an example for microgrid in industrial
Transcription
an example for microgrid in industrial
NATIONAL RENEWABLE ENERGY CENTRE RENEWABLE ENERGIES GRID INTEGRATION D AN EXAMPLE FOR MICROGRID IN INDUSTRIAL ENVIRONMENT: CENER’S MICROGRID Microgrid – A building block for smart grids Brussels, 27 January 2012 INDEX 00 01 02 03 0 04 05 06 07 08 09 Renewable Energies Grid Integration Department Background General Objectives Specific Objectives Localization l Description Operation Models Simulation Models Control Strategies Some Future Activities 2 00 IRE DEPARTMENT OBJECTIVE: Renewable energies grid integration analysis and definition of solutions to improve the RES penetration -1 .0 Ia A A Ib B B C Ic C C 0 .0 0 1 B C Vc P_red (MW) Q_red (MVAr) V_viento (m/s) P Power Q A B Frecuencia (Hz) Vw f W in d S o u rc e NA ph 0 0.5 ES Freq/Phase Vrms Measurement Veficaz_red (kV)) Wound rotor induction machine NB NC N 1 Grid connectio n model W in d Tu rb in e Vw Tm W P Tm _ tu rb (p .u .) Vvie n to Wpu w _ m e c_ g e n Wind Wi d model C a lcu lo ve lo c id a d m e ca n ica Wm ec P _ tu rb (p .u .) w_mec_gen (p.u u.) Storage Energy Grid Integration: Distributed Generation + Integration + High Voltage A B Va IM TL * Main... Integration - Analysis of the response of the electromagnetic transients phenomena (overvoltages) - HVDC Configurations - Measurements of electrical variables and data acquisition services. - Development p of virtual test p platforms - Potential of wind power generation penetration in electric power systems: Power flow analysis and Dynamic response of the electrical system S Vb Vviento 2 main areas: A W 1 .0 TIME Cp Wind turbine model Cpm C p m N 5 0 8 5 0 .txt High Voltage - Lightning protection - Installations risk analysis for lightning discharges - Lightning protection systems design - Lightning prevention systems design: 2D and 3D electric field simulation - Grounding systems design - Complex soils - Frequency behavior Energy Storage Distributed Generation - Characterization,, models development p and testing g - Smart grids storage systems - Design and optimization - Technical-economic feasibility studies of Energy Storage - Implementation Systems (ESS) integration with RES - Control development (management strategies) - Experimental studies of renewable power plants (wind) - Simulation models development (hardware in the loop) with energy storage systems - Storage systems integration - Virtual Storage or Load Management 3 01 BACKGROUND • Navarra Goverment wanted developing the energy business sector of Distributed Generation ((DG)) in Navarra g generating g own technology gy and knowledge • To achieve this aim the Department of Innovation, Enterprise and Employment of Navarra Government and European Union through FEDER funds financed the project “Microgrids in Navarra: design, development and implementation” 4 02 GENERAL OBJECTIVIES The main goal of this project is the design of microgrids with control strategies to allow its different elements optimization adding new functionalities, assuring load supply in isolate mode, attenuating disturbances in connected mode and collaborating with the grid to stability maintenance 5 02 GENERAL OBJECTIVIES Design and develop a microgrid to make it scalable and movable to other cases Define the requirements to carry out • Assure electrical supply to its loads • Minimizing disturbances to the upstream grid • Support the upstream grid to maintain the stability • … Dimension and define equipment specifications Design the auxiliary installations Develop control methodology Develop communication protocols Research microgrid effects in the grid 6 03 SPECIFIC OBJECTIVIES Manage the generated power at each moment to assure load supply Achieve A hi that th t th the lload d power consumed d it comes from f renewable bl sources. This way it promotes the energetic independency of our installations Protect installations from grid or microgrid faults Send the energy excess to the grid, getting that the microgrid will be an active part of the distribution net 7 04 LOCALIZATION Sangüesa SPAIN 8 05 DESCRIPTION: PRESENT Microgrid aimed at industrial application AC architecture hit t with ith a power off 75 kW aprox Supplying pp y g part p of Wind Turbine Test Laboratory y– LEA- electric loads and Rocaforte industrial area lightning It also will be used as a test bench to new equipment, generation systems, energy storage, control strategies and protection schemes It could operate as connected as isolate modes 9 05 DESCRIPTION: EQUIPMENTS 10 05 DESCRIPTION: EQUIPMENTS GENERATION G- Diesel Generator 55 kVA G- Photovoltaic Installation 25 kWp G- Wind turbine 20 kW full-converter 11 05 DESCRIPTION: EQUIPMENTS STORAGE SYSTEMS S- Acid Pb Bateries, 50 kW x 2 hours 12 05 DESCRIPTION: EQUIPMENTS STORAGE SYSTEMS S- Redox Battery 50 kW x 4 hours 13 05 DESCRIPTION: EQUIPMENTS LOAD CONTROL AND MANAGMENT SYSTEM L- Three-phase load 120 kVA 14 05 DESCRIPTION: EQUIPMENTS MICROGRID SCHEME: Common low voltage busbar for all equipments Loads d ffeeding d through h h public bl grid d or microgrid d busbar Flexible Working Switch on/off control of each equipment P/Q references per phase control to supply or absorb b bb by storage systems Operation modes selector and managment control versions P/Q references per phase control to supply by diesel generator Pmax restrictions control for renewable generation systems 15 05 DESCRIPTION: CONTROL SYSTEM MAIN CONTROL PANEL: Design and implementation made by CENER System based on Siemens PLC S//300 - Installation robustness - Widely test and use in industrial environment - Software development p made by y CENER Energy Managment Application Equipment Control Application 16 05 DESCRIPTION: SCADA SYSTEM SCADA SYSTEM: Design and implementation made by CENER Developed using Siemens Simatic WinCC tool Access through Internet Possibility to control the whole installation in real time Possibility to display the function parameters in real time Data Storing in the server 17 05 DESCRIPTION: SCADA SYSTEM Flow battery Screen PV installation screen 18 05 DESCRIPTION: SCADA SYSTEM Data Display p y (Figures ( g and Data Sheets)) Events Display (alarms, transients stopps,…) transients, stopps ) 19 05 DESCRIPTION: PROTECTION SYSTEM PROTECTION AND MEASUREMENT SYSTEM Protection system for connected and isolated mode Integrated measurement system makes it possible to an optimal energy control Protection data reading Individual protection for equipments Internal measurement calibration to assure the right operation and quality standards UTILITY PROTECTION SYSTEM Relay communication assisted by Iberdrola in case of lack or defect in medium voltage net of which our installation is connected (Immediate tripping the header switch) Relay of min/max voltage Relay communication assited Relay of minimum/maximun voltage detection (Immediate tripping the header switch) 20 05 DESCRIPTION: COMMUNICATIONS Communication cabinet and Server - Modbus RTU - Ethernet - Optical Fiber Data storage in CENER server Integrated into teh CENER network Access from any point as CENER as external one Optical Fiber to Ethernet conversor MODBUS Modules 21 05 DESCRIPTION: FUTURE Generation: Gas MicroTurbine 30 kW with thermal use (heat and cool) Storage Systems: o Supercapacitors 30 kW, 45 s o Supercapacitors 10 kW, 4 s o Electric Vehicle 22 06 OPERATION MODES GRID CONNECTED The objective is to manage the generation and demand to achieve high ratios of self-sufficiency energy Generation Resources prediction Distribution Grid Control System Users Energy costs Energy Control signals Electricity Storage 23 06 OPERATION MODES ISOLATED The main objective is supply the community demand Generation Users Energy Electricity Storage 24 07 SIMULATION MODELS t Clock 13 Paero Paero v Qaero i Kaero A A B C C C b B Acometida aerogenerador Aerogenerador [Paero ] [Vabc ] Vabc A Iabc B a b C c a com A B Objectives: 14 Qaero cálculo potencias Perfil _viento 0 c Plimite _aero Contactor Aerogenerador v Pfotov i Qfotov Management system validation 15 Pfotov 16 Qfotov cálculo potencias 2 48 Va_red _conectado 42 Pa_red _conectado 49 Vb _redconectado Kfotov 45 Qa _red _conectado 50 Vc_redconectado Pa_red PQ_A [Vabc ] Vabc P_Q_Fase_A Iabc P_Q_Fase_B Qa_red 43 Pb_red _conectado Qb_red Pc_red Freq _fases _abcP_Q_Fase_C Fr Qc_red PQ_C Frecuencia de la red por fases 3 Medidor P _Q Monofasico 2 Filtrado 1 A A B B C C com a b B Plimite _fotov Vabc A Iabc B a b C c A Pot _Fotov 30 min [Vabc ] 0 c C Acometida photovoltaica Pb_red PQ_B Paneles fotovoltaicos [P_fotov ] Pa_Pb Contactor fotovoltaica 17 46 Qb_red _conectado [Pmed _Pb_faseA ] 20 44 Pc_red _conectado Pa_Pb Vabc 18 Qa_Pb 47 Qc_red _conectado Qb_Pb Freq_fases _abc Qc_Pb [Pmed _Pb_faseB ] Pc_Pb Kgeneradores A A B B Vabc aislado Iabc N C C a B b com Vabc A Iabc B a b C c a A b b Red Electrica A a B c Medición Lado Alta a Frecuencia de la red por fases A b c C 21 Qb _Pb 19 Pc_Pb 22 Qc_Pb SOC _Pb Modulo de baterias Pb 35 C Vbat_elevador SOC_bat_Pb SDS [Vbat _elevador ] P_carga_faseA [SOC _bat _Pb] Trafo Pbat _Pb_A Q_carga_faseA [VDC_bat _Pb] Vdc_bat_Pb Qbat _Pb_A P_carga_faseB Pbat _Pb_B Q_carga_faseB Kbat _Pb Pa_cargas _LEA 1 _cargas g _ _LEA Qa _ A A B B B C C Pa_carga_LEA Qa_carga_LEA 2 Qb _cargas _LEA Pb_carga_LEA C Fase C c Qc_carga_LEA P_Q_Fase_A Vabc PQ_B P_Q_Fase_B Iabc PQ_C Medidor P _Q Monofasico 4 Frecuencia de la red por fases 4 P_Q_Fase_CFreq _fases _abc 23 38 Vb_red _aislado [Pmed _flujo _faseA] Pa_flujo 39 Vc_red _aislado 26 Qa_flujo Pa_flujo Qa_flujo Pb_flujo Qb_flujo Pc_flujo Qc_flujo Vabc Vabc _cargas _LEA _30 m Iabc A _cargas _LEA _30 m Acometida Cargas LEA Iabc Contactor Cargas LEA _cargas _LEA _30 m A A B B b C C c a a B com _cargas _LEA _30 m _cargas _LEA _30 m Pb_carga_Pol 9 Qc _cargas _Pol 0 Pbat _flujo _B 0 Kbat _flujo com PQ_A Vabc P_Q_Fase_B Iabc PQ_C Medidor P _Q Monofasico 5 Frecuencia de la red por fases 5 Qb_carga_Pol P_Q_Fase_CFreq _fases _abc Pc_carga_Pol Qc_carga_Pol A A A B B B C C C Acometida batería Flujo Fr A Pbat _flujo _C Iabc a 0 B a b P_Q_Fase_A PQ_B 27 Qb_flujo 25 Pc_flujo Pbat _flujo _A SOC_flujo C Vabc Qa carga Pol Qa_carga_Pol 24 Pb _flujo 28 Qc_flujo Modulo de baterias Flujo 36 c [Pmed _flujo _faseB ] [Pmed _flujo _faseC] Medidor P _Q Monofasico 3 Frecuencia de la red por fases 1 B C [Vabc ] 11 Pc_cargas _Pol Kcargas _LEA A b Pa _cargas _Pol Pa_carga_Pol Freq_fases _abc Fr _cargas _LEA _30 m 8 Qb_cargas _Pol [Pmed _Pb_faseC ] 37 Va_red _aislado Fr Sistema _ Cargas _LEA 10 Pb _cargas _Pol P l [Pmed _Pb_faseB ] Pmed_faseC Contactor baterias Pb Filtrado 2 7 Qa_cargas _Pol [Vabc ] [Pmed _Pb_faseA ] Pmed_faseB PQ_A Pc_carga_LEA 6 System response due to different events Pbat _Pb_C Qbat _Pb_C Vabc Pmed_faseA Fase B Qb_carga_LEA 5 Pc_cargas _LEA 3 Qc_cargas _LEA Qbat _Pb_B Q_carga_faseC B b c C Acometida batería Pb 4 Pb_cargas _LEA a b P_carga_faseC Fase A Vabc A Iabc a com A Development of different energy management strategies [Pmed _Pb_faseC ] Medidor P _Q Monofasico B c C c C Fr com Qa _Pb Pb_Pb Pb_Pb Iabc [Vabc ] b [Pmed _flujo _faseA] C c [Pmed _flujo _faseA] c [Pmed _flujo _faseA] Contactor bateria Flujo Filtrado 3 12 Sistema _ Cargas _Alumbrado _Poligono Vabc _cargas _Pol _30 m A a_cargas _Pol _30 m Acometida Cargas Poligono Iabc Contactor Cargas Poligono _cargas _Pol _30 m b_cargas _Pol _30 m B A A B B b C c a com a c_cargas _Pol _30 mi Kcargas _Pol A b c_cargas _Pol _30 m v Paero i Qaero B C [Vabc] c C C cálculo potencias 1 [PGdiesel ] Pa_cargas _Prog 29 Qa _cargas _Prog 30 Pb_cargas _Prog 31 Qb _cargas _Prog 32 Pc_cargas _Prog 33 Qc_cargas _Prog 34 40 PGdiesel 41 QGdiesel Dnerador Diesel P_Gdiesel _ref Vabc A Pa_carga_Prog KGdiesel PQ_A Qa_carga_Prog P_Q_Fase_A Vabc PQ_B P_Q_Fase_B Iabc PQ_C Medidor P _Q Monofasico 6 Frecuencia de la red por fases 6 Qb_carga_Prog P_Q_Fase_CFreq_fases _abc Pc_carga_Prog A A A B B B C C C a Acometida Generador Diesel Fr Iabc a b Pb_carga_Prog Qc_carga_Prog com Q_Gdiesel _ref b c c B C [Vabc ] Contactor Generador Diesel Filtrado 4 Cuadro Cargas Programables Sistema _ Cargas _Programables Vabc A Iabc B Acometida Cargas Programables A A B B a Contactor Cargas Programables a com Kcargas _prog A b b B C [Vabc] c C C c C 25 07 SIMULATION MODELS Developed model with Matlab/Simulink for LEA loads (Phase A) Load active power consumption profile [fi 1] 2 Qa_carga _LEA atan cos 1 Pa _carga _LEA 2 ((u[2]*u[3] )/( u[4]*u[1]))*u[5] sqrt dq 2a4 [Vrms_A] Kcargas _LEA [Ia ] [fi 1] 2*pi *50 Kgeneradores g sin Multiplicar 2 t s [Ia ] + - s [Ib ] 1 Fase A + s 2 Fase B [Ic] + 3 Fase C Conn 3 Conn 2 Conn 1 - Carga Infinita 26 08 CONTROL STRATEGIES Basic Strategy: Check the right behavior of the microgrid without optimization Connected Mode - Avoid consumptions of the public distribution grid grid, providing the energy deficit through the storage systems - Storage renewable energy excess whenever it will be possible Isolated Mode - Manage the energy generated from renewable sources and the load demanded energy - Have the maximum of energy in the storage systems - Avoid the use of the diesel generator 27 08 CONTROL STRATEGIES R f Reference Power P Pb Power P Absorbed Ab b d L d Pb Power Load P Absorbed Ab b d R f Reference Power P SOC Pb Batteries absorbed power (connected) Pgener-Pabsorb=Pref_battery PV No load Batteries supplying lightning. Management system loading batteries in the case of not renewable sources 28 08 CONTROL STRATEGIES: AUTOMATIC TRANSITIONS Connected Mode TO Isolated Mode 10 kV voltage drop in MV Iberdrola net The system in charged to generate the net makes the transition in an automatic way through: • Tripping the header switch through the relay communication assisted by Iberdrola • Tripping the header switch through the relay of minimum/maximun voltage detection • Faults Absence detection by the system Isolated Mode TO Connected Mode The system in charged to generate the net makes the transition in an automatic way through: • The control system y evaluates the lack of errors and the state of the installation, resetting it if the results are positive 29 09 SOME FUTURE ACTIVITIES Models parameterization and validation from test in stable state Models adjustment at transient state Prediction of the system response due some events Develop control strategies considering: • Economical criteria • Thermal uses • … Analysis interaction between electric vehicle and mcirogrids Minimizing micro-faults micro faults during transitions Minimizing communications time Develop microgrid web 30 CENER MANY THANKS INFO@CENER.COM @ WWW.CENER.COM T 34 948 252 800 RENEWABLE ENERGIES GRID INTEGRATION DEPARTMENT Mónica Aguado Alonso, PhD. g @ Email: maguado@cener.com T: + 34 948 252 800