an example for microgrid in industrial

Transcription

an example for microgrid in industrial
NATIONAL RENEWABLE
ENERGY CENTRE
RENEWABLE ENERGIES GRID
INTEGRATION
D
AN EXAMPLE FOR MICROGRID IN
INDUSTRIAL ENVIRONMENT: CENER’S
MICROGRID
Microgrid – A building block
for smart grids
Brussels, 27 January 2012
INDEX
00
01
02
03
0
04
05
06
07
08
09
Renewable Energies Grid Integration Department
Background
General Objectives
Specific Objectives
Localization
l
Description
Operation Models
Simulation Models
Control Strategies
Some Future Activities
2
00 IRE DEPARTMENT
 OBJECTIVE: Renewable energies grid integration
analysis and definition of solutions to improve the
RES penetration
-1 .0
Ia
A
A
Ib
B
B
C
Ic
C
C
0 .0 0 1
B
C
Vc
P_red (MW)
Q_red (MVAr)
V_viento (m/s)
P
Power
Q
A
B
Frecuencia (Hz)
Vw
f
W in d S o u rc e
NA
ph
0
0.5
ES
Freq/Phase Vrms
Measurement
Veficaz_red (kV))
Wound
rotor
induction
machine
NB
NC
N
1
Grid
connectio
n model
W in d Tu rb in e
Vw
Tm
W
P
Tm _ tu rb (p .u .)
Vvie n to
Wpu
w _ m e c_ g e n
Wind
Wi
d
model
C a lcu lo
ve lo c id a d
m e ca n ica
Wm ec
P _ tu rb (p .u .)
w_mec_gen (p.u
u.)
 Storage Energy
 Grid Integration: Distributed Generation + Integration + High Voltage
A
B
Va
IM
TL
*
Main...
Integration
- Analysis of the response of the electromagnetic transients
phenomena (overvoltages)
- HVDC Configurations
- Measurements of electrical variables and data acquisition
services.
- Development
p
of virtual test p
platforms
- Potential of wind power generation penetration in electric
power systems: Power flow analysis and Dynamic response of
the electrical system
S
Vb
Vviento
 2 main areas:
A
W
1 .0
TIME
Cp
Wind turbine model
Cpm
C p m N 5 0 8 5 0 .txt
High Voltage
- Lightning protection
- Installations risk analysis for lightning discharges
- Lightning protection systems design
- Lightning prevention systems design: 2D and 3D
electric
field simulation
- Grounding systems design
- Complex soils
- Frequency behavior
Energy Storage
Distributed Generation
- Characterization,, models development
p
and testing
g
- Smart grids
storage systems
- Design and optimization
- Technical-economic feasibility studies of Energy Storage
- Implementation
Systems (ESS) integration with RES
- Control development (management strategies)
- Experimental studies of renewable power plants (wind)
- Simulation models development (hardware in the loop)
with energy storage systems
- Storage systems integration
- Virtual Storage or Load Management
3
01 BACKGROUND
• Navarra Goverment wanted developing the energy business sector of
Distributed Generation ((DG)) in Navarra g
generating
g own technology
gy and
knowledge
• To achieve this aim the Department of Innovation, Enterprise and
Employment of Navarra Government and European Union through FEDER
funds financed the project “Microgrids in Navarra: design, development
and implementation”
4
02 GENERAL OBJECTIVIES
The main goal of this project is the design of microgrids with control
strategies to allow its different elements optimization adding new
functionalities, assuring load supply in isolate mode, attenuating
disturbances in connected mode and collaborating with the grid to
stability maintenance
5
02 GENERAL OBJECTIVIES
 Design and develop a microgrid to make it scalable and movable to
other cases
 Define the requirements to carry out
• Assure electrical supply to its loads
• Minimizing disturbances to the upstream grid
• Support the upstream grid to maintain the stability
• …
 Dimension and define equipment specifications
 Design the auxiliary installations
 Develop control methodology
 Develop communication protocols
 Research microgrid effects in the grid
6
03 SPECIFIC OBJECTIVIES
 Manage the generated power at each moment to assure load supply
 Achieve
A hi
that
th t th
the lload
d power consumed
d it comes from
f
renewable
bl
sources. This way it promotes the energetic independency of our
installations
 Protect installations from grid or microgrid faults
 Send the energy excess to the grid, getting that the microgrid will be
an active part of the distribution net
7
04 LOCALIZATION
Sangüesa
SPAIN
8
05 DESCRIPTION: PRESENT
 Microgrid aimed at industrial application
 AC architecture
hit t
with
ith a power off 75 kW aprox
 Supplying
pp y g part
p
of Wind Turbine Test Laboratory
y–
LEA- electric loads and Rocaforte industrial area
lightning
 It also will be used as a test bench to new
equipment, generation systems, energy storage,
control strategies and protection schemes
 It could operate as connected as isolate modes
9
05 DESCRIPTION: EQUIPMENTS
10
05 DESCRIPTION: EQUIPMENTS
GENERATION
G- Diesel Generator 55 kVA
G- Photovoltaic Installation 25 kWp
G- Wind turbine 20 kW full-converter
11
05 DESCRIPTION: EQUIPMENTS
STORAGE SYSTEMS
S- Acid Pb Bateries, 50 kW x 2 hours
12
05 DESCRIPTION: EQUIPMENTS
STORAGE SYSTEMS
S- Redox Battery 50 kW x 4 hours
13
05 DESCRIPTION: EQUIPMENTS
LOAD
CONTROL AND MANAGMENT SYSTEM
L- Three-phase load 120 kVA
14
05 DESCRIPTION: EQUIPMENTS
MICROGRID SCHEME:
 Common low voltage busbar for all equipments
 Loads
d ffeeding
d
through
h
h public
bl grid
d or microgrid
d
busbar
 Flexible Working
 Switch on/off control of each equipment
 P/Q references per phase control to supply or
absorb
b
bb
by storage systems
Operation modes selector and managment
control versions
 P/Q references per phase control to supply by
diesel generator
 Pmax restrictions control for renewable
generation systems
15
05 DESCRIPTION: CONTROL SYSTEM
MAIN CONTROL PANEL:
 Design and implementation made by CENER
 System based on Siemens PLC S//300
- Installation robustness
- Widely test and use in industrial environment
- Software development
p
made by
y CENER


Energy Managment Application
Equipment Control Application
16
05 DESCRIPTION: SCADA SYSTEM
SCADA SYSTEM:
 Design and implementation made by
CENER
 Developed using Siemens Simatic WinCC
tool
 Access through Internet
 Possibility to control the whole installation
in real time
 Possibility to display the function
parameters in real time
 Data Storing in the server
17
05 DESCRIPTION: SCADA SYSTEM
Flow battery Screen
PV installation screen
18
05 DESCRIPTION: SCADA SYSTEM
Data Display
p y (Figures
( g
and Data Sheets))
Events Display (alarms,
transients stopps,…)
transients,
stopps )
19
05 DESCRIPTION: PROTECTION SYSTEM
PROTECTION AND MEASUREMENT SYSTEM
 Protection system for connected and isolated mode
 Integrated measurement system makes it possible
to an optimal energy control
Protection data reading
Individual protection for
equipments
 Internal measurement calibration to assure the right
operation and quality standards
UTILITY PROTECTION SYSTEM
 Relay communication assisted by Iberdrola in case
of lack or defect in medium voltage net of which our
installation is connected (Immediate tripping the
header switch)
Relay of min/max
voltage
Relay
communication
assited
 Relay of minimum/maximun voltage detection
(Immediate tripping the header switch)
20
05 DESCRIPTION: COMMUNICATIONS
Communication
cabinet and Server
- Modbus RTU
- Ethernet
- Optical Fiber
 Data storage in CENER server
 Integrated into teh CENER network
 Access from any point as CENER as
external one
Optical Fiber to
Ethernet conversor
MODBUS Modules
21
05 DESCRIPTION: FUTURE
 Generation: Gas MicroTurbine 30 kW with thermal use (heat and cool)
 Storage Systems:
o Supercapacitors 30 kW, 45 s
o Supercapacitors 10 kW, 4 s
o Electric Vehicle
22
06 OPERATION MODES
GRID CONNECTED
The objective is to manage the generation and demand to achieve
high ratios of self-sufficiency energy
Generation
Resources
prediction
Distribution Grid
Control
System
Users
Energy costs
Energy
Control signals
Electricity Storage
23
06 OPERATION MODES
ISOLATED
The main objective is supply the community demand
Generation
Users
Energy
Electricity Storage
24
07 SIMULATION MODELS
t
Clock
13
Paero
Paero
v
Qaero
i
Kaero
A
A
B
C
C
C
b
B
Acometida aerogenerador
Aerogenerador
[Paero ]
[Vabc ]
Vabc A
Iabc
B
a
b
C
c
a
com
A
B
Objectives:
14
Qaero
cálculo
potencias
Perfil _viento
0
c
Plimite _aero
Contactor Aerogenerador
v
Pfotov
i
Qfotov
 Management system validation
15
Pfotov
16
Qfotov
cálculo
potencias 2
48
Va_red _conectado
42
Pa_red _conectado
49
Vb _redconectado
Kfotov
45
Qa _red _conectado
50
Vc_redconectado
Pa_red
PQ_A
[Vabc ]
Vabc
P_Q_Fase_A
Iabc
P_Q_Fase_B
Qa_red
43
Pb_red _conectado
Qb_red
Pc_red
Freq _fases _abcP_Q_Fase_C
Fr
Qc_red
PQ_C
Frecuencia de la red
por fases 3
Medidor P _Q Monofasico 2
Filtrado 1
A
A
B
B
C
C
com
a
b
B
Plimite _fotov
Vabc A
Iabc
B
a
b
C
c
A
Pot _Fotov 30 min
[Vabc ]
0
c
C
Acometida photovoltaica
Pb_red
PQ_B
Paneles fotovoltaicos
[P_fotov ]
Pa_Pb
Contactor fotovoltaica
17
46
Qb_red _conectado
[Pmed _Pb_faseA ]
20
44
Pc_red _conectado
Pa_Pb
Vabc
18
Qa_Pb
47
Qc_red _conectado
Qb_Pb
Freq_fases _abc
Qc_Pb
[Pmed _Pb_faseB ]
Pc_Pb
Kgeneradores
A
A
B
B
Vabc
aislado
Iabc
N
C
C
a
B
b
com
Vabc A
Iabc
B
a
b
C
c
a
A
b
b
Red Electrica
A
a
B
c
Medición Lado Alta
a
Frecuencia de la red
por fases
A
b
c
C
21
Qb _Pb
19
Pc_Pb
22
Qc_Pb
SOC _Pb
Modulo de baterias Pb
35
C
Vbat_elevador
SOC_bat_Pb
SDS
[Vbat _elevador ]
P_carga_faseA
[SOC _bat _Pb]
Trafo
Pbat _Pb_A
Q_carga_faseA
[VDC_bat _Pb]
Vdc_bat_Pb
Qbat _Pb_A
P_carga_faseB
Pbat _Pb_B
Q_carga_faseB
Kbat _Pb
Pa_cargas _LEA
1
_cargas
g _
_LEA
Qa _
A
A
B
B
B
C
C
Pa_carga_LEA
Qa_carga_LEA
2
Qb _cargas _LEA
Pb_carga_LEA
C
Fase C
c
Qc_carga_LEA
P_Q_Fase_A
Vabc
PQ_B
P_Q_Fase_B
Iabc
PQ_C
Medidor P _Q Monofasico 4 Frecuencia de la red
por fases 4
P_Q_Fase_CFreq _fases _abc
23
38
Vb_red _aislado
[Pmed _flujo _faseA] Pa_flujo
39
Vc_red _aislado
26
Qa_flujo
Pa_flujo
Qa_flujo
Pb_flujo
Qb_flujo
Pc_flujo
Qc_flujo
Vabc
Vabc
_cargas _LEA _30 m
Iabc
A
_cargas _LEA _30 m
Acometida Cargas LEA
Iabc
Contactor Cargas LEA
_cargas _LEA _30 m
A
A
B
B
b
C
C
c
a
a
B
com
_cargas _LEA _30 m
_cargas _LEA _30 m
Pb_carga_Pol
9
Qc _cargas _Pol
0
Pbat _flujo _B
0
Kbat _flujo
com
PQ_A
Vabc
P_Q_Fase_B
Iabc
PQ_C
Medidor P _Q Monofasico 5 Frecuencia de la red
por fases 5
Qb_carga_Pol
P_Q_Fase_CFreq _fases _abc
Pc_carga_Pol
Qc_carga_Pol
A
A
A
B
B
B
C
C
C
Acometida batería Flujo
Fr
A
Pbat _flujo _C
Iabc
a
0
B
a
b
P_Q_Fase_A
PQ_B
27
Qb_flujo
25
Pc_flujo
Pbat _flujo _A
SOC_flujo
C
Vabc
Qa carga Pol
Qa_carga_Pol
24
Pb _flujo
28
Qc_flujo
Modulo de baterias Flujo
36
c
[Pmed _flujo _faseB ]
[Pmed _flujo _faseC]
Medidor P _Q Monofasico 3
Frecuencia de la red
por fases 1
B
C
[Vabc ]
11
Pc_cargas _Pol
Kcargas _LEA
A
b
Pa _cargas _Pol
Pa_carga_Pol
Freq_fases _abc
Fr
_cargas _LEA _30 m
8
Qb_cargas _Pol
[Pmed _Pb_faseC ]
37
Va_red _aislado
Fr
Sistema _ Cargas _LEA
10
Pb _cargas _Pol
P l
[Pmed _Pb_faseB ]
Pmed_faseC
Contactor baterias Pb
Filtrado 2
7
Qa_cargas _Pol
[Vabc ]
[Pmed _Pb_faseA ]
Pmed_faseB
PQ_A
Pc_carga_LEA
6
 System response due to different events
Pbat _Pb_C
Qbat _Pb_C
Vabc
Pmed_faseA
Fase B
Qb_carga_LEA
5
Pc_cargas _LEA
3
Qc_cargas _LEA
Qbat _Pb_B
Q_carga_faseC
B
b
c
C
Acometida batería Pb
4
Pb_cargas _LEA
a
b
P_carga_faseC
Fase A
Vabc A
Iabc
a
com
A
 Development of different energy management
strategies
[Pmed _Pb_faseC ]
Medidor P _Q Monofasico
B
c
C
c
C
Fr
com
Qa _Pb
Pb_Pb
Pb_Pb
Iabc
[Vabc ]
b
[Pmed _flujo _faseA]
C
c
[Pmed _flujo _faseA]
c
[Pmed _flujo _faseA]
Contactor bateria Flujo
Filtrado 3
12
Sistema _ Cargas _Alumbrado _Poligono
Vabc
_cargas _Pol _30 m
A
a_cargas _Pol _30 m
Acometida Cargas Poligono
Iabc
Contactor Cargas Poligono
_cargas _Pol _30 m
b_cargas _Pol _30 m
B
A
A
B
B
b
C
c
a
com
a
c_cargas _Pol _30 mi
Kcargas _Pol
A
b
c_cargas _Pol _30 m
v
Paero
i
Qaero
B
C
[Vabc]
c
C
C
cálculo
potencias 1
[PGdiesel ]
Pa_cargas _Prog
29
Qa _cargas _Prog
30
Pb_cargas _Prog
31
Qb _cargas _Prog
32
Pc_cargas _Prog
33
Qc_cargas _Prog
34
40
PGdiesel
41
QGdiesel
Dnerador Diesel
P_Gdiesel _ref
Vabc A
Pa_carga_Prog
KGdiesel
PQ_A
Qa_carga_Prog
P_Q_Fase_A
Vabc
PQ_B
P_Q_Fase_B
Iabc
PQ_C
Medidor P _Q Monofasico 6 Frecuencia de la red
por fases 6
Qb_carga_Prog
P_Q_Fase_CFreq_fases _abc
Pc_carga_Prog
A
A
A
B
B
B
C
C
C
a
Acometida Generador Diesel
Fr
Iabc
a
b
Pb_carga_Prog
Qc_carga_Prog
com
Q_Gdiesel _ref
b
c
c
B
C
[Vabc ]
Contactor Generador Diesel
Filtrado 4
Cuadro Cargas Programables
Sistema _ Cargas _Programables
Vabc
A
Iabc
B
Acometida Cargas Programables
A
A
B
B
a
Contactor Cargas Programables
a
com
Kcargas _prog
A
b
b
B
C
[Vabc]
c
C
C
c
C
25
07 SIMULATION MODELS
Developed model with
Matlab/Simulink for LEA loads
(Phase A)
Load active power consumption
profile
[fi 1]
2
Qa_carga _LEA
atan
cos
1
Pa _carga _LEA
2
((u[2]*u[3] )/( u[4]*u[1]))*u[5]
sqrt
dq 2a4
[Vrms_A]
Kcargas _LEA
[Ia ]
[fi 1]
2*pi *50
Kgeneradores
g
sin
Multiplicar 2
t
s
[Ia ]
+
-
s
[Ib ]
1
Fase A
+
s
2
Fase B
[Ic]
+
3
Fase C
Conn 3
Conn 2
Conn 1
-
Carga Infinita
26
08 CONTROL STRATEGIES
Basic Strategy: Check the right behavior of the microgrid without optimization
Connected Mode
- Avoid consumptions of the public distribution grid
grid, providing the energy deficit through the
storage systems
- Storage renewable energy excess whenever it will be possible
Isolated Mode
- Manage the energy generated from renewable sources and the load demanded energy
- Have the maximum of energy in the storage systems
- Avoid the use of the diesel generator
27
08 CONTROL STRATEGIES
R f
Reference
Power
P
Pb Power
P
Absorbed
Ab
b d
L d Pb Power
Load
P
Absorbed
Ab
b d
R f
Reference
Power
P
SOC
Pb Batteries absorbed power (connected)
Pgener-Pabsorb=Pref_battery
PV
No load
Batteries supplying lightning. Management system
loading batteries in the case of not renewable
sources
28
08 CONTROL STRATEGIES: AUTOMATIC TRANSITIONS
Connected Mode TO Isolated Mode
10 kV voltage drop in MV Iberdrola net
The system in charged to generate the net makes the
transition in an automatic way through:
• Tripping the header switch through the relay
communication assisted by Iberdrola
• Tripping the header switch through the relay of
minimum/maximun voltage detection
• Faults Absence detection by the system
Isolated Mode TO Connected Mode
The system in charged to generate the net makes the
transition in an automatic way through:
• The control system
y
evaluates the lack of errors
and the state of the installation, resetting it if
the results are positive
29
09 SOME FUTURE ACTIVITIES
 Models parameterization and validation from test in stable state
 Models adjustment at transient state
 Prediction of the system response due some events
 Develop control strategies considering:
• Economical criteria
• Thermal uses
• …
 Analysis interaction between electric vehicle and mcirogrids
 Minimizing micro-faults
micro faults during transitions
 Minimizing communications time
 Develop microgrid web
30
CENER
MANY THANKS
INFO@CENER.COM
@
WWW.CENER.COM
T 34 948 252 800
RENEWABLE ENERGIES GRID
INTEGRATION DEPARTMENT
Mónica Aguado Alonso, PhD.
g
@
Email: maguado@cener.com
T: + 34 948 252 800