Micropalaeontologic and palaeofloristic content of Sarmatian from
Transcription
Micropalaeontologic and palaeofloristic content of Sarmatian from
Draft copy Micropalaeontologic and palaeofloristic content of Sarmatian from southern Moldavian Platform – backbulge depozone Mihai BRÂNZILĂ1, Gabriel CHIRILĂ1, Mihaela JITARU1 1 “University Al. I. Cuza” from Iaşi, Departament of Geology, Bd. Carol I, nr. 20A, 700505, Iasi, Romania, e-mail: mib@uaic.ro, gabiflogeoc@yahoo.com Abstract. Southern part of the Moldavian Platform has been developed in complex conditions, partially similar, with northern part, in a marine environment corresponding to the last stage of evolution of the foreland basin of the Eastern Carpathians, with an obvious tectonic control. In Stăniţa-Vlădnicele borehole were identified microfauna taxas as: Quinqueloculina karreri, Q. consobrina, Elphidium macellum, E. minutum, E. punctatum, E. crispum, E. aculeatum, E. regina regina, E. regina caucasica, Articulina problema, A. glabra, A. sarmatica, Porosononion subgranosus confirming the presence of the Sarmatian, starting with Buglovian, Volhynian and most of the Bessarabian. Identified palynomorphs from the analyzed samples are represented by taxa as: Pityosporites labdacus, Pityosporites alatus, Pityosporites insignis, Pinuspollenites miocaenicus, Abiespollenites sp., Myricipites bituitus, Tricolpopollenites liblarensis, Tricolporopollenites henrici, Carpinipites carpinoides, Engelhardtioides microcoryphaeus, Leiotriletes sp. a.o. The method used for paleoclimatic estimations is „Coexistence Approach”. The values calculated by us, using coexistence approach method are: MAT 16.5–17.2 °C, MAP 1300–1355 mm/yr, WMT 23.6–28.5 °C, CMT 9.6–12.5 °C. Keywords. Sarmatian, Moldavian Platform, backbulge, micropalaeontology, palynomorphs. Introduction Analyzed samples, from this study, are from Stăniţa-Vlădnicele borehole (Neamţ County) located nearby the tectonic limit, which divide Moldavian Platform from Bârlad Platform by Fălciu – Plopana fault (Ionesi, 1994) (Fig. 1). Lithological column of the well have intercepted entirely Sarmatian deposits, from the limit of the Badenian anhydrite until the Cryptomactra clays (lower Bessarabian and the beginning of the upper Bessarabian). Draft copy Fig.1 Location of Stăniţa-Vlădnicele borehole Geological settings The Moldavian Platform supported a foreland type basin evolution during the Sarmatian, as the last phase within the transformation of the Carpathian geosynclinal area. There have been identified characteristic depozones (wedge top, foredeep, forebulge and backbulge) that due to particular facial conditions allowed the evolution of some specific faunal assemblages (Grasu et al., 2002). Within all non-biotic factors, the water salinity evolved towards a freshwater one, representing along with the sedimentary process, the main cause that had a great influence on the foraminifers assemblages (Brânzilă, 2005). The Intra-Volhynian tectogenesis, especially taking part in the external zone of the Carpathians, have strongly affected the evolution of the Paratethys basins. In the terminal part of the Badenian, the Moldavian Platform has functioned as continental area, the sedimentation process lasting until the lower Sarmatian (Buglovian)( Brânzilă, 2005, Brânzilă & Ţabără, 2005) Beginning with the Lower Sarmatian, in the Eastern Carpathian foreland, because of the advancement of the orogeny above the top of the Moldavian Platform, a series of characteristic depozones were outlined. Based on sedimentological criteria, from west to east, four depozones have been identified: wedge-top, foredeep depozone, forebulge and backbulge. The basinal waters have a much lower salinity as compared with that during the Badenian (Brânzilă, 1999; Grasu et al., 2002). Southern part of the Moldavian Platform has been developed in complex conditions, partially similar, with northern part, in a marine environment corresponding to the last stage of evolution of the foreland basin of the Eastern Carpathians, with an obvious tectonic control. Deposits of this interval belong to the first stage of evolution of the foreland basin where the subsidence was polarized from North-East to South-West and was inducted by the influence of the Carpathian thrust (Ionesi, 1994, Draft copy Ionesi et al., 2005). In such conditions we have seen the presence of the microfauna and paleoflora assemblage corresponding to the backbulge depozone. Fig. 2 Lithologic column of Staniţa-Vlădnicele borehole. Draft copy Micropalaeontological assemblage Micropalaeontological assemblage identified in samples from Stăniţa-Vlădnicele borehole has two aspects, distinctive for Miocene biofacies from Moldavian Platform; one aspect regarding marine and the second one related to brackish deposits. In the sample 301 from 975 m, located under Badenian anhydrite, micropalaeontological content is exclusively marine been represented by benthic and planktonic foraminifera, which developed under normal salinity, with many taxas and many individuals. From this sample were determined: Uvigerina perornata, Bulimina elongata, Globigerina brevispira, Orbulina universa, Cibicides lobatulus, C. dutemplei, Entoselenia marginata, Melonis pompilioides, Pullenia bulloides, Sphaeroidina austriaca, Spiroplectamina sp., Quinqueloculina sp. In the deposits located above Badenian anhydrite, the lithology is predominantly composed of shale, sands, sandstones with thin lamination of limestone. Samples P 301-309, from the interval 140950 m are attributed to Sarmatian. Micropalaeontological assemblage has brackish characteristic, and the number of taxas is lower. Cibicides taxa (Cibicides badenensis, C. lobatulus) are present only in sample 309 (950 m), alongside with reworked taxas: Ammonia beccarii, Quinqueloculina sp., and Globigerina sp. In the analyzed samples between 140 and 890 m, although micropalaeontological assemblage is poor and is represented by miliolidae and unionidae; Quinqueloculina karreri, Q. consobrina, Elphidium macellum, E. minutum, E. punctatum, E.crispum, E. aculeatum, E. regina regina, E. regina caucasica, Articulina problema, A. glabra, A. sarmatica, Porosononion subgranosus. Micropalaeontological assemblage identified in the analyzed samples from Stăniţa-Vlădnicele borehole is assigned to Badenian (sample P 310 from 975 m) and to Sarmatian (samples P 301-309 from 140 to 975 m), been possible even an distribution on stages. The assemblage determined from sample 309 (from 950 m) can be attributed to Buglovian, samples P 305-308 (from 550-895 m) are assigned to Volhynian and samples P 301-304 (from 140-550m) are attributed to Bessarabian. Taxa Table 1. Micropalaeontological assemblage from analyzed samples of Stăniţa-Vlădnicele borehole P P P P P P P P P 301 302 303 304 305 306 307 308 309 Uvigerina perornata Pischw. P 310 X Bulimina elongata d'Orb. X Globigerina brevispira Subb. X Orbulina universa d'Orb. x Cibicides dutemplei (d'Orb.) x Entoselenia marginata (W et B) x Melonis pompilioides F.et H. x Pullenia bulloides (d'Orb.) x Sphaeroidina austriaca d'Orb. x Spiroplectamina sp. x Quinqueloculina sp. x x Cibicides lobatulus W.et J. x x Cibicides badenensis d'Orb. x Quinqueloculina karreri Reuss. Quinqueloculina consobrina d'Orb. Articulina problema Bogd. + + +` + + + + + × + + + + + + Articulina sarmatica (Karrer) Articulina glabra (Cushm.) Elphidium macellum (F.et M.) Elphidium minutum Reuss. + × × + + + + + + + + + + Draft copy + Elphidium punctatum Elphidium crispum (Linne) + Elphidium aculeatum d'Orb. Elphidium regina regina d'Orb. + + + + + + × + + + + + + + + + + + × + + + + + + + + + + Elphidium regina caucasica Bogd. Porosononion subgranosus (Egger) + Porosononion martkobi Bogd. + Ammonia beccarii L. Legend + × high frequency; + + x x + low frequency Palynological study Analysis of the pollen content from samples is the principal technique available for determining vegetation response to past terrestrial environmental change. The technique has been in use for nearly a century, initially as a method for investigating past climatic changes. More recently, the importance for vegetation change of processes such as human impact, successional change and other biotic and abiotic factors have been recognized. The palynological study was made using 10 collected from StăniţaVlădnicele borehole (RBN 4 borehole) from interval between 140 - 975 m (Fig. 2). The quantity of sediments for analysis was approximately 50 g for each sample. Those have been treated with HCl (37%) to remove the carbonate and afterward with HF (48%) to remove the silicate minerals. The separation of palynomorphs from the residue resulted from the chemical reaction described above, was made with centrifugal action using as heavy liquid ZnCl2 with density 2.00 g/cm3. The organic fraction resulted was inserted in a mixture of glycerine and gelatine, 1-2 drops been mounted on the palynological shim. The visualisation of the palynomophs was accomplished with a microscope with transmitted light Leica DM1000, using the amplification of x100, x400. Palynological assemblage Palynological assemblage present in the Stănita – Vlădnicele borehole (Table 2) is represented by a dinoflagelate assemblage (Operculodinium, Spiniferites, Spirogyra, Tytthodiscus) present in low quantities and a continental assemblage with Gymnospermatophytae (Abiespollenites, Pityosporites, Cedripites, Inaperturopollenites, Podocarpidites, Zonalapollenites), Angiospermatophytae (Graminidites, Caryapollenites, Engelhardtioidites, Intratriporopollenites, Tricolporopollenites), Pteridophytae (Laevigatosporites, Leiotriletes, Polypodiaceoisporites, Verrucatosporites). From continental assemblage dominante are Gymnospermatophytae taxas (Pityosporites) and Angiospermatophytae taxas (Caryapollenites and Tricolporopollenites). Dinoflagellate assemblage. This assemblage is mainly composed from Operculodinium, Spiniferites, Spirogyra and few reworked species of Phytoplankton. Higher percentage and diversity is present in sample 303, from 485 m (Fig. 3). Operculodinium is generally reported as a cosmopolitan species that might have low relative abundances in the tropics and high relative abundances in regions with cold/temperate waters such as the North Atlantic (Wall et al. 1977; Marret & Zonneveld, 2003). This species is distributed within a very broad range: temperature (-2.10 C and 29.60 C) and salinity (16.1–36.8 0/00). Continental assemblage. Ivanov et al., 2002, 2007, showed that vegetation of the middle and upper Badenian of Forecarpathian basin (central Paratethys, NW Bulgaria) was characterized by regular occurrence and abundance of thermophilous species whereas during Sarmatian, subtropical elements like Engelhardia, Reevesia, Itea, Castanopsis, Symplocaceae, Arecaceae tend to decrease and temperate elements such as Alnus, Carpinus, Betula, Corylus, Fagus have an increasing trend. A similar vegetation change is observed in the Sarmatian deposits Stăniţa-Vlădnicele borehole. During Sarmatian favourable conditions existed in the Forecarpathian Basin for the development of mixed mesophytic forest characterized by predominance of warm-temperate and subtropical elements together with many paleotropical elements. Based on the palynological assemblage we have separated following biocenosis for continental palynomophs: swamp assemblage, mixed mesophytic forest, terrestrial herbs and ferns assemblage (Fig. 3). Draft copy Fig. 3 Main biocenosis from analyzed samples of Staniţa-Vlădnicele borehole (Diagram accomplished with Tilia graph 2.0.2) Draft copy Swamp assemblage. Aquatic plants like Typha indicate the presence of freshwater in the depositional environment. Swamp forest defines the lakeshore vegetation with moderate amounts of Cupressaceae and a low amount of riparian genus Salix. Mixed mesophytic forest is well represented by species of fossil pollen, such as Carpinus, Quercus, Ulmus, Betula, Carya, Acer. Pinaceae is very abundant in the mesophytic forest. The ground cover vegetation of mixed forest is made up of herbaceous plants and the presence of ferns indicate humidity (Leiotriletes, Laevigatosporites, Polypodiaceoisporites a. o.). Ferns assemblage is represented by Laevigatosporites, Leiotriletes, Polypodiaceoisporites, Stereisporites a. o. Herbs assemblage. This assemblage consists of seven taxa mainly constituted of ground-cover vegetation in the mesophytic forest. Caryophyllaceae, and Chenopodiaceae are the dominant groups in this assemblage. Table 2. Palynological assemblage identified in Stăniţa-Vlădnicele borehole. P P P P P P 30 30 30 30 30 30 Phytoplancton 1 2 3 4 5 6 Deflandrea phosphoritica Eisenack 1938 (reworked) Operculodinium sp. P 30 7 P 30 8 P 30 9 P 31 0 x x x Spiniferites sp. x Spirogyra sp. x Tytthodiscus sp. x x x x Pteridophyta Cicatricosisporites sp. Echinatisporis sp. Echinatisporis wiesaënsis KRUTZSCH 1963 Laevigatosporites gracilis WILSON – WEBSTER 1946 Laevigatosporites haardti (POTONIE et VE N. 1934) Th. et PFLUG, 1953 subsp. haardti KRUTZSCH 1967 x x x x x x Laevigatosporites sp. x x x x x x x x x x x x x x x x x x x x Polypodiaceoisporites sp. Stereisporites sp. x Trilobosporites weylandi Döring 1965 Triplanosporites sinuosus (PFLUG. 1952) TH. – PFLUG 1953 x x x x x x x x x x x x x Verrucatosporites cf. favus POTONIE 1931 Gymnospermatophyta Abiespollenites absolutus THIERGART 1937 Abiespollenites cedroides (THOMSON 1953) KRUTZSCH 1971 x x x Leiotriletes wolffi wolffi KRUTZSCH 1962 Polypodiaceoisporites saxonicus KRUTZSCH 1967 x x x x x x x Leiotriletes sp. Leiotriletes wolffi brevis KRUTZSCH 1962 x x x x x x x Draft copy Abiespollenites latisaccatus (TREVISAN 1967) KRUTZSCH 1971 x x x Abiespollenites maximus KRUTZSCH 1971 x x x x Cycadopites miocaenica NAGY 1969 + + x x x Piceapollis sp. x x x x x x x Pinuspollenites miocaenicus NAGY 1985 Pityosporites alatus (POTONIÉ 1931) THOMSON et PFLUG 1953 Pityosporites cedrisacciformis KRUTZSCH 1971 Pityosporites insignis (NAUMOVA ex BOLCHOVITINA 1953) KRUTZSCH 1971 Pityosporites labdacus (POTONIÉ 1931) THOMSON et PFLUG 1953 Pityosporites microalatus (POTONIÉ 1931) THOMSON et PFLUG 1953 Pityosporites minutus (ZAKLINSKAJA 1957) KRUTZSCH 1971 x Pityosporites sp. Podocarpidites gigantea (ZAKL. 1957) NAGY 1985 Podocarpidites nageiaformis (ZAKL. 1957) KRUTZSCH 1971 + + x + + x x x x x x x x + + + + + + x x x x x x x x x x x x x + x + x x x x x x x x x x + + x x x x + x x x x x x x x + + x + + x x x x x x x x x x Sequoiapollenites minor KRUTZSCH 1971 x x x + x x x x x x x + x x x + x x x x x x x x Podocarpidites sp. Sciadopityspollenites serratus (POTONIE et VEN. 1934) THIERGART 1937 x x x Pinuspollenites longus NAGY 1985 Zonalapollenites minimus KRUTZSCH x x x Inaperturopollenites sp. Piceapollenites neogenicus NAGY 1969 Sciadopityspollenites sp. Sciadopityspollenites varius KRUTZSCH 1971 x x x Cedripites sp. Cupressacites bockwitzensis KRUTZSCH 1971 Piceapollis praemarianus KRUTZSCH 1971 x x x Cedripites miocaenicus KRUTZSCH 1971 Ginkgo sp. Inaperturopollenites concedipites (WODEHOUSE 1933) KRUTZSCH 1971 Inaperturopollenites hiatus (POTONIÉ 1931) THOMSON et PFLUG 1953 Inaperturopollenites microforatus KRUTZSCH 1971 x x Abiespollenites sp. Cedripites lusaticus KRUTZSCH 1971 x x + x x x x Draft copy 1971 Zonalapollenites rueterbergensis KRUTZSCH 1971 x x x Zonalapollenites sp. Zonalapollenites verrucatus KRUTZSCH 1971 x x x x x x x + Angiospermatophyta. Monocotyledonatae x Arecipites sp. Graminidites media (COOKSON 1947) POTONIÉ 1960 Graminidites sp. Monocolpopollenites sp. Monocolpopollenites tranquillus (POTONIÉ 1934) THOMSON et PFLUG 1953 x x x x x x x x x x Typha angustifolia LESCHIK 1956 x x x x x x x x x x x x Angiospermatophyta. Dicotyledonatae x Aceripollenites rotundus NAGY 1969 Aceripollenites sp. Alnipollenites verus (POTONIÉ 1931) POTONIÉ 1934 Betulaepollenites betuloides (PFLUG 1953) NAGY 1969 Carpinipites carpinoides (PFLUG 1953) NAGY 1985 Caryapollenites simplex (POTONIÉ 1931) KRUTZSCH 1960 Caryapollenites sp. Chenopodipollis multiplex (WEYLAND et PFLUG 1957) KRUTZSCH 1966 Cyrillaceaepollenites exactus (POTONIÉ 1931) POTONIÉ 1960 Cyrillaceaepollenites megaexactus (POTONIÉ 1931) POTONIÉ 1960 Engelhardtioidites microcoryphaeus (POTONIÉ 1931) THOMSON et THIERGART ex POTONIÉ 1960 Ericipites ericius (POTONIÉ 1931) POTONIÉ 1960 Eucommiapollis eucommi (PLANDEROVA 1990) PETRESCU 1999 x x x x x x x + x x x x x x + + + + + + + + + + + + + + + + + + x x x x x x x + + + x x x x x + + + x x x x x x x x x x x Faguspollenites minor NAGY 1969 Faguspollenites sp. Ilexpollenites margaritatus (POTONIÉ 1931) POTONIÉ 1960 Intratriporopollenites instructus (POTONIÉ 1931) THOMSON et PFLUG 1953 Juglanspollenites maculosus (POTONIÉ 1931) NAGY 1985 x Juglanspollenites sp. x x x x x x x x x x x x x x x x x Draft copy Liquidambarpollenites sp. x x Magnolipollis sp. Momipites punctatus (POTONIÉ 1931) NAGY 1969 Myricipites bituitus (POTONIE 1931) NAGY 1969 x x Platycaryapollenites sp. Porocolpopollenites vestibulum (POTONIÉ 1931) THOMSON et PFLUG 1953 Pterocaryapollenites stellatus (POTONIÉ 1931) THIERGART 1937 x + x + x + x x + + x + + Quercopollenites petrea NAGY 1969 x Quercopollenites robur NAGY 1969 x Quercopollenites sp. + x x x x Ulmipollenites undulosus WOLFF 1934 x + Zelkovaepollenites potoniéi NAGY 1969 + Zelkovaepollenites sp. + x + Zelkovaepollenites thiergarti NAGY 1969 Gombaspora (Hyphomycetes)(Fung) Legend: x low frequency + + + x x + x x + x x x x x x x x x x Tricolporopollenites sp. + x x + x x x + x x Quercopollenites granulatus NAGY 1969 Salixipollenites helveticus NAGY 1969 Tricolpopollenites liblarensis (THOMSON 1950) THOMSON et PFLUG 1953 subsp. Liblarensis Tricolporopollenites cingulum (POTONIE 1931) THOMSON et PFLUG 1953 subsp. pusillus (POTONIE 1934) THOMSON et PFLUG 1953 Tricolporopollenites henrici (POTONIÉ 1931) KRUTZSCH 1960 Tricolporopollenites marcodurensis PFLUG et THOMSON 1953 Tricolporopollenites microhenrici (POTONIÉ 1930) KRUTZSCH 1960 x x x x x x x x x + x + x x + x x + + + + + x + + x x x x x x x x x x x + + x + x x x + x x x x + + x + high frequency Conclusions Micropaleontological assemblage identified in the analyzed samples from Stăniţa-Vlădnicele borehole is assigned to Badenian (sample 310 from 975 m) and to Sarmatian (samples 301-309 from 140 to 975 m), been possible even an distribution on stages. The assemblage determined from sample 309 (950 m) can be attributed to Buglovian, samples 305-308 (from 550-895 m) are assigned to Volhynian and samples 301-304 (from 140-550m) are attributed to Bessarabian. Regarding palynological assemblage, subtropical elements like Engelhardia, Reevesia, Itea, Castanopsis, Symplocaceae, Arecaceae tend to decrease and temperate elements such as Alnus, Carpinus, Betula, Corylus, Fagus have an increasing trend. During Sarmatian favourable conditions existed in the Forecarpathian Basin for the development of mixed mesophytic forests characterized by predominance of warm-temperate and subtropical elements together with many paleotropical elements. Based on the palynological assemblage we have separated following biocenosis for continental Draft copy palynomophs: swamp assemblage, mixed mesophytic forest, terrestrial herbs and ferns assemblage. Dinoflagelate assemblage is represented by Operculodinium, Spiniferites, Spirogyra and few reworked species of Phytoplankton with higher percentage and diversity is present in sample 303, from 485 m. Acknowledgements This work has been supported by Romanian Ministry of Education, Research and Innovation under a PN-II-IDEI No. 975/2008 research grant, directed by prof. dr. Mihai Brânzilă. Gabriel Chirilă wants to thank to dr. Daniel Tabara to given help in the preparation and determination of palynomorphs. References Brânzilă M., 1999, Geologia părţii sudice a Câmpiei Moldovei. Ed. Corson, Iaşi. Brânzilă M., Ţabără D., 2005, The palynological content of Lower Basarabian (The clays with Cryptomactra) on the Moldavian Platform. Anal. Şt. Univ. „Al. I. Cuza” Iaşi, geol., T. XLIX – L (2003-2004), 277 – 291, Iaşi. Brânzilă M., 2005, Foraminifera assemblages of the backbulge depozone from the Moldavian Platform - the Basarabian -, Acta Palaeontologica Romaniae, vol. IV, Iaşi, 45 - 54. Chirilă G., 2008, Studiul paleofloristic al Sarmaţianului din bazinul Văii Râşca. Teză de doctorat, Universitatea „Al. I. Cuza” Iaşi. Chirilă G., Ţabără D., 2008, Palaeofloristic study of the Volhynian from Râşca (Moldavian Platform) Palaeoclimatic and palaeoenvironment implications. Acta Palaeontologica Romaniae, vol. VI, Iaşi, 29 - 42. Grasu C., Brânzilă M., Miclăuş C., Boboş I., 2002, Sarmaţianul din sistemul bazinelor de foreland ale Carpaţilor Orientali. Ed. Tehnică, Bucureşti, p. 407. Ionesi L., 1994, Geologia unităţilor de platformă şi a Orogenului Nord - Dobrogean, Ed. Tehnică, Bucureşti. Ionesi L., Ionesi B., Lungu A., Roşca V., Ionesi V., 2005, Sarmaţianul mediu şi superior de pe Platforma Moldovenească. Editura Academiei Române, p. 558. Ivanov D., Ashraf R. Mosbrugger V., Palamarev E. 2002, Palynological evidence for Miocene climate change in the Forecarpathian Basin (central Paratethys,NWBulgaria), Palaeogeogr. Palaeoclimatol. Palaeoecol. 178 (2002) 19–37. Ivanov D., Ashraf A., Mosbrugger V., 2007, Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 255 (2007) 342–360. Marret F., Zonneveld K. A. F. 2003, Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology, 2003. V. 125. P. 1–200. Mosbrugger, V., Utescher, T., 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61-86. Popescu Gh., 1995, Contributions to the knowledge of the Sarmatian foraminifera of Romania. Romanian Jornal of Palaeontology, 76, 85-98. Ţabără D., 2008, Palinologia Sarmaţianului mediu şi superior din Platforma Moldovenească. Editura Universităţii „Al. I. Cuza” Iaşi, 319 p., 23 pl. Ţabără D., Chirilă G., Paraschiv V. 2009, The Sarmatian macro- and microflora from Stan’s Hill – Bozieni (Moldavian Platform). Analele Stiintifice ale Universitatii „Al. I. Cuza” Iasi, Geologie. Tomul LV, Nr. 2, 2009, pag. 19-37. Wall D., Dale B., Lohman G.P., Smith W.K., 1977, The environmental and climatic distribution of dinoflagellate cysts in the North and South Atlantic Oceans and adjacent seas. Mar. Micropaleontol. 2, 121-200. Draft copy Plates caption Plate I 1-3. Melonis pompilioides (Ficht. et Moll). 1. Side view x315; 2. Detail view of fig. 1 x800; 3. Edge view x340 4. Pullenia bulloides (d’Orb). Edge view x550 5. Sphaeroidina austriaca d’Orb. x360 6. Cibicides pachiderma (Rzehak). Side view x600 7. Cibicides dutemplei (d’Orb). Side view x420 8. Ammonia beccarii (Linne). Side view x440 Plate II 1, 2. Cibicides badenensis (d’Orb). (1. Side view x600; 2. Edge view x560;) 3. Cibicides lobatulus (Walker & Jacob). Side view x400. 4-6. Quinqueloculina karerri Reuss. (4. Apertural view x760; 5. side view x400; 6. Detail of fig 5 x1300) 7. Articulina problema Bogd. Side view x180. 8. Elphidium minutum (Reuss). Side view x500. 9. Elphidium macellum Fichel et Moll. Side view x340. 10. Elphidium crispus (Linne). Side view x300. Plate III 1-6. Porosononion subgranosus (Egger). 1, 3, 4, 5 Side view (fig 1 x650, fig. 3 x450, fig. 4. x540, fig. 5. x500); 6. Detail of fig 4. X1000; 2. Edge view x400) 7. Elphidium aculeatum d'Orbigny. Side view x420. 8. Elphidium regina caucasica Bogd. Side view x220. 9. Elphidium regina regina (Linne). Side view x200. 10. Porosononion martkobi (Bogd). Side view x200. Plate IV 1.Tytthodiscus sp. 2.Zonalapollenites verrucatus KRUTZSCH 1971 3-6.Zonalapollenites neogenicus KRUTZSCH 1971 7. Abiespollenites latisaccatus (TREVISAN 1967) KRUTZSCH 1971 8. Pityosporites labdacus (POTONIÉ 1931) THOMSON et PFLUG 1953 Plate V 1.Quercopollenites robur NAGY 1969 2.Quercopollenites petrea NAGY 1969 3, 5-8. Quercopollenites sp. 4. Quercopollenites robur NAGY 1969 9. Pityosporites macroinsignis KRUTZSCH 1971 10. Pityosporites pristinipollinius (TRAV. 1955) KRUTZSCH 1971 11. Pityosporites insignis (NAUMOVA ex BOLCHOVITINA 1953) KRUTZSCH 1971 12. Pityosporites labdacus (POTONIÉ 1931) THOMSON et PFLUG 1953 13. Podocarpidites gigantea (ZAKL. 1957) NAGY 1985 14. Podocarpidites piniverrucatus KRUTZSCH 1971 Draft copy Draft copy Draft copy Draft copy Draft copy