Ultra-Bright X-rays Beams from Laser Plasma Accelerators
Transcription
Ultra-Bright X-rays Beams from Laser Plasma Accelerators
Ultra-Bright X-rays Beams from Laser Plasma Accelerators Victor Malka Laboratoire d’Optique Appliquée ENSTA ParisTech – Ecole Polytechnique – CNRS PALAISEAU, France victor.malka@ensta.fr Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X rays source with Laser Plasma accelerators a e n i l n 003 o N 2 n o s m o h T r 1 keV Xuv t a i d a r n o r t a t 004 e B 2 10 keV X n o i n o t p 1 m 01 o 2 C 100 keV a c s e t t g n ri h a r t ss m 10 e 20 Br 1 MeV ɣ g n lu 10 MeV Common features: Collimated beams (mrad) Femtosecond duration (few fs) Micron source size High peak brightness (>1020 ph/s/mm2/mrad2) - naturally synchronized (ideal for pump-probe experiments) - compacts and useful for small scale laboratories Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Moving charge radiation Velocity Acceleration n unit vector in the observation direction Radiated energy . Rc β Electron β To efficiently produce X-ray radiation we need relativistic electrons undergoing oscillations (synchrotron radiation) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 The laser wakefield F=-∇I V. Malka et al., Science 298, 1596 (2002) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X rays Source with Laser Plasma Accelerators : Outline LPA ๏Betatron radiation produced in Participants : - Experimental characterization - Electron-X rays beams correlations - Diagnostics for LPA - Single shot contrast imaging ๏All optical Compton gamma rays source - Principle - Experimental results ๏Bremsstrahlung gamma rays source - Principle Acknowledgements : - Experimental results ๏Conclusion and perspectives Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X rays Source with Laser Plasma Accelerators : Outline LPA ๏Betatron radiation produced in Participants : - Experimental characterization - Electron-X rays beams correlations - Diagnostics for LPA - Single shot contrast imaging ๏All optical Compton gamma rays source - Principle - Experimental results ๏Bremstralhung gamma rays source - Principle Acknowledgements : - Experimental results ๏Conclusion and perspectives Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Laser “Salle Jaune” Ti:sapphire CPA laser 1.0 J / 30 fs - 10 Hz Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Betatron radiation properties Transverse force Longitudinal Force Betatron oscillation properties: p u = 2 K = r kp ⇠ 100 MeV p p /2 r ⇠ 1 µm ne ⇠ 1019 cm ⇠ 200 µm K⇠5 u 3 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Spatial distribution of the emitted radiation ϑY (mrad) Detector He gas jet ϑx (mrad) Scaling law Cone aperture: ϑx = K/γ ∼50 mrad for K = 10 and 100 Mev electrons Cone width: ϑY = 1/γ ∼5 mrad Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 A more precise source size estimation Experimental profiles Calculated profiles Electron orbits 60 θy (mrad) 40 20 0 -20 -40 -60 60 θy (mrad) 40 20 0 -20 -40 -60 -60 -20 -40 0 20 θx (mrad) 40 60 -60 -20 -40 0 20 40 60 θx (mrad) K. Ta Phuoc et al, PRL 2006 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 A more precise source size estimation Experimental profiles Calculated profiles Electron orbits 60 θy (mrad) 40 20 0 -20 3µ m 3µ m 1.5 µm -40 -60 60 θy (mrad) 40 20 0 -20 -40 -60 -60 -20 -40 0 20 θx (mrad) 40 60 -60 -20 -40 0 20 40 60 θx (mrad) K. Ta Phuoc et al, PRL 2006 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Betatron signal variation with density experimental data 3 PIC simulation A. Rousse et al., Phys. Rev. Lett., 93, 135005 (2004) K. Ta Phuoc et al, PRL 2006 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Femtosecond x-ray diffraction: Non thermal melting (InSb) CD yC ra X- Pump Ultrafast phase transition can be measured with tens fs resolution - limited by shot to shot fluctuations of the source Normalized diffracted x-ray ad Le Probe Experiment Delay Δt (ps) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 InSb sample Estimation of the x-ray pulse duration: results x-ray NormalizedI(diffracted Δt) Experiment τ = 100 fs τ = 500 fs τ = 1000 fs Delay Δt (ps) τ < 1 ps Ta Phuoc K. Ta Phuoc et al., PoPK. 2007 ● Best fit for τ < 100 fs et al., Phys. of Plasmas, 14, 080701 (2007) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Colliding Laser plasma accelerator and Betatron In the relativistic regime, electrons oscillate at a speed close to eA the speed of light : a0 = me c Pump beam Injec2on beam - The Laplace force is non negligible and electron dynamic is non linear. - The ponderomotive force excites the plasma wave. ~ 20 ra - T h i s e x c i t a t i o n i s e f fi c i e n t if : ⌧ ⇠ ⇡!p. 1 Wakefield - The excited plasma wave amplitude is large and has a non linear behavior if : a0 & 1 . J. Faure et al., Nature 444, 737 (2006) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Colliding Laser plasma accelerator and Betatron In the relativistic regime, electrons oscillate at a speed close to eA the speed of light : a0 = me c Pump beam Injec2on beam Beatwave - The Laplace force is non negligible and electron dynamic is non linear. - The ponderomotive force excites the plasma wave. ~ 20 ra - T h i s e x c i t a t i o n i s e f fi c i e n t if : ⌧ ⇠ ⇡!p. 1 Wakefield Injec&on phase - The excited plasma wave amplitude is large and has a non linear behavior if : a0 & 1 . J. Faure et al., Nature 444, 737 (2006) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Colliding Laser plasma accelerator and Betatron In the relativistic regime, electrons oscillate at a speed close to eA the speed of light : a0 = me c Pump beam Trapped electrons Injec2on beam Beatwave - The Laplace force is non negligible and electron dynamic is non linear. - The ponderomotive force excites the plasma wave. ~ 20 ra - T h i s e x c i t a t i o n i s e f fi c i e n t if : ⌧ ⇠ ⇡!p. 1 Wakefield Accelera&on phase Accelera&on phase Injec&on phase - The excited plasma wave amplitude is large and has a non linear behavior if : a0 & 1 . J. Faure et al., Nature 444, 737 (2006) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Electron and X ray correlation (LOA experiments) Faisceau Probe pulse d’ombroscopie shadowgraphy Laser pulse Impulsion laser 0.1 0.1 JJ/30fs / 35 fs Filtre Be Be filter X rays Rayons X He gasJetjetde Aimant magnet gaz He e- Miroir torique toroidal mirror Raw electron spectra D CC Ecran Scintillator scintillateur Screen CCD X Laser pulse Impulsion laser 0.9J J/30fs 0.9 / 35 fs transmission Réseau en grating transmission Collision angle :135° ne = 8×1018 cm-3 CCD Optical injection: more stable and higher e-beam quality E-beam energy is controlled by changing the delay line Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Electron and X ray correlation (LOA experiments) Thanks to the colliding laser pulses scheme, clear correlations between electron beam energy and betatron X ray distribution are observed Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Electron and X ray correlation : comparison ↵ = 1 and et The best agreement is obtained for : q = 2kB T? /(↵m!p2 ) = 0.23 µm at à E = 200 MeV or ↵ = 0.23 µm) (ou S. Corde et al., Phys. Rev. Lett.107, 225003 (2011) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Electron & Xray correlation: divergence and charge Divergence (FWHM) the X betatron signal with the electron beam energy: Collision position z=0.1mm (a) ✓ (mrad) 23.5 mrad 14 0 14 14 0 14 14 0 14 Collision position z=-0.5mm Collision position z=-0.2mm (b) (c) 19.5 mrad 16.5 mrad (a) (b) (c) 50 100 E (MeV) 200 1 Linear dependency of the X betatron signal with the electron beam charge (for a fixed electron beam energy at ~220 MeV) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X ray Phase Contrast Radiography X source σ object R ● Absorption contrast Det ecto r ● Phase contrast Contrast is due to the absorption difference in the object Interferences can reveal object interfaces It works only with object with important absorption difference Biological objects have phase contrast 1000 times higher than absorption contrast It requires a very high spatial coherence (10’s microns) : d = λR/2πσ Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X ray Phase Contrast Radiography: Experiments Be window Fenêtres Be Betatron X ray radiation Rayonnement X bétatron Parabole horsparabola axe Off axis X ray diagnostic Filtre AlAl filter deviatedd’électrons electron beam Faisceau dévié Echantillon imager object to àimage Parameters of the source : - Ec = 12.3 keV - 2.2×108 photons/0.1%BW/sr/shot at 10 keV - N = 109 photons in 28 mrad (FWHM) divergence beam S. Fourmaux et al., Opt. Lett. 36, 2426 (2011) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 CCD X f3s0 fs 0 3 J ./5 J / 5 . 2er 2 m s a a bioen l r e s la puls m I JetHe degas gazjet He dipole magnet Aimant UMR 7639 X ray Phase Contrast Radiography: Results Bee contrast image : - Contrast of 0.68 in single shot. - Very tiny details can be observed in single shot that disappear in multi shots. 1 shot 13 shots Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X rays Source with Laser Plasma Accelerators : Outline LPA ๏Betatron radiation produced in Participants : - Experimental characterization - Electron-X rays beams correlations - Diagnostics for LPA - Single shot contrast imaging ๏All optical Compton gamma rays source - Principle - Experimental results ๏Bremstralhung gamma rays source - Principle Acknowledgements : - Experimental results ๏Conclusion and perspectives Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering Doppler upshift : high energy photons with modest electrons energy : ωx=4γ2ω0 For example : 20 MeV electrons can produce 10 keV photons 200 MeV electrons can produce 1 MeV photons The number of photons depends on the electron charge Ne and a02 : Nx ∝ a02 x Ne Duration (fs), source size (μm) = electron bunch length and electron beam size Spectral bandwidth : ΔE/E ∝ 2Δγ/γ, γ2Δθ2 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering : New scheme 50 TW / 30 fs laser X rays solid foil He gas jet Foil, blade Back reflected laser pulse Plasma mirror A single laser pulse A plasma mirror reflects the laser beam The back reflected laser collides with the accelerated electrons High energy X ray beam No alignement : the laser and the electron beams naturally overlap Save the laser energy ! Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering : Experimental set-up He gas jet Magnet X rays 50 TW / 30 fs laser Foil, blade Electron spectra Scintillator screen 50 micron Al foil electrons X ray beam profile Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 CCD Inverse Compton Scattering : Experimental results Compton scattering ● The foil must be placed at the right to maximize a0 and the electrons energy Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering : Experimental results Compton scattering electron energy decreases ● The foil must be placed at the right to maximize a0 and the electrons energy Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering : Experimental results Compton scattering electron energy decreases laser intensity decreases ● The foil must be placed at the right to maximize a0 and the electrons energy Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering : Compton Spectra Al 2.1 mm Cu 0.5 mm Cu 4 mm B Cu 1 mm Cu 8 mm Cu 2 mm Cu 12 mm A calculation with test particle : a0=1.2 ● About 108 ph/shot, a few 104 ph/shot/0.1%BW@100 keV ● Broad electron spectrum => broad X ray spectra ● Brigthness: 1021 ph/s/mm2/mrad2/0.1%BW @100 keV K. Ta Phuoc et al., Nature Photonics, May 2012 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Inverse Compton Scattering : Source size 5 mm ● In this image the resolution is limited by the detector and the small magnification Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X rays Source with Laser Plasma Accelerators : Outline LPA ๏Betatron radiation produced in Participants : - Experimental characterization - Electron-X rays beams correlations - Diagnostics for LPA - Single shot contrast imaging ๏All optical Compton gamma rays source - Principle - Experimental results ๏Bremstralhung gamma rays source - Principle Acknowledgements : - Experimental results ๏Conclusion and perspectives Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 mercredi 4 décembre 13 Some examples of applications : radiography Non destructive dense matter inspection High resolution radiography of dense object with a low divergence, point-like electron source In collaboration with CEA/DAM A. King et al., MRS Bulletin 94, 8 (2006) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Some examples of applications : radiography results 400 μm γ source size Cut of the object in 3D 2005 Spherical hollow object in tungsten with sinusoidal structures etched on the inner part. 50 μm γ source size 2010 Y. Glinec et al., PRL 94, 025003 (2005) A. Ben-Ismail et al., Nucl. Instr. and Meth. A 629 (2010) A. Ben-Ismail et al., App. Phys. Lett. 98, 264101 (2011) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Application to Non Destructive Control Artistic view of non destructive control machine Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 X rays Source with Laser Plasma Accelerators : Outline LPA ๏Betatron radiation produced in Participants : - Experimental characterization - Electron-X rays beams correlations - Diagnostics for LPA - Single shot contrast imaging ๏All optical Compton gamma rays source - Principle - Experimental results ๏Bremstralhung gamma rays source - Principle Acknowledgements : - Experimental results ๏Conclusion and perspectives Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Conclusion Laser plasma accelerators can deliver high quality X ray beams (i) Betatron : 108-109 ph/shot - fs - micron - 10’s keV - 10’s mrad (ii) Compton : 108-109 ph/shot - fs - micron - 100’s keV 104 photons/shot/0.1% BW @ 100 keV (10 000 brighter than existing sources) (iii) Bremsstrahlung:105-106 ph/shot - ps - 10’s micron - 10’s MeV Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Conclusion and Perspectives - Betatron radiation: Fully characterized, used for first applications ↦ High repetition rate keV source ↦ High energy radiation: 100s keV - All optically driven Compton x-ray source: First demonstration in the hard x-ray range ↦ Produce x-ray beams at higher repetition rates (compact lasers). ↦ Produce tunable monochromatic fs x-ray/gamma-ray beams. - Applications: Ultrafast x-ray absorption, diffraction experiments, radiography ↦ keep developing these applications ↦ Applications for ICF under consideration Femtosecond X-rays from laser plasma accelerators S. Corde et al., Review of Modern Physics, 85, 1, 2013 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Perspectives Near future developments Produce a nearly monochromatic radiation source: from a few keV to a few MeV To do so we will use monoenergetic electrons produced from a laser plasma accelerator Expected x-ray spectra Photons / shot / eV / mrad2 50 MeV 70 MeV 30 90 MeV 110 MeV 20 130 MeV 10 0 100 200 300 400 500 Energy (keV) Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639 Collaborators Sebastien Corde, Kim Ta Phuoc, Cédric Thaury, Agustin Lifschitz, Romuald Fitour, Antoine Rousse, Stephane Sebban Laboratoire d’Optique Appliquée, ENSTA ParisTech – Ecole Polytechnique – CNRS, Palaiseau, France Sylvain Fourmaux, Jean-Claude Kieffer INRS-EMT - Advanced Laser Light Source, Quebec, Canada Xavier Davoine, Erik Lefebvre CEA/DAM/DIF, Arpajon, France Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) http://loa.ensta.fr/ mercredi 4 décembre 13 UMR 7639