IAT13_Imaging and aberration Theory Lecture 10 Further reading
Transcription
IAT13_Imaging and aberration Theory Lecture 10 Further reading
Imaging and Aberration Theory Lecture 10: Further reading aberrations 2014-01-16 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary time schedule 1 2 24.10. Paraxial imaging 07.11. Pupils, Fourier optics, Hamiltonian coordinates 3 14.11. Eikonal 4 5 6 paraxial optics, fundamental laws of geometrical imaging, compound systems pupil definition, basic Fourier relationship, phase space, analogy optics and mechanics, Hamiltonian coordinates Fermat Principle, stationary phase, Eikonals, relation rays-waves, geometrical approximation, inhomogeneous media 21.11. Aberration expansion single surface, general Taylor expansion, representations, various orders, stop shift formulas 28.11. Representations of aberrations different types of representations, fields of application, limitations and pitfalls, measurement of aberrations 05.12. Spherical aberration phenomenology, sph-free surfaces, skew spherical, correction of sph, aspherical surfaces, higher orders 7 12.12. Distortion and coma phenomenology, relation to sine condition, aplanatic sytems, effect of stop position, various topics, correction options 8 9 19.12. Astigmatism and curvature 09.01. Chromatical aberrations phenomenology, Coddington equations, Petzval law, correction options Dispersion, axial chromatical aberration, transverse chromatical aberration, spherochromatism, secondary spoectrum 10 16.01. Further reading on aberrations sensitivity in 3rd order, structure of a system, analysis of optical systems, lens contributions, Sine condition, isoplanatism, sine condition, Herschel condition, relation to coma and shift invariance, pupil aberrations, relation to Fourier optics 23.01. Wave aberrations definition, various expansion forms, propagation of wave aberrations, relation to PSF and OTF 11 12 30.01. Zernike polynomials special expansion for circular symmetry, problems, calculation, optimal balancing, influence of normalization, recalculation for offset, ellipticity, measurement 13 06.02. Miscellaneous Intrinsic and induced aberrations, Aldi theorem, vectorial aberrations, partial symmetric systems 3 Contents 1. Sensitivity in 3rd order 2. Structure of a system 3. Pupil aberrations 4. Sine condition 5. Isoplanatism 6. Herschel condition 7. Relation to Fourier optics and phase space Field-Aperture-Diagram Classification of systems with field and aperture size Scheme is related to size, correction goals and etendue of the systems w photographic Biogon 40° lithography Braat 1987 36° 32° Triplet Distagon 28° Aperture dominated: Disk lenses, microscopy, Collimator Field dominated: Projection lenses, camera lenses, Photographic lenses Spectral widthz as a correction requirement is missed in this chart 24° Sonnar 20° projection 16° 12° double Gauss split triplet projection projection Gauss 8° lithography 2003 diode collimator achromat 0 0.2 0.4 micro 100x0.9 micro 40x0.6 micro 10x0.4 4° 0° constant etendue Petzval disc 0.6 0.8 microscopy collimator focussing NA 5 Sensitivity of a System 4 0 3 0 2 0 1 0 Sph 0 Sp h Sensitivity/relaxation: Average of weighted surface contributions of all aberrations -10 -20 -30 -40 -50 Correctability: Average of all total aberration values 1 2 3 4 5 6 7 8 1 0 9 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 3 0 2 0 1 0 Coma 0 Kom a Total refractive power -10 -20 -30 -40 -50 1 2 3 4 5 6 7 8 1 0 9 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 k F F1 j F j 4 j 2 j 2 Ast Important weighting factor: ratio of marginal ray heights 3 Ast 1 0 -1 -2 1 hj 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4 0 3 0 2 0 CH L h1 CHL 1 0 0 -10 -20 1 2 3 4 5 6 7 8 1 0 9 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 5 0 4 0 3 0 InzWi incidence angle 2 0 1 0 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 6 Sensitivity of a System Quantitative measure for relaxation Aj j with normalization k A j 1 j Fj F h j Fj h1 F 1 Non-relaxed surfaces: 1. Large incidence angles 2. Large ray bending 3. Large surface contributions of aberrations 4. Significant occurence of higher aberration orders 5. Large sensitivity for centering Internal relaxation can not be easily recognized in the total performance Large sensitivities can be avoided by incorporating surface contribution of aberrations into merit function during optimization 7 Sensitivity of a System Representation of wave Seidel coefficients [l] Double Gauss 1.4/50 surfaces Ref: H.Zügge 8 Microscopic Objective Lens microscope objective lens Incidence angles for chief and marginal ray marginal ray Aperture dominant system Primary problem is to correct spherical aberration chief ray incidence angle 60 40 20 0 20 40 60 0 5 10 15 20 25 9 Photographic lens Photographic lens Incidence angles for chief and marginal ray Field dominant system Primary goal is to control and correct field related aberrations: coma, astigmatism, field curvature, lateral color marginal ray chief ray incidence angle 60 40 20 0 20 40 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 System Structure |wj| 0.7 Distribution of refractive power good: small W W 1 N N w2j j 1 0.6 0.5 wj n' j n j 1 m yj nN ' u ' N power : W = 0.273 j 0.4 Symmetry content good: large S 1 S N N s j 1 2 0.3 j 0.2 nj ij 1 sj 1 m n istop n N ' u ' N u' j u j n' n j j 0.1 General trend : Cost of small W and large S : - long systems - many lenses 0 5 10 15 20 25 30 35 j |sj| 0.9 symmetry : S = 0.191 0.8 Advantage of wj, sj-diagram : Identification of strange surfaces 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 5 10 15 20 25 30 35 j System Structure |wj| |sj| 2 1 S = 0.147 W = 0.912 0.8 1.5 Example: optimizing W and S with one additional lens Starting system: 0.6 1 0.4 0.5 0.2 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 |wj| 1 2 |sj| 2 3 4 5 7 8 9 1 10 11 S = 0.147 W = 0.912 0.8 6 1.5 |wj| |sj| 2 0.6 1 S = 0.182 W = 0.586 1 0.8 0.4 1.5 0.6 0.5 1 0.2 0.4 0.5 Final design 0 1 2 3 4 5 6 7 0 0.2 8 9 10 11 12 13 0 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 |wj| 4 6 7 6 79 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 |sj| 3 4 5 12 13 5 8 1 2 2 3 4 5 7 W = 0.586 10 11 8 9 6 1.5 10 111 S = 0.182 0.8 0.6 1 0.4 0.5 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 1 2 3 4 12 13 3 4 5 6 7 8 9 10 11 12 13 Relaxed System Example: achromate with cemented/splitted setup Equivalent performance Inner surfaces of splitted version more sensitive a) Cemented achromate f = 100 mm , NA = 0.1 10 5 0 1 2 3 -5 Seidel coefficient spherical aberration spot enlargement for 0.2° surface tilt -10 -15 b) Splitted achromate f = 100 mm , NA = 0.1 surface index 10 5 0 1 -5 -10 -15 Ref: H. Zügge 2 3 4 surface index Sine Condition ny sin U n' y ' sin U ' Lagrange invariante for paraxial angles U, U‘ sin-condition: extension for finite aperture angle u ny sin u n' y ' sin u ' nU n sin u m n'U ' n' sin u' Corresponds to energy conservation in the system Constant magnification for alle aperture zones Pupil shape for finite aperture is a sphere Definition of violation of the sine condition: OSC (offense against sine condition) OSC = 0 means correction of sagittal coma (aplanatic system) y y y' U U' z y' n n' Optical Sine Condition nu n sin U nu n sin U Condition for finite angles m Condition for object at infinity f Condition for afocal system H 1 h1 H k hk h h u sinU y' In the formulation ms y'p y s n sin U y n sin U U’ x'p xp y the sagittal magnification is used x' yp x U y U U’ y's z' 15 Abbe Sine Condition If for example a small field area and a widespread ray bundle is considered, a perfect imaging is possible dL n' s 'dr ' ns dr n s dr n's 'dr ' n dr cos q n'dr ' cos q ' n cos q n' cos q ' The eikonal with the expression can be written for dL=0 as In the special case of an angle 90°we get with cos(q)=sin(u) the Abbe sine condition m n sin u n' sin u ' with the lateral magnification dr ' m dr Q q dr P s s' q u u' Q' dr' P' 16 Derivation of the Sine Condition surface P Q i marginal ray i' sagittal image plane ideal image plane M'o P'o y u w Po C u' S w y's s R chief ray M's s'M P' s' From geometry sin u sin( i) R Rs Refraction n sin i n' sin i' Division and substitution s 'M R sin i' sin u n sin u Rs sin i sin u ' n' sin u ' y' s 'M R s Rs y sin u sin i ' R s 'M R yn sin u y ' n' sin u ' y 's y s 'M R R s M 'o M 's PPo CM 'o PoC Transfer of Energy in Optical Systems Conservation of energy d 2 P d 2 P' Invariant local differential flux d 2 P L sin u cos u dA du d Assumption: no absorption T1 Delivers the sine condition n y sin u n' y' sin u' y y' F F' n' n dA u u' s s' EnP ExP dA' Vectorial Sine Condition General vectorial sine condition: spatial frequencies / direction cosines are linear related from entrance to exit pupil s xi mx s xo c x s yi m y s yo c y image plane object plane so q0 yo sy0 syi si qi zi zo system Generalization can be applied for anamorphic systems yi Pupil Sphere Sine condition fulfilled: linear scaling from entrance to exit pupil Pupil surface must be sperical The pupil height scales with the sine of the angle entrance pupil sphere object image exit pupil sphere yo y' u hEnP=REnP sin(u) hExP=RExP sin(u') u' REnP RExP object yo spherical pupil surface equidistant h =R sin(u) angle not equidistant Pupil Distortion Sine condition fulfilled: linear scaling from entrance to exit pupil Offence against the sine condition (OSC): Exit pupil grid is distorted Dp Consequences: xap f n sin u 1 1. Photometric effect causes apodization 2. Wave aberration colud be calculated wrong 3. Spatial filtering on warped grid exit pupil xo optical system object sphere distorted entrance pupil surface sx u xp distorted exit pupil grid xp Pupil Distortion Afocal system: n x p w n'x' p w' Lagrange invariant (classical Lagrange invariant for pupil imaging) w m Magnification w' m Sine condition n' x ' p n xp Fulfillment of the sine condition: linear scaling of entrance ti exit pupil xp entrance pupil optical system exit pupil x'p w field angle w' x'p xp z Sine Condition in Microscopic Objective Lens Typical high-NA system Virtual pupil located inside pupil object plane Typical grid distortion exit pupil rear stop chief ray 1 x 10 -3 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 OSC and Apodization Photometric effect of pupil distortion: illumination changes at pupil boundary intensity 1.8 1.6 -0.05 - barrel Effect induces apodization 1.4 Sign of distortion determines the effect: 1.2 no distortion 1 outer zone of pupil brighter / darker Additional effect: absolute diameter of pupil changes 0.8 +0.05 - pincushion 0.6 0.4 0.2 0 -50 mm -20 mm rp 0 10 focused 20 +20 mm 30 40 +50 mm 50 Pupil Aberrations Spherical aberration of the chief ray / pupil imaging Exit pupil location depends on the field height yobject chief rays sP pupil position pupil location Pupil Aberration Interlinked imaging of field and pupil Distortion of object imaging corresponds to spherical aberration of the pupil imaging tan w' Corrected spherical pupil aberration: tangent condition tan w optical system O’ O object image exit pupil stop and entrance pupil Object imaging Pupil imaging Blue rays Marginal rays Chief rays Red rays Chief rays Marginal rays const. Pupil Aberration Eyepiece with pupil aberration eyepiece instrument pupil Illumination for decentered pupil : dark zones due to vignetting lens and pupil of the eye retina caustic of the pupil image enlarged Sine Condition and Coma Linear coma Wc ( x p , y p , y' ) cm y'y p x 2p y 2p m m Transverse aberrations y'c R Wc R y' cm x 2p (2m 1) y 2p x 2p y 2p n' y p n' m m 1 Sagittal coma R y 'c , sag y ' cm a 2 m n' m R Wc ,max (0, a, y ' ) n' a pupil surface R n n' tangential coma sagittal rays sagittal coma upper coma ray S S chief ray T C Sine condition fulfilled: linear sagittal coma vanishes If in addition spherical aberration is corrected (aplanatic): also tangential coma vanishes center of curvature auxiliary axis upper coma ray astigmatic difference between coma rays lower coma ray chief ray sagittal rays chief ray lower coma ray auxiliary axis S spot T Skew Spherical aberration Decomposition of coma: 1. part symmetrical around chief ray: skew spherical aberration yskewsph y' p chief ray upper coma ray sagittal image point S T tangential image point yupcom ylowcom 2 2. asymmetrical part: tangential coma ytangcoma yupcom ylowcom 2 lower coma ray ideal image location exit pupil y' p Skew spherical aberration: - higher order aberration - caustic symmetric around chief ray upper coma ray common intersection point chief ray lower coma ray exit pupil ideal image plane Aplanatic and Perfect Imaging Dspot mm] Perfect imaging on axis due to conic section - not aplanatic: linear grows of coma with field size 100 50 0 Aplanatic: - Perfect stigmatic imaging on axis, spherical corrected - linear coma vanishes: good correction off-axis but near to axis - quadratic grows of spot size due to astigmatism - aplanatic and perfect marginal ray quite different ideal lens 0 1 2 1 2 w in ° Dspot mm] ideal rays real rays real lens 100 sin uideal' = 0.707 sin ureal' = 0.894 50 0 0 w in ° 30 Spherical Corrected Surface Seidel contribution of spherical aberration with 1 1 hj Qj nj j R s h1 j j 1 1 Sj Q n' s ' n s j j j j 4 j 2 j 1 1 h S j j n 2j R s j h1 j 4 Result Vanishing contribution: 1. first bracket: vertex ray hj 0 2. second bracket: concentric Rj s j 3. bracket: aplanatic surface n' j s ' j n j s j Discussion with the Delano formula i'u 2 i sin n n U sin u1 i 'i 2 s'SPH sSPH 1 1 j h sin n'k U 'k sin u 'k j n' j 2 U ' j sin u ' j 2. concentric corresponds to i' = i 3. aplanatic condition corresponds to i' = u 2 1 1 n' s ' n s j j j j Aplanatic Surfaces with Vanishing Spherical Aberration Aplanatic surfaces: zero spherical aberration: 3. Aplanatic s' s u u' und ns n' s' Condition for aplanatic surface: ns n' s' ss' r n n' n n' s s' Virtual image location oblate ellipsoid + power series hyperboloid + power series oblate ellipsoid + power series sphere 2. concentric s' s 0 sphere 1. Ray through vertex prolate ellipsoid + power series s' 0.1 aplanatic 0 vertex concentric -0.1 -0.2 Applications: 1. Microscopic objective lens 2. Interferometer objective lens -0.3 -0.4 -0.5 0 50 100 150 200 250 300 S Aplanatic Lenses Aplanatic lenses Combination of one concentric and one aplanatic surface: zero contribution of the whole lens to spherical aberration Not useful: 1. aplanatic-aplanatic 2. concentric-concentric bended plane parallel plate, nearly vanishing effect on rays A-A : parallel offset A-C : convergence enhanced C-A : convergence reduced C-C : no effect 33 General Aplanatic Surface General approach of Fermat principle: aplanatic surface r oval surface n r 2 ( z s)2 n' r 2 (s' z )2 s' n'ns Cartesian oval, 4th order P' P S z s Special case OPD = 0: s' n' ns Solution is spherical aplanatic surface n r 2 ( z s) 2 n' r 2 (n / n' s z ) 2 0 n / n'2 r 2 z 2 s 2 2 zs r 2 z 2 n / n'2 s 2 2 zsn / n' 2 z 2 n 2 / n'2 1 2 zsn / n' n / n' r 2 n 2 / n'2 1 0 2 sn 2 z r n n' sn n n' 2 s' 34 Isoplanatism General definition of isoplanatism: - Invariance of performance for small lateral shifts of the field position - spherical aberration not necessarily corrected Usual simple case: near to axis Consequences: - vanishing linear growing coma - caustic symmetrical arounf chief ray Isoplanatism Condition of Staeble-Lihotzky Sagittal coma aberration: from the geometry of the figure and Lagrange invariant S ' s p ' y ' n sin u y 's m m n' sin u ' S ' s p ' ssph ' Condition of Staeble-Lihotzky s' s p ' Problems: - no quantitative measure - only tangential rays are considered - integral criterion S ' s p ' n sin u m m n' sin u ' P' t Q't marginal ray ys' chief ray Q's projection of sagittal coma ray optical axis ys' y' u' Q' s' P' s' S' sp' exit pupil last surface real tangential image plane ideal gaussian image plane 36 Isoplanatism from Wave Aberrations W Lateral shift of object point dW dy n sin u dy Change in image dy' ' dy' R' ds' R' ds' m dy R' R' u chief ray Isoplanatism R' ds' n' sin u ' R' 1 n sin u R' ds' 1 0 m n' sin u ' R' n sin u m dy' P s' R Change of wave aberration must be equal dW ' dy' 'n' sin u ' m dy dy'' R'ds' n' sin u ' R' R' 37 Isoplanatism Berek's condition of proportionality S ' s p ' m Berek's coincidence condition s' S ' s' n sin u m n' sin u ' S ' s p ' n sin u m n' sin u ' s p ' const. Isoplanatism in case of defocussing: can only be fulfilled in one plane or for telecentricity s' p sp s ' p s p d 1 cos u ' 1 1 1 cos u s' p z ' s' p z ' s p z s p z Piecewise Isoplanatism Invariance of PSF: to be defined MO not plane 40x0.85 isoplanatic patch size in mm Strehl 1% Psf correlation 0.5% Strehl 1% Psf correlation 0.5% on axis 70 72 81 100 half field 3.8 3.8 27 3.1 field zone 2.5 2.5 29 39 full field 45 3.8 117 62 System Possible options: 1. relative change of Strehl 2. correlation of PSF's Examples for microscopic lenses with and without flattening correction In medium field size: small isoplanatic patches On axis: large isoplanatic area MO plane 100x1.25 isoplanatic patch size in mm 1 0.9 Criteria not useful at the edge for low performance Plane MO 100x1.25 0.8 0.7 Strehl correlation 0.6 0.5 0.4 correlation Strehl 0.3 no plane MO 40x0.85 0.2 0.1 0 normalized field position 0 0.2 0.4 0.6 0.8 1 Offence Against the Sine Condition Conradys OSC (offense against sine condition): - measurement of deviation of sagittal coma - quantitative validation of the sine condition yp CR P'1 Q'1 y's y ' y ' n sin u S ' s p ' OSC t s 1 yt ' m n' sin u ' s ' s p ' y' Q's y't y's ExP z P' Q' ideal Only sagittal coma considered in case of OSC=0 the Staeble-Lihotzkycondition is automatically fulfilled Wcoma ( y, rp ,0) rp yt OSC n sin u yt ' 3 y m n' sin u ' P't Q't marginal ray y' t chief ray Q's sagittal coma ray OSC allows for the definition of surface contribution y o y' s optical axis Q' s' P' s' S' (Qk Q'k ) nk ik(CR) sin w1 OSC sin u1 k h' k n ' k u ' k real ideal tangential gaussian image plane image plane exit pupil OSC Coma and isoplanatism are strongly connected exit pupil yp tangential coma rays y' coma spot xp x' sagittal coma rays chief ray image plane Vectorial OSC: linear scaling of spatial frequencies: perturbation of the linearity 1 v 'apl vapl mp 1 v v ' v 'apl x , yW l 41 General Invariant of Welford Rotation around axis for small angle calculation of change in wave aberration Welfords condition dW n'd ' p', D', e ' n d p, D, e All other conditions can be obtained as special cases: 1. sine condition 2. off axis isoplanatism 3. Herrschel condition 4. Smith cos-invariant Surface p' axis of rotation d' p D' ray s' q' d D s q n n' Cos-Condition of Smith From Eikonal theory: General condition of Smith: Invariance of the scalar product n d s en'd s 'e ' n dr cos q n'dr ' cos q ' Q' Q dr P dr' q Special case: P on axis, q = 90°: Abbe sine condition, invariant transverse magnification Special case: P on axis, q = 0°: Herschel condition, invariant axial magnification P' q' Herschel Condition Herschel condition: Invariance of the depth magnification z n sin 2 u u' z 'n' sin 2 2 2 In principle not compatible with the sine condition Therefore a perfect imaging of a volume is impossible u P dz Q u' P' dz' Q' 44 Overview Aplanatism-Isoplanatism Overview on conditions for aberrations and aplanatism-isoplanatism Nr Sine cond. Isoplanat cond. 1 # # 2a # 2b # 3a 3b Isoplanatism condition Spherical aberration Sagittal coma Tangential coma Imaging system # # # general OSC=0, Conrady # 0 # isoplanatic-I Staeble-Lihotzky / Berek # 0 0 isoplanatic-II 0 0 0 (skew) 0 Isoplanatism Conrady OSC Tangential coma Sagittal coma 0 Isoplanatism StaebleLihotzky sine condition sine condition off-axis axial Aplanatism Aplanatism 0 0 0 0 Spherical aberration Skew Spherical aberration 0 0 0 0 axial aplanatic 0 off-axis aplanatic 45 Overview Overview on invariants and conditions general invariance (Welford) only translation cos-law (Smith) change object position dy off axis isoplanatism special on axis y'=0 axis isoplanatism (Staeble-Lihotzki / Berek) only transverse translation special for sph=0 sine condition (Abbe) translation along z off axis z-invariance (Herrschel special on axis x'=y'=0 on axis z-invariance (classical Herrschel) Phase Space: 90°-Rotation Transition pupil-image plane: 90° rotation in phase space Planes Fourier inverse Marginal ray: space coordinate x ---> angle q' Chief ray: angle q ---> space coordinate x' image location Fourier plane pupil marginal ray x' x q' q chief ray f Nearfield - Farfield 2f-setup: Fourier-conjugated planes Angle and spatial frequency are equivalent q v l x' x Angle- and spatial coordinate are interchanged: x ---> q' q ---> x' Corresponds to nearfield <---> farfield Relationship: q' x f , x' f q pupil Fourier domain angle/frequency object space spatial domain coordinate x u u f f Helmholtz-Lagrange Invariant Product of field size y and numercial aperture is invariant in a paraxial system L n y u n' y'u' The invariant L describes to the phase space volume (area) The invariance corresponds to 1. Energy conservation 2. Liouville theorem 3. Constant transfer of information marginal ray object y' u y u' chief ray system and stop image Helmholtz-Lagrange Invariant arbitrary z pupil image y yp y' Basic formulation of the Lagrange invariant: Uses image heigth, only valid in field planes O' Q chief ray y'CR yMR marginal ray General expression: 1. Triangle SPB S y w' CR s'ExP 2. Triangle ABO' y'CR w's's'ExP 3. Triangle SQA u' 4. Gives L n'u ' y'CR n' B yCR A P s'Exp s' yMR s' yMR w's' s'ExP n' yMR w'u ' w' s'ExP s' 5. Final result for arbitrary z: L n'w' yMR ( z ) u' yCR ( z ) z 50 Photometry in Phase Space p Radiation transport in optical systems Phase space area changes its shape 2sinu' Finite chief ray angle: parallelogram geometry y sinw' 2sinu y' y lens 2y stop 2y' y' U U' w' y s s' Aberrations in Phase Space pupil u u • Angle diviations due to aberrations in the pupil x focus u • Increased spatial extention in the focus region x x Ray Caustic • Special case of vanishing determinante of Jacobian matrix: ray caustic • Singulare solution of the wave equation • Two ray directions in one point • Special characterization with Morse- and Maslov index u xc x caustic Uncertainty Relation in Optics 1. Slit diffraction q q Diffraction angle inverse to slit D D width D q l D 2. Gaussian beam x Constant product of waist size wo and divergence angle qo w0q 0 l qo wo z Light Sources in Phase Space Angle u is limited u Typical shapes: Ray : point (delta function) Coherent plane wave: horizonthal line Extended source : area Isotropic point source: vertical line Gaussian beam: elliptical area with minimal size point source LED gaussian beam spherical wave plane wave (laser) ray x u quasi continuum Range of small etendues: modes, discrete structure Range of large etendues: quasi continuum discrete mode points x