Integration by Parts
Transcription
Integration by Parts
BC Calculus | Post AP: Advanced Integration Techniques I. Integration by Parts / Reduction Formulas If u = f (x) and v = g (x) and if f / and g / are continuous, then ∫ udv = uv − ∫ vdu. Example 1: Evaluate ∫ xe Example 2: Evaluate ∫ x sec 2x dx. 2 xdx Example 3: Evaluate ∫ ln xdx Example 4: Evaluate ∫ tan Example 5: Evaluate ∫x 2 −1 x dx e 2 x dx. Example 6: Evaluate ∫ e x cos xdx. Example 7: Evaluate ∫ sec 3 xdx. Example 8: Find a reduction formula for ∫ sin n x dx Example 9: Use the reduction formula in Example 8 to evaluate ∫ sin 5 x dx BC Calculus | Post AP: Advanced Integration Techniques Integration for powers of trigonometric function (Reduction Formulas): BC Calculus | Post AP: Advanced Integration Techniques II. Trigonometric Integrals ∫ sin m x cos n x dx Guidelines: Example 1: Evaluate ∫ sin 5 x dx without using “by parts.” Example 2: Evaluate ∫ cos 2 x dx without using “by parts.” Example 3: Evaluate ∫ cos 3 x sin 4 x dx BC Calculus | Post AP: Advanced Integration Techniques III. Trigonometric Integrals ∫ tan Guidelines: Example 1: Evaluate ∫ tan Example 2: Evaluate ∫ tan 3 x sec 5 xdx . 2 x sec 4 xdx . m x sec n x dx BC Calculus | Post AP: Advanced Integration Techniques IV. Trigonometric Substitutions Expression in Integrand a2 − x2 Trigonometric Substitution x = a sin θ a2 + x2 x = a tan θ x2 − a2 x = a sec θ Example 1: Evaluate ∫x Example 2: Evaluate ∫ Example 3: Evaluate ∫ dx 2 16 − x 2 dx 4 + x2 x 2 − 9dx x BC Calculus | Post AP: Advanced Integration Techniques V. Integration using Partial Fractions Guidelines for Partial Fraction Decompositions of f ( x) / g ( x) 1. If the degree of f(x) is not lower than the degree of g(x), use long division to obtain the proper form. 2. Express g(x) as a product of linear factors ax + b or irreducible quadratic factors ax 2 + bx + c , and collect repeated factors so that g(x) is a product of different factors of the form (ax + b) n or (ax 2 + bx + c) n for a nonnegative integer n. 3. Apply the following rules. Rule a: For each factor (ax + b) n with n ≥ 1 , the partial fraction decomposition contains the sum of n partial fractions of the form An A1 A2 , where each numerator Ak is a real number. + + ⋅⋅⋅ + 2 ax + b (ax + b) (ax + b) n Rule b: For each factor (ax 2 + bx + c) n with n ≥ 1 and with ax 2 + bx + c irreducible, the partial fraction decomposition contains a sum of n partial fractions of the form An x + Bn A1 x + B1 A2 x + B , where each Ak and Bk is a real number. + + ⋅⋅⋅ + 2 2 2 ax + bx + c (ax + bx + c) (ax 2 + bx + c) n 5x − 3 dx . − 2x − 3 Example 1: Evaluate ∫x Example 2: Evaluate ∫ ( x + 2) Example 3: Evaluate 2x3 − 4x 2 − x − 3 ∫ x 2 − 2 x − 3 dx 2 6x + 7 2 dx BC Calculus | Post AP: Advanced Integration Techniques VI. Integration using Table of Integration Example 1: Evaluate ∫x Example 2: Evaluate ∫x 1 2 3 3 + 5x 2 cos x dx dx for x > 0 BC Calculus | Post AP: Advanced Integration Techniques VII. Irreducible Quadratic Expression in the Integrand Example 1: Evaluate ∫x Example 2: Evaluate ∫ 2 2x − 1 dx − 6 x + 13 1 x 2 + 8 x + 25 dx BC Calculus | Post AP: Advanced Integration Techniques VIII. Miscellaneous Substitutions (Integral contains an expression of the Example 1: Evaluate ∫ Example 2: Evaluate ∫ x3 3 x2 + 4 1 x +3 x dx dx n f (x ) ) BC Calculus | Post AP: Advanced Integration Techniques IX. Miscellaneous Substitution (Integrand is a rational expression in sin x and cos x ) Example 1: Evaluate ∫ Example 2: Evaluate 1 dx 4 sin x − 3 cos x cos x ∫ 1 + sin 2 x dx 482 llll 7 CHAPTER TECHNTQUES OF TNTEGRATTON 13. fax ,--. Jl x--bx 15. l-dx J3 x' - 1^, 14x'-lx'-4 ,,. ,r. J y(y+2)(y-3) _ 1 (x+5)'z(x-1) )-. )dx x3+4 T -I L x'*3x12 ^uL 'r. lJ ,0. I (x+a)(x+b) _ ,t. ,0. _ )- 1 or.J _.1 )* -Y' - or. ro. -T -dx x'- 5x + lb j (2x+7)(x-2)2 dx j -dx x2-x*6 x'*3x ,o.l Ej ,,. 7 x'+x+1, (x' -t 1)' -dx ,,. x--ZX-l ),t. J _(x-l)'G'+1) sr. ffi sl. 7^ T ,3x2+x+4 l-dx-i3x-t./. ft 1 l-dx -Jx'-1 rt x3+2x 33. l---dx Jo.r*+4x'*3 35. rdx .=)I x\x'l- )^ r x'--1x+ I J =---dx (x'-4x*6)' 39-50 Make 116 41. I ^E dx Jg x-4 x3 WJ -r rI -;-dx Jx.+ I r1---=------;-r rI \/x-lx dx r * ^/l l-d* )-. qi sec2/ tan2t+3tal t+2 J (e'-2)G2'+t) e' J m(x'? - dt dx x + 2) dx i?. I.tan-txdx Us" a graph of f(x):ll|' - 2x - 3) ro decide whether lif G) a* is positive or negative. Use the graph to give a rough estimate of the value of the integral and then use partial fractions to find the exact value. , x4+3x2+l l-dx x'* 5x'* 5x )* I J 2x2) and an antiderivative on the r"j dx ----_ x'-2.x /r\ cos[;):--- the integrand as a rational VI : $i.] t and L 1 1L -,2 cosx:-:------, \+t' .2t stn.r: and (c) Show that 1 [rrinr; Substitute u /r\ ,tr\r/:ffi 1 (b) Show that rdx 40. lJ2Jx*3ix rr 47. | . _i_ .1-dx JU I , VX "" !^r: ax qq.l' Jtlz x' * x 2x-l + 12x -'7 1 4x2 57. The German mathematician Karl Weierstrass (1815-1897) noticed that the sribstitution t : tan(x/2) will convert any rational function of sin x and cos -r into an ordinary.rational function of r. (a) Ifr: tan(xlz), -r I x ( .r, sketch a right triangle oruse trigonometric identities to show that \L/ a substitution to @jqo. rx -t J rx3+2x2*3x-2 I _ J (x'*2x*2)' "xp{ess function and thbn evaluate the integral. 45. 155.1 I -J- a, J-r'*1 17, I x J x l-dx x'44x*13 36. sln 55-56 Evaluate the integral by completing the square and using Formula 6. Jo 4)' -I same screen. J x l3l.l -r t ffi Sl.- Craph both y : 1lG' - -AX x*4 l79.ll"--dx -r x'*2x15 -J )- 5 l-52 Use integration by parts, together with the techniques of this section, to evaluate the integral. ds ,,. T --r-------ls-l,s 1l' y', COS sm:x x'-x-6 x2+2x-1 _)- J e2' e"*3e'*2 x3-4x-70 l6'Jn 2x' 4v2-l.v-12 " Llx l, 'r. dx x-1 _ l ^1 lll. l--dx *Jzx'-7 - )uL- 2 1+t' - )+ 1+t' ^uL Use the substitution in Exercise 57 to transform the inte' grand into a rational function of f and then evaluate the integral. 58-61 58. rdx l- J 3-5sinx ./x 3sinx-4cosx 60. l't' J.B I 1 + sinx-cos, d] Multivariable Calculus O9l0: Unitl - Principles of Integrations (Unit Exercises) Principles of lntegral Evaluation A convergent improper integral over an Approximate this integral by applying Simpsou,s rule with 2n : 20 subdivisions to the integral infinite interval can be approximared by first replaciag the infinite limit(s) of in_ tegration by finite iimit(s), then using a numerical integration technique, such as Simpson's rule, to approximate the integral f4 1 I Jo xb+7 Round -dx your answer to three with finite limi(s). This technique is illusffated in Exercises 60 and 61. 60. decimal places and compare it to n/3 rounded to three decimal places. Suppose that the integral in Exercise 5g is approximated by first writing it G) as rK f+* Use the result that you obtained in Exercise 46 aad the fact that ll@6 + | < l/x6 for x > 4 to show that the truncation error for the approximation in part (a) sads_ r*a | ,-"" dx = Jo | "-r' d* + Jx I e-,' dx Jo fies0<E<Zxl0-4. then dropping the second term, and then applying Simpson,s rule to the integrai tK L-" d, Jo The resulting approximation has two sources of error: the error from Simpson's rule and the error r*a E: I JK ffi 62. For what values ofp does [*lo "rdx 63. Show ,au, < 1 anddivergesifp > I. 64. It is sometimes possible that resuits from discarding the second term. We truncatian etor. 2n: an Uy making the indicated substitution, and investigate whathap_ if you evaluate the integral directiy using a CAS. cal E the pens (a) Approximate the integral in Exercise 5g by applying raI to convert an improper integral iato a "proper" integral having the same value by making appropriate substitution. Evaluate the following integrat e-,'dx Simpson's rule with ['4xp "oru".g"rifp Jo converoe? al lg subdivisions to the inte_ I *-x :- J, b^q dx; u=$-1 t3 L-" d* Jo _ Round your answer to four decimal places and compare j.,8 roundeO to four decimal ilu.".. Use the result that you obtained in Exercise 46 and the it to . (b) factthate-xz S lxe-* forx > 3 to show that the fun_ cation error for the approximation in part (a) satisfids 0<E<2.1x10-5. 61. (a) It 65. can be shown rhat [+IJo r0+1 -d*:! 1 66. 3 1. Consider the following methods for evaluating integrals: a-substitution, integration by parts, partial fractions, reduc_ fion formulas, and trigonomefic substirutions. In each part, state the approach that you would ry first to evaluate the integral. If none of them seems appropriate, then say so. You need not evaluate the integral. O, | ,sinxdx f_ (c) ltan'xdx | ^) -7X' (b) I le) I J x'*7 -dx sinxdx /"ou fal It^'xsec2xdx rrt 1ff6a. /,1 cos x J, "n dx; u: Jx ft sinx I --_dx;u-Jl-x Jo t/ I - x {e) |t_ an-'*a* (D (l ,Jq - x2 dx .l r_ JJt-xzdx 2. Consider the following trigonometric substitutions: x:3sin6, x-JtznQ, x:3sec0 In each part, state the substitution that you would fy first to evaluate the integral. If none seems appropriate, then state a trigonometric substitution that you would use. you need not evaiuate the integrat. f_ @I r ,/g*x2dx "J"l6-dx @) ! ,E-u'0, at I Jr*u'0. at [ ,t.'- ro. (d) 14. Find apositive value ofa f- + (ex)z dx J Jt (f) 3. (a) What condition must a rational function satisfy for the method of partial fractions to be applicable directly? @) If the condition ia part (a) is not satisfied, what must you do if you waat to use partial fractions? 4. What is I of the formula ia the Endpaper you apply to evaluate the integral. would that Table Integral You need not evaluate *re integral. | (c) l (e) dr .J' - .'o' * ;t -1i,: ii ,fi A' fdx ,_ I I - xJ4x 7. In each part" evaluate the integral by making I *, I snauax fl the integrat I -;- J xt_x an appropriate Evaluate the integral using the substitution For what values of .r is your rcsult valid? x: sec 6 ' : siaO' x Id, I xiz*x*1) zG. - J+ ['Go* x*9 J6 I J*-ta* ^Ia2 zB. Jo x dx dx ;,-TW, a.b > o ! [-Lo, I Jx_xz three ways: using the substitution u : G, using the substitu[on a - JT1, and completing the square. (b) Show that the answers in part (a) are equivalent. Find the area of the region that is enclosed by the curves ) = (x - 3)l (x3 + xz), y -- 0, x : 1, andx : 2- sketch to show that I#,' dv I Some htegrals that can be evaluated by hand cannot be eval- i ! uated by all computer algebra systems. fu Exercises 31-34, I evaluate the iategral by han4 and determine if it can be eval- i I uated on your CAS. .. - ---- ..-- L .-.-... I m31. l*- , .-4" 1t -2x213/2 dx i Evaluate the iategral 11. sketch the region whose area r, Ji )a Jxz +2x +2 'o' /. i--"-'- (c) Evaluate the iategral using the method of partial fractions. For what values of x is your result valid? (a) -tt @T* dx. (b) I I I 1'+- Evaluate the integral using t}le substitution For what values of x is your resuit valid? r1: J sia'0-6sa0*12 f x-13 r+,,.J, ,coss1*2;dx (a) 'i): cos0 --- ['F x o, 27. [ -La. J Je'*l substitution and applying a reduction formula' fal J I @-1)(x*2)(x-3) JVfi. / 18. sec'7x'} dx fdx zs. '.,i l'.r 2t. /1 Consider r.' tf *3 t^r' e ae !0"/o fdx ,_ J {3 + *ryrt, xsles' dx ,l' .ii. 19. I'#0. (f) (a) integration by parts (b) the substitution u: i.:ii.l I (d) | "o'a* 6. Evaluate tne int.fa # Al swxcos 9x equation rrlJl f^ t7. I xtanz(xz) an improper integral? rc. /cos 0 s:Jr-? d0 J 5. In each part" find the number @ Lhat satisfies the rt' i I x/*az Jo 15-30, evaluate the iategral. -dx:l and use your d' : [' aio, [* lo l+x'z - Jt 1#,. Eil 32. / t"or" x sioro r - cos30, stn32 x) dx ,:----: B 33. J,l. - J*z - +ax.lfiint: +(Jx +2- 4E -Dz :?l m 34' I #*dx.fHint:Rewritethe x10(1 ffi denomi:rator as + x-e).1 35. Let f(x): -zx5 +26x4 x6 -xs - * 18xa 15x3 + 6xz +aox + 43 -2r3 -39x2 -x -20 (a) Use a CAS to factor the denominator, and then write V U. Find the area that is enclosed between the x-axis curve y : onx - l) / xz for x Z e. and the 13. Find the volume of the solid that is generated wheu the region between lhe x-axis aad the curve y e-' forx > 0 is revolved about the y-axis. : dowu the form of the partial fraction decomposition. You need not filrd the values ofthe constants. (b) Check your answer in part (a) by using the CAS to find the partial fraction decomposition of /. (c) Integrate / by hand and fhen check your answer by integratirg with the CAS. 36. TheGarnmafunctian, f (x) f (x), 1+o : 1 (-te-l is defined where 6 as dt Jo It can be shown that this improper iategral converges onlyifx > 0. (a) Find f (1). (b) Prove: f (x * 1) if and : xl(x) for aII .x > 0. [;1inr: Use iategration by parts.l (c) (d) Use the results ir parts (a) and (b) to find f (2), f (3), and f (4); and then make a conjecture about I-(n) for positive integer values ofn. Show that f (+) ,/i.fHint: See Exercise 58 of Sec- : tion (e) 5t. Refer to the Gamma function defined rl dx i-u evaluated by nrrmerical methods. (a) Obtain (2) from (1) by substituting cosd xn . Use the Exercise 36 to show : sin(00/2) and then making the change of variable n > 0. sin o. : I -zsnz@/z) cosdq: I -Zs1n2@o/2) O) n> Q) where k sn(00/2). The integral in (2) is called a complete elliptic integral of the fvst kind arrd is more easily k = (-l)"1(n * 1), fHint:l*tr: -Inx.] + 1), (b) [** ,-,' a, : p(' n " Jo \ )' Vlint: Let t -- d : sin(0 /2)lsn(0012) : slr:(O /2)/k Use (2) and the numerical integration capabiliry of your CAS to estimate the period of a simple penduium for which I: 1.5 fr 0o : 20o,and g - 32ftl s2. result i:r Exercise 36(b).1 s8' Asimple pendulznz consists of a mass that swings in a vertical plane at the end of a massless rod of length .L, as shown in the accomFanying figure. Suppose that a simple pendulum is displaced through an angle 06 and released from rest. It can be shown that in the absence of friction, the time I required for the pendulum to make one complete back-andforth swiag, calTedthe period, is given by 'r- [t,l.rt" :)a l-l Y s Jo /cosE I - cos A; -- (1) Railroad Design our company has a contract to construct a track bedfor a railroad lirue between towns A and B shown on the contour map in Figure L The bed can be created by cutting trenches through the surface or by usirLg some combination of trenches and tunnels. As chief engitleer, your assignrnent is to arlalyze the costs of trenches an"d. tunnels and to propose a design strategy for minirnizing the total construction cost. sw Engineering Requirements The Transportation Board submits the following engineering requirements to your company: . the 1 J, mrado ':oli : : i"fi *dr(i): ifi. (a) / (t *)' Jo ffi frvn Use the results obtained in parts (b) and (d) to show that that 0(r) is the angle the pendulum makes with can be shown that the period can be expressed as 8.8.1 f (i) : vertical at time l. The improper iategral in (1) is difficult to evaluate numerically. By a substitution ouflined below it The track bed is to be straight and 10 m wide. The grade is to increase at a cotrstant rate from the existing elevation of 100 m at town A to an elevation of 110 m at point M and then decrease at a constant rate to the existing elevation of 88 m at town B. A7,ffi The formulas below are stated in terms of constants a, b, c, m, n, and so on. These con_ stants can usually assume any real value and need not be integers. Occasional limitations on their values are stated with the formulas. Formula 5 requires n * -1, for example, and Formula 11 requires n * *2. The formulas also assume that the constants do not take on values that require dividing by zero or taking even roots of negative numbers. For exampie. Formula 8 assumes a * O, and Formula 13(a) cannot be used unless b is negative. ,.l"dv:uv-lrn, z. lna I o. a,: !*c, ,./.o, udu:sina*c a. I *, '. I ,. | r. [ + b). dx:'Tii'ii' . r, n * -l *r," + b)^ dx - @x +-!)*11+* *t"* + b)-t dx : L - 9')xhx+dzdx= 4rrbx ll,n o,L - sin, du a*1, a>o :-cosz*C e.[(ax+u) -tdx-_Llnlax+bl-C a 1 #). ,, n* -7, -2 + bl + c d* ,:1rn l--z l * . n. I x(ax+b) b lax+bl J I ,,, a v11--! or*)*c f 21{or46y+z * C, n* 11. I (\'ax -f b)" dx:----* -2 -a n-t2 J' - f dx r l\,6-+b-{Ot | ' )xYax-tb \/b lYax-rb+Ybl -:---lnt {,r+n dx ol ,0. l{r--)odx: -iJrt6o-c J x' -t+C. 151 n. luG-tb x d*:2rGr+a J if + ul--!J x\/ax+b b>0 _a l---4!---L^ ,r. l___!_=_{4*u bx -2b)*{o*+b Jx2\/ax+b rc. I a'lx' ) ^d* ,r. zo. ^:lt*-, a L+ c a t7. l--lt-:l,n1x+ql+c ./.a lx-al Ja'-x' l-L: J\/o2+*2 sinh-l L+ a c: tg. In (x + lE + *') + c l--!1-- - J \a' t x')- [ ' ^d*x')' ,,^ : ) la' - xlx Zaz(az r {^n a *21 ' 2a3 'o xlfa* 2a2(a2 r_+c' a I- - x2) 2az J az - x2 Section zr. zz. f---2 )f xl a, + t- rt7 ) + x, a* \/E+? f 23.J _ 26. dx:;\/Cr+7 + ir"1* + tG\ : + !la2 z*'){7 + *, - ^4 f xzt + c r, 1* + t/il l--L:-1 J x\,/az+xz I sin-r L+ a c 29. lx \F-p * I #: u. lz. cosh-r f-_^2 t/-, - r, a. J : X* r: h l, +!* ) f*17 J r ) - 3s. (f *z dx: \jL - "21'-z + J l=-L) - o,l+ c orl + c xz- az)'-'zax. n* c. n * -2 oz1{*z - oz -}m l* + {*' r.r dx:lx2-a2-asec I ;l*, t f^z .: , oz ,--7 d*:.x,va'-*-* 2"n'L+C x2\/ az |t/-, - r, - Tr"l* + f*, - - r' ax: {ox2 - v?-, . o')' I t1r, -. f-z a2 tx I ^r. 3. | __.:_ ax: Isint:-1xYa2-x2+C J \./a2 - *2 I(\/F-,,)'a*:N#L #l(f x\x'z -c )1 I I L +?7 r, d* --ffi a'x J x2\,/ a2 + xz a ,nlo*@l*, x I Jx'ax r r ta*f;'1_ x'zl ' 34. l-!!-:-rml"___]_:_____^l+c x a I J x\,/a2-x2 40. lntegrals I I t7:7 38. A Brief Table of t o+{oz+*2 dx:\/aztxz-atnj , l+c x. J[-L: \/a2-x2 tt. A7 ^4 - *l +c -l ^/v a'xz 1 a'a x' +C 613 _ sin-, *. J| --:4-: 1/2o*-*z It 56. I sin ax dx a sin-r : -1.or 1.u-) \ a I- * l=:)., yTax - la*l c x2 + C ur. f x sin 2ax ss.Jsin2axdx:i--;-, sl. Ja ax oo. Irin, ] f .rr,- 2axdx axdx:- sin'-laxcosax +nna n J- ur. [.or, ) ax J I f {b)J I dx: cosn-l ax sin ax nu * cos(a sin + n - 1| n J b)x sin (a b)x a dx: L sit ax / cos(.a - b)x stn (a -t b)x + ,1o-y, + c, a2+ "o, /.or' cos'-z ax dx sllr.,a b\x sin (a * b)x axsinbxdx:-r; _- U --1G +U (c)JcosaxcosbxO*: ,**b) J x\/Zax - x2 b2 +C, az+b2 ax ax dx : +c t *'# -, A7 Section 63. 65. 66. 68. 69. 70. 7t. n1 74. 75. 76. : - ,in n, cos d.r a* / 99!2!* * lntegrals sin'-lax f -, j sinn axcosaxiv: (n* L)a - 5. 64. I 6 n 515 * -l l+u- d*: I rn,sin axl -r c J SI1AX A I ax t C, I cos'ax sinaxdx: - "osn-t i*"',--" (n-t t)a J I I sinn ax cosm ax dx : sinn -t ax - n * -l cos'-t ax n 67. - | L tin o* IJ COSdxdx: -! a ln l.o, axt + C .^ " Jffi-;i)sinn_2axcoS*Qxdx,n*-m(Ifn_-m'useNo.86.) f ,in,o, cos*axo*_ sin'-tqxc,os^-tax atm+n) J -+fm-rnJ ,in,rrcos,-2 axdx, m*-n (ffm:_,n,useNo.g7..1 "+-,,,-, [8,,"(+ -+)]-r, Irr*^: a l-t' ,' Ir:k;:L,un(+. +)- , Ii*:-:,*(; -T)., or : --Z:,un-, I E* gl * .. IJ b+ ccosdir 2J a\/b2^c2 LYa+c I I a* ) t : \sin ax -L "o, ,. * :l f ,' ,t,, ax dx : - t 82. [ 84. Irun'o*a*:!tanax*xtC | J 88. / 90. / :! ,un' o* a* ,"" ,".' ,, a* ax tn lsec axl ln lsec ax dx: L tan ax D. I * +c cos ax t +c b1 xn-. il. cos ax ctx ss. ss. 2 ax cos ax )a-a +c : 'T'-t o,! - f ,un' a(n-I) J :! f < c2 '2 80. a* cz o* : -l ,or9! + c ,r. I l-cosax a J * ,un o* > | o- : l,un !' IJ l*cosax o Z+C rino* a* bz lc+bcosax+\F-b2sinaxl + c' -;a,*: hr'1ff )a'a b2,c2 lr+bsino*+\7r2-b1 coso*l ^ o-<-c' ,, b*csinax I a* -t )n-rt't"*:;ffiInl 78. I 86. A Brief Table of dx. n * I *" | J dx: 1.o, cos ax .ot ay dx J "ot' sz. [.ot, J ax +c 89. I csc Ja lr. /"r"' : t :1tn dx: -! sin Lsin ax + - c xn-t sin ax dx ". - :[ lrin axl + * "orax c x tC axdx:_ co:r'-ta.! aln_t) - Jf .or,,-, axdx, n*1 lt tan axl dx ax axdx : -a1n lcscax - axdx: _.L"otax* C cotaxl *C 92. %. 94. I sec'ax dx I csc' ax dx I _ secn-z ax tan a(n l) - ax L n-21I N*IJ sec"-z ax : -- cscn-z ax cot ax * n-21 a(,r - I) n-lJ- I - sec'ax sec'axtanaxdx:-+C csc''-z ax n*l dx, n*1 , n*0 C, na dt , es. tz. r 98. J tan-1 axdx: xtan-lr. - ss. | *^sin lax J ,*. *h (1 + azxz) d*: J::sin-rax -; axdx: + rc2. 704. cos-r I xe'- 106. i x,bo, J fir. fe" .n, 4x::, (ax #cos-,cx . - l,o, l axdx:ircos-t - n I 115. r17. - * r, b> 0, b b>o' b+l 'rr=b)xn-tbaxdx) sin bx dx : # (a sinbx- b cos bx) + C eo* cos bx dx : (a cos bx* D sin bx) + C 109. I lnax dx : ;# / J xn-t(ln ax)^ m f I 110. x'(ln ax)* dx: --#ixnfin ax)*-t dx, n* -1 -;; J I 113. - !\/l a f lln ax\'-l x-r(lnax)*dx:-; n, + C. m* J ltsl*axdx: J ry - x* C tn ltn axl +c Icosh ax a*: lsinh ax * C Ja f cosh2 ax dx : sinh 2ax x 116. -, ff J fi4. -coshax*C J : xlnax f, w. | -:!-: J X tlrAX -l t sinh'zaxdx:,2;a-i*, . " sinh2z / ,mn, ax dx - + I a2x2 t -l ,*. 111. I- ax 1 nI ro5. I x,eo* dx: *, a J "--;)xn-leaxdx C , dx: *nbo* alnb- n+0 rt*,-1 lo3. I bo'dx: lT a lnb J l) ax nr -l r[ #, leo*dx:leo,-C Ja( f cscn C r=l i#, ror. axdx:#*"-, o,-fi1 # /x,ran-, /x, - na /",. ''axcolaxdx:---+C, sithn-z ax dx, n*0 + C +l - C Section A7 A Brief Table of lntegrals +n- | coshn-t axsirthax lcoshn-2axdx, n*0 I tt9. xsinhax d*:lcoshax -{sint ax* C I Ixcoshaxd*:Lsinhax-{"ort axdx:4rirt coshaxdx tzL. x'sinh axdx:4.orh o*-Ll a or-Ll *' a aJ ) I f a, : lln axl + c +c a* : Ltn I aJa I : x- 1,* * *C dx: x- 1 I a-Ja I : - t?nh'-! .ax + | dx, * I ln-l)a ' axdx, * axdx: - -..--',.o* + | I ln-l)a ) 9' :f *C a I Tl*, J[ "r.r, I a* : oLsin ,frax)*C I -l C * a* : -L d* : I a-Ja t ax + " - I s"rh'-2 d*, * o* (n-l)a n-l) I csch'-2axcothax n-21 n* t34. cschraxdx: _ --------= n-LJ | csch,'-'axdx, \n-l)a I 136. Icschnaxcothaxdr:-"t"ho* + dx:-sechnax *r, n*o nqJna t + '-0. 1* ,. z 1al_b- a-b)'-' I sinh bxdx: +l-L .o*I + e*cosh bxdx:'l_^ |'o' . +'-",1 + C, 2la+b a-b) I 118. coshnaxo*- nanJ +C 120. 122. lxncosh xn-t (cosh ax) 123. tanh ax L2s. tanhz 127. tanhn ax ax dx ax tanh,-z ax n 1 cothn-z n I dx 124. coth ax 126. cothz ax aJ 'S inh ax dx lsinh coth ax C J cothn L29. sech ax 131. 1.33. sechz c coth'- 128. I (tanh ax) 130. 2, sech'.-z ax-tanh sechtr ax ax dx .jJ2. tanh ax ax o* n m l,unn I coth ax cschz ax C I I sech'axtanhax 135. t37. eo, az b2 az b2 I 138. * t39. I *,-rr-, dx: (n - l)1, n) 0 ,*. t 1.3.5 "' (n- l)'ff t{t. lo''' "n. * o* : ln''' cosn x dx : 2.4.6'..n I 617 Z. 4.6 ... ln _ 3.5.7 ..-n c-n,' dx ifnisaneven 2' 1) f irteger >- 2 if n is an odd integer > 3 : +rE a) O C, n*0