view
Transcription
view
Organocatalysis with N-Heterocyclic Carbenes Frontiers of Chemistry Robert B. Lettan II March 28th, 2009 Key References: Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655. Marion, N.; Díez-González, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988-3000. Johnson, J. S. Curr. Opinion Drug. Discov. Develop. 2007, 10, 691-703. Rob Lettan @ Wipf Group Page 1 of 34 3/30/2009 Thiamine-Dependent Enzymes NH2 Me N N Me OR N Thiamine: R = H TPP: R = P2O63— S H Thiamine diphosphate (TPP) is required by a number of enzymes that catalyze the cleavage and formation of bonds to the carbon atom of a carbonyl group. Mechanism of pyruvate decarboxylase (PDC) Me N Me N N OR N NH2 Me pyruvate —CO2 S Me Me S H HO Me O O N N HO H N Me Me N OR N NH S S H Me carbene ylide Me H N O S Me H Me H All 3 nitrogens on aminopyridine ring involved in hydrogen binding to enzyme. S OH Jordan, F. Nat. Prod. Rep. 2003, 20, 184-201. Rob Lettan @ Wipf Group Page 2 of 34 3/30/2009 Thiamine-Dependent Enzymes Rob Lettan @ Wipf Group Page 3 of 34 3/30/2009 Thiamine-Dependent Enzymes Mechanism of pyruvate dehydrogenase (E1) Me Me N Me N pyruvate N HO —CO2 S NH2 N Me E1 carbene ylide S S O Me SH H N S S H N lipoamide E2 E2 FADH2 O NAD E3 O SH H N CoASH E2 HS FAD NADH E2 O O Krebs cycle cellular respiration Me How can nature’s Umpolung method of bond-formation be applied to synthesis? SCoA Acetyl-CoA Leeper, F. J. et al. Biochem. Soc. Trans. 2005, 33, 772. Rob Lettan @ Wipf Group Page 4 of 34 3/30/2009 Persistent Carbene A "stable" carbene that is a reactive intermediate. 1943: Ugai Recognized that thiamine can be used as a catalyst for the benzoin condensation. 1957: Breslow H Br Me N Me S D2O, 28 °C N D Br Me S N S t1/2 ~ 20 min Me Me Me 1960: Wanzlick 1964: Lemal H Ph CCl3 N N Me Lemal ruled out dimerization through cross-over exp. Ph 150 °C Ph Me Ph —HCCl3 N N Ph HCl X Ph Ph H N N Ph tBuOK N N Ph Ph N N Ph N Ph HCl X N Ph N Ph H N N Ph N Ph Ph Ph PhNCS N NPh N S Ph increased stabilization Rob Lettan @ Wipf Group Ph N H X 1970: Wanzlick ClO4 N Me Page 5 of 34 Ugai, T. et al. J. Pharm. Soc. Jpn. 1943, 63, 296. Breslow, R. J. Am. Chem. Soc. 1957, 79, 1762. Wanzlick, H. W. Angew. Chem. Int. Ed. Engl. 1962, 1, 75. Lemal, D. M. et al. J. Am. Chem. Soc. 1964, 86, 2518. Wanzlick, H. W. et al. Liebigs Ann. Chem. 1970, 731, 176. 3/30/2009 Isolated Carbenes 1991: Arduengo NaH, THF, cat. DMSO, RT H N isolated crystal structure N 2 N1 3 N 4 Cl 5 Bond angles: N1-C2-N3 = 102.2 ° (imid = 109 °). In agreement with theoretical studies on singlet (1A') carbenes bearing !"donor substituents. Change in !-delocalization supported by upfield shift of imidazole ring protons (7.92 13C 6.91). NMR of C2: # = 211 ppm No dimerization. Some other isolated N-heterocyclic carbenes by Arduengo Me Me N N Me Me 1992 !C = 214 ppm N-C-N angle = 102 ° Less hindered tetramethyl-imidazol-2-ylidene Me Me N Me Me Me Me Me N Me Me Me N Cl N Cl Me Me 1995 !C = 245 ppm N-C-N angle = 105 ° cyclic diamino carbene dimesityl i-Pr N i-Pr No dimerization suggests this is due to electronic stabilization. Me S Me 1997 !C = 220 ppm N-C-N angle = 102 ° Air Stable 1997 !C = 254 ppm N-C-N angle = 104 ° thiazolium carbene also stable Arduengo, A. J., et al. J. Am. Chem. Soc. 1991, 113, 361. Rob Lettan @ Wipf Group Page 6 of 34 3/30/2009 Carbene Stability Carbene Stability ! Singlet Character ! ca. –87 kcal/mol H Electron Donation into Vacant p-Orbital of Carbene H R N N R R R ca. –6 kcal/mol R N N R Electron donating groups promote more stable singlet carbene ca. –20 kcal/mol R N N R Ph N N Ph N Ph Further stabilized by aromatization. Does not dimerize. N N N H H N NaH, DMSO N N N N Electron lone pairs in close proximity. Repulsive electrostatic interactions would have a significant destabilzing effect. Herrmann, W. A.; Kocher, C. Angew. Chem. Ind. Ed., Engl. 1997, 36, 2162. Rob Lettan @ Wipf Group Page 7 of 34 3/30/2009 Preparation of Stable Carbenes W X Y Z a R2 N CR3 CR4 b — S CR2 CR4 c R2 N N CR3 d R2 N CH2 CH2 e R2 N CH2 C2H4 Deprotonation H R1 N X Y Z W Base R1 N X Y Z W H NHC formation caveats: pKa = 24 (DMSO) — strongly basic — react with oxygen — their imidazole precursor's are susceptible to nucleophilic attack — sometimes difficult to isolate free carbene from metal ions used to prepare i-Pr N Me N i-Pr Me Bases: Metal hydrides: Work, but often sluggish due to relative insolubilitiy in suitable solvents (THF) Catalysts (DMSO, t-BuOH) improve solubility and reactivity, but ineffective for non-imidazolium adducts due to nucleophilicity. Must avoid hydroxide, especially with non-aromatic salts. KOt-Bu: Has been shown to be effective. Alkyllithiums: Unreliable. n-BuLi and PhLi can act as nucelophiles, t-BuLi can act as a hydride donor. Lithium Amides: LDA and LiTMP work well, if not too much LiOH in n-BuLi during preparation. Metal hexamethyldisilazides: Works very well for the most part. Alder, R. W., et al. J. Chem. Soc., Chem. Commun., 1995, 1267. Rob Lettan @ Wipf Group Page 8 of 34 3/30/2009 Preparation of Stable Carbenes Some Other Methods R AgCl2 R N 40 - 100 °C N R N Ag N N R N R R H R N X N 40 - 100 °C R N R N R N Me X = C6F5, CF3, CCl3 H Ph N Ph OMe N 80 °C, 0.1 mbar; toluene, ! Ph N Ph N quant. Ph N Ph N X = N, CH2; R' = alkyl Me Me N S Me N Me K, THF, ! Me N Me Me Nolan, S. P. N-Heterocyclic Carbenes in Synthesis, Wiley -VCH & Co., 2006. Rob Lettan @ Wipf Group Page 9 of 34 3/30/2009 NHC/Umpolung Reactivity O OH O OH O O aldol Me Me Me Me Me H Me Normal Polarity O O O O O O Michael Me Me Me O Me O OH O Me Me Me O O Me Me H H Me O O O Stetter Me Me Me H Me (+ catalyst) O NHC Catalyzed Umpolung Reactions Additional NHC Catalyzed Reactions benzoin condensation Stetter reaction hydroacylations acylation of aryl flourides nucleophilic substitution homoenolate reactivity - cross condensations - Diels-Alder reaction - Heck-type cyclizations Rob Lettan @ Wipf Group O (+ catalyst) OH Inverted Polarity Me benzoin Me Me Me transesterification - oxidation - polymerization ring-opening reactions 1,2-additions Seebach, D. Angew. Chem. Int. Ed., Engl. 1979, 18, 239. Johnson, J. S. Curr. Opin. Drug Disc. Dev. 2007, 10, 691. Page 10 of 34 3/30/2009 Benzoin Condensation Breslow Mechanism O Me N Me Me N base H H N N NH2 Ph Me S S OH thiamine carbene thiamine N H O S Ph HO Ph Ph benzoin Me Me HO O N N S Ph O HO Ph Me O Ph N O S Ph HO S Ph H Ph Ugai, T. et al. J. Pharm. Soc. Jpn. 1943, 63, 296. Breslow, R. J. Am. Chem. Soc. 1957, 79, 1762. Rob Lettan @ Wipf Group Page 11 of 34 3/30/2009 Asymmetric Benzoin Enders BF4 N N O N Me O Me Me (10 mol%) ArCHO Ar Ar KOt-Bu, THF 0 or 18 °C OH 8-83% yield 80-95% ee J. You O 1 mol% A or B 2 PhCHO Ph Ph KOt-Bu, THF, 23 °C OH Cl N O A: 27%, 88% ee B: 95%, 95% ee Cl N N N O N N N N N O DFT calculations show B has a larger conjugation interaction over mono-triazolyldine A. A Rob Lettan @ Wipf Group Enders, D.; Kallfass, U. Ang. Chem. Int. Ed. 2002, 41, 1743. You, J. et al. Adv. Synth. Catal. 2008, 350, 2645. B Page 12 of 34 3/30/2009 Crossed Benzoin Et Inoue N O R S O H H O (10 mol%) R H 64-100% selectivity OH R = Me, Et, n-Pr, i-Pr, Cy, Ph, 2-furyl Müller: enzymatic O Ar1 BAL, ThDP, Mg2+, KPi buffer, DMSO, 30 °C O H Ar2 O Ar2 Ar1 H Ar2 must be a better electron acceptor that Ar1. conversion, selectivity, ee up to > 99% OH BAL = benzaldehyde lyase ThDP = thiamine diphosphate Johnson: metallophosphite catalyzed Ar = 2-FPh CHO O Ph SiEt3 5 mol% A, n-BuLi (20 mol%) THF, 30 min OMe O 87% yield 91% ee Ph OSiEt3 OMe via a Brook rearrangement pathway Rob Lettan @ Wipf Group Me Page 13 of 34 Me Ar Ar O O O P O A O Ar H Ar Inoue, S. et al. J. Org. Chem. 1985, 50, 603. Müller, M. et al. J. Am. Chem. Soc. 2002, 124, 12084. Johnson, J.S. et al. J. Am. Chem. Soc. 2004, 126, 3070. 3/30/2009 Azabenzoin Murray/Frantz & Miller Cl R2 O R1 H Ts catalyst, conditions O N H R3 R2 R1 O O N H A R3 Murray/Frantz: 10 mol% A, NEt3, DCM, 35-60 °C, 0.5-24 h 58-98% yield Miller: 15 mol% B, PEMP, DCM, 23 °C, 2 h 57-100% yield 75-87% ee Scheidt I Me O O R1 N SiZ3 R2 P Ph Ph H Me O Me N N H NHBoc O I S S H N N B Me Me N Me 30 mol% Me HO Me Bn OBn S DBU, CHCl3, i-PrOH Me Me O Me N OSiZ3 S R1 Me Me N OH S R1 Breslow Intermediate R2 R1 HN Ph Ph P O 51-94% yield Murray, J. A.; Frantz, D. E. et al. J. Am. Chem. Soc. 2001, 123, 9696. Miller, S. J. et al. J. Am. Chem. Soc. 2005, 127, 1654. Mattson, A. E.; Scheidt, K. A. Org. Lett. 2004, 6, 4363. Rob Lettan @ Wipf Group Page 14 of 34 3/30/2009 Intramolecular Crossed Benzoin Complex Anthraquinone Precursors Br Me MeO O 20 mol% N O N O 79% yield dr = 20:1 DBU, t-BuOH, 40 °C, 0.5 h CHO OMe N S HO Me Et Me EtO2C CO2Et OH O Enantioselective Synthesis of the Eucomol Core 15 mol% Rovis' catalyst CHO O Ph O NEt3, THF, rt, 25h O O OH Ph O HO O OMe (S)-eucomol Ph N OH OH N N BF4 O Suzuki, K. et al. Adv. Synth. Catal. 2004, 346, 1097. Suzuki, K. et al. Angew. Chem. Int. Ed. 2006, 45, 3492. Rovis, T. et al. J. Org. Chem. 2005, 70, 5725. Rovis' Catalyst Rob Lettan @ Wipf Group Page 15 of 34 3/30/2009 Stetter Reaction X Stetter, 1976 O n-Pr R Me O O 10 mol% A H OMe n-Pr S HO A: R = Bn, X = Cl B: R = Et, X = Br OMe NEt3, EtOH, 78 °C N O A for aliphatic B for aromatic 95% yield O R n-Pr Me H HO N OH S n-Pr O OMe Breslow Intermediate R R A Me NEt3 Me N N O OH OMe S HO HO R Me O O HO S n-Pr OMe Stetter, H. Angew. Chem. Int. Ed., Engl. 1976, 15, 639. Yates, B. F.; Hawkes, K. J. Eur. J. Org. Chem. 2008, 5563. O Rob Lettan @ Wipf Group n-Pr OMe O n-Pr N S Page 16 of 34 3/30/2009 Asymmetric Intramolecular Stetter Reaction — Ciganek was the first to report and intramolecular Stetter reaction (1995). — Enders was the first to report an asymmetric intramolecular Stetter reaction (1996, 41-74% ee). — Significant progress has been more recently acheived by Rovis (2004-present). Rovis air and water stable, crystalline solid O O 20 mol% A or B, base toluene or xylenes R EWG X BF4 O N R 24 h, 25 °C X = O, S, NR, CH2 R = H, alkyl, aryl N Ar EWG X N if R = H: catalyst A, Ar = 4-OMePh base = 20 mol% KHMDS if R = alkyl/aryl: catalyst B, Ar = C6F5 base = 2 equiv. NEt3 82-99% ee Desymmetrization O R' toluene, 23 °C R O 10 mol% A, 10 mol% KHMDS, O CHO R' H O R 60-94% yield 82-99% ee >95:5 dr O Ciganek, E. Synthesis 1995, 1311. Ender, D. et al. Helv. Chim. Acta. 1996, 79, 1899. Rovis, T. et al. J. Am. Chem. Soc. 2004, 126, 8876. Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552. Rob Lettan @ Wipf Group Page 17 of 34 3/30/2009 Asymmetric Intermolecular Stetter Reaction Enders BF4 N N N Bn O OTBS PhCHO (10 mol%) 10 mol% Cs2CO3, THF, 0 °C, 6 h O Ph Ph Ph O 65% yield, 66% ee BF4 Rovis N N N F F F O Et H N O Ph Ph O F O F CO2t-Bu CO2t-Bu Et (20 mol%) CO2t-Bu N i-Pr2NEt, CCl4, MgSO4, —10 °C, 12 h, 84% yield, 90% ee O O CO2t-Bu 1. Super-hydride THF, —100 °C 95%, 8:1 dr 2. HCO2H, 23 °C quant. O CO2H O O Et N O Enders, D.; Han, J. Synthesis 2008, 3864. Rovis T. et al. J. Am. Chem. Soc. 2008, 130, 14066. Rob Lettan @ Wipf Group Page 18 of 34 3/30/2009 Special Intermolecular Stetter Reactions X Me R N One-Pot Synthesis of Pyrrols and Furans (Stetter-Paal-Knorr) HO Müller OH 1. (Ph3P)2PdCl2, CuI, NEt3, ! R3NH2, TsOH, R2Br 2. R1CHO, 20 mol% A Ph R1 Scheidt O SiMe3 R2 Ph 53-82% yield R2 O Ph HOAc, ! 20 mol% B, Ph N R1 A: R = Me, X = I B: R = Et, X = Br 4Å Sieves, ! R2 O R1 O R3 S DBU, i-PrOH, THF, 70 °C O R1 Ph 42-84% yield R2 Polymer-Supported Stetter Reactions Can easily recover polymer and use up to 4 times without loss of reactivity. Ph n S Me O O R1 H R2 R4 R3 N I Me DMF, NEt3, 80 °C R1 O R2 O R4 68-99% yield 66->95% purity R3 Müller, T. J. J. et al. Org. Lett. 2001, 3, 3297. Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465. Barrett, A. G. M. et al. Org. Lett. 2004, 6, 3377. Rob Lettan @ Wipf Group Page 19 of 34 3/30/2009 Natural Product Synthesis using the Stetter Reaction Me Bn Tius Cl O N S (30 mol %) BzO Me Me 4 BzO 6-hexenal NEt3, dioxane, 70 °C, 18 h, 60% 8 steps from 5-hexenal Nicolaou 1. Grubbs catalyst 2. H2, Pd/C HN Me HN O 3. (NH4)2CO3, propionic acid, 140 °C Me Me Me Me Cl O Me OMe NH N O O Br H 8 steps from dihydroresorcinol Rovis NEt3, CH2Cl2, 45 °C, 64% O PMB O O 4 steps from N-PMB maleimide Rob Lettan @ Wipf Group OH H Br HO2C OH N N (20 mol%) 20 mol% KHMDS, 0 °C, toluene 88% yield, 99% ee O Me O O single diastereoisomer O HO OMe Ph Me O N PMB Me O O Me (±)-platensimycin O C6F5 (±)-roseophilin N H BF4 N O N O BF4 N N C6F5 O O O O OH O N PMB O O FD-838 Harrington, P. E.; Tius, M. A. Org. Lett. 1999, 1, 649. Nicolaou, K. C. et al. Chem. Commun. 2007, 1922. Orellana, A., Rovis, T. Chem. Commun. 2008, 730. Page 20 of 34 3/30/2009 Homoenolates Me Cl Me Me Me N O 5 mol% CHO R1 H R2 Can also access γ-lactams if imines are used as the electrophile. O N Me Me O KOt-Bu/THF or DBU/t-BuOH/THF 41-87% yield cis/trans ! 4:1 R2 R1 R1 Mes OH CHO N R1 N Mes Me Me Me N Mes OH Me N R1 N N Me Me Mes R2 O O Mes O N R1 O N O Mes R2 R1 Rob Lettan @ Wipf Group H R Burstein, C.; Glorius, F. Angew. Chem. Int. Ed. 2004, 43, 6205. Bode, J. W. et al. J. Am. Chem. Soc. 2004, 126, 14370. Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873. Page 21 of 34 3/30/2009 β-Lactones Me Me Cl Me Me N O Me 5 mol% CHO Ph CF3 F3C Ph N Me Me NEt3, toluene, 60 °C Me Me Mes OH CHO N R1 N N Mes Me Mes Me Me Me N Me Mes OH N R1 48% yield 3:2 dr O Me R1 O Mes O N N R1 N Me Mes O R3 R2 Mes O N R3 R2 O O R1 Mes R1 Rob Lettan @ Wipf Group O N R3 R2 Glorius, F. et al. Synthesis 2006, 2418. Page 22 of 34 3/30/2009 Azadiene Diels-Alder Reaction O N ArO2S CHO EtO2C 10 mol% N H Ph N N O Mes ArO2S BF4 DIPEA, 23 h 0.05 M toluene/THF (10:1) N CO2Et 90% yield >99% ee Ph CHO EtO2C OH OH N N EtO2C EtO2C N N N N Mes Mes O O N N N N EtO2C Mes N N Mes Ph CO2Et O ArO2S N N CO2Et Ph N ArO2S O Mes ArO2S N N N H Ph Bode, J. W. et al. J. Am. Chem. Soc. 2006, 128, 8418. Rob Lettan @ Wipf Group Page 23 of 34 3/30/2009 1,3,4-Trisubstituted Cyclopentenes Me Cl Me Me Me N O CHO R1 R2 6 mol% R3 R3 N Me Me 55-88% yield 12 mol% DBU, THF, rt, 8h O O CHO R1 R2 Mes OH R3 R3 Mes Me N R3 N Me R2 Mes O Me R3 R1 N Me O —NHC N Mes Me Mes O R1 N R2 O R2 N R1 R1 N R2 Me N R1 O Mes OMe R3 Mes O O O R3 R2 R1 4-OMePh O S O Mes S R2 H 43% CO2 R1 Rob Lettan @ Wipf Group CHO N R1 R3 N R2 Bode, J. W. et al. J. Am. Chem. Soc. 2006, 128, 8418. Page 24 of 34 3/30/2009 Enantioselective Cyclopentane Synthesis O O OH 99% ee Me Me R1 CO2Et Cl N 10 mol% O N Mes N DBU, toluene, rt, 15 h O R1 CHO OH EtO2C Me Me ClO4 N 10 mol% N Mes O DBU, toluene, rt, 15 h O O Me Me OH 99% ee R1 CO2Et Rob Lettan @ Wipf Group Kaeobamrung, J.; Bode, J. W. Org. Lett. 2009, 11, 677. Page 25 of 34 3/30/2009 Annulation with Aryl Nitroso Compounds Cl Me Me NO R1 Me N N Me 20 mol% CHO O 45-81% yield 20 mol% DBU, THF, —5 °C Me CHO R1 i-Pr OH O Ar Me N H NO N R1 Me N i-Pr Me Me Ar' Me N N Me N O i-Pr O N Ar N i-Pr O O N O O N Ar O Ar Bamberger-Type Rearrangement N H Me Me Me Rob Lettan @ Wipf Group O Ar Zhong, G. J. Org. Chem. 2009, 74, 1744. Page 26 of 34 3/30/2009 NHC-Catalyzed Redox Processes Rovis CHO Ph 20 mol% N Cl N N Ph NEt3, BnOH, toluene, 25°C, 4 h Br OH O O N N Ph Ph Ph N Br N N Ph N OBn 80% yield Ph Bode Me O CHO Ph Me 10 mol% Me Bn N Cl OH O S i-Pr2NEt, EtOH, CH2Cl2, 30°C, 15 h Ph OEt Me 89% yield, 13:1 dr Scheidt Ph Zeitler Mes N CHO Ph 5 mol% Cl Rob Lettan @ Wipf Group CHO 5 mol% I O N Me DBU, BnOH, PhOH, toluene, 100 °C, 2 h Ph OBn 82% yield O N Mes DMAP, EtOH, toluene, 60 °C, 2h Me N Ph OEt 65% yield Rovis, T. et al. J. Am. Chem. Soc. 2004, 126, 9518. Chow, K. Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 3873. Zeitler, K. Org. Lett., 2006, 8, 637. Page 27 of 34 3/30/2009 NHC-Catalyzed Azidation of Epoxy-Aldehydes O Ph 20 mol% CHO CHO Ph OTMS Ph 16 mol% NEt3, TMSN3/NaN3, (EtOH) toluene, 25°C, 4 h Me O N O Cl N N Ph Me N3 O NH or Ph O Me TMSN3/NaN3 (2.5:1) TMSN3/NaN3/EtOH (1:1:1) OH O N Ph Me N Me N EtOH creates equilibrium, which leads to intramolecular oxazolidinone formation. Ph N N H N N OH Ph N3 O O H N R1 O N Me Ph Ph Me w/ EtOH OH Curtius Rearrangement O R1 N3 Me NH OH OTMS NuH N R1 Me C Ph O Me H N Nu O Rovis, T. et al. J. Org. Chem. 2008, 73, 9727. Rob Lettan @ Wipf Group Page 28 of 34 3/30/2009 O- to C-Acyl Transfer O R2 N 1 mol% N BF4 N N Ph CO2R1 O R2 0.9 mol% KHMDS, THF, rt, 5 min Ar O R1O2C 67-84% yield O N Ar N N O R1O2C N Ph O CO2R1 R2 R2 N O N Ar O Ar O R2 N N N Ph CO2R1 N O Ar Crossover experiment supports mechanism: 2 different starting materials (R1/R2 and R1'/R2') give 4 different products. Rovis, T. et al. J. Org. Chem. 2008, 73, 9727. Rob Lettan @ Wipf Group Page 29 of 34 3/30/2009 Trans-Esterification Nolan O R1 0.5-5 R3OH OR2 R1 = Cl N mol% Cy N Cy R1 4Å MS, THF, < 3 h alkyl, aryl 2 R = Me, vinyl R3 = 1° and 2° alkyl R1 R3 R1 OR2 0.5-5 Cl N mol% Mes N Mes OH H2N 4Å MS, THF, < 3 h = alkyl, aryl 1° alkyl O R1 HO N Mes OMe N !+ H R3 N H OH R2OH Alcohol is necessary. HO H O Mes NH2 Mes R1 OMe NH2 Mes N HO Mes Me N Mes N or 66-99% yield Competitive experiment with H2NBn gives only the desired product. N MeOH OR3 O R1 R2 = Mes O 90-99% yield Equilibrium process that favors product under reaction conditions. Movassaghi O O Me N !+ N HO H O Me R1 O Theoretical studies by Hu support this mechanism. NH2 Mes product (after acyl transfer) Rob Lettan @ Wipf Group Page 30 of 34 Nolan, S. P. et al. Org. Lett. 2002, 4, 3583. Hedrick, J. L. et al. Org. Lett. 2002, 4, 3587. Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453. Hu, C.-H. Tetrahedron Lett. 2005, 46, 6265. 3/30/2009 NHC-Catalyzed 1,2-Additions O 0.5-5 mol% R1 Cl R N N R OTMS or H TMSCF3/DMF or TMSCN/THF R = adamantyl, Mes R1 = aromatic, aliphatic, branched aliphatic O H R CF3 R 79-99% yield TMSNuc N O N H R1 NTs O or Ph Me R R N N O N H R1 R R SiMe3 Ph OR O N R R1 R Rob Lettan @ Wipf Group N N H R —NHC OTMS SiMe3 O R1 R1 R NHTs or R Si Me Nuc Me N Nuc Me CN 99% Me Cl R N OH Nuc N H TMSCN/THF OTMS R1 Ph (1 mol%) R N CN Maruoka R R1 OTMS Nuc Nuc Page 31 of 34 Ph H CN 92% Lewis-base mechanism more plausible. Song, J. J. et al. Org. Lett. 2005, 7, 2193. Suzuki, Y.; Sato, M. et al. Tetrahedron, 2006, 62, 4227. Maruoka, K. et al. Tetrahedron Lett. 2006, 47, 4615. 3/30/2009 Aziridine Ring-opening Chen O R1 20 mol% H Cl Mes N R1 O N Mes R2 O 40-95% R2 NTs R3 K2CO3, 18-crown-6 50 °C, air, 24 h R3 NTs Wu 5 mol% Cl Mes N R2 NTs R1 Lewis base-catalyzed pathway proposed. N Mes R2 NTs 90-99% yield TMSX, THF, 23 °C, 0.3-24 h R1 Mes TsN X R1 X = N3, Cl, I R2 N N Mes Me N3 Si Me Me Rate: I > Cl >> N3 R1 = alkyl, aryl, H R2 = alkyl, aryl Rob Lettan @ Wipf Group Chen, Y.-C. et al. Org. Lett. 2006, 8, 1521. Wu, J. et al. Tetrahedron Lett. 2006, 47, 4813. Page 32 of 34 3/30/2009 NHC-Catalysis/Initiation of Silyl Enol Ethers LB Song O CHO Me Me SiMe3 0.5 mol% OMe OH Cl Ad N N Ad CO2Me Me Me THF, 23 °C, 3 h; then HCl Me Me 83% yield What is the Lewis base? Scheidt i-Pr can be isolated SiMe2Ph THF, 0 °C n-Bu N N O OSiMe2Ph 5 mol% n-BuLi HO Et i-Pr Et · 5 mol% H n-Bu i-Pr OH i-Pr Et PhCHO, —78 °C n-Bu Ph 80% 20:1 Z:E Song, J. J. et al. Org. Lett. 2007, 9, 1013. Scheidt, K. A. et al. Org. Lett. 2007, 9, 2581. Rob Lettan @ Wipf Group Page 33 of 34 3/30/2009 In Conclusion — N-Heterocyclic carbenes are powerful reagents for the synthesis that have seen a remarkable growth in application over recent years. — NHC organocatalysis has given chemists the ability to access unusual reactivity patterns (Umpolung) along with other reactions (1,2-additions, redox, opening of small rings). — New synthetic opportunities are just beginning to be explored, along with improvements in enantioselective NHC catalysis. — Although not covered in this discussion, it is worth mentioning that NHC's have also proven as valuable compounds for ring-opening polymerizations and have been utilized effectively as ligands in metal catalysis. Rob Lettan @ Wipf Group Page 34 of 34 3/30/2009
Similar documents
Transition metals in organic synthesis: highlights
acid [139], polycitrin B [140], ecteinascidin and phthalascidin [141], crocacin A [142], salicylihalamide [143], (/)-asperpentyn [144], (/)-zearalenones [145], a- and b-zearalenol [146], diazonam...
More information