
2,733
Petroleumsector
9,147
Gassector
21,409
RenewableElectricity
75,901
CoalfiredElectricity
274
InternalcombustionElectricity
2,038
GasturbineElectricity
2,831
CombinedcycleElectricity
84,418
Agriculture,forestryandfishing
54,360
Mining
24,379
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,376
18,171
Wood,paperandprintingproducts
17,838
Basicchemicals
8,079
Nonmetallicmineralproducts
6,288
Basicironandsteel
14,162
Basicnonferrousmetals
8,442
Fabricatedmetalproducts
27,981
Machineryandequipment
1,635
Miscellenousmanufacturing
16,947
Water,sewerageanddrainage
39,268
Construction
19,731
Roadtransport
36,482
Railwaytransport
3,834
Watertransport
37,984
Airtransport
Othertransport,servicesandstorage 101,719
956,546
Commercialservices
Total
1,665,845
8,241
331
1,113
4,451
7,912
33
244
477
10,271
6,624
2,968
411
2,210
2,169
980
764
1,728
1,028
3,411
200
2,062
4,798
2,404
4,413
467
4,632
12,388
116,662
203,391
2018
2020
8,378 8,520
338 345
1,131 1,151
5,108 5,789
7,767 7,615
33 34
249 253
486 495
10,504 10,742
6,775 6,929
3,036 3,105
420 430
2,261 2,312
2,218 2,268
1,003 1,026
781 799
1,768 1,809
1,051 1,076
3,490 3,570
205 209
2,109 2,156
4,913 5,030
2,459 2,515
4,507 4,603
478 489
4,738 4,847
12,669 12,956
119,338 122,075
208,210 213,146
2019
322
Note:
2007
6,386 6,578
248 255
826 851
1,463 1,561
7,204 7,395
25 26
185 191
211 218
7,622 7,854
4,901 5,052
2,200 2,267
305 314
1,641 1,691
1,611 1,660
731 753
568 586
1,276 1,316
762 785
2,523 2,601
147 152
1,529 1,576
3,538 3,648
1,780 1,834
3,300 3,401
346 356
3,423 3,529
9,174 9,457
86,208 88,875
150,133 154,780
2006
6,775
263
876
1,663
7,591
26
196
224
8,092
5,209
2,336
324
1,742
1,711
776
603
1,356
809
2,681
156
1,625
3,761
1,891
3,505
367
3,638
9,749
91,624
159,572
2008
2010
6,979 7,189
270 279
903 930
1,771 1,883
7,793 7,999
27 28
202 209
231 238
8,338 8,592
5,370 5,536
2,408 2,481
333 344
1,795 1,850
1,763 1,816
799 823
622 640
1,398 1,442
834 860
2,764 2,850
161 166
1,675 1,727
3,877 3,998
1,949 2,009
3,613 3,723
379 390
3,751 3,867
10,050 10,360
94,458 97,380
164,513 169,608
2009
2012
7,322 7,459
285 291
944 958
1,925 1,968
8,178 8,361
29 29
213 218
243 249
8,785 8,983
5,661 5,789
2,537 2,595
351 359
1,891 1,933
1,857 1,898
840 858
654 669
1,474 1,508
879 898
2,913 2,979
170 174
1,765 1,804
4,087 4,178
2,054 2,101
3,803 3,885
399 408
3,955 4,045
10,590 10,827
99,590 101,854
173,396 177,279
2011
7,601
297
973
2,012
8,548
30
223
254
9,185
5,921
2,653
367
1,976
1,940
877
683
1,543
918
3,045
178
1,844
4,272
2,148
3,970
418
4,137
11,069
104,172
181,255
2013
2015
7,716 7,835
303 310
1,049 1,128
2,043 2,074
8,410 8,266
30 31
226 230
442 636
9,392 9,604
6,053 6,189
2,713 2,775
376 384
2,020 2,066
1,983 2,027
895 914
698 713
1,578 1,614
938 959
3,113 3,182
182 187
1,886 1,929
4,364 4,459
2,196 2,246
4,054 4,141
427 437
4,231 4,328
11,327 11,590
106,545 108,974
185,195 189,227
2014
2016
2017
7,960 8,087
316 323
1,209 1,228
2,105 2,692
8,114 7,984
31 32
233 237
836 851
9,821 10,043
6,329 6,472
2,838 2,902
393 402
2,112 2,159
2,073 2,119
933 954
729 745
1,650 1,688
980 1,002
3,252 3,327
191 195
1,973 2,017
4,555 4,664
2,296 2,348
4,231 4,320
447 457
4,427 4,528
11,859 12,126
111,460 114,011
193,352 197,915
Sectoraldemandforinvestment:SRPforDelayaction($million)
ThisTableshowstheresultsobtainedbytheapplicationofEquation533,p.124.
6,200
241
801
1,369
7,018
24
180
205
7,398
4,754
2,135
296
1,593
1,564
710
552
1,238
739
2,447
143
1,483
3,432
1,726
3,202
335
3,320
8,900
83,622
145,626
2005
TableF4
Present
value
69,801
Coalsector
2,733
Petroleumsector
9,405
Gassector
19,210
RenewableElectricity
75,771
CoalfiredElectricity
273
InternalcombustionElectricity
2,034
GasturbineElectricity
3,577
CombinedcycleElectricity
84,415
Agriculture,forestryandfishing
54,350
Mining
24,379
Food,beveragesandtobacco
Textile,clothing,footwearandleather 3,375
18,167
Wood,paperandprintingproducts
17,834
Basicchemicals
8,070
Nonmetallicmineralproducts
6,285
Basicironandsteel
14,160
Basicnonferrousmetals
8,436
Fabricatedmetalproducts
27,966
Machineryandequipment
1,635
Miscellenousmanufacturing
16,945
Water,sewerageanddrainage
39,223
Construction
19,727
Roadtransport
36,474
Railwaytransport
3,834
Watertransport
37,982
Airtransport
Othertransport,servicesandstorage 101,735
956,456
Commercialservices
Total
1,664,252
8,218
330
1,247
3,300
7,847
32
242
867
10,270
6,620
2,968
411
2,208
2,167
975
762
1,727
1,025
3,404
200
2,062
4,775
2,402
4,411
467
4,631
12,399
116,623
202,592
2018
2020
8,354 8,495
338 345
1,268 1,290
3,929 4,582
7,702 7,550
33 34
246 251
884 900
10,502 10,740
6,770 6,924
3,035 3,104
420 429
2,258 2,310
2,216 2,266
998 1,021
780 797
1,767 1,808
1,049 1,073
3,482 3,563
205 209
2,108 2,156
4,889 5,006
2,457 2,513
4,505 4,601
478 489
4,737 4,846
12,678 12,965
119,295 122,030
207,385 212,297
2019
323
Note:
12,519
6,350
2,536
1,958
18,765
55
376
799
21,595
11,718
18,444
6,801
28,870
28,960
12,248
12,184
5,298
16,373
41,828
1,236
2,881
5,752
12,001
3,432
1,701
6,754
42,841
240,762
565,036
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
12,884
6,544
2,612
2,089
19,264
56
387
824
22,254
12,078
19,010
7,009
29,758
29,846
12,625
12,557
5,461
16,877
43,119
1,274
2,969
5,929
12,369
3,536
1,753
6,962
44,160
248,192
582,399
2007
2009
13,259 13,645
6,745 6,951
2,691 2,771
2,227 2,370
19,775 20,299
58 60
399 411
849 874
22,933 23,634
12,449 12,832
19,593 20,195
7,223 7,444
30,673 31,617
30,760 31,702
13,014 13,414
12,942 13,340
5,630 5,803
17,398 17,934
44,451 45,824
1,314 1,354
3,060 3,154
6,112 6,301
12,748 13,139
3,643 3,754
1,807 1,862
7,177 7,399
45,519 46,921
255,852 263,749
600,299 618,754
2008
2011
14,043 14,359
7,164 7,328
2,855 2,920
2,521 2,579
20,838 21,314
62 63
423 433
901 922
24,356 24,908
13,226 13,528
20,815 21,290
7,672 7,846
32,590 33,334
32,673 33,416
13,828 14,143
13,749 14,062
5,982 6,119
18,487 18,910
47,239 48,321
1,396 1,428
3,251 3,325
6,495 6,644
13,542 13,850
3,868 3,956
1,919 1,963
7,627 7,802
48,367 49,473
271,892 278,116
637,781 652,349
2010
14,682
7,495
2,986
2,638
21,802
64
443
943
25,473
13,837
21,775
8,024
34,095
34,175
14,465
14,381
6,258
19,341
49,428
1,461
3,401
6,796
14,165
4,046
2,008
7,980
50,604
284,484
667,252
2012
15,013
7,666
3,054
2,698
22,301
66
453
964
26,050
14,154
22,272
8,207
34,873
34,952
14,794
14,709
6,402
19,783
50,560
1,494
3,479
6,952
14,488
4,138
2,054
8,163
51,762
290,998
682,498
2013
15,352
7,841
3,123
2,760
22,812
67
464
986
26,642
14,477
22,780
8,393
35,670
35,747
15,131
15,043
6,548
20,235
51,718
1,528
3,559
7,111
14,818
4,232
2,101
8,350
52,946
297,662
698,095
2014
15,698
8,020
3,194
2,823
23,334
69
474
1,009
27,246
14,808
23,300
8,584
36,484
36,560
15,476
15,386
6,698
20,698
52,903
1,563
3,640
7,274
15,155
4,328
2,149
8,541
54,158
304,479
714,051
2015
16,052
8,203
3,267
2,888
23,869
71
485
1,032
27,865
15,146
23,831
8,779
37,318
37,392
15,829
15,736
6,851
21,171
54,115
1,599
3,723
7,441
15,501
4,427
2,198
8,737
55,397
311,453
730,373
2016
2018
16,414 16,784
8,390 8,581
3,341 3,417
2,954 3,021
24,415 24,974
72 74
496 508
1,056 1,080
28,498 29,145
15,492 15,846
24,375 24,931
8,979 9,183
38,170 39,042
38,243 39,114
16,189 16,558
16,094 16,461
7,007 7,168
21,655 22,150
55,355 56,623
1,636 1,673
3,808 3,895
7,611 7,786
15,854 16,215
4,528 4,631
2,248 2,299
8,937 9,142
56,665 57,962
318,587 325,886
747,071 764,153
2017
ThisTableshowstheresultsobtainedbymultiplyingfixedtechnicalcoefficientmatrix(TableC3,AppendixC)withEquation532,p.124.
2006
Sectoraloutputsforintermediateconsumption:BCscenario($million)
2005
TableF5
Present
value
138,252
Coalsector
70,407
Petroleumsector
28,078
Gassector
23,513
RenewableElectricity
206,181
CoalfiredElectricity
606
InternalcombustionElectricity
4,164
GasturbineElectricity
8,860
CombinedcycleElectricity
239,326
Agriculture,forestryandfishing
129,970
Mining
204,536
Food,beveragesandtobacco
Textile,clothing,footwearandleather 75,387
320,225
Wood,paperandprintingproducts
321,048
Basicchemicals
135,846
Nonmetallicmineralproducts
135,090
Basicironandsteel
58,777
Basicnonferrousmetals
181,641
Fabricatedmetalproducts
464,159
Machineryandequipment
13,716
Miscellenousmanufacturing
31,950
Water,sewerageanddrainage
63,823
Construction
133,066
Roadtransport
38,024
Railwaytransport
18,860
Watertransport
74,944
Airtransport
Othertransport,servicesandstorage 475,272
2,671,564
Commercialservices
Total
6,267,285
2020
17,163 17,551
8,777 8,978
3,495 3,575
3,090 3,161
25,546 26,132
76 77
519 531
1,105 1,130
29,808 30,485
16,209 16,579
25,501 26,083
9,392 9,606
39,934 40,847
40,005 40,916
16,936 17,322
16,836 17,220
7,332 7,499
22,656 23,174
57,921 59,248
1,712 1,751
3,985 4,076
7,964 8,147
16,585 16,963
4,737 4,845
2,352 2,405
9,352 9,566
59,289 60,646
333,352 340,990
781,627 799,504
2019
324
Note:
2007
12,392 12,628
6,326 6,497
2,507 2,554
1,951 2,075
18,702 19,135
54 56
374 385
797 818
21,544 22,149
11,675 11,991
18,405 18,931
6,784 6,975
28,805 29,628
28,873 29,672
12,212 12,553
12,148 12,485
5,283 5,432
16,324 16,779
41,709 42,880
1,233 1,269
2,872 2,951
5,735 5,895
11,970 12,305
3,407 3,486
1,694 1,739
6,739 6,931
42,725 43,927
240,178 247,020
563,419 579,148
2006
12,875
6,673
2,605
2,205
19,579
57
395
840
22,773
12,317
19,474
7,172
30,476
30,496
12,904
12,833
5,584
17,249
44,088
1,306
3,034
6,061
12,651
3,569
1,786
7,130
45,169
254,085
595,386
2008
2010
13,131 13,397
6,854 7,041
2,658 2,715
2,340 2,480
20,035 20,502
59 61
406 417
863 887
23,415 24,076
12,653 13,000
20,032 20,608
7,374 7,583
31,351 32,253
31,347 32,224
13,267 13,642
13,191 13,562
5,742 5,904
17,735 18,235
45,335 46,620
1,343 1,382
3,119 3,207
6,231 6,408
13,008 13,376
3,655 3,744
1,834 1,884
7,336 7,547
46,451 47,774
261,376 268,897
612,143 629,427
2009
2012
13,584 13,777
7,179 7,320
2,754 2,795
2,529 2,579
20,908 21,322
62 63
425 433
904 922
24,567 25,069
13,255 13,515
21,038 21,477
7,738 7,897
32,926 33,615
32,873 33,538
13,919 14,203
13,836 14,116
6,024 6,147
18,606 18,986
47,574 48,550
1,412 1,441
3,272 3,339
6,538 6,672
13,649 13,929
3,808 3,874
1,921 1,958
7,705 7,867
48,760 49,769
274,511 280,258
642,278 655,432
2011
13,975
7,465
2,838
2,631
21,746
64
442
940
25,582
13,782
21,926
8,059
34,319
34,219
14,493
14,403
6,273
19,374
49,548
1,472
3,408
6,809
14,214
3,942
1,996
8,032
50,801
286,138
668,891
2013
2015
14,180 14,390
7,612 7,763
2,882 2,927
2,683 2,737
22,179 22,621
66 67
451 460
959 978
26,106 26,641
14,055 14,333
22,385 22,854
8,225 8,394
35,040 35,776
34,915 35,626
14,789 15,093
14,696 14,996
6,402 6,533
19,771 20,178
50,569 51,613
1,503 1,535
3,478 3,550
6,949 7,092
14,507 14,805
4,012 4,084
2,035 2,075
8,202 8,375
51,858 52,939
292,154 298,307
682,660 696,744
2014
2016
2017
14,605 14,697
7,918 8,070
2,974 3,250
2,791 2,828
23,074 22,653
68 69
469 475
998 1,732
27,188 27,747
14,618 14,900
23,334 23,824
8,567 8,744
36,529 37,293
36,354 37,093
15,404 15,706
15,303 15,609
6,667 6,802
20,593 21,007
52,680 53,748
1,568 1,601
3,624 3,700
7,238 7,385
15,111 15,420
4,157 4,228
2,116 2,157
8,552 8,733
54,044 55,230
304,601 311,027
711,146 725,730
Sectoraloutputsforintermediateconsumption:PPP1 ($million)
14,793
8,225
3,528
2,865
22,219
70
481
2,486
28,318
15,189
24,324
8,925
38,073
37,850
16,015
15,921
6,941
21,430
54,839
1,635
3,779
7,535
15,736
4,300
2,200
8,919
56,442
317,598
740,637
2018
2020
325
14,893 14,996
8,384 8,547
3,808 4,090
2,903 2,941
21,772 21,309
71 72
488 494
3,260 4,054
28,901 29,497
15,484 15,785
24,836 25,359
9,110 9,299
38,871 39,686
38,623 39,413
16,331 16,654
16,241 16,568
7,082 7,227
21,862 22,305
55,955 57,096
1,669 1,705
3,860 3,942
7,689 7,846
16,058 16,389
4,374 4,450
2,243 2,287
9,109 9,303
57,681 58,947
324,316 331,183
755,873 771,443
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
TableF5
Present
value
130,990
Coalsector
69,054
Petroleumsector
27,380
Gassector
23,006
RenewableElectricity
199,616
CoalfiredElectricity
594
InternalcombustionElectricity
4,079
GasturbineElectricity
11,018
CombinedcycleElectricity
236,195
Agriculture,forestryandfishing
127,474
Mining
202,229
Food,beveragesandtobacco
Textile,clothing,footwearandleather 74,401
316,520
Wood,paperandprintingproducts
316,163
Basicchemicals
133,798
Nonmetallicmineralproducts
133,034
Basicironandsteel
57,915
Basicnonferrousmetals
178,889
Fabricatedmetalproducts
457,360
Machineryandequipment
13,568
Miscellenousmanufacturing
31,483
Water,sewerageanddrainage
62,865
Construction
131,235
Roadtransport
36,721
Railwaytransport
18,477
Watertransport
74,078
Airtransport
Othertransport,servicesandstorage 469,078
2,639,283
Commercialservices
Total
6,176,503
Note:
2007
12,282 12,414
6,299 6,443
2,492 2,527
1,943 2,057
18,618 18,967
54 55
373 381
793 811
21,457 21,974
11,624 11,890
18,348 18,815
6,758 6,923
28,724 29,465
28,762 29,450
12,169 12,466
12,102 12,394
5,265 5,394
16,264 16,660
41,558 42,579
1,230 1,263
2,861 2,931
5,716 5,857
11,927 12,219
3,381 3,436
1,686 1,724
6,720 6,895
42,586 43,653
239,508 245,690
561,502 575,333
2006
12,559
6,593
2,568
2,176
19,327
57
390
829
22,505
12,165
19,297
7,092
30,231
30,163
12,775
12,696
5,528
17,071
43,636
1,296
3,003
6,003
12,521
3,495
1,763
7,075
44,759
252,095
589,669
2008
2010
12,716 12,883
6,747 6,907
2,612 2,660
2,300 2,429
19,697 20,078
58 59
399 408
849 868
23,052 23,616
12,450 12,744
19,794 20,306
7,267 7,447
31,022 31,838
30,900 31,662
13,095 13,426
13,009 13,332
5,666 5,809
17,496 17,936
44,728 45,857
1,331 1,367
3,078 3,155
6,154 6,310
12,833 13,155
3,558 3,625
1,803 1,845
7,262 7,454
45,903 47,086
258,718 265,559
604,499 619,820
2009
2012
12,976 13,075
7,018 7,132
2,692 2,725
2,467 2,507
20,396 20,723
60 61
415 421
882 896
24,010 24,414
12,948 13,156
20,672 21,047
7,574 7,704
32,427 33,030
32,198 32,748
13,660 13,900
13,560 13,794
5,909 6,012
18,247 18,566
46,657 47,477
1,393 1,419
3,211 3,267
6,421 6,535
13,384 13,617
3,667 3,711
1,873 1,902
7,594 7,737
47,934 48,804
270,507 275,577
630,752 641,958
2011
13,073
7,244
2,999
2,530
20,265
62
425
1,550
24,825
13,363
21,430
7,837
33,642
33,310
14,133
14,027
6,116
18,884
48,298
1,446
3,328
6,650
13,854
3,754
1,932
7,884
49,747
280,782
653,389
2013
2015
13,079 13,093
7,360 7,479
3,277 3,561
2,553 2,577
19,800 19,327
62 63
429 433
2,216 2,894
25,247 25,679
13,575 13,794
21,823 22,224
7,973 8,113
34,269 34,912
33,887 34,479
14,373 14,619
14,266 14,512
6,222 6,332
19,211 19,546
49,141 50,006
1,474 1,502
3,389 3,453
6,768 6,889
14,097 14,346
3,800 3,847
1,963 1,994
8,034 8,189
50,713 51,702
286,118 291,586
665,120 677,150
2014
2016
2017
13,114 13,143
7,601 7,727
3,851 4,147
2,601 2,626
18,846 18,356
64 64
437 441
3,585 4,290
26,122 26,575
14,018 14,248
22,636 23,057
8,256 8,403
35,570 36,244
35,086 35,708
14,871 15,130
14,764 15,022
6,443 6,558
19,890 20,243
50,893 51,802
1,531 1,561
3,517 3,584
7,013 7,141
14,601 14,862
3,897 3,948
2,027 2,060
8,347 8,509
52,715 53,751
297,186 302,920
689,482 702,117
Sectoraloutputsforintermediateconsumption:SRP1($million)
13,178
7,856
4,448
2,652
17,857
65
445
5,008
27,038
14,484
23,488
8,553
36,933
36,345
15,395
15,286
6,675
20,604
52,733
1,591
3,652
7,271
15,130
4,001
2,094
8,674
54,810
308,790
715,058
2018
2020
326
13,220 13,255
7,989 8,127
4,756 4,813
2,678 3,406
17,349 16,888
65 66
450 456
5,740 5,817
27,513 28,000
14,725 14,979
23,928 24,380
8,706 8,864
37,639 38,375
36,998 37,674
15,666 15,973
15,557 15,848
6,795 6,921
20,974 21,373
53,687 54,697
1,623 1,655
3,722 3,790
7,405 7,543
15,404 15,688
4,056 4,107
2,130 2,165
8,844 9,016
55,894 56,948
314,797 320,985
728,308 741,809
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
TableF5
Present
value
124,886
Coalsector
67,602
Petroleumsector
29,216
Gassector
22,491
RenewableElectricity
187,423
CoalfiredElectricity
576
InternalcombustionElectricity
3,957
GasturbineElectricity
16,785
CombinedcycleElectricity
231,216
Agriculture,forestryandfishing
124,709
Mining
198,965
Food,beveragesandtobacco
Textile,clothing,footwearandleather 72,942
312,056
Wood,paperandprintingproducts
310,200
Basicchemicals
131,410
Nonmetallicmineralproducts
130,552
Basicironandsteel
56,879
Basicnonferrousmetals
175,655
Fabricatedmetalproducts
449,117
Machineryandequipment
13,399
Miscellenousmanufacturing
30,961
Water,sewerageanddrainage
61,821
Construction
128,862
Roadtransport
35,490
Railwaytransport
18,058
Watertransport
73,103
Airtransport
Othertransport,servicesandstorage 462,267
2,604,152
Commercialservices
Total
6,074,750
Note:
2007
12,264 12,386
6,303 6,451
2,477 2,501
1,945 2,062
18,638 19,009
54 56
373 382
794 813
21,493 22,046
11,632 11,907
18,367 18,855
6,768 6,942
28,741 29,503
28,787 29,505
12,176 12,483
12,112 12,415
5,269 5,403
16,275 16,685
41,590 42,650
1,231 1,264
2,863 2,935
5,718 5,863
11,938 12,244
3,382 3,440
1,687 1,726
6,723 6,902
42,609 43,707
239,595 245,905
561,803 576,037
2006
12,525
6,605
2,533
2,183
19,391
57
391
832
22,616
12,193
19,358
7,122
30,291
30,251
12,804
12,730
5,541
17,113
43,750
1,298
3,010
6,013
12,560
3,504
1,767
7,087
44,849
252,463
590,836
2008
2010
12,679 12,845
6,765 6,931
2,569 2,610
2,310 2,442
19,785 20,189
58 60
401 410
852 873
23,202 23,806
12,489 12,795
19,877 20,411
7,308 7,499
31,106 31,946
31,023 31,822
13,136 13,479
13,057 13,394
5,685 5,832
17,555 18,013
44,888 46,064
1,334 1,370
3,088 3,169
6,168 6,329
12,886 13,223
3,572 3,644
1,809 1,852
7,278 7,475
46,032 47,256
259,253 266,268
606,165 622,009
2009
2012
12,938 12,925
7,047 7,162
2,634 2,857
2,484 2,509
20,532 20,098
61 61
417 421
888 1,537
24,240 24,683
13,009 13,221
20,800 21,197
7,637 7,779
32,559 33,180
32,395 32,977
13,725 13,964
13,636 13,877
5,938 6,044
18,342 18,669
46,911 47,756
1,397 1,424
3,228 3,289
6,445 6,561
13,466 13,712
3,692 3,738
1,882 1,913
7,620 7,768
48,145 49,104
271,389 276,622
633,458 645,049
2011
12,919
7,280
3,075
2,534
19,656
62
426
2,199
25,136
13,439
21,603
7,923
33,815
33,574
14,209
14,123
6,153
19,004
48,622
1,452
3,352
6,680
13,964
3,785
1,945
7,919
50,084
281,976
656,909
2013
2015
12,914 12,918
7,403 7,529
3,091 3,109
3,224 3,933
19,267 18,867
63 64
432 437
2,229 2,260
25,601 26,076
13,668 13,904
22,019 22,445
8,071 8,223
34,480 35,161
34,195 34,832
14,488 14,775
14,389 14,662
6,268 6,386
19,368 19,741
49,544 50,490
1,481 1,510
3,414 3,478
6,803 6,930
14,225 14,493
3,830 3,877
1,978 2,011
8,074 8,232
51,036 52,011
287,519 293,198
669,072 681,553
2014
2016
2017
12,929 12,948
7,660 7,794
3,130 3,154
4,661 5,410
18,454 18,029
65 65
444 450
2,291 2,323
26,564 27,063
14,146 14,394
22,882 23,328
8,379 8,539
35,859 36,573
35,485 36,155
15,069 15,371
14,942 15,229
6,506 6,629
20,124 20,516
51,459 52,453
1,540 1,571
3,543 3,609
7,060 7,193
14,768 15,050
3,925 3,976
2,046 2,081
8,394 8,560
53,012 54,036
299,016 304,974
694,352 707,474
Sectoraloutputsforintermediateconsumption:PPP2($million)
12,974
7,931
3,180
6,179
17,591
66
456
2,356
27,573
14,648
23,786
8,702
37,304
36,842
15,680
15,523
6,756
20,918
53,471
1,603
3,678
7,329
15,338
4,028
2,118
8,730
55,086
311,074
720,923
2018
2020
327
13,006 13,045
8,073 8,218
3,208 3,239
6,970 7,783
17,140 16,673
67 68
463 469
2,390 2,424
28,096 28,631
14,909 15,176
24,254 24,732
8,870 9,041
38,053 38,819
37,546 38,267
15,996 16,321
15,825 16,133
6,885 7,017
21,330 21,752
54,514 55,583
1,635 1,669
3,748 3,819
7,469 7,612
15,634 15,937
4,083 4,139
2,156 2,194
8,904 9,082
56,161 57,263
317,319 323,712
734,703 748,819
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
TableF5
Present
value
124,102
Coalsector
67,867
Petroleumsector
26,861
Gassector
29,097
RenewableElectricity
186,147
CoalfiredElectricity
580
InternalcombustionElectricity
3,985
GasturbineElectricity
13,017
CombinedcycleElectricity
233,281
Agriculture,forestryandfishing
125,282
Mining
200,111
Food,beveragesandtobacco
Textile,clothing,footwearandleather 73,515
313,340
Wood,paperandprintingproducts
312,016
Basicchemicals
132,213
Nonmetallicmineralproducts
131,328
Basicironandsteel
57,159
Basicnonferrousmetals
176,655
Fabricatedmetalproducts
451,614
Machineryandequipment
13,439
Miscellenousmanufacturing
31,088
Water,sewerageanddrainage
62,031
Construction
129,627
Roadtransport
35,641
Railwaytransport
18,145
Watertransport
73,325
Airtransport
Othertransport,servicesandstorage 463,818
2,612,347
Commercialservices
Total
6,097,630
Note:
2007
12,045 11,978
6,249 6,347
2,447 2,455
1,927 2,026
18,471 18,681
54 55
370 375
787 799
21,319 21,699
11,530 11,710
18,252 18,626
6,716 6,839
28,579 29,186
28,565 29,074
12,089 12,317
12,021 12,239
5,232 5,330
16,155 16,455
41,288 42,064
1,225 1,252
2,842 2,895
5,679 5,788
11,853 12,075
3,330 3,345
1,672 1,696
6,687 6,831
42,332 43,176
238,254 243,337
557,970 568,651
2006
11,945
6,453
2,473
2,129
18,906
56
381
811
22,093
11,903
19,015
6,968
29,822
29,615
12,559
12,471
5,433
16,774
42,886
1,280
2,952
5,903
12,310
3,369
1,722
6,982
44,071
248,693
579,973
2008
2010
11,935 11,858
6,564 6,678
2,498 2,719
2,235 2,331
19,142 18,747
56 57
388 392
825 1,356
22,501 22,924
12,106 12,313
19,417 19,833
7,102 7,241
30,482 31,162
30,182 30,771
12,813 13,068
12,714 12,962
5,540 5,650
17,109 17,450
43,746 44,626
1,310 1,340
3,012 3,076
6,023 6,147
12,554 12,806
3,399 3,432
1,749 1,778
7,139 7,303
45,006 46,020
254,276 260,077
591,824 604,115
2009
2012
11,715 11,591
6,745 6,817
2,951 3,186
2,337 2,344
18,200 17,654
57 57
393 394
1,956 2,560
23,183 23,453
12,433 12,560
20,108 20,391
7,329 7,420
31,620 32,093
31,144 31,533
13,228 13,395
13,117 13,279
5,720 5,792
17,667 17,893
45,187 45,772
1,361 1,383
3,118 3,163
6,227 6,311
12,967 13,135
3,442 3,456
1,795 1,812
7,415 7,530
46,713 47,429
264,033 268,117
612,162 620,521
2011
11,484
6,893
3,424
2,352
17,111
57
395
3,168
23,732
12,693
20,684
7,515
32,581
31,937
13,568
13,448
5,866
18,128
46,379
1,405
3,208
6,398
13,308
3,473
1,831
7,649
48,165
272,326
629,180
2013
2015
11,383 11,298
6,974 7,059
3,441 3,461
2,973 3,604
16,627 16,143
58 58
398 401
3,190 3,214
24,022 24,325
12,838 12,990
20,986 21,298
7,613 7,715
33,096 33,627
32,363 32,806
13,774 13,986
13,635 13,829
5,946 6,029
18,389 18,661
47,038 47,723
1,428 1,452
3,253 3,299
6,489 6,584
13,491 13,682
3,488 3,506
1,851 1,872
7,771 7,897
48,878 49,616
276,694 281,204
638,086 647,339
2014
2016
2017
11,229 11,173
7,149 7,243
3,484 3,509
4,246 4,900
15,658 15,169
59 59
404 407
3,240 3,267
24,639 24,965
13,149 13,316
21,621 21,954
7,821 7,931
34,176 34,741
33,267 33,744
14,207 14,435
14,031 14,240
6,115 6,204
18,942 19,233
48,433 49,169
1,476 1,501
3,347 3,397
6,682 6,784
13,879 14,083
3,527 3,551
1,894 1,917
8,026 8,160
50,380 51,170
285,854 290,645
656,934 666,868
Sectoraloutputsforintermediateconsumption:SRP2($million)
11,130
7,341
3,538
5,567
14,677
60
411
3,295
25,303
13,489
22,297
8,044
35,323
34,239
14,670
14,456
6,296
19,535
49,930
1,527
3,448
6,889
14,295
3,577
1,941
8,297
51,985
295,578
677,138
2018
2020
328
11,099 11,078
7,443 7,549
3,569 3,602
6,248 6,942
14,180 13,677
60 61
415 419
3,325 3,356
25,652 26,014
13,669 13,856
22,651 23,015
8,162 8,283
35,922 36,538
34,751 35,280
14,913 15,164
14,680 14,910
6,390 6,488
19,846 20,167
50,716 51,527
1,554 1,581
3,501 3,556
6,998 7,110
14,513 14,739
3,606 3,637
1,966 1,993
8,439 8,584
52,825 53,692
300,652 305,869
687,744 698,685
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
TableF5
Present
value
115,347
Coalsector
65,373
Petroleumsector
28,238
Gassector
27,335
RenewableElectricity
172,734
CoalfiredElectricity
553
InternalcombustionElectricity
3,796
GasturbineElectricity
17,395
CombinedcycleElectricity
224,130
Agriculture,forestryandfishing
120,456
Mining
194,114
Food,beveragesandtobacco
Textile,clothing,footwearandleather 70,850
305,280
Wood,paperandprintingproducts
301,328
Basicchemicals
128,052
Nonmetallicmineralproducts
126,936
Basicironandsteel
55,289
Basicnonferrousmetals
170,952
Fabricatedmetalproducts
437,029
Machineryandequipment
13,133
Miscellenousmanufacturing
30,141
Water,sewerageanddrainage
60,202
Construction
125,362
Roadtransport
33,635
Railwaytransport
17,406
Watertransport
71,557
Airtransport
Othertransport,servicesandstorage 451,135
2,548,992
Commercialservices
Total
5,916,750
TableF5
Note:
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
2007
12,200 12,268
6,291 6,428
2,462 2,477
1,941 2,055
18,605 18,946
54 55
373 381
793 810
21,467 21,994
11,610 11,865
18,347 18,816
6,759 6,925
28,708 29,441
28,743 29,422
12,158 12,450
12,093 12,381
5,261 5,388
16,250 16,639
41,530 42,536
1,230 1,261
2,859 2,927
5,710 5,847
11,922 12,213
3,369 3,418
1,684 1,720
6,716 6,887
42,550 43,599
239,298 245,359
560,981 574,507
2006
12,359
6,572
2,501
2,173
19,299
57
389
828
22,537
12,132
19,300
7,097
30,201
30,132
12,755
12,681
5,520
17,047
43,585
1,295
2,999
5,990
12,515
3,473
1,757
7,066
44,695
251,683
588,636
2008
2010
12,468 12,591
6,722 6,878
2,530 2,564
2,296 2,424
19,662 20,036
58 59
398 407
847 866
23,096 23,672
12,409 12,695
19,799 20,313
7,275 7,458
30,987 31,798
30,868 31,629
13,073 13,401
12,992 13,314
5,657 5,797
17,470 17,907
44,673 45,797
1,329 1,364
3,074 3,151
6,138 6,291
12,827 13,149
3,534 3,599
1,796 1,837
7,250 7,441
45,832 47,010
258,240 265,017
603,300 618,466
2009
2012
12,533 12,485
6,980 7,085
2,771 2,970
2,445 2,466
19,584 19,125
60 60
411 414
1,498 2,140
24,077 24,492
12,883 13,077
20,682 21,058
7,588 7,721
32,375 32,966
32,161 32,707
13,620 13,844
13,533 13,759
5,894 5,993
18,206 18,513
46,571 47,366
1,389 1,415
3,208 3,266
6,397 6,506
13,375 13,606
3,635 3,673
1,864 1,892
7,579 7,720
47,899 48,809
269,889 274,877
629,107 640,007
2011
12,441
7,195
2,976
3,133
18,720
61
419
2,166
24,918
13,282
21,445
7,858
33,586
33,276
14,102
14,003
6,098
18,848
48,215
1,442
3,323
6,620
13,847
3,710
1,921
7,864
49,691
280,048
651,210
2013
2015
12,409 12,387
7,309 7,427
2,986 2,999
3,816 4,517
18,307 17,883
62 63
424 430
2,193 2,220
25,355 25,803
13,493 13,710
21,841 22,247
7,998 8,142
34,222 34,873
33,861 34,463
14,367 14,640
14,254 14,512
6,206 6,317
19,192 19,546
49,087 49,982
1,470 1,498
3,382 3,442
6,736 6,856
14,094 14,348
3,748 3,788
1,951 1,982
8,012 8,164
50,596 51,525
285,351 290,787
662,724 674,549
2014
2017
12,374 12,370
7,549 7,674
3,014 3,033
5,236 5,973
17,449 17,004
63 64
435 441
2,249 2,277
26,261 26,731
13,933 14,162
22,663 23,088
8,289 8,440
35,540 36,224
35,080 35,713
14,919 15,205
14,777 15,048
6,430 6,546
19,909 20,280
50,900 51,842
1,527 1,557
3,504 3,567
6,979 7,105
14,608 14,875
3,831 3,875
2,014 2,047
8,319 8,478
52,478 53,455
296,357 302,063
686,686 699,138
2016
Sectoraloutputsforintermediateconsumption:PPPforEarlyaction($million)
12,374
7,803
3,054
6,729
16,547
65
447
2,307
27,213
14,398
23,524
8,595
36,924
36,362
15,499
15,326
6,664
20,662
52,807
1,587
3,632
7,234
15,149
3,921
2,082
8,641
54,456
307,906
711,909
2018
2020
329
12,386 12,405
7,936 8,073
3,077 3,103
7,505 8,302
16,078 15,595
66 67
452 459
2,338 2,369
27,706 28,211
14,640 14,888
23,970 24,427
8,753 8,916
37,641 38,374
37,028 37,710
15,800 16,109
15,611 15,904
6,786 6,911
21,053 21,454
53,797 54,812
1,619 1,650
3,699 3,767
7,366 7,502
15,429 15,716
3,969 4,019
2,117 2,153
8,808 8,978
55,482 56,533
313,890 320,017
725,002 738,422
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
Present
value
121,331
Coalsector
67,324
Petroleumsector
26,531
Gassector
30,780
RenewableElectricity
181,626
CoalfiredElectricity
574
InternalcombustionElectricity
3,944
GasturbineElectricity
13,551
CombinedcycleElectricity
231,854
Agriculture,forestryandfishing
124,250
Mining
199,076
Food,beveragesandtobacco
Textile,clothing,footwearandleather 73,085
311,797
Wood,paperandprintingproducts
310,041
Basicchemicals
131,443
Nonmetallicmineralproducts
130,509
Basicironandsteel
56,791
Basicnonferrousmetals
175,584
Fabricatedmetalproducts
448,870
Machineryandequipment
13,377
Miscellenousmanufacturing
30,902
Water,sewerageanddrainage
61,639
Construction
128,855
Roadtransport
35,173
Railwaytransport
17,991
Watertransport
72,964
Airtransport
Othertransport,servicesandstorage 461,299
2,599,423
Commercialservices
Total
6,060,582
TableF5
Note:
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
2007
12,165 12,195
6,275 6,396
2,458 2,467
1,935 2,042
18,545 18,824
54 55
371 378
790 805
21,390 21,839
11,578 11,801
18,301 18,722
6,737 6,881
28,653 29,326
28,665 29,263
12,129 12,392
12,062 12,317
5,249 5,363
16,210 16,558
41,426 42,323
1,228 1,257
2,852 2,913
5,698 5,822
11,890 12,148
3,356 3,390
1,679 1,710
6,704 6,863
42,461 43,414
238,889 244,510
559,751 571,972
2006
12,246
6,523
2,484
2,152
19,115
56
386
820
22,302
12,034
19,158
7,030
30,027
29,888
12,666
12,583
5,481
16,921
43,260
1,288
2,977
5,953
12,416
3,430
1,742
7,029
44,411
250,377
584,758
2008
2010
12,315 12,398
6,656 6,794
2,507 2,535
2,267 2,387
19,417 19,730
57 58
393 401
836 853
22,780 23,273
12,278 12,530
19,607 20,071
7,185 7,344
30,751 31,501
30,539 31,213
12,953 13,249
12,860 13,148
5,603 5,730
17,300 17,693
44,235 45,244
1,320 1,354
3,044 3,114
6,088 6,228
12,694 12,981
3,476 3,525
1,776 1,811
7,200 7,378
45,449 46,524
256,468 262,773
598,056 611,841
2009
2012
12,307 12,230
6,879 6,969
2,737 2,934
2,400 2,414
19,228 18,725
59 59
403 406
1,471 2,095
23,598 23,933
12,686 12,849
20,390 20,718
7,451 7,561
32,019 32,551
31,661 32,125
13,438 13,633
13,334 13,527
5,814 5,900
17,950 18,215
45,909 46,596
1,377 1,401
3,163 3,214
6,322 6,420
13,173 13,371
3,548 3,574
1,833 1,856
7,503 7,632
47,314 48,124
267,193 271,737
621,162 630,767
2011
12,165
7,062
3,127
2,429
18,219
59
408
2,728
24,277
13,017
21,055
7,674
33,098
32,603
13,834
13,726
5,988
18,489
47,304
1,425
3,266
6,520
13,575
3,601
1,880
7,764
48,956
276,403
640,650
2013
2015
12,110 12,066
7,158 7,258
3,316 3,501
2,444 2,460
17,709 17,196
60 60
411 413
3,369 4,019
24,631 24,995
13,191 13,370
21,400 21,754
7,790 7,909
33,658 34,233
33,095 33,601
14,041 14,254
13,931 14,141
6,080 6,173
18,770 19,059
48,033 48,782
1,450 1,476
3,319 3,374
6,623 6,729
13,784 14,000
3,631 3,663
1,905 1,931
7,899 8,038
49,808 50,681
281,188 286,095
650,805 661,231
2014
2017
12,026 11,998
7,363 7,472
3,505 3,513
3,119 3,793
16,737 16,272
61 61
417 422
4,060 4,102
25,369 25,756
13,562 13,761
22,119 22,494
8,033 8,160
34,839 35,461
34,131 34,678
14,501 14,755
14,371 14,609
6,272 6,375
19,377 19,705
49,588 50,418
1,503 1,530
3,428 3,484
6,840 6,954
14,225 14,458
3,693 3,726
1,958 1,985
8,180 8,326
51,533 52,410
291,195 296,438
672,005 683,116
2016
Sectoraloutputsforintermediateconsumption:SRPforearlyaction($million)
11,980
7,584
3,525
4,482
15,800
62
426
4,146
26,154
13,966
22,880
8,291
36,100
35,242
15,018
14,854
6,480
20,044
51,274
1,558
3,542
7,071
14,697
3,761
2,014
8,477
53,313
301,824
694,564
2018
2020
330
11,971 11,972
7,701 7,822
3,541 3,560
5,186 5,908
15,320 14,831
63 63
431 436
4,192 4,240
26,565 26,987
14,178 14,397
23,276 23,682
8,426 8,565
36,756 37,430
35,823 36,422
15,287 15,565
15,106 15,365
6,588 6,700
20,392 20,750
52,154 53,060
1,587 1,617
3,601 3,662
7,192 7,317
14,944 15,198
3,798 3,838
2,044 2,075
8,631 8,789
54,242 55,196
307,356 313,034
706,352 718,480
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
Present
value
119,585
Coalsector
66,449
Petroleumsector
27,690
Gassector
24,946
RenewableElectricity
178,470
CoalfiredElectricity
563
InternalcombustionElectricity
3,869
GasturbineElectricity
18,228
CombinedcycleElectricity
227,651
Agriculture,forestryandfishing
122,520
Mining
196,517
Food,beveragesandtobacco
Textile,clothing,footwearandleather 71,880
308,577
Wood,paperandprintingproducts
305,620
Basicchemicals
129,644
Nonmetallicmineralproducts
128,677
Basicironandsteel
56,067
Basicnonferrousmetals
173,201
Fabricatedmetalproducts
442,870
Machineryandequipment
13,262
Miscellenousmanufacturing
30,532
Water,sewerageanddrainage
60,986
Construction
127,070
Roadtransport
34,484
Railwaytransport
17,723
Watertransport
72,308
Airtransport
Othertransport,servicesandstorage 456,565
2,575,497
Commercialservices
Total
5,991,451
TableF5
Note:
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
2007
12,519 12,884
6,350 6,544
2,536 2,612
1,958 2,089
18,765 19,264
55 56
376 387
799 824
21,595 22,254
11,718 12,078
18,444 19,010
6,801 7,009
28,870 29,758
28,960 29,846
12,248 12,625
12,184 12,557
5,298 5,461
16,373 16,877
41,828 43,119
1,236 1,274
2,881 2,969
5,752 5,929
12,001 12,369
3,432 3,536
1,701 1,753
6,754 6,962
42,841 44,160
240,762 248,192
565,036 582,399
2006
13,259
6,745
2,691
2,227
19,775
58
399
849
22,933
12,449
19,593
7,223
30,673
30,760
13,014
12,942
5,630
17,398
44,451
1,314
3,060
6,112
12,748
3,643
1,807
7,177
45,519
255,852
600,299
2008
2010
13,645 14,043
6,951 7,164
2,771 2,855
2,370 2,521
20,299 20,838
60 62
411 423
874 901
23,634 24,356
12,832 13,226
20,195 20,815
7,444 7,672
31,617 32,590
31,702 32,673
13,414 13,828
13,340 13,749
5,803 5,982
17,934 18,487
45,824 47,239
1,354 1,396
3,154 3,251
6,301 6,495
13,139 13,542
3,754 3,868
1,862 1,919
7,399 7,627
46,921 48,367
263,749 271,892
618,754 637,781
2009
2012
13,640 13,389
7,194 7,245
2,753 2,718
2,535 2,554
20,957 21,115
62 62
426 429
906 913
24,615 24,894
13,283 13,377
21,071 21,348
7,751 7,842
32,968 33,410
32,924 33,267
13,937 14,091
13,857 14,003
6,035 6,100
18,632 18,835
47,646 48,175
1,413 1,433
3,276 3,313
6,548 6,619
13,671 13,827
3,814 3,803
1,925 1,936
7,714 7,819
48,816 49,416
274,798 278,474
643,170 650,407
2011
13,190
7,304
2,697
2,575
21,285
63
433
920
25,181
13,482
21,635
7,936
33,872
33,636
14,257
14,160
6,167
19,053
48,741
1,454
3,354
6,695
13,992
3,802
1,949
7,929
50,057
282,356
658,176
2013
2015
12,911 12,663
7,363 7,429
2,865 2,834
2,579 3,254
20,658 20,103
63 63
433 435
1,580 1,588
25,477 25,784
13,587 13,706
21,929 22,234
8,033 8,135
34,342 34,843
34,018 34,428
14,416 14,612
14,317 14,495
6,236 6,310
19,271 19,520
49,309 49,939
1,475 1,497
3,398 3,441
6,772 6,854
14,159 14,338
3,802 3,801
1,964 1,980
8,042 8,159
50,769 51,454
286,350 290,542
666,118 674,443
2014
2017
12,452 12,272
7,502 7,581
2,811 2,795
3,937 4,630
19,551 19,000
64 64
438 441
1,597 1,607
26,103 26,433
13,833 13,969
22,548 22,873
8,241 8,350
35,361 35,896
34,858 35,307
14,816 15,029
14,681 14,875
6,388 6,468
19,780 20,051
50,596 51,281
1,520 1,544
3,485 3,532
6,941 7,031
14,525 14,719
3,805 3,813
1,998 2,018
8,280 8,405
52,167 52,907
294,882 299,365
683,161 692,255
2016
Sectoraloutputsforintermediateconsumption:PPPforDelayaction($million)
12,119
7,665
2,785
5,334
18,450
65
443
1,617
26,775
14,112
23,207
8,463
36,448
35,774
15,249
15,077
6,552
20,332
51,992
1,568
3,580
7,125
14,920
3,825
2,039
8,534
53,673
303,988
701,713
2018
2020
331
11,988 11,879
7,754 7,848
2,780 2,780
6,049 6,776
17,898 17,344
65 65
446 450
1,628 1,640
27,128 27,493
14,262 14,420
23,552 23,906
8,581 8,702
37,016 37,601
36,260 36,762
15,476 15,712
15,286 15,502
6,638 6,727
20,624 20,925
52,730 53,492
1,593 1,619
3,630 3,682
7,223 7,324
15,129 15,344
3,841 3,859
2,061 2,085
8,667 8,804
54,465 55,282
308,752 313,655
711,523 721,680
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
Present
value
125,962
Coalsector
67,998
Petroleumsector
26,329
Gassector
27,290
RenewableElectricity
191,806
CoalfiredElectricity
583
InternalcombustionElectricity
4,004
GasturbineElectricity
10,260
CombinedcycleElectricity
233,257
Agriculture,forestryandfishing
125,442
Mining
200,109
Food,beveragesandtobacco
Textile,clothing,footwearandleather 73,528
313,459
Wood,paperandprintingproducts
312,280
Basicchemicals
132,351
Nonmetallicmineralproducts
131,444
Basicironandsteel
57,179
Basicnonferrousmetals
176,830
Fabricatedmetalproducts
452,003
Machineryandequipment
13,443
Miscellenousmanufacturing
31,121
Water,sewerageanddrainage
62,095
Construction
129,697
Roadtransport
35,862
Railwaytransport
18,174
Watertransport
73,360
Airtransport
Othertransport,servicesandstorage 464,014
2,614,003
Commercialservices
Total
6,103,883
TableF5
Note:
12,166
6,161
2,462
1,833
18,280
53
365
776
20,956
11,369
17,894
6,600
28,008
28,100
11,882
11,821
5,140
15,883
40,575
1,199
2,795
5,580
11,645
3,331
1,650
6,552
41,561
233,556
548,194
2005
2007
12,519 12,884
6,350 6,544
2,536 2,612
1,958 2,089
18,765 19,264
55 56
376 387
799 824
21,595 22,254
11,718 12,078
18,444 19,010
6,801 7,009
28,870 29,758
28,960 29,846
12,248 12,625
12,184 12,557
5,298 5,461
16,373 16,877
41,828 43,119
1,236 1,274
2,881 2,969
5,752 5,929
12,001 12,369
3,432 3,536
1,701 1,753
6,754 6,962
42,841 44,160
240,762 248,192
565,036 582,399
2006
13,259
6,745
2,691
2,227
19,775
58
399
849
22,933
12,449
19,593
7,223
30,673
30,760
13,014
12,942
5,630
17,398
44,451
1,314
3,060
6,112
12,748
3,643
1,807
7,177
45,519
255,852
600,299
2008
2010
13,645 14,043
6,951 7,164
2,771 2,855
2,370 2,521
20,299 20,838
60 62
411 423
874 901
23,634 24,356
12,832 13,226
20,195 20,815
7,444 7,672
31,617 32,590
31,702 32,673
13,414 13,828
13,340 13,749
5,803 5,982
17,934 18,487
45,824 47,239
1,354 1,396
3,154 3,251
6,301 6,495
13,139 13,542
3,754 3,868
1,862 1,919
7,399 7,627
46,921 48,367
263,749 271,892
618,754 637,781
2009
2012
13,676 13,409
7,183 7,216
2,769 2,726
2,528 2,538
20,893 20,978
62 62
425 426
903 907
24,508 24,678
13,257 13,314
21,012 21,226
7,722 7,781
32,912 33,280
32,843 33,076
13,912 14,026
13,825 13,928
6,022 6,071
18,594 18,741
47,539 47,926
1,412 1,429
3,269 3,297
6,539 6,595
13,635 13,747
3,808 3,777
1,921 1,927
7,704 7,793
48,736 49,208
274,474 277,580
642,082 647,661
2011
13,193
7,257
2,699
2,550
21,080
62
428
912
24,860
13,386
21,453
7,846
33,673
33,343
14,156
14,046
6,124
18,908
48,361
1,447
3,328
6,658
13,870
3,759
1,935
7,888
49,731
280,948
653,901
2013
2015
12,902 12,649
7,300 7,350
2,878 3,044
2,546 2,544
20,398 19,727
62 62
428 427
1,560 2,207
25,053 25,260
13,460 13,545
21,689 21,936
7,914 7,987
34,079 34,505
33,629 33,937
14,283 14,419
14,166 14,295
6,179 6,237
19,079 19,262
48,807 49,286
1,466 1,486
3,363 3,400
6,723 6,793
13,999 14,137
3,744 3,735
1,944 1,955
7,989 8,094
50,334 50,966
284,483 288,180
660,457 667,427
2014
2017
12,426 12,227
7,405 7,468
3,200 3,169
2,542 3,202
19,066 18,482
62 62
427 429
2,855 2,865
25,479 25,712
13,639 13,749
22,195 22,465
8,065 8,147
34,948 35,424
34,266 34,624
14,564 14,746
14,433 14,593
6,299 6,367
19,457 19,685
49,795 50,369
1,507 1,529
3,439 3,478
6,868 6,948
14,283 14,440
3,731 3,727
1,967 1,981
8,204 8,317
51,623 52,263
292,025 296,090
674,769 682,557
2016
Sectoraloutputsforintermediateconsumption:SRPforDelayaction($million)
12,057
7,537
3,146
3,869
17,904
63
430
2,877
25,961
13,868
22,748
8,234
35,920
35,005
14,937
14,763
6,439
19,925
50,975
1,551
3,519
7,033
14,607
3,729
1,997
8,435
52,935
300,326
690,792
2018
2020
332
11,912 11,789
7,612 7,693
3,130 3,119
4,544 5,228
17,332 16,764
63 63
432 435
2,890 2,906
26,224 26,502
13,997 14,135
23,043 23,350
8,326 8,422
36,437 36,973
35,408 35,832
15,138 15,349
14,942 15,130
6,514 6,593
20,178 20,444
51,614 52,283
1,575 1,599
3,562 3,607
7,122 7,216
14,783 14,968
3,735 3,746
2,014 2,033
8,558 8,685
53,639 54,373
304,729 309,295
699,455 708,531
2019
ThisTableshowstheresultsobtainedbymultiplyinganupdatedtechnicalcoefficientmatrix(calculatedfromEquation520,p.110)withEquation532,p.124.
Present
value
125,886
Coalsector
67,676
Petroleumsector
27,064
Gassector
24,441
RenewableElectricity
190,393
CoalfiredElectricity
578
InternalcombustionElectricity
3,971
GasturbineElectricity
12,666
CombinedcycleElectricity
231,131
Agriculture,forestryandfishing
124,809
Mining
198,910
Food,beveragesandtobacco
Textile,clothing,footwearandleather 72,931
312,106
Wood,paperandprintingproducts
310,304
Basicchemicals
131,582
Nonmetallicmineralproducts
130,647
Basicironandsteel
56,887
Basicnonferrousmetals
175,803
Fabricatedmetalproducts
449,399
Machineryandequipment
13,399
Miscellenousmanufacturing
30,958
Water,sewerageanddrainage
61,856
Construction
128,888
Roadtransport
35,608
Railwaytransport
18,069
Watertransport
73,102
Airtransport
Othertransport,servicesandstorage 462,052
2,604,622
Commercialservices
Total
6,075,737
44.3
21.7
254.7
18.1
27.2
23.9
21.9
8.0
184.6
6.3
10.6
7.6
Gassector
Electricity
Food,beveragesandtobacco
19.3
36.7
65.6
75.4
34.5
12.9
7.0
22.7
18.1
31.7
28.5
44.8
26.6
17.5
12.5
9.1
16.7
34.1
37.6
11.2
4.0
2.0
7.6
5.4
21.1
11.3
25.0
17.6
5.5
3.4
Basicchemicals
Nonmetallicmineralproducts
Basicironandsteel
Basicnonferrousmetals
Fabricatedmetalproducts
Machineryandequipment
Miscellenousmanufacturing
Water,sewerageanddrainage
Construction
Roadtransport
Railwaytransport
Watertransport
Airtransport
Othertransport,servicesandstorage
Commercialservices
6.3
10.3
35.1
49.6
21.6
41.8
10.4
14.1
3.9
7.7
21.6
73.1
66.6
32.3
17.7
11.4
7.4
14.4
20.2
12.2
336.9
15.6
43.1
23.5
23.2
32.0
51.9
87.4
52.9
61.7
34.3
41.6
13.1
24.2
65.3
142.3
125.1
69.3
36.7
33.7
22.9
44.7
50.6
34.2
450.9
41.0
85.1
45.1
SRP2
7.8
12.6
43.9
62.0
26.7
52.3
12.9
17.2
4.8
9.6
26.7
90.7
82.9
40.1
22.0
14.1
9.1
17.8
24.9
15.2
409.0
19.4
53.8
29.3
PPPEarly
ThisTableshowstheresultsobtainedbytheapplicationofEquations514and515asdetailedinSection5.4,pp.106107.
12.3
18.0
3.9
6.0
Textile,clothing,footwearandleather
Wood,paperandprintingproducts
Mining
Agriculture,forestryandfishing
23.9
12.1
Coalsector
Petroleumsector
PPP2
17.8
24.7
39.0
65.7
40.7
46.5
26.1
32.2
10.0
18.5
49.7
108.6
95.0
52.9
27.9
25.8
17.6
34.3
38.9
26.1
353.9
31.3
64.4
34.4
SRPEarly
Changeinsectoralprices(percentagechangefromBCscenario)
SRP1
TableF6
PPP1
Note:
10.6
17.2
60.5
85.5
36.6
72.1
17.6
23.5
6.6
13.1
36.7
124.6
113.9
55.1
30.2
19.3
12.5
24.4
34.1
20.9
556.1
26.7
74.0
40.2
PPPDelay
21.0
29.1
46.2
77.8
48.0
55.0
30.9
37.9
11.9
21.9
58.7
128.2
112.3
62.4
33.0
30.5
20.7
40.5
45.9
30.8
416.8
37.0
76.2
40.7
SRPDelay
333
334
TableF6
PPP1
SRP1
Changesininflation(Index)
PPP2
SRP2
PPPEarly
SRPEarly
PPPDelay
SRPDelay
2005
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2006
1.006
1.016
1.013
1.031
1.016
1.023
1.000
1.000
2007
1.013
1.031
1.025
1.061
1.032
1.046
1.000
1.000
2008
1.019
1.046
1.038
1.090
1.047
1.068
1.000
1.000
2009
1.025
1.060
1.050
1.119
1.062
1.089
1.000
1.000
2010
1.031
1.075
1.062
1.147
1.077
1.110
1.000
1.000
2011
1.037
1.089
1.073
1.173
1.092
1.131
1.031
1.039
2012
1.043
1.103
1.085
1.199
1.106
1.151
1.062
1.076
2013
1.049
1.117
1.096
1.224
1.119
1.170
1.091
1.113
2014
1.055
1.130
1.107
1.248
1.132
1.189
1.120
1.148
2015
1.061
1.143
1.118
1.271
1.145
1.207
1.148
1.182
2016
1.066
1.156
1.128
1.294
1.157
1.224
1.174
1.215
2017
1.072
1.168
1.137
1.315
1.169
1.241
1.199
1.246
2018
1.077
1.180
1.147
1.336
1.180
1.258
1.223
1.276
2019
1.083
1.192
1.156
1.356
1.191
1.274
1.246
1.305
2020
1.088
1.203
1.165
1.375
1.202
1.289
1.268
1.332
Note:
ThisTableshowstheresultsobtainedbycalculateweightedmeanofchangeinpricesfromall
sectorsshowninpreviousTablewiththetotaloutput[thatis,(finalconsumption+(net)
exports+investmentdemand+intermediatedemand)]ofeachsector.
Note:
2006
108
76
7
1,831
5
35
55
48
47
31
5
21
117
56
157
160
4
6
0.2
1
38
224
19
43
159
9
44
3,307
2005
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
109
77
7
1,854
5
35
57
49
48
32
5
22
119
58
160
164
4
6
0.2
1
39
229
20
44
163
9
45
3,362
2007
TableF7
110
79
7
1,878
5
36
58
50
49
33
5
22
122
59
164
168
5
7
0.2
1
40
235
20
45
167
9
46
3,418
2008
112
80
7
1,903
5
37
59
51
50
34
5
23
125
60
167
172
5
7
0.2
1
40
240
20
46
171
9
47
3,476
2009
113
81
7
1,928
6
38
61
52
52
34
6
23
127
62
171
176
5
7
0.2
1
41
246
21
47
175
10
48
3,535
2010
114
81
7
1,947
6
38
61
53
52
35
6
23
129
62
174
178
5
7
0.2
1
42
249
21
48
178
10
49
3,576
2011
115
82
7
1,966
6
39
62
54
53
36
6
24
131
63
176
181
5
7
0.2
1
43
253
21
49
180
10
50
3,618
2012
115
83
7
1,985
6
39
63
55
54
36
6
24
133
64
179
184
5
7
0.2
1
43
257
22
49
183
10
50
3,661
2013
2014
116
83
7
2,005
6
40
64
55
55
37
6
25
135
65
181
187
5
7
0.2
1
44
261
22
50
186
10
51
3,705
Carbontaxrevenue:PPP1($million)
117
84
7
2,025
6
40
65
56
56
37
6
25
137
66
184
190
5
7
0.2
1
45
265
22
51
189
10
52
3,749
2015
118
85
7
2,045
6
41
66
57
56
38
6
25
139
67
187
193
5
8
0.2
1
45
269
23
52
192
11
53
3,795
2016
118
85
7
1,988
6
41
114
58
57
38
6
26
141
68
190
195
5
8
0.2
1
46
273
23
53
195
11
54
3,810
2017
ThisTableshowstheresultsobtainedbymultiplyingadvaloremtaxrate,tn(calculatedfromEquation511,p.105)withEquation532,p.124.
Present
value
900
Coalsector
644
Petroleumsector
56
Gassector
RenewableElectricity
15,241
CoalfiredElectricity
45
InternalcombustionElectricity
302
GasturbineElectricity
640
CombinedcycleElectricity
422
Agriculture,forestryandfishing
417
Mining
279
Food,beveragesandtobacco
Textile,clothing,footwearandleather 45
187
Wood,paperandprintingproducts
1,029
Basicchemicals
497
Nonmetallicmineralproducts
1,381
Basicironandsteel
1,419
Basicnonferrousmetals
38
Fabricatedmetalproducts
56
Machineryandequipment
2
Miscellenousmanufacturing
7
Water,sewerageanddrainage
334
Construction
1,985
Roadtransport
169
Railwaytransport
382
Watertransport
1,414
Airtransport
Othertransport,servicesandstorage 78
388
Commercialservices
Total
28,356
119
86
8
1,931
6
42
163
59
58
39
6
26
144
69
193
198
5
8
0.2
1
47
278
23
53
198
11
55
3,826
2018
119
87
8
1,874
6
42
213
60
59
40
6
27
146
70
195
202
5
8
0.2
1
47
282
24
54
201
11
56
3,843
2019
120
87
9
1,817
6
42
263
61
60
40
6
27
148
71
198
205
5
8
0.2
1
48
286
24
55
205
11
56
3,861
2020
335
Note:
2006
220
164
22
60
2,644
6
39
72
195
215
337
54
184
265
155
322
357
163
310
7
41
383
295
72
70
213
275
1,933
9,074
2005
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
219
165
21
62
2,645
6
40
73
198
218
340
55
186
268
156
327
362
165
314
7
42
387
300
72
71
217
277
1,956
9,149
2007
TableF7
218
165
20
65
2,647
6
40
74
200
220
344
55
188
272
159
332
367
167
317
7
42
393
305
73
72
221
279
1,981
9,229
2008
217
166
20
67
2,650
7
41
75
203
222
347
56
191
276
161
337
372
170
321
7
42
398
311
74
74
225
281
2,006
9,313
2009
216
167
19
69
2,654
7
41
76
205
225
351
56
193
279
163
342
378
172
325
7
42
404
316
74
75
230
284
2,032
9,402
2010
214
166
19
69
2,649
7
42
76
207
226
352
56
194
281
164
345
380
173
326
7
42
406
320
74
76
232
284
2,043
9,430
2011
212
166
19
69
2,648
7
42
77
208
227
354
57
195
284
165
348
384
174
328
7
43
410
323
75
76
235
286
2,059
9,477
2012
210
166
20
69
2,548
7
42
131
210
229
356
57
196
286
166
351
387
176
330
7
43
413
326
75
77
237
287
2,076
9,479
2013
2014
207
166
21
68
2,441
7
42
186
210
229
356
57
196
287
167
353
389
176
330
7
42
414
330
75
78
240
286
2,077
9,436
Carbontaxrevenue:SRP1($million)
204
165
23
66
2,337
7
42
240
211
229
356
57
197
288
168
355
391
177
331
7
42
415
333
75
79
243
285
2,079
9,399
2015
201
165
24
65
2,236
7
42
295
212
229
356
57
197
290
168
357
393
177
331
7
42
417
336
74
79
245
285
2,082
9,369
2016
199
165
26
64
2,138
7
42
349
213
229
356
57
197
292
169
360
395
178
332
7
42
418
340
74
80
248
284
2,086
9,346
2017
ThisTableshowstheresultsobtainedbymultiplyingadvaloremtaxrate,tn(calculatedfromEquation512,p.105)withEquation532,p.124.
Present
value
1,671
Coalsector
1,312
Petroleumsector
172
Gassector
523
RenewableElectricity
19,699
CoalfiredElectricity
53
InternalcombustionElectricity
326
GasturbineElectricity
1,275
CombinedcycleElectricity
1,630
Agriculture,forestryandfishing
1,778
Mining
2,773
Food,beveragesandtobacco
Textile,clothing,footwearandleather 443
1,526
Wood,paperandprintingproducts
2,222
Basicchemicals
1,294
Nonmetallicmineralproducts
2,724
Basicironandsteel
3,005
Basicnonferrousmetals
1,365
Fabricatedmetalproducts
2,568
Machineryandequipment
57
Miscellenousmanufacturing
333
Water,sewerageanddrainage
3,204
Construction
2,533
Roadtransport
585
Railwaytransport
599
Watertransport
1,841
Airtransport
Othertransport,servicesandstorage 2,236
16,089
Commercialservices
Total
73,834
197
165
27
63
2,042
7
42
404
214
229
357
57
198
293
170
362
398
179
333
7
42
420
343
74
81
251
284
2,091
9,329
2018
195
165
29
62
1,948
7
42
458
215
230
358
57
198
295
171
365
400
180
334
7
42
422
347
75
82
254
284
2,098
9,317
2019
193
165
29
78
1,863
7
42
460
216
231
359
57
199
297
172
368
403
181
335
7
42
426
351
75
82
257
284
2,105
9,281
2020
336
Note:
2006
212
151
14
3,649
10
69
111
95
94
63
10
42
232
112
312
320
9
13
0.3
2
75
447
38
86
318
17
87
6,589
2005
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
212
152
13
3,665
10
70
113
97
96
64
10
43
237
115
318
326
9
13
0.4
2
77
456
39
88
325
18
89
6,656
2007
TableF7
212
152
12
3,683
10
71
115
99
98
65
11
44
242
117
325
333
9
13
0.4
2
78
466
40
90
332
18
91
6,728
2008
213
153
12
3,701
11
73
117
101
100
67
11
45
247
119
331
340
9
13
0.4
2
80
476
40
91
339
19
93
6,802
2009
214
154
12
3,721
11
74
119
103
102
68
11
46
252
122
338
347
9
14
0.4
2
82
486
41
93
346
19
95
6,879
2010
213
154
12
3,728
11
75
121
104
103
69
11
46
255
123
342
351
9
14
0.4
2
83
492
41
94
351
19
97
6,922
2011
212
153
13
3,596
11
75
208
106
104
70
11
47
258
125
346
356
10
14
0.4
2
84
499
42
96
356
20
98
6,910
2012
211
153
13
3,466
11
75
296
107
106
71
11
48
261
126
351
361
10
14
0.4
2
85
505
42
97
361
20
100
6,902
2013
2014
210
153
13
3,348
11
76
298
109
107
72
12
48
265
128
355
365
10
14
0.4
2
86
512
43
98
366
20
101
6,823
Carbontaxrevenue:PPP2($million)
209
154
13
3,231
11
76
301
110
108
73
12
49
268
130
360
370
10
15
0.4
2
88
519
43
99
371
20
103
6,746
2015
208
154
13
3,116
11
77
304
111
110
74
12
50
272
132
365
375
10
15
0.4
2
89
526
44
101
376
21
104
6,671
2016
207
155
13
3,002
12
78
306
113
111
75
12
50
276
133
370
380
10
15
0.4
2
90
533
44
102
381
21
106
6,598
2017
ThisTableshowstheresultsobtainedbymultiplyingadvaloremtaxrate,tn(calculatedfromEquation511,p.105)withEquation532,p.124.
Present
value
1,671
Coalsector
1,215
Petroleumsector
103
Gassector
RenewableElectricity
27,375
CoalfiredElectricity
87
InternalcombustionElectricity
586
GasturbineElectricity
1,550
CombinedcycleElectricity
830
Agriculture,forestryandfishing
819
Mining
549
Food,beveragesandtobacco
Textile,clothing,footwearandleather 88
368
Wood,paperandprintingproducts
2,026
Basicchemicals
979
Nonmetallicmineralproducts
2,720
Basicironandsteel
2,792
Basicnonferrousmetals
75
Fabricatedmetalproducts
110
Machineryandequipment
3
Miscellenousmanufacturing
14
Water,sewerageanddrainage
660
Construction
3,911
Roadtransport
329
Railwaytransport
750
Watertransport
2,790
Airtransport
Othertransport,servicesandstorage 153
769
Commercialservices
Total
53,320
206
155
13
2,888
12
78
309
115
113
76
12
51
279
135
375
385
10
15
0.4
2
92
541
45
103
387
21
107
6,527
2018
206
156
14
2,775
12
79
312
116
114
77
12
52
283
137
381
391
11
15
0.4
2
93
549
45
105
393
22
109
6,458
2019
205
157
14
2,663
12
79
315
118
116
78
12
53
287
139
386
396
11
16
0.4
2
94
556
46
106
398
22
111
6,391
2020
337
Note:
2006
428
323
40
119
5,246
13
78
143
388
428
669
108
367
526
307
641
709
324
616
14
82
760
586
142
139
424
546
3,851
18,014
2005
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
413
317
36
121
5,147
13
78
143
388
427
667
107
366
527
308
644
712
325
615
14
81
762
592
141
140
429
542
3,857
17,913
2007
TableF7
401
312
35
124
5,056
13
78
143
389
426
665
107
366
529
309
648
715
326
615
14
80
765
598
140
141
434
539
3,866
17,835
2008
390
308
34
126
4,971
13
78
143
390
426
665
106
367
532
311
652
719
327
616
14
80
768
604
140
143
439
537
3,878
17,777
2009
379
304
36
128
4,731
13
78
233
392
426
664
106
367
534
312
657
724
329
617
14
79
772
611
139
144
445
535
3,892
17,660
2010
364
299
38
123
4,450
13
77
331
389
421
655
104
363
532
310
656
720
326
610
13
78
767
613
137
144
447
526
3,852
17,359
2011
352
294
40
119
4,188
12
77
427
387
417
649
103
360
530
309
655
718
325
604
13
76
763
615
135
145
449
519
3,824
17,106
2012
340
290
43
115
3,942
12
76
522
385
413
643
102
358
529
308
655
717
324
600
13
75
760
617
133
145
452
512
3,800
16,882
2013
2014
330
286
42
141
3,723
12
76
520
384
410
637
101
356
528
308
656
716
323
597
13
74
760
620
132
145
454
506
3,782
16,632
Carbontaxrevenue:SRP2($million)
318
282
42
163
3,494
12
75
516
380
404
626
99
350
525
306
654
711
320
588
13
72
754
622
129
146
456
493
3,721
16,273
2015
308
278
41
182
3,278
12
75
513
377
397
616
97
345
522
305
652
707
318
581
13
70
749
625
127
146
459
481
3,663
15,937
2016
298
275
41
199
3,073
12
75
510
374
392
607
95
341
520
303
652
703
315
573
13
68
745
628
125
147
461
470
3,610
15,624
2017
ThisTableshowstheresultsobtainedbymultiplyingadvaloremtaxrate,tn(calculatedfromEquation512,p.105)withEquation532,p.124.
Present
value
2,856
Coalsector
2,358
Petroleumsector
306
Gassector
1,147
RenewableElectricity
33,715
CoalfiredElectricity
98
InternalcombustionElectricity
608
GasturbineElectricity
2,603
CombinedcycleElectricity
3,045
Agriculture,forestryandfishing
3,282
Mining
5,109
Food,beveragesandtobacco
Textile,clothing,footwearandleather 812
2,834
Wood,paperandprintingproducts
4,175
Basicchemicals
2,438
Nonmetallicmineralproducts
5,158
Basicironandsteel
5,647
Basicnonferrousmetals
2,558
Fabricatedmetalproducts
4,761
Machineryandequipment
105
Miscellenousmanufacturing
601
Water,sewerageanddrainage
6,014
Construction
4,841
Roadtransport
1,067
Railwaytransport
1,139
Watertransport
3,532
Airtransport
Othertransport,servicesandstorage 4,076
29,971
Commercialservices
Total
134,857
289
273
40
215
2,879
12
75
508
371
386
598
94
336
518
302
651
700
314
567
12
66
741
631
123
147
464
459
3,559
15,330
2018
281
271
40
229
2,695
12
74
506
369
381
590
92
333
516
301
651
697
312
561
12
65
738
634
121
148
467
449
3,511
15,055
2019
274
269
39
242
2,519
12
74
504
367
377
583
91
329
515
300
651
695
310
555
12
63
735
638
119
149
470
439
3,466
14,797
2020
338
Note:
2006
264
188
17
4,570
13
86
139
119
118
79
13
53
291
141
391
401
11
16
0.4
2
94
560
48
108
398
22
109
8,250
2005
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TableF7
263
188
16
4,571
13
88
141
121
120
80
13
54
297
143
398
408
11
16
0.4
2
96
571
49
110
406
22
111
8,308
2007
262
188
15
4,574
13
89
143
124
122
82
13
55
302
146
406
416
11
16
0.4
2
98
582
49
112
415
23
114
8,373
2008
261
188
15
4,579
13
90
146
126
124
83
13
56
308
149
413
424
11
17
0.5
2
100
594
50
114
423
23
116
8,441
2009
261
188
14
4,585
14
92
148
129
127
85
14
57
314
152
421
432
12
17
0.5
2
102
606
51
116
432
24
119
8,514
2010
258
187
15
4,405
14
92
255
130
128
86
14
58
317
153
426
437
12
17
0.5
2
103
613
51
117
437
24
121
8,476
2011
256
186
16
4,228
14
92
363
132
130
87
14
58
321
155
431
443
12
17
0.5
2
104
620
52
119
443
24
122
8,443
2012
253
186
16
4,069
14
93
365
133
131
88
14
59
325
157
436
448
12
18
0.5
2
106
628
52
120
449
25
124
8,325
2013
251
186
16
3,912
14
93
368
135
133
89
14
60
329
159
442
453
12
18
0.5
2
107
636
53
122
455
25
126
8,211
2014
2015
249
186
16
3,759
14
94
371
137
134
90
14
61
333
161
447
459
12
18
0.5
2
109
644
53
123
461
25
128
8,101
Carbontaxrevenue:PPPforEarlyaction($million)
247
186
16
3,608
14
94
374
138
136
91
15
62
337
163
453
465
13
18
0.5
2
110
653
54
125
467
26
130
7,996
2016
245
186
16
3,459
14
95
377
140
137
93
15
62
341
166
459
470
13
19
0.5
2
112
661
54
126
473
26
132
7,894
2017
ThisTableshowstheresultsobtainedbymultiplyingadvaloremtaxrate,tn(calculatedfromEquation511,p.105)withEquation532,p.124.
Present
value
2,027
Coalsector
1,483
Petroleumsector
125
Gassector
RenewableElectricity
32,942
CoalfiredElectricity
107
InternalcombustionElectricity
725
GasturbineElectricity
2,036
CombinedcycleElectricity
1,034
Agriculture,forestryandfishing
1,018
Mining
683
Food,beveragesandtobacco
Textile,clothing,footwearandleather 110
459
Wood,paperandprintingproducts
2,521
Basicchemicals
1,220
Nonmetallicmineralproducts
3,387
Basicironandsteel
3,474
Basicnonferrousmetals
94
Fabricatedmetalproducts
137
Machineryandequipment
4
Miscellenousmanufacturing
17
Water,sewerageanddrainage
822
Construction
4,871
Roadtransport
408
Railwaytransport
933
Watertransport
3,476
Airtransport
Othertransport,servicesandstorage 191
960
Commercialservices
Total
65,263
244
186
16
3,312
14
96
380
142
139
94
15
63
346
168
465
476
13
19
0.5
2
114
670
55
128
480
26
134
7,796
2018
242
187
16
3,167
14
96
383
143
141
95
15
64
350
170
471
482
13
19
0.5