A seismological view of the lithosphere
Transcription
A seismological view of the lithosphere
A seismological view of the lithosphereasthenosphere boundary! ! Karen M. Fischer, Heather A. Ford, Vedran Lekic! Department of Geological Sciences, Brown University! David L. Abt! ExxonMobil Exploration Company! Zaranek (2006)! Questions! • Is the seismological LAB a rheological LAB?! Crust Mantle dry, depleted? melt-free Asthenosphere LAB • Why is the lithosphere strong vs. the asthenosphere temperature, water, melt?! • Do the properties of the lithosphereasthenosphere boundary vary between oceans, young continents and cratons?! Lithosphere hydrated? partial melt? Temperature Viscosity Shear-wave velocity LAB Fischer et al. (Ann. Rev., 2010)! Temperature only Temperature + water in asthenosphere *! Temperature + water & melt in asthenosphere*! *Assumes dry, depleted lithosphere! Is the seismological LAB a rheological LAB?! 50 VTV Craton Depth (km) 100 150 200 250 4200 4300 4400 4500 4600 4700 4800 Shear Velocity (m/s) Yuan et al. (GJI, 2011)! 4900 5000 50 50 VTV VTV Craton 100 Depth (km) Depth (km) 100 150 250 250 4400 4500 4600 4700 4800 4900 5000 cr at on 35 Craton Mg# 93 200 4300 500 Shear Velocity (m/s) 1325 C 150 200 4200 Craton 1000 1500 C xe no 40 lit hs 1500 Temperature (K) 50 Depth (km) 100 VTV 150 Craton Mg# 93 Craton ." e=10-15 /s" 200 50 H/10**6 Si 250 Ford et al.! 18 10 20 10 22 10 Viscosity (Pa*s) 24 10 26 10 2000 50 Depth (km) 100 VTV 150 Craton Mg# 93 Craton x 40! 200 . e=10-15 /s" 50 H/10**6 Si 250 18 10 20 10 22 10 Viscosity (Pa*s) Ford et al.! 24 10 26 10 50 . e=10-13 /s" Depth (km) 100 VTV 150 Craton Mg# 93 Craton x 40! 200 . e=10-15 /s" 50 H/10**6 Si 250 18 10 20 10 22 10 Viscosity (Pa*s) Ford et al.! 24 10 26 10 50 . e=10-13 /s" Depth (km) 100 Craton Mg# 93 VTV 150 Craton x 40! 200 . e=10-15 /s" 50 H/10**6 Si 250 1000 H/10**6 Si 18 10 20 10 22 10 Viscosity (Pa*s) Ford et al.! 24 10 26 10 Yuan & Romanowicz (Nature, 2010)! • Why is the lithosphere strong vs. the asthenosphere temperature, water, melt?! • Do the properties of the lithosphere-asthenosphere boundary vary between oceans, young continents and cratons?! Surface wave tomography! Ps receiver functions! Rychert & Shearer (Science, 2009)! Lekic & Romanowicz (EPSL, 2011)! HRV Sp: 421 events! !"#!"#$%&'()*+, -"./0)(12#13#4(.,0)5!6 5789 7 789 Moho! Depth (km) Crust! Lithosphere! Sp or Ps !receiver functions"! 50 100 LAB! 150 1) Decompose the wavefield into its incident P and S components using a free-surface transform (Kennett, 1991)! 2) Deconvolve S from P (Sp) or P from S (Ps) using a simultaneous frequency-domain approach (Bostock, 1998) or an iterative time-domain approach (Ligorria and Ammon, 1999) and migrate to depth in 1D with corrections for lateral heterogeneity! Measuring velocity gradients with Ps and Sp! Ps and Sp synthetic seismograms! Rychert et al. (JGR, 2007)! Oceans! Oceanic LAB <~100 km! ! PA5: Gaherty et al. (1999)! Tan & Helmberger (2007)! ! ScS reverberations:! Bagley & Revenaugh (2008)! ! Ps and Sp receiver functions:! Collins et al. (2002)! Li et al. (2004)! Kumar et al., (2007)! Rychert & Shearer (2009)! Kawakatsu et al. (2009)! Kumar & Kawakatsu (2011)! ! SS precursors:! Schmerr (2011)! Rychert & Shearer (2011) (<130 km)! Nettles & Dziewonski (JGR, 2008)! Phanerozoic continents! Lithosphere-Asthenosphere (LAB)! RES Mid-Lithosphere (MLD)! Ambiguous! North America Sp Discontinuity Depth Abt et al. (JGR, 2010) Ford et al. (in prep)! YKW3 FRB FFC SCHQ ULM EYMN !" #" $" %" &"" DepthDepth (km) ! LABLAB or MLD &&" &'" Abt et al. (JGR, 2010)! Basin and Range / Colorado Plateau! Levander et al. (Nature, 2011)! Sp receiver functions: Eastern Australia Ford et al. (EPSL, 2010)! Australia and North America! • Dominant Sp period ~ 10 s! • Sharp LAB beneath younger continent: !H < 30-40 km, best fits <= 20 km ! ! How sharp is the LAB velocity gradient?! ! Combined inversions of Ps and Sp:! 6.0-9.6%! < 5-11 km! 5.3-7.4%! Rychert et al. (Nature, 2005 & JGR, 2007)! NE U.S. Ps and Sp: ! !> 5-6 % velocity drop in 5-11 km! ! ! ! ! !> 20˚C/km temperature gradient*! Phanerozoic U.S. and Australia: !> 6% velocity drop in < 30-40 km! ! ! ! ! !> 5˚C/km temperature gradient*! ! *T to Vs scaling from Faul and Jackson (2005)! • ! Inconsistent with temperature gradients at base of lithosphere in mantle flow models (e.g. King and Ritsema, 2000; Cooper et al., 2004; Zaranek, 2006)! • Velocity gradient is too sharp or localized in depth to be defined by temperature alone! Zaranek (2006)! Cooper et al. (2004)! Sharper velocity gradients with composition or melt! ! • Hydration of the asthenosphere with respect to a drier, more depleted lithosphere? ! !Chemical depletion < 2.5% (Lee, 2003)! ! ! ! ! < ~1% (Schutt & Lesher, 2006)! !Volatile enrichment in asthenosphere < 3.8% (following Karato and Jung, 1998; Karato, 2003)! !Depletion+hydration may be sufficient if T permits! !Depletion+hydration+anisotropy?! ! • Partial melt in the asthenosphere?! !Velocity drop large enough with 0.5 - 1.5% (Hammond and Humphreys, 2000; Kawakatsu et al., 2009) or ~2% melt (Takei and Holtzman, 2009a)! ! Salton Trough! Sp CCP Stack! Lekic et al. (Science, 2011)! Shear wave velocity from Rayleigh wave tomography! Rau and Forsyth (Geology, 2011)! • ~30 km of lithospheric thinning beneath Salton Trough and Inner Borderlands! • LAB topography very well-correlated with surface geology/ deformation; varies over small length-scales! • High viscosity mantle lithosphere and localized strain! ! ! Lekic et al. (2011)! F G 0 Depth (km) 20 40 60 80 100 120 140 0 E E’ 50 100 150 200 Distance Along Profile (km) 250 Cratons! Lithosphere-Asthenosphere (LAB)! RES Mid-Lithosphere (MLD)! Ambiguous! North America Sp Discontinuity Depth Abt et al. (JGR, 2010) Ford et al. (in prep)! YKW3 FRB FFC SCHQ ULM EYMN !" #" $" %" &"" DepthDepth (km) ! LABLAB or MLD &&" &'" PLAL 4000 UTMT 3500 SLM SIUC 3000 JFWS EYMN ULM FFC FCC 1000 YKW3 500 JERN 0 Distance (km) 1500 2000 2500 Depth (km) 0 50 100 150 200 JERN YKW3 FCC 250 North America Sp Receiver Functions Ford et al. (in prep)! FFC No phase in LAB depth range! Do see discontinuity internal to lithosphere! ULM EYMN JFWS SLM SIUC UTMT PLAL North American Craton Miller & Eaton (GRL, 2010)! ! Weak phase in LAB depth range at some stations Also see discontinuity internal to lithosphere! Ps receiver functions! Cratons:! No phase in LAB depth range! Do see discontinuity internal to lithosphere! Rychert & Shearer (Science, 2009)! Sp receiver functions: Northern Australia Ford et al. (EPSL, 2010)! Craton:! No phase in LAB depth range! Do see discontinuity internal to lithosphere! Australia and North America (Ford et al., Abt et al.)! • Dominant Sp period ~ 10 s! • Sharp LAB beneath younger continent: !H < 30-40 km, best fits <= 20 km ! • No cratonic LAB phase: !H > 50-60 km! ! "#"' "#"( &'()*+,-. Synthetic Sp phases from LAB velocity gradients! ! #/0' %#/0' '")*+ $#/0' &")*+ %")*+ # !"#"( !"#"' !"#"& 10% velocity drop! !"#"% !"#$ !"# !$# !6# !5# 1.(+2/30'4 %!# Cratonic lithosphere-asthenosphere boundary! • If no LAB phase beneath cratons: !H > 50-60 km! • If LAB phase beneath cratons: !H < 30-40 km! • Consistent with purely thermal gradient! • Not consistent with purely thermal gradient! • Gradual gradients in composition or melt cannot be ruled out! • Sharper gradients in composition or melt indicated! Zaranek (2006)! Oceans! LAB! 200 km! Western U.S.! LAB! Craton! Appalachians! MLD! ! Origin of mid-lithospheric discontinuity at 60-120 km?! ! • Observed globally ! – – – – North America and Australia Sp: Abt et al., Ford et al. ! Global Ps, Sp: Rychert & Shearer, Rychert et al., others! Shear velocity from tomography: Yuan & Romanowicz, Lekic et al.! Active source profiles: Thybo et al.! • North America: MLD lies within transition between cratonic lithospheric layers defined by azimuthal anisotropy (Yuan & Romanowicz, 2010)! Oceans! LAB! 200 km! Western U.S.! LAB! Craton! Appalachians! MLD! ! Origin of mid-lithospheric discontinuity at 60-120 km?! • Hypothesis 1: Relict of cratonic mantle formation base of original dry, depleted lithosphere? ! • MLD depth correlates with boundary between anisotropic layers! • Do the MLD and anisotropic boundary reflect the same structure?! • Hypothesis 2: Reflects lithospheric alteration by upward melt percolation - top of melt cumulate layer?! • No + phase from lower layer boundary; layer either thin (< 10 km) or lower boundary gradual (> 50 km)! ! ! Conclusions! The seismological LAB is a rheological boundary! ! Oceans & Phanerozoic Continents ! • LAB velocity gradient sharp (< 30-40 km in depth): volatiles and/or melt in asthenosphere! • Salton Trough/Inner Borderlands: strong lithosphere and localized strain in mantle! Cratons! • Debate over LAB phase at depths comparable to base of fast lid! • If no phase, LAB velocity gradual (> 50-60 km in depth): consistent with purely thermal boundary! • Velocity drop internal to lithosphere at 60 to 120 km (MLD)!