!" SACM 645 !"#$%

Transcription

!" SACM 645 !"#$%
!" SACM 645 !"#$%&' 104 (2010) 19-23
!"#$%
Effects of Gas Nitriding on the Corrosion Properties of
SACM 645 Steel
*
L. H. ChiuF. S. ChenS. H. Yeh
Received 3 November 2009; received in revised form 5 March 2010; accepted 16 March 2010
!" JIS SACM 645 !"#
!"#$%&'()*+,-. !"
!"#$%&'()*+,-."/
OM HV XRD GDS !"#$
!"#$%&'()XRD !"#$
SACM 645 !"#$%&'()*+,
Fe2-3N !"#$%&'()%&*+
1000 ~ 1100 HV 0.1 !"#$%
SACM 645 !"# Fe 2-3N Fe 4N !"#$%&'( )*#$+,-.
! SACM 645 !"#"$%
Abstract
This research is to study the effect of the
nitrided case produced by gas nitriding processes
on the corrosion resistance properties of the JIS
SACM 645 steel. In gas nitriding, the effect of
different substrate hardness and nitriding holding
time was compared. Treated specimens were
characterized by means of microstructural
analysis, microhardness measurements, X-ray
diffraction analysis, glow discharge spectrometer
analysis and electrochemical tests in NaCl
1
* !"#$
aerated solutions. The hardness of surface
layers of the nitrided specimens was in the
range between 1000-1100 HV0.1, and the phases
of the nitrided case were consisted of Fe 2-3 N
and Fe4N, that can increase corrosion resistance
of JIS SACM 645 steel.
Keywords: S A C M 6 4 5 , G a s n i t r i d i n g ,
Corrosion resistance, Polarization
curve
1. !"#$%&'()*+,-./
!"#$%&'()*+,-.*/
!"#$%&%'((1-2) !"#$
!"#$%&'()*+,-./01
!"(3) (4-12) !"#$%&
!"#$%&'()*+(,-$."
!"#$% 500 ~ 600°C !"#
!"# 900°C !"#$%&'(
!"#$%&'()*+,-./01
(4)
!"#$%&'()*+,-./
!"#$%&'()*+,-./01
!"#$%&'()*+#,-!"
!"#$%&'()*+,"-./0
!"#$%&'()*+,-./0
%
! e-maillhchiu@ttu.edu.tw
~ 19 ~
!"#$%&' 104 (2010) 19-23
!"#$%&'()*+),-./0
!"#$%&'()*+,-.*/0
!"#$%&'()*+,- ./0
!"#$%&'()*'(+,$-.
!"#$% &'()*+,!"-.
!"#$%&'()*+,-./01
!"#$%&'()*+'(,-./
!"#$% &!'()*+,-./
JIS SACM 645 !"#$%&'()
!"#$%&'()*+,-. SACM
645 !"#$%&'()*+,-./
!"#$%&'()SACM 645 !
Table. 1 Chemical composition (wt%) of JIS SACM
645 steel.
2. !
2.1 !
!"#$%&'(# JIS SACM 645
!"#$%&'()*+,-. (GDS)
!"#$%&'()1 !880°C
!"#$%&'650°C 30 HRC
!"#$%&'() 25 mm !"
ϕ20 mm × t5 mm !" #$%&'
!"# 1200 !"#$%&'()
! 5 !"#$%&'()#$*
!"#$%&'()*+ 2 100 !"#$%&'()*+, !"#$%
2.2 !
!"#$%&'( UBE-MM-2 !"#$%&'()*+,%&-./
!"#$%&'( 530°C ! 12 24 48 96 !"#$%&'( 530°C
!"#$%&'()*"+,-./0
!
2.3 !
2.3.1 !"
Nital 5 ml +100 ml !"#$%&'()*+,-.%/0
(Nikon OPTIPHOT-100) !"#
2.3.2 !"
!"#$% (Vickers) !"
wt%
C
Si
Mn
Cr
Mo
Al
SACM 645
0.48
0.22
0.53
1.66
0.16
1.01
Table. 2 Nomenclatures of specimens and treatments.
X-TMS
XC-GNY
!"
! X HRC
! X HRC 530°C Y 2.3.3 XRD Regaku X !"#$% (λ =
0.15418 nm) !"#$%&'()* 20°
110° !"#$%& 0.4 2.3.4 !"#
LECO SDP750 ! " # $ %
(Glow Discharge Optical Emission Spectrometer, GDOS) !"#$%&'()*
!"#$%&'() 700 V 20
mA !"#$%&'()*+$,2.3.5 !
!"#3.5% NaCl !"# $
-900 mV ~ 600 mV !" 1 mV/s !"#$%&'()*+, 1 !
!"#$%&'($%)*+&,-$
3. !"
3.1 !"
2 (a) ~ (d) !"#$% 30
HRC !"# 530°C ! 12 24 48 96 SACM 645 Nital !"#$% 2 !"#$%&'(
!"#$%&'()*+,-./01
~ 20 ~
WE
RE
CE
!"#$%&' 104 (2010) 19-23
500
Sample
Case depth (µm)
450
400
350
300
250
3.5% NaCl Solution
200
0
Fig. 1 Schematic diagram of the flat cell used for
polarization corrosion test, WE: working
electrode, RE: reference electrode, CE: counter
electrode.
(a)
(b)
(c)
(d)
Fig. 2 Micrographs of SACM 645 specimens nitrided
at given processing conditions, (a) 30C-GN12,
(b) 30C-GN24, (c) 30C-GN48 and (d) 30CGN96.
!"#$%&'()*+,(),( 15 µm !"# 1000 HV !"#$%&'()*+,$-+,$
!"#$%&'()*+,-./012
!"#$%&'()*+,-./01
!"#$%&'()*+,
2 !"#$% 12 !"#
!"#$%&'()*+!,-./0
!"#$%&'()*+,-./0
!"#$%&' 250 300 400 500
20
40
60
80
Nitriding time (hr)
100
Fig. 3 Case depth of specimens at different nitriding
time.
µm !"#$%&'()*+,-./
!"#$%&'()* !+,-. 24
!"#$%&'()* +,-.$/
48 96 !"#$%&'(!'
!"#$%& !'()*+, 3 !"#$%&'()*!+
!"#$%&'()*+ 12 !"
96 !"#$%&' 250 µm 480
µm !"#$%&''()*+,-.
!"#$%!&'()*+,-./
!"#$%&'()*+
3.2 !"
4 !"#$%&'()*530°C
!"#$%&12244896 !
!"#$%&'( 1000 ~ 1100 HV !"#$%& '() !*+
!"#$%&'()*+,-.*/0'
!"#$%&'()*+,-./0
!" 290 ~ 320 HV ! "#$
! 3 !"#$%&'()*+,
!"#$"#%&'()*+,- (≥ 550
HV) 12 230 µm 96 480 µm Suh(13) SACM 645 !"#$%&'()*+,-./0
3.3 XRD 530°C ~ 21 ~
! 48 SACM 645 !"#$%&' 104 (2010) 19-23
: Fe2O3
30C-GN12
30C-GN24
30C-GN48
30C-GN96
800
: Fe4N
: Fe3N
:M
Substrate
200 µm
Intensity
Hardness (Hv0.1)
1000
600
110 µm
30 µm
400
200
Substrate
200 400 600 800 1000 1200 1400
Distance from surface (µm)
Fig. 4 The microhardness profile of specimens
nitrided at given conditions.
!"#$ %& 30 110 200 µm
!"#$X-ray !"#5 !
!"#$%&'()*+,-./
(Fe2O3) !"#$%&"'()*+,&
!"#$%&'()*+,- .
!"#$%&'()*+,-.
!"#$%&'()*+,"-*.
!"#$% 30 µm XRD Fe3N Fe4N !"#$%&'
!"#$%&'()*+,-./*'
ε (Fe 3N) !"#$%# γ′
(Fe4N) !"#$% 110 200 µm XRD !"#$%&'()*+$,
!"#"$%&'()*+,-./0
!"#$%!&'()*+,-./0
!"#$%&'()*+,-./01
!"#$%&'()*& +,-./
!"#$%&'()*+,-)*.
!"#$%&'()*+,-./0
!"
3.4 !"#
SACM 645 530°C 48 GDOS !"#$%&' 6 ! GDOS !"#$%&'()
!" 2 ~ 4 at% !"#$%&'
3 µm !"#$%&'()*+,-.
!"#$%& 3 µm !"#$%
40
60
80
2θ (Degree)
100
Fig. 5 XRD patterns of substrate and gas nitrided
layers at 530°C × 48 h.
12
10
Concentration (at%)
0
N
8
6
4
O
2
0
0
10 20 30 40 50 60 70 80 90 100
Depth (µm)
Fig. 6 The element concentration profile analysis for
the SACM 645 specimens nitrided at 530°C ×
48 h.
5 XRD !"#$%&'()*
!"#$%& 9 ~ 11 at% !"
!"#$%&'()*+,-./01
!"#$%&'()*+,-./01
3.5 !
30 HRC 530°C !
12 24 48 96 SACM 645 3.5 wt% NaCl !"#$%&' 7 !"#$%#&'()*+!,-./
!"#$%&'( (Icorr) 8.1 × 10–6
A/cm2 7 !"#$%&'(30 HRC
~ 22 ~
Potential (Volts)
1.0
0.5
!"#$%&' 104 (2010) 19-23
!"# SACM 645 !"#$%
GN48
30-TMS
GN24
30C-GN12
30C-GN24 GN12
GN96
30C-GN48
30C-GN96
!"#$%&' SACM 645 !"#$%&'()
0
30-TMS
-0.5
-1.0 –9
10
10–8
10–7 10–6 10–5 10–4
Current Density (A/cm2)
10–3
10–2
Fig. 7 Potential dynamic curves of SACM 645 specimens nitrided at given processing conditions.
!"#$%&'()*+,-./01
!!"#$%&'()*+,-./0
!"#$%&&'()*+,-.()
!"#$%&'()*+,-./01
(order) !"#$%&'()*+,- ε (Fe2-3N) γ′ (Fe 4N) !"#$%&
!"#$%&' 530°C ! 12 24 48 96 !"#$%&'()*+
!"#$%&'()* SACM 645 !"#$
4. 1. SACM 645 530°C !"#$%
!"#$%&'()!*+,-.
!"#$%&'()*+,#$-.
!"#$%&'()*+$%,-.
!"
2. XRD !"#$%&'( ε (Fe2-3N)
γ′ (Fe4N) !"#$%&'()
!"#$%&'( GDOS !"
!"#$%&'()*+,-.+
!"#$%&'()*+,-.
!"#$%&'() N !"#
3. 530°C !"#$% SACM 645 !"#$%&'()*+,-./
!"#$%&'()*+,-.
!"
1. ! !"#$% !"#$%&'
!"#$ 62 (1999) pp. 49-77.
2. ! !"#$% !"#$%&'
(2) !"# 63 (1999) pp. 63-71.
3. !"#!$%&!'()!*+,-./
65 (2000) pp. 17-28.
4. !"#$%! 13(2) (1981) pp. 21-33.
5. J. Baranowska, M. Wysiecki, “Influence of surface
pretreatment on case formation during gaseous
nitriding,” Surface and Coating Technology, 125,
2000, pp.30-34.
6. S. Abisset, F. Maury, R. Feurer, M. Ducarroir, M.
Nadal, M. Andrieux, “Gas and plasma nitriding
pretreatments of steel substrates before CVD growth
of hard refractory coatings,” Thin Solid Films,
315, 1998, pp.179-185.
7. C. Allen, C.X. Li, T. Bell, Y. Sun, “The effect of
fretting on the fatigue behavior of plasma nitrided
stainless steel,” Wear, 254, 2003, pp.1106-1112.
8. F. Ashrafizadeh, “Influence of plasma and gas
nitriding on fatigue resistance of plain carbon
Ck45steel,” Surface and Coating Technology,
173-174, 2003, pp.1196-1200.
9. G.H. Farrahi, H. Ghadbeigi, “An investigation into
the effect of various surface treatments on fatigue
life of a tool steel,” Journal of Materials Processing
Technology, 174, 2006, pp.318-324.
10. M. Pelllizzari, A. Molinari, G. Straffelini, “Thermal
fatigue resistance of gas and plasma nitrided
41CrAlMo7 steel,” Materials Science and Engineering, 352, 2003, pp.186-192.
11. J.G. Buijnsters, P. Shankar, J. Sietsma, J.J. ter
Meulen, “Gas nitriding of chromium in NH3-H2
atmosphere,” Materials Science and Engineering,
341, 2003, pp.289-295.
12. A.E. Zeghni, M.S.J. Hashmi, “The effect of coating
and nitriding on the wear behavior of tool steel,”
Journal of Materials Processing Technology, 155156, 2004, pp.1918-1922.
13. C.M. Suh, H.K. Jang, “Effects of surface hardening
and residual stress on the fatigue characteristics of
nitrided SACM 645 steel,” International Journal of
Modern Physics B, 17(8 & 9), 2003, pp.1633-1639.
~ 23 ~

Similar documents