Avionics
Transcription
Avionics
Communication in avionics Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT Jean-Luc.Scharbarg@enseeiht.fr November 2014 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 1 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 2 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 3 / 72 Embedded network context The need for dedicated buses and networks I I I I I Deterministic communications (latency, jitter, . . .) Periodic and also aperiodic data Many short data Temporal synchronization of distributed tasks Integrity and availability Buses and networks designed for specific systems I Civilian aircraft F F I Military aircraft F F I I I A distributed architecture without any centralized control ARINC 429, ARINC 629, ARINC 664 A distributed architecture with centralized control MIL Std 1553 B, . . . Space platforms: on-board datalinks, spacewire, 1553, TTEthernet, . . . Automotive systems: CAN, MOST, LIN, Flexray, . . . Fieldbuses: Profibus, Interbus, . . . Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 4 / 72 Civilian aircraft communications Avionics A340 A/C Ops & CABIN ARINC 429 - 664 IFE ARINC 429- Ethernet ……… HF/VHF/SATCOM Platform (s) Connectivity AIRLINE Ground Information System (Airlines, Airbus,…) Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 5 / 72 Civilian aicraft communications The Air/ground communications I I They provide several means for the communication between aircraft and ground stations for navigation and control: HF, VHF, SATCOM, . . . ATC: Air Traffic Control, AOC: Airline Operational Communications, ... The Airline passenger communications I I Part of In-Flight Entertainment (IFE), it includes communications (telephony, e- mail, . . .), information (news, weather, web content . . .), and interactive services (video games, shopping/e-commerce, surfing the web) Based on Commercial off-the-shelf (COTS) technologies The Cabin Communications I Based on Ethernet technology open to operational functions (maintenance, . . .) The Avionics Communications I I They represent all the information exchanged between the avionics equipment and systems used to the control of the aircraft Based on aeronautical technologies: ARINC 429, AFDX, . . . Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 6 / 72 Avionics systems characteristics Avionics: electronic systems installed in an aircraft I I Calculators and their software, sensors and actuators Communication links between these elements Example of avionic systems: autopilot, navigation, flight control, . . . Constraints on the avionics systems I I I I Volume and weight limitations Correct behavior in severe conditions: heat, vibrations, electromagnetic interferences, . . . Safety level required, depending on the system (ARP 4754): catastrophic (failure = loss of the aircraft), hazardous, major, minor, no effect Segregation between critical functions Aeronautical Radio INCorporated (ARINC): leadership in the development of specifications and standards for avionics equipment Airlines Electronic Engineering Committee (AEEC): development and maintenance of specifications and standards (airlines, governments, ARINC) ADN: Aircraft Data Network Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 7 / 72 Avionics systems evolution In the 1950’s I I Very simple standalone systems One single calculator for the execution of all the functions In the 1960’s I I The beginning of modern avionics Replacement of analog devices by their digital equivalent Since then I I I Huge increase in the complexity of avionics More and more digital equipments for existing or new functions New needs inherent to the evolution of civil aviation or better answers to existing problems (e.g. fly-by-wire command system) Increase in the number of embedded systems and functions ⇒ increase in communication needs Integrated Modular Avionics (IMA) in the 1990’s: better sharing of execution and communication resources I I First implementation of IMA for the Boeing 777, based on the ARINC 629 multiplexed data bus IMA in the Airbus A380, based on the ARINC 664 (switched Ethernet) Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 8 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 9 / 72 Classical avionics architecture (up to A340) Each equipment (LRU) dedicated to a system function (braking, flight computers, . . .): sensors, actuators, calculators . . . natural segregation between the equipments Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 10 / 72 Data transmission in classical avionics A network of equipments F1 F2 F3 G1 G2 Each data is transmitted from its source to every equipment that needs the data One dedicated line for each data Repetitive transmission of the data on each line Each line: a mono-emitter ARINC 429 data bus Each data individually identified by a label Low bit rate: 12 Kbits/s to 100 Kbits/s At most 20 receivers per line Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 11 / 72 The ARINC 429 main characteristics Unidirectional data bus standard Transmission of messages over two twisted pairs The ARINC 429 data word P SSM 32 I I I DATA 29 F F 1 Binary Coded Decimal (BCD) Two’s complement binary notation (BNR) ... SDI (Source Destination Identifier): different possibilities F F I LABEL 8 P (parity bit): so that there is an odd number of “1” in the 32-bit word SSM (Sign/Status Matrix): contains equipment condition, operational mode or validity of data contents, depending on the format of the data DATA: the data, with a number of different formats F I SDI 11 Identification of the receiver for which the data is destined Identification of the source of the transmission if the label can be sent on different data buses LABEL: identification of the data and its associated parameters Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 12 / 72 Classic avionics evolution A310 (1983) A320 (1988) A340 (1993) Avionic Volume 745 litres 760 litres 830 litres A380 (2005) Number of equipment 77 102 115 147 Embedding Software 4 Mo 10 Mo 20 Mo 100 Mo Number of ARINC 429 136 253 368 1000 (AFDX) Computing Power 60 Mips 160 Mips 250 Mips 90% of the avionic Avionic repartition Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 13 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 14 / 72 IMA architecture (ARINC 651) Backplane databus APEX APEX APEX Function 3 Function 2 APEX Function 1 Function 3 Function 1 Function 1 Function 2 LRM I/O LRM Core LRM Core ... Function 1 LRM Gateway Rack 1 Aircraft data bus ARINC 429 Equipment (function 1) Equipment (function 2) API API Function 1 Function 3 LRU ARINC 429 Equipment (function 3) LRU Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 15 / 72 IMA characteristics Hardware components I LRM (Line Replaceable modules): resources in common cabinets F F F I I Core modules for the execution of the applications Input/output modules for communications with non-IMA equipments Gateway modules for communications between cabinets LRU (Line Replaceable Unit): existing non-IMA equipments Backplane databus: ARINC 659 Sharing of execution resources I I An avionics subsystem: a partition with an assigned time window to execute its application on a shared module Guarantee isolation between subsystems ⇒ robust partitioning concept F F I Communications between partitions via ports (APEX: APplication EXecutive) F F I Spatial isolation: limitation and protection of the address space of each partition, e.g. by a MMU Temporal isolation: static allocation of a time slice for the execution of each partition, based on WCET Sampling ports: only the last value of data is stored Queueing ports: all the values of data are stored Logical channel: multicast link between ports, independent of the communication technology Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 16 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 17 / 72 The reasons for the AFDX ARINC 429 is no more sufficient: too many buses are needed ARINC 629 is too expensive Why Ethernet technology ? I I I I High throughput offered to the connected units (100 Mbits/s) High connectivity offered by the network structure A mature industrial standard Low connection cost But Ethernet CSMA/CD is not deterministic I I Potential collision on the physical medium Binary Exponential Back off retransmission algorithm The solution adopted for ARINC 664 I I switched Ethernet technology: units directly connected by point-to-point links to Ethernet switches ⇒ possible collision domain = single link between two elements Full duplex links ⇒ no more collisions The problem is shifted to the switch level Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 18 / 72 AFDX general architecture Avionics Computer System Controllers Sensors Avionics Suvsystem End System Actuators AFDX Interconnect Controllers Sensors End System Avionics Suvsystem End System Gateway Internet Actuators Avionics Computer System Avionics Computer System Avionics Subsystem: Flight control computer, Global Positioning System, tire pressure monitoring system, . . . End System: interface between the Avionics Subsystems and the AFDX, guarantees a secure and reliable data interchange AFDX Interconnect: network of switches with full duplex links Gateway: communication path between the Avionics Subsystems and the external IP network ⇒ data loading, logging Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 19 / 72 Full duplex switched Ethernet example Switch Forwarding Table I/O Processing Unit Memory Bus Rx Buffer Tx Buffer Rx Buffer Tx Buffer Rx Buffer Tx Buffer Full Duplex Links End System End System End System Autopilot Heads−up Display Other system Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics Avionics Subsystems November 2014 20 / 72 Full duplex switched Ethernet is not deterministic Temporary congestion on an output port I I Increase of the waiting delay of frames in the Tx buffer Frame loss by overflow of the Tx buffer An illustrative example f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 I I Switch f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 Five frames at the same time ⇒ one frame waits until the transmission of the four other ones More than five frames at the same time ⇒ at least one frame is lost Addition of dedicated mechanisms to classical full duplex switched Ethernet in order to guarantee the determinism of an AFDX network Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 21 / 72 The AFDX key characteristics Static full duplex Switched Ethernet: no CSMA/CD, no spanning tree, static 802.1D tables One FIFO buffer per output port Traffic characterization based on the Virtual Link (VL) concept I I I I Static definition of the flows which enter the network Multicast path with deterministic routing Mono transmitter assumption Sporadic flows (BAG : Bandwidth Allocation Gap) F F I I Minimum (Smin ) and maximum (Smax ) frame lengths for each VL BAG and Smax define the maximum bandwidth allocated to a VL F I Discrete values: 1, 2, 4, 8, 16, 32, 64, 128 ms Traffic shaping on each emitting end system Example: BAG = 16 ms and Smax = 128 bytes ⇒ 64000 bits/s Scheduling of VLs on end systems ⇒ (bounded) jitter e1 e2 e3 e4 v6,v8 v6,v8,v9 S1 v7,v9 vx,v1 S3 S2 v6,v7 vx,v2 e5 v2,v3 v6,v8,v9 vx,v6,v7 S4 v5 v2,v5 e7 e8 e9 v1,v3 v1,v3,v4 S5 v4 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics e6 e10 November 2014 22 / 72 AFDX VL integration APEX port 2 APEX port 1 UDP1 IP10 UDP2 IP10 part1 MAC3 APEX port 1 MAC1 UDP1 IP20 APEX APEX port 2 port 3 UDP2 IP20 UDP3 IP20 part2 source APEX port source UDP port + source IP address source MAC address MAC2 end system 1 dest MAC address end system 2 MAC1 MAC3 part1 UDP1 IP1 APEX port 1 part2 UDP2 IP3 UDP1 IP3 APEX port 2 APEX port 1 UDP2 IP3 UDP3 IP1 APEX APEX port 2 port 3 end system 3 MAC3 dest UDP port + dest IP address dest APEX port MAC2 part2 part1 UDP1 IP2 APEX port 1 UDP2 IP3 APEX port 2 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics UDP1 IP3 APEX port 1 UDP2 IP2 APEX port 2 November 2014 23 / 72 The redundancy management in the AFDX Frames transmitted on two independent networks Per Virtual Link End System Transmit A Network Per Virtual Link End System Receive B Network Identification of replicas via a sequence number Ethernet Header IP Header 14 bytes 20 bytes UDP Header Avionics Subsystem messages Sequence number FCS 8 bytes 17..1472 bytes 1 byte 4 bytes UDP Header and payload IP Header and payload Ethernet frame Elimination of the second received frame Integrity Checking A Network Detect and eliminate invalid frames Integrity Checking B Network Redundancy Management Eliminate invalid frames Detect and eliminate invalid frames Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 24 / 72 The packet regulation of Virtual Links Virtual Link 100 Regulator BAG = 16 Virtual Link 200 Regulator BAG = 32 Select frames for transmission Replicate Ethernet frames Virtual Link Scheduler Redundancy Management Physical Link Physical Link Virtual Link 300 Regulator BAG = 4 Regulator input 1 2 3 BAG 1 BAG 2 BAG Regulator output 4 1 BAG 3 BAG 4 BAG 2 BAG 1 3 BAG 2 BAG 4 BAG 3 BAG Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics 4 BAG November 2014 25 / 72 The AFDX transmit protocol stack End System Tx Packets AFDX services Message written to AFDX port Message UDP transport layer UDP header UDP header Message IP fragmentation IP hdr IP hdr One or more packets as a result of IP fragmentation IP network layer Add IP checksum Add Ethernet header Eth hdr VL schedulor (regulator) Link level (Virtual Links) Redundancy management network A network B source address = netA transmit frame with FCS Eth hdr seq # source address = netB transmit frame with FCS Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 26 / 72 The AFDX receive protocol stack End System Rx Packets Eth hdr FCS errors Rx Controller Eth hdr seq # errors Integrity Check Link level (Virtual Links) drop packet Redundancy management IP hdr errors yes IP network layer no Packet complete? yes IP chechsum ICMP IP fragmentation yes direct mapping only if no IP fragmentation UDP header UDP transport layer AFDX port services Message DEMUX Message AFDX Rx port queue Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 27 / 72 An industrial AFDX configuration Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 28 / 72 An industrial AFDX configuration 2 redundant networks, 9 switches per network, 24 ports per switch, 123 end systems 984 VLs, 6412 paths 100 Mbits data rate BAG and maximum frame length Bag (ms) 2 4 8 16 32 64 128 Number of VL 20 40 78 142 229 220 255 Smax (bytes) 0-150 151-300 301-600 601-900 901-1200 1201-1500 > 1500 Number of VL 561 202 114 57 12 35 3 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 29 / 72 An industrial AFDX configuration Length of VL paths Number of crossed switches 1 2 3 4 Number of paths 1797 2787 1537 291 Load of the links 70 Number of links 60 number of link 50 40 30 20 10 0 0 0.05 0.1 0.15 output link load 0.2 0.25 0.3 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 30 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 31 / 72 End-to-end delay on an AFDX network Three parts in the delay I I I Transmission times on links (known): link bandwidth, frame size Switching latency (known) Waiting time in FIFO queues (unknown) mi1 mi2 mi3 mi4 v1 v2 v3 v4 v1 ,v2 v1 ,v3,v4,v5 v2 mi6 mi7 v3,v4 mi5 v5 Best-case delay: no waiting time in FIFO queues Worst-case delay: maximum overall waiting time in FIFO queues Distribution of the delay: distribution of the waiting time in FIFO queues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 32 / 72 computed upper bound real maximum delay observed distribution of the delay maximum observed delay minimum delay probability Characterisation of the end-to-end delay of a flow end−to−end delay pessimism of the computed upper bound Best-case delay I Most of the time easy to obtain Worst-case delay I I I Most of the time difficult to obtain Mandatory to guarantee that the deadlines are met Certification for the A380: network calculus ⇒ sure upper bound Distribution of the delay I Shows the real behaviour of the network Jean-Luc Scharbarg CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics I Université de Toulouse - IRIT/ENSEEIHT/INPT November 2014 33 / 72 Worst-case end-to-end delay of a flow es1 es2 v1,v2 s1 v3,v4 es3 v1 v2 v3 v4 v5 v6 v7 BAG (vi ) 4 ms 4 ms 4 ms 4 ms 4 ms 4 ms 4 ms v1,v2,v3,v4 v1,v3,v5,v6,v7 s2 v5,v6,v7 smin (vi ) 625 bytes 625 bytes 750 bytes 500 bytes 625 bytes 500 bytes 625 bytes v2,v4 smax (vi ) 625 bytes 625 bytes 750 bytes 500 bytes 625 bytes 500 bytes 625 bytes es4 es5 Tx 50 µs 50 µs 60 µs 40 µs 50 µs 40 µs 50 µs Worst-case delay of v1 ⇒ identifie a worst-case scenario for v1 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 34 / 72 Arbitrary scenario for v1 v1,v2 es1 es2 0 50 3 s2 200 250 300 350 es4 es5 400 450 t 1 4 s1 es3 150 v2,v4 1 6 2 es1 es2 100 45 v1,v3,v5,v6,v7 s2 v5,v6,v7 es3 3 72 v1,v2,v3,v4 s1 v3,v4 3 7 2 7 4 1 6 5 3 5 6 1 End-to-end delay for v1 : 170 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 35 / 72 Maximizing the delay in source end system v1,v2 es1 es2 0 50 100 45 150 s2 250 300 350 es4 es5 400 450 t 1 4 s1 es3 200 2 3 v2,v4 1,2 6 es1 es2 v1,v3,v5,v6,v7 s2 v5,v6,v7 es3 3 7 v1,v2,v3,v4 s1 v3,v4 3 7 4 7 2 1 6 5 3 5 6 1 End-to-end delay for v1 : 200 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 36 / 72 Critical instant in switch output ports: one candidate v1,v2 es1 es2 v1,v2,v3,v4 s1 v5,v6,v7 es3 0 50 100 es2 s1 es3 s2 es4 es5 150 v2,v4 200 250 300 350 400 450 t 5,6,7 1,2,3,4 es1 v1,v3,v5,v6,v7 s2 v3,v4 2 1 3 4 2 3 4 7 1 5 3 6 7 5 6 1 End-to-end delay for v1 : 410 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 37 / 72 Critical instant in switch output ports: another candidate v1,v2 es1 es2 v1,v2,v3,v4 s1 v5,v6,v7 es3 0 50 100 es2 s1 es3 s2 es4 es5 150 200 v2,v4 250 300 350 400 450 t 5,6,7 1,2,3,4 es1 v1,v3,v5,v6,v7 s2 v3,v4 2 1 4 3 4 2 3 7 1 5 6 7 3 5 6 1 End-to-end delay for v1 : 400 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 38 / 72 Are candidate scenarios comparable Difference between the candidate scenarios: transmission order of the frames Impact of a frame f 0 on the worst-case delay I I Transmission time of f 0 (depends on the number of bytes of the frame): a higher transmission time can lead to a higher impact on one output port Number of output ports shared with the frame under study Worst-case scenario for the presented example I frames are sorted, first by decreasing size, then by increasing number of shared output ports In some cases it does not lead to the worst-case scenario (next slide configuration) Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 39 / 72 Critical instant in switch output ports: one candidate v1,v2 es1 es2 v1,v2,v3,v4 s1 v5,v6 es3 0 50 100 150 1,2,3,4 es1 es2 s1 v1,v3,v5,v6 es4 es5 s2 v3,v4 v2,v4 200 250 300 350 400 450 t 5,6 2 1 3 4 2 3 4 1 es3 5 s2 3 6 5 6 1 End-to-end delay for v1 : 360 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 40 / 72 Critical instant in switch output ports: another candidate v1,v2 es1 es2 v1,v2,v3,v4 s1 v5,v6 es3 0 50 100 es2 s1 es3 s2 es4 es5 150 v2,v4 200 250 300 350 400 450 t 5,6 1,2,3,4 es1 v1,v3,v5,v6 s2 v3,v4 2 1 4 3 4 2 3 1 5 6 3 5 6 1 End-to-end delay for v1 : 390 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 41 / 72 Exhaustive search for the worst-case delay Build all possible sequences and simulate i1 i2 i3 i1 i2 i3 v2 i1 v4 v5 v6 i2 i3 o or o v2 v4 v5 v1, v2, v3, v4, v5, v6 v5, v6 v1 v3 o or o v1, v2 v3, v4 i1 i2 i3 v5 v3 v2 v5 v3 v2 v4 v6 v6 v1 v4 v1 v1 i2 v6 i3 v5 v2 v4 v5 v2 v4 v3 v6 v6 v3 v1 v1 v2 v1 v3 v4 v6 o or o i1 v3 v1 under study 8 candidate scenarios o o or o v2 v4 v6 v5 v3 v2 v6 v3 v2 v6 v4 v5 v1 v5 v4 v1 v1 v3 v5 v2 v4 v6 v3 v5 v1 v2 v4 v6 v5 v3 v1 Two implementations: ad hoc tool in Java, Uppaal Remaining combinatorial explosion issue Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 42 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 43 / 72 The certification of the AFDX The need for control of maximum transmission delay: bounded latency I I I Description of the network physical architecture Specification and placement of VLs on this architecture Evaluation of maximum transmission delay F Worst case upper bounds needed for certification The proof of determinism relies on network calculus assumptions I The AFDX network is compliant F F I Traffic assumptions ⇒ arrival curves Switch characteristics ⇒ service curves Theoretical results available ⇒ delay bound for each component Summary of the approach I I I Traffic modeling: arrival curves Component modeling: service curves Upper bound computation: application of network calculus theorems An industrial tool has been developed: ConfGen Used to certify the AFDX network of the A380 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 44 / 72 Network calculus: Modeling of the input traffic Definition of a traffic envelope R ∗ of the traffic function R ∀s ≤ t, R(t) − R(s) ≤ R ∗ (t − s) A traffic envelope can be defined for each VL bits R*(t) R(t) 111 000 BAG 11 00 BAG 111 000 11 00 time BAG Traffic envelope of a VL R ∗ (t) = γ Smax ,Smax = Smax + BAG Smax ×t BAG Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 45 / 72 Network calculus: modeling of the architectural elements Use of standard elementary building blocks I I I Multiplexers Demultiplexers Buffers Modeling of an AFDX switch Input buffer 1 Input buffer 2 MUX Bounded delay 8 us MUX ... ... Bounded delay 8 us Input buffer n Input ports MUX Frame filtering Switching Output ports Service curve βR,T of an output port: technological delay T and rate of the output link R β100,16 (t) = max (0, 100 × (t − 16)) Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 46 / 72 Network calculus: end to end delay calculus Based on network calculus theorems I Upper bound on the delay d in one node bits R*(t) B(t) d time ∗ ∀t, d(t) ≤ h(R , β) ∗ h(R , β) = sup (inf {d ≥ 0 : R ∗ (t) ≤ β(t + d)}) t≥0 Overall arrival curve at an output port = sum of the arrival curves of the competing flows Output curve ⇒ integrate the jitter (upper bound on the delay in the node) Data-flow delay calculus: the arrival curves of flows are propagated Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 47 / 72 Network calculus: illustration on a sample example e1 e2 e3 e4 v1 S1 v2 v3 v1,v2 v1,v3,v4,v5 S3 S2 v3,v4 e5 v4 v2 v5 e6 e7 All the VLs have the same BAG (4000 µs) and Smax (4000 bits) Arrival curve of each VL in its first switch bits R*(t) = 4000 1,4000 r=1 time Cumulative arrival curve in switches S1 and S2 γ1,4000 + γ1,4000 = γ2,8000 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 48 / 72 Network calculus: illustration on a sample example Upper bound on the delay of v 1, v 2, v 3 and v 4 in their first crossed switch: 96 µs I I I Technological latency: 16 µs Maximum waiting time in the output buffer: 40 µs Transmission time: 40 µs bits R*(t) = 2,8000 B 8000 100,16 96 us time Output curve of v 1, v 2, v 3 and v 4 after their first crossed switch bits R*(t) = 1,4040 4040 −40 0 time Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 49 / 72 Network calculus: illustration on a sample example Cumulative arrival curve in the upper output port of switch S3 γ1,4040 + γ1,4040 + γ1,4040 + γ1,4000 = γ4,16120 Upper bound on the delay of v 1, v 3, v 4 and v 5 in S3: 177.2 µs Cumulative arrival curve in the lower output port of switch S3 γ1,4040 Upper bound on the delay of v 2 in S3: 56.4 µs Upper bound on the end-to-end delay of v 1, v 3 and v 4 40 + 96 + 177.2 = 313.2 µs Upper bound on the end-to-end delay of v 2 40 + 96 + 56.4 = 192.4 µs Upper bound on the end-to-end delay of v 5 40 + 177.2 = 217.2 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 50 / 72 Network calculus: flow serialization Two frames cannot arrive simultaneously from the same link I I I I Let’s consider the upper output port of switch S3 The VLs v 3 and v 4 arrive from the same link The maximum burst from this link is the maximum frame size among v 3 and v 4 The second frame is received at the rate of the link Optimized cumulative arrival curve from the link shared by v 3 and v 4 I Reduction of the burst bits Rlink 1,4040 8080 4040 0 I time The upper bounds on the end to end delays of v 1, v 3, v 4 and v 5 are reduced F F 273.6 µs for v 1, v 3 and v 4 177.6 µs for v 5 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 51 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 52 / 72 The Trajectory approach: Where does it come from Worst-case response time of tasks in a distributed system I I Set of computing nodes interconnected by links One periodic task Fi F F F F F A period Ti and a release jitter Ji A static path Pi Bounded Execution time Cih on each node h of the path Bounded transmission delay on the links (between lmin and lmax ) The path never crosses twice the path of another task τ1 1 τ2 4 2 3 6 5 7 9 τ3 8 10 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 53 / 72 The trajectory approach and the AFDX τi Ti = BAG Ci = smax R node 1 Le1 →S1 e1 b node 2 LS1 →S2 b S1 R node 3 b S2 R e2 R VL vi : BAG smax switching delay (16µs) switching delay (16µs) Each flow in the network is upper-bounded The routing of flows is statically defined No packets are lost Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 54 / 72 The trajectory approach: illustration on a sample example v1 es1 es2 es3 es4 es3 3=f(es3) v1,v2 S1 v2 v3 S2 v1,v3,v4,v5 S3 v5 v3,v4 v2 es6 es7 es5 v4 3=p(es3) S2 3=p(S2) S3 0 40 80 120 160 200 240 280 320 360 40 + 16 + 40 + 16 + 40 = 152 = C3e3 + L + C3S2 + L + C3S3 X = C3 + max {Cjh } + (| P3 | −1) × L h∈P3 ,h6=last3 j∈sp3 ∪{3} One frame of v3 alone on its trajectory Transmission time on one link: 40 µs Switching latency: 16 µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 55 / 72 The trajectory approach: illustration on a sample example v1 es1 es2 S1 v2 es3 es4 es3 3=f(es3) v3 S2 v1,v3,v4,v5 v1,v2 S3 v3,v4 v5 v2 es6 es7 es5 v4 4=f(S2) 3=p(es3) S2 4=f(S3) S3 0 40 80 120 3=p(S2) 160 200 240 280 320 360 40 + 16 + 40 + 40 + 16 + 40 − (56 − 30) = 152 S2 S2 − a = C3e3 + L + C4S2 + C3S2 + L + C3S3 − ap(e f (S2 ) 3) X X h = Cj + max {Cj } + (| P3 | −1) × L − ∆S2 j∈sp3 ∪{3} h∈P3 ,h6=last3 j∈sp3 ∪{3} Add a frame from v4 Substract the quantity which is counted twice Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 56 / 72 The trajectory approach: illustration on a sample example es1 es2 es3 es4 es3 3=f(es3) v1 S1 v2 v3 S2 v1,v3,v4,v5 v1,v2 S3 v3,v4 v5 v2 es6 es7 es5 v4 4=f(S2) 3=p(es3) S2 S3 0 1=f(S3) 5 4=p(S2) 3 40 80 120 160 200 240 280 320 360 40 + 16 + 40 + 40 + 16 + 80 + 40 − (56 − 30) − (86 − 20) = 180 = C3e3 + C4S2 + C3S2 + C1S3 + C5S3 + C3S3 + (3 − 1) × L − (∆S2 + ∆S3 ) X X = Cj + max {Cjh } + (| P3 | −1) × L j∈sp3 ∪{3} − X h∈P3 ,h6=last3 j∈sp3 ∪{3} ∆h h∈P3 ,h6=first3 Add frames from v1 and v5 Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 57 / 72 The trajectory approach: illustration on a sample example v1 es1 es2 es3 es4 es3 3=f(es3) v3 S2 v1,v3,v4,v5 v1,v2 S1 v2 S3 v3,v4 v5 v2 es6 es7 es5 v4 4=f(S2) 3=p(es3) S2 4=p(S2) 1=f(S3) S3 0 40 80 120 160 5 200 3 240 280 320 360 40 + 16 + 40 + 40 + 16 + 80 + 40 = 180 = C3e3 + C4S2 + C3S2 + C1S3 + C5S3 + C3S3 + (3 − 1) × L X X = Cj + max {Cjh } + (| P3 | −1) × L j∈sp3 ∪{3} h∈P3 ,h6=last3 j∈sp3 ∪{3} Worst-case assumption: ∆h = 0 for all the nodes Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 58 / 72 The trajectory approach: worst-case delay computation Sporadic flows ⇒ more than one frame per flow = X j∈sp3 ∪{3} + t + A3,j 1+ Cj + Tj X max {Cjh } + (| P3 | −1) × L h∈P3 ,h6=last3 j∈sp3 ∪{3} Upper bound on the number of frames per flow obtained thanks to first first first3,j A3,j = Smax3j,3 − Sminjj,3 − M3 f(h−1) frame sequence h−1 frame sequence Jj j,i Sfirst max j first j t first j,i j,i afirst f i = t+ S max i first i,j Mi h=first j,i fi first + Smaxj3,j t + A i,j fi t j,i Sfirst min j t earliest generation time latest generation time Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 59 / 72 The trajectory approach: worst-case delay computation Worst-case traversal time for a frame from v3 I I I I The frame is generated by es3 at time t S3 It leaves S3 at time W3,t S3 It arrives at its destination at time W3,t + C3 S3 Worst-case traversal time: maximum value of W3,t + C3 − t for any t (µs) 800 t 7→ t 600 S3 W3,t + C3 400 272 S3 R3 = max W3,t + C3 − t = 272 µs 200 0 0 1000 2000 3000 4000 t (µs) Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 60 / 72 The trajectory approach: flow serialization es1 es2 3 S2 v1,v2 v1,v3,v4,v5 S3 v2 v3 S2 v3,v4 v5 es6 es7 es5 v4 4 1 S3 0 S1 v2 es3 es4 5 es5 v1 40 80 3 5 4 120 160 200 240 280 320 360 One frame of v5 on its trajectory Assumption: ∆S3 = 0 ⇒ a1S3 = a3S3 = a4S3 = a5S3 Pessimistic because a3S3 and a4S3 are different Here, ∆S3 > 40µs Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 61 / 72 The trajectory approach: identification of serialized frames Input ports AFDX switch Output port switching and FIFO scheduling p IP0 m IP1 IP2 f(h) IP3 Delta h OP f(h) Theta p Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics ... November 2014 62 / 72 Pessimism of the upper bounds Sure upper bound of the exact worst−case delay Exact worst−case delay Sure lower bound of the exact worst−case delay Principle of the evaluation Exact pessimism end−to−end delay Upper bound of the pessimism An unfavorable scenario The trajectory approach Upper bound on the pessimism of the trajectory approach on an industrial configuration I I Between 0 % and 33 % On average 6.5 % Upper bound on the pessimism of the network calculus approach on an industrial configuration I I Between 0.8 % and 63 % On average 13.5 % Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 63 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 64 / 72 Interconnection with fieldbuses System A supplier xx Node Node supplier xx ... Node IMA LRU LRU AFDX world CAN bus Node Node ... SWITCH Node SWITCH IMA CAN bus System B LRU LRU Low-cost or low power equipments don’t speak AFDX Existing solution and supplier does not want to modify it Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 65 / 72 Open world interconnection Open world Avionics server IFE Ethernet network 1111 0000 0000 1111 0000 1111 SCI 0000 1111 switch LRU CAN CPIOM LRU switch switch LRU CPIOM CAN LRU CAN A429 LRU LRU Avionics world Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 66 / 72 Summary 1 Avionics context 2 Classical avionics and the ARINC 429 3 Integrated Modular Avionics (IMA) 4 ARINC 664: Avionics Full DupleX switched Ethernet (AFDX) 5 Worst-case end-to-end delay for AFDX 6 Network calculus for certification of AFDX 7 Trajectory approach for AFDX 8 Interconnection of the AFDX with other technologies 9 Some open issues Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 67 / 72 Integration of the scheduling of flows No global clock in an AFDX network: clocks of end systems are independant Each end system schedules the VLs that it generates: local synchronisation with the clock of the end system mi1 v1 v1,v2 C1 mi2 v1,v2,v3,v4 v2 v3 v3,v4 v1 v2 mi1 v4 v3 v4 mi2 mi1 and mi2 don’t have a common clock The work which is being done I Integration of the scheduling of flows by end systems, assuming only periodic flows (⇒ offsets) F F F Network calculus: results show a significant improvement [ETFA’10] Trajectory approach: same as network calculus (to be validated) Model checking: results show a significant improvement [SIES’11,ETFA’12] Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 68 / 72 Heterogeneous flows on a heterogeneous network architecture AFDX network is under-used Two ideas for a better use of the network I Assign priorities to avionics flows in order to favour flows with higher worst-case delays F F I Needs a worst-case delay analysis that copes with priorities efficiently Needs a priority assignment algorithm (Audsley algorithm?) Share the network between avionics and non avionics flows F F Needs a worst-case delay analysis that copes with traffic classes efficiently Needs a clear segregation between flows AFDX is interconnected with other communication technologies (e.g. CAN) through gateways I I Gateway design End-to-end delay analysis with heterogeneous network features Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 69 / 72 Probabilistic analysis Up to now, certification process based on guaranteed delay upper bound Worst-case delay scenario: very rare event Leads to over-dimensionning of the network Do we really need a guaranteed upper bound? I Is it ok if the probability to exceed the deadline is 10−12 ? Avionics functions designed to behave correctly even if some (rare) frames are lost ⇒ computing a probabilistic upper bound makes sense A preliminary study based on probabilistic network calculus (Vojnovic framework) I I I I Flows have to be independant True at the input end system level No more true after one switch Solution: agregate the switches, but the proabilistic feature is partly lost Open problem: can we apply Extreme Value Theory? Probabilistic analysis is needed if wireless technologies are integrated in avionics network architecture Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 70 / 72 References [ETFA’12] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul. An imroved timed automata approach for computing exact worst-case delays of AFDX sporadic flows. ETFA’2012, Krakow, september 2012. [ECRTS’12] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul: Worst-case backlog evaluation of avionics switched Ethernet networks with trajectory approach. ECRTS’2012, Pisa, july 2012. [SIES’12] Xiaoting Li, Jean-Luc Scharbarg, Christian Fraboul: Worst-case delay analysis on a real-time heterogeneous network. SIES’2012, Karlsruhe, june 2012 [WiPRTAS’12]Xiaoting Li, Jean-Luc Scharbarg, Christian Fraboul: Applying trajectory approach for the worst-case delay analysis of a heterogeneous real time network. WiP session of RTAS’2012, Beijin, april 2012. [RTSJ’12] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul: Applying trajectory approach with static priority queueing for improving the use of available AFDX resources. Real Time Systems Journal, vol. 48, no 1, p. 101–133, january 2012. [SIES’11] Muhammad Adnan, Jean-Luc Scharbarg, Christian Fraboul: Minimizing the search space for computing exact worst-case delays of AFDX periodic flows. SIES’2011, Vasteras, june 2011. [TII’10] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul: Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach. IEEE transactions on industrial informatics, vol. 6, no 4, p. 521–533, november 2010. [ETFA’10] Xiaoting Li, Jean-Luc Scharbarg, Christian Fraboul: Improving end-to-end delay upper bounds on an AFDX network by integrating offsets in worst-case analysis. ETFA’2010, Bilbao, september 2010. [ECRTS’06] Hussein Charara, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul. Methods for bounding end-to-end delays on an AFDX network. ECRTS’2006, p. 193–202, Dresden, July 2006. Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 71 / 72 Thank you for your attention Jean-Luc Scharbarg Université de Toulouse - IRIT/ENSEEIHT/INPT CommunicationJean-Luc.Scharbarg@enseeiht.fr in avionics November 2014 72 / 72
Similar documents
IMA2G
- All target A/C needs can be met by the IMA2G architecture - Adaptation / development cost and lead time are reduced compared to existing standards
More information