FABIO SANTOS DE LIRA
Transcription
FABIO SANTOS DE LIRA
FABIO SANTOS DE LIRA PAPEL ANTI-INFLAMATÓRIO DA ADIPONECTINA E DA INTERLEUCINA-10 EM MODELOS CLÍNICO E EXPERIMENTAL DE OBESIDADE Tese apresentada à Universidade Federal de São Paulo - Escola Paulista de Medicina, para obtenção do Título de doutor em Ciências. São Paulo 2011 FABIO SANTOS DE LIRA PAPEL ANTI-INFLAMATÓRIO DA ADIPONECTINA E DA INTERLEUCINA-10 EM MODELOS CLÍNICO E EXPERIMENTAL DE OBESIDADE Tese apresentada à Universidade Federal de São Paulo - Escola Paulista de Medicina, para obtenção do Título de doutor em Ciências. Orientadora: Profa. Dra. Cláudia Maria da Penha Oller do Nascimento Co-orientadores: Profa. Dra. Lila Missae Oyama Profa. Dra. Ana Raimunda Dâmaso São Paulo 2011 Lira, Fabio Santos de Papel anti-inflamatório da adiponectina e da interleucina-10 em modelos clínico e experimental de obesidade. / Fabio Santos de Lira. - São Paulo, 2011. xii, 88f. Tese (Doutorado) - Universidade Federal de São Paulo. Escola Paulista de Medicina. Programa de Pós-Graduação em Nutrição. Título em inglês: Role anti-inflammatory of adiponectin and interleukin-10 in obesity model clinical and experimental. 1.Obesidade 2 Inflamação. 3 Citocinas. 4. Adiponectina 5. IL-10 6. Tecido adiposo 7.Terapia interdisciplinar 8. TLRs UNIVERSIDADE FEDERAL DE SÃO PAULO Campus São Paulo PROGRAMA DE PÓS-GRADUAÇÃO EM NUTRIÇÃO Coordenador do Curso de Pós-graduação: Prof. Dr. Mauro Batista de Morais Este trabalho foi realizado no Programa de Pós-Graduação em nutrição da Universidade Federal de São Paulo UNIFESP/EPM, com o apoio financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e da Fundação de Apararo à Pesquisa do Estado de São Paulo (FAPESP). “Para os amigos Tudo, para os inimigos a Lei.” Robertão vi Dedicatória À minha mãe Jaci, meu pai Lira, minhas irmãs Andréia e Luciana e meu irmão Cristiano, por tudo o que fizeram por mim. À minha esposa Sabrina, pela compreensão e amor. Ao meu pequeno Bruno Kenji, razão do meu viver. Aos meus sobrinhos Pedro Augusto, Felipe Gabriel e Letícia, por alegrar nossas vidas. À meu sogro Akio, minha sogra Fumiko e minha cunhada Silvia, por todo carinho. vii AGRADECIMENTOS A Professora Dra. Cláudia Maria Oller do Nascimento, pela paciência, amizade, mais que isso, por ter acreditado no meu potencial. A Professora Dra. Lila Missae Oyama, pelos ensinamentos e amizade. A Professora Dra Marília Seelaender, que sempre me apoiou, tendo enorme contribuição sobre minha formação acadêmica, serei eternamento grato. A Professora Dra Ana Damaso e todo seu grupo, pelo carinhoso acolhimento. Sou muito grato pela oportunidade. Aos Professores Marco Túlio de Mello e Ronaldo Vagner Thomatilei dos Santos, pela oportunidade de realizar meu pós-doutorado no CEPE, sou muito grato. A Emília Ribeiro, minha eterna madrinha, obrigada por tudo. Aos meus amigos do Laboratório de Fisiologia da Nutrição, a “velha guarda” José Cesar (Zeca), Gustavo Pimentel (Gú), Claudio Alexandre (Claudião), Karina Barros, Ricardo Eguchi (Ric), Vinícius Martins (Vini), João Felipe Mota, Cristiane Oliveira, Daniela Martins, Valter Tadeu e a “nova geração” Rachel De Laquila (Rachelzinha), Gabriel Honorato, Mayara Moreno (Demoninho). As queridas, Ana Lúcia, Carmozinha e Fabiola, sou muito feliz por ter conhecido todas vocês. Aos amigos, Alex Shimura Yamashita, Nelo Eidy Zanchi, Daniel Venancio (Cabeça), Wilton Darlens dos Santos, Eivor Martins Junior, Gabriela Chamusca, Valéria Panissa, Pedro Lorena Bezerra, Leandro Ribeiro Marques, Cássio Couto Moraes, Rodrigo Fermino, Mario Filho. Aos amigos do Laboratório de Lípides da USP, Renata Silvério (Tchutchuca), Robson (Bibi), Daniela Caetano (Dani), Luiz Carnevali (Gringo), Felipe Donatto, Michele Joana, Rodrigo Xavier, Miguel Luiz Batista Jr. Aos Professores: Erico Chagas Caperuto, Marco Carlos Uchida, Luciana Pisani, Marcela Meneguello Coutinho, Emer Suavinho Ferro, Alison Colquhoun, Antonio Hebert Lancha Junior. Ao Prof. GG (in memorinam). Ao pessoal do Laboratório das Profa Dra Eliane Beraldi Ribeiro, Vera Lúcia Flor Silveira, Ana Lydia. A todos aqueles, professores, funcionários da Unifesp, pessoal da xérox, que de certa forma, participaram de nossa formação nesses anos. Não ousaria sequer citar um por um, pois foram tantos e não quero cometer uma gafe, que neste momento seria imperdoável. viii SUMÁRIO Dedicatória vi Agradecimentos vii Sumário viii Listas ix-xi Resumo xii 1 INTRODUÇÃO 1-2 2 REVISÃO DE LITERATURA 3 2.1 Obesidade 3-4 2.2 Tecido adiposo e processo inflamatório 4-10 2.3 Adipocinas anti-inflamatórias 10-15 3 Objetivos 16 3.1 Objetivo Geral 17 4. MATERIAIS E MÉTODOS 18 4.1 Estudo clínico: 18-23 4.2 Estudo Experimental 23-26 5. APRESENTAÇÃO DOS RESULTADOS E DISCUSSÃO 27 5.1 Manuscrito 1 28-36 5.2 Manuscrito 2 37-55 5.3 Manuscrito 3 56-77 6. CONSIDERAÇÕES FINAIS 78 7. REFERÊNCIAS BIBLIOGRÁFICAS 79-89 ix Lista de Figuras Figura 1. Percentual da mudança do biótipo da população adolescente no Brasil. Figura 2. Recrutamento de macrófagos para tecido adiposo. “Início do ciclo vicioso”. Figura 3. Visão esquemática do possível mecanismo relacionado à Microbiota intestinal e à obesidade. Figura 4. Ciclo Vicioso da manutenção da inflamação na obesidade. Figura 5. Ação anti-inflamatória da IL-10. Figura 6. Ação celular da resposta anti-inflamatória da adiponectina. Figura 7. Desenho experimental da Intervenção Interdisciplinar x Lista de Abreviaturas e Símbolos AdipoR1 Receptor de Adiponectina 1 AdipoR2 Receptor de Adiponectina 2 AG Ácido Graxo AMPK Adenosina Monofosfato Quinase ATGL Lipase do Triacilglicerol do Adiposo CREBP Proteína Ligada ao Elemento Responsivo ao Carboidrato DM2 Diabetes Mellitus 2 FAIJ Fator Adiposo induzido pelo Jejum gp130 Glicoproteína 130 LHS Lipase Hormônio Sensível IkB inibidor do NF-κB Ikkβ inibidor Quinase do NFkB sub-unidade beta IL-10 Interleucina 10 IL-10R Receptor de IL-10 IL-1ra Receptor Antagonista de IL-1 IL-1β Interleucina 1β IL-6 Interleucina 6 IL-8 Interleucina 8 IMC Índice de Massa Corporal IRAK Receptor da IL-1 associada à Kinase IRS-1 Substrato do Receptor de Insulina 1 JAK Janus Quinase LPL Lipase de Lipoproteína xi LPS Lipopolissacarídeos MCP-1 Proteína Quimioatraente de Monócito 1 mRNA Ácido Ribonucléico mensageiro MYD88 Myeloid differentiation primary response gene (88) NF-κB Fator de transcrição Nuclear kappa B NK Matadoras Natural PPER Elemento Responsivo ao PPAR PPAR Receptor Ativado de Proliferador de Peroxissomo RTNFI Receptor do Fator de Necrose Tumoral-α tipo I RTNFII Receptor do Fator de Necrose Tumoral-α tipo II SOCS-3 Sinal de Supressão de Citocina 3 SREBP Proteína Ligada ao Elemento Responsivo ao Esterol STAT Transdutor de Sinal e Ativador Transcripcional TACE Enzima Convertora de TNF-α TLR-2 Toll Like Receptor 2 TLR-4 Toll Like Receptor 4 TNF Fator de Necrose Tumoral TRADD Domínio de proteína de Morte, associado ao receptor de TNF-α tipo 1 TRAF1 Fator associado ao receptor do TNF 1 TRAF2 Fator associado ao receptor do TNF 2 TRAF6 Fator associado ao receptor do TNF 6 OMS Organização Mundial da Saúde xii RESUMO Objetivo: Verificar os efeitos anti-inflamatórios da adiponectina e da interleucina 10 em modelos clínico e experimental de obesidade. O estudo foi dividido em duas etapas: clínico com adolescentes obesos submetidos à terapia de redução de peso interdisciplinar por 1 ano; e experimental in vitro, com adipócitos 3T3-L1. No estudo clínico, foram sujeitos do estudo 18 adolescentes (7 meninos e 11 meninas, idade 15 1,7 anos, índice de massa corporal (IMC) acima do Percentil 95. Os adolescentes participaram do programa de terapia interdisciplinar por 1 ano. Parâmetros antropométricos e bioquímicos séricos foram analisados antes e após a terapia. Nesta etapa do projeto observamos que, a redução da gordura visceral, assim como das adipocinas pró-inflamatórias no soro foram acompanhadas pelo aumento da adiponectina e da interleucina 10. Outro fator analisado foi a concentração sérica de endotoxina e resistência à ação da insulina. Pudemos observar que a melhora do quadro da resistência à ação da insulina foi acompanhada pela redução da endotoxina sérica após a terapia interdisciplinar. A redução da endotoxina correlacionou-se com aumento da adiponectina sérica. Tais alterações sugeriram que essas adipocinas anti-inflamatórias (adiponectina e interleucina 10) podem estar envolvidas nos processos anti-inflamatórios induzidos pelo programa de terapia interdisciplinar, e com a melhora do quadro inflamatório destes adolescentes obesos. No estudo in vitro, analisamos os mecanismos intracelulares da resposta inflamatória em células adiposas 3T3-L1, estimuladas com lipopolissacarídeo (LPS), na ausência ou presença da adiponectina e interleucina 10, isoladas e associadas, a fim de elucidar os efeitos anti-inflamatórios da adiponectina e interleucina 10. Para tanto, avaliamos a secreção de IL-6 e a cascata de sinalização dos Toll Like Receptors (TLR-2, TLR-4, MyD88 e TRAF6), assim como o Fator Nuclear kappa B e sua ligação com DNA. Observamos que, adipócitos 3T3-L1 tratados por 24h mostraram elevada concentração de IL-6 no meio de cultura, assim como, aumento da cascata de sinalização da via do NF-κB e da expressão protéica do IL-6R, TLR-4, MyD88, TRAF6. A adiponectina e IL-10 inibiram o aumento na concentração de IL-6, bem como a ligação do NF-κB com DNA. Tomados em conjunto, nossos resultados tanto clínico quanto experimental fornecem evidência de que a adiponectina e IL-10 têm importante papel na resposta anti-inflamatória, inibindo a via de sinalização do NF-κB e consequentemente reduzindo as adipocinas pró-inflamatórias. Corroboram com a ideia de que tais adipocinas podem ser excelentes estratégias para o tratamento do estado inflamatório na obesidade. Palavras-Chave: Obesidade; Inflamação; Citocinas; Adiponectina; IL-10; Tecido adiposo; Terapia Interdisciplinar; TLRs. 1 1. Introdução A obesidade é um problema de saúde pública sendo considerada uma epidemia mundial (Gruen et al, 2007). As expectativas são que a prevalência desta doença crescerá nos próximos anos, devido o aumento do número de pessoas com estilo de vida sedentário e consumo alimentar inadequado. De acordo com a Organização Mundial da Saúde (OMS), a obesidade e o sobrepeso alcançarão a marca de 1,6 bilhões em adultos (idade maior que 15 anos) em 2015. A obesidade atualmente é caracterizada por um quadro inflamatório crônico associado a aumento plasmático de: endotoxina (como lipopolissacarídeos), ácidos graxos saturados (Kueht et al, 2009; Kashyap et al, 2009) e citocinas pró-inflamatórias (Hukshorn et al, 2004) envolvidos no desenvolvimento de morbidades como diabetes mellitus, hipertensão, dislipidemias e síndrome metabólica (Gruen et al, 2007). O tecido adiposo é um importante órgão secretor de adipocinas pró e anti-inflamatórias. O fator de necrose tumoral alfa (TNF-α) e a interleucina-6 (IL-6), importantes marcadores inflamatórios, estimulam a produção de diversas proteínas e citocinas pró-inflamatórias, em diferentes tipos celulares via ativação do fator nuclear κB (NF-κB), (Haas et al, 2008; Turnbull, Rivier, 1999). Da mesma forma que as endotoxinas (lipopolissacarideos - LPS) e os ácidos graxos saturados o fazem via ativação de TLR-4. Diversos estudos apontam que a adição de LPS no meio de cultura de adipócitos 3T3-L1, ativa o NF-κB, elevando a expressão gênica de adipocinas pró-inflamatórias, e que esta resposta é favorecida pelos TLR-2 e TLR-4 (Lin et al, 2000; Ajuwon, Spurlock, 2005; Suganami et al, 2007). Vários relatos da literatura referem que o TNF-α e a IL-6 prejudicam a cascata de sinalização de insulina aumentando a resistência à ação desse hormônio em diversos tecidos, como no músculo esquelético, tecido adiposo e fígado (Hotamisligil et al, 1994; Feinstein et al, 1993; Del Aguila et al, 1999). Adicionalmente, a IL-6 tem efeitos pró-inflamatórios, como aumento da produção de proteínas de fase aguda pelos hepatócitos, aumento da maturação e atividade de linfócitos B, macrófagos, monócitos e células NK, além de aumentar a expressão de IL-1β e TNF-α nestas células. A concentração de IL-6 no tecido adiposo é, aproximadamente, 50 vezes maior do que sua concentração plasmática (Sopasakis et al, 2004) e este tecido contribui com aproximadamente 30% da IL-6 presente no sangue (Mohamed-Ali et al, 1997). Juge-Aubry et al (2005) demonstraram que o tecido adiposo é uma fonte importante de IL-10, e sua secreção apresenta-se aumentada em indivíduos obesos quando comparados com eutróficos. Estudos têm demonstrado que a IL-10 tem sua produção aumentada no tecido adiposo em processos inflamatórios, câncer e exercício agudo (Coppack, 2001; Lira et al, 2009a; Rosa et al, 2009b), como uma reação do organismo na tentativa de minimizar o processo inflamatório nessas condições (Daftarian et al, 1996). Essa linha de raciocínio sugere que a IL-10 atuaria como um mecanismo de 2 retroalimentação negativa ao excesso de adipocinas pró-inflamatórias, como por exemplo, o TNF(Daftarian et al, 1996; Lira et al, 2009b). A adiponectina, outra adipocina anti-inflamatória, tem efeito sistêmico, e sua concentração plasmática está inversamente relacionada com a massa de tecido adiposo e ao IMC (Gil-Campos et al, 2004). Esta adipocina aumenta a sensibilidade à insulina, no músculo esquelético e no tecido adiposo (Lara-Castro et al, 2007; Gil Campos et al, 2004); tem efeitos anti-inflamatórios sobre as células do sistema imunológico (Wulster-Radcliffe, 2004), e reduz a formação de placa de ateroma. Portanto, a diminuição da concentração de adiponectina no plasma, pode estar associada com aumento do quadro inflamatório, com a diminuição na sensibilidade à insulina e problemas cardiovasculares, frequentemente observados em obesos (Schober et al, 2007). Tomados em conjunto, esses estudos sugerem um papel de suma importância da IL-10 e da adiponectina em doenças inflamatórias crônicas, principalmente devido ao seu efeito modulador da síntese e secreção do TNF- e IL-6, desta forma, essas adipocinas vem ganhando um papel de destaque como possibilidade terapêutica em indivíduos obesos que apresentam o quadro inflamatório crônico. Frente a essas informações da literatura, levantamos a hipótese de que a redução das adipocinas anti-inflamatórias, IL-10 e adiponectina, que ocorre em indivíduos obesos, teria papel relevante no desencadear do processo inflamatório no tecido adiposo destes indivíduos. Para verificar esta hipótese analisamos o perfil de citocinas e endotoxina em adolescentes obesos antes e após terapia interdisciplinar para o tratamento da obesidade e correlacionamos as citocinas pró-inflamatórias com a concentração plasmática de adiponectina e IL-10. O tratamento interdisciplinar utilizado no presente estudo vem sendo eficiente na redução da prevalência da síndrome metabólica, da esteatose hepática não alcoólica, da compulsão alimentar, contribuindo para a melhoria na qualidade de vida destes adolescentes obesos (Caranti et al, 2007; De Piano et al, 2007; Carnier et al, 2008; Caranti et al, 2008). Adicionalmente, realizamos estudo in vitro em adipócitos 3T3-L1 com objetivo de investigar os efeitos anti-inflamatórios da adiponectina e da IL-10, sobre a via de sinalização à resposta inflamatória intracelular, em especial sobre o TLR-4 e NF-κB estimulada com LPS. 3 2. Revisão de Literatura 2.1 Obesidade A obesidade representa grave problema de saúde pública, que afeta tanto países desenvolvidos quanto em desenvolvimento (OMS, 2010). Estudos epidemiológicos indicam que aproximadamente 65% da população dos Estados Unidos apresentam excesso de peso, sendo que 35% desses indivíduos são classificados como sobrepeso (25 ≤ IMC ≤ 30 kg/m2) e 30% são considerados obesos (IMC ≥ 30 kg/m2) (Hedley et al, 2004). Segundo a Pesquisa de Orçamentos Familiares 2008-2009 realizada pelo Instituto Brasileiro de Geografia e Estatística o aumento de peso em adolescentes de 10 a 19 anos foi contínuo nos últimos 34 anos (IBGE, 2010). Neste período, a prevalência de excesso de peso (IMC ≥ 25 kg/m2) na população adolescente brasileira passou de 3,7% para 21,7% no sexo masculino e 7,6% para 19% para o sexo feminino. Já os casos de obesidade (IMC ≥ 30 kg/m2), entre adolescentes, passaram de 0,4% para 5,9% no sexo masculino, e de 0,7% para 4,0% no sexo feminino (IBGE, 2010) (Figura 1). Quadro este extremamente preocupante, pois, estima-se que indivíduos obesos apresentam aumento de 50 a 100% do risco de mortalidade, fato explicado pela associação entre excesso de peso e gordura abdominal com doenças crônicas não transmissíveis, como hipertensão arterial, dislipidemia, diabetes mellitus tipo 2 (DM2) e certos tipos de câncer. O excesso de peso e a obesidade resultam da interação de diversos fatores, como genéticos, metabólicos, comportamentais e ambientais (Ryan, Kushner, 2010). No Brasil, vários estudos de base populacional têm mostrado que fatores sócio-demográficos e comportamentais estão associados ao aumento do peso corporal. Entretanto, ainda existem poucos estudos acerca do papel desses determinantes na distribuição da gordura corporal. Em geral, os riscos de desenvolver obesidade abdominal aumentam com a idade e diminuem com a maior escolaridade. Adicionalmente, observa-se associação entre obesidade abdominal e menopausa (Ronque et al, 2005; Campos et al, 2006), tornando-se primordial o desenvolvimento de terapias, tanto relacionadas a mudança de comportamento, como farmacológicas, em especial na adolescência visando reduzir o impacto do envelhecimento no desenvolvimento de obesidade e doenças a ela associadas. A obesidade é uma condição heterogênea com relação à distribuição regional da adiposidade: obesidade visceral refere-se à acumulação de gordura nos depósitos omental e mesentérico, enquanto a obesidade periférica geralmente refere-se ao aumento de gordura nos depósitos subcutâneos e está menos relacionada com o desenvolvimento de comorbidades (Cao et al, 2008). As diferenças funcionais entre os adipócitos viscerais e subcutâneos, tanto no que concerne aos aspectos metabólicos como secretórios, podem estar relacionadas com sua localização anatômica (Pond, 1996; Hocking et al, 2010). 4 O tecido adiposo visceral possui macrófagos residentes, os quais produzem várias moléculas pró-inflamatórias, como TNF-α e IL-6 e menores quantidades de moléculas anti-inflamatórias, tais como adiponectina e interleucina-10 (Dandona et al, 1998; Trayhurn, Wood, 2005). Este perfil próinflamatório está associado à resistência à ação da insulina e desempenha papel importante na patogênese da disfunção endotelial e aterosclerose subsequente (Hamdy et al, 2006). Este estado pró-inflamatório descrito em indivíduos obesos está principalmente relacionado com o acúmulo de gordura visceral e não da gordura subcutânea, sendo importante para a verificação do risco de desenvolvimento de doenças, a análise destes depósitos, o que torna o IMC um índice pouco acurado na pesquisa clínica. Thorne et al (2002), relataram que a remoção de tecido adiposo visceral por omentectomia (retirada do tecido adiposo omental) resultou na diminuição nas concentrações de glicose e de insulina em 11 homens e 14 mulheres (IMC >35kg/m2), em contraste, a remoção de tecido adiposo subcutâneo, por método de lipoaspiração nem sempre resultaram em melhorias no metabolismo da glicose ou de lipídios (Klein et al, 2004). 2.2 Tecido adiposo e processo inflamatório Na década de 1990 ampliou-se o conhecimento científico sobre a função do tecido adiposo. Até então, os pesquisadores reconheciam o papel fundamental do tecido adiposo como o principal tecido armazenador de energia no organismo. No entanto, com a descoberta da leptina em 1994, citocina 5 produzida e liberada pelo tecido adiposo, este tecido passou também a ser considerado um “órgão endócrino” (Pelleymounter et al, 1995). Essa descoberta foi de suma importância, dando início aos estudos sobre a atividade secretora do tecido adiposo. Atualmente, sabemos que o tecido adiposo secreta peptídeos bioativos, chamados de “adipocinas”, que agem de maneira autócrina, parácrina e endócrina, participando da regulação da ingestão alimentar e do balanço energético, atuando no sistema imunológico, na sensibilidade à insulina, na angiogênese, na regulação da pressão arterial e do metabolismo lipídico (Trayhurn, Beattie, 2001). O aumento na concentração plasmática do TNF-α e IL-6 estão envolvidos no desenvolvimento da resistência à insulina encontrada na obesidade (Ronti et al, 2006). Inversamente, a adiponectina, que tem propriedades antidiabéticas e antiaterogênicas, apresenta sua concentração plasmática reduzida (Bueno et al, 2008). A denominação de TNF-α foi derivada da ação deste peptídeo sobre células tumorais, provocando a necrose desse tipo celular. Esta citocina foi primeiramente descrita em 1975 e denominada de caquexina. Devido à potente ação contra as células tumorais, posteriormente passou a ser conhecida como TNF-α (Vercammen et al, 1998). Potente citocina pró-inflamatória produzida em diversos tipos celulares, o TNF-α age de maneira autócrina, parácrina e induz, no tecido adiposo e em outras células, a expressão de várias citocinas inflamatórias, como IL-6, IL-1, IL-8, proteína quimioatraente de monócitos 1 (MCP-1), dentre outras e reduz a expressão e secreção de adiponectina (Peeraully et al, 2004). A ação fisiológica do TNF-α depende de sua ligação aos seus receptores. Foram até hoje descritos dois tipos de receptores, o tipo I (TNF-RI, p55) e o tipo II (TNF-RII, p75) (Bazzoni, Beutler, 1996). Esses receptores que são proteínas transmembrana, possuem a porção extracelular dos dois tipos de receptores para TNF-α, exibindo arquitetura bem similar, mas os domínios intracelulares são bem diferentes (Lewis et al, 1991). A ativação de ambos os receptores pelo TNF-α aumenta a atividade do NF-κB, no entanto, por vias diferentes. O TNF-RII ativa esse fator nuclear via transdução de sinal pela ação das enzimas TRAF1 e TRAF2 (Fator associado ao receptor do TNF 1 e 2), enquanto o TNF-RI age recrutando a enzima TRADD (Domínio de proteína de Morte, associado ao receptor de TNF-α tipo 1) induzindo uma via de transdução de sinalização diferente (Darnay, Aggarwal, 1997). A contribuição do TNF- α, produzido pelo tecido adiposo, para a elevação plasmática desta citocina, presente na obesidade, tem sido bastante discutida, e seu aumento correlaciona-se positivamente com surgimento do quadro da resistência à insulina (Bulló et al, 2003). 6 Outra adipocina que se encontra elevada em indivíduos obesos é a IL-6. A IL-6 é uma glicoproteína produzida por uma grande variedade de tipos celulares (Turnbull, Rivier, 1999). A primeira ação descrita foi o estímulo do crescimento e diferenciação dos linfócitos B (Curfs et al, 1997). Hoje, sabe-se que a IL-6 é capaz de produzir as mais diversas ações em diferentes tecidos. Seu aumento no plasma é capaz de elevar a resposta de fase aguda a estímulos agressores (Turnbull, Rivier, 1999); alterar a homeostase energética (Fischer, 2006); induzir a liberação do hormônio adrenocorticotrófico, febre, anorexia e fadiga (Robson, 2003). A IL-6 age via um receptor complexo que contém pelo menos uma subunidade da proteína transdutora de sinal gp130. Liga-se ao seu receptor na célula alvo e o complexo IL-6-receptor associase a proteína transmembrana gp130, permitindo a transdução de sinal (Taga, Kishimoto 1997; Derouet et al, 2004). Desta forma, como todas as células até hoje estudadas que expressam a proteína gp130 em seus domínios transmembrana, pode-se inferir que a IL-6 atue em todas ou na maioria das células do organismo (Althoff et al, 2000; Althoff et al, 2001). Atualmente sabe-se que indivíduos obesos apresentam um quadro inflamatório crônico de baixo grau, que é caracterizada pelo aumento sistêmico da proteína C reativa e citocinas próinflamatórias (Petersen, Pedersen, 2005). Este processo inflamatório tem origem em diversas modificações, tanto diretamente no tecido adiposo como sistêmicas. A origem do quadro inflamatório no tecido adiposo de indivíduos obesos pode ser explicado, pelo menos em parte, pelo aumento da presença de macrófagos infiltrados, e a instalação do ciclo vicioso da produção de citocinas e fatores pró-inflamatórios, na tentativa de restaurar a homeostase do tecido (Wellen, Hotamisligil, 2003), conforme esquematizado na Figura 2. 7 Alterações no tamanho dos adipócitos e do depósito do tecido adiposo causam mudanças físicas na área circundante e na atividade parácrina do adipócito. Por exemplo, no início da hipertrofia dos adipócitos, estes começam, paulatinamente, a elevar a secreção de TNF-α, o que estimula a produção da MCP-1 pelos preadipócitos e pelas células endoteliais. A MCP-1 é uma quimiocina que recruta macrófagos para o tecido adiposo. Durante este processo ocorre modificação na secreção de outras adipocinas, tais como: elevação na leptina e redução na adiponectina. Este quadro favorece o processo inflamatório, pois, a leptina também estimula a migração de macrófagos para o tecido adiposo, e a redução de adiponectina promove a adesão de macrófagos nas células endoteliais. Outros fatores como danos físicos no endotélio e hipóxia, causados por mudanças do tamanho exarcebado das células adiposas, e danos oxidativos resultantes de um ambiente cada vez mais lipolítico, também desencadeiam um ambiente propício para a infiltração de macrófagos, semelhante ao observado na aterosclerose. Todas estas modificações no tecido adiposo levam a um ciclo vicioso de recrutamento de macrófagos, aumento na produção de citocinas pró-inflamatórias e comprometimento da função dos adipócitos, como descrito na revisão de Wellen, Hotamisligil (2003). Em relação às modificações sistêmicas, alguns pesquisadores postulam que indivíduos obesos apresentam aumento de endotoxinas circulantes, provenientes da translocação da microbiota intestinal, tem papel importante no desenvolvimento do quadro inflamatório em diferentes tecidos, e instalação da resistência à ação da insulina (Creely et al, 2007; Tsukumo et al, 2009). 8 Lipopolissacarídeo, também conhecido como endotoxina, é um potente indutor de inflamação, provocando elevada produção de TNF-α, IL-6, e reduzindo a produção de adiponectina. Em circunstâncias normais, apenas pequenas quantidades de endotoxina são translocadas do lúmen intestinal para a circulação sistêmica, e essa pequena parcela que consegue atravessar é absorvida rapidamente, e removida por monócitos, células de Kupffer no fígado. No entanto, novas evidências indicam que em doenças crônicas, tais como a obesidade, ocorre elevação na produção e estravazamento de endotoxina para a corrente sanguínea, podendo desencadear um estado de resistência à insulina na obesidade (Cani et al, 2007; Creely et al, 2007), conforme exemplificado na Figura 3. Creely et al (2007), demonstraram aumento nas concentrações circulantes de endotoxina em mulheres portadoras de diabetes mellitus do tipo 2. Neste mesmo trabalho, os autores verificaram que o LPS elevou expressão protéica de TLR-2 e a secreção de IL-6 e TNF-α por adipócitos isolados do tecido adiposo subcutâneo. O LPS e ácidos saturados agem sobre receptores da família Toll Like Receptor, em particular o TLR-4, ativando a via de sinalização do NF-κB, favorecendo a expressão gênica das adipocinas proinflamatórias (Takeuchi, Akira, 2001; Lee et al, 2001). 9 De acordo com estudos recentes, a expressão gênica do TLR-2 e TLR-4 está aumentada no tecido adiposo de camundongos tornados obesos e diabéticos do tipo 2, pela ingestão de dieta hiperlipídica. Os autores sugerem que, em parte, o aumento dos TLRs seria responsável pela ativação da resposta inflamatória no tecido adiposo, pois utilizando camundongos trangênicos que expressam pouco TLR-4, quando tratados com dieta hiperlipídica, não apresentaram este quadro inflamatório e a ativação do NF-κB neste tecido foi reduzida (Tsukumo et al, 2007). A transmissão do sinal mediado pela ligação do LPS com o TLR-4 constitui um fenômeno altamente complexo e variado, mediado através de reações envolvendo fosforilação e ubiquitinação de proteínas alvo. Por exemplo, ocorre ativação da proteína MyD88, que por sua vez ativa o complexo IRAK (Receptor da IL-1 associada à Kinase)-TRAF 6 (Fator associado ao receptor do TNF 6), esta última pertence à classe das ubiquitina ligases (E3 ligases) e parece ser essencial para o desacoplamento do NF-κB da sua proteína inibidora (Iκ-B). O NF-κB, uma vez liberado, migra para o núcleo ligando-se ao DNA, iniciando a amplificação gênica das proteínas relacionadas à inflamação (Takeda, Akira, 2004). O tecido adiposo expressa esse receptor, que pode ser ativado tanto por LPS, como por ácidos graxos livres (Shi et al, 2006). A ativação desse receptor nos adipócitos aumenta a expressão e liberação de citocinas via ativação do NF-κB (Schaeffler et al, 2009). A elevação persistente de ácidos graxos livres no plasma, como ocorre muitas vezes no indivíduo obeso, pode aumentar a secreção de citocinas via TLR-4 (Francaux, 2009), (Figura 4). Até o momento, este texto descreve as principais alterações que ocorrem na obesidade que desencadeiam elevação de adipocinas pró-inflamatórias e suas conseqüências. A seguir, trataremos das adipocinas anti-inflamatórias, adiponectina e IL-10 e a relação delas com a obesidade. 10 2.3 Adipocinas anti-inflamatórias Como dito anteriormente, é bem estabelecido o aumento na produção de adipocinas próinflamatórias no tecido adiposo de indivíduos obesos e, a participação destas adipocinas na indução de resistência à insulina e outras comorbidades associadas à obesidade. Pesquisadores da área têm desenvolvido estudos utilizando diferentes estratégias na tentativa de estabelecer protocolos para minimizar e/ou restaurar tais alterações (Peraldi et al, 1997; Polak et al, 2006). Em 1991, Fiorentino e colegas observaram que um fator produzido por células T ativadas foi capaz de inibir a produção de citocinas pró-inflamatórias. Este fator foi nomeado de interleucina 10 (IL-10). Estudos têm demonstrado que a IL-10 tem sua produção aumentada no tecido adiposo em processos inflamatórios (Coppack, 2001; Esposito et al, 2003; Lira et al, 2009), e sugerem que a IL-10 atuaria como um mecanismo de retroalimentação negativa ao excesso de adipocinas pró-inflamatórias, como por exemplo, o TNF- (Daftarian et al, 1996; Lira et al, 2009b). Juge-Aubry et al (2005) demonstraram que o tecido adiposo é uma fonte importante de IL-10, e sua secreção está aumentada em indivíduos obesos quando comparados com eutróficos. A produção da IL-10 no tecido adiposo de indivíduos obesos é estimulada por LPS e /ou TNF-α, os autores sugerem, também, que este aumento seja um mecanismo de retroalimentação, na tentativa de minimizar os efeitos deletérios causados pelo LPS e/ou TNF-α. 11 A IL-10 atua, em uma variedade de tipos celulares, inibindo a produção de várias citocinas pró-inflamatórias, tais como: TNF- , IL-1 e IL-6, e estimulando a sua própria produção (Moore et al, 1993). Estes efeitos são desencadeados quando a IL-10, liga-se ao seu receptor (IL-10R), ativa a via JAK-STAT, especificamente a JAK1 e STAT3 em macrófagos (Riley et al, 1999), e essa ativação é mediada pela SOCS3, reduzindo a atividade quinase do IKK e, portanto, a ativação do NF-κB (Murray, 2007), (Figura 5). Esta adipocina, também, inibe a geração de espécies reativas do oxigênio e aumenta a liberação dos receptores solúveis do TNF (TNFRs), os quais podem antagonizar os efeitos do TNF(Ferrari, 1995; Nozaki et al, 1998). Estudo recente mostrou que a sensibilidade à insulina no músculo esquelético foi maior em camundongos que super-expressavam IL-10 no músculo esquelético, quando comparados com camundongos controle, após tratamento com dieta rica em gordura (Hong et al, 2009). Atualmente, utiliza-se a relação IL-10/TNF-α como marcador do estado inflamatório, pois se considera essa razão mais importante na avaliação do quadro inflamatório do que a concentração isolada de cada uma dessas citocinas. Redução nessa razão é correlacionada com pior prognóstico e diminuição na expectativa de vida de pessoas que possuem diferentes morbidades (Kaur et al, 2006; Leonidou et al, 2007). Além disso, essa razão é um importante marcador de esteatose hepática, mostrando forte correlação negativa (Hashem et al, 2008). 12 Além da IL-10, outra adipocina envolvida na resposta anti-inflamatória em adipócitos, capaz de amenizar os efeitos deletérios induzidos pelas adipocinas pró-inflamatórias, é a adiponectina (Yamaguchi et al, 2005) . A adiponectina é o produto da transcrição do gene apM1, sendo a mais abundante proteína secretada pelo tecido adiposo em humanos (Maeda et al, 1996, Arita et al, 1999). A regulação transcricional do gene da adiponectina envolve um conjunto de fatores de transcrição. Os promotores da adiponectina contêm sítios de ligação da proteína ligada ao elemento responsivo ao esterol (Proteína Ligada ao Elemento Responsivo ao Esterol: SREBP), receptor ativado de proliferador de peroxissomo (PPAR), e da proteína ligada ao elemento responsivo ao carboidrato (Proteína Ligada ao Elemento Responsivo ao Carboidrato: CREBP) (Seo et al, 2004). Pode apresentar-se na forma longa ou globular, no entanto, quase toda adiponectina parece existir na forma longa no plasma. Fruebis et al (2001), relataram entretanto que uma pequena quantidade de adiponectina globular foi detectada em plasma humano. Até o momento, três receptores de adiponectina foram identificados, AdipoR 1, AdipoR2, e mais recentemente, a T-caderina. AdipoR1 e AdipoR2 são receptores com sete domínios transmembrana. O AdipoR1 exibe expressão elevada no músculo esquelético, tanto em humanos quanto em camundongos. Em contraste, o AdipoR2 é expressa no fígado do rato, e no fígado e 13 músculo esquelético humano. A T-caderina, embora seja um receptor truncado que não tem o domínio intracelular necessário para a transdução de sinal, pode participar da cascata de sinalização intracelular, competindo com AdipoR1 e AdipoR2 (Brochu-Gaudreau et al, 2010). A ação da resposta anti-inflamatória da adiponectina está exemplificada na Figura 6. Esta adipocina aumenta a sensibilidade à insulina e tem efeitos anti-inflamatórios e antiaterogênicas (Diez, Iglesias 2003). Diminuição das concentrações de adiponectina sérica tem sido observada em indivíduos com resistência à insulina, obesidade, diabetes tipo 2 e doença cardíaca (Diez e Iglesias 2003, Hotta et al, 2000). As concentrações séricas de adiponectina são inversamente correlacionadas com o índice de adiposidade central, pressão arterial, glicemia de jejum, resistência à insulina e concentrações séricas de insulina (Yamamoto et al, 2002). Tem sido demonstrado que adiponectina reduz a produção hepática de glicose e a concentração de triacilglicerol no músculo esquelético, assim melhorando a sensibilidade à insulina (Prins, 2002). Salmenniemi et al (2005), verificaram que hipoadiponectinemia está relacionada com diversas características da síndrome metabólica (aumento da glicemia de jejum, triacilglicerol, obesidade abdominal e diminuição do HDL-colesterol) e alta concentração de citocinas inflamatórias (IL-6, IL-1, e Proteína C-reativa). A adiponectina inibe a via de sinalização dos TLRs e do NF-κB bloqueando a resposta inflamatória em linhagem celular de macrófagos (RAW264) (Yamaguchi et al, 2005). 14 Estudando os mecanismos envolvidos na resposta anti-inflamatória da adiponectina em macrófagos, o grupo da Profa Laura Nagy da Universidade de Ohio (EUA) verificou que a adiponectina, primeiramente, ativa a via inflamatória, aumentando de maneira significativa a concentração do TNF-α via ativação do NF-κB. A seguir, observou que o aumento exacerbado do TNF-α estimulou a produção da IL-10, predominando desta maneira a resposta anti-inflamatória. Estes resultados sugerem, portanto, que a ação anti-inflamatória da adiponectina possa ser dependente da IL10. Corroborando com está inferência, o mesmo grupo verificou que a adição da adiponectina, em cultura de macrófagos, estimulados com LPS, não inibiu o aumento de TNF-α na presença de anticorpo bloqueando a ação da IL-10 (Park et al, 2007). Diversos estudos apontam que a adição de LPS no meio de cultura de adipócitos 3T3-L1 ativa o NF-κB, elevando a expressão gênica de adipocinas pró-inflamatórias, e que esta resposta é favorecida pelos TLR-2 e TLR-4 (Lin et al, 2000; Ajuwon, Spurlock, 2005; Suganami et al, 2007). Ajuwon e Spurlock (2005) demonstram que células 3T3-L1 estimuladas com LPS, quando incubadas com adiponectina, diminuíram a ativação do NF-κB, reduzindo a produção de adipocinas proinflamatórias, paralelamente, os autores observaram aumento do fator transcricional PPAR-γ, conhecido como desencadeador de resposta anti-inflamatória. Tal fator, também, pode estar envolvido nos efeitos anti-inflamatórios causados pela adiponectina. A obesidade é uma doença multifatorial, e deve ser tratada por longo prazo. O tratamento da obesidade pode ser feito com intervenções em diferentes aspectos, incluindo diminuição na ingestão calórica e aumento do gasto energético imposto pelo exercício físico. O tratamento de longo prazo com dietas restritivas e capaz de diminuir as citocinas pró-inflamatórias no sangue, assim como a hiperleptinemia, reduzindo os riscos das morbidades associadas, como hipertensão, diabetes, dislipidemias e doenças cardiovasculares (Hukshorn et al, 2004). No entanto, os estudos mostram que as intervenções isoladas, embora muitas vezes eficientes à primeira vista, não são muito efetivas após período prolongado, quando os indivíduos não mudam efetivamente o estilo de vida (Lawlor, Chatuverdi, 2006). Desta feita, a literatura nos leva a crer que as intervenções interdisciplinares para o tratamento da obesidade que contenham orientação médica, nutricional, programa de exercício físico e acompanhamento psicológico parecem ser mais indicadas para tratar a obesidade, pois visam à mudança do estilo de vida de forma ampla, aumentando a aderência e a permanencia nos novos hábitos (Curioni, Lourenço, 2005; Snethen et al, 2006). O tratamento interdisciplinar para o tratamento de adolescentes obesos, sob a direção da Profa Dra Ana Dâmaso, que vem sendo desenvolvido na UNIFESP, tem se mostrado eficiente na redução da prevalência da síndrome metabólica, da esteatose hepática não alcoólica e, da compulsão alimentar contribuindo para a melhoria na qualidade de vida desses adolescentes (Caranti et al, 2007; Carnier et al, 2008; Caranti et al, 2008; De Piano et al, 2007; Carnier et al, 2010; de Lima Sanches et al, 2011). 15 Frente aos efeitos benéficos observados por este tratamento interdisciplinar e os relatados sobre a importância da IL-10 e da adiponectina em doenças inflamatórias crônicas, principalmente devido aos seus efeitos moduladores da síntese e secreção do TNF- e IL-6 e, levantamos a hipótese que o tratamento interdisciplinar modifica o perfil de citocinas e endotoxina em adolescentes obesos, e que isto estaria relacionado à elevação na IL-10 e adiponectina que, via redução da ativação do TLR-4, inibiria a cascata de sinalização para ativação do NF-κB no tecido adiposo. 16 3. OBJETIVOS Neste estudo nos propusemos responder as seguintes questões: Os efeitos benéficos da terapia interdisciplinar para o tratamento da obesidade estão correlacionados com a elevação das adipocinas anti-inflamatórias (adiponectina e IL10)? Os efeitos benéficos da terapia interdisciplinar para o tratamento da obesidade estão correlacionados com a redução das citocinas pró-inflamatórias (TNF-α e IL-6), endotoxina e dos depósitos de gordura corporal? Os efeitos anti-inflamatórios da adiponectina e da IL-10 em adipócitos 3T3-L1 são dissociados ou interdependentes? A ação anti-inflamatória, individual ou conjunta, da adiponectina e IL-10 em adipócitos 3T3-L1, é mediada por alterações na via de sinalização do TLR-4 e do NF- κB? 17 3.1 Objetivos específicos 1) Analisar o perfil de citocinas pró-inflamatórias (TNF-α e IL-6) e anti-inflamatórias (adiponectina e IL-10), e correlacionar com os depósitos de gordura subcutânea e visceral, antes e após um ano de terapia interdisciplinar em adolescentes obesos. 2) Avaliar a concentração de endotoxina, e correlacionar perfil de citocinas pro e antiinflamatórias, e resistência à ação da insulina, antes e após um ano de terapia interdisciplinar em adolescentes obesos. 3) Quantificar a produção de IL-6 no meio de cultura, e a expressão protéica das seguintes proteínas: IL-6R, TLR-2, TLR-4, MYD88 e TRAF6 em células 3T3-L1, na presença de IL-10, adiponectina e IL-10 mais adiponectina, após estímulo de 24h com LPS. 4) Determinar a interação do fator transcripcional NF-κB: (subunidades NF-κB p50 e NFκB p65) com DNA. Avaliar parâmetros na presença de IL-10, adiponectina e IL-10 mais adiponectina, em células 3T3-L1, após 24h de estimulo com LPS. 18 4. MATERIAIS E MÉTODOS 4.1 Modelo Clínico População Para o desenvolvimento desta pesquisa, foram recrutados ciquenta e quatro (54) adolescentes (de ambos os gêneros) obesos do programa de intervenção interdisciplinar do GEO/CEPE UNIFESP, iniciado em 2004, conforme exemplificado abaixo na Figura 7. Trinta e nove (39) adolescentes completaram até o final à Intervenção Interdisciplinar. Para o presente estudo, foram selecionados dezoito (18) adolescentes, os quais exibiram perda de massa gorda maior que 5%. 19 Critérios de inclusão Adolescentes com idade entre 13 a 19 anos, pós-púberes, com o IMC acima do Percentil 95 proposto pelas curvas do “Centers for Disease Control and Prevention” (CDC) (2000), estágio puberal V segundo os critérios de Tanner (Tanner et al, 1976), além da assinatura do termo de consentimento pelos familiares dos participantes do estudo. Critérios de não inclusão Como critérios de não inclusão foram selecionados os seguintes itens: limitações músculoesqueléticas que impeçam a intervenção, doença genética, hormonal ou metabólica, uso crônico de álcool, usuário de drogas e outras causas de esteatose como hepatite viral B e C, hepatite auto-imune e doenças metabólicas como hemocromatose. Este estudo foi realizado de acordo com os princípios da declaração de Helsinki e foi previamente aprovado pelo Comitê de Ética da Universidade Federal de São Paulo - Escola Paulista de Medicina sob o número (#0135/04). Os voluntários foram incluídos no estudo após consentimento assinado. Descrição da Intervenção Interdisciplinar para o tratamento da obesidade Após os exames diagnósticos, os adolescentes obesos foram submetidos à Intervenção Interdisciplinar para o tratamento da obesidade, de acordo com o modelo preconizado pelo Grupo de Estudo da Obesidade (GEO), desenvolvido no Centro de Estudos em Psicobiologia e Exercício (CEPE), do Departamento de Psicobiologia da UNIFESP/EPM e Programa de Pós Graduação em Nutrição. O Protocolo baseia-se em intervenção Interdisciplinar em longo prazo (1 ano), incluindo a triagem, os exames e o desenvolvimento da pesquisa. Para isto, todos os voluntários tiveram acompanhamento nutricional e psicológico semanais; clínico (consultas mensais com o endocrinologista); treinamento físico combinado (exercício aeróbio e treinamento de força). 20 Protocolo de Exercício Durante 48 semanas de intervenção Interdisciplinar os adolescentes obesos foram submetidos ao programa de exercícios combinados três vezes por semana, consistindo em 30 minutos de exercícios aeróbios por sessão de treinamento (bicicleta ergométrica e esteira ergométrica) e treinamento de força adotando os seguintes exercícios: elevação lateral, supino sentado, puxador costas, remada baixa, abdominais, hiperextensão lombar, leg press, flexão de joelhos, flexão de panturrilha e rosca direta. Todos os sujeitos foram familiarizados com o protocolo de treinamento, durante 2 semanas, antes de iniciarem o programa. Os exercícios aeróbios foram realizados na intensidade do esforço referente ao limiar ventilatório 1, determinado por análise direta de gases. O treinamento de força foi orientado seguindo os princípios para controle da carga e do volume do treinamento propostos por Kraemer et al (2006). A periodização do treinamento de força utilizou o modelo não linear (ondulatório) proposto por Kraemer et al (1997), desta forma, o protocolo consistiu na alteração semanal da carga, dividido em semana de cargas altas (5 a 7-repetições máximas, RM) e semana de cargas moderadas (10 a 12RM). Os sujeitos realizaram 18 séries por sessão, distribuídas em 3 séries para cada exercício. O intervalo entre as séries dependeu da carga adotada na sessão de treinamento, tendo intervalos de 2 minutos para as semanas com cargas altas e intervalos de 1 minuto para as semanas com cargas moderadas. Os voluntários realizaram o protocolo de treinamento de força após os 30 minutos de exercício aeróbio. Avaliação e Intervenção Nutricional Uma vez por semana os adolescentes receberam aulas de educação nutricional em pequenos grupos, abrangendo temas como pirâmide alimentar, dietas da moda, rotulagem nutricional, diferentes tipos de gordura, alimentação de fast food, aprendendo a montar um lanche saudável entre outros. Ressalta-se que também foram oferecidas consultas nutricionais individuais. A avaliação alimentar foi realizada no início, e ao término da intervenção por meio do registro alimentar de três dias não consecutivos, incluindo dois dias da semana e um do final de semana. A nutricionista orientou os pais e voluntários sobre o preenchimento do registro alimentar de três dias. 21 As porções foram relatadas em termos de medida caseira por referência de um Atlas de porções alimentares. Os dados alimentares obtidos foram analisados por meio do software Nutwin (UNIFESP, 2002). Avaliação e Intervenção Psicológica Para o atendimento psicológico os adolescentes foram divididos em pequenos grupos. A intervenção psicológica consistiu em dinâmicas, aulas e sessões terapêuticas uma vez por semana, compreendendo temas como auto-estima, imagem corporal, depressão, ansiedade, transtornos alimentares, questões familiares, entre outros. Ressalta-se que a intervenção psicológica também consiste em consultas individuais, conforme a anuência do paciente. Análises sanguíneas Parâmetros Bioquímicos: As análises sanguíneas foram realizadas através de punção periférica da veia do antebraço, após jejum noturno de 12 horas. Para dosagem das adipocinas (Adiponectina, IL-6, IL-10 e TNF-α; R&D System, Inc., Minneapolis, USA), endotoxina (LONZA Cologne GmbH, Suiça) e insulina (Millipore, 290 Concord Road, Billerica, MA 01821) foi utilizado o método enzyme-linked immunoabsorbent assay (ELISA) de captura. Este ensaio foi realizado em amostras de soro, proveniente da situação basal e após 1 ano de terapia interdisciplinar. Placas com 96 poços foram sensibilizadas com 100 µL de anticorpo monoclonal anti-humano (Adiponectina, IL-6, IL-10, TNF-α, insulina e endotoxina) (anticorpo de captura) e incubadas por 2h em temperatura ambiente. Após este período, os poços foram lavados por 3 vezes com tampão para lavagem (0,05% Tween 20 em PBS, pH 7,2 – 7,4). Posteriormente, a placa foi bloqueada para evitar ligações inespecíficas com 300 µL de solução de bloqueio (1% BSA em PBS, pH 7,2 – 7,4, 0,2 µm filtrado) e incubada por 1 hora em temperatura ambiente. Findo este prazo, os poços foram lavados novamente como descritos acima. 22 Após o bloqueio, foram adicionados 100 µL por poço das amostras e dos padrões diluídos previamente em reagente de diluição (1% BSA em PBS, pH 7,2 – 7,4, 0,2 µm filtrado), e cobertos com fita adesiva . Em dois poços foram colocados somente o reagente de diluição para caracterização do branco. A placa foi incubada por 2 horas em temperatura ambiente. Após este período, os poços foram lavados por 3 vezes com tampão de lavagem (0,05% Tween 20 em PBS, pH 7,2 – 7,4). Após as lavagens, adicionou 100 µL do anticorpo de detecção (Anticorpo anti-Humano Adiponectina, IL-6, IL-10, TNF-α, insulina e endotoxina Biotinilado) diluídos previamente em reagente de diluição (1% BSA em PBS, pH 7,2 – 7,4, 0,2 µm filtrado) na concentração estabelecida, cobertos com fita adesiva e incubado por 2 horas em temperatura ambiente. Os poços foram novamente lavados como descrito acima. Posteriormente, adicionou-se 100 µL de Streptoavidina-HRP (1:250) por poço, que foram cobertos com papel laminado e incubados por 30 minutos, à temperatura ambiente. Findo este prazo, os poços foram novamente lavados como descrito acima. Posteriormente, a solução de substrato (mistura dos reagentes de cores A - H2O2 e B - Tetrametilbenzidina) foi adicionada na diluição de 1:1 por poço, seguido de incubação por 30 minutos à temperatura ambiente, evitando-se contato direto da placa com a luz. A reação foi interrompida com 50 µL de H2SO4 30% por poço sob agitação lenta. A leitura foi feita em leitor de ELISA (Power Wave, Bio-tek), utilizandose filtro de 450 nm. Para dosagem da glicemia de jejum, foi utilizado Kit Glicose PAP Liquiform (Labtest Diagnostica S.A), por método colorimétrico, sendo a mistura da amostra com reagente incubado por 15 minutos em temperatura a 37°C. O princípio da reação foi: A glicose oxidase (GOD) catalisa a oxidação da glicose de acordo com a seguinte reação: Glicose + O2 + H2O GOD Ácido Glucônico + H2O2 O peróxido de hidrogênio formado reage com 4-aminoantipirina e fenol, sob ação catalisadora da peroxidase, através de uma reação oxidativa de acoplamento formando uma antipirilquininimina vermelha cuja intensidade de cor é proporcional à concentração de glicose da amostra. A leitura foi feita em leitor de ELISA (Power Wave, Bio-tek), utilizando-se filtro de 520 nm. 23 Análise estatística do modelo clínico A distribuição dos dados foi checada pelo teste de variança de Bartlett, e os dados expressos em média ± desvio padrão. Os valores outliers estatísticos foram identificados utilizando um teste de Grubbs (GraphPad Software, San Diego, CA) e subseqüente removidos. Todos os dados que permaneceram foram analisados pelo programa GraphPad Prism (version 5.00). As diferenças entre as situações para todos os parametros foram analisadas pelo teste “t de student”. O teste de Pearson foi aplicado para verificar possiveis correlações entre as variaveis. O nível de significância fixado foi de p<0,05. 4.2 Modelo Experimental Cultura de células - Adipócitos 3T3-L1 As células 3T3-L1 foram obtidas a partir da American Type Culture Collection e congeladas em nitrogênio líquido até o dia de uso quando foram então descongeladas à temperatura ambiente. As células foram mantidas em meio de crescimento contendo os seguintes constituintes: meio Dulbecco´s Eagle modificado (DMEM) com 25mM de glicose, 1,0mM de piruvato, 4,02 de mM L-alanylglutamina e 10% de soro fetal bovino (Sigma) e cultivadas a 37°C em atmosfera umidificada com 5% CO2 / 95% ar. O meio de cultura foi trocado a cada quatro dias no máximo até a confluência das células quando então foi feita a diferenciação destas células utilizando-se, por quatro dias, meio de diferenciação contendo 0,25µM de dexametasona, 0,5mM de 3-isobutyl-1-methyl-xanthine, 5µg/mL de insulina (Sigma), penicilina e estreptomicina (1mL para cada 100mL de meio). Após os quatro dias com o meio de diferenciação, as células foram cultivadas por dez dias em meio de alimentação contendo DMEM modificado e 5µg/mL insulina. No décimo dia da diferenciação os adipócitos foram mantidos por 24 horas em meio contendo 0,5% de soro fetal bovino. Após este período os adipócitos foram tratados com meio de incubação livre de soro fetal bovino acrescido de LPS (100ng/mL), LPS associado à Adiponectina (50 ng/mL), LPS associado à IL-10 (5 ng/mL) ou LPS associado à Adiponectina mais IL-10 por 24 horas. O meio 24 de incubação e as células foram coletados após 24h após os tratamentos, para análise precisa da resposta anti-inflamatória. As doses foram padronizadas em nosso laboratório, e escolhemos a melhor dose frente ao estímulo inflamatório com LPS. As seguintes doses foram testadas: Adiponectina (10, 50 e 100ng/mL), e IL-10 (5, 10 e 20ng/mL). Experimentos e coleta de amostras das células Para determinação da concentração de IL-6 no meio de cultura, o sobrenadante foi coletado e estocado a –80ºC para posterior análise da adipocina com kit de ELISA comercial (R&D System®). Western blotting - IL-6R, TLR-2, TLR-4, MyD88 e TRAF6. As células foram colocadas em 0,5 ml de tampão específico para extratos totais, o tampão de extração para extrato total foi composto por: Trizma base 100 mM pH 7.5, EDTA 10 mM, SDS 10%, fluoreto de sódio 100 mM, pirofosfato de sódio 10 mM, ortovanadato de sódio 10 mM. O tampão foi preparado no dia do experimento e aquecido em banho maria fervente. As células 3T3-L1 foram rapidamente homogeneizadas com tampão específico usando-se uma seringa e agulha de calibre 23 gauge. O homogenato foi em seguida fervido por 10 minutos e centrifugado por 40 minutos a 12000 rpm a 4°C. O sobrenadante foi mantido em gelo e o teor de proteínas totais determinado pelo método de Bradford (1976). As amostras foram adicionadas, na proporção de 4:1, do tampão de Laemmli (azul de bromofenol 0,01%, fosfato de sódio 50mM, glicerol 25%, SDS 1%) contendo 200mM de DTT. O volume de 100 g de proteína foi submetido à eletroforese em gel de poliacrilamida desnaturante a 10% e submetido à eletroforese. Após separação eletroforética, as amostras foram transferidas para membrana de nitrocelulose por 2 horas à temperatura ambiente (ou overnight a 4 C) e a membrana foi 25 então bloqueada por 2 horas em 15 ml de solução bloqueadora, composta de solução basal (Trizma base 10 mM, NaCl 150 mM, Tween 20 50 l/ml) contendo 5% de leite desnaturado. Em seguida, foi feita a incubação com o anticorpo primário específico, overnight em temperatura ambiente, com o anticorpo dissolvido em solução basal e BSA 1%. A seguir, a membrana foi incubada por uma hora com anticorpo secundário associado a peroxidase. O anticorpo secundário constituiu-se sempre de uma anti-imunoglobulina dirigida contra o animal produtor de anticorpo primário. Após algumas lavagens com solução basal, a membrana foi revelada por quimioluminescência após adição do reagente de revelação (ECL da Amersham) e então a membrana foi exposta a filme de raio X. As bandas de interesse foram identificadas pelo seu padrão de migração eletroforética, por comparação com padrões de Mr conhecidos e quantificadas por densitometria, utilizando-se o programa Scion Image. Ensaio da interação NF-κB-DNA por imunoensaio. Extração das proteínas nucleares: As células adiposas 3T3-L1 foram coletadas em 0,5 mL de tampão de extração nuclear. As proteínas nucleares foram extraídas em duas etapas, de acordo com as instruções do fabricante Panomics (Santa clara, CA). Após esta etapa, a suspensão foi rapidamente centrifugada para precipitação dos núcleos. Em seguida, o sedimento foi ressuspenso em 60 µL de tampão C (Hepes 20mM; MgCL2 1,5mM; DTT 0,5mM; PMSF 0,2mM; NaCL 420mM; glicerol 25%) e incubados durante 20 minutos em gelo. Após este intervalo, as amostras foram centrifugadas (14.000 rpm) e a quantidade de proteína total determinada pelo método de BSA. Ativação do NF B(p50 e 65): Amostras provenientes da extração das proteínas nucleares (510 µg/proteína por poço) foram plaqueadas em placas com 96 poços contendo sítios de ligação específicos para moléculas ativadas NF Bp50 (EK 1110, Panomics, Inc.) e 65 (EK1120, Panomics, Inc.) (oligonucleotídeos biotinilados). Esses oligonucleotídeos foram então imobilizados através da adição de streptavidin coated. Desta forma, NF Bp50 e 65 ligados ao oligonucleotídeo foram detectados por anticorpo direto contra essas moléculas e após adição de anticorpo secundário 26 conjugado com peroxidase (horseradish), o que provera sensibilidade colorimétrica. Os níveis dos complexos DNA – proteínas formadas foram quantificados por espectrofotometria a 450 nm. Análise estatística do modelo experimental A análise estatística foi realizada para todos os valores mensurados no estudo. A análise comparativa dos dados quantitativos foi apresentada utilizando o ANOVA de um caminho, seguido de post-teste de Tukey. Quando necessário utilizamos o teste “t de student“ não pareado. Para todas as análises o valor de p menor que 0,05 foi considerado estatisticamente significante. 27 5. Resultados Os resultados desta tese estão apresentados na forma de 3 trabalhos científicos: Visceral fat decreased by long-term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factor-alpha and negatively with adiponectin levels in obese adolescents. Lira FS, Rosa JC, Dos Santos RV, Venancio DP, Carnier J, Sanches PD, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Dâmaso AR, Oyama LM. Metabolism. 2011 Mar;60(3):359-65. Epub 2010 Mar 31. Decreases endotoxin levels and improves insulin resistance in obese adolescents after long-term interdisciplinary therapy. Lira FS, Rosa JC, Pimentel GD, Santos RV, Carnier J, Sanches PD, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Oyama LM, Dâmaso AR. (submetido). Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-κB pathway in 3T3-L1 adipocytes. Lira FS; Rosa JC; Pimentel GD; Seelaender M; Damaso AR, Oyama LM and Oller do Nascimento C. (submetido). 28 5.1 Manuscrito 1 Visceral fat decreased by long-term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factor-alpha and negatively with adiponectin levels in obese adolescents. Lira FS, Rosa JC, Dos Santos RV, Venancio DP, Carnier J, Sanches PD, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Dâmaso AR, Oyama LM. Metabolism. 2011 Mar;60(3):359-65. Epub 2010 Mar 31. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Metabolism Clinical and Experimental 60 (2011) 359 – 365 www.metabolismjournal.com Visceral fat decreased by long-term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factor–α and negatively with adiponectin levels in obese adolescents Fábio Santos Liraa,⁎, Jose Cesar Rosaa , Ronaldo Vagner dos Santosb , Daniel Paulino Venancioc , June Carniera , Priscila de Lima Sanchesa , Claudia Maria Oller do Nascimentoa,d , Aline de Pianoa , Lian Tocka , Sergio Tufikc , Marco Túlio de Melloa,c , Ana R. Dâmasoa,b,⁎, Lila Missae Oyamaa,b,⁎ a Postgraduate Program of Nutrition, Federal University of São Paulo–UNIFESP, São Paulo/SP 04020-060, Brazil b Department of Biosciences, Federal University of São Paulo–UNIFESP, São Paulo/SP 04020-060, Brazil c Department of Psychobiology, Federal University of São Paulo–UNIFESP, São Paulo/SP 04020-060, Brazil d Department of Physiology, Federal University of São Paulo–UNIFESP, São Paulo/SP 04020-060, Brazil Received 25 November 2009; accepted 16 February 2010 Abstract The purpose of this study was to assess the level of cytokine expression in correlation with visceral and subcutaneous fat in obese adolescents admitted to long-term interdisciplinary weight loss therapy. The study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (18, aged 15-19 years) with body mass indexes greater than the 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. Visceral and subcutaneous fat was analyzed by ultrasonography. Blood samples were collected to analyze tumor necrosis factor–α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), and adiponectin concentrations that were measured by enzyme-linked immunosorbent assay. The most important finding in the present investigation is that the long-term interdisciplinary lifestyle therapy decreased visceral fat. Positive correlations between IL-6 levels and visceral fat (r = 0.42, P b .02) and TNF-α levels and visceral fat (r = 0.40, P b .05) were observed. Negative correlations between TNF-α levels and subcutaneous fat (r = −0.46, P b .01) and adiponectin levels and subcutaneous fat (r = −0.43, P b .03) were also observed. In addition, we found a positive correlation between TNF-α levels and the visceral to subcutaneous fat ratio (r = 0.42, P b .02) and a negative correlation between adiponectin level and the visceral to subcutaneous fat ratio (r = −0.69, P b .001). Despite the limitation of sample size, our results indicate that the observed massive weight loss (mainly visceral fat) was highly correlated with a decreased inflammatory state, suggesting that the interdisciplinary therapy was effective in decreasing inflammatory markers. © 2011 Elsevier Inc. All rights reserved. 1. Introduction Obesity is a heterogeneous condition with respect to the regional distribution of fat: visceral obesity refers to fat accumulation within omental and mesenteric fat depots, whereas peripheral obesity generally refers to subcutaneous fat accumulation [1]. The functional differences between ⁎ Corresponding authors. Rua Marselhesa no. 535, Vila Clementino, São Paulo/SP 04020-060, Brazil. Tel.: +55 11 5572 0177; fax: +55 11 55720177. E-mail addresses: fabioslira@gmail.com (F.S. Lira), ana.damaso@unifesp.br (A.R. Dâmaso), lmoyama@gmail.com (L.M. Oyama). 0026-0495/$ – see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.metabol.2010.02.017 visceral and subcutaneous adipocytes may be related to their anatomical location. Visceral adipose tissue and its adipose tissue resident macrophages produce many proinflammatory cytokines, such as tumor necrosis factor–α (TNF-α) and interleukin-6 (IL-6), and less adiponectin and interleukin-10 (IL-10) [2-4]. These cytokine changes induce insulin resistance and play a major role in the pathogenesis of endothelial dysfunction and subsequent atherosclerosis [5]. Such differences are also reflected in the contrasting roles that visceral and subcutaneous adipose tissues play in the pathogenesis of obesity-related cardiometabolic problems in both lean and obese individuals [6]. Thorne et al [7] reported that the removal of visceral adipose tissue by omentectomy resulted in decreased glucose and insulin levels in humans, Author's personal copy 360 F.S. Lira et al. / Metabolism Clinical and Experimental 60 (2011) 359–365 whereas the removal of subcutaneous adipose tissue by liposuction did not always result in improvements in glucose metabolism or lipid levels [8,9]. Different strategies are adopted with the intention of restoring the inflammatory state in obese subjects. Several studies have shown that diet-induced weight loss significantly decreases the levels of markers of inflammation, such as TNFα, IL-6, and C-reactive protein [10,11]. On the other hand, sustained aerobic exercise is recommended both for the prevention and treatment of several chronic diseases [12-14]. Moreover, endurance training seems to induce an increase in the secretion of anti-inflammatory cytokines by adipose tissue [15]. Recently, our group has shown that long-term interdisciplinary lifestyle therapy is effective in controlling the psychologic aspects, nonalcoholic fatty liver disease, body composition, bone mineral density, and hormonal alterations [16-21] commonly observed in obese patients. However, despite these promising results, few studies have addressed the effects of long-term multidisciplinary intervention on pro- and anti-inflammatory cytokine levels. Thus, the aim of this study was to assess the effect of longterm multidisciplinary intervention on visceral and subcutaneous fat loss and cytokine levels in obese adolescents. 2. Material and methods 2.1. Population Adolescents were invited to participate in 1-year-long multidisciplinary therapy to promote changes in their sedentary lifestyle and nutritional habits. The basic requirements for participation were motivation and high attendance at the therapy sessions. Fifty-four adolescents were invited to participate in a 1-year-long Interdisciplinary Obesity Program of the Federal University of São Paulo-Paulista Medical School to promote changes in their sedentary lifestyle and nutritional habits. The basic requirements for participation were motivation and high attendance at the therapy sessions. Thirty-nine adolescents continued until the end of the therapy. For the present study, 18 obese adolescents who lost more than 5% fat mass (range sample: 5.4% at 22.50% fat mass) were selected. These adolescents were evaluated at baseline and after long-term (1 year) weight loss intervention. This study was carried out in accordance with the principles of the Declaration of Helsinki and was formally approved by the Institutional Ethical Committee (#0135/04). Informed consent was obtained from all subjects and/or their parents, and agreement of the adolescents and their families to participate was voluntary. The ages of the 18 participants ranged from 15 to 19 years (16.6 ± 1.67 years), and the average body mass index (BMI) was 37.03 ± 3.78 kg/m2 (7 boys and 11 girls). All participants met the inclusion criteria of postpubertal stage V based on the Tanner stages [22] and of obesity (BMI N95th percentile) according to the Centers for Disease Control and Prevention reference growth charts (2004). Noninclusion criteria included identifiable genetic, metabolic, or endocrine disease or previous drug utilization [23]. 2.2. Study protocol and medical screening Subjects were medically screened, their pubertal stage was assessed, and their anthropometric measures were recorded (ie, height, weight, BMI, and body composition). The endocrinologist completed a clinical interview including questions to determine eligibility based on inclusion and exclusion criteria. Blood samples were collected and analyzed, and an ultrasound (US) was performed. The procedures were scheduled for the same time of day for all subjects to remove any influence of diurnal variations. Thereafter, obese adolescents started the interdisciplinary weight loss program (described in a later section). 2.3. Anthropometric measurements and body composition Subjects were weighed on a Filizola scale (São Paulo-SP, Brazil) while wearing light clothing and no shoes, and weight was recorded to the nearest 0.1 kg. Height was measured using a wall-mounted stadiometer (Sanny, São Paulo-SP, Brazil; model ES 2030) to the nearest 0.5 cm. Body mass index was calculated as body weight divided by height squared. Body composition was estimated by plethysmography using the BOD POD body composition system (version 1.69; Life Measurement Instruments, Concord, CA). This is the most advanced technique for assessing body composition available today. The patented air displacement plethysmography used by the BOD POD and PEA POD is similar in principle to hydrostatic (or “underwater”) weighing. The obvious difference is that air is more convenient and comfortable than water, such that air displacement plethysmography provides a much simpler and safer testing environment, better reliability, and significantly improved repeatability and accuracy [24]. 2.4. Serum analysis Blood samples were collected in the outpatient clinic at around 8:00 AM after an overnight fast. Cytokine (TNF-α, IL6, and IL-10) and adiponectin concentrations were measured using commercially available enzyme-linked immunosorbent assay kits from eBioscience (San Diego, CA) and R&D Systems (Minneapolis, MN) according to the manufacturer's manual. 2.5. Visceral and subcutaneous adiposity measurements All abdominal ultrasonographic procedures and the measurements of visceral and subcutaneous fat tissue were performed by the same physician, who was blinded to the subjects' assignment group. This physician was a specialist in imaging diagnostics using a 3.5-MHz multifrequency transducer (broadband), which reduces the risk of misclassification. The intraexamination coefficient of variation for US was 0.8%. Author's personal copy F.S. Lira et al. / Metabolism Clinical and Experimental 60 (2011) 359–365 361 Table 1 Effect of long-term multidisciplinary lifestyle therapy on body fat and cytokines levels (n = 18) Age (y) Body weight (kg) BMI (kg/m2) Percentage fat Fat mass (kg) Fat-free mass (kg) VO2max (mL/[kg min]) Visceral fat (cm) Subcutaneous fat (cm) Visceral to subcutaneous ratio Adiponectin (ng/mL) TNF-α (pg/mL) IL-6 (pg/mL) IL-10 (pg/mL) IL-10/TNF-α ratio Before After % Change P value 15±1.73 95.03 ± 13.06 34.99 ± 4.00 47.50 ± 6.99 49.6 ± 10.1 55.8 ± 7.49 27.5 ± 6.87 4.19 ± 1.16 3.61 ± 0.47 1.17 ± 0.34 9.70 ± 2.13 22.76 ± 29.67 49.32 ± 34.91 7.86 ± 9.02 0.40 ± 0.37 16 ±0.63 85.59±11.58 31.71 ± 4.00 35.81 ± 9.60 32.9 ± 12.3 58.1 ± 7.71 30.3 ± 8.10 2.13 ± 0.84 2.85 ± 0.77 0.80±0.38 12.98 ± 2.17 20.88 ± 29.22 34.53 ± 21.46 14.74 ± 22.95 0.58 ± 0.65 1 ± 0.51 −11% −9.3% −24% −33% +4% +10% −49% −21% −31% +33% −8% −29% +87% +43% .11 .05 .05 b.001 b.001 .19 .01 b.001 .001 .006 b.001 .59 .13 .16 .28 Results are expressed as mean value ± SD. Ultrasound measurements of intraabdominal (“visceral”) and subcutaneous fat were taken. The US-determined subcutaneous fat was defined as the distance between the skin and external face of the recto abdominis muscle, and visceral fat was defined as the distance between the internal face of the same muscle and the anterior wall of the aorta. Cutoff points to define visceral obesity by ultrasonographic parameters were based on previous methodological descriptions by Ribeiro-Filho et al [25]. 2.6. Clinical intervention 2.6.1. Dietary program Energy intake was set at the levels recommended by the dietary reference intake for subjects with low levels of physical activity of the same age and sex following a balanced diet [26]. No drugs or antioxidants were recommended. Once a week, adolescents had a dietetics lesson providing information on the following: the food pyramid, diet record assessment, weight loss diets and miracle diets, food labels, dietetics, fat-free and low-calorie foods, fats (kinds, sources, and substitute foods), fast food calories and nutritional composition, good nutritional choices in special occasions, healthy sandwiches, shakes and products to promote weight loss, functional foods, and decisions on food choices. All patients received individual nutritional consultation during the intervention program. A 3-day dietary record was collected at the beginning of the study and again at 12 months into the program. Because most obese people underreport their food consumption, each adolescent was asked to record their diet with the help of their parents [27]. The degree of underreporting may be substantial; however, this is a validated method to assess dietary consumption [28]. Portions were measured in terms of familiar volumes and sizes. The dietician taught the parents and the adolescents how to record food consumption. These dietary data were transferred to a computer by the same dietician, and the nutrient composition was analyzed by a PC program developed at the Federal University of São Paulo–Paulista Medical School (Nutwin software for Windows, 1.5 version, 2002) that used data from Western and local food tables. In addition, the parents were encouraged by a dietitian to call if they needed extra information. 2.6.2. Exercise program During the 1-year interdisciplinary intervention period, adolescents followed a personalized aerobic training program that included a 60-minute session completed 3 times a week (180 min/wk) under the supervision of a sports therapist. Each program was developed according to the results of an initial oxygen uptake test for aerobic exercises (cycle ergometer and treadmill). The intensity was set at a workload corresponding to a ventilatory threshold of 1 (50%-70% of oxygen uptake test). Adolescents were under heart rate monitoring during the aerobic sessions. The exercise program was based on the 2009 recommendations given by the American College of Sports Medicine [29]. Fig. 1. Correlation of IL-6 levels and visceral fat. Author's personal copy 362 F.S. Lira et al. / Metabolism Clinical and Experimental 60 (2011) 359–365 Fig. 2. Correlation of TNF-α levels and visceral fat. 2.6.3. Psychologic intervention Diagnoses of common psychologic problems associated with obesity, such as depression, disturbances of body image, anxiety, and decreased self-esteem, were established by validated questionnaires. During the interdisciplinary intervention, the adolescents had weekly psychologic support group sessions. During these sessions, the adolescents discussed the following topics: body image; alimentary disorders including bulimia, anorexia nervosa, and binge eating; the signs, symptoms, and health consequences of these disorders; the relationship between feelings and food; and family problems such as alcoholism, among other topics. Individual psychologic therapy was recommended if individuals were found to have nutritional or behavioral problems [19]. Fig. 4. Correlation of TNF-α levels and subcutaneous fat. differences between groups for all parameters were assessed by a paired Student t test. The Pearson correlation coefficient was calculated to assess the relationship between variables. The analysis was carried out with the significance level set at P b .05. 3. Results The data distribution was checked by the Bartlett test for equal variances, and the data are reported as means ± SD. Statistical outliers within each treatment group were identified using a Grubbs test (GraphPad Software, San Diego, CA) and subsequently removed. All remaining data were analyzed by GraphPad Prism (version 5.00). The Long-term therapy was effective in reducing body weight (−11%), BMI (−9.3%), percentage fat (−24%; range before, 32.3%-58.4% and after, 10.2%-55.5%), visceral fat (−49%; range before, 2.2-6.5 cm and after, 0.8-3.7 cm), and subcutaneous fat (−21%; range before, 2.6-4.5 cm and after, 1.6-3.9 cm). Long-term therapy increased fat-free mass (+4%; range before, 44.1-71.2 kg and after, 44.2-74.9 kg) and VO2max (+10%; range before, 21.2-34.1 mL/[kg min] and after, 22.7-38.4 mL/[kg min]). A reduction in TNF-α (−8%; range before, 4.13-109.45 pg/mL and after, 6.31121.26 pg/mL) and IL-6 (−29%; range before, 9.47-111.41 pg/mL and after, 16.56-96.45 pg/mL) was observed after long-term therapy, as was an increase in IL-10 (+87%; range before, 0.16-38.59 pg/mL and after, 0.16-67.13 pg/mL). On the other hand, the ratio of IL-10 to TNF-α (+43%; range Fig. 3. Correlation of adiponectin levels and visceral fat. Fig. 5. Correlation of TNF-α levels and visceral to subcutaneous ratio. 2.7. Statistical analysis Author's personal copy F.S. Lira et al. / Metabolism Clinical and Experimental 60 (2011) 359–365 363 before or after therapy. However, there was a tendency for proinflammatory cytokines levels to be higher in the boys than in the girls. The visceral fat depot and the ratio of visceral to subcutaneous fat pads were higher in boys than girls, and the subcutaneous fat pad was lower in boys than girls (data not shown). 4. Discussion Fig. 6. Correlation of TNF-α levels and visceral to subcutaneous ratio. before, 0.011-1.10 and after, 0.019-2.06 ratio) was increased; but the difference was not statistically significant (P N .05) (Table 1). Indeed, adiponectin levels were increased (+33%; range before, 6.12-13.86 μg/mL and after, 8.43-15.99 μg/mL; P b .0001). These results are shown in Table 1. The most important findings in the present investigation are the observed positive correlation between IL-6 levels with visceral fat (r = 0.42, P b .02, Fig. 1), TNF-α levels with visceral fat (r = 0.40, P b .05, Fig. 2), and the negative correlations between TNF-α and adiponectin levels and TNF-α and subcutaneous fat (r = −0.46, P b .01, Fig. 3; r = −0.43, P b .03, Fig. 4). In addition, there was a positive correlation between TNF-α levels and the ratio of visceral to subcutaneous fat (r = 0.42, P b .02, Fig. 5) and a negative correlation between adiponectin levels and the ratio of visceral to subcutaneous fat (r = −0.69, P b .001, Fig. 6). Based on the theoretical equation, adiponectin concentration was a predictive factor of the ratio of visceral to subcutaneous fat (equation: y = −4.445x + 15.07, r = 0.4809, Fig. 7). No statistical differences were observed in TNF-α, IL-6, IL-10, or adiponectin levels between boys and girls either Fig. 7. Theoretical equation: adiponectin concentration is a predictive factor to visceral to subcutaneous ratio. In the present study, we examined the relationship between circulating IL-6, TNF-α, IL-10, and adiponectin concentrations and direct measures of visceral and subcutaneous adiposity. The results indicate that IL-6 and TNF-α levels were positively correlated with visceral fat and negatively correlated with adiponectin levels. Previous studies have shown that visceral fat in obese adolescents correlates with fatty liver, neuroendocrine alterations, and insulin resistance [17,30]. Our data are consistent with those of Park et al [31], which showed that circulating IL-6 levels were significantly associated with visceral adiposity. These data are also consistent with Fontana et al [32], who reported in massively obese subjects that plasma IL-6 concentrations were much higher in the portal vein than in systemic arterial blood; these results suggest that visceral fat is an important source of IL-6 production in obese people. Many studies have shown that visceral obesity is associated with a higher expression of cytokines than subcutaneous obesity [6,33,34]. Cao et al [1] found a significant increase in TNF-α expression in omental adipose tissue as compared with subcutaneous adipose tissue in obese individuals. These data show that omental TNF-α expression is highly correlated with insulin sensitivity, and the authors suggest that visceral fat is associated with a decrease in insulin sensitivity that could lead to an increased risk of cardiovascular disease. Van der Poorten et al [33] reported that central obesity, in which fat mass is predominantly intraabdominal, is more strongly associated with insulin resistance, dyslipidemia, and atherosclerosis than peripheral obesity, in which fat is predominantly gluteofemoral. In the present study, long-term interdisciplinary lifestyle therapy was effective in decreasing visceral fat (49%) and increasing adiponectin levels (33%). Despite the lack of a statistically significant difference in the mean levels of TNFα, IL-6, and IL-10 before and after therapy, there was an observed decrease of 8% and 29% and an increase of 87%, respectively. A previous study [16] demonstrated that interdisciplinary lifestyle therapy was efficient in restoring the parameters associated with reduced visceral fat in obese adolescents with metabolic syndrome and insulin resistance. Our data suggest that visceral fat is correlated with a marked inflammatory state, whereas subcutaneous fat showed the opposite effect. In fact, TNF-α was significantly negatively correlated with subcutaneous fat. In addition, when the ratio of visceral to subcutaneous fat was assessed in relation to cytokine levels, Author's personal copy 364 F.S. Lira et al. / Metabolism Clinical and Experimental 60 (2011) 359–365 we observed a positive correlation with TNF-α levels and a negative correlation with adiponectin levels. Klein et al [8] stated that abdominal liposuction should not, by itself, be considered a clinical therapy for obesity. The aspiration of large amounts of subcutaneous abdominal fat in women with abdominal obesity may have cosmetic benefits; but the procedure does not significantly improve insulin sensitivity in the liver, skeletal muscle, or adipose tissue; serum concentrations of inflammatory markers; or other risk factors for coronary heart disease. However, Porter et al [35] demonstrated that, whereas abdominal adiposity (visceral and subcutaneous fat) is associated with a higher absolute risk of metabolic and cardiovascular disease, subcutaneous abdominal fat is not associated with a linear increase in the prevalence of risk factors among the obese. Indeed, subcutaneous adipose tissue may actually be a protective fat depot in obese individuals in the case of high triglycerides. In their review, Chaston and Dixon [36] related that preferential loss of visceral fat compared with subcutaneous fat is greatest with modest weight loss; the effect is attenuated, and possibly lost completely, with increasing weight loss. It has been hypothesized that a reduction in visceral fat without substantial weight loss is effective in ameliorating obesity-related comorbidity. In this sense, the “portal hypothesis” suggests that the proximity of visceral fat to the liver increases the fatty acid, hormone, and cytokine delivery from adipose tissue to the liver, exacerbating hepatic insulin resistance and increasing glucose output [37]. An important observation in the present research was the beneficial effects of lifestyle intervention on visceral fat depot and inflammatory state in obese adolescents. Many studies have demonstrated benefits from aerobic training and diet leading to an anti-inflammatory state in obese rats and human models [11-13,38]. Classically, aerobic exercise training is adopted as a weight loss program, inducing an increase in the mobilization of fatty acid from adipose tissue and leading principally to fat oxidation by skeletal muscle that contributes to obesity control [13,15,29,38]. Adiponectin may also have antiatherogenic and antiinflammatory properties, and high circulating levels have been related to a lower risk of coronary heart disease [4]. A transcriptional mechanism leading to decreased adiponectin plasma levels in obese women has been previously demonstrated. In addition, low levels of adiponectin have been associated with high levels of C-reactive protein and IL-6 [39]. However, Borges et al [40] found that a weight loss greater than 5% improved inflammatory status in adult women by decreasing C-reactive protein and insulin resistance, regardless of changes in adiponectin or TNF-α levels. In the present study, it was verified that the theoretical equation from the correlation between adiponectin and the visceral to subcutaneous ratio was useful in predicting the visceral to subcutaneous ratio from the adiponectin serum concentration. Although the small number of participants could be a limitation of our study, the results contribute to the understanding of the mechanisms linking obesity and cytokines to the inflammatory state and the importance of lifestyle interdisciplinary therapy intervention as clinical practice for obesity treatment. Although the small numbers of boys and girls made it difficult to explore our data for sex differences, girls showed lower levels of TNF-α and a lower visceral to subcutaneous ratio when compared with boys (before and after experimental protocol). These results corroborate the study carried out by Cartier et al [41], which showed that premenopausal women had lower TNF-α levels when compared with men, thus reinforcing the idea that visceral fat greatly contributes to an inflammatory state in obese patients. Borges et al [40] and Cartier et al [41], using a large number of subjects and a long-term follow-up, investigated the roles of other inflammatory biomarkers, such as C-reactive protein, to better elucidate the beneficial effects of the lifestyle interdisciplinary therapy in adolescent obese patients. Future studies are needed to better understand pathway contributes for high cytokines levels and relation with fat depot. In addition, these findings should be confirmed in other populations to prevent the development of many obesity comorbidities at a young age. In summary, the present study demonstrated that decreasing the visceral fat in obese adolescents showed an anti-inflammatory effect and that this reduction was accompanied by a decreased proinflammatory and an increased anti-inflammatory state. Acknowledgment We would like to thank the patients that participated of the study and the following funding sources: AFIP, FAPESP 2006/00684-3, FAPESP 2008/53069-0, FAPESP (CEPID/ Sleep 9814303-3 S.T) CNPq, CAPES, CENESP, FADA, and UNIFESP-EPM, supported by the CEPE-GEO Interdisciplinary Obesity Intervention Program. References [1] Cao YL, Wang YX, Wang DF, Meng X, Zhang J. Correlation between omental TNF-alpha protein and plasma PAI-1 in obesity subjects. Int J Cardiol 2008;128:399-405. [2] Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor–alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 1998;83:2907-10. [3] Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005;33(Pt 5):1078-81 [Review]. [4] Manigrasso MR, Ferroni P, Santilli F, Taraborelli T, Guagnano MT, Michetti N, et al. Association between circulating adiponectin and interleukin-10 levels in android obesity: effects of weight loss. J Clin Endocrinol Metab 2005;90:5876-9. [5] Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2006;2: 367-73. Author's personal copy F.S. Lira et al. / Metabolism Clinical and Experimental 60 (2011) 359–365 [6] Cao YL, Hu CZ, Meng X, Wang DF, Zhang J. Expression of TNFalpha protein in omental and subcutaneous adipose tissue in obesity. Diabetes Res Clin Pract 2008;79:214-9. [7] Thörne A, Lönnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 2002;26:193-9. [8] Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004;350:2549-57. [9] Giugliano G, Nicoletti G, Grella E, Giugliano F, Esposito K, Scuderi N, et al. Effect of liposuction on insulin resistance and vascular inflammatory markers in obese women. Br J Plast Surg 2004;57:190-4. [10] Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 2003;289:1799-804. [11] Sharman MJ, Volek JS. Weight loss leads to reductions in inflammatory biomarkers after a very-low-carbohydrate diet and a low-fat diet in overweight men. Clin Sci (Lond) 2004;107:365-9. [12] de Lemos ET, Reis F, Baptista S, Pinto R, Sepodes B, Vala H, et al. Exercise training is associated with improved levels of C-reactive protein and adiponectin in ZDF (type 2) diabetic rats. Med Sci Monit 2007;13:BR168-74. [13] Puglisi MJ, Fernandez ML. Modulation of C-reactive protein, tumor necrosis factor-alpha, and adiponectin by diet, exercise, and weight loss. J Nutr 2008;138:2293-6. [14] Lira FS, Rosa JC, Zanchi NE, Yamashita AS, Lopes RD, Lopes AC, et al. Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochem Funct 2009;27:71-5. [15] Lira FS, Rosa JC, Yamashita AS, Koyama CH, Batista Jr ML, Seelaender M. Endurance training induces depot-specific changes in IL-10/TNF-alpha ratio in rat adipose tissue. Cytokine 2009;45:80-5. [16] de Piano A, Prado WL, Caranti DA, Siqueira KO, Stella SG, Lofrano M, et al. Metabolic and nutritional profile of obese adolescents with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2007;44: 446-52. [17] Caranti DA, Tock L, Prado WL, Siqueira KO, de Piano A, Lofrano M, et al. Long-term multidisciplinary therapy decreases predictors and prevalence of metabolic syndrome in obese adolescents. Nutr Metab Cardiovasc Dis 2007;17:e11-3. [18] Carnier J, Lofrano MC, Prado WL, Caranti DA, de Piano A, Tock L, et al. Hormonal alteration in obese adolescents with eating disorder: effects of multidisciplinary therapy. Horm Res 2008;70:79-84. [19] Lofrano-Prado MC, Antunes HK, do Prado WL, de Piano A, Caranti DA, Tock L, et al. Quality of life in Brazilian obese adolescents: effects of a long-term multidisciplinary lifestyle therapy. Health Qual Life Outcomes 2009;7:61. [20] do Prado WL, Siegfried A, Dâmaso AR, Carnier J, de Piano A, Siegfried W. Effects of long-term multidisciplinary inpatient therapy on body composition of severely obese adolescents. J Pediatr (Rio J) 2009;85:243-8. [21] do Prado WL, de Piano A, Lazaretti-Castro M, de Mello MT, Stella SG, Tufik S, et al. Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab 2009;27:613-9. [22] Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight velocity and stages of puberty. Arch Dis Child 1976;51: 170-9. 365 [23] Nobili V, Marcellini M, Devito R, Ciampalini P, Piemonte F, Comparcola D, et al. NAFLD in children: a prospective clinicalpathological study and effect of lifestyle advice. Hepatology 2006;44: 458-65. [24] Fields DA, Goran MI. Body composition techniques and the fourcompartment model in children. J Appl Physiol 2000;89:613-20. [25] Ribeiro-Filho FF, Faria AN, Azjen S, Zanella MT, Ferreira SR. Methods of estimation of visceral fat: advantages of ultrasonography. Obes Res 2003;11:1488-94. [26] NRC (National Academic Press). Dietary reference intake: applications in dietary assessment. Washington, DC: National Academic Press; 2001. [27] Hill RJ, Davies PS. The validity of self-reported energy intake as determined using the doubly labeled water technique. Br J Nutr 2001; 85:415-30. [28] Stanton RA. Nutrition problems in an obesogenic environment. Med J Aust 2006;184:76-9. [29] Bennett GG, Wolin KY, Puleo EM, Mâsse LC, Atienza AA. Awareness of national physical activity recommendations for health promotion among US adults. Med Sci Sports Exerc 2009. [30] Dâmaso AR, do Prado WL, de Piano A, Tock L, Caranti DA, Lofrano MC, et al. Relationship between nonalcoholic fatty liver disease prevalence and visceral fat in obese adolescents. Dig Liver Dis 2008; 40:132-9. [31] Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract 2005;69:29-35. [32] Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007;56:1010-3. [33] van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008;48:449-57. [34] Cartier A, Lemieux I, Alméras N, Tremblay A, Bergeron J, Després JP. Visceral obesity and plasma glucose-insulin homeostasis: contributions of interleukin-6 and tumor necrosis factor-alpha in men. J Clin Endocrinol Metab 2008;93:1931-8. [35] Porter SA, Massaro JM, Hoffmann U, Vasan RS, O'Donnel CJ, Fox CS. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 2009;32:1068-75. [36] Chaston TB, Dixon JB. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond) 2008;32:619-28. [37] Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, et al. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab 2005;288:E454-61. [38] Bradley RL, Jeon JY, Liu FF, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in dietinduced obese mice. Am J Physiol Endocrinol Metab 2008;295:E586-94. [39] Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, Janke J, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes 2003;52:942-7. [40] Borges RL, Ribeiro-Filho FF, Carvalho KM, Zanella MT. Impact of weight loss on adipocytokines, C-reactive protein and insulin sensitivity in hypertensive women with central obesity. Arq Bras Cardiol 2007;89:409-14. [41] Cartier A, Côté M, Lemieux I, Pérusse L, Tremblay A, Bouchard C, et al. Sex differences in inflammatory markers: what is the contribution of visceral adiposity? Am J Clin Nutr 2009;89:1307-14. 37 5.2 Manuscrito 2 Decreases endotoxin levels and improves insulin resistance in obese adolescents after long-term interdisciplinary therapy. Lira FS, Rosa JC, Pimentel GD, Santos RV, Carnier J, Sanches PD, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Oyama LM, Dâmaso AR (submetido). 38 Decreases endotoxin levels and improves insulin resistance in obese adolescents after long-term interdisciplinary therapy Short title: Insulin resistance in obese adolescents. Fábio Santos Lira1; Jose Cesar Rosa1; Gustavo Duarte Pimentel1; Ronaldo Vagner Santos2; June Carnier1; Priscila de Lima Sanches1; Aline de Piano1; Lian Tock1; Sergio Tufik3; Marco Túlio de Mello1,3; Marília Seelaender4; Claudia Maria Oller do Nascimento1; Lila Missae Oyama1,2; Ana R. Dâmaso1,2 Departamento de Fisiologia¹, Departamento de Biociências2, Departamento de Psicobiologia3 da Universidade Federal de São Paulo – UNIFESP. Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil4. Corresponding author: Fabio S. Lira, Ana R. Damaso and Lila M. Oyama Rua Marselhesa nº 535 – Vila Clementino- São Paulo/SP – Brazil Postal Code: 04020-060 Phone: (5511) 5572-0177 / Fax: (5511) 55720177 E-mail:fabioslira@gmail.com, ana.damaso@unifesp.br and lmoyama@gmail.com 39 Abstract Objective: The purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA, and endotoxin level and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy. Design: The present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n=18, aged 15-19 y) with a body mass index > 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. In addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMAIR). Results: The most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR (p<0.05). In addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR (p<0.05). Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels (p<0.05). Conclusions: The present results indicate that reduced dietary fat intake and endotoxin level was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. In addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in decreasing inflammatory markers. Keywords: Obesity, cytokines, endotoxin, insulin resistance, interdisciplinary therapy 40 Introduction Saturated fatty acid intake leads to inflammation, insulin resistance and a gain in body mass. Systemic low-level inflammation has been suggested to be both a cause and a consequence of comorbidities associated with obesity [1]. Recently, studies have proposed that the microbial ecology in humans could be an important factor in determining energy homeostasis (i.e., obesity, diabetes, and fatty liver) [2-4]. Lipopolysaccharide (LPS), which is also referred to as endotoxin, has been implicated as a potent inducer of inflammation, and LPS increases TNF-α and IL-6 and reduces adiponectin levels. In normal circumstances, only small amounts of endotoxin cross from the intestinal lumen into systemic circulation, and the absorbed endotoxin is rapidly removed by monocytes, particularly resident Kupffer cells within the liver. Emerging evidence has indicated that chronic elevation of serum endotoxin levels may play a role in insulin-resistant states and obesity [3,4]. Interestingly, Pedersen [5] described how physical inactivity leads to the accumulation of visceral fat and the activation of a network of inflammatory pathways that promote the development of insulin resistance, atherosclerosis, obesity, neurodegeneration, and tumor growth (i.e., the development of diseases belonging to the “diseasome of physical inactivity”). Recently, our group has shown that long-term interdisciplinary lifestyle therapy is effective in controlling the psychological and physiological alterations that are commonly observed in obese patients. Despite promising results, few studies have addressed the effects of long-term interdisciplinary intervention on dietary fat intake and endotoxin levels and their correlation with insulin resistance and adipokine levels. Materials and Methods Population Fifty-four adolescents were invited to participate in a 1-year-long Interdisciplinary Obesity Program at the Federal University of São Paulo- Paulista Medical School to promote changes in their sedentary lifestyle and nutritional habits. The basic requirements for participation were motivation and 41 high attendance at the therapy sessions. Thirty-nine adolescents participated until the end of the therapy. For the present study, we selected 18 obese adolescents who lost more than 5% fat mass (the range was 5.4% to 22.5% fat mass). Selected 18 obese adolescents were evaluated at baseline and after long-term (1 year) weight loss intervention. The present study was conducted in accordance with the principles of the Declaration of Helsinki and was formally approved by the Institutional Ethical Committee (#0135/04). Informed consent was obtained from all subjects and/or their parents, and the agreement of the adolescents and their families to participate was voluntary. The ages of the 18 participants ranged from 15-19 years (16.6 ± 1.67 years), and the average body mass index (BMI) was 37.98 ± 4.60 kg/m2 (7 boys and 11 girls). All participants met the inclusion criteria of postpubertal Stage V, based on the Tanner stages [6], and of obesity (BMI > 95th percentile) according to the Centers for Disease Control and Prevention (CDC) reference growth charts. Noninclusion criteria included identifiable genetic, metabolic or endocrine disease or previous drug utilization [7]. Study Protocol and Medical Screening Subjects were medically screened, and we assessed their pubertal stage and recorded their anthropometric measures (i.e., height, weight, BMI and body composition). The endocrinologist completed a clinical interview, which included questions to determine eligibility based on inclusion and exclusion criteria. Blood samples were collected and analyzed, and an ultrasound (US) was performed. The procedures were scheduled for the same time of day for all subjects to remove any influence of diurnal variations. After the initial screening, obese adolescents started the interdisciplinary weight loss program (described in a later section). Anthropometric measurements and Body Composition 42 Subjects were weighed on a Filizola scale while wearing light clothing and no shoes, and their weight was recorded to the nearest 0.1 kg. Height was measured using a wall-mounted stadiometer (Sanny, model ES 2030) to the nearest 0.5 cm. Body mass index was calculated as body weight (wt) divided by height (h) squared (wt/ht2). Body composition was estimated by plethysmography using the BOD POD body composition system (version 1.69, Life Measurement Instruments, Concord, CA), which is the most advanced technique available for assessing body composition. The patented air displacement plethysmography used by the BOD POD and PEA POD is similar in principle to hydrostatic (or "underwater") weighing. The obvious difference between them is that air is more convenient and comfortable than water, and air displacement plethysmography provides a much simpler and safer testing environment, better reliability and significantly improved repeatability and accuracy [8]. Serum analysis Blood samples were collected in the outpatient clinic at approximately 0800 h after an overnight fast. Adipokine (IL-6 and adiponectin) concentrations were measured using commercially available ELISA kits from eBioscience, Inc. (San Diego, CA, USA) and R&D Systems (USA) according to the manufacturer’s manuals. Fasting insulin concentrations were determined using commercially available ELISA kits from Millipore (Millipore Corporate Headquarters: 290 Concord Road, Billerica, MA 01821), and glucose concentrations were determined by an enzymatic method (Labtest ®). Homeostasis model assessment for insulin resistance (HOMA-IR) was calculated with assessed values of glucose and insulin. Measurement of circulating endotoxin levels Plasma endotoxin was assayed using a chromogenic limulus amebocyte lysate (LAL) test, which is a quantitative test for Gram-negative bacterial endotoxin (Cambrex Corporation, 8830 Biggs 43 Ford Road,Walkersville – USA). Gram-negative bacterial endotoxin catalyzes the activation of a proenzyme in the LAL, and the initial rate of activation is directly determined by the concentration of endotoxin. The activated enzyme catalyzes the splitting of p-nitroaniline (pNA) from the colorless substrate Ac-lle-Glu-Ala-Arg-pNA, and the released pNA was measured photometrically at 405–410 nm following termination of the reaction. The correlation between the absorbance and the endotoxin concentration was linear in the range of 0.1–1.0 EU/ml. For the purposes of this study, all samples were run in duplicate within the same plate; therefore, no interassay variability was observed in this study. To assess recovery of endotoxin within the assay, known concentrations of recombinant endotoxin (0.25 and 1.00 EU/ml) were added to diluted plasma to determine whether the expected concentration correlated with the actual observed value and whether there were any variations due to reaction with plasma contents. Lyophilized endotoxin (E. coli origin) was used to generate a standard curve with the chromogenic LAL test kit in accordance with the manufacturer's instructions. Visceral and Subcutaneous Adiposity Measurements All abdominal ultrasonographic procedures and measurements of visceral and subcutaneous fat tissue were performed by the same physician who was blinded to the subjects’ assignment group. This physician was a specialist in imaging diagnostics using a 3.5-MHz multifrequency transducer (broad band), which reduces the risk of misclassification. The intra-examination coefficient of variation for US was 0.8%. We took US measurements of intra-abdominal (¨visceral¨) and subcutaneous fat. Ultrasounddetermined subcutaneous fat was defined as the distance between the skin and external face of the recto abdominis muscle, and visceral fat was defined as the distance between the internal face of the same muscle and the anterior wall of the aorta. Cutoff points to define visceral obesity by ultrasonographic parameters were based on previous methodological descriptions by Ribeiro-Filho et al. [10]. 44 Clinical Intervention Dietary Program Energy intake was set at the levels recommended by the dietary reference intake for subjects with low levels of physical activity of the same age and gender following a balanced diet [13]. No drugs or antioxidants were recommended. Once a week, adolescents had a dietetics lesson, which provided information on the food pyramid, diet record assessment, weight loss diets and miracle diets, food labels, dietetics, fat-free and low-calorie foods, fats (kinds, sources and substitute foods), fast food calories and nutritional composition, good nutritional choices in special occasions, healthy sandwiches, shakes and products to promote weight loss, functional foods and decisions on food choices. All patients received individual nutritional consultation during the intervention program. In addition, a dietitian encouraged the parents to call if they needed extra information. Exercise program During the one-year interdisciplinary intervention period, adolescents followed a personalized aerobic training program that included a 60-minute session completed three times each week (180minute/week) under the supervision of a sports therapist. Each program was developed according to the results of an initial oxygen uptake test for aerobic exercises (cycle-ergometer and treadmill). The intensity was set at a work load corresponding to a ventilatory threshold of 1 (50% to 70% of oxygen uptake test). Adolescents were under heart-rate monitoring during the aerobic sessions. The exercise program was based on the 2009 recommendations of the American College of Sports Medicine [11]. Psychological intervention Diagnoses of common psychological problems associated with obesity, such as depression, disturbances of body image, anxiety and decreased self-esteem, were established by validated questionnaires. During the interdisciplinary intervention, the adolescents had weekly psychological support group sessions. During these sessions, the adolescents discussed body image; alimentary 45 disorders, including bulimia, anorexia nervosa and binge eating; the signs, symptoms and health consequences of these disorders; the relationship between feelings and food; and family problems, such as alcoholism. Individual psychological therapy was recommended if individuals were found to have nutritional or behavioral problems [12]. Statistical analysis The data distribution was checked by Bartlett's test for equal variances, and the data are reported as the mean ± SD. Statistical outliers within each treatment group were identified using Grubbs’ test (GraphPad Software) and subsequently removed. All remaining data were analyzed by GraphPad Prism (version 5.00). The differences between groups for all parameters were assessed by a paired Student’s t test. The Pearson correlation coefficient was calculated to assess the relationship between variables, and all analyses were carried out with the significance level set at p<0.05. Results Long-term therapy was effective in reducing body weight (-15%, p<0.001), BMI (- 15%, p<0.001), percent fat (- 24%, p<0.001), and fat mass (-33%, p<0.001). These results are shown in Table 1. Characteristics of the food intake in obese adolescents are shown in Table 2. Energy intake was reduced 38% (p<0.00001), carbohydrate intake was reduced 28% (p<0.002), protein intake was reduced 43% (p<0.00004), and fat intake was reduced 47% (p<0.00002). Glucose, insulin, and endotoxin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR) are shown in Table 3. Glucose (the range before therapy was 4.38 – 5.66 µU/mL, and the range after therapy was 4.32 – 4.77 µU/mL, p<0.02), insulin (the range before therapy was 7.10 – 23.3 µU/mL, and the range after therapy was 5.00 – 18.9 µU/mL, p<0.001), HOMA (the range before therapy was 1.45 – 5.23 µU/mL, and the range after therapy was 1.01 – 3.87 µU/mL, 46 p<0.002), and endotoxin (the range before therapy was 0.112 – 0.394 in Log EU/mL, and the range after therapy was 0.095 – 0.309 in Log EU/mL, p<0.0003) were reduced after therapy. Pearson correlation analyses showed positive correlations between dietary fat intake and endotoxin levels (r=0.36, p<0.01), dietary fat diet intake and insulin levels (r=0.38, p<0.05), and dietary fat intake and HOMA (r=0.41, p<0.04). In addition, there was a negative correlation between dietary fat intake and adiponectin (r= -0.42, p<0.01) (Figure 1A-D). We also observed positive correlations between endotoxin and IL-6 levels (r=0.35, p<0.03), endotoxin and insulin levels (r=0.36, p<0.05), and endotoxin levels and HOMA (r=0.35, p<0.05). Interestingly, we observed a negative correlation between endotoxin and adiponectin levels (r=-0.28, p<0.06) (Figure 2A-D). Discussion The present study showed that long-term therapy was effective in reducing dietary fat intake and endotoxin levels. In addition, these data were positively correlated with improvements in insulin resistance in obese adolescents. Decreased endotoxin levels have been found with consumption of a low-fat diet compared with a high-fat diet [13]. In addition, the type of fatty acid in the diet could have important effects on endotoxinemia. Recently, several studies have shown that omega-3 ( -3) fatty acids, particularly eicosapentaenoic acid (EPA), reduces endotoxin and pro-inflammatory cytokine concentrations [14,15]. Moreover, Oz et al. [16] demonstrated that a diet rich in EPA, docosahexaenoic acid (DHA), and prebiotic fructooligosaccharides (FOS) protects against LPS-induced systemic inflammatory responses. In contrast to the present study, Al-Attas et al. [3] showed that a diet-controlled program in diabetic individuals did not significantly decrease endotoxin levels compared with individuals who only received insulin. Interestingly, herbs used in food dishes reduce the production of LPS and proinflammatory cytokines [17]. In the present study, we observed that interdisciplinary therapy was able to decrease the fat intake, which was sufficient to reduce endotoxin concentrations and insulin resistance. 47 The present study found a positive correlation between endotoxin and both pro-inflammatory cytokines (especially, IL-6) and insulin resistance. After interdisciplinary therapy, endotoxinemia, proinflammatory status and insulin resistance were decreased. These results showed the importance of making lifestyle changes (i.e., nutritional modification) to reduce the pro-inflammatory state in obese individuals. We have previously shown that long-term therapy is effective in reducing body fat (especially visceral fat), TNF-α and IL-6 and increasing IL-10 and adiponectin. In addition, we observed a positive correlation between pro-inflammatory cytokines (IL-6 and TNF-α levels) and visceral fat [9]. Creely et al. [2] found that circulating serum endotoxin was higher in type 2 diabetes mellitus (T2DM) patients than in lean healthy subjects, and endotoxin can activate the innate immune pathway in isolated abdominal adipocytes to stimulate secretion of pro-inflammatory cytokines. Creely et al. suggested that the subclinical inflammation seen in type 2 diabetes patients was related to the increase in endotoxin. Mehta et al. [18] observed that endotoxemia (3 ng/kg intravenous bolus in healthy adults) induced an elevation in TNF-α and systemic insulin resistance in humans. Furthermore, insulin resistance measured at 24 h post-LPS was preceded by specific modulation of adipose inflammatory and insulin signaling pathways. Leuwer et al. [19] have shown that endotoxinemia leads to major increases in inflammatory adipokine (TNF-α, IL-6, and MCP-1) gene expression in white adipose tissue in mice. In addition, previous studies in human adipose tissue have shown that obesity and T2DM induce upregulation of inflammatory genes [2]. These results are in agreement with the present study in which endotoxin showed a close correlation with IL-6, which was reduced after 1 year of interdisciplinary therapy. Although we did not directly analyze the effect of exercise, we cannot exclude that the exercise protocol used in the present study contributed to the beneficial effects of the interdisciplinary therapy in obese adolescents. Many studies [9,20,21] have actually demonstrated the benefits of exercise training, which induces an anti-inflammatory state in obese rat and human models. Bradley et al. suggested that voluntary exercise in diet-induced obese mice reduced adiposity despite continued consumption of a high-fat diet. In addition, exercise normalized insulin sensitivity and decreased adipose tissue inflammation (reduced IKK-β gene expression) in these obese mice [22] . These data 48 demonstrated the positive role of exercise training in preventing the development of several diseases, including obesity, diabetes, and fatty liver. Starkie et al. [23] demonstrated that an intravenous infusion of endotoxin induced a two to threefold increase in the plasma TNF-α level. When human subjects adopted an acute exercise protocol (75% VO2max), however, the production of TNF-α elicited by low-grade endotoxemia was inhibited. Similarly, Chen et al. [24] found that chronically exercised rats exhibited minor pathological changes in the heart, liver, and lung after endotoxemia. In addition, Lira et al. [25] observed that a lifestyle associated with high-intensity, high-volume exercise induced favorable changes in chronic low-grade inflammatory markers and may reduce the risk for obesity, diabetes and cardiovascular diseases. Although the small number of participants could be a limitation of the present study, the results contribute to the understanding of the mechanisms linking insulin resistance in obesity and endotoxinemia to the inflammatory state. In addition, the present study highlights the importance of lifestyle interdisciplinary therapy intervention as clinical practice for obesity treatment. In summary, the present study demonstrated that reduced dietary fat intake and endotoxin level was correlated with a decreased pro-inflammatory state and an improvement in insulin resistance, which may be associated with an increased adiponectin level. Taken together, these results suggest that interdisciplinary therapy is effective in decreasing inflammatory markers related to obesity. Conflicts of interest We declare that there are no conflicts of interest (including financial and other relationships) for each author. 49 References 1. Bruunsgaard H. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 2005, 78:819-35. 2. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005, 102:11070-5. 3. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56:176172. 4. Creely SJ, McTernan PG, Kusminski CM, Fisher M, Da Silva NF, Khanolkar M, et al: Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007, 292:E740-7. 5. Al-Attas OS, Al-Daghri NM, Al-Rubeaan K, da Silva NF, Sabico SL, Kumar S, et al: Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc Diabetol 2009, 15;8:20. 6. Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T, Youssef-Elabd EM, et al: Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm (Lond) 2010, 30;7:15. 7. Pedersen BK. The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk. J Physiol 2009, 587:5559-68. 8. Tanner JM & Whitehouse RH. Clinical Longitudinal standards for height, weight velocity and stages of puberty. Arch Dis Child 1976, 51: 170-79. 9. Nobili V, Marcellini M, Devito R, Ciampalini P, Piemonte F, Comparcola D, et al: NAFLD in children: A Prospective Clinical-Pathological Study and Effect of Lifestyle Advice. Hepatology 2006, 44:458-465. 10. Fields DA & Goran MI. Body composition techniques and the four- compartment model in children. J Appl Physiol 2000, 89:613-20. 11. Lira FS, Rosa JC, Dos Santos RV, Venancio DP, Carnier J, Sanches PD, et al: Visceral fat decreased by long-term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factor-alpha and negatively 50 with adiponectin levels in obese adolescents. Metabolism 2010, Mar 30. [Epub ahead of print]. 12. Ribeiro-Filho FF, Faria AN, Azjen S, Zanella MT, Ferreira SR. Methods of estimation of visceral fat: advantages of ultrasonography. Obes Res 2003, 11:1488-1494. 13. NRC (National Academic Press). Dietary Reference Intake: Applications in dietary assessment. Washington DC, National Academic Press, 2001. 14. Bennett GG, Wolin KY, Puleo EM, Mâsse LC, Atienza AA. Awareness of National Physical Activity Recommendations for Health Promotion among US Adults. Med Sci Sports Exerc 2009 Sep 2. 15. Lofrano-Prado MC, Antunes HK, do Prado WL, de Piano A, Caranti DA, Tock L, et al: Quality of life in Brazilian obese adolescents: effects of a long-term multidisciplinary lifestyle therapy. Health Qual Life Outcomes 2009, 7:61. 16. Thörne A, Lönnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long- term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 2002, 26:193-9. 17. Caranti DA, Tock L, Prado WL, Siqueira KO, de Piano A, Lofrano M, et al: Long-term multidisciplinary therapy decreases predictors and prevalence of metabolic syndrome in obese adolescents. Nutr Metab Cardiovasc Dis 2007, 17:e11-3. 18. Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, et al: Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 2010, 59:172-81. 19. Leuwer M, Welters I, Marx G, Rushton A, Bao H, Hunter L, et al: Endotoxaemia leads to major increases in inflammatory adipokine gene expression in white adipose tissue of mice. Pflugers Arch 2009, 457:731-41. 20. Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM, et al: Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity (Silver Spring) 2008, 16:932-7. 21. Biro FM, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr 2010, 91:1499S-1505S. 51 22. Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun 2010, 11:145-56. 23. Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010, 24. 15;314(1):1-16. Ben Ounis O, Elloumi M, Ben Chiekh I, Zbidi A, Amri M, Lac G, et al: Effects of two-month physical-endurance and diet-restriction programmes on lipid profiles and insulin resistance in obese adolescent boys. Diabetes Metab 2008, 34:595-600. 25. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta 2010, 411:785-93. 26. Bradley RL, Jeon JY, Liu FF, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 2008, 295:E586-94. 27. Lira FS, Rosa JC, Yamashita AS, Koyama CH, Batista ML Jr, Seelaender M. Endurance training induces depot-specific changes in IL-10/TNF-alpha ratio in rat adipose tissue. Cytokine 2009, 45:80-5 28. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 2003, 17:884-6. 29. Chen HI, Hsieh SY, Yang FL, Hsu YH, Lin CC. Exercise training attenuates septic responses in conscious rats. Med Sci Sports Exerc 2007, 39:435-42. 30. Lira FS, Rosa JC, Pimentel GD, Souza HA, Caperuto EC, Carnevali LC Jr, Seelaender M, Damaso AR, Oyama LM, de Mello MT, Santos RV. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects.Lipids Health Dis. 2010 Aug 4;9:82. 31. Calder PC. Fatty acids and immune function: relevance to inflammatory bowel diseases. Int Rev Immunol 2009, 28:506-34. 32. Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care 2010, 14:R35. 52 Oz HS, Chen TS, Neuman M. Nutrition intervention: a strategy against 33. systemic inflammatory syndrome. JPEN J Parenter Enteral Nutr 2009, 33:3809. 34. Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, et al: Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008, 87:1219-23. 35. Tuntipopipat S, Muangnoi C, Failla ML. Anti-inflammatory activities of extracts of Thai spices and herbs with lipopolysaccharide-activated RAW 264.7 murine macrophages. J Med Food 2009, 12:1213-20. Figure 1A-1D. Correlation Pearson between of fat diet intake and endotoxin, insulin, adiponectin and HOMA level in obese adolescents (n = 18). Figure 2A-2D. Correlation Pearson between of endotoxin and IL-6, insulin, adiponectin and HOMA level in obese adolescents (n = 18). Table 1. Characteristics of the obese adolescents (n = 18). Table 2. Characteristics of the food intake in obese adolescents (n = 18). Table 3. Glucose, insulin, IL-6, adiponectin, HOMA-IR, and endotoxin levels in obese adolescents (n = 18). 53 Results. 54 55 56 5.3 Manuscrito 3 Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-κB pathway in 3T3-L1 adipocytes. Lira FS; Rosa JC; Pimentel GD; Seelaender M; Damaso AR, Oyama LM and Oller do Nascimento C. (submetido). 57 Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-κB pathway in 3T3-L1 adipocytes. Fábio Santos Lira1; José Cesar Rosa1; Gustavo Duarte Pimentel1; Marília Seelaender2; Ana Raimunda Damaso1, Lila Missae Oyama1 and Claudia Oller do Nascimento1 1 Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brasil. 2 Cancer and Metabolism Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. Running head: Actions anti-inflammatory the Adiponectin and IL-10. Correspondence to: Claudia Maria Oller do Nascimento Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brasil. Rua Botucatu, 862, 2º andar, São Paulo, SP, Brazil. CEP: 04023-060. e-mail: claudia.oller@unifesp.com 58 Abstract Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensibility and the antiinflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-κB) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-κB DNA binding activity (NF-κBp50 and NFκBp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4), such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-κB pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity NF-κB (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited elevated IL6 levels and activated NF-κB (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response. In addition, inhibition of NF-κB signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. Keywords: adiponectin, interleukin 10, 3T3-L1, lipopolysaccharide, NF-κB pathway 59 Introduction White adipose tissue plays a role in energy storage and insulation from environmental temperature and trauma. Recent advances in adipose biology have provided convincing evidence that adipocytes also secrete multiple proteins (i.e., adipokines) that influence metabolism in peripheral tissues (Oller do Nascimento et al, 2009; Trayhurn and Wood, 2005). Obesity has been shown to cause an increase in plasma concentrations of a number of pro-inflammatory (e.g., IL-6, TNF-α) markers that are expressed and released by adipocytes (Cani et al. 2007). In addition,, the proinflammatory status in obesity promotes a decrease in anti-inflammatory adipokines, such as adiponectin and IL-10 plasma concentrations (Jung et al. 2008; Lira et al. 2011a). Previous studies (Ajuwon and Spurlock 2005; Zoico et al. 2009) have shown that nuclear factor κB (NF-κB) transcription factor is a key mediator of inflammation in adipose tissue. New data have shown a close relationship between toll-like receptor 4 (TLR-4) and activation of the NF-κB pathway, which leads to an elevation of pro-inflammatory adipokine gene and protein expression in adipose tissue (Tsukumo et al. 2007; Rosa Neto et al. 2011). Cani et al. (2007) showed that increased endotoxin levels in obesity may be a key factor for the initiation of inflammation in adipose tissue, and the prototypical endotoxin, lipopolysaccharide (LPS), acts on TLR-4. Toll-like receptors are transmembrane proteins that play an important role in recognizing microbial pathogens and mediating whole body inflammation (Gleeson et al. 2006). They are highly expressed in cells of the innate immune system (Muzio and Mantovani 2000). In addition, TLR-2 and TLR-4 are also found in various other cell types, including adipocytes, hepatocytes, and myocytes (Lin et al. 2000; Lang et al. 2003). Studies have shown that adiponectin and interleukin 10 (IL-10), two adipocyte-derived cytokines, act as potent inhibitors of inflammatory responses (Yamaguchi et al. 2005; Ajuwon and Spurlock 2005; Zoico et al. 2009; Lira et al. 2009). Zoico et al. (2009) demonstrated that globular adiponectin and full-length adiponectin decreased NF-κB activity in 3T3-L1 adipocytes by 50 and 40%, respectively, compared with the NF- 60 κB activation induced by LPS alone. This result demonstrated the important anti-inflammatory role of adiponectin to combat obesity-mediated inflammation. Interestingly, Turner et al. (2010) explored the anti-inflammatory effects of IL-10 in primary human cultures of differentiated adipocytes and found that IL-10 was ineffective against TLR-4induced cytokine secretion. Human adipocytes, however, do not express the IL-10 receptor, which has been shown to respond to IL-10 in the murine 3T3-L1 adipocyte model. The effects of adiponectin and IL-10 on NF-κB DNA binding activity (NF-κBp50 and NFκBp65) and the expression of proteins involved in the signaling of the toll-like receptor (TLR-2 and TLR-4), such as MYD88 and TRAF6, in lipopolysaccharide-treated 3T3-L1 adipocytes are not clear. In the present study, we analyzed the effects of adiponectin, IL-10, and the combination of adiponectin and IL-10 on TLR-2, TLR-4 and the NF-κB pathway in 3T3-L1 adipocytes in the presence of LPS. 61 Materials and Methods Cell culture 3T3-L1 cells were obtained from American Type Culture Collection and cultured at 37°C in 5% CO2 / 95% humidified air. The cells were maintained in Dulbecco´s Eagle modified medium (DMEM) with 25 mM glucose, 1.0 mM pyruvate, 4.02 mM L-alanine-glutamine and 10% fetal bovine serum (Gibco, New York, USA). Cell differentiation began 24 h after confluence and took 4 days in a medium containing 0.25 μM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine and 5 μg/mL insulin (Sigma). After differentiation, the cells were cultured for 8 days in growth medium containing 5 μg/ml insulin. Treatment In the ten days after differentiation, the cells were pretreated for a 24-h period with a medium containing 0.5% serum fetal bovine. The cells were harvested 24 h later. Cells were treated with adiponectin (50 ng/mL), IL-10 (5 ng/mL) or a combination of adiponectin (50 ng/mL) and IL-10 (5 ng/mL) for 24 hours in the presence of LPS (100 ng/mL), and the cells were harvested 24 h later. In the control plates (C), the medium was changed, but no treatment was added. The cultured medium and adipocytes were collected in tubes and stored at -80°C. Preliminary experiments were performed to determine the concentrations of adiponectin and IL-10 (data not shown). In addition, we previously ran a time-course experiment (3, 6, 12 and 24 hours of treatment). Determination of the IL-6 level in the adipocyte culture medium Quantitative assessment of the IL-6 level in the culture medium was performed using an enzyme linked immunosorbent assay (ELISA) (DuoSet ELISA, R&D Systems, Minneapolis, MN). The IL-6 (DY506) assay sensitivity was found to be 5.0 pg/ml, and the range was 31.2 – 2,000 pg/ml. The intra- and inter-assay variability of the IL-6 kit was 2.7–5.2%. All samples were run in triplicate, and the mean value was used for analysis. The protein concentration of 3T3-L1 adipocytes was 62 determined by the Bradford assay (Bio-Rad, Hercules, CA, USA) using bovine serum albumin (BSA) as a standard. The results are expressed in pg/μg protein. Protein analysis by western blotting 3T3-L1 adipocyte cells were homogenized in 1.0 mL of solubilization buffer at 4 C [1% Triton X-100, 100 mM Tris-HCl (pH 7.4), 100 mM sodium pyrophosphate, 100 mM sodium fluoride, 10 mM EDTA, 10 mM sodium orthovanadate, 2 mM phenylmethylsulfonyl fluoride (PMSF), and 0.1 mg aprotinin/mL]. Insoluble material was removed by centrifugation for 30 min at 9,000 x g in a 70 Ti rotor (Beckman, Fullerton, CA, USA) at 4 C. The protein concentration of the supernatants was determined with a BCA assay (Bio-Rad, Hercules, CA, USA). Proteins were denatured by boiling (5 min) in Laemmli sample buffer (Laemmli 1970) containing 100 mM DTT and subjected to 10% SDSPAGE in a Bio-Rad miniature slab gel apparatus. Electrotransfer of proteins from the gel to nitrocellulose membranes was performed for ~1.30 h/4 gels at 15 V (constant) in a Bio-Rad semi-dry transfer apparatus. Nonspecific protein binding to the nitrocellulose was reduced by preincubation for 2 h at 22°C in blocking buffer (5% nonfat dry milk, 10 mM Tris, 150 mM NaCl and 0.02% Tween 20). The nitrocellulose membranes were incubated overnight at 4°C with antibodies against IL-6R, TLR2, TLR4, MYD88, TRAF6, and alpha-tubulin (Santa Cruz Biotechnology, CA, USA), which were all diluted 1:1,000 in blocking buffer with 1% BSA. After incubation, the membranes were washed for 30 min in blocking buffer without BSA. The blots were subsequently incubated with peroxidase-conjugated secondary antibody for 1 h at 22 C. For the evaluation of protein loading, membranes were stripped and reblotted with anti-alpha-tubulin antibody as appropriate. Specific bands were detected by chemiluminescence, and visualization/capture was performed by exposure of the membranes to RX films. Band intensities were quantified by optical densitometry of developed autoradiographs (Scion Image software, Scion Corporation, Frederick, MD, USA). 63 Nuclear extraction 3T3-L1 adipocyte cells were rapidly removed and homogenized in accordance with the manufacturer’s instructions for the Panomics Nuclear Extraction Kit (AY2002). The nuclear fraction was stored at -80°C. NF-κBp50 and NF-κBp65 DNA binding assay Nuclear-localized NF-ΚB was quantified using a Transcription Factor ELISA Kit to detect the DNA binding of the p50 and p65 subunits of NF-ΚB (Panomics, Fremont, CA; EK 1110 and 1120, respectively). All reagents required for preparing nuclear extracts and performing ELISA assays were included, and all reagents were used as described by the manufacturer. Statistical analysis The results are expressed as the mean ± S.E.M. We used Student’s t test to compare the treatment effects (control vs. LPS; LPS vs. LPS plus adiponectin; LPS vs. LPS plus IL-10; and LPS vs. LPS plus adiponectin and IL-10). Values of p<0.05 were considered to be statistically significant. Results Time course Figure 1A-D shows that the IL-6 level in the culture medium after 3, 6, 12 and 24 h was higher in the LPS, LPS plus adiponectin, LPS plus IL-10, and LPS plus adiponectin and IL-10 groups compared with the control group (p<0.05). Interestingly, the IL-6 level was lower in LPS group after 3 hours compared with the other treatments (p<0.05). After 6 hours, IL-10 and LPS reduced the IL-6 level compared with LPS alone. Conversely, LPS plus adiponectin increased the IL-6 level compared with LPS alone, LPS plus IL-10 and LPS plus IL-10 and adiponectin (p<0.05). In addition, adipokines incubated with LPS for 24 h had an approximately 25% decrease in the IL-6 level in the culture medium. 64 We observed similar results for NF-κBp50 nuclear activity in adipocytes after 3 and 6 hours of treatment among groups (Figure 2A and B); however, LPS treatment for 12 h and 24 h caused an increase in NF-κBp50 nuclear activity in adipocytes compared with the others groups (p<0.01) (Figure 2C and D). The NF-κBp65 nuclear activity in adipocytes was increased by LPS treatment at all examined time points compared with control and adipokine-treated groups. The addition of adiponectin, IL-10 or adiponectin plus IL-10 decreased the effect of LPS (Figure 3A-D) on NF-κBp65 nuclear activity in adipocytes. After 6, 12 and 24 h of adipokine treatment, this parameter was similar to the control group (Figure 3B-D). After we verified the best time response for our treatments with adipokines, we chose to assess the 24-h time point, and we divided our study into three distinct experiments. We assessed the effects of adiponectin, IL-10, and adiponectin with IL-10 on TLR-2, TLR-4 and the NF-κB pathway in adipocytes in the presence the LPS. Previous studies have shown that LPS induces NF-κB activation and IL-6 production in adipocytes (do Nascimento et al, 2004; Ajuwon and Spurlock, 2005; Song et al, 2006; Creely et al, 2007; Zoico et al, 2009). In addition, we observed that LPS increased TLR-4, MYD88 and TRAF6 expression. These data demonstrated a classic LPS-mediated pro-inflammatory response in adipocytes. These results are shown in Figure 4A-D and Figure 5A-D. Figures 6A-D and 7A-D show the effects of adiponectin on the LPS-induced inflammatory response in adipocytes. Compared with LPS alone, adiponectin reduced the IL-6 level and both NFκBp50 and NF-κBp65 nuclear activity in adipocytes (p<0.05). In addition, adiponectin increased TLR2, MYD88 and TRAF6 protein expression compared with LPS alone (p<0.05). Figures 8A-D and 9A-D show the effects of IL-10 on the LPS-induced inflammatory response in adipocytes. Compared with LPS alone, IL-10 reduced the IL-6 level and both NF-κBp50 and NFκBp65 nuclear activity in adipocytes (p<0.05). We did not observe any effects of IL-10 on TLR-2, MYD88, or TRAF6 protein expression. Figures 10A-D and 11A-D show the effects of adiponectin combined with IL-10 on the LPSinduced inflammatory response in adipocytes. Compared with LPS alone, the combination of 65 adiponectin and IL-10 reduced the IL-6 level, MYD88 protein expression and both NF-κBp50 and NF-κBp65 nuclear activity in adipocytes (p<0.01). Discussion The present study showed that treatment with anti-inflammatory adipokines was effective in reducing activation of inflammatory pathways, especially the NF-κB pathway. In addition, antiinflammatory adipokines decreased IL-6 levels. In agreement with previous studies, the LPS administration utilized in the present study caused an increase in IL-6, IL-6R, TLR-4, MYD88, and TRAF6 protein expression and the nuclear activity of NF-κB (p50 and p65) DNA binding (Ajuwon and Spurlock, 2005; Zoico et al. 2010; Lira et al. 2011b). One of the questions addressed in the present study was how adiponectin would affect the inflammatory response in the presence of LPS. We observed that the addition of adiponectin reduced NF-κB (both p50 and p65) activation. Ajuwon and Spurlock (2005) showed that adiponectin may be a local regulator of inflammation in the adipocyte and adipose tissue via its regulation of the NF-κB and PPARγ2 transcription factors. They used primary adipocytes from pig subcutaneous adipose tissue with or without LPS and adiponectin. Although LPS induced an increase in NF-κB activation, adiponectin suppressed both NF-κB activation and the induction of IL-6 expression by LPS. Similar results were obtained in 3T3-L1 adipocytes. In addition, adiponectin antagonized the LPS-induced increase in TNF-α mRNA expression and tended to diminish its accumulation in the culture media in 3T3-L1 adipocytes. Adiponectin also induced an upregulation of PPARγ2 mRNA. Similar results were found in a study by Zoico et al. (2010), which showed that adiponectin (two isoforms of adiponectin: globular and full length) significantly suppressed LPS-induced expression of IL-6 mRNA in adipocytes and reduced the concentration of IL-6 in culture media. Adiponectin pretreatment significantly reduced the increase in monocyte chemotactic protein 1 (MCP1) mRNA in adipocytes exposed to LPS. In culture media, the increase in MCP-1 detected after LPS stimulation was significantly attenuated after pretreatment with adiponectin. In 3T3-L1, adiponectin 66 reduced NF-κB activity by 50% compared with the NF-κB activation induced by LPS alone. Moreover, adiponectin significantly attenuated IkappaB-alpha and IKK gene expression. Using macrophages, Park et al. (2007) demonstrated the mechanism by which adiponectin suppresses the inflammatory pathway. They showed that adiponectin initially increases TNF-α production by macrophages via ERK1/2, Egr-1 and NF-κB-dependent mechanisms, which leads to increased expression of IL-10 and an eventual dampening of LPS-mediated cytokine production. Traditionally, LPS is specific for TLR-4, and TLR-2 is a receptor for bacterial lipoproteins (Tsan and Gao, 2004). Lin et al. (2000) reported that acute LPS induced TLR-2 expression, which was consistent with the notion that TLR-4, but not TLR-2, is constitutively present on the cell surface of 3T3-L1 adipocytes. In addition, TLR-4 activation results in induction of TLR-2, and this newly synthesized TLR-2 translocates to the cell surface where it can contribute to increased signaling. Unexpectedly, adiponectin addition in the culture medium of 3T3-L1 adipocytes increased protein expression of TLR-2, MYD88 and TRAF6 compared with the levels induced by LPS alone, which demonstrated that the reduced NF-κB (both p50 and p65) activation caused by adiponectin was not related to an effect on the TLR-4 pathway; however, this could be associated with a decrease in IL-6. One possible interpretation is that TLR-4 recruits TLR-2 into a complex. Alternatively, TLR-4 activation could result in the activation of intracellular effectors that could associate with TLR-2. This interaction may also be involved in other intracellular signaling pathways because both IL-6 and NFқB are reduced. In addition, TLR-2, MYD88 and TRAF6 were increased, and they could participate in other noninflammatory pathways. The present study also investigated the effects of IL-10 on the LPS-induced inflammatory response. We observed that IL-10 reduced the IL-6 level and NF-κB (both p50 and p65) DNA binding. In contrast with adiponectin, fewer studies have been conducted to investigate the effects of IL-10 in adipocytes and the inflammatory response. Interleukin 10 inhibits the production of several cytokines, such as TNF-α, IL-1β and IL-6, in a variety of cell types. Several studies have shown that the production of IL-10 is increased in inflammatory processes and predominantly plays an immune modulating role in these conditions (Lira 67 et al. 2009; Lira et al. 2011b). In obesity, adiponectin and IL-10 serum levels are decreased, which leads to a pro-inflammatory status (Jung et al. 2008). Compared with control cells, Bradley et al. (2008) showed that 3T3-L1 adipocytes incubated with palmitic acid for 24 h exhibited a 70% increase in TNF-α production and up to a 75% decrease in IL-10 production. Furthermore, NF-κB DNA binding activity increased fourfold in response to palmitic acid. Turner et al. (2010) examined the anti-inflammatory effects of IL-10 in primary human adipocytes and showed that IL-10 did not inhibit TLR-4-induced cytokine secretion. Interestingly, a different result was observed in the 3T3-L1 adipocyte model. The authors suggested that the receptor for IL-10 was absent in human adipocytes. Cintra et al. (2008) administered an endogenous IL-10 inhibitor for 5 days in male Swiss mice and demonstrated an increase in hepatic expression of inflammatory markers, such as TNF-α, IL-6, IL1β and F4/80. This increase in inflammatory markers was accompanied by a significant negative modulation of insulin signal transduction through the insulin receptor/IRS1-IRS2/PI3- kinase/Akt/FOXO1 pathway and through an increase in hepatic signaling proteins involved in gluconeogenesis and lipid synthesis. Strategies such as energy restriction and exercise training have been utilized to promote increases in the IL-10 serum level and adipose tissue production, which would reduce the inflammatory status (Jung et al. 2008; Lira et al. 2009, Lira et al. 2011a; Yamashita et al. 2010). The pathway that mediates this IL-10 effect in 3T3-L1 adipocytes, however, is unknown. We demonstrated that the addition of IL-10 to the culture medium decreased NF-κB DNA binding activity in 3T3-L1 adipocytes independent of the TLR pathway. We also examined the effects of adiponectin combined with IL-10 on the LPS-induced inflammatory response. Interestingly, we observed that the combination of adiponectin and IL-10 reduced the IL-6 level, the protein expression of MYD88, and NF-κB (both p50 and p65) DNA binding. Almost all TLRs have a common signaling pathway in which MYD88 adaptor molecules form a molecular complex with TLR-initiated signaling events. MYD88 also interacts with downstream IL- 68 1R-associated kinase (IRAKs) (Arancibia et al., 2007), and TRAF6 regulates distinct processes of innate and adaptive immunity mediated by IkB kinases (IKK) that regulate NF-κB (Dadgostar and Cheng, 1998; Bradley and Pober, 2001). The combination of adiponectin and IL-10 altered the MYD88-dependent pathway, which led to a decrease in NF-κB (both p50 and p65) DNA binding. Tsan and Gao (2004) reported that TLR1/2, TLR2/6, and TLR4 (but not other TLRs) induced NF-κB activation through a MYD88-dependent pathway. More studies are needed to fully elucidate the comprehensive pathway involved with antiinflammatory responses in adipocytes. In summary, we demonstrated that adiponectin, IL-10 and the combination of adiponectin and IL-10 all reduced NF-κB (both p50 and p65) DNA binding in 3T3-L1 adipocytes exposed to LPS, which may have resulted from a reduction in IL-6 production rather than an inhibition of the TLR-4 pathway. The present results suggest that anti-inflammatory adipokines may be utilized as strategies to reduce the pro-inflammatory state exhibited in obese people. Acknowledgements This work was supported by FAPESP (08/54733-0). References Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1220-5. Arancibia SA, Beltrán CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA. Toll-like receptors are key participants in innate immune responses. Biol Res. 2007;40(2):97-112. Epub 2007 Nov 21. Review. Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001 Oct 1;20(44):6482-91. Review. Bradley RL, Fisher FF, Maratos-Flier E. Dietary fatty acids differentially regulate production of TNFalpha and IL-10 by murine 3T3-L1 adipocytes. Obesity (Silver Spring). 2008 May;16(5):938-44. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761-72 69 Cintra DE, Pauli JR, Araújo EP, Moraes JC, de Souza CT, Milanski M, Morari J, Gambero A, Saad MJ, Velloso LA. Interleukin-10 is a protective factor against diet-induced insulin resistance in liver. J Hepatol. 2008 Apr;48(4):628-37. Creely SJ, McTernan PG, Kusminski CM, Fisher M, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E740-7 Dadgostar H, Cheng G. An intact zinc ring finger is required for tumor necrosis factor receptorassociated factor-mediated nuclear factor-kappaB activation but is dispensable for c-Jun N-terminal kinase signaling. J Biol Chem. 1998 Sep 18;273(38):24775-80. Gleeson M, McFarlin B, Flynn M. Exercise and Toll-like receptors. Exerc Immunol Rev. 2006;12:3453. Jung SH, Park HS, Kim KS, Choi WH, Ahn CW, Kim BT, Kim SM, Lee SY, Ahn SM, Kim YK, Kim HJ, Kim DJ, Lee KW. Effect of weight loss on some serum cytokines in human obesity: increase in IL-10 after weight loss. J Nutr Biochem. 2008 Jun;19(6):371-5 Lang CH, Silvis C, Deshpande N, Nystrom G, Frost RA. Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, -6, and high-mobility-group protein-1 in skeletal muscle. Shock. 2003 Jun;19(6):538-46. Leuwer M, Welters I, Marx G, Rushton A, Bao H, Hunter L, Trayhurn P. Endotoxaemia leads to major increases in inflammatory adipokine gene expression in white adipose tissue of mice. Pflugers Arch. 2009 Feb;457(4):731-41. Lin Y, Lee H, Berg AH, Lisanti MP, Shapiro L, Scherer PE. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem. 2000 Aug 11;275(32):24255-63. Lira FS, Rosa JC, Dos Santos RV, Venancio DP, Carnier J, Sanches PD, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Dâmaso AR, Oyama LM. Visceral fat decreased by long-term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factoralpha and negatively with adiponectin levels in obese adolescents. Metabolism. 2011 Mar;60(3):35965. Lira FS, Rosa JC, Cunha CA, Ribeiro EB, Oller do Nascimento C, Oyama LM, Mota JF. Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids Health Dis. 2011 Feb 27;10:37. Lira FS, Rosa JC, Zanchi NE, Yamashita AS, Lopes RD, Lopes AC, Batista ML Jr, Seelaender M. Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochem Funct. 2009 Mar;27(2):71-5. Review. Muzio M, Mantovani A. Toll-like receptors. Microbes Infect. 2000 Mar;2(3):251-5. Review. Oller do Nascimento CM, Ribeiro EB, Oyama LM. Metabolism and secretory function of white adipose tissue: effect of dietary fat. An Acad Bras Cienc. 2009 Sep;81(3):453-66. Review. Poulain-Godefroy O, Le Bacquer O, Plancq P, Lecoeur C, Pattou F, Frühbeck G, Froguel P. Inflammatory role of Toll-like receptors in human and murine adipose tissue. Mediators Inflamm. 2010;2010:823486 70 Rosa JC, Lira FS, Eguchi R, Pimentel GD, Venâncio DP, Cunha CA, Oyama LM, De Mello MT, Seelaender M, Oller do Nascimento CM. Exhaustive exercise increases inflammatory response via toll like receptor-4 and NF-κBp65 pathway in rat adipose tissue. J Cell Physiol. 2011 Jun;226(6):1604-7. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans. 2005 Nov;33(Pt 5):1078-81. Review. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol. 2004 Sep;76(3):514-9. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araújo EP, Vassallo J, Curi R, Velloso LA, Saad MJ. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007 Aug;56(8):1986-98 Turner JJ, Foxwell KM, Kanji R, Brenner C, Wood S, Foxwell BM, Feldmann M. Investigation of nuclear factor-κB inhibitors and interleukin-10 as regulators of inflammatory signalling in human adipocytes. Clin Exp Immunol. 2010 Dec;162(3):487-93 Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM, Freedman J, Gokce N. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity (Silver Spring). 2008 May;16(5):932-7. Yamaguchi N, Argueta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, Hanazawa S, Yamashita Y. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 2005 Dec 19;579(30):6821-6 Yamashita AS, Lira FS, Rosa JC, Paulino EC, Brum PC, Negrão CE, Dos Santos RV, Batista ML Jr, Oller do Nascimento C, Oyama LM, Seelaender M. Depot-specific modulation of adipokine levels in rat adipose tissue by diet-induced obesity: The effect of aerobic training and energy restriction. Cytokine. 2010 Dec;52(3):168-74. Zoico E, Garbin U, Olioso D, Mazzali G, Fratta Pasini AM, Di Francesco V, Sepe A, Cominacini L, Zamboni M. The effects of adiponectin on interleukin-6 and MCP-1 secretion in lipopolysaccharidetreated 3T3-L1 adipocytes: role of the NF-kappaB pathway. Int J Mol Med. 2009 Dec;24(6):847-51. 71 Legends Figure Figure 1. Time course of IL-6 release in the culture medium of 3T3-L1 adipocytes treated with LPS, LPS+IL-10, LPS+adiponectin. . n=6 for all groups.* Values are means ± SE. * p<0.05 in relation to control, # p<0.05 in relation to LPS. Figure 2 - Time course of DNA-binding activity of NF-kBp50 in 3T3-L1 adipocytes treated with LPS, LPS+IL-10, LPS+adiponectin. n=6 for all groups.* Values are means ± SE. * p<0.05 in relation to control, # p<0.05 in relation to LPS. Figure 2 - Time course of DNA-binding activity of NF-kBp65 in 3T3-L1 adipocytes treated with LPS, LPS+IL-10, LPS+adiponectin. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to control, # p<0.05 in relation to LPS. Figure 4 – Effect of LPS for 24h on the IL-6 level in culture medium and on the 3T3-L1 protein expression of IL-6R, TLR-2 and TLR-4. n=6 for all groups. Values are means ± SE. * p<0.05 and *** p<0,001 in relation to control. Figure 5 – Effect of LPS for 24h on the 3T3-L1 protein expression of MYD88, TRAF6, NF-kBp50, NF-kBp65. n=6 for all groups. Values are means ± SE. * p<0.05 and *** p<0,001 in relation to control. Figure 6 – Effect of adiponectin treatment for 24h on IL-6 level in the culture medium and on protein expression of IL-6R, TLR-2 and TLR-4 in 3T3-L1 adipocyte treated with LPS. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to LPS. Figure 7 - Effect of adiponectin treatment for 24h on protein expression of MYD88, TRAF6, NFkBp50, NF-kBp65 in 3T3-L1 adipocyte treated with LPS. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to LPS. Figure 8 – Effect of IL-10 treatment for 24h on IL-6 level in the culture medium and on protein expression of IL-6R, TLR-2 and TLR-4 in 3T3-L1 adipocyte treated with LPS. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to LPS. Figure 9 - Effect of IL-10 treatment for 24h on protein expression of MYD88, TRAF6, NF-kBp50, NF-kBp65 in 3T3-L1 adipocyte treated with LPS. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to LPS. Figure 10 – Effect of IL-10 plus adiponectin treatment for 24h on IL-6 level in the culture medium and on protein expression of IL-6R, TLR-2 and TLR-4 in 3T3-L1 adipocyte treated with LPS. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to LPS. Figure 11 - Effect of IL-10 plus adiponectin treatment for 24h on protein expression of MYD88, TRAF6, NF-kBp50, NF-kBp65 in 3T3-L1 adipocyte treated with LPS. n=6 for all groups. Values are means ± SE. * p<0.05 in relation to LPS. 72 Results 73 74 75 76 77 78 6. Considerações Finais Frente às questões levenatadas em nossa tese, podemos afirmar que: Os efeitos benéficos da terapia interdisciplinar para o tratamento da obesidade estão correlacionados com a elevação das adipocinas anti-inflamatórias (adiponectina e IL10); Os efeitos benéficos da terapia interdisciplinar para o tratamento da obesidade estão correlacionados com a redução das citocinas pró-inflamatórias (TNF-α e IL-6), endotoxina e dos depósitos de gordura corporal; Os efeitos anti-inflamatórios da adiponectina e da IL-10 em adipócitos 3T3-L1 são dissociados; A ação anti-inflamatória, individual ou conjunta, da adiponectina e IL-10 em adipócitos 3T3-L1, não é mediada por alterações na via de sinalização do TLR-4, mas sim do NFκB; A terapia interdicisplinar de longo prazo foi capaz de elevar as adipocinas anti-inflamatória (adiponectina e IL-10), e concomitantemente, promoveu redução do depósito de gordura visceral, IL6, TNF-α e endotoxina sérica. Esses eventos direcionaram para melhora do quadro da resistência à ação da insulina nos adolescentes obesos. Adicionalmente, observamos que a concentração sérica de adiponectina pode ser um bom preditor da relação entre gordura visceral e subcutânea. O estudo in vitro em células adiposas 3T3-L1 confirmou que tais adipocinas anti-inflamatórias tem papel importante na redução da produção de IL-6 e na inibição da ligação do NF-κB com DNA, favorecendo desta maneira redução da via inflamatória. No entanto, tais eventos parece não ser dependetendes dos TLRs, sendo necessários mais estudos para elucidar as vias envolvidas neste processo. 79 7. Referências Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1220-5. Althoff K, Müllberg J, Aasland D, Voltz N, Kallen K, Grötzinger J, Rose-John S. Recognition sequences and structural elements contribute to shedding susceptibility of membrane proteins. Biochem J. 2001 Feb 1;353(Pt 3):663-72. Althoff K, Reddy P, Voltz N, Rose-John S, Müllberg J. Shedding of interleukin-6 receptor and tumor necrosis factor alpha. Contribution of the stalk sequence to the cleavage pattern of transmembrane proteins. Eur J Biochem. 2000 May;267(9):2624-31. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999 Apr 2;257(1):79-83. Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996 Jun 27;334(26):1717-25. Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD, Palin MF. Adiponectin action from head to toe. Endocrine. 2010 Feb;37(1):11-32. Bueno AA, Oyama LM, de Oliveira C, Pisani LP, Ribeiro EB, Silveira VL, Oller do Nascimento CM. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue. Pflugers Arch. 2008 Jan;455(4):701-9. Bulló M, García-Lorda P, Megias I, Salas-Salvadó J. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res. 2003 Apr;11(4):525-31. Campos LA, Leite AJM, Almeida PC. Nível socioeconômico e sua influência sobre a prevalência de sobrepeso e obesidade em escolares adolescentes do município de Fortaleza. Rev. Nutr. 2006, vol.19, n.5, pp. 531-538. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, 80 Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761-72. Cao YL, Hu CZ, Meng X, Wang DF, Zhang J. Expression of TNF-alpha protein in omental and subcutaneous adipose tissue in obesity. Diabetes Res Clin Pract. 2008 Feb;79(2):214-9. Caranti DA, de Mello MT, Prado WL, Tock L, Siqueira KO, de Piano A, Lofrano MC, Cristofalo DM, Lederman H, Tufik S, Dâmaso AR. Short- and long-term beneficial effects of a multidisciplinary therapy for the control of metabolic syndrome in obese adolescents. Metabolism (9):1293-300. 2007. Caranti DA, Lazzer S, Dâmaso AR, Agosti F, Zennaro R, de Mello MT, Tufik S, Sartorio A. Prevalence and risk factors of metabolic syndrome in Brazilian and Italian obese adolescents: a comparison study. Int J Clin Pract (10):1526-32. 2008. Carnier J, Lofrano MC, Prado WL, Caranti DA, de Piano A, Tock L, do Nascimento CM, Oyama LM, Mello MT, Tufik S, Dâmaso AR. Hormonal alteration in obese adolescents with eating disorder: effects of multidisciplinary therapy. Horm Res 70(2):79-84. 2008 Carnier J, de Piano A, de Lima Sanches P, Tock L, do Nascimento CM, Oyama LM, Corrêa FA, Ernandes RH, Lederman H, de Mello MT, Tufik S, Dâmaso AR. The role of orexigenic and anorexigenic factors in an interdisciplinary weight loss therapy for obese adolescents with symptoms of eating disorders. Int J Clin Pract. 2010 May;64(6):784-90. Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60(3):349-56. 2001. Creely SJ, McTernan PG, Kusminski CM, Fisher M, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E740-7 Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev. 1997 Oct;10(4):742-80 Curioni CC, Lourenço PM. Long-term weight loss after diet and exercise: a systematic review. Int J Obes (Lond). 2005 Oct;29(10):1168-74. 81 Daftarian PM, Kumar A, Kryworuchko M, Diaz-Mitoma F. IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. J Immunol 157(1):12-20. 1996. Daftarian, P.; Kumar, A.; Kryworuchko, M.; Diaz-Mitoma, F. IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. J. Immunol., v.157, n1, p12-20, 1996. Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factoralpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998 Aug;83(8):290710. Darnay BG, Aggarwal BB. Early events in TNF signaling: a story of associations and dissociations. J Leukoc Biol. 1997 May;61(5):559-66. Review. de Lima Sanches P, de Mello MT, Elias N, Fonseca FA, de Piano A, Carnier J, Oyama LM, Tock L, Tufik S, Dâmaso AR. Improvement in HOMA-IR is an independent predictor of reduced carotid intima-media thickness in obese adolescents participating in an interdisciplinary weight-loss program. Hypertens Res. 2011 Feb;34(2):232-8. De Piano A, Prado WL, Caranti DA, Siqueira KO, Stella SG, Lofrano M, Tock L,Cristofalo DM, Lederman H, Tufik S, de Mello MT, Dâmaso AR. Metabolic and nutritional profile of obese adolescents with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 44(4):446-52. 2007. Del Aguila LF, Claffey KP, Kirwan JP. TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Physiol 276:E849-55, 1999. Derouet D, Rousseau F, Alfonsi F, Froger J, Hermann J, Barbier F, Perret D, Diveu C, Guillet C, Preisser L, Dumont A, Barbado M, Morel A, deLapeyrière O, Gascan H, Chevalier S. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4827-32. Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 2003 Mar;148(3):293-300 82 Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 268 (35):26055-8. 1993. Ferrari, R.; Bachetti, T.; Confortini, R.; Opasich, C.; Febo, O.; Corti, A.; Cassani, G.; Visioli, O. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation, v.15, n.6, p.1379-82, 1995. Fiorentino, D.; Zlotnik, A.; Mosmann, T.; Howard, M.; O'garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol., v.1, n.11, p.3815-22, 1991. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6-33. Francaux M. Toll-like receptor signalling induced by endurance exercise. Appl Physiol Nutr Metab. 2009 Jun;34(3):454-8 Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2005-10. Gil-Campos M, Cañete RR, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr 23(5):963-74. 2004. Gruen ML, Hao M, Piston DW, Hasty AH. Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. Am J Physiol Cell Physiol. Nov;293(5):C1481-8, 2007. Haas P, Straub RH, Bedoui S, Nave H. Peripheral but not central leptin treatment increases numbers of circulating NK cells, granulocytes and specific monocyte subpopulations in non-endotoxaemic lean and obese LEW-rats. Regul Pept 151(1-3):26-34. 2008. 83 Hamdy O. Lifestyle modification and endothelial function in obese subjects. Expert Rev Cardiovasc Ther. 2005 Mar;3(2):231-41 Hashem RM, Mahmoud MF, El-Moselhy MA, Soliman HM. Interleukin-10 to tumor necrosis factoralpha ratio is a predictive biomarker in nonalcoholic fatty liver disease: interleukin-10 to tumor necrosis factor-alpha ratio in steatohepatitis. Eur J Gastroenterol Hepatol. 2008 Oct;20(10):995-1001. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA. 2004 Jun 16;291(23):2847-50. Hocking SL, Wu LE, Guilhaus M, Chisholm DJ, James DE. Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes. 2010 Dec;59(12):3008-16. Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, Friedline RH, Kurt-Jones E, Finberg R, Fischer MA, Granger EL, Norbury CC, Hauschka SD, Philbrick WM, Lee CG, Elias JA, Kim JK. Interleukin10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009 Nov;58(11):2525-35 Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4854-8. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adiposespecific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1595-9. Hukshorn CJ, Lindeman JH, Toet KH, Saris WH, Eilers PH, Westerterp-Plantenga MS, Kooistra T. Leptin and the proinflammatory state associated with human obesity. J Clin Endocrinol Metab 89(4):1773-8. 2004. 84 Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=1699&id_pagina= 1/. 2010. Juge-Aubry CE, Somm E, Pernin A, Alizadeh N, Giusti V, Dayer JM, Meier CA. Adipose tissue is a regulated source of interleukin-10. Cytokine 29(6):270-4. 2005. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005 May;26(3):43951. Kashyap SR, Ioachimescu AG, Gornik HL, Gopan T, Davidson MB, Makdissi A, Major J, Febbraio M, Silverstein RL. Lipid-induced Insulin Resistance Is Associated With Increased Monocyte Expression of Scavenger Receptor CD36 and Internalization of Oxidized LDL. Obesity (Silver Spring). 2009. Kaur K, Sharma AK, Dhingra S, Singal PK. Interplay of TNF-alpha and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J Mol Cell Cardiol. 2006 Dec;41(6):1023-30. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, Mohammed BS. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004 Jun 17;350(25):2549-57. Kraemer WJ, Nindl BC, Marx JO, Gotshalk LA, Bush JA, Welsch JR, Volek JS, Spiering BA, Maresh CM, Mastro AM, Hymer WC. Chronic resistance training in women potentiates growth hormone in vivo bioactivity: characterization of molecular mass variants. Am J Physiol Endocrinol Metab. 2006 Dec;291(6):E1177-87 Kraemer WJ, Volek JS, Clark KL, Gordon SE, Incledon T, Puhl SM, Triplett-McBride NT, McBride JM, Putukian M, Sebastianelli WJ. Physiological adaptations to a weight-loss dietary regimen and exercise programs in women. J Appl Physiol. 1997 Jul;83(1):270-9. Kueht ML, McFarlin BK, Lee RE. Severely obese have greater LPS-stimulated TNF-alpha production than normal weight African-American women. Obesity (Silver Spring) 17(3):447-51. 2009. 85 Lara-Castro C, Fu Y, Chung BH, Garvey WT. Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease. Curr Opin Lipidol 18(3):263-70. 2007 Lawlor DA, Chaturvedi N. Treatment and prevention of obesity--are there critical periods for intervention? Int J Epidemiol. 2006 Feb;35(1):3-9. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem. 2001 May 18;276(20):16683-9. Leonidou L, Mouzaki A, Michalaki M, DeLastic AL, Kyriazopoulou V, Bassaris HP, Gogos CA. Cytokine production and hospital mortality in patients with sepsis-induced stress hyperglycemia. J Infect. 2007 Oct;55(4):340-6. Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH, Chen EY, Goeddel DV. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2830-4. Lin Y, Lee H, Berg AH, Lisanti MP, Shapiro L, Scherer PE. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem. 2000 Aug 11;275(32):24255-63. Lira FS, Rosa JC, Yamashita AS, Koyama CH, Batista ML Jr, Seelaender M. Endurance training induces depot-specific changes in IL-10/TNF-alpha ratio in rat adipose tissue. Cytokine. 45(2):80-5. 2009a. Lira FS, Rosa JC, Zanchi NE, Yamashita AS, Lopes RD, Lopes AC, Batista ML Jr, Seelaender M. Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochem Funct 27(2):71-5. 2009b. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996 Apr 16;221(2):286-9. 86 Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S,Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo.J Clin Endocrinol Metab 82(12):4196-200. 1997. Moore, K.; O'garra, A.; De Waal Malefyt, R.; Vieira, P.; Mosmann, T. Interleukin-10. Annu. Rev. Immunol., v.11, p.165-90, 1993. Murray, P. The JAK-STAT signaling pathway: input and output integration. J. Immunol., v.1, n.5, p.2623-9, 2007. Nozaki, N.; Yamaguchi, S.; Yamaoka, M.; Okuyama, M.; Nakamura, H.; Tomoike, H. Enhanced expression and shedding of tumor necrosis factor (TNF) receptors from mononuclear leukocytes in human heart failure. J. Moll. Cell. Cardiol., v.30, p.2003-12, 1998. Park PH, McMullen MR, Huang H, Thakur V, Nagy LE. Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated interleukin-10 production. J Biol Chem. 2007 Jul 27;282(30):21695-703. Peeraully MR, Jenkins JR, Trayhurn P. NGF gene expression and secretion in white adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E331-9. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995 Jul 28;269(5223):540-3. Peraldi P, Spiegelman BM. Studies of the mechanism of inhibition of insulin signaling by tumor necrosis factor-alpha. J Endocrinol. 1997 Nov;155(2):219-20 Polak J, Klimcakova E, Moro C, Viguerie N, Berlan M, Hejnova J, Richterova B, Kraus I, Langin D, Stich V. Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor alpha in obese women. Metabolism. 2006 Oct;55(10):1375-81. Pond CM. Functional interpretation of the organization of mammalian adipose tissue: its relationship to the immune system. Biochem Soc Trans. 1996 May;24(2):393-400. 87 Prins JB. Adipose tissue as an endocrine organ. Best Pract Res Clin Endocrinol Metab. 2002 Dec;16(4):639-51. Riley, J.; Takeda, K.; Akira, S.; Schreiber, R. Interleukin-10 receptor signaling through the JAKSTAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J. Biol. Chem., v.4, n.23, p.16513-21, 1999. Robson P. Elucidating the unexplained underperformance syndrome in endurance athletes : the interleukin-6 hypothesis. Sports Med. 2003;33(10):771-81 Ronque ERV, Cyrino ES, Dórea VR, Serassuelo Júnior H, Galdi EHG, Arruda M. Prevalência de sobrepeso e obesidade em escolares de alto nível socioeconômico em Londrina, Paraná, Brasil. Rev. Nutr. 2005 Dec; 18(6): 709-717. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf). 2006 Apr;64(4):355-65. Ryan DH, Kushner R. The state of obesity and obesity research. JAMA. 2010 Oct 27;304(16):1835-6. Salmenniemi U, Zacharova J, Ruotsalainen E, Vauhkonen I, Pihlajamäki J, Kainulainen S, Punnonen K, Laakso M. Association of adiponectin level and variants in the adiponectin gene with glucose metabolism, energy expenditure, and cytokines in offspring of type 2 diabetic patients. J Clin Endocrinol Metab. 2005 Jul;90(7):4216-23. Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J, Falk W. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology. 2009 Feb;126(2):233-45 Schober F, Neumeier M, Weigert J, Wurm S, Wanninger J, Schäffler A, Dada A, Liebisch G, Schmitz G, Aslanidis C, Buechler C. Low molecular weight adiponectin negatively correlates with the waist circumference and monocytic IL-6 release. Biochem Biophys Res Commun 361(4):968-73. 2007. Seo JB, Moon HM, Noh MJ, Lee YS, Jeong HW, Yoo EJ, Kim WS, Park J, Youn BS, Kim JW, Park SD, Kim JB. Adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression. J Biol Chem. 2004 May 21;279(21):22108-17. 88 Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR-4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006 Nov;116(11):3015-25. Snethen JA, Broome ME, Cashin SE. Effective weight loss for overweight children: a meta-analysis of intervention studies. J Pediatr Nurs. 2006 Feb;21(1):45-56. Sopasakis VR, Sandqvist M, Gustafson B, Hammarstedt A, Schmelz M, Yang X, Jansson PA, Smith U. High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes Res 2004 (3):454-60. Suganami T, Mieda T, Itoh M, Shimoda Y, Kamei Y, Ogawa Y. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation. Biochem Biophys Res Commun. 2007 Mar 2;354(1):45-9. Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15:797-819. Takeuchi O, Akira S. Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol. 2001 Apr;1(4):625-35. Tanner JM & Whitehouse RH. Clinical Longitudinal standards for height, weight velocity and stages of puberty. Arch Dis Child 1976; 51: 170-79. Thörne A, Lönnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002 Feb;26(2):193-9. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001 Aug;60(3):329-39. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans. 2005 Nov;33(Pt 5):1078-81. Tsukumo DM, Carvalho BM, Carvalho-Filho MA, Saad MJ. Translational research into gut microbiota: new horizons in obesity treatment. Arq Bras Endocrinol Metabol. 2009 Mar;53(2):139-44. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araújo EP, Vassallo J, Curi R, Velloso LA, Saad MJ. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007 Aug;56(8):1986-98 89 Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 79(1):1-71. 1999. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998 May 4;187(9):1477-85. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003 Dec;112(12):1785-8. World Health Organization. http://www.who.int/mediacentre/factsheets/fs311/en/. 2010. Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 316(3):924-9. 2004. Yamaguchi N, Argueta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, Hanazawa S, Yamashita Y. Adiponectin inhibits Toll-like receptor family-induced signaling.FEBS Lett. 2005 Dec 19;579(30):6821-6. Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Matsubara K, Okazaki Y, Ishii T, Nishikai K, Saruta T. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond). 2002 Aug;103(2):137-42.