FOR ABALONE Haliotis tuberculata coccinea (REEVE)
Transcription
FOR ABALONE Haliotis tuberculata coccinea (REEVE)
Tesis Doctoral Development of a Sustainable Grow-Out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands María del Pino Viera Toledo LAS PALMAS DE GRAN CANARIA 2014 Grupo de Investigación en Acuicultura Index INDEX Index I Acknowledgements IV List of figures VIII List of tables X Abbreviations XII Abstract XIV 1. INTRODUCTION 1 1.1. Abalone in the world 1 1.2. Abalone in Europe 6 1.3. Abalone in the Canary Islands 8 1.4. Factors affecting abalone growth 9 1.4.1. Culture conditions related parameters 10 1.4.1.1. Initial size 10 1.4.1.2. Stocking density 10 1.4.1.3. Water flow 11 1.4.2. Physico-chemical parameters 12 1.4.2.1. Temperature 12 1.4.2.2. Light 13 1.4.2.3. Water quality 14 1.4.3. Grow-out culture systems 15 1.4.3.1. Land-based systems 15 1.4.3.2. Sea-based system 17 1.5. Abalone feeding and nutrition 19 1.5.1. General aspects 19 1.5.2. Abalone feeding practices 20 1.5.3. Abalone nutritional requirements 23 1.5.3.1. General composition of abalone manufacturated diets 23 1.5.3.2. Protein sources 23 1.5.3.3. Lipid sources 8 1.5.3.4. Energy / carbohydrate and binders sources 31 I Index 1.5.3.5. Vitamins and minerals 34 1.5.4. Abalone growth under culture conditions 36 1.6. Integrated multi-trophic aquaculture (IMTA) 42 1.6.1. General aspects 42 1.6.2. Seaweed-based integrated mariculture 43 1.6.3. Fish-seaweed- abalone integrated culture system 44 2. OBJECTIVES 46 3. MATERIALS AND METHODS 48 3.1. Location and general facilities 48 3.2. Abalone production 50 3.2.1. Brood-stock conditioning and selection 50 3.2.2. Spawning induction 50 3.2.3. Fertilization 51 3.2.4. Larval culture 52 3.2.5. Larval setlement 52 3.2.6. Post-larval and juvenile culture 53 3.3. Algal culture 54 3.3.1. Macroalgae species 54 3.3.2. Culture system (IMTA) 62 3.4. Artificial diets 64 3.4.1. Diet formulation 64 3.4.2. Diet preparation 64 3.4.3. Diet water stability 65 3.5. Experimental design 66 3.5.1. Land-based experimental set-up 68 3.5.2. Sea-based grow-out system 69 3.6. Biological parameters evaluation 72 3.6.1. Shell growth rate 72 3.6.2. Specific growth rate 72 3.6.3. Weight gain 72 3.6.4. Feed conversion ratio 73 3.6.5. Protein efficiency ratio 73 II B Index 3.6.6. Feed intake 73 3.6.7. Condition index 74 3.6.8. Survival 75 3.7. Biochemical analysis 75 3.7.1. Dry matter content 75 3.7.2. Ash content 76 3.7.3. Protein content 76 3.7.4. Total lipid content 77 3.7.5. Fatty acids content 77 3.8. Statistical analysis 78 4. STUDY I 79 5. STUDY II 90 6. STUDY III 109 7. STUDY IV 133 8. CONCLUSIONS 150 9. SPANISH SUMMARY 153 9.1. Introducción 153 9.2. Objetivos 200 9.3. Material y Métodos 202 9.4. Conclusiones 227 10. REFERENCES 231 III A mis padres, Víctor e Inma, siempre a mi lado. Acknowledgement AGRADECIMIENTOS Esta tesis llega después de veinte años de trabajo en la acuicultura, en los que mi afán ha sido aprender, avanzar, contribuir, compartir, ganarme la vida y divertirme. Parte de todo ello es lo que se presenta ahora en esta tesis, resultado no sólo de un esfuerzo personal, sino también de la contribución de otras muchas personas, que de una u otra manera me han acompañado en el camino y a las que me gustaría agradecer. En primer lugar, a la Dra. Marisol Izquierdo, la directora y principal impulsora de esta tesis, que sin su insistencia, nunca me habría sentado a escribir. Por permitirme formar parte del Grupo de Investigación en Acuicultura (GIA), y brindarme tantas oportunidades. Porque es un honor y un respaldo tremendo contar con una investigadora de su talla con la que discutir tu trabajo. Por ofrecer, junto a Ricardo, continuamente su casa para que su Grupo sea Grupo. Por esos viajes plagados de conversaciones interesantes. Por meterse en continuos berenjenales con tal de que sus “pollitos” se abran camino, y luego sentirse orgullosa de ellos…Muchas gracias Marisol. Al Dr. Hipólito Fernández-Palacios, mi co-direc y también alma mater del GIA. Porque desde que le conocí contando huevos en aquella nave vieja (¡qué iba a estar haciendo si no!), nunca ha dejado de estar ahí cuando hace falta, porque no hay asunto de acuicultura que le preguntes que él no sepa, porque ir con él de congreso es comida rica y diversión asegurada, porque por muy parquito que sea, es imposible no quererle. Muchas gracias D. Pipo y ¡Viva España!. Al Instituto Canario de Ciencias Marinas del Gobierno de Canarias (ICCM), donde he desarrollado la mayor parte de mi vida profesional. En especial a dos de sus directores durante los últimos años, el Dr. Octavio Llinás, por el que siempre me he sentido apoyada, y el Dr. Eladio Santaella, artífice de mi “captación” para el cultivo de moluscos. Al Dr. José Vergara, que allá por el 93 me dirigió la Tesis de Máster sobre un tema novedoso por aquel entonces, piscicultura en jaulas flotantes, que tantas oportunidades profesionales me ha dado. A la Dra. Carmen Mª Hernández Cruz, que siempre ha estado a mi lado. Una mujer trabajadora, eficiente, práctica y mejor persona. No olvido nuestra estancia en Creta; ni tantos viajes en los que siempre ha sido un placer estar con ella. Al Dr. Daniel Montero, compañero de carrera y amigo, él me animó a acercarme al GIA, marcando el rumbo de mi vida para siempre. Por sus valiosos comentarios sobre mis trabajos; por su valía científica; su sensibilidad y buen gusto; por la ilusión con que espero que IV Acknowledgement me enseñe sus nuevas fotos a la vuelta de cada viaje…porque sólo un canario de corazón como él, puede mostranos lo mejor de nuestras Islas. Al siempre sonriente Dr. Juan Socorro, con el que empecé en el GIA aprendiendo histología por las tardes, aunque se riera de mí porque a veces no encotraba las larvas... Al Dr. Ricardo Haroun, por empezar la línea de trabajo de cultivos integrados - abalón, sentando las bases para la realización de esta tesis y por su amabilidad, siempre. Al Dr. Juan Luis Gómez-Pinchetti y su equipo del Centro de Biotecnología Marina, por su inestimable colaboración en los primeros trabajos de esta tesis, y demás proyectos y tesinas en los que le hemos ido embarcando, por cedernos la Gracilaria que tan buenos resultados nos ha dado, y por estar siempre dispuesto a echar una mano en lo que esté de su parte. A la Dra. Lidia Robaina, por su valiosa ayuda en la formulación de las dietas, por su compañerismo y buenos consejos a lo largo de tantos años. Al Dr. Javier Roo, porque juntos hicimos posible que donde había un solar polvoriento terminara habiendo peces. ¡Cuánto aprendimos en Creta trabajando como locos!, yo a base de yogur griego, tú de mis tartas de manzana y ambos de nuestros giros pitas. Porque durante cuatro años de duro trabajo compartido, no hubo más que armonía, compañerismo y buen entendimiento. Nunca olvidaré la ilusión con la que nos regodeábamos en aquel primer lote de peces producidos en Canarias, ¡y era el nuestro!, alevines superstar les llamaron en el periódico, y para nosotros, ¡vaya si lo eran!. Estoy muy orgullosa (que no sorprendida) de lo que has logrado en el Mesocosmos y ¡lo que queda!, porque alguien de tu brillantez y tesón, no tiene límites. A D. Antonio Valencia, que tanto me enseñó de cultivo larvario de peces y al que llevo en el corazón. Al resto de los senior del GIA, Dra. Lucía Molina, Dra. María José Caballero, Dr. Juan Manuel Afonso, Dr. Rafael Ginés, Dra. María Jesús Zamorano. Es un auténtico privilegio contar con un equipo tan preparado y siempre generoso en compartir conocimiento, y lo que haga falta. Mi más sincero agradecimiento a las otras “chicas haliotis”, Amaia, Bea y Desi. Su trabajo, entusiasmo y entrega, han contribuído de forma muy especial a que los distintos proyectos y por tanto la línea de investigación del abalón, hayan salido adelante. A las técnicos de laboratorio de análisis, Regina, Yurena y en especial a Carmen Quintana, por su buen hacer, amabilidad y disposición en la ¡búsqueda del DHA de las algas!. V Acknowledgement A todo el equipo de técnicos de la nave de cultivos con los que he compartido almuerzo y búsqueda de cintillos todos estos años (Ada, Manolo, Rubén, Desiré, Damián....), y en especial a mi querida Moneiba, con la tanto me reí trabajando en el Mesocosmos. Son muchos los doctorandos, hoy doctores, con los que he tenido el placer de compartir, viajar y aprender durante estos años en el ICCM, María, Martín, Leire, Agustín, Pedro, Gloria, Domi, Valeria, Tibi, Silvia, Mónica, Alex, Rachid, Eyad, Fran, Juan Estefanell…, gracias a ellos ir a Taliarte ha sido siempre mucho más que trabajo. Quiero agradecer especialmente a mi peruana del alma, Tatiana Kalinowski, que siempre está cuando la necesito. Al personal del ICCM, investigadores de otros departamentos (Solea, Alicia, Pepe Ignacio, Chano..); personal de administración (Paula, Mabel..); mantenimiento (Sergio, Juan Falcón, Pedro…); seguridad (Martín, Mario, Juan Carlos, Cristina..); limpieza (el trio más simpático de España: Teri, María y Eulogia), y en especial Miguel Medina, del que siempre he recibido un sí por respuesta (¡acompañado de un piropo cariñoso!). Cada uno desde su parcela, ha contribuído a que el trabajo siempre saliera adelante. Agradezco especialmente a D. Rafael Guirao y personal de Canexmar, S.L., su generosa disposición y colaboración para realizar en sus instalaciones el experimento en el mar. Y a Tony Legg de Jersey Sea Farm, por el suministro de las jaulas para abalón. No quiero dejar de mencionar a la Dra. Supis Thongrod y personal del Prachuab KhiriKhan Coastal Fisheries Research and Development Center de Tailandia, que tan amablemente me recibieron, contribuyendo de una manera definitiva a mi formación en el cultivo de abalón. Así mismo, a los investigadores del Instituto de Biología Marina de Creta (IMBC), en especial los doctores Pascal Divanach, Nikos Papandroulakis y Aspasía Sterioti, por su excelente formación en el cultivo larvario de peces marinos durante mi estancia en su centro y a lo largo de todo el Proyecto Interactt. A mis amigos y amigas, los de siempre, y los que la vida nunca deja de ponerte en el camino: las niñas del cole, los de la facultad, la Expo, las Lindas de francés, Cáritas, las cocinitas…Ellos hacen que la vida sea mucho más completa y divertida. A mi familia majorera, con Tana a la cabeza, todo un ejemplo de juventud, esfuerzo y curiosidad. Por acogerme entre ellos y formar ya parte de mi vida, como su maravillosa isla. A mis tíos y primos del alma, tantos, y tan distintos, por su cariño y apoyo, porque están ahí desde el principio y no soy capaz de imaginar una infancia y una vida sin ellos. A mis queridos hermanos, Víctor y Panchi, con ellos comparto lo mejor que hay en mí y también el amor por el mar, ¡Arguineguín nos marcó!. Y a mis sobris lindos, Víctor y Eduardo, que siempre me reciben con el mejor de los abrazos. VI Acknowledgement Gercende, sin duda alguna, tú has sido la persona más importante en esta maravillosa aventura del desarrollo del cultivo de abalón, en la que juntas, hemos trabajado mucho y nos hemos divertido aún más. Cuando pienso en esas madrugadas de desoves con luna llena, los muestreos y zafarranchos; la emoción con la que miramos las placas llenas de semillitas; esas horas de discusión y trabajo para solicitar nuevos proyectos (y la alegría cuando los conseguímos); las jornadas de reuniones con tantos socios distintos; la preparación de tantos informes y congresos; esos viajes, bailes, charlas y tantas y tantas risas….no puedo dejar de pensar que en ocasiones la vida te da buenas oportunidades, y creo sinceramente que a nosotras nos la dio al reunirnos. Gracias por todo y mucho más. ¡Dame una R., dame una U, dame una…..RUBIA!!!. La acuicultura me ha dado mucho en la vida, tanto que ¡¡hasta me regaló un marido!!. Quién podia imaginárselo, en aquella granja en medio de la nada, con mis botas y medio millón de peces a medio criar, oliendo a pienso… ¡con tan poco glamour!. Pero apareció Héctor, y se quedó, y con él la vida pasó a ser mejor y más intensa, el mundo más interesante, con más lugares que descubrir, deportes que hacer, y… ¡cosas que encontrar!. Porque aunque no sepa bailar, sé que es mi mejor pareja de baile. Te quiero. Esta tesis está dedicada a mis padres. A mi madre, que tanto nos amó, por su lucha inquebrantable por permanecer a nuestro lado, por transmitirme ese inmenso amor a la familia, al placer de reunir a los amigos a la mesa y demostrarles el cariño a través de algo rico y ¡dintinto!, por ser una madre-madre, que me sigue acompañando en el camino. A mi padre, un ejemplo de superación, de estudio, de amor por su profesión. Él me inculcó el “ímpetu juvenil” necesario para llevar el trabajo adelante, porque “la vida es milicia”, y “el no, ya lo tenemos del lado de acá”. Porque no puedo pensar en sus preciosas manos de cirujano sin emocionarme, porque cuando desde que naces, te aman, te protegen y te miman de la manera que él lo hizo con nosotros, nada te puede ir mal en la vida. VII List of figures LIST OF FIGURES Figure 1. Newly settled, juvenile and adult abalone (H. tuberculata coccinea). Figure 2. Abalone culinary products, pearl shell and handicraft. Figure 3. Amas abalone divers (Japan). Figure 4. Evolution of global abalone production from legal fisheries and aquaculture during last decade (source FAO, 2012). Figure 5. Distribution of H.tuberculata tuberculata and H. tuberculata coccinea (Geiger, 2000). Figure 6. PVC tiles used as shelters in donkey´s ear (A) and Canarian abalone (B) culture. Figure 7. Several on-shore systems for the culture of H. rufescens (A; Chile), H. discus hannai (B; Korea), H. asinina (C; Thailand) and H. tuberculata (D; Ireland). Figure 8. (A) Long-line culture of red abalone H. rufescens in Chile. (B) Represents a six-tiered basket traditionally used for H. discus hannai farming in south China. Figure 9. Sea-floor culture of European ormer in Jersey Islands (UK). Figure 10. Cage culture of abalone H. tuberculata in Brittany (France). Figure 11. Juvenile abalone (H. tuberculata coccinea) grazing on green algae. Figure 12. Harvested Macrocystis pyrifera and Palmaria palmata to feed red abalone (A; Chile) and European ormer (B; Brittany). Figure 13. Fish-seaweed-abalone integrated culture system. Figure 14. Top view of the Canary Islands and location of the GIA marine culture facilities. Figure 15. Brood-stock conditioning (A); larval rearing facilities (B); abalone nursery B (C); diatoms production zone (D); grow out zone (E); feeding trials area (F) and outdoor macroalgae culture systems (G, H). Figure 16. Female (A) and male (B) H. tuberculata coccinea in stage 2-3 of the gonad index. Figure 17. Gametes expulsion from females (A) and males (B). B Figure 18. Eggs are rinse to remove excess sperm. Figure 19. Hatching out trochophore larvae equipped with cilia (A), third tubule appearance on cephalic tentacles (B) (Courtois de ViÇose et al., 2007). Figure 20. Vertical settlement plates. A VIII List of figures Figure 21. Diatoms species fed to the abalone post- larvae: Proschkinia sp. (A), Navicula incerta (B), Amphora sp. (C) and Nitzschia sp. (D) (Courtois de ViÇose et al., 2012b). Figure 22. Fishponds and semi-circular tanks for the cultivation of macroalgae (CBMULPGC). Figure 23. Diagram of the IMTA (ICCM-ULPGC). Figure 24. Biofilter produced macroalgae and drying equipment. Figure 25. Details of diets preparation: ingredients, processing and drying procedure. Figure 26. Final product: vegetable-based experimental diets. Figura 27a. Selection of experimental animals: Abalone sampling. Figure 27b. Abalone distribution among experimental triplicates. Figure 28. Feeding experimental abalones with macroalgae: Studies I and II (A), Study III (B) and Study IV (C); or with artificial diets: Study IV (D). Figure 29. Experimental set-up for the culture of juvenile abalones (Studies I and II). Figure 30. Rearing system employed for the culture of 30 - 45 mm abalones (Study III). Figure 31. CANEXMAR cages and location. Figure 32. Details of the experimental abalone cages and shelters. Figure 33. Scheme of the sea-based experimental set-up. A: aerial view of the fish farm installation. B: detail of the ORTACS set-up. Figure 34. ORTACS installation. Figure 35. Underwater experimental devices next to fish cages. Figure 36. Drying the diets leftover. Figure 37. Condition index evaluation: abalone dissection and weighing. Figure 38. Offshore grow-out system: (a) experimental abalone cages, (b) shelter, (c) underwater experimental installation next to fish cages. Figure 39. Linear growth in shell length (mm) and weight (g) of abalone H. tuberculata coccinea initially measuring 30 (Trial I) and 40 mm (Trial II), fed with enriched mixed diet of G. cornea and U. rigida at high and low stocking densities for 27 wks. IX List of tables LIST OF TABLES Table 1. Taxonomic classification of abalone species Table 2. Suitable wild and cultured macroalgae as food for different abalone species Table 3. Proximate composition (% dry matter) and caloric content of artificial diets tested for abalone Table 4. Nutritional composition (% dry matter) of artificial diets tested for abalone: Protein sources and inclusion levels Table 5. Nutritional composition (% dry matter) of artificial diets tested for abalone: Lipid sources and inclusion levels Table 6. Nutritional composition (% dry matter) of artificial diets tested for abalone: Energy / binder sources and content Table 7. Vitamin and mineral mixture tested by Uki et al. (1985a) Table 8. Nutritional composition (% dry matter) of artificial diets tested for abalone. Ingredient with secondary nutritional contribution Table 9. Summary of various nutritional studies regarding abalone growth performance during the last three decades of abalone culture development Tables 10-16. Summary of experimental macroalgae characteristics Table 17. Proximate composition and caloric content of the three red macroalgae (g/100 g DW) (mean ± S.D.) fed to abalone along the experimental trial Table 18. Growth, feed utilization and survival of juvenile Canarian abalone (H. tuberculata coccinea) at the beginning of the experiment and after being fed the selected macroalgae for 60 days under laboratory conditions Table 19. Proximate composition and caloric content of the eight macroalgae treatments (g/100 g DW) (Mean ± S.D.) fed to abalone along the experimental trial Table 20. Growth performance, feed utilization and survival of juvenile abalone (H. tuberculata coccinea) fed the selected 8 macroalgae diets for 12-weeks Table 21. Fatty acid composition (% total Table 22. Proximate composition of foot tissues of Haliotis tuberculata coccinea reared on the experimental diets (g/100 g DW) (Mean ± S.D.) fatty acids) of the eight macroalgae treatments Table 22. Proximate composition of foot tissues of Haliotis tuberculata coccinea reared on the experimental diets (g/100 g DW) (Mean ± S.D.) X List of tables Table 23. Proximate and aminoacid composition of seaweed meals used in experimental feeds for abalone H. tuberculata coccinea (%DW) Table 24. Ingredients of the three experimental diets for abalone H. tuberculata coccinea (DW basis) Table 25. Proximate analysis of the fresh algae or experimental diets containing different algal species (%DW) Table 26. Fatty acid composition (% total fatty acids) of the fresh algae or experimental diets containing different algal species* Table 27. Survival and growth performance of abalone H. tuberculata coccinea fed for 6 months algae (fresh algae) or experimental diets containing different algal species * (Mean ± S.D.) Table 28. Consumption, feed efficiency and condition index of abalone H. tuberculata coccinea fed for 6 months algae (fresh algae) or experimental diets containing different algal species* (Mean ± S.D.) Table 29. Proximate composition of viscera and muscle of Haliotis tuberculata coccinea fed for 6 months algae (fresh algae) or experimental diets containing different algal species*(g/100 g DW) (Mean ± S.D.) (Values in the same column with different letters are significantly different. P< 0.05) Table 30. Fatty acid composition (% total fatty acids) of the abalone tissues of Haliotis tuberculata coccinea fed for 6 months fresh algae or experimental diets containing different algal species* Table 31. Proximate composition and caloric content of the macroalgal diets (g/100 g DW) (Mean ± S.D.) fed to abalone along the experimental trials Table 32. Survival and growth performance of abalone H. tuberculata coccinea, initially measuring 30 mm (Trial I) and 40 mm (Trial II), fed with enriched G. cornea and U. rigida at high and low stocking densities for 27 weeks Table 33. Two-Way ANOVA analysis of variance for growth (size and weight) for the 27 wks grow-out culture period under the experimental densities Table 34. Consumption and feed efficiency of abalone H. tuberculata coccinea. initially measuring 30 mm (Trial I) and 40 mm (Trial II), fed with G. cornea and U. rigida at different stocking densities (high and low) for 27 weeks XI Abbreviationss ABBREVIATIONS ANOVA: Analysis normal variance APROMAR: Asociación empresarial de productores de cultivos marinos de España ARA: Arachydonic acid (20:4n-6) BHT: Butilated hydroxitoluene CANEXMAR: Canarias de Explotaciones Marinas DGSL: Daily Growth Rate in shell lenght DGW: Daily Growth Rate in weight DHA: Docosahexaenoic acid (22:6n-3) DPA: Docosapentaenoic acid (22:5n-3) DW: Dry weight EPA: Eicosapentaenoic acid (20:5n-3) FA: Fatty acid FAO: Food and Agriculture Organization FCE: Feed Conversion Efficiency FCR: Feed Conversion Ratio FI: Feed intake G: Gracilaria cornea GN: Enriched Gracilaria cornea GSI: Gonadosomatic index H: Hypnea spinella HN: Enriched Hypnea spinella IUSA: Instituto Universitario de Sanidad Animal y Seguridad Alimentaria L: Laminaria digitata LA: Linoleic acid (18:2n-6) Lys: Lysine M: Mixed diet Met: Methionine MN: Enriched Mixed diet MUFA: Monounsaturated fatty acids P/E: Protein: energy ratio P: Palmaria palmata XII Abbreviationss PER: Protein Efficiency Ratio PUFA: Polyunsaturated fatty acids S: Shell SB: Soft body SD: Standard deviation SFA: Saturated fatty acids SGR: Specific Growth Rate SL: Shell length TAN: Total ammonia nitrogen TWBW: Total wet body weight U: Ulva rigida ULPGC: Universidad de Las Palmas de Gran Canaria UN: Enriched Ulva rigida Units: Along the whole manuscript, the international system of units (SI) was used UV: Ultraviolet WG: Weight gain WS: Water Stability WW: Wet weight XIII Abstract ABSTRACT The overall aim of this thesis was “to develop grow-out technology for the local abalone species, Haliotis tuberculata coccinea“, considered a new candidate for Canarian aquaculture diversification. More specifically, algal and artificial diets suitability, growth and survival, as well as various factors affecting the on-growing success, were addressed through the performance of four different studies. Besides, this general objective was undertaken through an environmental approach so as to maximize the sustainability of the abalone production methods to be developed. On one hand, it was determined that red macroalgae Hypnea musciformis, Hypnea spinella and Gracilaria cornea are successfully produced in biofiltering systems, and that their nutritional composition is similar to the one of other macroalgae used as feed for abalone while matching abalone´s protein and lipid requirements, promoting growth and survival. These red macroalgae are therefore considered suitable feeds for juvenile Haliotis tuberculata coccínea. Nevertheless, H. spinella was found to be the best growth promoting diet for this abalone juveniles due to the highest feed intake and protein efficiency ratio observed. On the contrary, the harder texture of G. cornea had a negative effect on feed consumption hence leading to the lowest growth performance of juvenile Canarian abalone. On the other hand, it was found that the rearing system employed to produce macroalgae markedly affected their proximate composition, specifically protein content, which was increased by 100-163% in algae reared in fishpond wastewater effluents compared with those in fresh seawater. Furthermore, biofilter produced macroalgae were discovered to greatly enhance abalone growth, revealing a strong potential to be considered for future abalone culture. In addition, animals fed the mixed diets performed significantly better than those fed a single algal diet, indicating that abalone obtain a complete range of required nutrients by eating a mixed algal regime, and that essential nutrients may become limiting when animal are fed single-species diets. Thus, the dietary value of the macroalgal regimes tested can be divided into three categories: best obtained with the mixed algal feeding regime, intermediate by using single Ulva rigida or Hypnea spinella feeding regimes and the lowest by Gracilaria cornea. Overall, the fatty acid profiles of the algae studied were characteristic of green and red XIV Abstract algae, palmitic acid being the most abundant SFA, the Chlorophyta Ulva rigida showing predominat levels of C16 and C18 PUFAs and minimal levels of C20 fatty acids. DHA was very low in all algae tested, hence this fatty acid do not appear to be essential in H. t. coccinea, as all macroalgae tested supported optimal growth of this abalone species. Considering harvested macroalgae nutritional quality variability, and that most of commercial formulated feeds are using fish meal as the main protein source, limiting their utilization in ecologically sustainable aquaculture, a study was performed to evaluate several vegetal-based formulated feeds for the culture of adult abalone Haliotis tuberculata coccinea, with special emphasis on the determination of the suitability, as potential feed ingredients, of the four species of macroalgae most commonly involved in European abalone production. Feeding the enriched fresh algae produced a far better growth for Canarian abalone than all the compound diets, further indicating the high dietary value of the macroalgae reared in the IMTA system. The inclusion of Palmaria palmata was found to improve growth, condition index and dietary protein utilization, while the use of Laminaria digitata markedly reduced the efficiency of dietary protein. The elevated contents, relative to their feeds, of ARA in the abalone fed the experimental diets and EPA in abalone fed the fresh algae, denoted the presence of the respective elongases Δ4 and Δ5 desaturases. However, the low content of DHA further suggested that this fatty acid is not essential in abalone tissues. Overall, feeding H. tuberculata coccinea with fishmeal-free formulated diets resulted in high survival and good dietary protein utilization. However, further studies are required to improve the growth obtained with this type of diets, especially concerning the use of different seaweed combinations and inclusion levels, as well as the diet processing methods to improve diets water stability. Finally, the effect of stocking density on growth and survival of two different size groups of Canarian abalone, as well as the potential of sea-based abalone farming during the final grow-out culture phase were assessed. The results of this study revealed that lower stocking density was the best suited to sustain abalone growth in both distinct initial size groups of abalones, that exhibited an increase in feeding behaviour and feed utilisation efficacy probably linked to a lower competition for space or food. Thus, present results suggest stocking density of 100 abalone m-2 for 30-45 mm abalone, and XV Abstract of 30 abalone m-2 for 45 mm abalone onwards. Besides, the offshore mariculture system as well as the biofilter produced macroalgae, were found to be suitable to sustain high growth and survival of H. tuberculata coccinea that overall could reach cocktail/commercial size of 45-60 mm in only 18-22 months. These results provide crucial technical knowledge necessary to the development of culture technology adapted not only to the local abalone species, but to the archipelago conditions. With all these information, it is posible to conclude that H. tuberculata coccinea can be efficiently produced in an integrated-culture system suggesting that on-farm seaweed-abalone production could be a part of future development of abalone industry in the Canary Islands. XVI Introduction Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands INTRODUCTION Introduction 1. INTRODUCTION 1.1. WORLD ABALONE: DESCRIPTION, TAXONOMIC POSITION, PRODUCTION AND AQUACULTURE Abalones are marine one-shelled gastropods that belong to the family Haliotidae of the phylum Mollusca (Barkai and Griffiths, 1986) (Table 1; Fig.1). There are 56 currently described species, all belonging to the genus Haliotis, of world-wide distribution in tropical to temperate waters (Geiger, 2000). They are usually found between the intertidal and the littoral zone (Hone and Fleming, 1998), reaching their maximum population density between 3–10 m where seaweeds, their natural food, grow abundantly. All are benthic occurring on hard substrata of granite and limestone (Joll, 1996); however, newly settled abalone prefer to live on encrusting coralline algae (Hone et al., 1997; Roberts, 2001), whereas juveniles (≥ 10 mm in size) and adults, graze chiefly on attached or drifting algal material (Shepherd, 1973; Hanh et al., 1989; Shepherd and Steinberg, 1992). Abalones are gonochoristic and broadcast spawners, with males and females synchronously liberating their gametes in the water column for reproduction (Stephenson, 1924; Crofts, 1929). Mature males and females can easily be recognized by the differences in gonad colour (Bardach et al., 1972). Abalone species that occur in temperate regions are bigger (20-30 cm) than those found in the tropics (610 cm) (Hanh et al., 1989; Jarayabhand and Paphavasit, 1996). Table 1. Taxonomic classification of abalone species Phyllum: Mollusca Linnaeus, 1758 Class: Gastropoda Cuvier, 1797 Subclass: Prosobranchia H.M. Edwards, 1848 Order: Archaeogastropoda Thiele, 1929 Superfamily: Pleurotomarioidea Swainson, 1840 Family: Haliotidae Rafinesque, 1815 Genus: Haliotis Linnaeus, 1758 1 Introduction Figure 1. Newly settled, juvenile and adult abalone (H. tuberculata coccinea). Abalone have traditionally been a highly prized delicacies worldwide, its flesh being used for food whereas its shell, which has an iridescent interior, often is used for implements, trade material and decoration (Howorth, 1988; Fig. 2). Figure 2. Abalone culinary products, pearl shell and handicraft. Despite the fact that the major world abalone consumers have traditionally been Japan and China (early Japanese references to abalone divers date back to 30 A.D.; Fig. 3), abalone fisheries have also been the basis of social and economic development for further coastal human settlements in several countries like United States of America, Mexico, New Zealand, France, Australia or South Africa (Leighton, 1989; Guzmán del Proó, 1992; Schiel, 1992; Mercer et al., 1993; Freeman, 2001; Troell et al., 2006), with local communities depending heavily upon this resource. 2 Introduction Figure 3. Amas abalone divers (Japan). The study of abalone biology and ecology started long ago (Stephenson, 1924; Bonnot, 1930; Crofts, 1932), and has been further and intensively investigated in the last 35 years as a result of the development of commercial fisheries and exponential development of abalone aquaculture in the last two decades. Indeed, overexploitation, illegal harvesting, disease, habitat degradation and inadequate enforcement policies, have gradually decreased legal landings from abalone fisheries from almost 20.000 tons (t) in the 1970s to less than 9.000t in 2008 (Cook and Gordon, 2010). As a consequence, fisheries alone could gradually no longer meet the market demand for abalone and the share of aquaculture production rapidly increased to cover the needs. In fact, although abalone farming had begun in the 1950´s and early 1960´s in Japan and China (Elbert and Houk, 1984; Leighton, 2000), the rapid development of abalone culture took place in the 1990s, and is actually widespread in many countries worldwide. The major reason behind this rapid increase is the lucrative market value for their large adductor muscle or foot (Elliott, 2000), this increase being possible by the development of production practices, especially for juvenile stages (Daume et al., 2004; Roberts et al., 2004). Specifically, the global culture of abalone species has grown markedly in the last decade, with production increased by more than 21 times (Fig. 4). In 2010, world abalone production was 65.525t, valued about 451 million €, in contrast, only 8.656t came from the fisheries sector which means that, approximately, 88% of the total abalone legally consumed came from aquaculture (FAO, 2012). 3 Introduction Figure 4. Evolution of global abalone production from legal fisheries and aquaculture during last decade (source FAO, 2012). Among all abalone species, approximately 15 are globally exploited for commercial purposes, either from fishery or through aquaculture (Bester et al., 2004; Sales and Janssens, 2004; Hernández et al., 2009), being also the highest-priced shellfish in the world, and additionally, the most important gastropods in aquaculture (Naylor et al., 2000): Pacific ezo abalone (Haliotis discus hannai Ino, 1953), kuro (Haliotis discus Reeve, 1846), tokobushi (Haliotis diversicolor Reeve, 1846) and siebold´s abalone (Haliotis gigantea Gmelin, 1791) mainly found in Japan, China and Korea; donkey´s ear abalone (Haliotis asinina Linnaeus, 1758) in Thailand and Philippines; blacklip abalone (Haliotis rubra Leach, 1814), greenlip abalone (Haliotis laevigata Donovan, 1808) and Roe´s abalone (Haliotis roei Gray, 1826) in Australia; blackfoot paua (Haliotis iris Gmelin, 1791) and yellow foot paua (Haliotis australis Gmelin, 1791) in New Zealand; perlemoen abalone (Haliotis midae Linnaeus, 1758) in South Africa; green abalone (Haliotis fulgens Philippi, 1845), red abalone (Haliotis rufescens, Swainson, 1822) and pink abalone (Haliotis corrugata Wood, 1828) in Mexico and United States of America; black abalone (Haliotis cracherodii Leach, 1814) in United States of America; pinto abalone (Haliotis kamtschatkana Jonas, 1845) from Alaska and Canada to United States of America (California); and European ormer (Haliotis tuberculata Linneaus, 1758) in Great Britain and France (West Atlantic). 4 Introduction Regarding production countries, China is the largest world producer with a total production of 56.511t in 2010 (FAO, 2012). The main cultured species is the preferred and high valuable Pacific ezo abalone (H. discus hannai) (Wu et al., 2009), which covers more than 95% of the total production. Small and lower value abalone H. diversicolor, which was the most important culture species 10 years ago, is now only culture in the subtropical and tropical China (Ke et al., 2012). In Korea, production has grown to be the second one in the world, with over 5.000 abalone farmers engaged in from juvenile to grown up (Park and Kim, 2013). Despite commercial abalone farming started just in the early 2000s, the development of new aquaculture methods using sea cages, has dramatically increased the production from 29t in 2001 to 6.228t in 2010 (FAO, 2012). South Africa is the largest abalone (H. midae) producer outside Asia, with production coming from both farmed and wild abalone. Current annual production is close to 3.000t with aquaculture contributing 1.200t, legal fishery production 150t and illegal fishery production estimated to be of the order of 1.500t (Britz, 2012). Despite abalone are not Chilean native species, commercial abalone farming (H. rufescens and H. discus hannai) has emerged during the 1990s mainly for exportation to Asiatic countries, reaching a production of almost 800t (99% of H. rufescens) in 2010 (FAO, 2012). Over 50% of the world´s wild caught abalone harvest comes from Australia, where there is also a growing farming sector which produced 456t (H. rubra, H. laevigata and hybrids) in 2010 (FAO, 2012). Also, there are small industries in United States of America (250t), Taiwan (171t) and New Zealand (80t, H. iris), that contribute to the world abalone production (FAO, 2012). Most of the market demand for abalone is in Asia, mainly in Japan (live, fresh and frozen abalone), and Mainland China (canned product), whereas there are also well established markets in Mexico, USA and Europe (Oakes and Ponte, 1996; RobertsonAnderson, 2003). In addition, abalone shells are also sold for decoration purposes (Gordon and Cook, 2001). As a result, most commercial cultivation of abalone species is in Asia and abalone aquaculture and fishery harvests from other parts of the globe are to a large extent intended for these markets. However, the combination of the highest 5 Introduction world supply during the past few years together with a huge increase in the availability of illegal product as well as the world financial crisis, have led to an overall reduction of abalone prices (Qi et al., 2010). Therefore, abalone producers are commanded to improve profitability, through the use of more efficiency cultures systems, international quality certification and both product and customers diversifications (Cook and Gordon, 2010). 1.2. ABALONE IN EUROPE Only one species of abalone is present in Europe, the commonly known as the Ormer, Haliotis tuberculata Linneaus, 1758 (Mgaya, 1995), with three sub-species being initially described based on morphological characteristics: H. tuberculata tuberculata Linneaus, 1758, in the Eastern Atlantic coast and the Mediterranean Sea and both H. tuberculata coccinea Reeve, 1846, and the recently described H. tuberculata fernandesi Owen and Afonso, 2012, mainly found in the Macaronesian Region (Clavier, 1992; Geiger, 2000; Geiger and Owen, 2012; Fig. 5). Figure 5. Distribution of H.tuberculata tuberculata and H. tuberculata coccinea (Geiger, 2000). The ormer, which reaches a maximum shell length of 14 cm (Roussel et al., 2011), is an important commercial shellfish in the British Channel Islands (Bossy and Culley, 1976) and on the Normandy and Brittany coast in France (Clavier, 1992), where 6 Introduction it occurs in sizeable densities and has been a traditional fishery products commanding very high prices (Mgaya and Mercer, 1994). Decreasing natural stocks and increasing value for the flesh, have led to an interest in mariculture of this species since the late 1970s, with culture techniques mostly developed in the Channel Islands (Bossy, 1989, 1990; Hayashi, 1982; Hjul, 1991), France (Koike, 1978; Koike et al., 1979; Flassch and Aveline, 1984) and Ireland (Mercer, 1981; LaTouche and Moylan 1984; La Touche et al., 1993; Mercer et al., 1993; Mgaya and Mercer 1994, 1995; Mai et al., 1995a,b, 1996), where both European ormer and Pacific abalone were introduced during the late 1970ʼs and mid 1980ʼs respectively (Leighton, 2008). However, despite abalone being recognized as a prime candidate for European aquaculture (Mgaya and Mercer, 1994), its availability is still severely restricted due to lack of supplies from both wild resources and aquaculture production (Dallimore, 2010). Attempts are being made to increase aquaculture production, but progress is slow and has been hampered by the lack of research and confusion in legislation (abalone is placed in the same category as bivalves). Besides, feed type and sourcing as well as sustainable culture technology, have been also identified as key areas which still remain to be researched to assist the sector achieving sustainable growth and improving economic competitiveness (SUDEVAB, 2007). Abalone output in Europe is substantially focused on high quality, low volume niche markets, such as organic or eco-certified products. Ireland, the Channel Islands (Huchette and Clavier, 2004) and France are currently the only established producing countries, with most farms growing abalone at sea, feeding them handpicked fresh seaweed harvested from local shores. France, is the largest European abalone producer with a total production of 10t in 2010 (FAO, 2012), most of them coming from one main operator, which is the first abalone farm worldwide to gain organic certification (100% sustainable harvested macroalgae; no pharmaceutical, chemical or artificial fertilizers are used), selling live 6-7 cm sea-bred abalone at 69 € per kilogram (Legg et al., 2012). Regarding Spain, an onshore recirculation facility (both hatchery and ongrowing units) for the culture of native European and introduced Pacific ezo abalones, 7 Introduction has recently been started in Galicia, with an expecting production of 115 t in 2017 (GMA, 2014). 1.3. ABALONE (Haliotis tuberculata coccinea): CANDIDATE FOR CANARIAN AQUACULTURE DIVERSIFICATION The exceptional climate conditions and high quality of the Canary Island coastal waters makes this Spanish region to have very good perspectives for aquaculture expansion. Nevertheless, local commercial aquaculture is limited to a reduced number of marine fish species such as gilthead seabream (Sparus aurata), European sea bass (Dicentrachus labrax) and small amount of Senegalese sole (Solea senegalensis) (APROMAR, 2012). Hence, species diversification being a challenge for further local aquaculture development. In the Canary Islands, the abalone H. tuberculata coccinea, is distributed from the intertidal zone down to 15 m depth in semi-exposed and exposed areas. It grows to a maximum size of about 8 cm in shell length and feeds on a diverse assemblage of macroalgae (Espino and Herrera, 2002). This abalone species has been locally exploited during decades, leading to an overexploitation of its stocks, which are actually almost depleted (Pérez and Moreno, 1991; Espino and Herrera, 2002). Consequently, there is public interest in developing the culture techniques of this species to both, supply the local market and to contribute to the recovery of wild populations. Moreover, the potential of this species for aquaculture production, relies also on the external growing demand for small “cocktail size abalone“ (4-7 cm shell length) (Jarayabhand and Paphavasit, 1996; Najmudeen and Victor, 2004), as well as on the high degree of development achieved in some other species of the family Haliotidae, in particular of the currently produced European ormer Haliotis tuberculata tuberculata L., with close biological characteristics. Preliminary studies on H. t. coccinea, focusing on reproduction (Peña, 1985, 1986; Bilbao et al., 2004, 2010) and early life stages (Courtois de Viçose et al., 2007, 2009, 2010, 2012a, b), showed both the possibility of successfully reproducing of Canarian abalone and the adequate spat production techniques adapted to this species, hence suggesting it as a good candidate for aquaculture diversification. 8 Introduction However, little published data exist on the optimum conditions for juveniles and adults production in the Canary Islands (Toledo et al., 2000). Thus, in order to develop a grow-out technology adapted to this species, it is necessary to investigate in the areas of nutrition and feeding, culture system and rearing conditions suitable for abalone culture. Besides, since this culture frequently requires large quantities of wild harvested macroalgae, not locally available, and alternative to this feed income should be evaluated. Furthermore, work should also underway to develop production methods which ensure the sustainability of this industry fitting into the strongly growing EU ecosector for shellfish products as well as the Abalone Aquaculture Dialogue standards (WWF, 2010). 1.4. FACTORS AFFECTING ABALONE GROWTH Abalone growth is generally low and variable (Day and Fleming, 1992; Britz 1996a; Sales and Britz, 2001), with typical growth rates of approximately 2-3 cm/year and therefore, 2-5 years are required to produce a market-size abalone (Hahn, 1989; Troell et al., 2006; Qi et al., 2010). Consequently, a proper grow-out techniques and the resulting growth and survival of cultured abalone, are critical factors to maximize economic success and production. The selection of an appropriate culture technology depends on the abalone species specific characteristics and its susceptibility to different parameters affecting the on-growing success. Some of these parameters, are related to culture conditions such as initial size, stocking density or water flow; to physical-chemical conditions such as temperature, illumination (light and shading) or water quality; whereas others refer to juvenile and adults feeding and nutrition such as nutritional requirement, feed quality and quantity or feed type and sourcing; and finally, the economic viability of commercial abalone farming is largely influenced by the culture system employed during such a long lasting grow-out culture phase. Besides, taking into account that sustainable, eco-friendly production methods are to be a part of future expansion of the abalone industry (WWF, 2010), it is important to adjust rearing techniques so as to maximise the sustainability of the on-growing activity. 9 Introduction 1.4.1. Culture conditions related parameters 1.4.1.1. Initial size Immediately after settlement, abalone post-larvae feed on biofilm and mucus trails (Shepherd, 1973; Saito, 1981) and once the radula is developed, at around 0.8 mm shell length (SL) (Kawamura et al., 2001), juveniles start feeding on diatoms, turf, crustose coralline algae and epiphytic bacteria (Dunstan et al., 1996,1998). Juveniles maintain this diet until they are large enough to undergo the final diet transition from diatoms to macroalgae (Jarayabhand and Paphavasit, 1996; Kawamura et al., 2001). The size of individuals at this final transition varies among species, ranging from 5 to 10 mm for H. discus hannai (Kawamura et al., 2001), 7 to 8 mm for H. rufescens (Hahn, 1989), 10 to 20 mm for H. asinina and H. ovina (Jarayabhand and Paphavasit, 1996) or 10 mm for H. tuberculata (Mgaya and Mercer, 1994). In the case of Canarian abalone, their size ranges from 6 to 10 mm (Courtois de ViÇose, personal comunication). Stocking size has been regarded as a major factor affecting abalone grow-out (Flemming and Hone, 1996; Wu et al., 2009), showing significant differences in growth and survival among juvenile groups of different initial body sizes (Mgaya and Mercer, 1995; Nie et al., 1996; Leaf et al., 2007). These variations may be a result of genetic differences related to body size (Sun et al., 1993; Wu et al., 2009), protein requirements (Shipton and Britz, 2001), dietary protein and energy utilization (Britz and Hecht, 1997; Shipton and Britz 2001; Green et al., 2011) or grazing efficiency and capability of the radula (Jonhston et al., 2005). 1.4.1.2. Stocking density Land-based abalone farming is highly capital intensive, and so the efficient use of infrastructure is critical to profitability. Consequently, abalone farmers wish to use high stocking densities in an attempt to maximize production. However, this factor markedly affects abalone growth and survival, being determinant for growing abalone to market size. The negative effect of increasing stocking density on abalone growth seems to be strongly associated with these grazing gastropods density-dependent competition for 10 Introduction space and/or food, as it has been shown for most of commercial abalone species worldwide: H. tuberculata (Koike et al., 1979; Cochard, 1980; Mgaya and Mercer, 1995); H. cracherodii (Douros, 1987); H. discus hannai (Jee et al., 1988; Wu et al., 2009; Wu and Zhang, 2013); H. rubra (Huchette et al., 2003a, b); H. asinina (Capinpin et al., 1999; Fermin and Buen, 2002; Jarayabhand et al., 2010); Haliotis diversicolor supertexta (Liu and Chen, 1999); H. rufescens (McCormick et al., 1992; Aviles and Shepeherd, 1996, Valdés-Urriolagoitia, 2000); H. midae (Tarr, 1995); H. corrugata (Badillo et al., 2007); H. kamtschatkana (Lloyd and Bates, 2008) and for H. iris (Heath and Moss, 2009), in different culture systems. Additionally, in optimizing production system, a number of factors which are directly related to the stocking density must be also considered and of these water flow (Vivanco-Aranda et al., 2011) and quality (Huchette et al., 2003b), culture system (Badillo et al., 2007), size grading (Mgaya and Mercer, 1995; Heath and Moss, 2009; Wu et al., 2009) and food quality and quantity (Lloyd and Bates, 2008; Tahil and Juinio, 2009), have in particular been emphasized. The effects of stocking density on growth performance of H. tuberculata coccinea have not yet been studied. However, initial densities of 43-175 abalones m2 tested in cage cultures of another warm water species such as H. asinina (Capinpin et al., 1999) and of 83-386 abalones m2 for juveniles of a close related species such as H. tuberculata (Koike et al., 1979; Mgaya and Mercer, 1995), showed a marked effect on final growth of abalone. Indeed, a 3 times increase in initial stocking density may cause a 52% reduction in growth for H. tuberculata (Mgaya and Mercer, 1995). 1.4.1.3. Water flow Abalone culture is characterized by high water exchange rates (200% to 2.400% per day) to keep optimum water quality parameters within levels recommended for grow-out conditions (Badillo et al., 2007; Naylor et al., 2011). Moreover, increased water flow is capable of impacting feed conversion ratio (FCR) positively by stimulating feeding activity (Higham et al., 1998), hence enhancing abalone growth (Shepherd, 1973; Mgaya and Mercer, 1995; Wassnig et al., 2010). Additionally, an increase in water flow could be an effective means of counteracting the harmful effects 11 Introduction of high stocking density, helping farms to maximize financial returns (Wassnig et al., 2010). Besides, Tissot (1992) reported that suitable water velocities need to be provided to induce sufficient mantle cavity circulation to allow optimal performance of abalone species. However, in shallow raceway tanks (such as the so-called ‘slab’ tank), which are common in commercial abalone farms (Hutchinson and Vandepeer, 2004; Wassnig et al., 2010), high water flowing could also have a negative effect by causing increased nutrient leaching from food pellets (Fleming et al., 1997; Marchetti et al., 1999) and by washing feed downstream (Fleming et al., 1997). Thus, water velocity should also be considered not to exceed a critical limit. In a flow through systems, the cost associated with the maintenance of the mentioned high water exchange rate (mainly pumping costs) accounts for between 15% to 30% of the operational budgets (Neori et al., 2000; Badillo et al., 2007). Thus, in order to not only reduce the production cost but the effluents nutrients loads to the environments, several recirculating, serial-use raceways and also co-culture (seaweedabalone) recirculation systems, have been developed and even stated as suitable commercial grow-out systems for several abalone species such as H. tuberculata (Mgaya and Mercer, 1995; Schuenhoff et al., 2003), H. discus hannai (Nie et al., 1996; Park et al., 2008; Demetropoulos and Langdon, 2004), H. rufescens and Haliotis sorenseni, (Demetropoulos and Langdon, 2004), H. corrugata (Badillo et al., 2007), H. asinina (Jarayabhand et al., 2010), H. midae (Naylor et al., 2011) or H. iris (Tait, 2012). 1.4.2. Physico-chemical parameters 1.4.2.1. Temperature Temperature is the primary environmental controlling factor determining the metabolic rate of poikilotherms (Fry, 1971) and therefore of fundamental importance to the management of abalone on-growing, as it directly determines rates of gonad development (Uki and Kikuchi, 1984; Hahn, 1989), feed consumption (Peck, 1989; Britz et al., 1997; García-Esquivel et al., 2007), ammonia excretion (Barkai and Griffiths, 1987; Lyon, 1995), growth rate and nutritional indices (Leighton, 1974; Uki 12 Introduction et al., 1981; Hahn, 1989; Peck, 1989; Britz et al., 1997; Gilroy and Edwards, 1998; Hoshikawa et al., 1998; Lopez et al., 1998; Steinarsson and Imsland, 2003; Alcántara and Noro, 2006; García-Esquivel et al., 2007); survival (Hahn, 1989), stress susceptibility (Lee et al., 2001; Haldane, 2002; Malham et al., 2003), and the development of temperature-based farm-management protocols (Vandepeer, 2006), and is thus integral to the development of economically viable technology for abalone culture. Each abalone species has a preferred temperature range, but generally temperate species can be found in water temperatures ranging from 8-18ºC, with subtropical species found in ranges of 14-26ºC and tropical species located in temperatures around 16-30ºC. Gilroy and Edwards (1998) stated that in general, abalone have a conservative thermal response and little tendency to adapt to chronically altered thermal environments, hence rearing temperature should be as close to the preferred one as possible. Seawater temperature in the Canary Island ranges between 18 to 24ºC (Cuevas., 2006), hence closer to the thermal range of subtropical and tropical species than the one of its closely related European ormer, Haliotis tuberculata, reported as a temperate species (Peck, 1989). 1.4.2.2. Light Despite abalone habitat and behaviour may vary widely between species (Shepherd, 1975), they are generally more active at night, light clearly influencing their distribution and activities (Cochard, 1980; Huchette et al., 2003b; Morikawa and Norman, 2003), hence their feeding behaviour (Tahil and Juinio-Menes, 1999). Consequently, shading and refuges are useful management tools and either needed for optimal growth (Maguire et al., 1996; Fig. 6). Moreover, providing shading and refuges during higher stocking densities can lead to improved growth rates by both, increasing the “preferred surface area” thus reducing abalone stacking, and limiting the impact of photoperiod on the regulation of the feeding activity (Hindrum et al., 1999; Huchette et al., 2003b). However, shading and refuges may also present several disadvantages, including increase of labour cost for feeding and maintenance or reduction of good water circulation (Maguire et al., 1996). 13 Introduction Figure 6. PVC tiles used as shelters in donkey´s ear (A) and Canarian abalone (B) culture. 1.4.2.3. Water quality Abalone growth and health are reported to be inhibited by decreases in water quality (Basuyaux and Mathieu 1999; Naylor et al., 2011). In an abalone grow-out system, a reduction in water quality can result from the decomposition of faeces and uneaten food (Yearsley et al., 2009), high levels of nitrogenous wastes excreted by the animals (Barkai and Grifths, 1987) and from reduction of dissolved oxygen (Badillo et al., 2007). To ensure growth rates are maximized, it is generally assumed that DO content of water should be kept at saturated levels (100%), and once oxygen levels are maintained, level of nitrogenous wastes derived from excretion being probably the most important parameter (Colt and Armstrong, 1981). Within the nitrogenous wastes, ammonia is the major toxicant derived from protein catabolism (Kinne, 1976; Russo and Thurston, 1991) and from bacterial activity (Reddy-Lopata et al., 2006), being a stressor and even lethal factor in abalone aquaculture (Hargreaves and Kucuk, 2000; Huchette et al., 2003a). Thus, a number of workers have investigated its influence on the survival and growth of several abalone species including H. laevigata (Harris et al., 1998, Hindrum et al., 2001), H. tuberculata (Basuyaux and Mathieu, 1999), H. rubra, Huchette et al., 2003a), H. diversicolor supertexta (Cheng et al., 2004) or H. midae (Reddy-Lopata et al., 2006; Naylor et al., 2011), reporting that, despite abalone can 14 Introduction adapt to sub-lethal levels of ammonia, a substantial reduction in growth is attained, hence being essential to keep ammonia levels low. In abalone culture, ammonia levels are regulated by the water exchange rate, which should be balanced carefully to meet economical and physiological constraints (Ford and Langdon, 2000). 1.4.3. Grow-out culture systems An ideal abalone culture system should promotes even distribution of animals, ready access to feed, minimal contact of abalone and feed with faecal wastes, good water flow and exchange, a means of accommodating and feeding abalone in commercially viable densities and minimal human disturbance (McShane, 1988; Aviles and Shepherd, 1996; Fleming and Hone, 1996). Thus, great varieties of both onshore and offshore culture systems have been developed, system design being still a "work in progress" resulting in farmers using a range of systems and achieving variable growth rates. 1.4.3.1. Land-based systems Onshore on-growing systems can include large deep concrete tanks, specialized plastic tanks or outdoor ponds (McShane, 1988; Freeman, 2001; Alcántara and Noro, 2006; Fig. 7). However, since tank design influence both feed and behavior (Fleming and Hone, 1996), these different systems vary considerably in effectiveness. Over the past few years, a major objective of production techniques research has focused on developing a tank system suitable for manufactured diets, which has become in very shallow high flow rate tanks, which ensures that wastes can be easily flushed from the system (Wassnig et al., 2010). Production in such a system is estimated at 1 t/tank/year (Morrison and Smith, 2000). As a result of the high cost of water pumping, aeration, filtration and temperature control, land-based production systems are low energy efficient, with major drawbacks being the high start-up and operational costs (Wu et al., 2009; Wu and Zhang, 2013). Another constraint for land-based operations is the shortage of suitable sites, mainly due to the competition for space with other human activities. 15 Introduction Figure 7. Several on-shore systems for the culture of H. rufescens (A; Chile), H. discus hannai (B; Korea), H. asinina (C; Thailand) and H. tuberculata (D; Ireland). 16 Introduction 1.4.3.2. Sea-based system In offshore farms, wave motion and tidal currents drive water exchange within the offshore structures thus, growth might be affected by prevailing weather conditions (Nagler et al., 2003). The advantages of sea-based abalone farming include potential improvement of rearing conditions, minimal start-up and operational costs and easy access for feeding, managing and harvesting (Jarayabhand and Paphavasist, 1996; Leighton, 1989; Capinpin et al., 1999; Wu et al., 2009). Whereas drawbacks involved high labour cost in keeping meshed areas clean, lack of control over environmental conditions, lack of suitable conditions for spat grow-out and security issues (Hindrum et al., 1996; Preece and Mladenov, 1999; Wu and Zhang, 2010, 2013). In sea-based production systems, structures that afford shelter for abalone are suspended below the water surface from long-line systems, floating docks or placed on the sea-floor (Aviles and Shepherd, 1996; Capinpin et al., 1999; Fermin and Buen, 2002; Wu et al., 2009; Fig. 8-10). A variety of these offshore structures: barrels, PVC tubes, net cages or plastic multitier baskets, have been tested for different abalone species like H. rufescens (Benson et al., 1986); H. fulgens (Gonzáles-Avilés and Shepherd, 1996); H. asinina, (Capinipin et al., 1999, Minh et al., 2010); H. iris (Preece and Mladenov, 1999), H. diversicolor (Alcántara and Noro, 2006; Wu et al., 2009), H. tuberculata (Bossy 1989, 1990; Hensey 1991, 1993; La Touche et al., 1993; Legg et al., 2012) or hybrid abalone (H. rubra x H. laevigata, Mulvaney et al., 2012), showing that abalone growth rate varies greatly as a result of the containment structure used for grow-out. Figure 8. (A) Long-line culture of red abalone H. rufescens in Chile. (B) Represents a six-tiered basket traditionally used for H. discus hannai farming in south China. 17 Introduction However, the rapid expansion of rearing facilities in inner coastal bays has led to the overcrowding of floating rafts, which reduces water flow, thereby affecting the growth and survival of abalone (Fleming et al., 1997; Searcy-Bernal and GorrostietaHurtado, 2007; Wassnig et al., 2010). The development of floating cages submerged in offshore waters has made cage culture possible for finfish (e.g., salmonids) in Europe and Canada (Korsoen et al., 2009) and large yellow croaker Pseudosciaena crocea in China (Lu et al., 2008). This culture technique combines high yield, easy husbandry and low labour and energy costs (Mortensen et al., 2007). Thus, some novel submerge cages have recently been tested in China, showing an overall better growth performance of abalone H. discus hannai than the one attained in traditional suspended multi-tier baskets (Wu and Zhang, 2013). Figure 9. Sea-floor culture of European ormer in Jersey Islands (UK). In general, sea-based culture technology has become the most popular grow-out mode worldwide, because of its lower cost compared to the traditional land-based farming, better quality products and higher sustainability in the long term (Ke et al., 2012; Park and Kim, 2013; Legg et al., 2012). 18 Introduction Figure 10. Cage culture of abalone H. tuberculata in Brittany (France). 1.5. ABALONE FEEDING AND NUTRITION The proper nutrition and the resulting growth of cultured abalone are critical factors in the successful culture of this animal. Thus, as a first step in this thesis, an extensive review of existing knowledge and ongoing research in Haliotids production worldwide, mainly focused on their nutritional requirements and feeding practices, was carried out. 1.5.1. General aspects Abalone is an herbivorous gastropod that eats mainly seaweeds (Elliott, 2000; Sales and Britz, 2001; Nelson et al., 2002; Tanaka et al., 2003) (Fig. 11). They start to feed immediately after larval settlement (Tutschulte and Connell, 1988). As they grow, they begin feeding on macroalgae and in the wild may change from one species to another as they mature (Table 2). 19 Introduction Figure 11. Juvenile abalone (H. tuberculata coccinea) grazing on green algae. The macroalgal preference of different abalone species varies worldwide depending on their habitat and availability (Dunstan et al., 1996; Nelson et al., 2002). Although a variety of macroalgae are naturally consumed (Britz, 1991), kelp, by far, forms the primary food source for these herbivores (Rosen et al., 2000; Qi et al., 2010). The natural feeding patterns of abalone change during different stages of their life cycle (de Waal et al., 2003). This is attributed not only to the increased mouth size (Fleming et al., 1996), but also to morphological changes of the radula as the abalone grows (Steneck and Watling, 1982; Kawamura et al., 2001; Daume and Ryan, 2004; Simental et al., 2004; Johnston et al., 2005). Changes in diet could also be due to transformations in the gut micro-organisms, such as bacteria and enzymes within the digestive system of abalone as they grow and thus enabling them to digest macroalgae (Erasmus et al., 1997; Tanaka et al., 2003). 1.5.2. Abalone feeding practices Abalone can consume seaweed at a rate close to 35% of its body weight per day (Tahil and Juinio-Menez, 1999), hence sustaining of growth requires a large amount of fresh macroalgae (Fig. 12). However, the limited availability of suitable seaweed, and the low protein content of the harvestable ones, are major impediments for intensive cultivation of this mollusk worldwide (Hahn, 1989). Moreover, macroalgae nutritional quality and abundance varies greatly according to geographic location and time of sampling (Dawczynski et al., 2007; Courtois de Viçose et al., 2012a), greatly affecting 20 Introduction growth rates and making it difficult to optimize feeding for abalone growers (BautistaTeruel and Millamena, 1999). Owing to the relatively low and variable growth of abalone fed on macroalgae (Britz, 1996a; Cook, 1991; Bautista-Teruel and Millamena, 1999; Tan and Mai 2001; Moriyama and Kawauchi, 2004), and the logistical and supply problems associated with the use of fresh seaweed, intensive abalone culture has become increasingly reliant upon artificial feeds (Britz 1996a, b; Sales and Britz, 2001), which are formulated so as to fulfill the nutritional requirements of each abalone species. Feed options for abalone are also influenced by the choice of culture technique with seaweed use generally better suited to offshore systems, whilst artificial feeds may be more appropriate in land based operations (Kinkerdale et al., 2010; Qi et al., 2010). In consequence, both seaweed and artificial dietary sources have their place and should be considered on a site specific basis (Dlaza, 2006). Besides, feeding strategies and recommended practices should be based upon not only nutritional factors but economic success. In commercial abalone farming, animals are generally fed 2-3 times per week or every 2 days (Maguire et al., 1996). Figure 12. Harvested Macrocystis pyrifera and Palmaria palmata to feed red abalone (A; Chile) and European ormer (B; Brittany). In the case of the Canary Islands, seaweed resources are less abundant than in some other nutrient rich coastal areas and hence not harvested. Therefore, to replace wild seaweed as a main diet component, the development of local abalone culture industry, should be reliant on the use of cultured macroalgae and/or formulated feeds. 21 2 3 10 H. asinina 28 H. roei 29 19 16 4 H. midae 22 H. corrugata 30 27 18 20 12 5 H. discus hannai 13 H. rufescesn 14 H. sorenseni 1 H. laevigata 23 26 11 H. rubra 31 24 17 6 H. fulgens 7 H. diversicolor 25 8 H. iris 32 21 15 9 H. tuberculata 22 1. Shepherd and Cannon,1988.; 2. Troell et al., 2006 ; 3. Jackson et al.,2001 (G. edulis); 4. Sales and Britz, 2001 (G. gracilis); 5. Pang et al., 2006 (G. textorii); 6. Mcbride et al., 2001 (G. conferta); 7. Liao et al., 2003 (G. tenuistipitata); 8. Allen et al., 2006; 9. Neori et al., 1998; Mcbride et al., 2001(G. conferta); 10. Capinpin and Corre, 1996 (G. heteroclada); Reyes and Fermin, 2003 (G. bailinae);11. Fleming, 1995; 12. Mercer et al., 1993 (P. palmata); Demetropoulos and Langdon, 2004 (P. mollis); 13& 14. Demetropoulos and Langdon, 2004 (P. mollis); 15. Mercer et al., 1993 (P. palmata); 16. Naidoo et al., 2006; 17. Nelson et al., 2002; 18. Uki et al., 1985a; 19. Troell et al., 2006 (L. pallida); 20. Qi et al., 2010 (L. japonica); 21. Mercer et al., 1993 (L. digitata); 22. Badillo et al., 2007; 23 and 24. Serviere-Zaragoza et al., 2001; 25. Allen et al., 2006; 26. Vandepeer and van Barneveld 2003; 27. Sakata et al., 1984; 28. Boarder and Shpigel, 2001 (U. rigida); 29. Naidoo et al., 2006; 30. Shuenhoff et al., 2003; 31 and 32. Mcbride et al., 2001 (U. lactuca) Ulva spp Green macroalgae Undaria pinnatifida Phyllospora comosa Macrocistys pyrifera Laminaria spp. Eisenia spp Egregia menziesii Ecklonia maxima Brown macroalgae Palmaria spp. Jeannerettia lobata Gracilariopsis spp. Gracilaria spp. Gelidium spp. Asparagopsis armata Red macroalgae Macraolgae Abalone species Table 2. Suitable wild and cultured macroalgae as food for different abalone species (Numbers indicate references which are listed below) Introduction Introduction 1.5.3. Abalone nutritional requirements The nutritional value of abalone food rations depends on many factors including nutrient composition and bioavailability (Middlen and Redding, 1998; ServiereZaragoza et al., 2001; Nelson et al., 2002; Bautista-Teruel et al., 2003); digestibility (Sales and Britz 2001, 2002; Gomez-Montes et al., 2003); processing techniques (Booth et al,. 2002; Sales and Britz, 2002); diet particle size (Southgate and Partridge, 1998); feed pellet size and presentation (Fleming et al., 1996; Kinkerdale et al., 2010); the presence of attractants (Fleming et al., 1996; Sales and Janssens, 2004); or texture and palatability (Kautsky et al., 2001). Therefore, feed quality is based upon several linked factors. Hence, no one factor should be considered alone. 1.5.3.1. General composition of abalone manufacturated diets Artificial abalone diets to date are remarkably similar in their proximate composition (Viera et al., 2009a). The caloric content (gross energy) is generally around 4 Kcal g-1 (Table 3). The moisture content of diets averages 10% (Table 3).The protein content varies considerably from about 20-50 % (Table 4), averaging around 30%. Lipid content tested ranges from 1.2-19%, averaging around 4% (Table 5). Carbohydrate makes up the bulk of the diets, ranging from 21- 82%, averaging 45% (Table 6). Crude fibre content is generally low (1-6%; Table 6) as the capacity of abalone to digest fibre is limited (Fleming et al., 1996). 1.5.3.2. Protein sources, optimal inclusion levels and supplementation synthetic amino acids Among the different nutrients, abalone requires adequate levels of high quality protein for soft tissue growth (Uki et al., 1985a; Mai et al., 1995a, b; Britz and Hecht, 1997; Bautista-Teruel and Millamena, 1999; Gómez-Montes et al., 2003; Reyes and Fermín, 2003; Viana et al., 2007). This essential but expensive dietary component must be optimally utilized by the abalone for growth rather than for energy. The main factors affecting dietary protein utilisation are its digestibility and the balance and availability of its amino acids, energy supplied being also considered important (Fleming et al., 1996). 23 Introduction Table 3. Proximate composition (% dry matter) and caloric content of artificial diets tested for abalone References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Crude protein 30 31 35 38 32 40 35 35 28 35 27 36 38 35 44 5 5 10 6 6 5 7 4.5 3 6 5 3 1.3 5 6.7 48 33 39 40 48 45 43 4.3 1 9 6 16 10 6 Crude lipid Carbohydrate 44 42 6 Crude Fibre 3 Ash 11 8 5 Moisture GE (Kcal g-1) 4.5 P:e ratio* 47 3 4.7 3 85 4 2.9 4 4.5 4.5 96 1. Uki et al., 1985b (Japan: H. discus hannai); 2. Mai et al., 1995b (Ireland: H. tuberculata and H. discus hannai); 3. Viana et al., 1993 (México: H. fulgens); 4. Guzmán and Viana, 1998 (Mexico: H. fulgens); 5. Bautista-Teruel and Millamena, 1999 (Philippines: H.asinina); 6. Jackson et al., 2001 (Australia: H. asinina); 7. Serviere-Zaragoza et al., 2001 (Mexico: H. fulgens); 8. Shipton and Britz, 2001(South Africa: H. midae); 9. Bautista-Teruel et al., 2003 (Philippines: H. asinina); 10. Gómez-Montes et al., 2003 (Mexico: H. fulgens); 11. Reyes and Fermín, 2003 (Philippines: H. asinina); 12. Sales et al., 2003 (South Africa: H. midae); 13. Thongrod et al., 2003 (Thailand: H. asinina); 14. Naidoo et al., 2006 (South Africa: H. midae); 15. Hernández et al., 2009 (Chile: H. rufescens). * Protein: energy ratio The most common protein sources employed in abalone feeds includes fishmeal, defatted soybean meal (Guzmán and Viana, 1998; Sales and Britz, 2002; GómezMontes et al., 2003; Thongrod et al., 2003; Naidoo et al., 2006; García-Esquivel et al., 2007), casein (Uki et al., 1985b; Viana et al., 1993; Mai et al., 1995b; Sales et al., 2003; Vandepeer and van Barneveld, 2003) and Spirulina spp. (Uki et al., 1985b; Britz et al., 1996a, Bautista-Teruel et al., 2003; Thongrod et al., 2003; Naidoo et al., 2006;Troell et al., 2006). Few novel protein sources have also been tested at low inclusion proportions (Table 4). To get advantage of the high nutritional value of algae, algal meals have been occasionally included in abalone feeds (García-Esquivel et al., 2007; Viana et al., 2007). Fish or abalone viscera silage have been also proposed as economic protein sources 24 Introduction (Viana et al., 1996; Guzmán and Viana, 1998). Besides, different protein sources may be balanced by addition of synthetic amino acids such as methionine, threonine and arginine in order to fulfil the essential amino acid requirements of these species (Mai et al., 1995b; Guzmán and Viana, 1998; Serviere-Zaragoza et al., 2001; García-Esquivel et al., 2007). Among all the sources tested as a single protein source, fishmeal is the only one that supports good growth performance (Fleming et al., 1996). However, concern over the sustainability of fishmeal use in aquaculture has led the World Wildlife Fund to place restrictions of its use in the new standards for sustainable abalone farming (WWF, 2010). For abalone fed diets containing fishmeal the standards require that it should not take more than one kilogram of fish to produce a kilogram of abalone i.e. Forage-FishEfficiency-Ratio (FFER) of 1 or lower. Moreover, abalone output in Europe is substantially focused on organic or eco-certified products, implying that no fishmeal, pharmaceuticals or fertilizers are used. Hence, developing a non-including fishmeal artificial feed for abalone, would have marketing benefits not only for consumers, who are increasingly environmentally sensitive, but also for producers, who could validate the environmental and social sustainability of their farming operations (WWF, 2010). 25 60 32 Soy bean meal Casein 63 43 57 20-50 5 24-44 9-62 6 10 10 40 7 10 20 17 22-32 7-20 20 7-17 8 15-30 19-37 12-48 10 30 34 30 10 36-39 12 36 12 34 23 5 5 10 20 11 26 1. Uki et al., 1985b (Japan: H. discus hannai) ; 2. Mai et al., 1995b (Ireland : H. tuberculata and H. discus hannai); 3. Britz et al, 1996a (South Africa: H. midae); 4. Britz et al, 1996b (South Africa: H. midae); 5. Fleming et al,, 1996 (review); 6. Britz and Hecht, 1997(South Africa: H. midae); 7. Guzmán and Viana, 1998 (México: H. fulgens); 8. Bautista-Teruel and Millamena, 1999 (Philippines: H. asinina); 9. Serviere-Zaragoza et al., 2001 (México: H. fulgens); 10. Shipton and Britz, 2001(South Africa: H. midae); 11. Sales and Britz, 2002 (South Africa: H. midae) Total protein Whole egg Egg albumin Soya oil cake 37 47 Corn meal Kelp meal 52 Vegetable meal 15 2 10 30 9 24-40 32 44 4 Torula yeast 27-47 41-71 3 24-48 0-50 8-41 2 Diet Sunflower meal Cotton seed meal Spirulina spp. Silage Shrimp meal 47 1 Fish meal Protein source and content Nutrient Table 4. Nutritional composition (% dry matter) of artificial diets tested for abalone: Protein sources and inclusion levels Introduction 27 9-17 9-17 5-48 4-48 1-7 37 5 10 34 16 62 43 17 35 39-50 35 10 55 18 ** 19 12 15 29 20 10 30 21 26-44 18 44 35 44 15 10 30 22 34-39 2.6 16-19 29-35 23 27 12. Bautista-Teruel et al., 2003 (Philippines: H. asinina); 13. Gómez-Montes et al., 2003 (Mexico: H. fulgens); 14. Reyes and Fermín, 2003 (Philippines: H. asinina); 15. Sales et al., 2003 (South Africa: H. midae); 16. Thongrod et al., 2003 (Thailand: H. asinina); 17. Vandepeer et al., 2003 (Australia: H. rubra and H. laevigata); 18. Naidoo et al., 2006 (South Africa: H. midae); 19. Troell et al, 2006 (South Africa: H. midae); 20. García-Esquivel et al, 2007 (Mexico: H. fulgens); 21. Viana et al, 2007 (Mexico: H. fulgens); 22. Hernández et al., 2009 (Chile: H. rufescens); 23. Green et al., 2011 (South Africa: H. midae) Total protein Seaweed 26 46 5 15 3 15 12 20 10 18-35 14 Kelp meal 20 35 10 13 12 7.5 35 7.5 12 Diet Corn meal Vegetable meal Lupin meal Soy bean protein isolate Spirulina spp. Shrimp meal 15 20 Soy bean meal Casein 10 Fish meal Protein source and content Nutrient Table 4. Continued. Introduction Introduction 1.5.3.3. Lipid sources, optimal inclusion levels and essential fatty acids Lipids are an important dietary constituent not only because of their high energy value and source of essential fatty acids, that are necessary for cellular metabolism and maintenance of the membrane structure (Corraze, 2001), but also because they contain fat-soluble vitamins (Fleming et al., 1996). Moreover, lipids (especially long-chain PUFA) are an important nutrient determining the flavour and odour of seafoods. Therefore, several investigations have been conducted to evaluate the response of abalone to various levels of dietary lipid (Uki et al., 1985a; 1986; Mai et al., 1995a; Bautista-Teruel et al., 2011); whether abalone lipid requirement are met using fish oil in artificial diets (Dunstan et al, 1996); the effect of protein-energy ratio on growth rate, nutritional indices and body composition (Britz and Hecht, 1997; Bautista-Teruel and Millamena, 1999; Gómez-Montes et al., 2003; Green et al., 2011); the role of lipid in growth and gonadal maturation (Nelson et al., 2002), the tissues fatty acids composition (Dunstan et al., 1996; Grubert et al., 2004; Li et al., 2002; Durazo and Viana, 2013; Hernández et al., 2013) or the effect of lipid to carbohydrate ratio and energy content in abalone diets (Thongrod et al., 2003). Abalone species show a low lipid requirement, typical of herbivores molluscs and fish (Mai et al., 1995a). This low lipid requirement has been associated by some authors (Durazo-Beltrán et al., 2004) with a low use of dietary lipids as energy source by abalone based upon its low metabolic rate. Furthermore, high levels of dietary lipid (> 7%) seem to affect negatively abalone growth and reduce the uptake of other nutrients in abalone diets as it has been shown for several species including H. laevigata (Van Barneveld et al., 1998); H. tuberculata and H. discus hannai (Mai et al.,1995a); H. midae (Britz and Hecht, 1997; Green et al., 2011), H. fulgens (Durazo-Beltran et al., 2003, 2004); H. asinina (Thongrod et al., 2003) or H. corrugata (Montano-Vargas et al., 2005). Despite a wide range of total lipid content have been tested in abalone formulated diets worldwide (2-19% DW; Table 5), in most cases the total lipid comprised 3-5% of the diet (Uki et al., 1985a). Lipid is supplied in artificial diets either as a fish/marine oil (Guzmán and Viana, 1998; Sales and Britz, 2002; Thongrod et al., 2003; Green et al., 2011), a vegetable oil (Shipton and Britz, 2001) or a combination of these (Mai et al., 1995a; 28 Introduction Britz, 1996a,b; Bautista-Teruel and Millamena, 1999; Shipton and Britz, 2001; Bautista-Teruel et al., 2003; Gómez-Montes et al., 2003; Reyes and Fermín, 2003) (Table 5). The lipid bound in fishmeal contributes to the total lipid content and in some diets is the sole supply. To ensure that oils used do not become rancid, vitamin E, a natural antioxidant, is commonly added to the lipids (Uki et al., 1985a, b). A number of studies have found that the composition of fatty acids in the tissues of macroalgal feeders, such as abalone, is very different to that of carnivorous and plankton-feeders. Such differences between species have been attributed to the different lipid composition of their respective diets (Dunstan et al., 1996; Grubert et al., 2004). Uki et al. (1985a) estimated the requirement for n-3 PUFA to be about 1% of diet containing 5% lipid (reviewed by Uki and Watanabe, 1992) which represents 20% of the lipid. In regards to abalone flesh, the lipid content is low and made up of the fatty acids: palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1n9), vaccenic acid (18:1n7), arachidonic acid (20:4n6), eicosapentaenoic acid (20:5n3) docosapentaenoic acid (22:5n3) (Dunstan et al., 1999; Nelson et al., 2002). 29 and 6-8 0 and 3 4 6 1.5 1.5 5 4-5 0-3 6 3-4 2 7 1.5-5 8 0.5 0.5 9 3-5 10 5 1 1 11 1-19 0-16 12 5.3 13 0-10 1-5 1-5 14 30 1. Uki et al., 1985a, b (Japan : H. discus hannai); 2. Mai et al., 1995a (Ireland : H. tuberculata and H. discus hannai); 3. Britz, 1996a, b (South Africa: H. midae); 4. Guzmán and Viana, 1998 (México: H.fulgens); 5. Bautista-Teruel and Millamena, 1999 (Philippines: H.asinina); 6. Shipton and Britz, 2001(South Africa:H. midae); 7. Sales and Britz, 2002 (South Africa:H. midae); 8. Viana et al, 2002 (Review); 9. Bautista-Teruel et al., 2003 (Philippines: H.asinina); 10. Gómez-Montes et al., 2003 (México: H.fulgens); 11. Reyes and Fermín., 2003 (Philippines: H.asinina); 12. Thongrod et al., 2003 (Thailand: H. asinina); 13. Naidoo et al., 2006 (South Africa: H. midae); 14. Bautista-Teruel et al., 2011 (Philippines: H. asinina) 3 6-7 5 and 8 0-5 3 Total lipid 0.6-12 0-12 2 0.5 1.2-5 1 and 5 1 Diet Corn oil Squid oil Soy bean oil Cod liver oil Sunflower oil / fish oil (1:1) Corn oil / fish oil (1:1) Soy bean oil / Pollock liver oil (3:2 + 1% Vit E) Fish oil Lipid source and content Nutrient Table 5. Nutritional composition (% dry matter) of artificial diets tested for abalone: Lipid sources and inclusion levels Introduction Introduction 1.5.3.4. Energy / carbohydrate and binders sources and content Abalone consume a natural diet of 40-50% carbohydrate. Thus, high levels of carbohydrate enhance growth (Thongrod et al., 2003) of abalone which have various enzymes capable of hydrolysing complex carbohydrates (Fleming et al., 1996) and a good capacity to synthesize non essential lipids from them. Consequently, energy is supplied primarily as a carbohydrate, averaging 45% of the diet (Table 6). Cheap cereal sources, such as wheat and corn flour, soybean meal, maize or rice starch are frequently used as an energy source. Starches play a major role as both an energy source and binder in many commercial and tested feeds (Table 6). Despite the ability of abalone to utilise a wide variety of energy sources, being a mollusc, the metabolic rate of abalone is low and therefore energy need are low. Caloric content (gross energy) of the diets is generally around 4 Kcal g-1 (Table 3). Aquatic animal feeds differ from conventional livestock feeds in that they require a matrix in which the dietary nutrients are held. An additional requirement of the feed by a slow feeder, such as abalone, is that water-soluble nutrient remain in the feed and the food particles remain bound together so that pellets stay intact for at least two days in water. Undoubtedly, artificial diets and macroalgae are very different in their physical properties, such as texture and water stability. These properties affect feeding, digestion, absorption, and subsequently growth of abalone. Thus, water stability is a significant factor, being responsible for the different performances of aquatic animals between feeding artificial diet and fresh one (Mai et al., 1995a). Therefore, achieving this is crucial to the development of a successful feed for abalone (Fleming et al, 1996; Hernández et al., 2009). The average stability of commercial abalone feeds is about 2-3 days (Fleming et al., 1996). Diets can lose approximately 30-40% of the dry matter content after being immersed for 48 hours (Maguire, 1996; Bautista- Teruel et al., 2003). The most common forms of binder include starches, gluten, alginates or seaweeds (Table 6). Gels are also used quite frequently in experimental diets, however they are not seen to be economically viable for commercial feeds (Fleming et al., 1996). Abalone have a limited ability to digest fiber, despite the presence of cellulases in the gut. Some artificial diets contain fiber for binding purposes with the level as high 31 Introduction as 6% of the dry weight (Fleming et al., 1996; Guzmán and Viana, 1998; ServiereZaragoza et al., 2001; Naidoo et al., 2006). 32 5 5 18 47 * 5-11 4-18 28-82 42-44 13-23 21-49 9 4 31-48 0,5 5 13-29 10 39-47 7 2-3 12 11 5-6 14-23 12 4-18 11 46-50 9-43 9 6-16 5.85 47 9 5-20 20 8 5 33-47 6 20 26-88 7 4 01-1.3 40-50 6 4 7 0.5-31 16-27 6 Diet 6 1,2 43 13 15 2 6 19 14 33 1. Mai et al., 1995a (Ireland: H. tuberculata and H. discus hannai); 2. Fleming et al., 1996 (review) ; 3. Guzmán and Viana, 1998 (México: H.fulgens); 4. Bautista-Teruel and Millamena, 1999 (Philippines: H.asinina); 5. Serviere-Zaragoza et al., 2001(México: H.fulgens); 6. Shipton and Britz, 2001(South Africa: H. midae); 7. Sales et al., 2003 (South Africa: H. midae); 8. Bautista-Teruel et al., 2003 (Philippines: H.asinina); 9. Gómez-Montes et al., 2003 (México: H.fulgens); 10. Thongrod et al., 2003 (Thailand: H. asinina); 11. Reyes and Fermín., 2003 (Philippines: H. asinina); 12. Durazo-Beltrán et al., 2004 (México: H. fulgens); 13. Naidoo et al., 2006 (South Africa: H. midae); 14. García-Esquivel et al., 2007 (México: H.fulgens) Ash Cellulose Crude fibre content Total carbohydrate Chemical binder Gelatin Agar Sodium alginate Seaweed 3-26 * Starch (maize / rice) Rice bran 19 * Soybean meal / flour 5 15 10 12 5 * 20 4 Corn ( meal / gluten) 3 4 2 * 32-43 1 Wheat (flour / gluten) Dextrin Energy / binder source and content Nutrient Table 6. Nutritional composition (% dry matter) of artificial diets tested for abalone: Energy / binder sources and content Introduction Introduction 1.5.3.5. Vitamins and minerals In the absence of information on the requirement by abalone for vitamins and minerals, Uki et al. (1985a) test diets were based on the requirements for carp and rainbow trout except choline chloride and vitamin E, added to lipid mixture to maintain integrity, which were added independently (Table 7). The level of inclusion for the mineral mix was 4% and for vitamins was 1.5% of the diet. Most diet formulated since Uki´s experiments have copied these values (Table 8). Table 7. Vitamin and mineral mixture tested by Uki et al. (1985a) Vitamin Mixture Mineral Mixture Composition Composition (Total 100 g) (mg) Thiamine 6 NaCl 1.0 Riboflavin 5 MgSO4-7 H2O 15.0 Pyridoxine HCl 2 NaH2PO4-2H2O 25.0 Niacin 40 KH2PO4 32.0 Ca pantothenate 10 Ca(H2PO4)2.H2O 20.0 Inositol 200 Fe-citrate 2.5 Biotin 0.6 Trace element mixture* 1.0 Folic acid 1.5 Ca-lactate 3.5 PABA 20 Trace element mixture Menadionine 4 ZnSO4.7H2O 35.3 0.009 MnSO4.4H2O 16.2 200 CuSO4.5H2O 3.1 Vitamin A 5000 U.I. CoCl2.6H2O 0.1 Vitamin D 100 U.I. KIO3 0.3 Cellulose 45 B12 Ascorbic acid 34 0.5 0.5 Choline chloride 0.02 0.1 0.3 4.4 4 0.4 9 0.1 0.5 5 2 3 10 5.5 4 1.5 11 0.08 0.2 0.35 0.01 0.1 4.2 2.9 1.3 12 0.08 0.23 0.4 0.11 4.6 3.3 1.3 13 35 1. Uki et al., 1985a,b (Japan: H. discus hannai); 2. Mai et al., 1995a (Ireland: H. tuberculata and H. discus hannai); 3. Britz et al., 1997 (South Africa: H. midae); 4. Guzmán and Viana, 1998 (México: H. fulgens); 5. Bautista-Teruel et al., 1999 (Philippines: H. asinina); 6. Serviere-Zaragoza et al., 2001(México: H. fulgens); 7. Reyes and Fermín, 2003 (Philippines: H. asinina); 8. Sales et al., 2003 (South Africa: H. midae); 9. Thongrod et al., 2003 (Thailand: H. asinina); 10. Vandepeer et al., 2003 (Australia: H. rubra and H. laevigata); 11. Naidoo et al., 2006 (South Africa: H. midae); 12. García-Esquivel et al., 2007(México: H. fulgens); 13. Viana et al., 2007 (México: H. fulgens) 15 Bentonite 3 8 0.5 3 5 2 3 7 Diet Mono calcium phosphate Dicalcium phosphate 0.09 4 0.11 5.1 3.4 1.7 6 BTH 0.05 7 4 3 5 0.23 2 0.8 6 6 2 4 2 1 3 Sodium benzoate Vitamin E Vitamin C Stay C Alpha-Tocopherol 6 4 5.5 4 Mineral mix 2 2 Total 1.5 1 Vitamin mix Vitamins and minerals Nutrient Table 8. Nutritional composition (% dry matter) of artificial diets tested for abalone. Ingredient with secondary nutritional contribution Introduction Introduction 1.5.4. Abalone growth under culture conditions Review of abalone nutritional studies done worldwide demonstrate that there is huge variation in growth performance of abalone, particularly in the first year up to 30 mm. In general, currents research implies that abalone feeds are still under development with further potential to improve the growth rates, health and quality of abalone in cultivation systems. Moreover, this review has shown that optimal growth of abalone is based upon several linked factors, in particular protein source and content, carbohydrate and lipid levels in feed; water temperature and photoperiod; water quality; rearing density, age, abalone species specific characteristics or culture system (Table 9). Hence, to select an appropriate abalone grow-out technology several factors should be considered. 36 Diet vs macroalge Uki et al., 1985a 2124 Artificial diets vs macroalgae Fresh Macroalgae Viana et al., 1993 Fleming, 1995 1020 14 T° Fresh macroalgae Mercer et al., 1993 Subject Author 150 350 90 365 30-40 Days H. rubra H. fulgens H. discus hannai H. tuberculata H. discus hannai Species 310 260 101 50 P.comosa E.radiata FI U. australis 1.2 FCR M.angustifolia WS 540 37 P/E 1260 17 21 28 27 18 13 17 17 21 28 27 E J. lobata 2 9 1 0 1 4 4 6 3 4 4 4 6 3 18 13 17 C -28 0.1 1.2 2 -1 4.0 13 11 13 12 14 15 15 14 10 12 6 12 4 0.7 0.1 FCE 4.3 3.5 PER Consumption and feed utilization efficacy L.botryoides 44 Casein 13 35 C. crispus Fishmeal M. pyrifera 12 6 10 L. digitata L. saccharina Mixed diet 13 A. esculenta 13 13 C. crispus U. lactuca 12 Mixed diet 17 3 13 U. lactuca P. palmata 4 17 4 P. palmata 3 6 10 4 13 L. digitata 1 17 A. esculenta L. saccharina 5 L 28 P Casein, fishmeal E. biciclys Treatment Proximate composition and energy content 40-70 13 19 29 T0 25 0.8 0.9 3 W0 -1.7 0.1 0.3 0.7 -0.6 5.4 SGR 16 45 47 61 90 53 95 106 93-117 DGSL (μm d-1) 35 37 WG (%) Growth and survival Survival (%) Table 9. Summary of various nutritional studies regarding abalone growth performance during the last three decades of abalone culture development Introduction Protein sources; macroalgae Protein; Energy ratio; Size Fish meal replacemnt Protein / Energy levels Britz and Hetch, 1997 Guzmán and Viana, 1998 BautistaTeruel et al., 1999 Lipid levels Subject Britz, 1996b Mai et al., 1995a Author 2731 2215 18 19 13 T° 90 179 142 72 124 100 Days H. asinina H. fulgens H. midae small H. midae large H. midae H. discus hannai Artificial diets H. tuberculata 29 32 Soya oil cake Fish meal Viscera soybean meal Abfeed Fish meal Shrimp meal Soybean meal Garcilariopsis bailinae 8 6 6 6 6 0.5 36 38 22 28 31 17 6 6 10 6 6 35 48 47 40 33 40 2.2 3.2 3.1 3 90 76 1.4 1.2 1.4 1.2 1 34 44 44 44 39 Starch, fish, cellulose 3.4 10 7 0.9 2.3 1.8 1.5 1.6 2.8 1 Dried E. maxima 5 20 0.8 1 0.8 0.7 FCR 29 86 75 80 80 80 80 80 75 80 80 80 80 80 WS P. corallorhiza 38 P/E Torula yeast 3.6 3.6 4 3.6 4 4.2 4.3 4.4 4.6 4.6 3.7 4 4.2 4.3 4.4 4.6 4.6 3. 7 E 19 41 C 1.0 1.8 9.3 9.4 34 35 1.1 2.8 1.3 0.7 0.8 0.6 0.8 0.5 FI FCE 0.1 2.2 2.3 2.5 3.6 2.3 2.2 2.5 3 2.2 3.3 3.9 3.4 6.5 4.7 PER Consumption and feed utilization efficacy Spirulina spp. 5 5 5 5 31 Casein Fishmeal 0.6 3 5 7 9 11.6 4 0.6 3 5 7 9 11.6 25 25 25 25 25 25 18 25 25 25 25 25 25 4 L P 18 P. palmata Atificial diets P. palmata Treatment Species Proximate composition and energy content 16 7 36 10 21 T0 0.7 7.3 0.2 1.8 0.4 0.6 W0 0.06 0.8 0.5 0.7 0.8 1.1 2.2 2.1 0.3 0.5 1 0.6 0.4 0.6 0.8 0.6 0.8 0.6 1 0.6 0.8 0.7 0.7 0.7 0.6 0.9 0.6 0.9 0.9 0.9 0.8 0.7 SGR 135 49 222 244 248 71 103 108 43 58 65 54 29 42 65 41 58 45 DGSL (μm d-1) 134 252 307 347 WG (%) Growth and survival 85 85 95 85 98 93 95 95 95 97 95 97 87 92 98 90 88 92 Survival (%) Introduction Terresterial protein sources Animal and plant protein sources Protein / Energy level Reyes and Fermín, 2003 BautistaTeruel et al., 2003 GómezMontes et al., 2003 Lipid levels Macroalgae DurazoBeltrán et al., 2004 Legrand, 2005 carbohydrate Lipid / Macroalgae and artificial diet ServiereZaragoza et al., 2001 Thongrod et al., 2003 Subject Author 717 20 2730 21 2831 2830 20 T° 183 60 196 60 90 120 106 Days H. t. small H. tuberculata large H. fulgens H. asinina H. fulgens H. asinina H. asinina H. fulgens Species Kelp; soybean; fish silage & protein P. palmata P. palmata + U. lactuca P. palmata P. p+ U. l. Soybean, starch, Spirulina spp., fish oil, Gracilaria Fish, soybean, kelp, modified corn,starch Eisenia arborea Macrocystis pyrifera Gelidium robustum Phyyospadix torreyi Artificial diet Carica papaya Leucaena leucocephala Moringa oliefera Azolla pinnata G. bailoinae Fish meal Shrimp meal Soybean meal Sprirulina Treatment 62 74 85 100 108 6.0 1.6 1.4 1.4 1.5 1.6 FCE 42 41 42 41 24 21 24 39 38 43 42 44 42 1.6 1.4 1.4 1.5 1.6 48 43 39 36 31 42 21 3 5 1 3 3 3 3 6 6 6 7 7 1 6 10 15 19 0.1 25 13 28 27 28 27 26 31 35 40 44 38 38 37 36 37 39 5 25 47 4 3 3 3 3 4 4 4 4 4 4.2 4.5 4.7 4.9 5.2 3 3 3 99.4 39 95.9 2 3.9 5.6 4.3 1.3 1.4 1.9 3.2 7.4 5 38 1 1 1 1 4 13 3.7 5.8 3.6 3.5 0.7 0.9 76.4 93 110 138 120 59 36 25 5 30 16 25 33 18 63 3 FI 12 WS 52 41 P/E 7.6 5 E 3.9 4.2 4.1 4.6 3 3 3.1 3.4 2.7 PER FCR C P L Consumption and feed utilization efficacy Proximate composition and Energy content 10 23 36 1112 12 11 39 40 38 37 40 17 T0 0.1 2 6.4 0.9 0.2 0.7 14 15.3 11.4 14.7 14.7 0.4 W0 1.3 1.2 0.6 0.7 1.9 2.1 0.8 0.9 0.7 0.9 1.3 1.5 1.9 2.4 2.5 1.9 0.9 0.65 1.8 0.45 0.32 0.7 0.27 SGR 230 40 29 61 7 92 123 123 76 61 86 47 42 71 25 23 46 19 DGSL (μm d-1) 30 779 615 353 223 97 29 75 84 400 454 326 421 90 28 59 WG (%) Growth and survival 81 93 90 75 76 90 90 95 95 85 85 95 100 97 80 95 89 93 93 Surv. (%) Introduction 2025 15 Formulated diet; fresh macroalgae; mixed diet Hernández et al., 2009 T° Temperature Photoperiod Seaweedbased diets; Macroalgae; Enriched macroalgae; commercial feed Subject GarcíaEsquivel et al., 2007 Naidoo et al., 2006 Author 90 180 270 Days H. rufescens H. fulgens H. midae Species 4 96 33 FI FCE 3 PER 35 T0 7.5 W0 1.8 SGR DGSL (μm d-1) M. pyrifera P. columbina + formulated diet P. columbina 12 27 44 6.7 34 2.8 0.6 40 45 2.6 3.5 4.5 40 44 78 93 94 25ºC/ 24:00 Formulated diet 1.4 1.6 25ºC/ 12:12 0.9 0.9 4 44 20ºC / 24:00 25ºC/ 00:24 20ºC / 12:12 20ºC / 00:24 Fish, soybean, kelp Dried kelp stipe Dried Kelp pellets Dried kelp blade Abfeed E. maxima + Abfeed 2.6 1.5 1.8 2.8 1.7 6.6 31 0.06 3.7 2.5 2.3 1.8 87 70 110 50 38 55 72 69 82 109 29 32 34 49 53 55 0.8 FCR 58 45 WS Rotation 5 P/E Ecklonia maxima 35 E 60 C E. maxima + Epiphiyte L 728 548 1004 471 WG (%) Growth and survival 66 P Consumption and feed utilization efficacy Enriched U. rigida + E. G. gracilis+kelp Treatment Proximate composition and energy content 80 93 90 85 Surv. (%) Introduction Size Stocking density Cage culture. Recirculated system Lipid levels, constant P/E ratio. Long-line seaweedabalone culture Seaweeds suitability. Subject 1121 18 1023 T° 180 84 120 Days H. discus hannai H. midae large H. midae small H. discus hannai Species Traditional Multi Tier baskets Novel Submerged cages Fishmeal, casein, kelp, starch, fish oil 34 36 38 39 36 34 36 38 39 36 2.8 5.3 8.7 12.5 16.1 2.8 5.3 8.7 12.5 16.1 4.5 4.6 4.8 5 5.1 4.5 4.6 4.8 5 5.1 E P/E WS 10 1.8 2 1 FCR 0.3 0.5 0.2 0.4 2.8 1.8 2.5 2.3 2.3 6.5 FCE 4.2 FI 5.8 C L. j. + S. p. L 4.4 6 P L. japonica G. lemaneiformis S. pallidum L. j. + G. l. Treatment 0.7 1.3 1.9 3.2 PER Consumption and feed utilization efficacy 48 61 55 48 61 55 65 25 76 T0 32 45 37 32 45 37 50 2.6 62 W0 0.1 0.5 0.2 0.7 SGR 53 64 60 63 37 78 77 67 17 43 20 18 26 21 DGSL (μm d-1) 22 WG (%) Growth and survival >87.5 >87.5 >87.5 100 100 100 100 100 99 97 97 96 100 >87.5 >87.5 >87.5 100 100 100 100 Surv. (%) 100 41 (Kcalg-1); P/E= protein: energy ratio; WS= Water stability (Guzmán and Viana, 1998; Hernández et al., 2009 (12 h inmersion); Mai, 1995a (48 h inmersion); expressed; FCE= Feed conversion efficiency (%); PER = Protein efficiency ratio; DGSL= daily growth rate in shell length, WG=Weight gain; E= gross energy FI= Feed intake expressed by % BW day-1 (Jackson, 2001) or mg abalone day-1 (Fleming, 1995); SGR = Specific growth rate; FCR=Food conversion ratio Wu and Zhang, 2013 Green et al., 2011 Qi et al., 2010 Author Proximate composition and energy content Introduction Introduction 1.6. INTEGRATED MULTI-TROPHIC AQUACULTURE (IMTA) 1.6.1. General aspects Rising global demand for seafood and declining catches have resulted in the volume of mariculture doubling each decade, a growth expected to persist in the decades to come (FAO, 2012). Such industry, whether semi-intensive or intensive, thus release organic materials mainly as unconsumed feed, but also as undigested feed residues and inorganic nutrient excretions (Msuya et al., 2006). Ammonium and suspended solids are known to be the most significant polluting components of aquaculture effluents (Tovar et al., 2000). If released directly to the sea, the organic and nutrient loads cause eutrophication of the marine environment, which affects the naturally growing marine organisms. In addition, a mariculture operation itself can be affected by upstream impact of environmental degradation (Neori et al., 2004). Awareness by scientists, industry, the public and politicians is that such technologies with uncontrolled impact are no longer considered sustainable (CostaPierce, 1996; Sorgeloos, 1999; Naylor et al., 2000; Chopin et al., 2001). Thus, the treatment of aquaculture waters and the mitigation of the potential environmental impacts of aquaculture is needed, and one way of achieving this goal is through the Integrated Multi-Trophic Aquaculture (IMTA), where the excretion of one organism in such system often supply food for another (Gordin et al., 1981; Edwards et al., 1988). In addition, IMTA can be considered as a profitable environmental management strategy (EMS). The concept of IMTA is not only confined to open-water, marine systems using finfish for the fed component and seaweeds and invertebrates for the extractive component, but can also be applied to land-based, closed-containment and even freshwater systems. What is important is that the appropriate co-cultured organisms are chosen at multiple trophic levels based on their complementary functions, as well as on their economic value (Chopin et al., 2012). Thus, today´s IMTA approaches, integrate the culture of fish or shrimp with vegetables, microalgae, shellfish and/or seaweeds, and can take place in coastal waters or in ponds and can be highly intensified (Neori et al., 2004; Zhou et al., 2006; Cunha et al., 2012; Liping et al., 2012). 42 Introduction 1.6.2. Seaweed-based integrated mariculture A primary role of biofiltration in shrimp/fish aquaculture is the treatment by uptake and conversion of toxic metabolites and pollutants. Bacterial biofilters oxidize ammonia to the much less toxic but equal polluting nitrate (Touchtte and Burkholder, 2000), while microalgae photosynthetically convert the dissolved inorganic nutrients into particulate “nutrient packs” (Troell and Norberg, 1998), that are still suspended in the water. In contrast, macroalgae not only can efficiently remove all forms of inorganic nitrogenous waste products (Ryther et al., 1975; MacDonald, 1987; Vandermeulen and Gordin, 1990; Cohen and Neori, 1991; Buschmann et al., 1994; Demetropoulos and Langdon, 2004; Zhou et al., 2006), but also function as an oxygen producer that provides oxygen for the animals (Schuenhoff et al., 2003; Neori et al., 2003). The nutrients act as a fertilizer for the algae and a yield of useful biomass is increased (Cohen and Neori, 1991; Muir, 1996; Neori et al., 1996, 2000; Shpigel and Neori, 1996). Moreover, algae, and in particular seaweeds, are most suitable for biofiltration because they probably have the highest productivity of all plants and can be economically cultured (Gao and McKinley, 1994). Besides, seaweeds growth on mariculture effluents has been also shown to be superior to that on fertilizer-enriched clean seawater (Harlin et al., 1978; Vandermeulen and Gordin, 1990; Neori et al., 1991; Viera et al., 2006, 2009b). The choice of seaweed species for inclusion in an IMTA must first depend upon meeting a number of basic criteria: high growth rate and tissue nitrogen concentration; easy of cultivation and control of life cycle; resistance to epiphytes and disease-causing organisms; and a match between the ecophysiological characteristics and the growth environment. In addition, given the ecological damage that may result from the introduction of nonnative organism, the seaweed should be a local species. Beyond these basic criteria, the seaweed intended application (yield or bioremediation) should also be taken into account, the optimal system including seaweed with both applications (Neori et al., 2004). Besides, the market value of the harvested biomass should be also considered (Buschmann et al., 1996). Thus, the seaweed genera most common in mariculture biofiltration are Ulva: U. lactuca (Cohen and Neori, 1991; Neori et al., 1991, 2000, 2003; Shpigel et al., 1993; Schuenhoff et al., 2003; Vandermeulen and Gordin, 1990, Naidoo et al., 2006; 43 Introduction Robertson-Andersson et al., 2011; Ben-Ari et al., 2012), U. reticulata (Msuya et al., 2006), U. rigida (Jiménez del Río et al., 1994, 1996; García, 1999; Toledo et al., 2000; Viera et al., 2006, 2009b; Izquierdo et al., 2013) and Gracilaria: G. lemaneiformis (Fei et al., 2000, 2002; Fei, 2004; Zhou et al., 2006; Yongjian et al., 2008; Mao et al., 2009), G. chilensis (Buschmann et al., 1994, 1995, 1996, 2001; Chow et al., 2001; Marquardt et al., 2010), G. changii (Phang et al., 1996), G. parvispora (Nelson et al., 2001; Nagler et al., 2003), G. tenuistipitata (Haglund and Pedersen, 1993), G. gracilis (Anderson et al., 1999; Njobeni, 2005; Hansen et al., 2006; Naidoo et al., 2006), G. textorii (Pang et al., 2006), G.lichenoides (Xu et al., 2008) or G. cornea (Viera et al., 2006, 2009b; Izquierdo et al., 2013). However, despite Ulva industrial culture technology and nutrient uptake capacity are among the highest known (Marínez-Aragón et al., 2002), there is a low commercial value for its harvested biomass, in contrast, Gracilaria species further produce commercially valuable bio-products such as agar-agar (Neori et al., 2004), though maximal growth rates of these fleshy morphotypes are typically less than the flat sheets (MarinhoSoriano et al., 2002; Nagler et al., 2003). Other marketable genera such as Porphyra (Chopin et al., 1999; Carmona et al., 2001; Fei, 2001, Yarish et al., 2001), Palmaria (Demetropoulos and Langdon, 2004; Matos et al., 2006), Hypnea (Langton et al., 1977; Viera et al., 2009b) or kelps (Laminaria and Macrocystis) have also been successfully integrated into IMTA systems (Chopin and Bastarache, 2002; Buschmann et al., 2008). 1.6.3. Fish - seaweed - abalone integrated culture system The by-production of high quality seaweeds in the biofilters calls for the coculture of other high-valued marine macroalgivores, such as abalone. Already in the 1970s, Tenore (1976) published his pioneer study on the seaweed-abalone integrated culture (Fig. 13). This was followed by the integrated abalone - Ulva and Gracilaria systems developed in Israel (Shpigel et al., 1993, 1996a, b, 1999 ; Shpigel and Neori, 1996; Neori et al., 1998, 2000), of abalone and green algae in Japan (Sakai and Hirata, 2000), and of Palmaria – abalone in the USA (Evans and Langdon, 2000). All those studies reported that abalone efficiently grow-out when fed with biofilter produced macroalgae, probably related to its high protein content due to its production under 44 Introduction the high nitrogen culture conditions of the IMTA system (Neori et al., 1998; Shpigel et al., 1999; Boarder and Shigel, 2001; Naidoo et al., 2006; Robertson-Andersson et al., 2011). Figure 13. Fish-seaweed-abalone integrated culture system. 45 Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands OBJECTIVES Objectives 2. OBJECTIVES The overall aim of this thesis was “to develop grow-out technology for the local abalone species, Haliotis tuberculata coccinea“, considered a new candidate for Canarian aquaculture diversification. More specifically, algal and artificial diets suitability, growth and survival, as well as various factors affecting the on-growing success, were addressed in this thesis. Besides, this general objective was undertaken through an environmental approach so as to maximize the sustainability of the abalone production methods to be developed. For that purpose, four different studies were undertaken: Study I. Suitability of three red macroalgae as a feed for the abalone Haliotis tuberculata coccinea Reeve. This study aims to evaluate the suitability of three red macroalgae species from genus reported to induce growth in other abalone species, as a potential feed for the grow-out culture of juvenile Canarian abalone. Since the biomass of locally harvested macroalgae is insufficient to sustain the commercial production of abalone, experimental macroalgae were reared in an Integrated Multi-Trophic Culture System (IMTA). This objective was addressed to identify suitable algal diets to promote high growth and survival for this abalone species, and to investigate the dietary value of the biofilter produced seaweeds. A two month feeding trial was conducted to achieve this objective. Study II. Comparative performances of juvenile abalone (Haliotis tuberculata coccinea Reeve) fed enriched vs non-enriched macroalgae: Effect on growth and body composition. This study aims to evaluate the effect of several non-enriched versus farmgrown green and red monoespecific and mixed macroalgae diets on the growth of juvenile Canarian abalone. This objective was addressed in order to, not only find a suitable feed to grow the animals, but to further evaluate the advantages of coculturing macroalgae alongside H. tuberculata coccinea in integrated aquaculture 46 Objectives systems, that will allow the sustainability of the future abalone production while improving abalone growth performance. A three month feeding trial was conducted to achieve this objective. Study III. First development of various vegetable-based diets and their suitability for abalone Haliotis tuberculata coccinea Reeve. This study focused on the development and evaluation of several vegetalbased formulated feeds for the culture of abalone Haliotis tuberculata coccinea, with special emphasis on the determination of the suitability, as potential feed ingredients, of the four species of macroalgae most commonly involved in European abalone production. This objective was addressed in order to obtain fishmeal-free formulated diets, adapted to abalone nutritional requirements that could provide the industry with a readily available and more stable nutritional feed, while validating the environmental and social sustainability of the farming operations. A six month experiment was performed to achieve this objective. Study IV. Grow out culture of abalone Haliotis tuberculata coccinea Reeve, fed land-based IMTA produced macroalgae, in a combined fish/abalone offshore mariculture system: effect of stocking density. This study aims to describe the effect of stocking density, one of the key important factors for growing abalone to market size, on growth and survival of two different size groups of Canarian abalone. This objective was addressed in order to identify certain culture conditions that improve abalone growth performance and evaluate the potential of sea-based abalone farming during the final grow-out culture phase. A six month offshore feeding experiment was performed to achieve this objective. 47 Material and Methods Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands MATERIALS AND METHODS Material and Methods 3. MATERIALS AND METHODS 3.1. LOCATION AND GENERAL FACILITIES The studies were carried out at the culture facilities of the Aquaculture Research Group (GIA- ULPGC) in the Canarian Institute of Marine Sciences (ICCM), located in Melenara, Telde, province of Las Palmas (Canary Islands, Spain), with a geographic situation of 27º59’31’’N and 15º22’31’’W (Fig. 14). Figure 14. Top view of the Canary Islands and location of the GIA marine culture facilities. Abalone culture facilities consist in: a broodstock conditioning (Fig. 15-A), spawning induction and larval rearing area (Fig. 15-B); area for post-larvae and diatoms production (Fig. 15-C, D); grow out (Fig. 15-E) and feeding trial area (Fig. 15-F); and biofiltering units recycling fish tanks effluents for macroalgae production (Fig. 15-G, H). Both, ICCM abalone facilities and studies have been financed and developed in the frame of several Canarian (PI 2007/034), Spanish (JACUMAR Oreja de mar, 2005/07; JACUMAR Multitrófico, TR 2003/08) and European projects (SUDEVAB: FP 7-SME-2007-1/BSG-SME). 48 Material and Methods Figure 15. Brood-stock conditioning (A); larval rearing facilities (B); abalone nursery (C); diatoms production zone (D); grow out zone (E); feeding trials area (F) and outdoor macroalgae culture systems (G, H). 49 B Material and Methods 3.2. ABALONE PRODUCTION B 3.2.1. Brood-stock conditioning and selection Captive Haliotis tuberculata coccinea brood-stock were kept under natural photoperiod conditions and ambient seawater temperature, in shaded 60-l tanks, in the flow through broodstock conditioning system (Fig. 15-A). Inside each of the 24 broodstock holding tanks, 10-15 animals were kept under PVC tiles that provide them shelter, and were separated from debris, on the tank’s bottom, through a perforated divider. Males and females, differentiated by the colour of their gonads (creamy white for the males and dark grey to violet in the females) (Fig. 16), were maintained in separate holding tanks. Brood-stock was fed twice a week with a mix diet of Ulva rigida and Gracilaria cornea produced in the biofiltering units. Abalone selected to be induced to spawn were the ones showing mature gonads (GSI) in stage 3 or between stage 2 and 3 (Ebert and Houk, 1984). B Figure 16. Female (A) and male (B) H. tuberculata coccinea in stage 2-3 of the gonad index. 3.2.2. Spawning induction Mature males and females, with a male to female ratio of 1:2, were induced to spawn, separately by sex, into spawning containers filled with 1-µm cartridge filtered and UV sterilized seawater. Gametes from different sex were obtained separately in order to control the ratio of gametes employed during fertilization (Fig. 17). During 50 Material and Methods spawning induction the containers were left in the dark. Two spawning induction methods were employed to carry out these studies, the hydrogen peroxide one (Morse et al., 1977) and the ultraviolet spawning induction method (Kikuchi and Uki, 1974). Figure 17. Gametes expulsion from females (A) and males (B). B 3.2.3. Fertilization Once the gametes were obtained, the released oocytes, which are negatively buoyant, were siphoned fromA the spawning containers and passed through a 300 µm mesh screen to retain faeces or other debris. The oocytes were collected in 10-l containers and fertilized with a final sperm concentration of 105/ml during 30 minutes. After that, eggs were rinsed with fresh seawater to remove excess sperm and fertilization rates were determined by recording the proportion of eggs showing dividing cells 1 h after fertilization under the dissecting microscope (Mod. SL 260004, Optech, Duisburg, Germany) (Fig. 18). Fertilized eggs, were transferred to the larval rearing tanks (Fig 15-B). Figure 18. Eggs are rinse to remove excess sperm. 51 B Material and Methods 3.2.4. Larval culture Larval stages begins at the trocophore stage and is completed with the formation of the fourth tubule on the cephalic tentacles, although larvae are considered ready for settlement when the third tubule appears and larvae start to explore the surface (Fig. 19). Larvae were reared under natural photoperiod and ambient temperature, in a flow through system in 100-l larval tanks at a density of 10-20 larvae/ml. Water supplied was filtered through 1 µm cartridge and sterilized bay UV irradiation. The oligotrophic larvae remained unfed until they are transferred for settlement to the nursery tanks (Fig. 15-C). Settlement competency was observed between 62-72 hours post-fertilization depending on the larval rearing temperature recorded throughout the different abalone batches required for the feeding trials. Figure 19. Hatching out trochophore larvae equipped with cilia (A), third tubule appearance on cephalic tentacles (B) (Courtois de ViÇose et al., 2007). 3.2.5. Larval settlement Settlement induction of H. tuberculata coccinea was performed using vertical settlement plates located within baskets inside the 2500-l settlement tanks (Fig. 20). 52 Material and Methods Figure 20. Vertical settlement plates. To induce the larval settlement, various substrates were used to colonize the settlement plates: crustose coralline algae, benthic diatoms biofilms and spores of the green algae Ulvella lens. 3.2.6. Post-larval and juvenile culture Abalone post-larvae were fed four species of diatoms, Navicula incerta, Proschkinia sp., Nitzschia sp. and Amphora sp. (Fig. 21). Diatoms were cultured in 40 l horizontally laid algal bags, at initial inoculums of 105 cells/ ml and grown for 5 days in f/2 medium supplemented with silicate (1 mgl-1) (Guillard, 1975) at ambient temperature and under continuous light of 62±8µmol photons m-2 s-1. Figure 21. Diatoms species fed to the abalone post- larvae: Proschkinia sp. (A), Navicula incerta (B), Amphora sp. (C) and Nitzschia sp. (D) (Courtois de ViÇose et al., 2012b). 53 Material and Methods Animals maintained this diets for 4-5 months, when juvenile abalone were gradually switched to the green macroalgae Ulva rigida (Study I); Ulva rigida, Hypnea spinella and Gracilaria cornea (Study II); or Ulva rigida and Gracilaria cornea (Study III and IV), prior to the beginning of the feeding trials. 3.3. ALGAL CULTURE B 3.3.1. Macroalge species Four fresh macroalgae species were used throughout the different abalone feeding trials, the Rodophyta species: Gracilaria cornea J. Agardh, Hypnea spinella (C. Agardh) Kützing and Hypnea musciformis (Wulfen) J.V. Lamoroux; and the Chlorophyta Ulva rigida J. Agardh. Besides, the Rodophyta Palmaria palmata (L.) Weber and Mohr, the Phaeophyta Laminaria digitata (Hudson) Lamoroux and the Chlorophyta Ulva lactuca Linnaeus, were tested as ingredients in artificial diets (Study III). Macroalgae species were chosen according to their suitability to be included in an IMTA as biofilters (Neori et al., 2004) as well as to be used as food for abalone (Boarder and Shigel, 2001; Naidoo et al., 2006; Watson and Dring, 2011). The most important characteristics of this species are shown in the following Tables 10-16. 54 Material and Methods Tables 10-16. Summary of experimental macroalgae characteristics Hypnea spinella (C. Agardh) Kützing, 1847 Taxonomic classification Kingdom Plantae Phylum Rhodophyta Class Florideophyceae Order Gigartinales Family Cystocloniaceae Genus Hypnea Morphological characteristics Plant lax, from 3-30 cm long (most less than 15 cm) in tangled, bushy clumps. Axes extend through entire length, but main branches absent, dichotomous branching throughout. Axils rounded, with side branches growing almost horizontally for 1-5 mm before bending up or curling downward. Commonly yellowish but deep red when shaded. Habitat Lower intertidal and sub-littoral rocks. Reproduction Asexual reproduction predominates over sexual reproduction. Geographical distribution Widely distributed in temperate (especially warm) seas. Uses and compounds Edible species 55 Material and Methods Hypnea musciformis (Wulfen) J.V. Lamoroux, 1853 Taxnomic classification Kingdom Plantae Phylum Rhodophyta Class Florideophyceae Order Gigartinales Family Cystocloniaceae Genus Hypnea Morphological characteristics Clumps or masses of loosely intertwined, cylindrical branches, 10 - 20 cm tall, 0.5 - 1.0 cm diameter, that become progressively more slender towards tips. Firm, cartilaginous, highly branched. Branching is variable and irregular, often tendril-like and twisted around axes of other algae. The ends of many axes and branches are flattened with broad hooks. Holdfasts are small, inconspicuous, or lacking. Usually red, but can be yellowish brown in high light environments or nutrient poor waters. Habitat Common on calm intertidal and shallow subtidal reef flats, tidepools and on rocky intertidal benches. Frequently epiphytic on reef algae such as Sargassum echinocarpum and Acanthophora spicifera. In bloom stage, may be found free-floating. Reproduction Asexual reproduction predominates over sexual reproduction. There are more vegetative than reproductive thalli under environmentally stressful conditions for growth. Able to propagate vegetatively in all size classes, with the greatest success observed in the smallest fragments. Geographical distribution Worldwide: Mediterranean, Philippines, Indian Ocean, Caribbean to Uses and compounds Biological, medical and pharmaceutical activity (antihelminthic). Uruguay. Source of kappa carrageenan. 56 Material and Methods Gracilaria cornea J. Agardh, 1852 Taxonomic classification Kingdom Plantae Phylum Rhodophyta Class Florideophyceae Order Gracilariales Family Gracilariaceae Genus Gracilaria Morphological characteristics Thallus erect, solitary or caespitose, cylindrical throughout, arising from a small discoid holdfast. Purplish brown to dark brown, sometimes greenish or yellowish; branches irregularly alternated. Habitat Can be found in protected, quiescent bays, as well as in high energy coastline habitats. Grows free or attached to rocks or other substrata. Reproduction Sporophytes and gametophytes occur alternately in its life cycle. Geographical distribution Mainly warm-water specie. South America: Mexico, Brazil, Uses and compounds Considerable economic importance as a source of food for both Venezuela; Africa: Tanzania. humans and shellfish (abalone), playing a major role in the production of agar and other hydrocolloids. 57 Material and Methods Palmaria palmata, (L.) Weber & Mohr, 1805 Taxonomic classification Kingdom Plantae Phylum Rhodophyta Class Florideophyceae Order Palmariales Family Palmariaceae Genus Palmaria Morphological characteristics Dulse grows attached by its discoid holdfast to rocks. It has a short stipe, the fronds are variable and vary in colour from deep-rose to reddish-purple and are rather leathery in texture. The flat foliose blade gradually expands and divides into broad segments ranging in size to 50 cm long and 3 cm–8 cm in width which can bear flat wedge-shaped proliferations from the edge. Habitat Easily found from mid-tide of the intertidal zone to depths of 20 m or more in sheltered and exposed shores. Reproduction Tetraspores occur in scattered reproductive tissue (sori) on the mature blade, which is diploid. Spermatial sori occur scattered over most of the frond of the haploid male plant. The female gametophyte is very small stunted or encrusted, the carpogonia apparently occurring as single cells in the young plants. The male plants are blade-like and produce spermatia which fertilize the carpogonia of the female crust. After fertilization the diploid plant overgrows the female plant and develops into the tetrasporangial diploid phase attached to the female gametophyte. The adult foliose tetrasporophyte produces tetraspores meiotically. It is therefore usually the diploid tetrasporic phase or the male plant which is to be found on the shore. Geographical distribution In Atlantic Europe from Portugal to the Balitc coasts, coasts of Iceland and the Faroe Islands. Shores of Arctic Russia, Arctic Canada, Atlantic Canada, Alaska, Japan and Korea . Uses and compounds Food: additive, ground whole tissue; cosmetics; wellness and folk medicine; Biological, medical and pharmacological activity (antihelminthic). Animal production (feed). Mineral supplement. 58 Material and Methods Laminaria digitata (Hudson) Lamoroux, 1813 Taxonomic classification Kingdom Plantae Phylum Heterokontophyta Class Phaeophyceae Order Laminariales Family Laminariaceae Genus Laminaria Morphological characteristics Tough, leathery, dark brown seaweed that grows to two or three metres. The holdfast which anchors it to the rock is conical and has a number of spreading root-like protrusions rhizoids. The stipe or stalk is flexible and oval in cross section. The blade is large and shaped like the palm of a hand with a number of more or less regular finger-like segments. Habitat Is found mostly on exposed sites on shores in the lower littoral where it may form extensive meadows. It has a high growth rate (5.5% per day), and a carrying capacity of about 40 kg ww/m2. It may reach lengths of about 4 m. Reproduction Can be fertile throughout the year but highest in spring – April, May onwards into summer, and lowest in Winter. Reproductive tissue (sorus) appears as raised and darkened patches found on the blades. Mature sorus, ready to release zoospores, is well raised from the blade and several shades darker brown. Geographical distribution North west Atlantic from Greenland south to Cape Cod and in the north east Atlantic from northern Russia and Iceland south to France. It is common round the coasts of the British Isles except for much of the east coast of England. Uses and compounds Fertiliser; extraction of alginic acid; cosmetic; food industry and human and animal nutrition. 59 Material and Methods Ulva rigida J. Agardh, 1823 Taxonomic classification Kingdom Plantae Phylum Chlorophyta Class Ulvophyceae Order Ulvales Family Ulvaceae Genus Ulva Species rigida Morphological characteristics Bright green to dark green algae, gold at margins when reproductive (may be colorless when stressed). Thin thallus, sheet-like, variable in shape, up to 10-cm long. Blades ruffled or flat, with small microscopic teeth on the margins. The blades are two cells thick; the two layers easily separate into single cell layers. Holdfasts consisting of small, tough rhizoids. Habitat Commonly found on intertidal rocks, in tidepools, and on reef flats. Often abundant in areas of fresh water runoff high in nutrients such as near the mouths of streams and run-off pipes. Also found in areas where nutrients are high, wave forces low and herbivory reduced; it is tolerant to stressful conditions, and its presence often indicates freshwater input or pollution. Reproduction General for group: asexual reproduction may be by fission (splitting), fragmentation or by zoospores (motile spores). Sexual reproduction may be isogamous (gametes both motile and same size); anisogamous (both motile and different sizesfemale bigger) or oogamous (female non-motile and egglike; male motile) Geographical distribution Worldwide distribution Uses and compounds Human and animal nutrition 60 Material and Methods Ulva lactuca Linneaus, 1753 Taxonomic classification Kingdom Plantae Phylum Chlorophyta Class Ulvophyceae Order Ulvales Family Ulvaceae Genus Ulva Species lactuca Morphological characteristics Thin flat alga growing from a discoid holdfast. The margin is somewhat ruffled and often torn. It may reach 18 centimetres (7.1 in) or more in length, though generally much less, and up to 30 centimetres (12 in) across. The membrane is two cells thick, soft and translucent, and grows attached, without astipe, to rocks or other algae by a small disc-shaped holdfast. Green to dark green in color, this species in the Chlorophyta is formed of two layers of cells irregularly arranged, as seen in cross section. The chloroplast is cup-shaped with 1 to 3 pyrenoids. Habitat It is particularly prolific in areas where nutrients are abundant Reproduction The sporangial and gametangial thalli are morphologically alike. The diploid adult plant produces haploid zoospores by meiosis, these settle and grow to form haploid male and female plants similar to the diploid plants. When these haploid plants release gametes they unite to produce the zygote which germinates, and grows to produce the diploid plant. Geographical distribution Worldwide distribution Uses and compounds Crop and biofilter of fishpond effluents 61 Material and Methods 3.3.2. Culture system: Integrated Multi-Trophic culture System (IMTA) Except with the non enriched treatments (Study II), all experimental fresh macroalgae were grown in a flow-through fish-seaweed integrated culture system. In Studies I and II, algae were cultured at the Centro de Biotecnología Marina (CBM-ULPGC, Gran Canaria, Spain) IMTA. Effluents were channelled from the fishponds (Fig. 22-A) to a 11 m3 sedimentation pond for the removal of suspended particles and then, pumped at a flow rate of 10 m3 h-1 to the seaweed tanks located in a greenhouse, where maximum irradiance was approximately of 1600 µmol photons m-2 s-1. Semi-circular fiberglass tanks with a surface of 1.8 m2 and a volume of 0.75 m3 were provided aeration through a bottom-central linear pipeline and were employed for the cultivation of macroalgae (Fig. 22- B). In Study I, algal stocking density for G. cornea, H. spinella and H. musciformis was 6 g l-1, whereas in Study II, algal stocking density were 1, 3 and 4 g l-1 for U. rigida, H. spinella and G. cornea, respectively. Water exchange rate in the seaweed culture tanks was 4 vol day-1 and TAN (total ammonia nitrogen) inflow into the biofilter ranged between 10 and 400 µM. Figure 22. Fishponds and semi-circular tanks for the cultivation of macroalgae (CBMULPGC). Regarding Studies III and IV, U. rigida and G. cornea were grown in the Grupo de Investigación en Acuicultura (GIA, Canary Islands, Spain) aquaculture research facility, in a flow-through integrated system collecting wastewater from fish and abalone ponds in a macroalgal biofilter (Fig. 23). Effluents were channelled from 62 Material and Methods the land-based facility tanks to a 11 m3 sedimentation pond for the removal of suspended particles and then, pumped at a flow rate of 10 m3 h-1 to the seaweed tanks located outdoor, where maximum irradiance was close to 1600 µmol photons m-2 s-1. Circular plastic tanks with a volume of 1.5 m3 and aeration supplied by a bottomcircular pipeline were used for the cultivation of macroalgae. Algal stocking densities were 1 and 4 g l-1 for U. rigida and G. cornea, respectively. Water exchange rate in the seaweed tanks was 12 vol day-1 and total ammonia nitrogen inflow into the biofilter ranged between 10 and 30 µmoles. Figure 23. Diagram of the IMTA (ICCM-ULPGC). Each algal type was grown in triplicates with fortnightly seaweed harvests. Prior to feed the experimental animals, freshly collected algae were blotted dry (AEG SV 4528, Germany; Fig. 24) and accurately weighed (KERN EW 1500-2M, Balingen, Germany). Figure 24. Biofilter produced macroalgae and drying equipment. 63 Material and Methods 3.4. ARTIFICIAL DIETS In order to test the nutritional value of different algae as ingredients for sustainable abalone formulated feeds, three vegetal- diets were designed and tested for six month in a land-based system (Study III). Processing of seaweed meals, diet formulation and preparation are detailed in the chapters corresponding to this experiment, only a general description of the methodology and materials used are included in this section. 3.4.1. Diet formulation Prior to diets preparation, seaweeds meals (U. lactuca (U), G. cornea (G), L. digitata (L) and P. palmata (P)), and the rest of vegetable ingredients were analyzed for proximate composition in GIA laboratories. Macroalgae ingredients were also analyzed for aminoacid profile in LDG (Laboratorio de Diagnóstico General, Barcelona, España). Based on the results, three diets (UG, UGL and UGP) were formulated to contain 35% protein, 4% lipid content and around of 4kcal g-1total energy, these levels being reported as optimal for abalone growth. Vitamin and mineral mixture were used as recommended by Uki et al. (1885a). All the experimental diets were supplemented with synthetic L- methionine and lysine essential amino acids in order to match the amino acid profile of abalone muscle which was used as a guide to formulate the amino acid composition of the practical diets. Sodium alginate was used as binder. 3.4.2. Diet preparation Experimental diets were prepared by mixing pre-weighed finely ground ingredients including vitamins and minerals to produce a homogeneous mixture. The diets were processed through a pasta machine (Parmigiana, RV3, Italia) into 2 mm thick strips from which 0.5 x 0.5 cm pieces were cut. The pellets obtained were dried at 38ºC for 24 h, packed and stored at 4ºC until use (Fig. 25 and 26). Samples for biochemical composition were taken and stored at -80ºC. 64 Material and Methods Figure 25. Details of diets preparation: ingredients, processing and drying procedure. 3.4.3. Diet water stability Final products were tested for their stability in seawater according to the method of Hastings et al. (1971). Diet stability was determined at 17-h period (16:009:00h). Percent water stability was computed as: % 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐵𝐵 − 𝐴𝐴) (%𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 𝑥𝑥 100 𝐴𝐴 (%𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) where B is the final weight of feed and A is the initial weight of feed 65 Material and Methods Figure 26. Final product: vegetable-based experimental diets. 3.5. EXPERIMENTAL DESIGN Detailed experimental designs and samplings followed protocols are described in the chapters corresponding to each experiment. Only, a general overview of the methodology and materials used in the four feeding trials are included in this section. To select the experimental animals, individuals were blot dried, weighed to the nearest 0.1 mg (total wet body weight: TWBW) (KERN EW 1500-2M, Belingen, Germany) and measured with manual caliper with 0.1 mm accuracy (total shell length: SL) (Fig. 27a). Abalones were then distributed among replicates so that there were no significant differences in SL or TWBW, and assigned to the specific experimental units or cages (Fig. 27b). Figura 27a. Selection of experimental animals: Abalone sampling. 66 Material and Methods Figure 27b. Abalone distribution among experimental triplicates. Each fresh algal diet was weekly supplied to the experimental abalones (Studies I-IV) (Fig. 28-A, B, C), whereas the artificial ones (Study III), were offered once daily from Monday to Saturday (Fig. 28-D). All of them were tested in triplicates and supplied in excess to guarantee ad libitum feeding throughout the experiments. Figure 28. Feeding experimental abalones with macroalgae: Studies I and II (A), Study III (B) and Study IV (C); or with artificial diets: Study IV (D). 67 Material and Methods In each trial, to calculate the feed intake, experimental units that contained food but no abalone were used as controls for changes in algal and/or compound feeds weight. In the land based trials, abalones were subjected to a natural photoperiod of approximately 12 h L / 12 h D. To assess abalone growth, both in length and weight, SL and TFBW of 100% of the population in each experimental unit were monthly recorded in all the experiments. Cages were cleaned on a monthly basis to remove fouling organisms. 3.5.1. Land-based experimental set-up In the first set of feeding studies with 11-12 mm juvenile abalones, the experimental units consisted of a 1 l lidded (plastic net of 2 mm mesh) PVC plastic container (20 x 14 cm), located in a 100 l cylindrical tank filled with flowing 50 µm cartridge filtered seawater provided with constant aeration(Fig. 29) . Water flowed in an approximately 2.4 l/min. Figure 29. Experimental set-up for the culture of juvenile abalones (Studies I and II). In Study III, the experimental unit consisted of a plastic bucket (15 x 16cm), hung in a 100-l rectangular tank (100 x 40 x 25cm) filled with 50 µm filtered seawater provide with constant aeration (Fig. 30-A, B). Water flowed in an approximately 2.8 l/min. Two PVC shelters were provided in each container. 68 Material and Methods Figure 30. Rearing system employed for the culture of 30 - 45 mm abalones (Study III). 3.5.2. Sea-based grow-out system The sea-based grow-out system was set up in a commercial open-sea cages fish farm (CANEXMAR, S.L., Telde, Gran Canaria Island, Spain) (27º 57´ 31.7´´N, 15º 22´ 22.5´´W) (Fig. 31). Figure 31. CANEXMAR cages and location. Specially designed abalone sea cages (ORTACS, Jersey Sea Farms, St. Martins, Ireland), were composed of a 33 l lidded black PVC meshed container, with total underside surface area of 0.4 m2 and weighing 1.5 kg. Six black plastic discs (12.0 cm Ø) were placed inside as shelters (Fig. 32). The total surface area for attachment was 0.5 m2. The abalone cages were suspended from fish cages (25 m Ø) mooring ropes and placed, approximately, 10 m below the water surface (Fig. 33-35). 69 Material and Methods Figure 32. Details of the experimental abalone cages and shelters. Figure 33. Scheme of the sea-based experimental set-up. A: aerial view of the fish farm installation. B: detail of the ORTACS set-up. 70 Material and Methods Figure. 34. ORTACS installation. Figure 35. Underwater experimental devices next to fish cages. 71 Material and Methods 3.6. BIOLOGICAL PARAMETERS EVALUATION 3.6.1. Shell growth rate Shell growth rate per day (μm d-1) was calculated for all treatments at the end of the trials using the following equation: 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = (𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑺𝑺𝑺𝑺𝑺𝑺) 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒕𝒕 where SL1 is the initial mean length of animals; SL2 is the animal final mean length at time t (days of culture). 3.6.2. Specific growth rate (SGR) This parameter indicates the increase in weight gain in relation to the number of days of feeding period and it is expressed in percentage values: SGR (% 𝒅𝒅−𝟏𝟏 ) = (𝑳𝑳𝑳𝑳𝑾𝑾𝟐𝟐 −𝑳𝑳𝑳𝑳𝑾𝑾𝟏𝟏 ) 𝒕𝒕 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 where W2 is the weight at time t (days of culture) and W1 is the initial weight. 3.6.3. Weight gain (WG) In order to observe the potential differences in efficacy among the different treatments, relative growth was evaluated. Weight gain was calculated as the relation between the increases in biomass (g) compared to the initial weight (g). This parameter could be expressed in absolute values as well as in percentage and it is corrected in relation to the individual abalone weight through the following equation: 𝑾𝑾𝑾𝑾 (%) = (𝒘𝒘𝟐𝟐 − 𝒘𝒘𝟏𝟏 ) 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 𝒘𝒘𝟏𝟏 72 Material and Methods 3.6.4. Feed conversion ratio (FCR) This parameter was evaluated in order to determine the efficiency of the different feeding regimes to promote the abalone growth in terms of ingested food. It is defined as the relation between the ingested food (g) and the generated biomass (g). 𝑭𝑭𝑭𝑭𝑭𝑭 = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝒈𝒈) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 (𝒈𝒈) 3.6.5. Protein efficiency ratio (PER) This parameter is based on the weight gain of the abalones in relation to their protein intake during the trial period. It is calculated as follows: 𝑷𝑷𝑷𝑷𝑷𝑷 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒘𝒘𝒘𝒘𝒘𝒘 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘(𝒈𝒈) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝒈𝒈) 3.6.6. Feed intake (FI) In Studies I, II and IV, where just macroalgae diets were tested, to determine feed intake, freshly collected algae to be fed to the abalone were blotted dry and accurately weighed as well as the remaining algae at the end of the week. The weight of unconsumed food was deducted from the total weekly ration. Besides, weight of uneaten algae was corrected by calculating the natural weight variations of the algae in the control units (without abalones) during the same feeding period. In Study III, artificial feeds were offered once daily (ad libitum) in the evening from Monday to Saturday. Any remaining diet was collected every day at 9:00 h except Sunday, by manually siphoning uneaten feed from tanks. Consumption was estimated on a dry weight basis by relating the dry weight of the uneaten food to the known dry weight of the feed provided (Fig. 36). Consumption data were corrected for dry matter weight loss attributable to leaching, by allowing the diets to leach over a 17-h period (16:00-9:00h) using a “control” rearing unit without abalone, and drying the remaining diet until constant weight. 73 Material and Methods In all the experiments, average daily intake by individual abalone was calculated by dividing the food eaten each week by the feeding days and the number of abalones in each experimental unit. Figure 36. Drying the diets leftover. 3.6.7. Condition index At the end of experiments II and III, six and ten abalones respectively were collected from each experimental unit, and the soft tissue (SB) was shucked from the shell (S). Shell and meat were then weighed separately in order to calculate the condition index as an indicator of the abalone nutritional status (Fig 37). 𝑪𝑪𝑪𝑪 = 𝑺𝑺𝑺𝑺 𝑺𝑺 Figure 37. Condition index evaluation: abalone dissection and weighing. 74 Material and Methods 3.6.8. Survival Dead abalones were daily recorded and, at the end of the trials, survival was estimated taking into account daily mortality and final alive animals. 3.7. BIOCHEMICAL ANALYSIS During the course of the different experiences, triplicate samples of each feeding regimen (both fresh algae and artificial diets), artificial diets ingredients and abalone (visceral mass and foot muscle) were collected to be analyzed for proximate composition. Collection methods of the samples differed according to their nature. In the case of fresh macroalgae, samples were cleaned, washed with fresh and distilled water to remove salts and epizoos, frozen in -80ºC freezer and freeze- dried. The dried samples were finely ground using an electric fine mill (sieve size <0.1 mm). Once collected, all samples were frozen (-80 ºC) in hermetic bags under nitrogen atmosphere until analysis. All samples were homogenized with mortar and pestle before being weighed for further analysis. Determination of dry matter, ash, protein and lipid content as well as fatty acids were performed. The biochemical analyses were made in the laboratory of Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA; ULPGC). 3.7.1. Dry matter content It was determined according to the Official methodology of the American Chemical Analysis Association (AOAC, 2005). Dry matter content was determined after drying the fresh known sample quantity (Pi) in an oven at 110ºC until constant weight was obtained (Pf). Before being weighted, the samples were submitted to desiccation for 30 min until reaching ambient temperature. The dry matter content was calculated as follows: % 𝑫𝑫𝑫𝑫 = (𝑷𝑷𝒊𝒊 − 𝑷𝑷𝒇𝒇) 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 𝑷𝑷𝒊𝒊 75 Material and Methods 3.7.2. Ash content The ash content was determined gravimetrically after the incineration of a well-known amount of sample (1-2 g) (Pi) in a Muffla oven, at 600ºC for 24 h. The remaining amount of ashes was recorded and weighed until reaching constant weight (Pf) according to the established recommendation (2005). Final ash content of the sample was calculated according to the following formula: % 𝑨𝑨𝑨𝑨𝑨𝑨 = 𝑷𝑷𝑷𝑷 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 𝑷𝑷𝑷𝑷 3.7.3. Protein content The protein content, calculated from total content of the samples, was determined by the Kjeldahl method. According to AOAC (2005), the technique consists in the sulphuric acid (H2SO4) sample digestion at 420ºC in presence of a copper catalyst for one hour. The end result is an ammonium sulphate solution ((NH4)2SO4). Excess base (NaOH) is added to the digestion product to convert NH4 to NH3 which is recovered by distilling the reaction product. In the distillation unit (Mod. Foss Tecator, 1002, Höganäs, Sweden) direct titration is performed, using boric acid (H3BO3) as the receiving solution, to quantify the amount of ammonia in the receiving solution. Titration is performed with HCl at 0.1.M. Analysis of a blank was run in parallel to the samples analysis. In order to calculate the protein content, the following expression was applied: % Protein = (𝑽𝑽𝒔𝒔 −𝑽𝑽𝒃𝒃 ) 𝒙𝒙 𝑵𝑵 𝒙𝒙 𝑷𝑷𝒎𝒎 Where 𝑾𝑾 𝒙𝒙 𝑭𝑭 Vs = ml acid titranl (HCl) for the blank Vb = ml HCl for the sample N = Normality of the acid titrant Pm = Nitrogen molecular weight (14.007) F = Empirical factor to covert the percent nitrogen in a sample to percent protein, which has a value of 6.25 W = Weight of sample in milligrams 76 Material and Methods 3.7.4. Total lipid content Total lipids were extracted according to Folch et al. (1957). The methodology commenced taking a sample amount between 50-200 mg and homogenise it in an Ultra Turrax (IKA-Werke, T25 BASIC, Staufen, Germany) at 11,000 rpm for 5min in a solution of chloroform-methanol (2:1) plus 0.01% of the antioxidant BHT. The resulting solution was filtered at reduced pressure through glass wool and adding KCl at 0.88%, to increase the water phase polarity. After decantation and centrifugation at low speed (2000 rpm) for 5min, the watery and organic phases were separated. Once watery phase was eliminated, N2 current was used to evaporate until completed dryness. Finally total lipid content was gravimetrically determined. 3.7.5. Fatty acids content Fatty acids in the lipid extracts were trans–esterified to methyl esters (FAMEs) with 1% sulphuric acid: methanol complex (Christie, 1982) and preserved in N2 atmosphere. The mixture was left in shaking incubation for 16 hours at 50ºC then cooled. Distilled water together with hexane diethyl ether 1:1 and BHT at 0.01% were then added. The purified FAMEs samples were evaporated until complete dryness with N2 and hence weighted. Finally the FAMEs were extracted into hexane and stored at - 80ºC. Fatty acids were analyzed in a Thermo Finnigan- GC Focus gas chromatograph (Mod. Shimadzu GC-14A; Analytical instrument division, Kyoto, Japan) equipped with a flame ionization detector (260ºC) and a Supelcowax-10-fused silica capillary column (Length: 28 m; 0.32 mm x 0.25 internal diameter; Supelco, Bellefonte, USA), using helium as the carrier gas under the following gas pressures: He 1 kg cm-2, H2 0.5 kg cm-2, N2 1 kg cm-2, air 0.5 kg cm-2. The conditions were the following: injector temperature 180ºC for the first 10 min, increasing afterwards to 215ºC at a rate of 2.5ºC min -1 and maintained at 215ºC for 15 min. Fatty acids were identified by reference to a well-characterized fish oil (EPA 28, Nippai, Ltd Tokyo, Japan). 77 Material and Methods 3.8. STATISTICAL ANALYSIS All statistical analyses were applied using the Statgraphics Plus 5.1 (MANUGISTIES, Rockville, Maryland, USA) software. The data of each experiment, proximate composition, as well as growth performance, survival or condition indexes were statistically compared by means of T-Student (Sokal and Rolf, 1995) when two treatments were established or with analysis of variance (ANOVAs) if the number of treatments were greater. As general criteria 5% confidence level was applied. If statistically significant differences with the ANOVA were detected, the differences among means were detected with Tuckey HSD. Assumption of normality and homogeneity of variance were assessed with standardized Skewness and Kurtosis and Barlett´s test. When data did not follow a normal distribution, a non-parametric oneway ANOVA on ranks of Kruskal-Wallis was applied (Zar, 1984). 78 Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands STUDY I: Suitability of Three Red Macroalgae as a Feed for the Abalone Haliotis tuberculata coccinea Reeve. Aquaculture 248 (2005) 75-82 Study I Aquaculture 248 (2005) 75-82 Suitability of three red macroalgae as a feed for the abalone Haliotis tuberculata coccinea Reeve M.P. Vieraa, *, J.L. Gómez-Pinchettib, G. Courtois de Vicosea, A. Bilbaoa, S. Suárezb, R.J. Harouna, M.S. Izquierdoa a Grupo de Investigación en Acuicultura (GIA), ULPGC and ICCM, P.O. Boz 56. 35200, Telde, Las Palmas, Gran Canaria, Canary Islands, Spain b Grupo de Algología Aplicada. Centro de Biotecnología Marina, Universidad de Las Palmas de Gran Canaria. Muelle de Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain Abstract A 60-days feeding trial was conducted to assess the suitability of three red algae, Hypnea spinella, Hypnea musciformis and Gracilaria cornea, as potential feed for the abalone, Haliotis tuberculata coccinea R. Seaweeds were reared in a biofiltration unit with fishpond waste water effluents. The three algal species were found to contain high protein contents which would be related to their production under the high nitrogen conditions of the biofilter system. Protein and carbohydrates contents were highest in H. musciformis and lowest in G. cornea. Survival rates of juvenile abalone were very good, regardless of the algae fed. Feed intake of H. spinella was highest, followed by H. musciformis. Growth rate of abalone were in range obtained under commercial conditions, final shell length and weight being significantly highest in animals fed H. spinella and lowest in those fed G. cornea. Feeding G. cornea lead to the lowest growth performance due to the lowest fee intake, whereas feed conversion ratios were significantly highest for H. musciformis and protein efficiency ratios higher for both H. spinella and G. cornea. This study suggested the good potential of any of three red seaweeds tested- successfully produced by the biofilter system, their nutritional composition being similar to other macroalgae used as feed for abalone and matching the abalone protein and lipid requirements- hence promoting growth and survival. Nevertheless, the biofilter produced macroalgae H. spinella showed the highest dietary value for juvenile of H. tuberculata coccinea. Keywords: Haliotis tuberculata coccinea; Macroalgae; Seaweed biofilter; Polyculture; Feeding and nutrition-molluscs * Corresponding autor. Tel + 34 928 132900/04; fax +34 928132908 E-mail address: mapi@iccm.rcanaria.es (M.P. Viera) 79 Study I Aquaculture 248 (2005) 75-82 4.1. INTRODUCTION Commercial aquaculture in the Canary Island is limited to the production of marine fish species such as gilthead seabream and European sea bass, with species diversification being a challenge for further local aquaculture development. The potential as a new specie for aquaculture of the Canarian abalone Haliotis tuberculata coccinea R., whose natural population is becoming depleted due to overfishing, relies on the high demand for abalone both in local and external markets, as well as on the high degree of development achieved in some other species of the family Haliotidae (Haliotis dicus hannai, Haliotis asinina, Haliotis rusfescens, etc), in particular of the European ormer Haliotis tuberculata tuberculata L., with close biological characteristics. Besides, there is a public interest in developing the culture techniques of this species to contribute to the recovery of wild populations. Studies on H. tuberculata coccinea are scarce, and have been focused only on spawning (Peña, 1985, 1986; Viera et al., 2003), ecology (Pérez and Moreno, 1991; Espino and Herrera, 2002) and culture techniques (Toledo et al., 2000). Food preferences differ among abalone species around the world, depending on habitat and food availability (Barkai and Griffiths, 1986; Dunstan et al., 1996). In the wild abalone consumes different macroalgae species, obtaining their required nutrients from a combination of algal species. Although H. tuberculata coccinea feeds on a diverse assemblage of macroalgae (Espino and Herrera, 2002), its nutritional needs and the relative importance of these algae are unknown. Algal diets have been extensively used for the production of abalone (Clarke, 1988). This herbivorous gastropod can consume seaweed at a rate close to 35% of its body weight per day. Hence sustaining of growth requires a large amount of fresh macroalgae (Tahil and Juinio-Menez, 1999). Since wild macroalgae are not commercially valuable in the Canary Islands, and hence not harvested, availability of this natural resource is scarce and insufficient to sustain the commercial production of abalone, which would require the replacement of wild seaweed as a main diet component. In an aquaculture integrated system, nitrogenous enriched waste water of intensively cultured organisms such as fish, shrimp and abalone may be transformed into a valuable algal biomass, seaweeds production being and added income as feed for shellfish (Evans and Langdon, 2000; Schuenhoff et al., 2003; Neori et al., 2004). Besides, several studies have shown that culture of Ulva spp. in nutrient-rich waters 80 Study I Aquaculture 248 (2005) 75-82 increases its protein content from 11% to over 32% in dry weight (Shpigel et al., 1999; Boarder and Schpigel, 2001). Thus, this biofilter produced Ulva have been shown to provide good growth rate for H. tuberculata (Neori et al., 1998; Schpigel et al., 1999), H. discus hannai (Corazani and Illanes, 1998) and H. roei (Boarder and Schpigel, 2001). Previous experiences in our laboratory have also shown the potential of using enriched Ulva rigida as a suitable feed for H. tuberculata coccinea (Viera and co-workers, unpublished data). But in the wild, Canarian abalone seems to have a higher preference for red algae (Espino and Herrera, 2002) as it has also been shown for several abalone species such as H. iris and H. australis (Poore, 1972; Shepherd, 1973; Wells and Keesing, 1989; Shepherd and Steinberg, 1992; Fleming, 1995), H. tuberculata or H. discus hannai (Mai et al., 1995a). Hence, in order to diversify the offer of macroalgae to cultured abalone in the Canary Islands, this study focused the evaluation of the suitability of three local red macroalgae cultivated in a biofiltration unit as a potential feed for the Canarian abalone H. tuberculta coccinea. 4.2. MATERIAL AND METHODS 4.2.1. Algal culture Gracilaria cornea J. Agardh, Hypnea spinella (C. Agardh) Kützing and Hypnea musciformis (Wulfen) J. V. Lamoroux were grown in a flow- through integrated system consisting of two intensive fishponds stocked with gilthead sea bream and a macroalgal biofilter. Effluents were channelled from the fishponds to a 11 m3 sedimentation pond for the removal of suspended particles and, then, pumped at a flow rate of 10 m3 h-1 to the seaweed tanks located in a greenhouse, were maximum irradiance was close to 1600 µmol photons m-2 s-1. Semi-circular fiberglass tanks with a surface of 1.8 m2, volume of 0.75 m3 and aeration supplied by a bottoncentral linear pipeline were used for the cultivation of macroalgae. Algal stocking densities were adjusted to the optimal values obtained from previous experiments (6 g l-1). Water exchange rate in the seaweed tanks was 4 vol day -1 and TAN (total ammonia nitrogen) inflow into the biofilter ranged between 10 and 400 µM. 81 Study I Aquaculture 248 (2005) 75-82 4.2.2. Abalone and rearing conditions Abalones (H. tuberculta coccinea) were produced within the experimental hatchery production unit of Instituto Canario de Ciencias Marinas, (Canary Islands, Spain). A total of 360 juvenile abalones (40/replicate) with an average shell length and weight of 11.18 ± 1.27 mm and 0.17 ±0.06 g. respectively, were selected for the trial. Animals were initially fed a diet of Navicula sp. and Nitschia sp. for 4-5 months. Feeding of all abalone was then switched to the green macroalgae Ulva rigida cultured at the laboratory biofiltration system for a period of one month prior to the beginning of the experiment. Individuals were blotted dried, weighed to the nearest 0.1 mg 8total wet body weight: TWBW), and measured with manual caliper with 0.1 mm accuracy (total shell length: SL) and assigned to an experimental unit. Abalones were distributed among replicates so that there were not significant differences in SL or TWBW. Each algal type was fed for 8 weeks to the experimental abalone and tested in triplicates (9 experimental units plus 3 control units). The experimental unit consisting of a 1 l lidded (plastic net of 2 mm mesh) PVC plastic container (20 x 14 cm), located in a 100- l cylindrical tank filled with 50 µm filtered seawater, provided with constant aeration. Water flowed in at approximately 2.4 l/min. Water temperature ranged between 23.9 and 25.4 ºC. Abalones were subjected to a natural photoperiod of approximately 12 h l / 12 h D. 4.2.3. Growth and algal consumption SL and TWBW of each animal were measured every four weeks. Three experimental units that contained algae but no abalone were used as controls for changes in algal weight. Feed was changed once a week during the growth trial and supplied in excess to guarantee ad libitum feeding along the whole experiment. To determine feed intake, freshly collected algae to be fed to the abalone were blotted dry and accurately weighed as well as the remaining algae at the end of the week. The weight of unconsumed food was deducted from the total weekly ration. 82 Study I Aquaculture 248 (2005) 75-82 Besides, weight of uneaten algae was corrected by calculating the natural change in weight of the algae in the control units during the same feeding period. The average daily intakes by individual abalones during the entire feeding trial were calculated by dividing the algal biomass eaten each week by the feeding days and the number of abalones in each experimental unit. The following nutritional indices were calculated for all treatments ant the end of the trial: Shell growth rate = (L2 – L1) / t x 1000 Specific growth rate, SGR = (Ln W2 – LnW1) / t x 100 Weight gain (%) = ((W2 – W1)/ W1)) x 100 Food conversion ratio = total feed intake (g wet)/ total weight gain (g wet) Protein efficiency ratio = increase in body wet weight (g) / protein intake (g) Where L1 is the initial mean length of animals, L2 is the final mean length of animals, Ln W2 is the natural logarithm of weight at time t (days of culture), and Ln W1 is the natural logarithm of initial weight. 4.2.4. Nutritional analysis Homogenized samples of each type of algae provided to the abalones were analyzed in triplicate for nutrient composition. The samples collected were cleaned, washed with freshwater to remove salt and epizoos, frozen in -80ºC freezer, freezedried and finely ground using an electric fine mill (sieve size < 0.1 mm). The dry matter was determined by incinerating samples at 600ºC for 24 h. Protein content was analyzed according to AOAC (1995) standard methods. Total lipids were extracted with chloroform-methanol (2:1) mixture as described by Folch et al. (1957). 4.2.5. Statistical analysis Statistical analysis was conducted using one-way ANOVA and Tukey test for multiple comparison of means with 5% significance level was applied (P < 0.05). When data did not have normal distribution, a non- parametric one-way ANOVA on ranks of Kruskal- Wallis was tested (Zar, 1984). 83 Study I Aquaculture 248 (2005) 75-82 4.3. RESULTS 4.3.1. Algal nutritional composition Nutritional composition and caloric content of the three red seaweeds are shown in Table 17. Protein energy ratios and gross energy were very similar among the different algae. However, there were significant differences (P < 0.05) among the proximate composition of the algae fed. Protein content was significantly highest in H. musciformis, whereas G. cornea showed the lowest. Similarly, H. musciformis showed the highest carbohydrate content and G. cornea the lowest. The three algal species were low in lipid content, the highest being also found in H musciformis and the lowest in H. spinella. The ash content varied inversely to protein and carbohydrate contents and was highest in G.cornea and lowest in H. musciformis. Table 17. Proximate composition and caloric content of the three red macroalgae (g/100 g DW) (mean ± S.D.) fed to abalone along the experimental trial Algal species H. musciformis H. spinella G. cornea Moisture 8.63±0.27a 8.11±0.17b 7.29±0.12c Crude protein 27.13±0.2a 25.9±0.1b 21.54±0.08c Crude lipid 2.45±0.08 a 1.99±0.01c 2.36±0.11b Carbohydrate *** 32.79±0.33a 30.97±0.27b 27.7±0.1c Ash 37.63±0.12c 41.14±0.28b 48.39±0.17a GE ** (kcal g-1) 3.1 2.9 2.6 Protein: energy ratio* 87.4 89.3 82.7 Values in the same row with different letters are significantly different (P ˂0.05) n =3. * Metabolizable energy was calculated based on the physiological values at 5.6 kcal g_1 protein, 9.5 kcal g_1 lipid and 4.1 kcal g_1 carbohydrates (Cho et al., 1982). ** Gross energy. *** Calculated by difference (AOAC, 1995). 84 Study I Aquaculture 248 (2005) 75-82 4.3.2. Growth and consumption Survival, growth performance and feed utilization of juvenile H. tuberculata coccinea fed the macroalgae H. musciformis, H. spinella and G. cornea are shown in Table 18. Survival rates were very good and no significant differences were found among the different feeding regimes. Daily feed intake on different algal rations recorded for 8 weeks showed that all three macroalgae were very well accepted by the abalone, but a significantly higher feed intake of H. spinella, followed by H. musciformis, was registered. Hence, final shell length and weight were significantly highest in animal fed H. spinella and lowest in those fed G. cornea. Accordingly, shell growth rate, specific growth rate and weight gain followed the same pattern, all these parameters being significantly highest in animals fed H. spinella and lowest in those fed G. cornea. Study of the feed efficacy of feed utilization showed that feed conversion ratios were significantly higher for H. musciformis, whereas protein efficiency ratios were higher for both H. spinella and G. cornea. 85 Study I Aquaculture 248 (2005) 75-82 Table 18. Growth, feed utilization and survival of juvenile Canarian abalone (H. tuberculata coccinea) at the beginning of the experiment and after being fed the selected macroalgae for 60 days under laboratory conditions Algae species fed to the abalone H. musciformis H. spinella G. cornea Initial length (mm) 11.18±1.27 11. 2±1.29 11.17±1.27 Final length (mm) 15.92±1.52 b 18.54±1.73c 14.75±1.75a Shell growth rate (µm day_1) 81.79±3.23b 126. 61±5.92c 61.71±1.73a SGR (% day_1) 1.89±0.03b 2.66±0.11c 1.47±0.05a Initial weight (g) 0.17±0.06 0.17±0.06 0.16±0.06 Final weight (g) 0.51±0.15b 0.78±0.21c 0.38±0.12a Weight gain (%) 178.41±8.63b 348. 65±30.35c 123.64±4.43a Feed intake (mg abalone-1 day -1) 165.54±4.96b 215.63±0.61c 78.98±1.79a FCR 30.49±1.64b 20.94±1.49a 22.09±1.15a PER 1.1±0.06a 1.68±0.1 b 1.75±0.09 b 93.33±2.89 95.83±1.44 95.75±5.1 Survival (%) Values in the same row with different letters are significantly different (P ˂0.05) n =40x3. 4.4. DISCUSSION The nutritional value of food rations depends on many factors including nutrient composition, bioavailability, palability and digestibility (Serviere-Zaragoza et al., 2001).This study examined the nutritional value of three algal diets for juvenile abalone, H. tuberculata coccinea, by measuring biochemical composition and energy content of the algae and relating this to growth performance and feed intake of the animals. The proximate composition of the algae was in the range of values reported for other species of seaweeds used as feed for abalone (Jackson et al., 2001; Mcbride et al, 2001). Protein content (22-27%DW) of the three algae was within the range for 86 Study I Aquaculture 248 (2005) 75-82 red seaweeds (10-47%) (Fleurence, 1999; Wong and Cheung, 2000) and was higher than the level found in the red seaweed, Palmaria palmata (18.4%), which has been found to be a good algal diet for H. tuberculata (Mercer et al., 1993; Mai et al., 1995a). Furthermore, protein content of H. spinella and H. musciformis was higher than that reported for other species of Hypnea (4.2-19% DW) (Portugal et al., 1983; Wong and Cheun, 2000). These high levels of protein content observed in the algae of the present study would be related to its production under the high nitrogen culture conditions of the biofilter system, as it has been also observed in Ulva spp. cultured as macroalgal biofilters (Tenore, 1976; Neori, 1996; Shpigel et al., 1996a, b, 1999). Hence, protein content of the three macroalgae used in the present experiment would match the protein requirements described for several species of Haliotis such as H. discus (20%) (Ogino and Kato, 1964), H. discus hannai (20-30%), (Uki et al., 1986), H. kamtschatkana (30%) (Taylor, 1992) or for H. tuberculata and H. discus hannai (25-35%) (Mai et al., 1995b), although it would be lower than that required for H. midae (47%) (Britz, 1996a). All the algae were low in lipid (2-2.4% DW) but within the range of other species of red seaweeds (1-3 % DW) reported previously (Mabeau and Fleurence, 1993; Wong and Cheun, 2000). Nevertheless, abalone species show low lipid requirement, typical of herbivore molluscs and fish (Mai et al., 1995a). This low lipid requirement has been associated by some authors (Durazo-Beltrán et al., 2004) with the low used of dietary lipids as energy source by abalone based upon its low metabolic rate. Indeed, high levels of dietary lipid seem to negatively affect abalone growth (Thongrod et al., 2003). However, high levels of carbohydrate enhance growth (Thongrod et al., 2003) of abalone which has various enzymes capable of hydrolysing complex carbohydrates (Fleming et al., 1996) and a good capacity to synthesize nonessential lipids from carbohydrates. In the present study, carbohydrate values (28-33% DW) were high and comparable to those obtained for other algal species (Kaehler and Kennish, 1996; Foster and Hodgson, 1998). Ash content of the Hypnea species was higher than that of other species of the same genus H. charoide (23-35% DW), H. pannosa (15% DW) and H. japonica (19% DW) (Portugal et al., 1983; Wong and Cheun, 2000). High ash content in algae results from calcium carbonate, which limit the other nutrient´s presence and reduce nutrient digestibility (Horn, 1989; Hay et al., 1994). 87 Study I Aquaculture 248 (2005) 75-82 It is generally accepted that balanced levels of protein (> 15%), lipid (3-5%) and carbohydrate (20-30%), with no toxic substances in natural algae, are essential for optimal growth performance of abalone (Mercer et al, 1993). From this point of view, the three algae tested appear to be able to match the abalone requirements. Growth rates of abalone fed dietary treatments in this study were within the range of 62-127 µm day-1, close to those obtained by other authors in similar species (50-100 µm day-1; Viana et al., 1996, 2000; Guzmán and Viana, 1998; GómezMontes et al., 2003) under similar experimental conditions and to that obtained under commercial condition (80 µm day-1; Gómez–Montes et al., 2003). SGR values were also high (1.5-2.7%) in comparison with those reported by Mai et al. (1996), who studies the effect of five species of macroalgae (P. palmata, Alaria esculenta, Ulva lactuca, Laminaria digitata and Laminaria saccharina) and reported SGR values of 1.03–1.31% for H. tuberculata and 0.7–1.25% for H. discus hannai. Gracilaria species have been reported to promote high growth and survival in other species of abalone such as H. asinina (Upatham et al., 1998; Bautista- Teruel and Millamena, 1999; Capinpin et al., 1999; Reyes and Fermin, 2003). In the present study feeding G. cornea lead to the lowest growth performance due to the lowest feed intake registered, since feed utilization in terms of FCR and PER was as good as those of the highest growing abalone fed H. spinella. Indeed, consumption rate in abalone may be influenced by factors other than the nutritional quality of food, such as its toughness or presence of antinutritional chemicals (Fleming, 1995). Hence, the harder texture and ash content of G. cornea may have affected its consumption by H. tuberculata since, in the wild, abalone prefer soft texture macroalgae (Shepherd and Steinberg, 1992). This preference seem to be related to the little capacity of the rhipidoglossan radula to penetrate the algal surface (Steneck and Watling, 1982) as its teeth have limited ability to exert force against the substrate. The high FCR of the three treatments agrees well with those reported for H. discus hannai and H. tuberculata using seaweeds as food (Shpigel et al., 1999) and H. asinina fed G. fisheri (Kunavongdate et al., 1995). The higher food conversion rate (FCR) attained for abalone fed H. musciformis in the present study does not seem to be explained by the general composition of the algae, or by the protein: energy ratio but to a significantly lower protein efficiency ratio (PER) than the rest of the treatments, suggesting that differences in response could be attributed to differential 88 Study I Aquaculture 248 (2005) 75-82 amino acid composition. Optimum growth is achieved through proper balance of dietary nutrients and fulfillment of requirements of essential nutrients and energy (Smith, 1989; Gómez-Montes et al., 2003). In conclusion, this study suggested the good potential of using any of the three red seaweeds tested -successfully produced by the biofilter system, their nutritional composition being similar to other macroalgae used as feed for abalone and being able to match the protein and lipid requirements of abalone- hence promoting good growth and survival. Nevertheless, based on growth performance, food conversión ratio, protein efficiency ratio and protein: energy ratio, the macroalgae H. spinella produced by the biofilter showed the highest dietary value for juvenile of H. tuberculata coccinea. 4.5. ACKNOWLEDGEMENTS The authors would like to thank to Drs. S.Thongrod, L. Robaina and D. Montero for their valuable comments on the manuscript. This study has been financed by the Spanish Government in the frame of the National Plan for Development of Marine Cultures (JACUMAR, TR 2003/08). 89 Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands STUDY II: Comparative Performances of Juveniles Abalone (Haliotis tuberculata coccinea reeve) Fed Enriched vs NonEnriched Macroalgae: Effect on Growth and Body Composition. Aquaculture 319 (2011) 423-429 Study II Aquaculture 319 (2011) 423-429 Comparative performances of juveniles abalone (Haliotis tuberculata coccinea reeve) fed enriched vs non-enriched macroalgae: Effect on growth and body composition Viera, M. P.a*, Courtois de Vicose, G.a, Gómez-Pinchetti, J.L.b, Bilbao, A a, Fernández-Palacios, H.a, Izquierdo, M.S.a a Grupo de Investigación en Acuicultura, Instituto Canario de Ciencias Marinas & Universidad de las Palmas de Gran Canaria P. O. Box 56, 35200 Telde, Canary Islands, Spain b Grupo de Algología Aplicada. Centro de Biotecnología Marina, Universidad de Las Palmas de Gran Canaria. Muelle de Taliarte s/n, 35214 Telde, Las Palmas. Canary Islands. Spain Abstract Abalone Haliotis tuberculata coccinea Reeve (1846), is a target species for diversification of European aquaculture production. Taking into account that sustainable, ecofriendly production methods are to be a part of future expansion of the abalone industry, growth performance of juvenile abalone reared in an integrated culture system was evaluated and compared with that of abalone fed non-enriched macroalgae. Four macroalgae treatments, three monospecific: Ulva rigida (UN), Hypnea spinella (HN) and Gracilaria cornea (GN) and a composite one (MN), were produced out of fishpond wastewater effluents, while other four control treatments consisted of the same species reared in fresh seawater (U; H; G; M). Seaweeds reared in fishpond wastewater effluents increased their protein content from 1117% to 29-34%. Lipids consisted mainly of saturated fatty acids (SFA) (43-60%), palmitic acid being the most abundant fatty acid (40-47%). Highest EPA percentage was found in red algae H. spinella (6.9%), being ten times higher than that of U. rigida (0.7%). All the algae tested contained very low levels of arachinodic acid (0.1-1.6%) and docosahexaenoic acid (0.5-3%). Protein levels in foot muscle (74-76%) did not differ significantly (P<0.05) among treatments. Survival was generally high, ranging from 85 to 100%. Weight gain (17-561%) and SGR (0.2-2.3%) were positively related to protein content; whereas, protein efficiency ratio (PER) (0.5-3.7) was negative correlated. PE ratios increased by 82-159% (DW) as a function of the enrichment among the different diets. Food conversion ratio (FCR) (7-188) improved according to the increase in PER. Overall, biofilter-produced macroalgae showed a significantly higher dietary value compared to the control treatments. Similarly, animals fed the mixed diets performed significantly better than those fed a single algal diet. Feeding G. cornea led to the lowest growth performance probably due to the lowest feed intake. The results clearly indicate that H. tuberculata coccinea growout can efficiently take place in an integrated-culture system suggesting that on-farm seaweed-abalone production could be part of future development of the abalone industry in the Canary Islands. Keywords: Haliotis tuberculata coccinea; macroalgae; seaweed biofilter; polyculture; feeding and nutrition-molluscs. *Corresponding author: María del Pino Viera-Toledo Phone: (34) 928 132900/04 ; Fax: (34) 928 132908 Mail: mapi@iccm.rcanaria.es Address: P.O. Box 56. Telde, 35200, Gran Canaria, Canary Islands, Spain 90 Study II Aquaculture 319 (2011) 423-429 5.1. INTRODUCTION Abalone species (Haliotis spp.) are found worldwide and are becoming important for aquaculture diversification due to their high market price and the over exploitation of wild stocks. In Europe, abalone industry is currently focussed on the production of the ormer Haliotis tuberculata Linnaeus (1758). Ireland, the Channel Islands (Huchette and Clavier 2004) and France are currently the only established producing countries. A subspecies of ormer, the abalone Haliotis tuberculata coccinea Reeve (1846), is also considered a good candidate for European aquaculture, as it is highly appreciated for its delicate taste, reaches a large enough size to be commercialized and its culture techniques have been successfully developed (Toledo et al., 2000; Viera et al., 2003, 2005, 2007, 2009a, b; Bilbao et al., 2004, 2010a, b; Courtois de Viçose et al., 2007, 2009, 2010). A limiting factor for further expansion of abalone aquaculture is the restricted availability of an economically and environmentally sustainable feed, as this culture frequently requires large quantities of wild harvested macroalgae. Such feed would be particularly important in areas where wild algae are not commercially available (Viera et al, 2005). Among different nutrients, protein constitutes the most costly component and is a major determinant of the nutritional value in diets of the abalone (Uki et al., 1985b; Uki and Watanabe, 1986; Mai et al., 1995b; Britz, 1996a, b; Britz and Hecht, 1997; Shipton and Britz, 2001; Bautista-Teruel et al., 2003; Gómez-Montes et al., 2003; Reyes and Fermín., 2003; Sales et al., 2003). In an aquaculture integrated system, nitrogen enriched waste water of intensively cultured organisms, may be transformed into a valuable algal biomass, seaweeds production being an added income as feed for shellfish (Evans and Langdon, 2000; Schuenhoff et al., 2003; Neori et al., 2004). Besides, several studies have shown that the culture of macroalgae in nutrient-rich waters increases their protein content (Shpigel et al., 1999; Boarder and Shpigel, 2001; Robertson-Andersson et al, 2006; Viera et al, 2005; Naidoo et al, 2006). Thus, biofilter produced seaweed have been shown to support fast growth rates for Haliotis tuberculata (Neori et al., 1998; Shpigel et al., 1999), Haliotis discus hannai (Corazani and Illanes, 1998; Shpigel et al., 1999), H. roei (Boarder and Shpigel, 2001) and H. tuberculata coccinea (Viera et al., 2005). 91 Study II Aquaculture 319 (2011) 423-429 Among the different macroalgae produced, Ulva spp. and Gracilaria spp. are good candidates as feed for abalone since their mass production technologies are well developed and their nutrient uptake capacities are among the highest known (Martínez-Aragon et al., 2002). The valuable rhodophyte Hypnea sp. has also been successfully cultured in mariculture biofilters (Harlin et al, 1978; Neori et al, 2004; Viera et al, 2005). In the wild, abalone consumes different macroalgae species, obtaining their required nutrients from a combination of algal species. Although H. tuberculata coccinea feeds on a diverse assemblage of macroalgae (Espino and Herrera, 2002), its nutritional needs and the relative importance of these algae are unknown. It is well recognised that consumer knowledge and attitudes to an aquaculture product have a significant role to play in commercial success. As abalone in Europe currently has low levels of production, it gives the sector an excellent opportunity to set standards that will meet consumer expectations for sustainable, eco-friendly production methods which fit into the strongly growing EU eco-sector for shellfish products. Abalone producers may be enticed to adopt effluent treatment procedures more readily if shown that enriched macroalgae can be suitable as a feed for local abalone species promoting higher growth performance than the one achieved with seaweeds harvested or reared in fresh seawater. In this study, the comparative performance of juvenile abalone Haliotis tuberculata coccinea fed on various enriched vs non enriched macroalgae was examined. We determined: (1) Algal nutritional and fatty acid composition; (2) Survival; (3) Growth (shell growth rate; specific growth rate and weight gain); (4) Consumption (daily feed intake); (5) Feed efficacy of feed utilization (food conversion ratio (FCR) and protein efficiency ratio (PER); (6) Biochemical composition of the animals and (7) Soft-body to shell ratio (SB/S) of the abalone after being fed these diets for 12 weeks. Performance promoted by the various diets was related to a range of nutritional parameters including crude protein (CP), total lipid (TL), gross energy (GE), protein-energy ratio (PE) and fatty acids (FA) of the diets fed. 92 Study II Aquaculture 319 (2011) 423-429 5.2. MATERIAL AND METHODS 5.2.1. Algal culture Ulva rigida J.Agardh, Hypnea spinella (C. Agardh) Kützing and Gracilaria cornea J. Agardh were grown at the Centro de Biotecnología Marina (CBM-ULPGC), Gran Canaria, Spain. Eight feeding regimes were evaluated: three monospecific ones with macroalgae produced in fresh seawater Ulva rigida (U), Hypnea spinella (H) and Gracilaria cornea (G), and a mixture of equal parts from the three algae (M); and the same four feeding regimes using algae produced out of fishpond waste water effluents (UN; HN; GN and MN). Effluents were channelled from the fishponds to a 11 m3 sedimentation pond for the removal of suspended particles and then, pumped at a flow rate of 10 m3 h-1 to the seaweed tanks located in a greenhouse, where maximum irradiance was approximately of 1600 µmol photons m-2 s-1. Semi-circular fiberglass tanks with a surface of 1.8 m2 and a volume of 0.75 m3 were provided aeration through a bottom-central linear pipeline and were employed for the cultivation of macroalgae. Algal stocking densities were adjusted to the optimal values obtained from previous experiments (1, 3 and 4 g l-1 for U. rigida, H. spinella and G. cornea, respectively). Water exchange rate in the seaweed culture tanks was 4 vol day-1 and TAN (total ammonia nitrogen) inflow into the biofilter ranged between 10 and 400 µM. 5.2.2. Abalone and feeding trial conditions Abalone (Haliotis tubercalata coccinea) were produced within the experimental hatchery production unit of the Instituto Canario de Ciencias Marinas (Canary Islands, Spain). Animals were initially fed a mixed diet of Navicula sp. and Nitzschia sp. for 4 to 5 months. Feeding of all abalone was then gradually switched to the green macroalgae Ulva rigida cultured in the laboratory biofiltration system for a period of 1 month prior to the beginning of the experiment. A total of 600 juvenile abalones (25/tank) with an average shell length and weight of 12.5 ± 1.6 mm and 0.27 ± 0.18 g, respectively, were selected for the trial. 93 Study II Aquaculture 319 (2011) 423-429 Individuals were blot dried, weighed to the nearest 0.1 mg (total wet body weight: TWBW), measured with manual calliper with 0.1 mm accuracy (total shell length: SL) and assigned to an experimental unit. Abalones were homogeneously distributed among tanks to avoid significant differences in SL or TWBW. Each experimental algal regime (8 feeding diets tested in triplicates) was fed for 12 weeks to the abalones and tested in triplicates in a flow-through system. Eight control units containing the same feeding regimes without abalone, were used as controls to estimate percentage of modification in algal weight (computed as: ((A-B) / A) x 100; where B is the final weight of algae and A is the initial weight of algae in the control unit determined at 1 week interval). The experimental unit consisted in a 1 l lidded (plastic net of 2 mm mesh) PVC plastic container (20 x 14 cm), located in a 100 l cylindrical tank filled with 50 µm filtered seawater provided with constant aeration. Seawater temperature ranged between 22-24.5 ºC and flow was set at 2.4 l / min. Abalone were subjected to a natural photoperiod of approximately 12 h L / 12 h D. Algae were supplied in excess to guarantee ad libitum feeding and replaced once a week during the growth trial. 5.2.3. Growth and algal consumption To determine feed intake, freshly collected algae were blotted dry and accurately weighed as well as the remaining algae at the end of the week. The weight of unconsumed food was deducted from the total weekly ration. Besides, weight of uneaten algae was corrected by calculating the natural weight variations of the algae in the control units during the same feeding period. Average daily intake by individual abalone was calculated by dividing the algal biomass eaten each week by the feeding days and the number of abalones in each experimental unit. SL and TWBW of each animal were determined every four weeks. Besides, the following indices were calculated for all treatments at the end of the trial: Shell growth rate = (L2-L1) / days of culture x 1000 Specific growth rate, SGR= (LnW2-LnW1) / t x 100 Weight gain (%) = ((W2-W1) / W1) x 100 Food conversion ratio = total feed intake (g wet) / total weight gain (g wet) 94 Study II Aquaculture 319 (2011) 423-429 Protein efficiency ratio = (increase in body wet weight (g)) / (protein intake (g)) where L1 is the initial mean length of animals; L2 is the final mean length of animals; W2 is the weight at time t (days of culture), and W1 is the initial weight. At the end of the experiment, ten abalones were collected from each experimental unit, and the soft tissue was shucked from the shell. Shell and meat were then weighed separately in order to calculate the condition index (wet weight of soft flesh/wet weight of shell, SB/S in W/W) as an indicator of the abalone nutritional status. 5.2.4. Proximate and fatty acid analysis Homogenized samples of visceral mass and foot muscle of the selected abalone and algae from each feeding regime were analyzed in triplicate for nutrient composition. Fatty acids of the algae were also analyzed. The algae, abalone visceral mass and foot muscle were cleaned, washed with freshwater and frozen at -80 ºC. Dry matter was determined by drying samples at 110ºC until constant weight was attained. Ash content was determined by incinerating samples at 600ºC for 24 h. Protein content was analyzed according to AOAC (2005) standard methods. Total lipids were extracted by a chloroform-methanol (2:1) mixture as described by Folch et al. (1957). Fatty acids in the lipid extracts were transesterified to methyl esters (FAMEs) with 1% sulphuric acid: methanol complex (Christie, 1982). FAMEs samples were extracted into hexane and stored at -80ºC. Fatty acids were analyzed in a Thermo Finnigan- GC Focus gas chromatograph equipped with a flame ionization detector (260ºC) and a capillary column (Supelcowax 28m x 0.32mm x 0.25 i.d.), using helium as the carrier gas under the conditions described by Izquierdo et al. (1989). 5.2.5. Statistical analysis All data were statistically treated by one-way ANOVA and Tukey’s test was applied for multiple comparison of means at a 5% significance level (P< 0.05). When data did not follow a normal distribution, a non-parametric one-way ANOVA on ranks of Kruskal-Wallis was applied (Zar, 1984). 95 Study II Aquaculture 319 (2011) 423-429 5.3. RESULTS 5.3.1. Algal nutritional composition Nutritional composition and caloric content of the eight seaweed treatments are shown in Table 1. Gross energy values in diets ranged from 3.5-4.1(Kcal g-1). Protein: energy ratios increased by 82-159% (dry weight) with the enrichment among the different diets. Protein content was significantly higher (P<0.05) in the seaweeds reared using fishpond waste water effluents, increasing their protein content from 11.3-16.6% to 29.3-33.8%. Lipid content ranged from 1.4 to 7.2%, being also generally higher in enriched seaweeds, the highest being found in GN and the lowest in H. spinella (H). The carbohydrate contents varied inversely to protein contents, showing significantly higher values in non enriched treatments. No significant differences were observed in the ash content for all diets. 96 Aquaculture 319 (2011) 423-429 56.4±8.5ab Carbohydrate1 3.5 47.5 GE2 (Kcal g-1) Protein:energy ratio3 37.7 3.5 21.4±7.9 31.4 3.6 24.1±3.6 58±8.5a 5.4±3.5abc 11.27±1.1b 83.9±1.8ab G. cornea 38.05 3.6 23.6±5.9 60.7±7.6a 3.4±2.5bc 13.7±3b 83.3±1.4ab Mixed diet H. spinella U. rigida 86.6 3.9 21.5±5.2 40.5±6.1bc 4.4±0.8abc 33.76±0.5a 80.7 4.1 21.3±2.7 39.2±11.1bc 6.6±2.6ab 33.09±6a 83±2.9ab Enriched Enriched 82.04±0.3b Diets 81.5 3.6 32.3±7 31.8±11.3c 7.21±2.7a 29.35±2a 84.94±0.6a G. cornea Enriched 79.4 4.04 25.24±7.3 41.01±3.6c 6.06±2.1a 32.1±3.9a 83.25±1.9ab Mixed diet Enriched 2 97 Calculated by difference (AOAC, 2005) Gross energy 3 Metabolizable energy was calculated based on the physiological values at 5.6 Kcal g-1 protein, 9.5 Kcal g-1 lipid and 4.1 Kcal g-1 carbohydrates (Cho et al., 1982). Values in the same row with different letters are significantly different (P<0.05) n=3 1 1.4±0.4c 3.7±1abc Crude lipid 25.2±6 13.2±1.7b 16.6±3.8 b Crude protein Ash 84.2±1ab 82.09±0.8b Moisture 65.4±9.5a H. spinella U. rigida the experimental trial Table 19. Proximate composition and caloric content of the eight macroalgae treatments (g/100 g DW) (Mean ± S.D.) fed to abalone along Study II Study II Aquaculture 319 (2011) 423-429 5.3.2. Survival, growth, consumption and condition index Growth performance, feed utilization and survival of juvenile H. tuberculata coccinea fed the eight experimental diets are shown in Table 2. Survival was generally high, ranging from 85 to 100% for those fed with G and H, respectively. In general, abalone fed enriched algae performed better than those fed on non enriched macroalgae, displaying higher shell growth rate, specific growth rate and weight gain. Similarly, animals fed the mixed diets, both enriched and non enriched, performed significantly better than those that were fed with a single algal diet. Daily feed intake on different algal rations recorded for 12 weeks showed that, except with Gracilaria treatments (G and GN), all diets were very well accepted by the abalone. Nevertheless, a significantly (P<0.05) higher feed intake of the mixed diet, followed by H. spinella and U. rigida was registered. Hence, at the end of the trial, animal fed on the enriched mixed macroalgae diet (MN) presented a significantly (P<0.05) higher growth performance, length (151±3.9 µm day-1), weight gain (561.3±20.3 %) and specific growth rate (2.3%) than those on any other diets. For abalone fed non enriched macroalgae, final shell length and weight were significantly highest in animals fed the mixed diet (22.3±3.5mm and 1.4±0.6g), followed by U. rigida and H. spinella, and were the lowest in those fed G. cornea (14.3±1.7mm and 0.3±0.1g). Regarding feed utilization efficacy, except for Hypnea diets (H and HN), food conversion ratio (FCR) values were inversely related to protein level, being significantly lowest in animals fed UN and MN (7-10.1) and highest in those fed nonenriched G. cornea (188.1±8.9). However, protein efficiency ratio (PER) values were generally higher in abalone fed non-enriched macroalgae, declining from 3.7-1 to 2.40.5, respectively. Soft-body to shell ratio were significantly influenced by the diets. The lowest SB/S ratios (2.4) resulted from feeding both G. cornea diets, which produced the poorest growth performance, whereas UN and both mixed diets, produced the best growth performance, yielded the highest SB/S ratios (3.3-3.1). 98 Aquaculture 319 (2011) 423-429 19.3±2.1c 81.9±7.8c 1.4±0.2 c 0.3±0.1 0.8±0.4c 255.9±7 c 147.4±10.0b 21.0±2.8c 2.3±0.3b 2.9±0.4b 100a 19±3c 77.7±3.2c 1.5±0.02c 0.2±0.1 0.9±0.3c 239.9±6.5c 63.5±2.5d 9.0±0.5e 3.7±0.2a 2.9±0.4b 93.3ab Final length (mm) Shell growth rate (μm d-1) SGR (% day-1) Initial weight (g) Final weight (g) Weight gain (%) Feed intake (mg abalone-1day-1) FCR PER CI (%) 85.3b 2.4±0.5c 1±0.0 d 188.1±8.9a 31.8±2.5e 17±3.3 d 0.3±0.1d 0.3±0.1 0.2±0.0d 20.8±0.8d 14.3±1.7d 12.6±1.6 G. cornea 97.3a 3.1±0.4ab 3.4±0.2 a 12.9±0.6cd 168.7±18.3ab 410±37.5 b 1.4±0.6b 0.3±0.9 2±0.1b 118.4±7.9b 22.3±3.5b 12.5±1.6 Mixed diet 99 Values in the same row with different letters are significantly different (P<0.05) n =25x3. Survival (%) 12.5±1.6 12.6±1.6 H. spinella Initial length (mm) U. rigida 93.7ab 3.3±0.3a 2.4±0.1b 6.8±0.3e 81.0±0.8c 371.6±12.6 b 1.2±0.4b 0.3±0.1 1.9±0.0 b 110.1±0.8b 21.6±2.3b 96ab 2.8±0.4b 0.8±0.01d 22.4±0.4c 173.7±17.1ab 229.9±3 c 0.9±0.3c 0.3±0.1 1.4±0. 1c 90.5±8.4c 20.1±1.9c 12.6±1.6 H. spinella U. rigida 12.5±1.5 Enriched Enriched Macroalgae treatments fed to the abalone 92ab 2.4±0.4c 0.5±0.2e 57.1±6.0b 35.4±0.1e 33±4.3d 0.3±0.1d 0.3±0.1 0.3±0.04d 23.0±1.2d 14.4±1.8d 12.5±1.6 G. cornea Enriched 98.7a 3.3 ±0.3a 1.8±0.04 c 10.1±0.2e 189.9±5.0a 561.3±20.3a 1.8±0.6a 0.3±0.9 2.3±0.04a 150.9±3.9a 25.1±2.6a 12.5±1.5 Mixed diet Enriched Table 20. Growth performance, feed utilization and survival of juvenile abalone (H. tuberculata coccinea) fed the selected 8 macroalgae diets for 12-weeks Study II Study II Aquaculture 319 (2011) 423-429 5.3.3. Fatty acid composition of macroalgae Fatty acid profiles of the eight macroalgae diets are summarised in Table 3. The lipids of all algae tested consisted mainly of saturated fatty acids (SFA) (4360%), with palmitic acid (16:0) as the most abundant fatty acid (FA) (40-47%) of total FAME. A higher amount (5-7.2%) of myristic acid (14:0) was detected in both Rhodophyta species as compared to that in the green algae (1%). The green algae U. rigida showed higher levels of C16 (58%) and C18 (32%) fatty acids and lower level of C20 fatty acids (1.8-1.1%) than that of red algae. 18:1n-7 was the predominant monounsaturated fatty acid of this Chlorophyta. All red algal treatments contained considerable levels of mono-unsaturated fatty acid predominantly 18:1n-9. Linoleic acid (18:2n-6) was present at similar levels in all selected algae, whereas linolenic acid (18:3n-3) was higher in U. rigida. The levels of ∑ n-6 PUFA (7-9%) were generally lower than those of ∑ n-3 PUFA (12-18%). Eicosapentanoic acid (20:5n-3) (EPA) highest percentage was found in red algae H. spinella (6.3-6.9%), being ten times higher than the one of U. rigida (0.7%). All macroalgae presented very low level of arachinodic acid (0.1-1.6%) (ARA) and docosahexaenoic acid (DHA) (22:6n-3), with the highest percentage been found in enriched G. cornea with 3% of total FAME. 100 Study II Aquaculture 319 (2011) 423-429 Table 21. Fatty acid composition (% total fatty acids) of the eight macroalgae treatments U. rigida H. spinella G. cornea Mixed diet Enriched U. rigida Enriched H. spinella Enriched G. cornea Enriched Mixed diet 14:0 1.1 6 5.2 4.1 1 7.2 5 4.4 16:0 46.8 41.3 50.3 46.1 40.5 44.4 47.5 44.1 18:0 1.9 5.4 4.2 3.8 1.9 3.3 4.4 3.2 ∑SFA 49.8 52.7 59.7 54.1 43.3 54.9 56.9 51.7 14:(1n-5) 1.64 2.42 0.47 1.51 1.57 3.24 0.44 1.75 16:(1n-7) 6.1 2.5 2.3 3.6 9.6 2.9 3.5 5.3 16:(1n-5) 0.2 0.3 1.8 0.8 3 0.3 0.6 1.3 18:(1n-9) 5 10.6 8.8 8.1 3.5 9.7 10.5 7.9 18:(1n-7) 9 2.5 3 4.8 8.3 3.1 3.5 5 22:(1n-11) 1.9 0.3 0.1 0.8 2 0.3 0.1 0.8 ∑MUFA 23.9 18.6 16.5 19.7 27.9 19.5 18.6 22 16:(4n-3) 2.7 0.8 1.4 1.6 3.8 0.5 1.6 1.9 18:(2n-6) 7 7.7 5.3 6.7 6.1 5.5 6.1 5.9 18:(3n-3) 5.7 1.9 0.6 2.7 7 1.5 0.8 3.1 18:(4n-3) 3.3 1 0.7 1.6 4.2 0.9 0.6 1.9 20:(4n-6) 0.1 0.4 1.6 0.7 0.1 0.5 0.7 0.4 20:(4n-3) 0.4 2.9 7.1 3.4 0.3 3.8 4.5 2.9 20:(5n-3) 0.6 6.3 0.8 2.6 0.7 6.9 1.9 3.2 22:(5n-3) 1.6 0.5 0.3 0.8 1.5 0.4 0.5 0.8 22:(6n-3) 0.5 1.1 0.9 0.9 0.5 0.5 3 1.3 ∑PUFA 21.8 22.5 18.7 21.0 24.2 20.4 19.6 21.4 Other 4.5 6.2 5.1 5.2 4.6 5.2 4.9 4.9 ∑n-3-FA 14.7 14.5 11.8 13.6 18.0 14.5 12.9 15.1 ∑n-6-FA 7.1 8.1 6.9 7.4 6.2 6.0 6.7 6.3 FA SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; Other includes all components <1%: 14(1n-7), 15:00, 16:0ISO, 16:(2n-6), 16:(2n-4), 17:00, 16:(3n3), 16:(3n-1),16:(4n-1), 18:(1n-5), 18:(2n-4), 18:(3n-6), 18:(3n-4), 20:00, 20:(1n-9+n-7), 20:(1n-5), 20:(3n-6), 22:(1n-9), 22:(4n-6), 22:(5n-6) 101 Study II Aquaculture 319 (2011) 423-429 5.3.4. Effects of algal diets on the general biochemical composition of the animals Nutritional analysis of the abalone at the end of the experimental period revealed that diet did significantly affect the soft body tissues of the animals (Table 4). Protein levels in foot muscle (74-76% DW) did not differ significantly (P<0.05) among treatments. Generally the biofilter cultured algae produced better growth and resulted in significantly lower moisture levels in viscera than others. Lipid levels in viscera varied considerably within the feeding regimes, being higher in abalone fed non enriched macroalgae. Abalone fed both enriched and non enriched macroalgae, showed higher lipid levels, stored in the viscera (11-20%), rather than in the foot muscle (5-8%), the highest being found in those fed with M and U diets. Ash content, both in viscera and muscle, in animals fed non enriched algae, were generally higher than that of abalone fed with macroalgae produced out of fishpond waste water effluents. 102 Aquaculture 319 (2011) 423-429 75.3±0.3a 75.5±0.0a 74.5±0.4b 73.7±0.9ab 75.3±2.4a 73.8±0.6ab 70.2±0.2c 73.2±0.1ab 71.4±0.1bc 70.7±0.4c H. spinella G. cornea Mixed diet Enriched U. rigida Enriched H. spinella Enriched G. cornea Enriched mixed diet 75.6±0.1a 74±0.3b 75.4±0.3a 61.5±0.6c 55±0.2d 73.7±0.9a 61.3±0.3bc 63.3±1.4bc 63.1±0.1b 55.4±1.3d 63.4±0.0b Viscera 75.9±2.6 76±1.6 76.3±1.2 74.4±0.5 74.1±0.2 74.1±0.2 74.5±1.5 74.0±0.1 Muscle Crude protein 12.2±1.1d 11.5±0.6d 12.8±0.4cd 16.2±0.3b 20.5±0.5a 15.3±1.4bc 16.8±1b 19.4±1.8a Viscera 5.6±0.3ab 7.9±1.1a 7.3±0.3ab 103 5±0.2b 6.7±1.2ab 5.8±1.3ab 4.8±1.3b 7.1±0.2ab Muscle Crude lipid Calculated by difference (AOAC, 2005) Values in the same column with different letters are significantly different (Tukey test, P<0.05 n=3) 1 75.7±0.1a 73.0±0.3b U. rigida 73.9±0.3b Muscle Moisture Viscera Diets 19.5±1.6b 24.4±0.1a 4.9±0.1e 14.1±0.3c 7.7±1de 11.6±1.1c 18.8±2.1b 9.4±0.9d Viscera 10.6±3.1ab 7.4±1.6c 9.2±0.7 ab 12.6±0.7a 8.2±1.3c 10.6±1.7 ab 10.1±0.5ab 9.9±0.4ab Muscle Carbohydrate1 Muscle 10±.1ab 8.1±0.3d 7.1±0.3d 7.9±0.1de 9.5±0.1abc 9.3±0.6bc 8.9±0.5bc 6.9±0.4de 8.5±0.4c 8.4±0.2c 11.0±0.3a 9.1±0.2abc 9.7±0.2bc 9.8±0.1ab 10.1±0.7a 9.1±0.2c Viscera Ash Table 22. Proximate composition of foot tissues of Haliotis tuberculata coccinea reared on the experimental diets (g/100 g DW) (Mean ± S.D.) Study II Study II Aquaculture 319 (2011) 423-429 5.4. DISCUSSION Gross energy is the total amount of energy supplied by food and is an important quantitative measurement of calorific value which may be an useful indicator of the seaweed nutritional value (Lamarae and Wing, 2001; HernándezCarmona and Carrillo-Domínguez, 2009). Despite the ability of abalone to utilise a wide variety of energy sources, being a mollusc, the metabolic rate of abalone is low and consequently energy requirements are low. The caloric content (gross energy) of the algae tested (3.5-4.1Kcal g-1) was in the range of values reported for other diets used as feed for abalone generally reported around 4 Kcal g-1 (Shipton and Britz, 2001; Reyes and Fermín, 2003; García–Esquivel and Felbeck, 2006). Protein content (11-17% DW) of the non enriched macroalgae was within the range of values reported for other species of red and green seaweeds used as feed for abalone (1318% DW), (Mercer et al., 1993; Bautista-Teruel and Millamena, 1999; Wong and Cheun, 2000; Jackson et al., 2001; Reyes and Fermín, 2003). The protein content of seaweed species varies greatly and demonstrates a dependence on factors such as season and growing conditions. The high protein content of macroalgae produced using fishpond waste water effluents (29-34%) compared with those reared in fresh seawater, would be related to its production under the high nitrogen culture conditions of the biofilter system, as it has also been observed in previous research with Ulva spp., Hypnea spp. and Gracilaria spp., used as macroalgal biofilters (Shpigel et al., 1996a, b, 1999; Boarder and Shpigel, 2001; Robertson-Andersson, 2003; Viera et al, 2005; Njobeni, 2006). The crude lipid contents were low in the algae studied, ranging between 1.4 to 7.2% DW, and being generally higher in enriched seaweeds, which is comparable to the range reported for other macroalgae (0.6–6.15% DW) (Wong and Cheun, 2000; Dawczynski et al., 2007; Hernández-Carmona and Carrillo-Domínguez, 2009). Nevertheless, abalone species show a low lipid requirement, typical of herbivores molluscs and fish (Mai et al., 1995a). This low lipid requirement has been associated by some authors with a reduced use of dietary lipids as energy source by abalone based upon its low metabolic rate (Durazo-Beltrán et al., 2004). Studies on the digestive enzymes of some species of Haliotis reveal that abalone have low activities of lipases, chymotrypsim or aminopeptidase (García–Esquivel and Felbeck, 2006). Indeed, high levels of dietary lipid seem to affect negatively abalone growth 104 Study II Aquaculture 319 (2011) 423-429 (Thongrod et al., 2003). However, high levels of carbohydrate enhance growth of abalone presenting high amylases activities and other carbohydrate digestive enzymes, such as cellulase, agarase and alginate lyase, (Britzs, 1994; Mai et al, 1996; Thongrod et al., 2003 García–Esquivel and Felbeck, 2006), as well as a good capacity to synthesize non essential lipids from carbohydrates. Carbohydrates are the largest component in many algae. In the present study, carbohydrate contents were high and inversely related to protein contents with comparable values to those obtained for other algal species (Kaehler and Kennish, 1996; Foster and Hodgson, 1998; Hernández-Carmona and Carrillo-Domínguez, 2009). Ash was the second highest fraction in all the diets, after carbohydrates, with similar values to those reported previously for other species of the same genus (Wong and Cheun, 2000; HernándezCarmona and Carrillo-Domínguez, 2009). Abalone fed enriched macroalgae diets showed better performance in terms of growth rate per day, weight gain, increase in shell length and FCR values compared to those fed non enriched diets. This could be related to the high protein content of enriched macroalgae diets, suggesting that nitrogen may be a limiting factor for growth in Haliotis spp. (Fleming, 1995; Boarder and Shpigel, 2001). Previous studies support this view by stating that maximum growth can only be achieved when sufficient protein, in the correct proportions of amino acid, is supplied in the feed. Shpigel et al. (1996a, 1999), Boarder and Shpigel (2001), Viera et al. (2005) and Naidoo et al. (2006) respectively, stated that satisfying growth of. H. tuberculata, H. roei, H. t. coccinea and H. midae fed enriched macroalgae was attributable to a consistent supply of high protein diet. Besides, abalone fed mixed algal regimes, both enriched and non enriched, performed significantly better than those that were fed with a single algal diet, in agreement with studies showing that “mixed” diets produce better growth rates than single-species diets (Naidoo et al, 2006). This suggest that abalone obtain a complete range of required nutrients by eating a mixed algal regime and that essential nutrients may become limiting in trials where animal are fed single-species diets. The growth rate of abalone increased significantly with an increasing PE ratio up to a level of 32% protein / 6% fat. Similar observations have been reported for H. midae fed with several dietary protein and energy levels (Britz and Hecht, 1997). With the exception of animals fed both G. cornea treatments, growth rates values in this study (78-151 105 Study II Aquaculture 319 (2011) 423-429 μm day-1) were generally higher than both, those obtain by other authors with other species (50-100 μm day-1; Viana et al., 1996, 2000; Guzmán and Viana, 1998; Jackson et al., 2001; Gómez-Montes et al., 2003) under similar experimental conditions, and those obtain under commercial conditions (80 μm day-1; GómezMontes et al., 2003). SGR values in the present study (1.4 to 2.3%) were higher than those reported by Mercer et al. (1993) and Mai et al. (1995b) in abalone fed several species of macroalgae who reported SGR values of 0.8 % for H. tuberculata and 0.71% for H. discus hannai, and similar to the results reported by Capinpin et al. 1996 (2.5%) for H. asinina fed Gracilariopsis heteroclada. In an aquaculture context, the rate of weight gain is vitally important, particularly in the case of haliotids, as they are relatively slow growing. Therefore, from an aquaculture perspective, an optimal dietary protein level should be defined in terms of growth rate as well as dietary ingredient cost. In the present study, except with G. cornea treatments, all feeding regimes produced a similar or better weight gain (230-561%) than Gracilariopsis bailinae (134%, Bautista-Teruel and Millamena, 1999) or compound diets (454%, Bautista-Teruel et al., 2003) in H. asinina under similar conditions. Regarding G. cornea, the lowest growth rate obtained with abalone fed this macroalgae, might be due to the lowest feed intake registered. Indeed, consumption rate in abalone may be influenced by various factors that may decrease algal palatability, such as, the structure, growth form, and thallus toughness (Steneck and Watling, 1982). Hence, the harder texture of G. cornea may have affected its consumption by H. t.coccinea, since in the wild, abalone prefer soft textured macroalgae (Shepherd and Steinberg, 1992). This preference seem to be related to the little capacity of the rhipidoglossan radula to penetrate the algal surface (Steneck and Watling, 1982) as its teeth have limited ability to exert force against the substrate. However when the animals were fed G. cornea as a proportion of a mixed diet, they exhibited excellent growth rates, suggesting that this red seaweed provided essential nutrients not found in the other algae fed. Except in animals fed G. cornea, food conversion rate (FCR) values were within the range of those reported for H. asinina, H. discus hannai, H. tuberculata or H. t. coccinea fed seaweeds diets (Kunavongdate et al., 1995, Shpigel et al., 1999; Viera et al., 2005). The lower FCR attained for abalone fed enriched seaweeds in the present study seems to be explained, not only by the general composition of the algae, 106 Study II Aquaculture 319 (2011) 423-429 but also by a significantly higher protein:energy ratio than the rest of dietary treatments. PER values observed on the non enriched treatments agreed well with those reported for H. discus hannai (Uki et al, 1985a) and H. midae (Britz, 1996b) fed seaweeds or H. midae and H. fulgens fed compound feeds (Britz and Hecht, 1997; *Gómez-Montes et a., 2003). Protein efficiency ratios were generally lower in abalone fed enriched macroalgae. Similar observations have been reported by Uki et al., (1986), Britz (1996a) and Bautista-Teruel and Millamena (1999), who found that the growth rate of H. discus hannai, H. midae and H. asinina respectively, increased with an increase in protein content whereas the PER was negatively correlated with protein level. Despite the poorer efficiency of protein conversion by abalone fed the enriched macroalgae, higher weight gain and lower FCR were obtained with an increasing protein level in the algal diet. This increase in protein level, linked to the culture conditions of the integrated culture system, is of high economic significance for the production. Soft-body to shell ratios of the experimental animals (2.4-3.3) were similar and even higher than those recorded by Mai et al. (1995a) for H. tuberculata (1.8-2.1) and H. discus hannai (2-2.4) fed with P. palmata and various levels of dietary lipids or by Sales et al. (2003) for H midae (2.9-3.2) fed different dietary crude protein level. Furthermore, the high survival of abalone noted for all treatments may well indicate a general balance of nutrients in the diets, although the low feed intake of both G. cornea diets may not have been enough to sustain comparable growth of abalone with those fed the rest of the experimental diets. The algae studied presented typical fatty acid patterns of green and red algae in agreement with previous macroalgal studies (Mai et al., 1996, Li et al., 2002). Palmitic acid was the most abundant SFA, at similar contents of those reported for other species of seaweeds (Jackson et al., 2001; Li et al., 2002; Nelson et al., 2002). The fatty acid composition of the Chlorophyta Ulva rigida with predominat levels of C16 and C18 PUFAs and minimal levels of C20 fatty acids followed a pattern similar to the ones reported for other species of Ulvales such as U. lactuca (Mai et al., 1996) and U. pertusa (Li et al., 2002). Accordingly, the higher level of 18:3-n-3 and 18:1-n7 relative to green algae, has been regarded as a characteristic of this phylum with a particular taxonomic value in Chlorophyta species (Johns et al., 1979). All macroalgae presented very low levels of 22:6-n3, with similar results found in other 107 Study II Aquaculture 319 (2011) 423-429 studies (Dawczynski et al., 2007). Hence DHA do not appear to be an essential FA in H. t. coccinea as they were detected in a very low level in all macroalgae tested despite they supported optimal growth of abalone. The growth promotion of EFA for abalone is generally dependent upon a collective effect of certain combination of different PUFA rather than on a single fatty acid. Analyses of the abalone fed on the various diets showed that the biochemical composition of various organs were markedly affected by the diets. Lipid content in abalone tissues were generally higher than in their respective macroalgal diets (Nelson et al., 2002). Foot muscle contained significantly lower lipid levels than viscera indicating that selective storage of lipids occurs in the hepatopancreas/gonad assemblage. Similar observations have been reported by Webber (1970), Mercer et al. (1993) and Nelson et al. (2002), for H. cracheroidii, H. tuberculata and H. discus hannai, and H. fulgens respectively. In conclusion, the dietary value of the macroalgal regimes tested can be divided into three categories based on the growth performances observed: Best obtained with the mixed algal feeding regime, intermediate by using single Ulva rigida or Hypnea spinella feeding regimes and the lowest by Gracilaria cornea. Nevertheless, based on growth performance and nutritional indices, this study clearly demonstrates that the macroalgae produced in a biofiltering system are enriched in dietary protein and lipids and that their nutritional composition is matching the protein, lipid and carbohydrate requirements of abalone resulting in satisfying growth and survival of H. tuberculata coccinea. Results clearly indicate that H. tuberculata coccinea can be efficiently grow-out in an integrated-culture system suggesting that on-farm seaweed-abalone production could be a part of future development of abalone industry in the Canary Islands. 5.4. ACKNOWLEDGEMENTS The authors would like to thank to Dr. D. Montero for his valuable comments on the manuscript. This study has been financed by the Spanish Government in the frame of the National Plan for Development of Marine Cultures (JACUMAR, Oreja de mar) and by the Canarian Government (PI 2007/034). 108 Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands STUDY III: First Development of Various Vegetable-Based Diets and their Suitability for Abalone Haliotis tuberculata coccinea Aquaculture, submitted Study III Aquaculture (2014), submitted First development of various vegetable-based diets and their suitability for abalone Haliotis tuberculata coccínea Reeve M.P. Viera*, G. Courtois de Viçose, L. Robaina, M.S. Izquierdo Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria (ULPGC). Las Palmas, Canary Islands, Spain Abstract To date, European abalone aquaculture relies mostly on locally harvested fresh seaweeds which nutritional quality and abundance varies greatly, hence affecting abalone growth. Abalone artificial diets generally include fishmeal, limiting their utilization in ecologically sustainable aquaculture and affecting abalone quality and acceptance by the consumers. A six month feeding trial was conducted to assess the nutritional value of four different algae: Ulva lactuca (Chlorophyta), Gracilaria cornea (Rhodophyta), Laminaria digitata (Phaeophyta) and Palmaria palmata (Rhodophyta), as ingredients to all-vegetalbased formulated feeds for abalone Haliotis tuberculata coccinea (33.1 ± 0.8 mm and 4.7 ± 0.6 g). A mixed fresh algae diet of G. cornea and U. rigida, reared in an IMTA, served as control. Survival rates were very high (95-98%), regardless of the diet fed. Enriched fresh algae produced a far better growth for H. tuberculata coccinea (169% WG) than all the artificial diets (49-84% WG). Comparison among abalone fed the different formulated diets showed that the inclusion of P. palmata improved growth, condition index and dietary protein utilization. On the contrary, the use of L. digitata markedly reduced the efficiency of dietary protein since the protein-related nutritional index (PER), the percentage of protein deposited in the foot muscle as well as the condition index recorded for animals fed this diet were the lowest, despite a higher feed intake. Large differences were found in the FA profile of fresh algae as compared with the three formulated diets, n-3/n-6 ratio being was much lower in the latter ones and, consequently, in the foot tissues of abalone fed the control diet relative to those fed the formulated ones. The elevated contents of 20:4n-6 in the abalone fed the experimental diets and 20:5n-3 in abalone fed the fresh algae, as well as their respective metabolites, suggest that abalone have the ability to desaturate and elongate LA to ARA and ALA to EPA. Further studies are required to improve the growth obtained with this type of diets, especially concerning the use of different seaweed combinations and inclusion levels, as well as the diet processing methods to improve diets water stability. Keywords: abalone; growth; artificial diets; seaweeds; IMTA Corresponding author: M. P. Viera Phone: (34) 928 132034 E-mail: mapi.viera@giaqua.org Address: Muelle de Taliarte s/n, 35214, Telde, Gran Canaria, Canary Islands, Spain 109 Study III Aquaculture (2014), submitted 6.1. INTRODUCTION The European native abalone species (Haliotis tuberculata spp.) is a highly appreciated European shellfish product in both traditional markets (Mgaya and Mercer, 1994) and novel premium quality abalone ones (Dallimore, 2010). However, its availability is severely restricted due to lack of supplies from both wild resources and aquaculture production. Due to abundance of macro-algae on Western Europe, most European farms grow abalone feeding them locally harvested fresh seaweeds (Fitzgerald, 2008). However, macroalgae nutritional quality and abundance varies greatly according to geographic location and time of sampling (Dawczynski et al., 2007), what greatly influences abalone growth rates, affecting the economic success of the on-growing activity (Bautista-Teruel and Millamena, 1999). Among the different nutrients, abalone requires adequate levels of high quality protein for soft tissue growth (Uki et al., 1985a; Mai et al., 1995a, b; Britz and Hecht, 1997; Bautista-Teruel and Millamena., 1999; Gómez-Montes et al., 2003; Reyes and Fermín, 2003; Viana et al., 2007). The most common protein sources employed in abalone feeds include fishmeal, defatted soybean meal (Guzmán and Viana, 1998; Sales and Britz, 2002; Gómez-Montes et al., 2003; Thongrod et al., 2003; Naidoo et al., 2006; García-Esquivel et al., 2007), casein (Uki et al., 1985b; Viana et al., 1993; Mai et al., 1995b; Sales et al., 2003; Vandepeer and van Barneveld, 2003) and Spirulina spp. (Uki et al., 1985b; Britz et al., 1996a; Bautista-Teruel et al., 2003;Thongrod et al., 2003; Naidoo et al., 2006; Troell et al., 2006). Few novel protein sources have also been tested at low inclusion proportions (Vandepeer et al., 1999, Vandepeer and van Barneveld, 2003; Shipton and Britz, 2001; Sales and Britz, 2002; Reyes and Fermín., 2003). To get advantage of the high nutritional value of algae, algal meals have been occasionally included in abalone feeds (García-Esquivel et al., 2007; Viana et al., 2007), reducing the cost and use of fresh algae. Fishery byproducts such as fish or abalone viscera silage have been also proposed as economic protein sources (Lopez and Viana, 1995; Viana et al., 1996; Rivero and Viana, 1996; Guzmán and Viana, 1998). Besides, different protein sources may be balanced by addition of synthetic amino acids such as methionine, threonine and arginine in order to fulfil the essential amino acid requirements of these species (Mai et al., 1995b; Guzmán and Viana, 1998; Serviere-Zaragoza et al., 2001; García-Esquivel et al., 110 Study III Aquaculture (2014), submitted 2007). Among all the sources tested as a single protein source, fishmeal is the only one that supports good growth performance (Fleming et al., 1996). Studies with cultured abalone have demonstrated that diet can have a significant effect on quality-related factors such as chemical composition, taste, texture and colour (Dunstan et al., 1996; Chiou and Lai, 2002; Allen et al., 2006). In particular, the lipid composition of abalone muscle is markedly affected by the diet (Uki et al., 1986; Dunstan et al., 1996). Moreover, lipids (especially long-chain polyunsaturated fatty acids, PUFA) are essential to determine the flavour and odour of seafoods (Lindsay, 1988). Thus, the use of artificial feeds containing fishmeal could give cultured abalone a much “fishier” flavour than diets containing vegetable sources (Dunstan et al., 1996). Indeed, a way of improving market acceptability and product quality includes feeding abalone on macroalgae immediately prior to sale (Dunstan et al., 1996; Kinkerdale et al., 2010). Moreover, abalone output in Europe is substantially focused on high quality and low volume niche markets, such as organic or eco-certified products, implying that, among other requirements, no fishmeal, pharmaceuticals or fertilizers are used. Hence, developing a vegetal based artificial feed for European abalone, will have marketing benefits not only for consumers, who are increasingly environmentally sensitive, but also for producers, providing them a readily available and more stable nutritional feed, whereas validating the environmental and social sustainability of their farming operations (SUDEVAB, 2007; WWF, 2010). In the wild, abalone consumes a variety of seaweeds, obtaining its required nutrients from a combination of algal species (Sales and Britz, 2001; Dlaza, 2008). These seaweeds are selected mainly according to their abundance and availability in the surrounding area (Nelson et al., 2002). In the case of the European abalone, red algae such as Palmaria palmata and the green ones Ulva spp. are preferred. Nevertheless, other coarser and abundant seaweeds like kelps Laminaria spp,. (Koike et al., 1979; Mercer et al., 1993) are commonly used as a bulk feed in abalone farms(Fitzgerald, 2008; Walsh and Watson, 2011). Earlier studies have shown that fresh P. palmata, Ulva spp. or the rhodophyte Gracilaria spp. have a high dietary value for H. tuberculata spp., (Culley and Peck, 1981; Mercer et al., 1993; Viera et al., 2005, 2011), showing also that mixed diets produced far better growth rates than single-species diets, which is generally accepted for most abalone species (Simpson 111 Study III Aquaculture (2014), submitted and Cook, 1998; Dlaza et al., 2008; Naidoo et al., 2006; Kinkerdale et al., 2010; Robertson-Andersson et al., 2011 ). Therefore, the objective of the present study was to test the nutritional value of the most commonly used fresh abalone feed in Europe: Laminaria digitata (Phaeophyta), Palmaria palmata (Rhodophyta), Ulva lactuca (Chlorophyta) and Gracilaria cornea (Rhodophyta) as alternative ingredients to obtain more sustainable feeds for abalone (Haliotis tuberculata coccinea) production in Europe. 6.2. MATERIAL AND METHODS 6.2.1. Processing of seaweed meals, diets formulation and preparation Fresh G. cornea (G), U. lactuca (U), L. digitata (L) and P. palmata (P) (kindly supplied respectively by the Centro de Biotecnología Marina (CBM-ULPGC), Gran Canaria, Spain; South West Abalone Growers Association (SWAGA), Cornwall, UK; Martin Ryan Institute (MRI), Galway, Ireland and France Haliotis (FRHAL), Brittany, France), were cleaned, washed with freshwater to remove salts and epizoos and oven dried at 35ºC. The dried samples were finely ground using an electric fine mill (sieve size <0.1 mm) and frozen at -80 ºC until analysis. Algal meals were analyzed for nutrient composition and aminoacid profile (Table 23). 112 Study III Aquaculture (2014), submitted Table 23. Proximate and aminoacid composition of seaweed meals used in experimental feeds for abalone H. tuberculata coccinea (%DW) G. cornea U.lactuca L. digitata P. palmata Crude protein 20.3 17.0 8.4 15.0 Crude lipids 2.6 3.5 2.5 2.8 Carbohydrates* 36.3 57.4 65.7 67.5 Ash 40.7 22.1 23.6 14.7 Moisture 10.1 4.2 13.2 11.2 Alanine 8.5 7.2 10.7 7.2 Arginine 6.4 13.4 4.4 6.8 Aspartic 13.2 10.8 12.2 12.4 Cystine 0.0 0.0 15.7 0.8 Glutamic 12.8 13.8 10.1 12.4 Glycine 6.9 6.2 4.3 6.3 Histidine 2.6 1.4 2.9 2.1 Isoleucine 4.1 4.6 3.5 4.3 Leucine 6.7 7.4 5.7 6.8 Lysine 5.6 3.7 4.4 5.7 Methionine 1.9 2.4 2.0 2.4 Phenylalanine 5.1 4.8 3.5 4.6 Proline 4.9 4.4 4.0 5.0 Serine 5.7 5.3 3.8 5.2 Threonine 5.2 4.6 4.1 4.6 Tryptophan 1.2 0.9 1.5 2.9 Tyrosine 3.2 3.1 2.7 4.2 Valine 6.2 6.0 4.5 6.2 Amino acids * Calculated by difference (AOAC. 2005) 113 Study III Aquaculture (2014), submitted Based on these meals, three diets were formulated to contain 35% protein, 17% of which was contributed by the different selected seaweeds meals: U and G; U, G and L and U, G and P (Tables 23 and 24). The remaining protein and energy contents were supplied by soybean meal, corn gluten meal, spirulina and starch, such that each experimental diet had a similar lipid content (4%) and total energy (4kcal g1 ). These inclusion levels have been reported by Britz and Hetch (1997), Viana et al. (2007) and Viera et al. (2011) as being optimal for abalone growth. Vitamin and mineral mixtures were used as recommended by Uki et al. (1885a). All the experimental diets were supplemented with synthetic L- methionine and lysine in order to match the amino acid profile of abalone muscle which was used as a guide to formulate the amino acid composition of the practical diets. Sodium alginate, which has been suggested to increase protein efficiency when feeding with seaweed (Kemp and Britz, 2012) was used as binder (Table 24). Experimental diets were prepared by mixing pre-weighed finely ground ingredients including vitamins and minerals to produce a homogeneous mixture. The diets were then processed through a pasta machine (Parmigiana, RV3, Italia) into 2 mm thick strips from which 0.5 x 0.5 pieces were cut dried at 38ºC for 24 h and stored at 4ºC until use. A mixed fresh algae diet of G. cornea and U. rigida served as control. Seaweeds were reared within the Grupo de Investigación en Acuicultura (GIA, Canary Islands, Spain) aquaculture research facility, in a flow-through integrated system collecting wastewater from fish and abalone ponds in a macroalgal biofilter (Viera et al., 2014). Experimental and control diets were sampled for proximate composition. The algal samples were processed as indicated above and artificial diets were held under the same conditions as algal samples until analysis. All the diets were tested for their stability in seawater under the same conditions as the feeding experiment in tanks without abalone, by measuring the loss of dry matter of pellets after 17 h of immersion (16:00-9:00) and of natural diet for a 3-days period. 114 Study III Aquaculture (2014), submitted Table 24. Ingredients of the three experimental diets for abalone H. tuberculata coccinea (DW basis) Experimental diets1 Ingredients UG UGL UGP G. cornea 16 16 16 U. lactuca 27 15 15 L. digitata - 12 - P. palmata - - 12 2 2 2 22 22 22 18 18 18 2 Spirulina Soybean meal 3 Corn gluten4 Starch 5 4 4 4 6 2.5 2.5 2.5 Mineral mix6 Vitamin mix 1.5 1.5 1.5 7 1.35 1.35 1.35 7 0.65 0.65 0.65 5 5 5 Lys Met Na alginate 1 UG: U. lactuca + G. cornea; UGL: U. lactuca + G. cornea + L. digitata; UGP: U. lactuca + G. cornea + P. palmata. 2 50.8% protein, 9.2% lipid. 3 48.2% protein, 3.6% lipid 4 78.3% protein, 6.3% lipid 5 8.4% protein, 4.7% lipid.α cellulosa. Sigmabrand 6 Uki et al.. 1985a 7 Sigma (UK) 6.2.2. Abalone and experimental procedure Three hundred and sixty (30/replicate) 1-year-old H. tuberculata coccinea individuals with an average shell length and weight of 33.1 ± 0.8 mm and 4.7 ± 0.6 g respectively, were selected from the experimental hatchery production unit of GIA. Animals were blot dried, weighed to the nearest 0.1 mg (total fresh body weight: TFBW), measured with manual caliper with 0.1 mm accuracy (total shell length: SL) and distributed among triplicates in a flow-through system. The experimental unit 115 Study III Aquaculture (2014), submitted consisting of a plastic bucket (15x16cm), hung in a 100-l rectangular tank (100x40x25cm) filled with seawater provided with constant aeration. Water flowed at 2.8 l/min and two PVC shelters were provided in each container. Water temperature ranged between 22.6-24.5ºC and abalones were subjected to a natural photoperiod of approximately 12 h L / 12 h D. Animals were conditioned on the test diets for two weeks before data collection begun. The feeding trial was run for 176 days and dead abalones were daily recorded. Artificial feeds were offered once daily (ad libitum) in the evening from Monday to Saturday. Any remaining diet was collected every day at 9:00 h. except Sunday, by manually siphoning uneaten feed from tanks. Consumption was estimated on a dry weight basis by relating the dry weight of the uneaten food to the known dry weight of the feed provided. Consumption data were corrected for dry matter weight loss attributable to leaching, by allowing the diets to leach over a 17-hperiod (16:009:00h) using a “control” rearing unit without abalone, and drying the remaining diet until constant weight. To guarantee ad libitum feeding in the control diet, fresh algae were supplied well in excess twice a week. To determine control feed intake, freshly collected algae to be fed to the abalone were blotted dry and accurately weighed as well as the remaining algae every third day. The weight of unconsumed food was deducted from the total weekly ration. Besides, weight of uneaten algae was corrected by calculating the natural change in weight of the algae in the control units during the same feeding period. The average daily intakes by individual abalone during the entire feeding trial were calculated by dividing the algal biomass eaten each week by the feeding days and the number of abalones in each experimental unit. SL and TFBW of each animal were monthly recorded. Abalone growth rates (growth rate day-1), as well as the following indices, were calculated for all treatments at the end of the trial: Shell growth rate (μm d-1) = (SL2-SL1) / days of culture x 1000 Specific growth rate, SGR (%d-1) = (LnW2-LnW1) / days of culture x 100 Weight gain, WG (%) = ((W2-W1) / W1) x 100 Feed conversion ratio, FCR = total feed intake (g dry) / total weight gain (g wet) 116 Study III Aquaculture (2014), submitted Protein efficiency ratio, PER = (increase in body wet weight (g)) / (protein intake (g)) where L1 is the initial mean length of animals; L2 is the final mean length of animals; W2 is the weight at time t (days of culture), and W1 is the initial weight. Besides, six abalones were collected from each experimental unit, and the soft tissue was shucked from the shell. Shell and meat were then weighed separately in order to calculate the condition index (wet weight of soft flesh/wet weight of shell. SB/S in W/W) as an indicator of the abalone nutritional status.Abalone tissues were also sampled and frozen at -80 ºC until analysis. 6.2.3. Proximate, amino and fatty acid analysis Homogenized samples of the seaweed meals, formulated diets, fresh algae and abalone (visceral mass and foot muscle) were analyzed in triplicate for nutrient composition. Amino acid was done on each experimental seaweed meal using an HPLC amino acid analyzer. Protein content was determined by Kjedahl method according to AOAC (2005) standard analyses. Total lipids were extracted with chloroform–methanol (2:1) as described by Folch et al. (1957). Fatty acids in the lipid extracts were transesterified to methyl esters (FAMEs) with 1% sulphuric acid: methanol complex (Christie, 1982). FAMEs samples were extracted into hexane and stored at -80ºC. Fatty acids were analyzed in a Thermo Finnigan- GC Focus gas chromatograph equipped with a flame ionization detector (260ºC). FAMEs were separated with capillary column (Supercowax 28m x 0.32mm x 0.25 i.d.) using helium as the carrier gas under the conditions described by Izquierdo et al. (1989). Fatty acids of the experimental and control diets and abalone were also analyzed. The dry matter was determined by drying at 110ºC until constant weight (AOAC, 2005). Ash content was determined by incinerating samples at 600ºC for 24 h (AOAC, 2005). 117 Study III Aquaculture (2014), submitted 6.2.4. Statistical analysis All data were tested for normality and homogeneity of variance. Means and standard deviations (SD) were calculated for each parameter measured. At the end of the trial, proximate composition of abalones, survival, growth performance and nutritional indices were calculated and statistically treated by one-way ANOVA and Tukey’s test was applied for multiple comparisson of means at a 5% significance level (P< 0.05). All statistical analyses were applied using the Statgraphics Plus 5.1 (MANUGISTIES, Rockville, Maryland, USA) software. 6.3. RESULTS 6.3.1. Nutritional composition of diets and water stability Proximate composition and caloric content of the formulated diets correspond well to the intended compositions and levels based upon the dietary formulations (Table 24). All artificial diets were isoproteic, containing approximately 35% crude protein, and isocaloric with similar gross energy values and protein: energy (PE) ratios. However, nutritional composition and caloric content varied between artificial feeds and fresh algae, protein values and PE ratios being higher in formulated feeds as compared to those of the control treatment, whereas the fresh algae showed higher carbohydrate than that of the experimental ones. No differences were observed in gross energy, lipid and ash contents among fresh algae and formulated diets (Table 25). After 17h of immersion in seawater, pellets stability ranged between 58-73%, diet UGL being 7-15% more water stable than other two artificial diets (Table 25). 118 Study III Aquaculture (2014), submitted Table 25. Proximate analysis of the fresh algae or experimental diets containing different algal species (%DW) Experimental diets2 Fresh algae1 UG UGL UGP 21.03±5.8 34.9 35.1 35.4 Crude lipid 5.3±1.5 4 4.1 3.9 Carbohydrates3 46±3.5 36.4 37.7 40.3 27.6±7.1 24.7 23.1 20.4 Moisture 83.3±3 20.6 16.2 19.3 GE (Kcal g-1)4 3.6±0.4 3.8 3.9 4 58.3±10.6 91.8 90.0 88.5 91.9 65.7 72.7 57.8 Crude protein Ash Protein : energy ratio5 % Water stability6 1 Fresh algae used: G. cornea and U. rigida reared in GIA integrated fish-seaweed culture system (n=4) 2 UG: U. lactuca + G. cornea; UGL: U. lactuca + G. cornea + L. digitata; UGP: U. lactuca + G. cornea + P. palmata. 3 Calculated by difference (AOAC, 2005) 4 Calculated gross energy (Cho et al., 1982). 5 Calculated metabolisable energy (Cho et al., 1982) 6 Water stability of fresh algae was calculated for a 3-days period and of pellets for 17 h of immersion (16:00-9:00) 6.3.2. Fatty acid composition of diets Large differences were found in the FA profile of fresh algae as compared with the three formulated diets (Table 26). Linoleic acid (18:2n-6) was 15 times more abundant in formulated diets than in fresh algae. On the contrary, formulated diets were lower in 16:0 and 16:1n-7 than in the fresh G. cornea and U. rigida. Subsequently, the n-3/n-6 ratio was much lower in formulated diets. Differences in FA profiles between formulated diets were less pronounced than those between fresh algae and practical diets. Both control and formulated diets presented very low levels 119 Study III Aquaculture (2014), submitted of eicosapentanoic acid (EPA) 20:5n-3 and docosahexaenoic acid (DHA) 22:6n-3 (Table 26). Table 26. Fatty acid composition (% total fatty acids) of the fresh algae or experimental diets containing different algal species* Experimental diets* FA 14:0 16:0 17:0 18:0 ∑SFA** 14:1n-5 16:1n-7 16:1n-5 18:1n-9 18:1n-7 20:1n-9 ∑MUFA*** 16:2n-4 16:3n-3 16:3n-1 16:4n-3 18:2n-6 18:2n-4 18:3n-3 18:4n-3 20:4n-6 20:3n-3 20:5n-3 22:5n-3 22:6n-3 ∑PUFA**** Others***** ∑n-3 ∑n-6 n-3/n-6 Fresh algae 2.6 40.5 0.9 0.9 44.9 2.2 9.0 0.6 3.4 6.6 0.2 22.0 0.8 1.5 0.6 2.7 0.8 3.7 3.0 1.2 13.5 2.4 1.0 0.3 31.5 1.6 25.9 3.9 6.7 UG UGL UGP 0.9 22.8 0.2 2.8 26.6 0.3 1.3 0.3 12.5 2.9 0.5 17.8 0.2 0.6 0.1 44.9 1.5 4.0 0.7 0.1 0.8 0.5 0.2 0.6 54.2 1.4 6.9 45.0 0.2 1.0 21.5 0.1 2.3 25.0 0.2 1.1 0.2 12.7 1.8 0.5 16.6 0.1 0.3 46.3 1.5 4.0 1.0 0.2 1.8 1.1 0.1 0.3 56.7 1.7 8.3 46.5 0.2 1.3 23.4 0.1 2.7 27.5 0.2 1.0 0.3 12.6 2.0 0.5 16.5 0.2 0.4 0.1 45.6 1.6 3.9 0.5 0.1 0.7 0.7 0.1 0.5 54.3 1.7 6.4 45.8 0.1 * UG: U. lactuca + G. cornea; UGL: U. lactuca+ G. cornea + L. digitata; UGP: U. lactuca+ G. cornea + P. palmata. ** SFA, saturated fatty acids. *** MUFA, monounsaturated fatty acids. **** PUFA, polyunsaturated fatty acids. ***** Other includes all components <0.5%:15:0,16:(2n-6), 18:(1n-5), 20:0, 20:(2n-6), 20:(4n-3), 22:(1n-9). -, not detectable. 120 Study III Aquaculture (2014), submitted 6.3.3. Abalone survival and growth Survival rates were very high (95-98%), regardless of the diet fed. In general, fresh algae produced a far better growth for H. tuberculata coccinea (169% WG) than all the other experimental diets (49-84% WG) (Table 27). Comparison among abalone fed the different formulated diets showed that growth was improved by the inclusion of P. palmata, whereas the lowest growth was obtained by the inclusion of L. digitata. Hence, at the end of the trial, animals fed diet UGP displayed the highest shell growth rate, specific growth rate and weight gain, whereas those fed diet UGL showed the lowest values (Table 27). 6.3.4. Feed intake, feed utilization and condition index Regarding consumption, there was a significantly (P<0.05) higher feed intake of the fresh algae, followed by diets UGL, UG and UGP (Table 26). In relation to nutritional indices performances, except with UG and UGP diets, there were significant differences among all diets for food conversion ratio (FCR), the highest and lowest values recorded for abalone fed diet UGL and the fresh one, respectively. Similarly, the trends in protein efficiency ratio (PER) were similar to those of FCR, being better in animals fed fresh algae and worse in those fed diet including L. digitata meal (Table 28). Regarding condition index, the lowest SB/S ratios (2.6) resulted from feeding diet UGL, which produced the poorest growth performance, whereas there were no significant differences among the rest of the treatments (3.03.1) (Table 28). 121 Aquaculture (2014), submitted 98.3±2.4 98.3±2.4 95±2.4 UG UGL UGP 33.1±0.1 33.1±0.0 33.1±0.1 33.1±0.1 Initial size (mm) 62.8±4.9a 27.3±0.8bB 21.1±1.5bC 31.9±0.7bA 37.9±0.1bA 36.9±0.4bB 38.7±0.1bA (μm d-1) Shell growth rate 44.2±0.9a Final size (mm) 4.7±0.0 4.7±0.2 4.7±0.2 4.7±0.2 Initial weight(g) 8.5±0.1bA 6.9±0.1bC 7.8±0.1bB 12.6±0.8a Final weight (g) 0.34±0.1bA 0.22±0.0cB 0.27±0.0bcAB 0.56±0.0a SGR (%d-1) 83.8±7.2bA 48.4±0.8bB 61.6±6.2bAB 168.8±15.4a Weight gain (%) 122 * Low case letters indicate significant differences among feed treatments including fresh algae, whereas upper case letters indicate differences only among formulated feeds, P< 0.05. UG: U. lactuca + G. cornea; UGL: U. lactuca + G. cornea + L. digitata; UGP: U. lactuca + G. cornea + P. palmata 97.8±3.8 (%) Survival Fresh algae Treatment containing different algal species * (Mean ± S.D.) Table 27. Survival and growth performance of abalone H. tuberculata coccinea fed for 6 months algae (fresh algae) or experimental diets Study III Study III Aquaculture (2014), submitted Table 28. Consumption, feed efficiency and condition index of abalone H. tuberculata coccinea fed for 6 months algae (fresh algae) or experimental diets containing different algal species* (Mean ± S.D.) Treatment Feed intake (mg ind-1d-1) FCR PER SB/S Fresh algae 86.4±4.1a 2±0.2c 2.4±0.2a 3.1±0.3a UG 68.2±0.9bB 4.1±0.4bB 0.7±0.1bAB 3.1±0.1aA UGL 73.9±0.0bA 6±0.1aA 0.5±0.0bB 2.6±0.2bB UGP 65.2±2.5bB 3.2±0.4bB 0.9±0.1bA 3.0±0.1aA UG: U. lactuca + G. cornea; UGL: U. lactuca + G. cornea + L. digitata; UGP: U. lactuca + G. cornea + P. palmata * Low case letters indicate significant differences among feed treatments including fresh algae, whereas upper case letters indicate differences only among formulated feeds, P< 0.05. 6.3.5. Effect of diets on the general and fatty acid composition of animals Nutritional analysis revealed that, except for moisture content, foot muscle composition of H. tuberculata coccinea was significantly (P<0.05) affected by the dietary treatments, whereas viscera composition did not differ significantly within the feeding regimes (Table 29).The percentage of protein deposited was significantly (P<0.05) the highest in abalone fed diet containing P. palmata meal (UGP), followed by those fed fresh algae, and the lowest in those fed diet UGL. Overall, foot muscle contained much lower lipid levels (5-7%) than viscera (19-20%), whereas the latter showed much lower protein content. Abalone fed control diet showed the significantly (P<0.05) lowest lipid levels stored in the foot muscle, the highest being found in those fed diet UGL. Carbohydrate content in foot muscle was significantly highest in animals fed diet UGP than that of abalone fed the rest of the feeding regimes. Ash content was generally lower in animals fed fresh algae than that of abalone fed the formulated diets (Table 29). 123 Study III Aquaculture (2014), submitted Fatty acid profiles of the H. tuberculata coccinea foot tissues are summarised in Table 30. The proportion of total saturated (41-49%), total monounsaturated (2529%) and total polyunsaturated (22-29%) fatty acids were remarkably similar among all abalone tissues samples (both viscera and muscle). Palmitic acid (16:0) was the major fatty acid in all tissues (29-34%). Other prominent FA included 18:0.18:1n-9 and18:1n-7 (Table 30). Abalone fed the practical diets showed accumulations of linoleic acid (LA. 8-9%) in the foot muscle and elevated levels of its chain-elongation product 20:2n-6 (3%) compared with the tissues of abalone fed fresh macroalgae (3% LA and 0.2% 20:2n-6 respectively) (Table 30). In agreement with the dietary levels, foot tissues of abalone fed fresh algae presented remarkably higher levels of n-3 fatty acids, including 20:3n-3, 20:4n-3, 22:5n-3, and specially, eicosapentanoic acid (EPA) 20:5n-3 (3.2-5%) compared with those showed by abalone fed artificial diets (0.81.7%). Abalone fed all diets showed elevated levels of ARA relative to their feeds. For all treatments, the proportion of ARA was higher in the foot muscle than in the viscera, resulting in relatively higher ARA: EPA ratio in the foot, being also higher in abalones fed artificial diets relative to those fed the control one. Docosahexaenoic acid (DHA) (22:6-n-3) was a minor FA (<1%) in all samples. 124 Aquaculture (2014), submitted 70.2±0.1 72.9±0.6 71.1±2.2 UG UGL UGP 72.4±0.9 72.8±0.1 73.1±0.4 71.9±0.8 Muscle 58.3±2 57.1±2.2 56.8±2.4 57±1.4 Viscera Viscera 19.2±1.1 19.8±0.0 20.2±1.5 20.4±2.4 74.6±0.2b 73.7±0.5bc 72.3±0.6c 80.7±0.1a 5.7±0.2b 6.8±0.3a 6.2±0.0ab 4.6±0.1c Muscle Crudelipid Muscle Crudeprotein 12.3±2.8 12.9±2.8 15.3±2 15.8±1.2 Viscera 6.8±0.3b 14.5±0.8a 13±0.2a 15.1±0.7a Muscle Carbohydrate 125 UG: U. lactuca + G. cornea; UGL: U. lactuca + G. cornea + L. digitata; UGP: U. lactuca + G. cornea + P. palmata. 70.0±0.9 Viscera Moisture Fresh algae Diets P< 0.05) 9±1.7 9.9±1.1 8.2±0.4 8±0.9 Viscera Ash 6.7±0.1ab 6.4±0.1ab 7±0.2a 5.7±0.5b Muscle diets containing different algal species*(g/100 g DW) (Mean ± S.D.) (Values in the same column with different letters are significantly different. Table 29. Proximate composition of viscera and muscle of Haliotis tuberculata coccinea fed for 6 months algae (fresh algae) or experimental Study III Study III Aquaculture (2014), submitted Table 30. Fatty acid composition (% total fatty acids) of the abalone tissues of Haliotis tuberculata coccinea fed for 6 months fresh algae or experimental diets containing different algal species* Experimental diets* FA 14:0 15:0 16:0 18:0 20:0 ∑SFA** 16:1n-7 18:1n-9 18:1n-7 20:1n-9+n-7 20:1n-5 22:1n-11 22:1n-9 ∑MUFA*** 18:2n-6 18:3n-3 18:4n-3 20:2n-9 20:2n-6 20:3n-6 20:4n-6 20:3n-3 20:4n-3 20:5n-3 22:4n-6 22:5n-3 22:6n-3 ∑PUFA**** Other***** ∑n-3 ∑n-6 n-3/n-6 ARA/EPA Fresh algae UG Viscera Muscle Viscera Muscle 5.3 0.9 31.0 3.6 4.0 44.8 2.8 10.1 11.8 1.2 0.5 1.2 0.1 27.6 2.7 4.6 2.2 0.3 0.6 0.3 5.2 0.6 1.3 5.1 0.2 3.1 0.5 26.8 0.8 17.4 9.1 1.92 1.0 2.0 1.7 34.4 10.0 48.1 1.5 7.5 10.3 4.2 0.5 0.3 0.4 24.8 3.3 2.9 1.4 0.1 0.2 0.1 8.2 0.1 0.3 3.2 0.3 4.6 0.2 24.9 2.3 12.6 12.1 1.04 2.6 4.6 0.5 32.3 4.0 3.2 44.6 2.1 15.5 8.6 1.9 0.3 0.2 0.1 28.8 13.0 1.0 0.6 5.0 2.8 0.2 1.0 1.3 0.6 25.9 0.7 2.8 22.6 0.12 2.8 UGL 2.6 0.9 30.9 10.7 45.1 1.7 11.6 5.8 3.2 1.8 0.4 0.5 25.0 9.2 0.8 0.1 3.3 0.5 8.1 0.2 0.1 1.7 1.4 2.3 0.6 28.4 1.5 5.8 22.6 0.26 4.8 Viscera 4.1 30.1 4.1 3.2 41.5 1.7 15.1 7.4 2.5 0.2 0.4 0.2 27.6 16.4 1.1 0.1 0.8 4.1 0.6 3.5 0.1 1.2 1.0 0.4 29.2 1.7 2.8 25.6 0.11 3.1 UGP Muscle Viscera 3.1 0.9 32.1 11.0 47.1 2.0 12.5 5.6 3.1 1.9 0.5 0.5 26.2 8.5 0.7 0.1 2.8 0.3 6.7 0.1 0.1 1.6 1.2 1.7 0.5 24.0 2.7 4.9 19.1 0.25 4.1 4.7 29.5 4.6 3.0 41.8 1.8 14.1 7.2 2.5 0.3 1.2 0.3 27.5 15.7 1.0 0.1 07 4.1 0.6 3.2 0.1 0.1 1.6 0.9 1.1 0.2 29.4 1.4 4.2 24.5 0.17 2.0 Muscle 3.2 1.1 33.7 10.6 48.6 1.6 11.6 6.5 3.6 1.6 0.6 0.6 26.1 8.6 0.6 0.1 2.7 0.4 6.2 0.1 0.8 1.1 1.2 0.2 21.6 3.7 3.0 18.6 0.16 7.9 * UG: U. lactuca + G. cornea; UGL: U. lactuca + G. cornea + L. digitata; UGP: U. lactuca + G. cornea + P. palmata. ** SFA, saturated fatty acids. *** MUFA, monounsaturated fatty acids. **** PUFA, polyunsaturated fatty acids.***** Other includes all components <0.5%: 14(1n-7), 14(1n-5), 16:0ISO, 16:(1n-5), 16:(2n-6), 17:00, 16:(3n-4), 16:(3n-3), 18:(1n-5), 18:(3n-6), 18:(3n-4), 20:(1n-5). – not detectable. 126 Study III Aquaculture (2014), submitted 6.4. DISCUSSION Compound feeds have been reported to outperform fresh algae diets in abalone culture (Viana et al., 1993; Britz, 1996b; Corazani and Illanes, 1998; Bautista-Teruel and Millamena. 1999; Coote et al., 2000). In those studies, the low protein content and less balanced amino acid profile of the seaweed could not be sufficient to support abalone rapid growth, suggesting a high requirement of good quality protein in this species. Moreover, it has been suggested that this could be the reason of such a long time to get abalone to marketable size (2-5 years) using macroalgae (Hahn, 1989; Robertson-Andersson, 2003; Johnston et al., 2005). However, in the present study, feeding the fresh algae resulted in maximum growth of abalone, indicating the high dietary value of the macroalgae reared in the IMTA. Indeed, the type of macroalgae consumed can significantly affect abalone growth offering different proportions of their nutrients requirement. The good growth performance attained for these large abalones fed enriched seaweeds in the present study (169±15% WG) seems to be explained, not only by the high protein content of the macroalgae produced under the high nitrogen culture conditions of the biofilter system (Boarder and Shpigel, 2001; Viera et al., 2005, 2011; Naidoo et al., 2006; Roberstson-Andersson et al., 2006, 2011), but also by the rest of their nutrients composition and energy content, which matched abalone nutritional requirements (Fleming et al., 1996; Jackson et al., 2001; McBride et al., 2001; Sales and Janssens, 2004). Besides, the combination of both red and green algae species, each one with the typical biochemical composition of its phylum (Li et al., 2002; Dawczynski et al., 2007; Kinkerdale et al., 2010), may have a complementary effect to fulfil the micronutrient requirements of abalone, contributing to the good growth rates obtained. In fact, abalone fed mixed algal regimes, have been reported to perform significantly better than those fed with a single algal diet (Mercer et al., 1993; Dlaza, 2008; Naidoo et al., 2006; Roberstson-Andersson et al., 2011; Viera et al., 2011). Analysis of the proximate composition of the compound diets showed no differences in protein, lipid, gross energy values, protein:energy (PE) ratios and only a small difference in carbohydrates content, all of them being also within the limits recommended for several abalone species (Fleming et al., 1996; Jackson et al., 2001; McBride et al., 2001). In comparing the artificial treatments, abalone growth was influenced by the type of seaweed meal incorporated into its diet. Animals fed diet containing P. 127 Study III Aquaculture (2014), submitted palmata as specific seaweed meal, performed better than the others and, particularly, those fed diets containing L. digitata. These results agree well with those obtained by Mercer et al. (1993) and Mai et al. (1995a, 1996) who reported the best performance on close European ormer, H. tuberculata fed P. palmata and the lowest on those fed L. digitata and L. sacharina. SGR values in this study (0.2-0.3%) were higher than in abalone H. roei fed various compound diets as reported by Boarder and Shpigel (2001), who found SGR values of 0.1 %, under similar experimental conditions. However, growth rates (21-32μm day-1) were generally lower (21-56μm day-1) than those obtain by Britz and Hetch (1997) in similar size H. midae fed with fish mealbased diets containing different proportions of protein and energy. Previous studies have shown that abalone fed formulated diets based on animal protein sources or a combination of plant and animal protein ones, yield better growth rates than those fed diets with protein sources of plant origin only (Britz, 1996b; Viana et al., 1996; Boarder and Shpigel, 2001; Bautista-Teruel et al., 2003). In agreement, Dlaza et al. (2008) reported the poorest performance (27μm day-1) of post-weaning abalone H. midae when fed an all-seaweed-based formulated feed compared to that recorded for those fed several fishmeal-based protein diets (46-61 μm day-1), claiming that seaweed proteins were less readily absorbed than animal based protein. Laminaria digitata including diet (UGL) was found to be water stable retaining at 73% of dry matter after the 17 h test for stability. However, diets UG and UGP leached a considerable proportion of their dry matter (34-42%), indicating low diet water stability, when compared with other compound diets (17-25-%, Jackson et al., 2001; 35-37%; Bautista- Teruel et al., 2003). This could be related to the higher moisture content of the former (19-20%) related to those previously tested (9-12%, Bautista-Teruel and Millamena, 1999; Jackson et al., 2001). Despite diet UGL showed the highest water stability, it also provided the lowest growth performance, whereas the one including P. palmata with the lowest water stability, produced the highest growth. Moreover, feed intake was also highest in abalone fed UGL, whereas protein deposition and the protein-related nutritional index (PER) were lowest. Thus, dietary inclusion of Laminaria digitata, despite it did not negatively affected feed water stability, feed intake or dietary protein or essential aminoacid contents, significantly reduced dietary protein efficiency, suggesting a reduction in protein digestibility that could be partly responsible for the low growth obtained. Indeed, 128 Study III Aquaculture (2014), submitted brown algae are reported to be digested more slowly than red algae for several abalone species (H. midae, Day and Cook, 1995; H. rubra, Foale and Day, 1992). Nevertheless, this growth and PER reduction could be also related to an specific leaching of dietary proteins even though dry matter leaching was low, as suggested by other authors (Viana et al., 1996; Edward and Cook, 1999; Jackson et al., 2001). Animals fed fresh macroalgae ate significantly more than animals fed practical diets. This result could be due to the significantly lower PE ratio of the fresh algae related the artificial feeds, since feed intake is the main compensatory mechanism of herbivorous animals to satisfy energy requirement and being protein and carbohydrate, rather than lipid, the principal energy sources in abalone (DurazoBeltrán et al., 2004; Viana et al., 2007). Additionally, previous investigations have demonstrated that dietary protein source may affect feed consumption in Haliotids (Uki and Watanabe, 1986; Viana et al., 1994), hence different attractiveness and palatability between fresh algae and artificial diets could have also affected consumption. The food conversion ratio (FCR) attained for the control treatment, agrees well with those obtained previously for this (H. tuberculata coccinea, Viera et al., 2005, 2011) and other abalone species fed macroalgae (H. asinina, Kunavongdate et al., 1995; H. discus hannai and H. tuberculata, Shpigel et al., 1999). However, FCR (3-6) obtained for abalone fed formulated diets were higher than reported values (0.7- 1.8; Britz, 1996b; Shipton and Britz, 2001; Bautista-Teruel et al., 2003; GarcíaEsquivel et al., 2007), probably due to the loss of unconsumed feed that could not be recovered during the study. Thus, some unconsumed or rasped pellets could have broken up and drained out of the tank. Similar observations and even higher FCR results (3-13) have been reported for H. asinina fed formulated diets (Reyes and Fermin, 2003; Thongrod et al., 2003). In the present study, PER was significantly better in abalone fed fresh algae, hence, suggesting a higher protein utilization efficiency. However, the CI (SB/S) of animals reared on fresh macroalgae was similar to those of animals fed diets UG and UGP, indicating that all of them produced healthy animals of a high product quality. Moreover, protein deposition being higher in animals fed UGP and similar in those fed UG, related to that obtained with fresh algae, further indicate the good protein quality of those diets, as tissue deposition cannot occur unless the requirements for essential amino acids are met (Durazo-Beltrán et al., 2003). CI values (2.6-3.1) were 129 Study III Aquaculture (2014), submitted similar and even higher than those recorded for Viera et al. (2011) for this specie (2.43.3) or by Mai et al. (1995a) for H. tuberculata (1.8-2.1) and H. discus hannai (2-2.4) fed with P. palmata and various levels of dietary lipids or by Sales et al. (2003) for H midae (2.9-3.2) fed different dietary crude protein level. Total lipid in the foot muscle were relatively low in agreement to their natural diets and to previous reports on both wild and cultured abalone (Nelson et al., 2002; Durazo-Beltrán, et al., 2004; Grubert et al., 2004). Abalone seem very efficient in assimilating lipids from their diets and, thus, diets with only 3-5% lipid have been recommended to promote high growth rate of abalone (Fleming et al., 1996; BautistaTeruel and Millamena, 1999; Shipton and Britz, 2001; Johnston et al., 2005; Green et al., 2011).Viscera contained much higher lipid levels than muscle in agreement with previous studies (Webber, 1970; Mercer et al.,1993; Nelson et al., 2002; Viera et al., 2011), and denoting the lipid storage function of HG (Uki et al., 1986b; Dunstan et al., 1996). In Haliotids, lipids are essential nutrients for growth and gonad maturation, but not a primary source of energy (Nelson et al., 2002). Moreover, muscle in the abalone foot is a major energy consumer due to daily movements and strong shell adhesion properties, free aminoacids playing an important role in rapid energy production for shell adhesion, while the energy for slow locomotion mainly comes from carbohydrates (Mercer et al., 1993). Overall, FA results for H. tuberculata coccinea in the present study were similar to those for the foot muscle of H. laevigata and H. rubra (Dunstan et al., 1996; Grubert et al., 2004), H. asinina (Jackson et al., 2001; Thongrod et al., 2003) and H. fulgens (Nelson et al., 2002; Durazo-Beltrán et al., 2004) fed macroalgae and /or artificial diets, where the main FA were 16:0, 18:0, 18:1n-7, 18:1n-9, 18:2n6,18:3n-3,20:4n-6, 20:5n-3 and 22:5n-3, and may reflect biochemical and dietary similarities of wild-caught representatives from Haliotidae. However, abalone fed fresh algae showed higher levels of n-3 fatty acids, specially, EPA 20:5n-3 in comparison to abalone fed formulated diets. The main PUFA in the formulated diets were n-6, while those in fresh algae were the more highly unsaturated n-3 PUFAs. Similarly, the ratio of n-3/n-6 was higher in the foot tissues of abalone fed fresh algae relative to those fed formulated diets, hence reflecting not only the composition of the diets (Uki et al., 1986b; Dunstan et al.,1996; Nelson et al., 2002) but also their highest nutritional value, since growth enhancement of H. tuberculata L. appeared to depend 130 Study III Aquaculture (2014), submitted largely on n-3 PUFA, mainly 20:5n-3 and 18:3n-3 playing an important role in accelerating the growth of this species (Mai et al., 1996). In relation to the dietary levels, the elevated contents of 20:4n-6 in the abalone fed the experimental diets and 20:5n-3 in abalone fed the fresh algae, as well as their respective metabolites 20:2n-6, 20:3n-6, 20:4n-3, suggest that abalone have the ability to desaturate and elongate LA to ARA and ALA to EPA. This conversion of C18 PUFA to the C20 and C22 PUFAs they require, is present in many marine invertebrates including other Haliotis species, these herbivorous marine animals converting much more efficiently than carnivorous ones (Uki et al., 1986). Both control and formulated diets as well as all abalone tissues presented very low levels of DHA 22:6-n3 (Mai et al., 1996; Dawczynski et al., 2007; Viera et al., 2011; Courtois de Viçose et al., 2012a), indicating that the composition of abalone is quite different to that of other marine animals, which have this fatty acid as one of the main tissue essential PUFA. Furthermore, it has been suggested that abalone are unusual compared with other marine animals in the importance of DPA rather than DHA (Viana et al., 1993; Dunstan et al., 1996). In summary, this study has shown that feeding H. tuberculata coccinea with seaweeds based diets without fishmeal inclusion resulted in high survival and good dietary protein utilization. The inclusion of P. palmata in these types of diets is recommended to improve growth, condition index and dietary protein utilization. On the contrary, the use of L. digitata should be avoid, at least in the level included in the present study, since markedly reduced growth performance and increased conversion index, reducing the efficiency of dietary protein. Further studies are required to improve the growth obtained with this type of diets, especially concerning the use of different seaweed combinations and inclusion levels, as well as the diet processing methods to improve stability. 6.5. ACKNOWLEDGEMENTS The authors especially thank Dr. J.L. Gómez-Pinchetti from Centro de Biotecnología Marina, A. Fitzgerald, from South West Abalone Growers Association, Dr. A. Soler from Martin Ryan Institute and Dr. S. Huchette from France Haliotis, who kindly supplied the macroalgae experimental meals. This study has been 131 Study III Aquaculture (2014), submitted financed by the FP 7-SME-2007-1/BSG-SME. Project Sustainable Development of European SMEs engaged in Abalone Aquaculture – (SUDEVAB). 132 Development of a Sustainable Grow-out Technology for Abalone Haliotistuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands STUDY IV: Grow Out Culture of Abalone Haliotis tuberculata coccinea reeve, fed land-based IMTA produced Macroalgae, in a combined Fish/Abalone Offshore mariculture system: effect of stocking density Aquaculture Research DOI: 10.1111/are. 12467 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 Grow out culture of abalone Haliotis tuberculata coccinea Reeve, fed landbased IMTA produced macroalgae, in a combined fish/abalone offshore mariculture system: effect of stocking density María del Pino Viera, Gercende Courtois de Viçose, Hipólito Fernández-Palacios & Marisol Izquierdo Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria (ULPGC). Las Palmas, Canary Islands, Spain Abstract Haliotis tuberculata coccinea has been identified as a target species for European aquaculture development, in order to fulfil the rising demand for abalone. The effects of different stocking densities on the growth performance, feed utilization and survival of two different initial size groups (30 and 40 mm) of abalones, during the final grow-out to cocktail/market size (45-60 mm), were determined over a 6 month period. Trials were performed in abalone cages installed in a commercial open-sea cages fish farm. Animals were fed the red algae Gracilaria cornea and the green one Ulva rigida, both obtained from a landbased integrated multi-trophic aquaculture system. Survival rates were very high (94-98%) regardless the density employed. Sustained high linear growth was recorded both in shell and weight. However, a 17-19% reduction in weight gain was obtained by doubling the initial stocking density, suggesting a higher competition for space or food. Nevertheless, the high growth performance (70-94 μm d-1; 250-372% weight gain) and survival attained, even at high densities, denoted the suitability of the offshore mariculture system as well as the biofilter produced macroalgae for grow out culture of H. tuberculata coccinea that overall could reach cocktail/commercial size in only 18-22 months. Keywords: abalone; growth; density; seaweeds; integrated aquaculture; sea-based culture Corresponding author: M P Viera Phone: (34) 928 132034 E-mail: mapiviera@gmail.com Address: Muelle de Taliarte s/n, 35214, Telde, Gran Canaria, Canary Islands, Spain 133 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 7.1. INTRODUCTION The ormer, Haliotis. tuberculata is the only European abalone species commercially exploited (Roussel et al., 2011). Ireland, the Channel Islands (Huchette and Clavier, 2004) and France are currently the only established producing countries, with several farms growing abalone at sea feeding them locally harvested fresh seaweeds (Fitzgerald, 2008). The native abalone species in the Canary Islands, H. tuberculata coccinea Reeve (1846) (Geiger, 2000), has also been identified as a target species for aquaculture development, contributing to fulfil abalone’s increasing demand on European markets (Dallimore, 2010) and to diversify the Canarian aquaculture industry, currently limited to the production of marine fish species (Viera et al., 2005). Moreover, since this abalone species grows to a maximum size of about 7-8 cm in shell length (Espino and Herrera, 2002), its potential for aquaculture production, further relies on the international growing demand for small “cocktail size” abalone (4-7 cm shell length) (Jarayabhand and Paphavasit, 1996; Najmudeen and Victor, 2004). Previous studies on H. tuberculata coccinea have successfully contributed to the development of production techniques for this species (Viera et al., 2005; Bilbao et al., 2010b; Courtois de Viçose et al., 2010, 2012a, b; Viera et al., 2011). However, a commercial grow-out system is still to be developed. As abalone growth is generally low, the economic viability of commercial abalone farming depends largely on the rearing system employed during the long lasting grow-out culture period (Demetropoulos and Langdon, 2004; Badillo et al., 2007). Commercial cage culture is considered the faster sector in aquaculture (Tacon and Halwart, 2007). The main advantage of cage culture is that both the initial capital investment and operational cost are considerable lower than in land-based facilities (Beveridge, 2004; Wu et al., 2009). Hence, many fish, crustacean and even benthic cephalopod species have been cultured in cages at commercial or experimental scale (Chua and Tech, 2002; Estefanell et al., 2012). Indeed, cage culture is practised in many abalone producing countries (Capinpin et al., 1999; Wu and Zhang, 2013). Another key factor for the successful culture of abalone species is the availability of suitable feed (Shipton and Britz, 2001; Reyes and Fermín, 2003; Viana et al., 2007). Abalone production requires large quantities of macroalgae, not always 134 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 available in all production locations. Among different nutrients, protein constitutes the most costly component and is a major determinant of the nutritional value in abalone diets (Coote et al., 2000; Sales et al., 2003). Algal production in a land-based integrated multi-trophic aquaculture (IMTA) system, mainly representatives from Ulva and Gracilaria genus, can provide a highly nutritious feed for abalone whilst reducing nutrient discharge levels (Neori et al., 2004). Stocking density has also been found to be a determinant factor to optimize abalone growth up to market size. Hence, its effect on growth have been reported for most of commercial abalone species worldwide: H. tuberculata (Koike et al., 1979; Cochard, 1980; Mgaya and Mercer, 1995); H. cracherodii (Douros, 1987); H. discus hannai (Jee et al., 1988; Park et al., 2008; Wu et al., 2009; Wu and Zhang, 2013); H. rubra (Huchette et al., 2003a,b); H. asinina (Capinpin et al., 1999; Fermin and Buen, 2002; Jarayabhand et al., 2010); H. diversicolor supertexta (Liu and Chen, 1999); H. rufescens (McCormick et al., 1992; Aviles and Shepherd, 1996, Valdés-Urriolagoitia, 2000); H. midae (Tarr, 1995); H. corrugata (Badillo et al., 2007) and for H. kamtschatkana (Lloyd and Bates, 2008). In a quest to develop a commercial abalone grow-out system, it is of interest to consider the incorporation of abalone production within the conventional fish sea cages facilities. It would allow a significant improvement in the economic return for the producers, while also avoiding the risk of single species production. Furthermore, the algal production in a land-based IMTA system, would allow a development of a not only more cost-effective production system, but an environmentally friendly aquaculture. Thus, the present research aimed to determine, during the final abalone growout to market/cocktail size (30-60 mm), the effects of initial stocking densities on growth, feed consumption and survival of two distinct initial size groups of H. tuberculata coccinea, fed biofilter produced macroalgae, in an offshore mariculture system. 135 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 7.2. MATERIAL AND METHODS 7.2.1. Algae Ulva rigida J.Agardh and Gracilaria cornea J. Agardh were grown in the Grupo de Investigación en Acuicultura (GIA, Canary Islands, Spain) aquaculture research facility, in a flow-through integrated system collecting wastewater from fish and abalone ponds in a macroalgal biofilter. Effluents were channelled from the landbased facility tanks to a 11 m3 sedimentation pond for the removal of suspended particles and then, pumped at a flow rate of 10 m3 h-1 to the seaweed tanks located outdoor, where maximum irradiance was close to 1600 µmol photons m-2 s-1. Circular plastic tanks with a volume of 1.5 m3 and aeration supplied by a bottom-circular pipeline were used for the cultivation of macroalgae. Algal stocking densities were 1 and 4 g L-1 for U. rigida and G. cornea, respectively. Water exchange rate in the seaweed tanks was 12 vol day-1 and total ammonia nitrogen inflow into the biofilter ranged between 10 and 30 µmoles. To assess the feed quality, homogenized samples of each algae were analyzed in triplicates for proximate composition. The algae were cleaned, washed with freshwater and frozen at -80 ºC. Dry mass was determined by drying samples at 110ºC until constant weight was attained. Ash content was determined by incinerating samples at 600ºC for 24 h. Protein content was analyzed by the Kjeldahl method in agreement with AOAC (2005) and total lipids were extracted by a chloroformmethanol (2:1) mixture as described by Folch et al., (1957). 7.2.2. Abalone Experimental abalones (Haliotis tuberculata coccinea) were produced in the experimental hatchery production unit of GIA in two different artificial spawning events (March and June 2009).Until reaching initial stocking sizes (30 and 40 mm), abalones were fed several diatoms species for 4 to 5 months, followed by the green algae U. rigida and the red one G. cornea for 7-10 months. 136 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 7.2.3. Offshore grow-out system The sea-based grow-out system was set up in a commercial open-sea cages fish farm (CANEXMAR, S.L., Telde, Gran Canaria Island, Spain) (27º 57´31.7´´N, 15º22´22.5´´W). This area is regarded as highly exposed, submitted to wave height of 0.2-3.05 m and maximum current of 41-50cms-1, mainly NE, during the experimental period (Mar 3rd / Sep 9th, 2010) (network of state ports, Spanish Government, http://www.puertos.es). Seawater ranged between 19 and 22.9 ºC. Photoperiod was approximately13h L / 11 h D. Specially designed abalone sea cages (ORTACS, Jersey Sea Farms, St. Martins, Ireland), were composed of a 33 L lidded black PVC meshed container with total underside surface area of 0.4 m2 and weighing 1.5 kg. (Fig.38a). Six black plastic discs (12.0 cm Ø), stacked together forming a shelf-like device connected by tube-shaped rods, were placed inside as shelters (Fig. 38b). The total surface area for attachment was 0.5 m2. The abalone cages were suspended from fish cages (25 m Ø) mooring ropes and placed, approximately, 10 m below the water surface (Fig.38c). Figure 38. Offshore grow-out system: (a) experimental abalone cages, (b) shelter, (c) underwater experimental installation next to fish cages. 137 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 7.2.4. Culture trials Two different grow-out trials were simultaneously performed for 27 weeks at the experimental sea-based system. In Trial I, the growth of 450 1-year-old abalones, with an average initial shell length of 29.7 ± 1 mm and weight of 3.3 ± 0.5 g, was tested at two different densities of 200 and 100 individuals m-2 (100 and 50 abalones per cage). In Trial II, the growth of 135 15-months-old abalones, with an initial average shell length of 39.5 ± 1.1 mm and weight of 7.8 ± 1.1 g, was tested at two different densities of 60 and 30 individuals m-2 (30 and 15 abalones per cage). All treatments, further mentioned as I200, I100, II60 and II30 respectively, were tested in triplicates. Besides, 3 cages containing the same feeding regime but without abalones was used as control to determine algal mass variations independently of abalone grazing. The experimental abalones were blot dried, weighed to the nearest 0.1 mg (total fresh body weight: TFBW), measured with a manual calliper with 0.1 mm accuracy (total shell length: SL) and assigned to the experimental cages. Abalones were homogeneously distributed among cages to avoid significant differences in SL or TFBW. A pre-determined amount of algae were weighed and provided to guarantee ad libitum feeding, being replaced once a week during the growth trials. Cages were monthly cleaned to remove fouling organisms. At the time of feeding, mortality was determined in each cage. To determine feed intake, the weight of unconsumed food was deducted from the total weekly ration. Besides, weight of uneaten algae was corrected by calculating the natural weight variations of the algae in the control cages without abalone during the same feeding period. To assess the effects of density on growth performance, SL and TFBW of 100% of the population in each cage were recorded on weeks 5, 9, 17, 22 and 27 respectively. Daily growth rate (both for length and weight) as well as the following indices were calculated for all treatments at the end of the trial: DGSL (μm d-1) = GSL / n DGW (mg d-1) = GW / n Specific growth rate, SGR (%d-1) = (LnW2-LnW1) / n x 100 138 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 Weight gain, WG (%) = ((W2-W1) / W1) x 100 Feed conversion ratio, FCR = total feed intake (g wet) / total weight gain (g wet) Protein efficiency ratio, PER = (increase in body wet weight (g)) / (protein intake (g)) Feeding rate (% body weight day-1) = FCR*SGR where GSL is increase in shell length (μm); GW is increase in weight (mg); n is days of rearing; W2 is the weight at time n, and W1 is the initial weight. 7.2.5. Statistical analysis All data were tested for normality and homogeneity of variance. Means and standard deviations (SD) were calculated for each parameter measured. At the end of the trial, proximate composition of the diets, survival, growth performance and nutritional indices of each trial were calculated and compared statically by means of T-Student test (Sokal and Rolf, 1995). To compare the regression models (weight and length as a function of time) for each trial, the test of homogeneity of regression slopes was performed between both treatments. Additionally, a two-factors ANOVA has been applied to growth parameters (size and weight) in order to evaluate the effect of the fixed factors “time” and “density”. Significant differences were considered for P< 0.05. All statistical analyses were applied using the Statgraphics Plus 5.1 (MANUGISTIES, Rockville, Maryland, USA) software. 7.3. RESULTS 7.3.1. Nutritional composition of biofilter seaweeds Nutritional composition and caloric content varied considerably between both seaweeds (Table 31), gross energy values, protein, lipid and carbohydrate levels being higher (P<0.05) in U. rigida as compared to those of the red algae, whereas the G. cornea showed higher ash content than that of the green one. No significant differences were observed in protein: energy ratios for both seaweeds. 139 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 Table 31. Proximate composition and caloric content of the macroalgal diets (g/100 g DW) (Mean ± S.D.) fed to abalone along the experimental trials Macroalgae Ulva rigida Gracilaria cornea 79.6±0.2b 84.9±0.1a Crude protein 25±0.2a 18.8±1.7b Crude lipid 6.3±0.2a 4.3±0.9b Carbohydrate* 45.2±1.6a 41.9±0.7b Ash 23.5±1.6a 35.1±0.9b GE**(Kcal g-1) 3.9±0.1a 3.2±0.0b Protein : energy ratio*** 65±0.9 59.2±5 Moisture * Calculated by difference (AOAC, 2005). ** Calculated gross energy (Cho et al., 1982). *** Metabolizable energy was calculated based on the physiological values at 5.6 Kcal g-1 protein, 9.5 Kcal g-1 lipid and 4.1 Kcal g-1 carbohydrates (Cho et al., 1982). Values in the same row with different letters are significantly different (P<0.05) n=3 7.3.2. Abalone survival and growth In general, survival rates were very good (94-98%) and no significant differences were found between different densities within each trial or different initial sizes between trials (Table 32). Overall, there was a sustained linear growth in shell (r2=0.96-0.98) and weight (r2=0.99) at both abalone sizes throughout the experimental period (Fig.39). The regression slopes analysis (t-student, dif=4) showed a significant 140 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 effect of density on growth both in shell length and weight in trial I (t4=-3. 34798, p=0 .0286; t4= -21.5088, p=0.000028) and II (t4=-4.2733, p=0.0129; t4=-4.801, p=0.008642) respectively. Two-way ANOVA analysis showed a highly significant effect of time and density on abalone shell length and weight with a significant interaction between both factors (Table 33). Overall, Student’s t-test showed that growth performance, in terms of shell length, body weight, SGR, weight gain and daily growth rates (both shell and weight), were significantly affected by stocking densities being higher in abalone reared at low density in both trials (Table 32). Thus, at the end of the Trial I, animal cultured at low density (I100) presented a significantly (P<0.05) higher growth performance in shell growth rate (16%), weight growth rate (21%), specific growth rate (10%) and weight gain (19%) than those at high density. Accordingly, in Trial II, where abalones had a higher initial size than in Trial I, at the end of the experimental period abalones reared at a lower density (II30) showed significantly (P<0.05) higher daily growth rate, both in shell length (14%) and weight (16%), specific growth rate (11%) and weight gain (17%) than those at high density (Table 32). 141 Aquaculture Research (2014) DOI: 10.1111/are. 12467 142 Figure 39. Linear growth in shell length (mm) and weight (g) of abalone H. tuberculata coccinea initially measuring 30 (Trial I) and 40 mm (Trial II), fed with enriched mixed diet of G. cornea and U. rigida at high and low stocking densities for 27 wks. Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 96.7±1.2 I100 97.8±3.8 II30 39.5 ± 1.1 39.5 ± 1.1 29.7 ± 1 29.7 ± 1 Initial size (mm) 79.2±3.4b 94.1±4.3a 57.3±0.8a 82.7±3.2a 45.4±0.6a 54.6±0.7b 70.1±2.6b DGSL (μm d-1) 43±0.5b Final size (mm) 7.8 ± 1.1 7.8 ± 1.1 3.3 ± 0.5 3.3 ± 0.5 Initial weight (g) 30.8±1.3a 27.3±0.8b 15.8±0.1a 13.0±0.2b Final weight (g) 122.5±7.3a 103.4±3.4b 65.8±0.7a 51.7±1.3b DGW (mg d-1) 0.74±0.03a 0.66±0.01b 0.82±0.0a 0.74±0.02b SGR (% d-1) 302.3±22.4a 250.5±6.2b 371.9±4.3a 302.6±12b Weight gain (%) 143 Within each trial, values in the same column with different letters are significantly different (P<0.05); I200: n =100x3; I100: n =50x3; II60: n =30x3; II30: n =15x3. GSL= daily growth rate in shell length, GW= daily growth rate in weight, SGR= Specific growth rate 97.8±1.9 II60 Trial II 94.3±1.2 Survival (%) I200 Trial I Treatment with enriched G. cornea and U. rigida at high and low stocking densities for 27 weeks Table 32. Survival and growth performance of abalone H. tuberculata coccinea, initially measuring 30 mm (Trial I) and 40 mm (Trial II), fed Study IV Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 Table 33. Two-Way ANOVA analysis of variance for growth (size and weight) for the 27 wks grow-out culture period under the experimental densities Effect SS d.f. MS F p Trial I Lenght Weight Intercept 50415.22 1 50415.22 235096.9 0.000000 Time 855. 16 5 171.03 796.6 0.000000 Density 14.19 1 14.19 66.2 0.000000 Time * Density 4.75 5 0.95 4.4 0.005317 Error 5.15 24 0.21 Intercept 2587. 418 1 2587. 418 46341.81 0.000000 Time 488.136 5 97.627 1748.55 0.000000 Density 9.201 1 9.201 164.8 0.000000 Time * Density 7.206 5 1.441 25.81 0.000000 Error 1.34 24 0.056 Intercept 81628.3 1 81628.3 166244.4 0.000000 Time 1109.87 5 221.97 452.1 0.000000 Density 5.37 1 5.37 10.9 0. 002967 Time * Density 7.74 5 1.55 3.2 0.025107 Error 11.78 24 0.49 Intercept 11165.44 1 11165.44 19528.16 0.000000 Time 1854. 82 5 370.96 648.81 0.000000 Density 19.33 1 19.33 33.81 0.000005 Time * Density 16.6 5 3.32 5.81 0.001189 Error 13.72 24 0.57 Trial II Lenght Weight 144 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 7.3.3. Feed intake and feed utilization In Trial I, daily feed intake on algal rations, recorded for 27 weeks, was significantly (P<0.05) higher in abalones cultured at lower density (I100) (Table 34). In relation to feed utilization efficacy, food conversion ratio (FCR) values were significantly affected by stocking density being lower in animals cultured at low density. Similarly, protein efficiency ratio (PER) values were significantly (P<0.05) improved in abalone cultured at low density (Table 34). Regarding Trial II, II30 treatment abalones showed a significantly (P<0.05) higher feed intake than those stocked at double density (Table 34). However, there were no differences in FCR nor in PER between high (60 abalones m-2) and low (30 abalones m-2) stocking densities. Table 34. Consumption and feed efficiency of abalone H. tuberculata coccinea. initially measuring 30 mm (Trial I) and 40 mm (Trial II), fed with G. cornea and U. rigida at different stocking densities (high and low) for 27 weeks Feed intake (mg ab. d-1) Average feeding rate (% BW d-1) FCR PER I200 1114.9±6.7b 16.2±0.3 22±0.8a 1.1±0.04b I100 1255.1±11.2a 15.9±0.4 19.4±0.6b 1.3±0.04a II60 2245.1±110.8b 14.5±0.5b 21.9±1.0 1.1±0.05 II30 2840±183.5a 17.2±0.9a 23.4±0.4 1.1±0.02 Treatment Trial I Trial II FCR=Feed conversion ratio. PER=Protein efficiency ratio Within each trial. values in the same column with different letters are significantly different (P<0.05); I200: n =100x3; I100: n =50x3; II60: n =30x3; II30: n =15x3. 145 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 7.4. DISCUSSION Optimum abalone growth is achieved through proper balance of dietary nutrients and fulfillment of requirements of essential nutrients and energy (Gómez-Montes et al., 2003). Hence, the sustained growth attained by experimental abalones throughout both long-term trials (189 days), may well indicate an optimum nutritional quality of the algae produced in the land-based IMTA system. Indeed, as shown by the proximate composition analysis, both U. rigida and G. cornea were high in protein (19-25%) content, which would be related to their production under the rich nitrogen culture conditions of the integrated mariculture system (Boarder and Shpigel, 2001; RobertsonAndersson, 2003). Furthermore, not only protein but also very high carbohydrates (4245%) and low lipid levels (4-6%), as well as energy content (3-4 Kcal g-1) of the algae tested, matched abalone nutritional requirements (Mercer et al., 1993; Fleming et al., 1996). Besides, the combination of both green and red algae, each one with typical characteristic of its phylum (Table 1; Li et al., 2002; Dawczynski et al., 2007) may also have complemented the micronutrient requirements of abalone, contributing to the good growth rates obtained. Indeed, abalone fed mixed algal regimes, have been reported to perform significantly better than those that are fed with a single algal diet (Naidoo et al., 2006; Viera et al., 2011). Growth rates values in this study (70-94 μm d-1) were higher than those obtained by Reyes and Fermín (2003) and Naidoo et al. (2006) (55-66 µm day-1) in similar size H. asinina and H. midae fed with macroalgae. Moreover, they were within the range considered acceptable for commercial culture (80 µm day-1; Gómez – Montes et al., 2003). Average feeding rates (16% BW d-1; 30-57 mm shell length; 30-200 abalones m2 ) were good and comparable to those of the tropical fast growing H. asinina fed Gracilaria bailinae under similar experimental conditions (16% BW d-1; 30-55 mm shell length, 43-175 ind m-2) (Capinpin et al., 1999). Moreover, feed conversion ratios (19-23) were also good and similar to those previously obtained for other abalone species fed macroalgae (H. asinina, Kunavongdate et al., 1995; H. discus hannai and H. tuberculata, Shpigel et al., 1999). Increasing initial stocking density negatively affected H. tuberculata coccinea growth, regardless the initial size tested. This negative effect of increased stocking density, has also been found in other abalone species in net cages (Jee et al., 1988; Mgaya and Mercer, 1995; Capinpin et al. 1999) and different culture systems (Marsden 146 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 and Williams, 1996; Valdés-Urriolagoitia, 2000; Huchette et al., 2003a, b; Badillo et al., 2007; Lloyd and Bates, 2008; Jarayabhand et al., 2010), where a wide range of stocking sizes (7-65mm) and densities (43- 4100 abalones m-2) have been tested. In particular, initial densities of 43-175 abalones m-2 tested in cage cultures of another ”cocktail size” species such as H. asinina (Capinpin et al., 1999) and of 83-386 abalones m-2 for juveniles of a close related species such as H. tuberculata (Koike et al., 1979; Mgaya and Mercer, 1995), showed a marked effect on final growth of abalone. In the present study, doubling the stocking density from 30 to 60 abalones m-2 caused a 14% reduction in growth (mm month-1), whereas doubling from 100 to 200 further reduced growth in a 16%. In agreement, growth reduction in other studies ranged from 14% to 52% (mm month-1) due to 2- to 60-fold increases in density (Huchette et al., 2003a). Particularly, a 3 times increase in initial stocking density may cause a 52% reduction in growth for H. tuberculata (Mgaya and Mercer, 1995). Results obtained in the present study when initial stocking densities were increased suggest that these grazing gastropods show a density-dependent competition for space or food (Marshall and Keogh, 1994; Capinpin et al., 1999; Huchette et al., 2003a, b). In both trials, abalones stocked at a lower density showed a significantly higher food consumption than those stocked at double density, suggesting that at high density, abalone in the cage would tend to stack, hence restricting movement during feeding and affecting their feed intake even though the food supply is in sufficient quantity (Douros, 1987; Lloyd and Bates, 2008). A similar reduction in feeding behaviour has been found in other abalone species (Mgaya and Mercer, 1995; Tarr, 1995; Marsden and Williams, 1996), particularly when they are fed algae (Tahil and Juinio-Menes, 1999). Additionally, the highest stocking density (200 abalones m-2) in the present study, not only decreased feed intake in the smaller size abalones, but also increased FCR and reduced PER, denoting a reduction in feed utilisation efficacy. Despite the fact that stocking density may have a negative effect on abalone survival (Nie et al., 1996), in the present study, and in agreement with previous research, survival was not influenced by density (Mgaya and Mercer, 1995; Capinpin et al., 1999; Jarayabhand et al., 2010). The high survival rates (94-98%) registered for all treatments, regardless the density conditions, may well indicate not only the mentioned general balance of nutrients in the enriched mixed diet but also the generally good culture conditions that could have contributed to the well-being of the abalone. Indeed, 147 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 besides feeding regime and stocking density, several factors are important in providing the optimal conditions for growth and survival in abalone such as water flow, water quality, light, shading and culture system (Capinpin et al., 1999; Huchette et al., 2003a; Demetropoulos and Langdon, 2004; Badillo et al., 2007; Wassnig et al., 2010). Abalone growth and health are reported to be inhibited by decreases in water quality (Basuyaux and Mathieu, 1999; Naylor et al., 2011) which can result from the decomposition of faeces and uneaten food (Yearsley et al., 2009), high levels of nitrogenous wastes excreted by the animals (Barkai and Grifths, 1987; Reddy-Lapata et al., 2006), reduction of dissolved oxygen (Badillo et al., 2007; Naylor et al., 2012) or from low water pH exposure (Naylor et al., 2012). Hence, the high water exchange rate linked to the oceanic conditions of the open water experimental set-up, were consequently appropriate for H. tuberculata coccinea culture, maintaining water quality even as stocking densities increased (Wassnig et al., 2010). Abalone are generally more active at night, light and shading clearly influence their distribution and activities (Cochard, 1980; Huchette et al., 2003b; Morikawa and Norman, 2003), hence their feeding behaviour (Tahil and Juinio-Menes, 1999). Since the cages were located at 10 m depth, the influence of light on the regulation of abalone´s feeding activity inside the experimental cages, could have been limited. Additionally, the refuges provided could have led to an improvement of growth rates by increasing the “preferred surface area” (Hindrum et al., 1999). Regarding culture system, growth performance of H. tuberculata coccinea cultured in the tested offshore cages, was significantly better than the one obtained under similar experimental conditions in a land-based system (60.2 μm d-1; WG: 151%; Viera et al., submitted). In summary, data demonstrated the suitability of the enriched mixed macroalgae diet together with the offshore mariculture system, both essential factors contributing to successful grow-out of H. tuberculata coccinea that could reach the cocktail/commercial size of 45-60 mm in only 18-22 months. However, doubling the initial densities in both experimental trials reduced growth in a 17-19% (WG) at the end of the experimental period. The stocking densities tested and providing the best growth rates are within the range of those currently applied in commercial sea-based system for H. tuberculata (30125 abalones m-2 for 30- ≥ 65mm; Huchette, personal communication). Therefore, as the choice of stocking density is essentially a trade–off between maximum growth, optimal 148 Study IV Aquaculture Research (2014) DOI: 10.1111/are. 12467 biomass gain and economic considerations, cost-benefit analysis would be required to determine the optimum stocking density when setting up abalone on-growing operations. 7.5. ACKNOWLEDGEMENTS The authors especially thank Rafael Guirao, and the rest of the staff from CANEXMAR, S.L., who have kindly cooperated in this study hosted within their facilities. They also acknowledge Tony Legg, from Jersey Sea Farms, for kindly supplying the ORTACS. They would also like to thank Desirée Chacón and Beatriz Sosa for their support through maintenance tasks in harsh conditions and to Dr. Fernando Tuya for his assistance with the statistical analysis. This study has been financed by the Spanish Government in the frame of the National Plan for Development of Marine Cultures (Jacumar Multitrófico). 149 Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands CONCLUSIONS Conclusions 8. CONCLUSIONS Study I: Suitability of three red macroalgae as a feed for the abalone Haliotis tuberculata coccinea Reeve. 1. Biofilter produced Hypnea musciformis, Hypnea spinella and Gracilaria cornea showed adequate nutritional composition, to be potentially used as feed for juvenile Haliotis tuberculata coccinea. High protein contents were found for the three algal species investigated, which would be related to their production under the high nitrogen conditions of the IMTA system. 2. H. spinella was found to be the best growth promoting diet for H. tuberculata coccinea due to the highest feed intake and protein efficiency ratio observed. The harder texture of G. cornea had a negative effect on feed consumption hence leading to the lowest growth performance of Canarian abalone. 3. Overall growth rate of abalone were within the range of those obtained under commercial conditions this fact, linked to the high survival attained, suggesting the suitability of the three red seaweeds tested, successfully produced in the IMTA system, for the grow-out culture of H. tuberculata coccinea. Study II: Comparative performances of juveniles (Haliotis tuberculata coccinea Reeve) fed enriched vs non-enriched macroalgae: effect on growth and body composition. 4. The rearing system employed markedly affected seaweeds proximate composition, specifically protein content, which was 100-163% increased in those reared in fishpond wastewater effluents compared with those in fresh seawater. 5. The fatty acid profiles of the algae studied were characteristic of green and red algae, palmitic acid being the most abundant SFA, the Chlorophyta Ulva rigida showing predominat levels of C16 and C18 PUFAs and minimal levels of C20 150 Conclusions fatty acids. DHA was very low in all algae tested, hence this fatty acid do not appear to be essential in H. t. coccinea, as all macroalgae tested supported optimal growth of this abalone species. 6. Abalone fed enriched macroalgae diets showed far better performance compared to those fed non enriched diets, suggesting that nitrogen may be a limiting factor for growth in H. tuberculata coccinea. 7. Animals fed the mixed diets, both enriched and non enriched, performed significantly better than those that were fed with a single algal diet, indicating that abalone obtain a complete range of required nutrients by eating a mixed algal regime and that essential nutrients may become limiting when animal are fed single-species diets. 8. Abalone biochemical composition was markedly affected by the diets. Lipid content in abalone tissues were generally higher than in their respective macroalgal diets. Foot muscle contained significantly lower lipid levels than viscera indicating that selective storage of lipids occurs in the hepatopancreas/gonad assemblage. 9. The dietary value of the macroalgal regimes tested can be divided into three categories: Best obtained with the mixed algal feeding regime, intermediate by using single Ulva rigida or Hypnea spinella feeding regimes and the lowest by Gracilaria cornea. 10. Growth results clearly indicate that H. tuberculata coccinea can be efficiently grow-out in an integrated-culture system suggesting that on-farm seaweedabalone production could be a part of future development of abalone industry in the Canary Islands. Study III: First development of various vegetable-based diets and their suitability for abalone Haliotis tuberculata coccinea. 151 Conclusions 11. Feeding the fresh algae produced a far better growth for H. tuberculata coccinea than all the compound diets, indicating the high dietary value of the macroalgae reared in the IMTA system. 12. The inclusion of P. palmata was found to improve growth, condition index and dietary protein utilization, while the use of L. digitata markedly reduced the efficiency of dietary protein. 13. The elevated contents, relative to their feeds, of ARA in the abalone fed the experimental diets and EPA in abalone fed the fresh algae, denoted the presence of the respective elongases Δ4 and Δ5 desaturases. However, the low content of DHA further suggested that this fatty acid is not essential in abalone tissues. 14. Overall, feeding H. tuberculata coccinea with vegetable-based artificial diets resulted in high survival and good dietary protein utilization. Study IV: Grow out culture of abalone Haliotis tuberculata coccinea Reeve, fed land-based IMTA produced macroalgae, in a combined fish/abalone offshore mariculture system: Effect of stocking density. 15. Doubling stocking density markedly reduced growth performance in both distinct initial size groups of abalones, showing a reduction in feeding behaviour and feed utilisation efficacy mainly linked to a higher competition for space or food. 16. Recommended stocking density for 30-45 mm abalone is 100 abalone m-2, while for 45 mm abalone until commercial size is 30 abalone m-2. 17. The offshore mariculture system as well as the biofilter produced macroalgae, were found to be suitable to sustain high growth and survival of H. tuberculata coccinea that overall could reach cocktail/commercial size of 45-60 mm in only 18-22 months. 152 Desarrollo Sostenible de la Tecnología de Engorde de la Oreja de Mar Haliotis tuberculata coccinea (Reeve) como Nueva Especie para la Acuicultura en Canarias RESUMEN EN ESPAÑOL Spanish summary 9.1. INTRODUCCIÓN 1.1. LA OREJA DE MAR: DESCRIPCIÓN, TAXONOMÍA, PRODUCCIÓN Y ACUICULTURA La oreja de mar o abalón es un molusco gasterópodo univalvo que pertenece a la familia Haliotidae (Barkai y Griffiths, 1986) (Tabla 1; Fig.1). En la actualidad, hay descritas 56 especies, todas pertenecientes al género Haliotis (Geiger, 2000). Normalmente se localizan entre la zona intermareal y litoral (Hone y Fleming, 1998), alcanzando las densidades máximas entre los 3–10 m donde las algas, su alimento natural, crece abundantemente. Todos son bentónicos, estando los ejemplares recién asentados normalmente asociados a sustratos de algas coralinas (Hone et al., 1997; Roberts, 2001), mientras que los juveniles (≥ 10 mm de talla) y adultos, ramonean principalmente sobre algas fijadas o a la deriva por las corrientes (Shepherd, 1973; Hanh et al., 1989; Shepherd y Steinberg, 1992). Son animales gonocóricos, con machos y hembras que liberan sincrónicamente sus gametos a la masa de agua para la reproducción (Stephenson, 1924; Crofts, 1929). El sexo de los ejemplares maduros se puede diferenciar fácilmente por la diferencia en el color de las gónadas (Bardach et al., 1972). Las especies de abalón de las regiones templadas alcanzan un mayor tamaño (2030 cm) que las especies tropicales (6-10 cm) (Hanh et al., 1989; Jarayabhand y Paphavasit, 1996). Tabla 1. Clasificación taxonómica de las especies de abalón Filum: Mollusca Linnaeus, 1758 Clase: Gastrópoda Cuvier, 1797 Subclase: Prosobranquia H.M. Edwards, 1848 Orden: Archaeogastropoda Thiele, 1929 Superfamilia: Pleurotomarioidea Swainson, 1840 Familia: Haliotidae Rafinesque, 1815 Género: Haliotis Linnaeus, 1758 153 Spanish summary Figura 1. Ejemplares de abalón (H. tuberculata coccinea), recién asentados, juvenil y adulto. A nivel mundial la oreja de mar se ha considerado tradicionalmente un producto de alta calidad y valor, usándose su carne como alimento mientras que su concha, que tiene un interior nacarado, se usa normalmente con fines decorativos, en artesanía e incluso en joyería (Howorth, 1988; Fig. 2). Figura 2. Productos derivados del abalón: culinarios, perlas y artesanía. A pesar de que los mayores consumidores mundiales de oreja de mar han sido tradicionalmente Japón y China (las primeras referencias de la pesca de abalón datan del 30 A.D.; Fig. 3), las pesquerías de este molusco también han sido una fuente tradicional de desarrollo económico y social de otras poblaciones en diferentes países como Estados Unidos de América, México, Nueva Zelanda, Francia, Australia o Sudáfrica (Leighton, 1989; Guzmán del Proó, 1992; Schiel, 1992; Mercer et al., 1993; Freeman, 2001; Troell et al., 2006), con ciertas comunidades locales muy vinculadas a la explotación de este recurso. 154 Spanish summary Figura 3. Amas, buceadoras - pescadoras de abalón (Japón). A pesar de que el estudio sobre la biología y ecología de la oreja de mar comenzó hace mucho tiempo (Stephenson, 1924; Bonnot, 1930; Crofts, 1932), su investigación se ha ido intensificando en los últimos 35 años, en primer lugar como consecuencia del desarrollo de las pesquerías y en las dos últimas décadas, por el desarrollo exponencial de la acuicultura de este molusco. De hecho, debido a la sobreexplotación de los recursos, planificación incorrecta, destrucción del hábitat, enfermedades o políticas inadecuadas, las pesquerías legales de abalón sufrieron un descenso desde casi 20.000 toneladas (t) en los 70 a menos de 9.000t en 2008 (Cook y Gordon, 2010). Es más, a pesar de que los cultivos de abalón habían empezado a finales de los años 50 y principio de los 60 en Japón y China (Elbert y Houk, 1984; Leighton, 2000), en los años 90 tuvo lugar un rápido desarrollo en muchos países del mundo, con el fin de satisfacer la creciente demanda que no estaba siendo abastecida por el sector pesquero. Este aumento fue posible gracias al desarrollo de ciertas prácticas de producción, especialmente para la etapas juveniles, que permitieron la rápida expansión de la industria (Daume et al., 2004; Roberts et al., 2004). En concreto, el cultivo mundial de abalón ha crecido de forma espectacular en la última década, multiplicándose por más de 21 veces (Fig. 4). En 2010, la producción mundial de abalón fue de 65.525t, con un valor de aproximadamente 451 millones €, de ellas, tan sólo 8.656t procedían del sector pesquero, lo que significa que aproximadamente un 88% del consumo de abalón de procedencia legal fue abastecido por el sector acuicola (FAO, 2012). 155 Spanish summary Figura 4. Evolución de la producción global de abalón procedente de pesquerías legales y acuicultura durante la última década (source FAO, 2012). De entre todas las especies de abalón, aproximadamente 15 son explotadas comercialmente, tanto por el sector pesquero como acuícola (Bester et al., 2004; Sales y Janssens, 2004; Hernández et al., 2009): Abalón ezo pacifico (Haliotis discus hannai Ino, 1953), kuro (Haliotis discus Reeve, 1846), tokobushi (Haliotis diversicolor Reeve, 1846) y abalón gigante (Haliotis gigantea Gmelin, 1791) principalmente en Japón, China y Corea; abalón tropical (Haliotis asinina Linnaeus, 1758) en Tailandia y Filipinas; abalón negro (Haliotis rubra Leach, 1814), abalón verde (Haliotis laevigata Donovan, 1808) y abalón de Roe (Haliotis roei Gray, 1826) en Australia; paua de pie negro (Haliotis iris Gmelin, 1791) y paua de pie amarillo (Haliotis australis Gmelin, 1791) en Nueva Zelanda; perlemoen (Haliotis midae Linnaeus, 1758) en Sudáfrica; abalón verde (Haliotis fulgens Philippi, 1845), abalón rojo (Haliotis rufescens, Swainson, 1822) y abalón rosa (Haliotis corrugata Wood, 1828) en México y Estados Unidos de América; abalón negro (Haliotis cracherodii Leach, 1814) Estados Unidos de América; abalón pinto (Haliotis kamtschatkana Jonas, 1845) desde Alaska y Canada hasta Estados Unidos de América (California) y el abalón europeo (Haliotis tuberculata Linneaus, 1758) en Gran Bretaña y Francia (Atlántico occidental). En cuanto a los países productores, China es el mayor productor mundial con una producción de 56.511t en 2010 (FAO, 2012). La principal especie de cultivo es el valioso abalón del Pacífico (H. discus hannai) (Wu et al., 2009), que abarca más del 156 Spanish summary 95% de la producción. Sin embargo, la especie de menor tamaño y menos apreciada H. diversicolor cuyo cultivo era el más importante hasta hace diez años de, se limita en la actualidad a la China subtropical y tropical (Ke et al., 2012). En Corea, el ascenso de la producción lo ha situado como el segundo productor mundial, con más de 5.000 granjeros dedicados al cultivo de abalón (Park y Kim, 2013). A pesar de que el cultivo de abalón en Corea comenzó tan sólo a principio de los 2000, el desarrollo de nuevas metodologías de cultivo, principalmente la implantación de jaulas en el mar, ha dado lugar a un incremento espectacular de la producción que pasó de 29t en 2001 a 6.228t en 2010 (FAO, 2012). Sudáfrica es el mayor productor de abalón (H. midae) fuera de Asia, con una producción procedente tanto del sector pesquero como de la acuicultura. La producción anual ronda las 3.000t, de las que 1.200t son aportadas por el sector acuicola, 150t por las pesquerías legales, mientras que se estima que unas 1.500t son capturadas de forma ilegal (Britz, 2012). A pesar de que la oreja de mar no es nativa de Chile, durante los años 90 se desarrolló el cultivo comercial de este molusco (H. rufescens y H. discus hannai) principalmente para su exportación a mercados asiáticos, alcanzando una producción de casi 800t (99% de H. rufescens) en 2010 (FAO, 2012). Más del 50% de la pesca mundial de abalón procede de Australia, donde también existe un sector acuícola creciente que produjo 456t (H. rubra, H. laevigata e híbridos) en 2010 (FAO, 2012). Además, hay pequeñas industrias en los Estados Unidos de América (250t), Taiwan (171t) y Nueva Zelanda (80t, H. iris), que contribuyen a la producción mundial de oreja de mar (FAO, 2012). En cuanto a los países consumidores, la mayor demanda de abalón se localiza en Asia, principalmente en Japón (vivo, fresco y congelado), y la China peninsular (enlatados), además también existen mercados estables en México, EUA y Europa (Oakes y Ponte, 1996; Robertson-Anderson, 2003). Como consecuencia, la mayoría de los cultivos de abalón en el mundo se localizan en Asia, y es a este continente donde se destina la mayoría de la producción mundial de este molusco. Sin embargo, la alta producción mundial durante los últimos años unido a la disponibilidad de abalón procedente de capturas ilegales, así como la crisis financiera mundial, ha llevado a una 157 Spanish summary reducción generalizada del precio de abalón (Qi et al., 2010). Por lo tanto, los productores de abalón están encaminados a buscar vías para aumentar su productividad a través del uso de sistemas de cultivos más eficientes, certificaciones internacionales de calidad o diversificación de productos y mercados (Cook y Gordon, 2010). 1.2. LA OREJA DE MAR EN EUROPA En Europa solo está presente una especie de abalón, la conocida popularmente como ormer, Haliotis tuberculata Linneaus, 1758 (Mgaya, 1995), con tres sub-especies descritas a partir de sus características morfológicas: H. tuberculata tuberculata Linneaus, 1758, en el costa del Atlántico oriental y el Mar Mediterráneo, y H. tuberculata coccinea Reeve, 1846 junto a la recientemente descrita H. tuberculata fernandesi Owen y Afonso, 2012, que se distribuyen fundamentalmente en la region macaronésica (Clavier, 1992; Geiger, 2000; Geiger y Owen, 2012; Fig. 5). Figura 5. Distribución de H.tuberculata tuberculata y H. tuberculata coccinea (Geiger, 2000). El ormer, que alcanza un tamaño máximo de 14 cm (Roussel et al., 2011), es una especie de molusco de bastante importancia comercial en las Islas del Canal (Bossy y Culley, 1976) y las costas de Normandía y Bretaña en Francia (Clavier, 1992), donde se encuentran poblaciones importantes y donde ha sido un recurso tradicional de alto valor (Mgaya y Mercer, 1994). 158 Spanish summary Debido a la sobreexplotación de los stocks naturales y al aumento del valor del producto, a partir del final de la década de los 70 hubo un aumento del interés sobre el cultivo de esta especie, lo que motivó el desarrollo de la tecnología de producción principalmente en las Islas del Canal, (Bossy, 1989, 1990; Hayashi, 1982; Hjul, 1991), Francia (Koike, 1978; Koike et al., 1979; Flassch y Aveline, 1984) e Irlanda (Mercer, 1981; LaTouche y Moylan 1984; La Touche et al., 1993; Mercer et al., 1993; Mgaya y Mercer 1994, 1995; Mai et al., 1995a,b, 1996), donde tanto el abalón europeo como el japonés fueron introducidos al final de los 70 y mitad de los 80 (Leighton, 2008). Sin embargo, a pesar de haber sido reconocida como especie candidata para la acuicultura europea hace ya dos décadas (Mgaya y Mercer, 1994), su disponibilidad en Europa es aún insuficiente debido a la escasez de suministro tanto del sector pesquero como del acuícola (Dallimore, 2010). Si bien se han realizado ciertos intentos para aumentar la producción acuícola, el avance ha sido lento, dificultado entre otro motivos, por la escasez en la investigación o por problemas derivados de confusion en la legislación del recurso (la oreja de mar está situada en la misma categoría que los bivalvos). Además, aspectos nutricionales como el tipo de alimento y sus fuentes, así como el desarrollo de tecnologías sostenibles de producción, han sido también identificados como áreas claves en las que avanzar para alcanzar mejores crecimientos y métodos de producción que redunden en la competitividad del sector productivo (SUDEVAB, 2007). La producción de abalón en Europa está actualmente enfocada hacia un producto de alta calidad, pequeño volumen y que ocupa su nicho de mercado, tales como los productos con certificación orgánica o ecológica. Irlanda, las Islas del Canal (Huchette y Clavier, 2004) y Francia son actualmente los únicos países productores, con la mayoría de las granjas engordando el abalón en el mar, y basando su alimentación en macroalgas cosechadas manualmente en el entorno próximo. Francia, es el principal productor europeo con una producción de 10t en 2010 (FAO, 2012), la mayoría de la cual procede de la misma empresa, que es además la primera granja de abalón en el mundo en tener certificación ecológica (100% de las macroalgas cosechadas de forma sostenible; ausencia de medicamentos, químicos o fertilizantes). Dicha granja vende ejemplares vivos de 6-7 cm engordados en el mar a 69 € por kg (Legg et al., 2012). En cuanto a España, en Galicia recientemente ha empezado a funcionar una instalación en tierra, en circuito cerrado (criadero y engorde) para el cultivo de la 159 Spanish summary especie europea H. tuberculata tuberculata y la japonesa (introducida) H. discus hannai, esperando alcanzar una producción de 115 t en 2017 (GMA, 2014). 1.3. OREJA DE MAR (Haliotis tuberculata coccinea): CANDIDATA PARA LA DIVERSIFICACIÓN DE LA ACUICULTURA EN CANARIAS Las excepcionales condiciones climáticas y alta calidad de las aguas canarias hacen que esta region española cuente con unas muy buenas perspectivas para la expansión de la acuicultura. A pesar de ello, el sector acuícola en el archipiélago se limita exclusivamente a la producción de especies de peces marinos tales como dorada (Sparus aurata), lubina (Dicentrachus labrax) y una pequeña cantidad de lenguado senegalés (Solea senegalensis) (APROMAR, 2012). Por tanto, la diversificación de las especies cultivadas es uno de los retos más importantes del sector productivo de Canarias. En las Islas Canarias, la oreja de mar H. tuberculata coccinea, conocida popularmente como almeja canaria, se distribuye desde la zona intermareal hasta unos 15 m de profundidad en areas expuestas y semi expuestas. Alcanza un tamaño máximo de 8 cm de longitud de concha y se alimenta de mezclas de macroalgas (Espino y Herrera, 2002). La almeja canaria ha sido explotada a nivel local durante las ultimas décadas, lo que ha llevado a la sobreexplotación del recurso hasta su casi esquilmación (Pérez y Moreno, 1991; Espino y Herrera, 2002). Como consecuencia, existe un público interés en el desarrollo de la tecnología de cultivo de esta especie, tanto de cara al suministro de la población local como para contribuir a la recuperación de las poblaciones naturales. Es más, el potencial de esta especie para su producción en acuicultura, radica también en la creciente demanda externa por ejemplares pequeños del denominado “tamaño cocktail” (4-7 cm de longitud de concha) (Jarayabhand y Paphavasit, 1996; Najmudeen y Victor, 2004), así como en el alto grado de desarrollo alcanzado en el cultivo de otras species de la familia Haliotidae, en particular del ya mencionado abalón europeo Haliotis tuberculata tuberculata L., de características biológicas muy parecidas. Estudios previos realizados en H. t. coccinea sobre reproducción (Peña, 1985, 1986; Bilbao et al., 2004, 2010) y etapas tempranas de desarrollo (Courtois de Viçose et 160 Spanish summary al., 2007, 2009, 2010, 2012a, b), han permitido tanto la reproducción de esta especie en cautividad, como las técnicas de producción de semillas adaptadas a esta especie, señalándola por tanto, como una buena candidata para la diversificación del sector acuícola canario. Sin embargo, apenas existen trabajos sobre las condiciones óptimas para el cultivo de juveniles y adultos en las Islas Canarias (Toledo et al., 2000). Por tanto, para desarrollar la tecnología de engorde adaptada a esta especie, es necesario investigar en las areas de nutrición y alimentación, así como en las condiciones y sistemas de cultivo idóneos para su implantación en las islas. Además, considerando que el cultivo de este molusco frecuentemente require altas cantidades de macroalgas, no disponibles localmente, para el desarrollo de la producción es también necesario evaluar otras alternativas como fuentes de alimentación. Es más, los trabajos también deben estar encaminados hacia el desarrollo de métodos de producción que aseguren la sostenibilidad de la industria, ajustados a la cada vez más restrictiva legislación europea para la producción de mariscos y también a la normativa para la producción internacional de abalón (WWF, 2010). 1.4. FACTORES CONDICIONANTES EN EL ENGORDE DE LA OREJA DE MAR De forma general, la oreja de mar presenta un crecimiento lento y variable (Day y Fleming, 1992; Britz 1996a; Sales y Britz, 2001), con tasas de aproximadamente 2-3 cm/año, requeriéndose por tanto de 2-5 años para alcanzar las talla comercial (Hahn, 1989; Troell et al., 2006; Qi et al., 2010). En consecuencia, una tecnología de engorde adecuada y el resultante crecimiento y supervivencia de los animales en cultivo, son factores críticos para maximizar el éxito de la producción. La selección de la tecnología de cultivo dependerá de las características propias de la especie y de su susceptibilidad hacia los diferentes factores que condicionan el éxito del proceso de engorde. Algunos de estos factores están relacionados con las condiciones generales de cultivo; con los parámetros físicos-químicos; mientras que otros están relacionados con la alimentación de los juveniles y adultos. Finalmente, la viabilidad económica de la producción de abalón se verá especialmente condicionada por el sistema de cultivo empleado durante la larga fase de engorde. 161 Spanish summary 1.4.1. Parámetros generales 1.4.1.1. Talla inicial Justo después del asentamiento, las postlarvas de abalón se alimentan de películas bacterianas y huellas de mucus segregados por los propios animales (Shepherd, 1973; Saito, 1981), y una vez que la rádula está desarrollada, lo que tiene lugar alrededor de los 0.8 mm de longitud de concha (SL) (Kawamura et al., 2001), los juveniles empiezan a ramonear sobre diatomeas bentónicas, algas coralinas incrustantes y películas bacterianas (Dunstan et al., 1996, 1998). Los juveniles mantienen dichas dietas hasta alcanzar el tamaño suficiente que les permita realizar la transición final de las diatomeas a las macroalgas (Jarayabhand y Paphavasit, 1996; Kawamura et al., 2001). El tamaño en el que los animales realizan esta fase final varía entre las distintas especies, estando situado entre los 5 y 10 mm para el H. discus hannai (Kawamura et al., 2001), 7 y 8 mm para H. rufescens (Hahn, 1989), 10 y 20 mm para H. asinina y H. ovina (Jarayabhand y Paphavasit, 1996) o 10 mm para H. tuberculata (Mgaya y Mercer, 1994). En el caso del abalón presente en Canarias, la talla se encuentra entre 6 y 10 mm de longitud (Courtois de ViÇose, comunicación personal). La talla de los ejemplares en cultivo ha sido señalada como uno de los factores más influyentes en el crecimiento del abalón (Flemming y Hone, 1996; Wu et al., 2009). Estas variaciones pueden deberse a diferencias genéticas relacionadas con el tamaño de los ejemplares (Sun et al., 1993; Wu et al., 2009), con los requerimientos de proteínas (Shipton y Britz, 2001), con la utilización de las proteínas y la energía (Britz y Hecht, 1997; Shipton y Britz 2001; Green et al., 2011) o bien con diferencias en la capacidad de la rádula para ramonear el alimento (Jonhston et al., 2005). 1.4.1.2. Densidad de cultivo La densidad de cultivo, además de ser un factor que condiciona el tipo de sistema, ha sido señalado como unos de los factores de mayor influencia sobre el crecimiento y supervivencia de la oreja de mar, siendo por tanto un factor determinante para alcanzar la talla commercial. El efecto negativo provocado por el incremento de la densidad, parece estar estrechamente relacionado con la alta competencia tanto por el espacio como por el alimento que estos animales presentan, y al estrés inherente a la 162 Spanish summary gran acumulación de individuos, tal y como se ha demostrado para la mayoría de las especies comerciales de abalón: H. tuberculata (Koike et al., 1979; Cochard, 1980; Mgaya y Mercer, 1995); H. cracherodii (Douros, 1987); H. discus hannai (Jee et al., 1988; Wu et al., 2009; Wu y Zhang, 2013); H. rubra (Huchette et al., 2003a, b); H. asinina (Capinpin et al., 1999; Fermin y Buen, 2002; Jarayabhand et al., 2010); Haliotis diversicolor supertexta (Liu y Chen, 1999); H. rufescens (McCormick et al., 1992; Aviles y Shepeherd, 1996, Valdés-Urriolagoitia, 2000); H. midae (Tarr, 1995); H. corrugata (Badillo et al., 2007); H. kamtschatkana (Lloyd y Bates, 2008) y for H. iris (Heath y Moss, 2009). Si bien la influencia de la densidad de cultivo sobre el crecimiento del abalón en Canarias aun no ha sido estudiado, densidades de cultivos experimentales de 43-175 abalones m2 en jaulas de otra especie de talla pequeña como H. asinina (Capinpin et al., 1999), y de 83-386 abalones m2 para juveniles del abalón europeo (Koike et al., 1979; Mgaya y Mercer, 1995), mostraron una marcada influencia en la talla final de los ejemplares. De hecho, el triplicar la densidad de cultivo puede causar una reducción del 52% en el crecimiento de H. tuberculata (Mgaya y Mercer, 1995). 1.4.1.3. Renovación de agua El cultivo de la oreja de mar se caracteriza por necesitar una alta renovación del medio (200% a 2.400% por día) para mantener la calidad del agua dentro de los parámetros recomendados (Badillo et al., 2007; Naylor et al., 2011). Lo que es más, una adecuada renovación influye positivamente sobre el factor de conversion del alimento (FCR) mediante la estimulación de la actividad alimenticia (Higham et al., 1998), aumentando por tanto el crecimiento del abalón (Shepherd, 1973; Mgaya y Mercer, 1995; Wassnig et al., 2010). Adicionalmente, el aumentar la renovación del agua puede ser un medio eficiente de mitigar los efectos nocivos de las altas densidades de cultivo contribuyendo a los beneficios de la actividad (Wassnig et al., 2010). Además, Tissot (1992) estableció que para un crecimiento óptimo del abalón es necesario una adecuada velocidad del agua que permita una circulación suficiente a través del manto de los animales. Sin embargo, en el caso de los tanques poco profundos (como los denominados tanques ‘slab’), muy extendidos en granjas comerciales (Hutchinson y Vandepeer, 2004; Wassnig et al., 2010), una alta renovación 163 Spanish summary puede tener efectos negativos al favorecer la lixiviación de nutrientes del pienso (Fleming et al., 1997; Marchetti et al., 1999) y propiciar también la pérdida de los mismos como efecto de la corriente (Fleming et al., 1997). Por tanto, la velocidad del agua es un factor a tener en cuenta para no supercar ciertos límites. En sistemas de cultivos abiertos, el coste asociado al mantenimiento de una alta tasa de renovación (principalmente bombeo) corresponde entre el 15% y 30% del total de los gastos operacionales (Neori et al., 2000; Badillo et al., 2007). Así, y con el fin de no solo reducir costes sino también la emisión de nutrientes al medio, se han desarrollado diversos sistemas de recirculación, tanques en serie, o incluso sistemas de cultivos multitróficos (algas-abalón) en recirculación, como sistemas de engorde para diferentes especies tales como H. tuberculata (Mgaya y Mercer, 1995; Schuenhoff et al., 2003), H. discus hannai (Nie et al., 1996; Park et al., 2008; Demetropoulos y Langdon, 2004), H. rufescens y Haliotis sorenseni, (Demetropoulos y Langdon, 2004), H. corrugata (Badillo et al., 2007), H. asinina (Jarayabhand et al., 2010), H. midae (Naylor et al., 2011) o H. iris (Tait, 2012). 1.4.2. Parámetros físico-químicos 1.4.2.1. Temperatura La temperatura es uno de los parámetros ambientales más influyentes en la tasa metabólica de los organísmos poiquilotermos (Fry, 1971) y por tanto, de vital importancia en el manejo del engorde del abalón, ya que afecta directamente a la tasa de desarrollo gonadal (Uki y Kikuchi, 1984; Hahn, 1989), al consumo de alimento (Peck, 1989; Britz et al., 1997; García-Esquivel et al., 2007), a la excreción de amonio (Barkai y Griffiths, 1987; Lyon, 1995), al crecimiento e indices nutricionales (Leighton, 1974; Uki et al., 1981; Hahn, 1989; Peck, 1989; Britz et al., 1997; Gilroy y Edwards, 1998; Hoshikawa et al., 1998; Lopez et al., 1998; Steinarsson y Imsland, 2003; Alcántara y Noro, 2006; García-Esquivel et al., 2007); supervivencia (Hahn, 1989), susceptibilidad al estrés (Lee et al., 2001; Haldane, 2002; Malham et al., 2003) o a la definición de los protocolos de cultivo a implementar (Vandepeer, 2006). Aunque cada especie de abalón tiene un rango de temperatura óptimo, de forma general las especies templadas se encuentran en rangos de temperatura de entre 8-18ºC, 164 Spanish summary las subtropicales entre 14-26ºC y las tropicales entre los 16-30ºC. Gilroy y Edwards (1998) establecieron que en general, la oreja de mar tiene una respuesta térmica conservativa y poca capacidad de adaptación a los cambios termales, por lo tanto, la temperatura del cultivo debería ser lo más cercana posible a la óptima de la especie. La temperatura del agua de mar en Canarias se encuentra entre 18 y 24ºC (Cuevas., 2006), por tanto, más parecida a la natural de las especies tropicales y subtropicales que a la cercana Haliotis tuberculata, considerada una especie templada (Peck, 1989). 1.4.2.2. Luz A pesar de que el habitat y el comportamiento varía según las especies de abalón (Shepherd, 1975), en general su actividad es mayor durante la noche, existiendo una gran influencia de la luz sobre su distribución y actividades (Cochard, 1980; Huchette et al., 2003b; Morikawa y Norman, 2003), y por tanto sobre sus pautas alimenticias (Tahil y Juinio-Menes, 1999). En consecuencia, el aporte de refugios o sombreos en los cultivos son herramientas útiles en incluso necesarias para un óptimo crecimiento (Maguire et al., 1996; Fig. 6). Es más, la provision de sombras y refugios en condiciones de alta densidad, puede ayudar a favorecer el crecimiento de los animales mediante, por un lado, el aumento de “las zonas preferidas” reduciendo por tanto el apilamiento de los animales, y por otro, limitando la influencia del fotoperíodo en la regulación de la actividad alimenticia (Hindrum et al., 1999; Huchette et al., 2003b). Por el contrario, el sombreo y los refugios pueden también presentar ciertas desventajas, como son el incremento de la mano de obra en las labores de alimentación y mantenimiento o la reducción de la circulación (Maguire et al., 1996). 165 Spanish summary Figura 6. Tejas de PVC empleadas como refugios en los cultivos de abalón en Tailandia (A; H. asinina) y en Canarias (B; H. tuberculata coccinea). 1.4.2.3. Calidad del agua Es ampliamente conocida la influencia negativa del descenso de la calidad de agua sobre el crecimiento y la salud de la oreja de mar (Basuyaux y Mathieu 1999; Naylor et al., 2011). En el engorde de abalón, este deterioro puede deberse a la presencia de heces y restos de comida (Yearsley et al., 2009), a altos niveles de compuestos nitrogenados resultantes de la excreción de los animales (Barkai y Grifths, 1987) o a una disminución de la concetración de oxígeno (Badillo et al., 2007). De forma general, para lograr tasas de crecimiento máximas se asume que el oxígeno disuelto del agua debe de mantenerse a niveles de saturación (100%), y una vez que estos niveles están logrados, el parámetro de cultivo más importante pasa a ser la presencia en el agua de compuestos nitrogenados derivados de la excreción (Colt y Armstrong, 1981). Entre estos compuestos, es especialmente tóxico el amonio resultante del propio catabolismo de los animales (Kinne, 1976; Russo y Thurston, 1991) y de la actividad bacteriana (Reddy-Lopata et al., 2006), siendo un factor estresante e incluso letal en el cultivo de este molusco (Hargreaves y Kucuk, 2000; Huchette et al., 2003a). Debido a ello, existen numerosos trabajos sobre la influencia de este compuesto sobre la supervivencia y crecimiento de diversas especies de abalón como son H. laevigata (Harris et al., 1998, Hindrum et al., 2001), H. tuberculata (Basuyaux y Mathieu, 1999), H. rubra, Huchette et al., 2003a), H. diversicolor supertexta (Cheng et al., 2004) o H. 166 Spanish summary midae (Reddy-Lopata et al., 2006; Naylor et al., 2011), en los que de forma general se concluye que, a pesar de que los abalones se pueden adaptar a niveles sub-letales de amonio en el agua, sí tiene lugar una reducción sustancial del crecimiento, siendo por tanto esencial el mantener niveles bajos de amonio. En los cultivos de oreja de mar, los niveles de amonio se regulan a través de la renovación del agua, debiéndose además lograr un equilibrio entre las demandas tanto fisiológicas como económicas (Ford y Langdon, 2000). 1.4.3. Sistemas de engorde El sistema de cultivo ideal para el engorde de oreja de mar debe ser aquel que favorezca una buena destribución de los animales, fácil acceso al alimento, mínimo contacto entre los animales en cultivo y sus heces, un buen flujo de agua y renovación, un medio de acomodación y alimentación de los animales en densidades de cultivo comerciales y un mínimo de manejo (McShane, 1988; Aviles y Shepherd, 1996; Fleming y Hone, 1996). Así, son numerosos los sistemas de cultivo desarrollados hasta el momento tanto en tierra como en el mar, actividad que aún continua, resultando en una gran disparidad de sistemas en las distintas granjas dando lugar por tanto a crecimientos muy dispares. 1.4.3.1. Sistemas en tierra Los sistemas de engorde en tierra abarcan desde tanques de cemento largos y profundos, a tanques plásticos específicos para el abalón o estanques exteriores (McShane, 1988; Freeman, 2001; Alcántara y Noro, 2006; Fig. 7). Sin embargo, dada la influencia que el tipo de tanque ejerce tanto sobre la alimentación como sobre el comportamiento del abalón (Fleming y Hone, 1996), la efectividad lograda en los distintos sistemas varía considerablemente. En los últimos años, las investigaciones relacionadas con las técnicas de producción han estado principalmente encaminadas al desarrollo de tanques aptos para el uso de dietas compuestas, lo que ha dado lugar a tanques muy poco profundos con elevadas tasas de renovación que favorecen la eliminación de los deshechos del sistema (Wassnig et al., 2010). La producción en esos tipos de tanques se estima en 1 t/tanque/año (Morrison y Smith, 2000). 167 Spanish summary A consecuencia de los elevados gastos derivados del bombeo, aireación, filtración o control de temperatura, los sistemas de engorde en tierra son muy poco eficientes desde el punto de vista energético, siendo los gastos de instalación y operacionales las principales desventajas de este tipo de sistemas (Wu et al., 2009; Wu y Zhang, 2013). Otro de los problemas asociados a estos emplazamientos, es la escasez de terrenos apropiados en zonas costeras, en la mayoría de las ocasiones además en competencia de usos con tras actividades humanas. Figura 7. Diversos sistemas de granjas en tierra para el cultivo de H. rufescens (A; Chile), H. discus hannai (B; Corea), H. asinina (C; Tailandia) y H. tuberculata (D; Irlanda). 168 Spanish summary 1.4.3.2. Instalaciones en el mar En las granjas en mar abierto, la corriente y el oleaje son los responsables del intercambio de agua dentro las estructuras y por tanto, son las condiciones reinantes las que afectan al crecimiento de los animales en cultivo (Nagler et al., 2003). Las ventajas de este tipo de sistema para el cultivo de abalón incluyen una mejora potencial de las condiciones generales del cultivo, menores costes de inversion y de funcionamiento, y fácil acceso para la alimentación, mantenimiento y cosecha (Jarayabhand y Paphavasist, 1996; Leighton, 1989; Capinpin et al., 1999; Wu et al., 2009). Mientras que las desventajas serían un mayor requerimiento de mano de obra para las labores de limpieza de las unidades de cultivo, la falta de control sobre los parámetros medioambientales, la escasez de emplazamientos adecuados para el engorde de las semillas o la mayor inseguridad de las instalaciones (Hindrum et al., 1996; Preece y Mladenov, 1999; Wu y Zhang, 2010, 2013). Existe también una gran variedad de sistemas en las instalaciones en el mar, pudiendo las unidades de cultivo estar suspendidas de long-lines, de plataformas flotantes o situadas directamente sobre el lecho marino (Aviles y Shepherd, 1996; Capinpin et al., 1999; Fermin y Buen, 2002; Wu et al., 2009; Fig. 8-10). Así mismo, para diferentes especies de abalón tales como H. rufescens (Benson et al., 1986); H. fulgens (Gonzáles-Avilés y Shepherd, 1996); H. asinina, (Capinipin et al., 1999, Minh et al., 2010); H. iris (Preece y Mladenov, 1999), H. diversicolor (Alcántara y Noro, 2006; Wu et al., 2009), H. tuberculata (Bossy 1989, 1990; Hensey 1991, 1993; La Touche et al., 1993; Legg et al., 2012) o híbridos de abalón (H. rubra x H. laevigata, Mulvaney et al., 2012), se han probado una gran diversidad de unidades de cultivo: barriles, tubos de PVC, jaulas de red o cestas plásticas apiladas, mostrando de forma general una gran influecia de los sistemas de engorde sobre las tasas de crecimiento de los animales. Sin embargo, la rápida expansion de instalaciones de cultivo en bahías costeras cerradas, ha dado lugar a una sobrecarga de las estructuras flotantes con la consiguiente reducción de la circulación del agua, afectando finalmente al crecimiento y la supervivencia de los animales (Fleming et al., 1997; Searcy-Bernal y GorrostietaHurtado, 2007; Wassnig et al., 2010). Por otro lado, el desarrollo de la tecnología de jaulas flotantes en mar abierto ha permitido una gran expansion del cultivo de peces como salmónidos en Europa y Canadá (Korsoen et al., 2009) o corvina Pseudosciaena crocea en China (Lu et al., 2008). Esta técnica de cultivo combina una alta producción, 169 Spanish summary fácil manejo y bajo coste energético (Mortensen et al., 2007). Así, recientemente se han probado en China jaulas sumergibles, mostrando uno crecimiento general de H. discus hannai superior a los obtenidos con los sistemas tradicionales de cestas suspendidas apiladas (Wu yd Zhang, 2013). Figura 8. (A) Jaulas suspendidas de long-lines para el cultivo de abalón rojo H. rufescens en Chile. (B) Sistema tradicional de cestas apiladas para el cultivo de H. discus hannai en China. A modo de resúmen, se podría decir que los sistemas de cultivo en el mar para el engorde del abalón se han convertido en los más extendidos a nivel mundial, debido a un menor coste respecto a los tradicionales cultivos en tierra, mayor calidad de los productos y mayor sostenibilidad a largo plazo (Ke et al., 2012; Park y Kim, 2013; Legg et al., 2012). 170 Spanish summary Figura 9. Diversos sistemas de cultivo fondeados en el lecho marino para el abalón europeo en la Isla de Jersey (Reino Unido). Figura 10. Cultivo del abalón europeo H. tuberculata en jaulas suspendidas en Bretaña (Francia). 171 Spanish summary 1.5. NUTRICIÓN Y ALIMENTACIÓN EN LA OREJA DE MAR Dada la extrema importancia de una adecuada gestión de la alimentación para el óptimo desarrollo de la tecnología de engorde de la oreja de mar, en la presente tesis se ha llevado a cabo una extensa revisión acerca del conocimiento e investigaciones en curso, relativos la producción mundial de Haliotis spp., con especial atención hacia sus requerimientos nutricionales y estrategias de alimentación. 1.5.1. Aspectos generales La oreja de mar es un gasterópodo herbívoro que se alimenta de microalgas en sus etapas iniciales y macroalgas en su etapa adulta (Elliott, 2000; Sales y Britz, 2001; Nelson et al., 2002; Tanaka et al., 2003) (Fig. 11), comenzando a alimentarse inmediatamente después del asentamiento (Tutschulte y Connell, 1988). Cuando crece, se alimenta de macroalgas pasando de una especie a otra conforme va madurando (Tabla 2). Figura 11. Semillas de abalón (H. tuberculata coccinea) ramoneando sobre alga verde. Dependiendo del habitat y la disponibilidad en el medio, las prefenrencias por los distintos tipos de algas varían para cada especie de abalón. (Dunstan et al., 1996; Nelson et al., 2002). Aunque de forma natural consumen una gran variedad de algas (Britz, 1991), las laminarias son, de lejos, la principal fuente de alimento de estos herbívoros (Rosen et al., 2000; Qi et al., 2010). El patron de alimentación de la oreja de mar va cambiando a lo largo de las distintas etapas de su ciclo vital (de Waal et al., 2003). Esto es debido no sólo al 172 Spanish summary aumento del tamaño de la boca (Fleming et al., 1996), sino también a los cambios morfológicos de la rádula conforme el animal crece (Steneck y Watling, 1982; Kawamura et al., 2001; Daume y Ryan, 2004; Simental et al., 2004; Johnston et al., 2005). Así mimo, los cambios en la dieta también son debidos a cambios en la flora intestinal y en la actividad enzimática en el digestivo del animal según va creciendo, lo que les permite digerir las macroalgas (Erasmus et al., 1997; Tanaka et al., 2003). 1.5.2. Alimentación de la oreja de mar La oreja de mar puede consumir algas a una tasa cercana al 35% de su peso al día (Tahil y Juinio-Menez, 1999), por lo que la biomasa algal requerida para sostener el engorde del abalón es muy elevada (Fig.12). Sin embargo, la limitada disponibilidad de algas adecuadas en el medio natural, además de su generalmente bajo contendido en proteínas, suponen un impedimento importante para el cultivo intensivo de este molusco a nivel mundial (Hahn, 1989). Es más, la abundancia y calidad nutricional de las algas varía mucho en función del lugar y época de cosecha (Dawczynski et al., 2007; Courtois de Viçose et al., 2012a), afectando por tanto a las tasas de crecimiento dificultando a los granjeros una óptima gestión de la producción (Bautista-Teruel y Millamena, 1999). Debido al crecimiento bajo y variable de los animales cuando se alimentan con macroalgas (Britz, 1996a; Cook, 1991; Bautista-Teruel y Millamena, 1999; Tan y Mai 2001; Moriyama y Kawauchi, 2004), unido a los problemas de logística y suministro asociados al uso de algas frescas, el cultivo intensivo del abalón se sustenta cada vez más en el uso de dietas artificiales (Britz 1996a, b; Sales y Britz, 2001), que son formuladas para satisfacer los requerimientos nutricionales de cada una de las especies en cultivo. La selección del tipo de alimento también va a depender del sistema de cultivo, las macroalgas generalmente empleadas para las instalaciones en el mar, mientras que los piensos pueden ser más adecuados para sistemas en tierra (Kinkerdale et al., 2010; Qi et al., 2010). A modo de resumen se podría decir que ambas fuentes de alimentación tienen su lugar, y deben de ser elegidas en función de las características específicas de cada granja (emplazamiento, condiciones de cultivos, disponibilidad de algas del medio etc.) (Dlaza, 2006). Además de estos factores nutricionales, para la selección del sistema 173 Spanish summary alimentación de la granja, han de tenerse en cuenta así mismo criterios económicos que redunden en el éxito de la empresa. De forma general, en las granjas de abalón los animales se alimentan 2-3 veces a la semana o cada 2 días (Maguire et al., 1996). Figura 12. Macrocystis pyrifera y Palmaria palmata cosechadas del medio natural para alimentar al abalón rojo (A; Chile) y al europeo (B; Bretaña). En el caso de las Islas Canarias, la biomasa algal del medio es mucho menos abundante que en otras zonas costeras de aguas ricas en nutrientes, lo que hace inviable su cosecha. Por lo tanto, para el desarrollo comercial de esta industria es necesario reemplazar las algas extraídas del medio como fuente principal de la dieta, debiendo basarse por tanto en el cultivo de algas y/o el uso de piensos compuestos. 174 2 3 10 H. asinina 28 H. roei 29 19 16 4 H. midae 22 H. corrugata 30 27 18 20 12 5 H. discus hannai 13 H. rufescesn 14 H. sorenseni 1 H. laevigata 23 26 11 H. rubra 31 24 17 6 H. fulgens 7 H. diversicolor 25 8 H. iris 32 21 15 9 H. tuberculata 175 1. Shepherd y Cannon, 1988.; 2. Troell et al., 2006 ; 3. Jackson et al.,2001 (G. edulis); 4. Sales y Britz, 2001 (G. gracilis); 5. Pang et al., 2006 (G. textorii); 6. Mcbride et al., 2001 (G. conferta); 7. Liao et al., 2003 (G. tenuistipitata); 8. Allen et al., 2006; 9. Neori et al., 1998; Mcbride et al., 2001(G. conferta); 10. Capinpin y Corre, 1996 (G. heteroclada); Reyes y Fermin, 2003 (G. bailinae); 11. Fleming, 1995; 12. Mercer et al., 1993 (P. palmata); Demetropoulos and Langdon, 2004 (P. mollis); 13 y 14. Demetropoulos and Langdon, 2004 (P. mollis); 15. Mercer et al., 1993 (P. palmata); 16. Naidoo et al., 2006; 17. Nelson et al., 2002; 18. Uki et al., 1985a; 19. Troell et al., 2006 (L. pallida); 20. Qi et al., 2010 (L. japonica); 21. Mercer et al., 1993 (L. digitata); 22. Badillo et al., 2007; 23 y 24. Serviere-Zaragoza et al., 2001; 25. Allen et al., 2006; 26. Vandepeer y Van Barneveld 2003; 27. Sakata et al., 1984; 28. Boarder y Shpigel, 2001 (U. rigida); 29. Naidoo et al., 2006; 30. Shuenhoff et al., 2003; 31 y 32. Mcbride et al., 2001 (U. lactuca) Ulva spp Alga verde Undaria pinnatifida Phyllospora comosa Macrocistys pyrifera Laminaria spp. Eisenia spp Egregia menziesii Ecklonia maxima Alga parda Palmaria spp. Jeannerettia lobata Gracilariopsis spp. Gracilaria spp. Gelidium spp. Asparagopsis armata Alga roja Macraolga Especies de abalón Tabla 2. Algas del medio y cultivadas, idóneas para el cultivo de distintas especies de abalón (Los números indican los trabajos abajo referenciados) Spanish summary Spanish summary 1.5.3. Requerimientos nutricionales de la oreja de mar El valor nutricional de las dietas de abalón depende de muchos factores como son su composición, disponibilidad (Middlen y Redding, 1998; Serviere-Zaragoza et al., 2001; Nelson et al., 2002; Bautista-Teruel et al., 2003); digestibilidad (Sales y Britz 2001, 2002; Gomez-Montes et al., 2003); técnicas de procesado (Booth et al,. 2002; Sales y Britz, 2002); tamaño de las partículas (Southgate y Partridge, 1998); presentación y tamaño del grano (Fleming et al., 1996; Kinkerdale et al., 2010); la presencia de atractantes (Fleming et al., 1996; Sales y Janssens, 2004) o su textura y palatibilidad (Kautsky et al., 2001). Por lo tanto, para determinar la calidad de una dieta son numerosos los factores que en conjunto, han de considerarse. 1.5.3.1. Composición general de las dietas procesadas para la oreja de mar En la actualidad, la composición proximal de las dietas es muy parecida a la propia del abalón (Viera et al., 2009a). El contenido calórico (energía bruta) se sitúa generalmente alrededor de 4 Kcal g-1 (Tabla 3). La humedad promedio es del 10% (Tabla 3). El contenido en proteínas de las dietas varía considerablemente entre 20-50 % (Tabla 4), con un promedio del 30%. Mientras que el el rango de los lípidos testados se sitúa entre 1.2-19%, con un 4% de promedio (Tabla 5). Los carbohidratos constituyen el componente mayoritario de las dietas, oscilando entre 21- 82%, con un valor medio aproximado del 45% (Tabla 6). El percentage de fibra es generalmente bajo (1-6%; Tabla 6) debido a la baja capacidad del abalón para digerirla (Fleming et al., 1996). 1.5.3.2. Fuentes de proteínas, niveles óptimos de inclusión y suplementación de aminoácidos Entre los dintintos nutrientes, la oreja de mar require para un óptimo crecimiento niveles adecuados de protenias de alta calidad (Uki et al., 1985a; Mai et al., 1995a, b; Britz y Hecht, 1997; Bautista-Teruel y Millamena, 1999; Gómez-Montes et al., 2003; Reyes y Fermín, 2003; Viana et al., 2007). En consecuencia, para el uso eficiente de este componente dietético esencial pero caro, el abalón debe emplearlo para crecer y no como fuente energética. Los factores más importantes que afectan a la utilización de la proteína son su digestibilidad, el balance y disponibilidad de los aminoácidos, así como la relación proteína-energía (Fleming et al., 1996). 176 Spanish summary Tabla 3. Composición proximal (% peso seco) y contenido calórico de diversas dietas artificiales testadas para el abalón Referencias 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Proteínas 30 31 35 38 32 40 35 35 28 35 27 36 38 35 44 Lípidos 5 5 10 6 6 5 7 4.5 3 6 5 3 1.3 5 6.7 48 33 39 40 48 45 43 4.3 1 9 6 16 10 6 Carbohidratos 44 42 6 Fibra 3 Cenizas 11 8 5 Humedad EB (Kcal g-1) 4.5 P: e ratio* 47 3 4.7 3 85 4 2.9 4 4.5 4.5 96 1. Uki et al., 1985b (Japón: H. discus hannai); 2. Mai et al., 1995b (Irlanda: H. tuberculata y H. discus hannai); 3. Viana et al., 1993 (México: H. fulgens); 4. Guzmán y Viana, 1998 (México: H. fulgens); 5. Bautista-Teruel y Millamena, 1999 (Filipinas: H.asinina); 6. Jackson et al., 2001 (Australia: H. asinina); 7. Serviere-Zaragoza et al., 2001 (México: H. fulgens); 8. Shipton y Britz, 2001(Sudáfrica: H. midae); 9. Bautista-Teruel et al., 2003 (Filipinas: H. asinina); 10. Gómez-Montes et al., 2003 (México: H. fulgens); 11. Reyes y Fermín, 2003 (Filipinas: H. asinina); 12. Sales et al., 2003 (Sudáfrica: H. midae); 13. Thongrod et al., 2003 (Tailandia: H. asinina); 14. Naidoo et al., 2006 (Sudáfrica: H. midae); 15. Hernández et al., 2009 (Chile: H. rufescens). * Ratio proteína: energía. La fuentes de proteínas más empleadas en las dietas de abalón incluyen la harina de pescado, harina de soja desengrasada (Guzmán y Viana, 1998; Sales y Britz, 2002; Gómez-Montes et al., 2003; Thongrod et al., 2003; Naidoo et al., 2006; García-Esquivel et al., 2007), caseína (Uki et al., 1985b; Viana et al., 1993; Mai et al., 1995b; Sales et al., 2003; Vandepeer y van Barneveld, 2003) y Spirulina spp. (Uki et al., 1985b; Britz et al., 1996a, Bautista-Teruel et al., 2003; Thongrod et al., 2003; Naidoo et al., 2006; Troell et al., 2006). También se han probado otras fuentes novedosas en pequeñas proporciones (Tabla 4). En ocasiones, para aprovechar el alto valor nutricional de las algas, éstas han sido incluídas también en las dietas (García-Esquivel et al., 2007; Viana et al., 2007). Otros compuestos que también se han propuesto como fuentes económicas 177 Spanish summary de proteínas han sido ensilados de vísceras de peces o del propio abalón (Viana et al., 1996; Guzmán y Viana, 1998). Además, en ocasiones, con el fin de aportar los aminoácidos esenciales para estas species, las dietas deben ser suplementadas con aporte de aminoácidos sintéticos tales como metionina, treonina o arginina (Mai et al., 1995b; Guzmán y Viana, 1998; Serviere-Zaragoza et al., 2001; García-Esquivel et al., 2007). De entre todas las fuentes testadas, la harina de pescado es la única que da lugar a un buen crecimiento cuando se incluye como única fuente proteica (Fleming et al., 1996). Sin embargo, aspectos concernientes al uso sostenible de la harina de pescado en la acuicultura, han llevado al Fondo Mundial para la Naturaleza a establecer restricciones en cuanto a su uso dentro de la normativa para la producción internacional de abalón (WWF, 2010). Así, para abalones alimentados con dietas que contengan harina de pescado, dicha normativa establece que no debe emplearse más de un kilo de pescado para producir un kilo de este molusco. Cabe añadir que hasta el momento, la producción europea de oreja de mar está principalmente enfocadada hacia productos orgánicos o con certificación ecológica, lo que implica que en su proceso de cultivo, no se emplean harinas de pescado, medicamentos o fertilizantes. En este sentido, el desarrollo de dietas compuestas para abalón que no contengan harina de pescado, tendría ventajas comerciales no sólo para los consumidores europeos, cuya preocupación por el medio ambiente es cada vez mayor, sino también para los productores que podrían validar la sostenibilidad ambiental y social de su proceso productivo (WWF, 2010). 178 60 32 Harina de soja Caseína 63 43 57 20-50 5 24-44 9-62 6 10 10 40 7 10 20 17 22-32 7-20 20 7-17 8 15-30 19-37 12-48 10 30 34 30 10 36-39 12 36 12 34 23 5 5 10 20 11 179 1. Uki et al., 1985b (Japón: H. discus hannai) ; 2. Mai et al., 1995b (Irlanda : H. tuberculata y H. discus hannai); 3. Britz et al, 1996a (Sudáfrica: H. midae); 4. Britz et al, 1996b (Sudáfrica: H. midae); 5. Fleming et al,, 1996 (revisión); 6. Britz y Hecht, 1997 (Sudáfrica: H. midae); 7. Guzmán y Viana, 1998 (México: H. fulgens); 8. Bautista-Teruel y Millamena, 1999 (Fipipinas: H. asinina); 9. Serviere-Zaragoza et al., 2001 (México: H. fulgens); 10. Shipton y Britz, 2001(Sudáfrica: H. midae); 11. Sales y Britz, 2002 (Sudáfrica: H. midae). Proteína total Huevos enteros Albúmina de huevo Extracto d e aceite de soja 37 47 Harina de maiz Harina de laminarias 52 Harinas vegetales 15 2 10 30 9 24-40 32 44 4 Levadura de tórula 27-47 41-71 3 24-48 0-50 8-41 2 Dieta Harina de girasol Harinas de semillas de algodón Spirulina spp. Ensilaje Harina de langostino 47 1 Harina de pescado Fuente proteica y contenido Nutriente Tabla 4. Composición nutricional (% peso seco) de las dietas compuestas ensayadas para el abalón: Fuentes proteicas y niveles de inclusión Spanish summary 27 9-17 9-17 5-48 4-48 1-7 37 5 10 34 16 62 43 17 35 39-50 35 10 55 18 - 19 12 15 29 20 10 30 21 26-44 18 44 35 44 15 10 30 22 34-39 2.6 16-19 29-35 23 180 12. Bautista-Teruel et al., 2003 (Filipinas: H. asinina); 13. Gómez-Montes et al., 2003 (México: H. fulgens); 14. Reyes y Fermín, 2003 (Filipinas: H. asinina); 15. Sales et al., 2003 (Sudáfrica: H. midae); 16. Thongrod et al., 2003 (Tailandia: H. asinina); 17. Vandepeer et al., 2003 (Australia: H. rubra y H. laevigata); 18. Naidoo et al., 2006 (Sudáfrica: H. midae); 19. Troell et al, 2006 (Sudáfrica: H. midae); 20. García-Esquivel et al, 2007 (México: H. fulgens); 21. Viana et al, 2007 (México: H. fulgens); 22. Hernández et al., 2009 (Chile: H. rufescens); 23. Green et al., 2011 (Sudáfrica: H. midae). Total protein Algas 26 46 5 15 3 15 12 20 10 18-35 14 Harina de laminarias 20 35 10 13 12 7.5 35 7.5 12 Dieta Harina de maíz Harinas vegetales Harina de lupino Proteína de soja aislada Spirulina spp. Harina de langostino 15 20 Harina de soja Caseína 10 Harina de pescado Fuente proteica y contenido Nutriente Tabla 4. (Continuación) Spanish summary Spanish summary 1.5.3.3. Fuentes lipídicas, niveles de inclusion óptimos y ácidos grasos esenciales. Los lídidos son un constituyente esencial de la dieta no sólo por su alto valor energético y como fuente de ácidos grasos, imprescindibles para el metabolismo celular y mantenimiento de la estructura de las membranas (Corraze, 2001), sino también como fuente de vitaminas liposolubles (Fleming et al., 1996). Además, los lípidos (especialmente los ácidos grasos ploiinsaturados de cadena larga) son determinantes en el sabor y olor de los alimentos marinos. En consecuencia, se han llevado a cabo numerosas investigaciones referentes a este nutriente para evaluar, entre otro aspectos, la respuesta del abalón a distintos niveles de lípidos dietéticos (Uki et al., 1985a; 1986; Mai et al., 1995a; Bautista-Teruel et al., 2011); la obtención de los lípidos necesarios con la inclusion de aceite de pescado en las dietas (Dunstan et al, 1996); el efecto del ratio proteína-energía sobre el crecimiento, indices nutricionales y composición corporal (Britz y Hecht, 1997; Bautista-Teruel y Millamena, 1999; Gómez-Montes et al., 2003; Green et al., 2011); el papel de los lípidos en el crecimiento y la maduración gonadal (Nelson et al., 2002), la composición en ácidos grasos de los tejidos (Dunstan et al., 1996; Grubert et al., 2004; Li et al., 2002; Durazo y Viana, 2013; Hernández et al., 2013) o la influencia en el crecimiento del ratio lípidos: carbohidratos y la energía bruta de las dietas de abalón (Thongrod et al., 2003). En general, al igual que en otro moluscos y peces herbívoros, el requerimiento lipídico de la oreja de mar es muy bajo (Mai et al., 1995a), lo que según diversos autores está relacionado con el bajo uso de los lípidos como fuente energética derivado de su baja tasa metabólica (Durazo-Beltrán et al., 2004). Y lo que es más, niveles altos de lípidos en la dieta (>7%) parecen afectar de forma negativa al crecimiento del abalón reduciendo la captación de otros nutrientes tal y como se ha visto para diversas especies como H. laevigata (Van Barneveld et al., 1998); H. tuberculata y H. discus hannai (Mai et al.,1995a); H. midae (Britz y Hecht, 1997; Green et al., 2011), H. fulgens (Durazo-Beltran et al., 2003, 2004); H. asinina (Thongrod et al., 2003) o H. corrugata (Montano-Vargas et al., 2005). A pesar de que el rango de los niveles lipídicos testados en las dietas de abalón ha sido muy amplio (2-19% PS; Tabla 5), en la mayoría de los casos los lípidos constituyen unicamente un 3-5% de la dieta (Uki et al., 1985a). 181 Spanish summary En cuanto a las fuentes, los lípidos en la dietas artificiales son aportados como aceite de pescado/marina (Guzmán y Viana, 1998; Sales y Britz, 2002; Thongrod et al., 2003; Green et al., 2011), aceite vegetal (Shipton y Britz, 2001) o una combinación de ambas (Mai et al., 1995a; Britz, 1996a,b; Bautista-Teruel y Millamena, 1999; Shipton y Britz, 2001; Bautista-Teruel et al., 2003; Gómez-Montes et al., 2003; Reyes y Fermín, 2003) (Tabla 5). En ocasiones, la misma grasa contenida en la harina de pescado es el único aporte en la dieta. Para prevenir el enranciamiento del aceite, normalmente se le añade vitamina E, (Uki et al., 1985a, b). Son numerosos los trabajos que han encontrado que la composición en ácidos grasos de los tejidos de los animales que se alimentan de algas, como el abalón, es muy distintas de la de los carnívoros o aquellos que se alimentan de plancton, lo que se ha relacionado como un reflejo de la diferente composición de sus respectivos regímenes dietéticos (Dunstan et al., 1996; Grubert et al., 2004). Uki y colaboradores (1985a) estimaron que el nivel de n-3 PUFA de una dieta que contiene un 5% de lípidos debe ser aldedor del 1% (revisado por Uki y Watanabe, 1992) lo que representa un 20% del total de los lípidos. En lo que respecta a la carne del abalón, el nivel de lípidos también es bajo, siendo los siguientes los ácidos grasos mayoritarios: ácido palmítico (16:0), ácido esteárico (18:0), ácido oléico (18:1n9), ácido vaccénico (18:1n7), ácido araquidónico (20:4n6), ácido eicosapentaenoico (20:5n3) y ácido docosapentaenoico (22:5n3) (Dunstan et al., 1999; Nelson et al., 2002). 182 6-8 0y3 4 6 1.5 1.5 5 4-5 0-3 6 3-4 2 7 1.5-5 8 0.5 0.5 9 3-5 10 5 1 1 11 1-19 0-16 12 5.3 13 0-10 1-5 1-5 14 183 1. Uki et al., 1985a, b (Japón : H. discus hannai); 2. Mai et al., 1995a (Irlanda: H. tuberculata y H. discus hannai); 3. Britz, 1996a, b (Sudáfrica: H. midae); 4. Guzmán y Viana, 1998 (México: H.fulgens); 5. Bautista-Teruel y Millamena, 1999 (Filipinas: H.asinina); 6. Shipton y Britz, 2001 (Sudáfrica: H. midae); 7. Sales y Britz, 2002 (Sudáfrica: H. midae); 8. Viana et al, 2002 (Revisión); 9. Bautista-Teruel et al., 2003 (Filipinas: H.asinina); 10. Gómez-Montes et al., 2003 (México: H.fulgens); 11. Reyes y Fermín., 2003 (Filipinas: H.asinina); 12. Thongrod et al., 2003 (Tailandia: H. asinina); 13. Naidoo et al., 2006 (Sudáfrica: H. midae); 14. Bautista-Teruel et al., 2011 (Filipinas: H. asinina) 3 6-7 5y8 0-5 3 Lípidos totales 0.6-12 0-12 2 0.5 1.2-5 1y5 1 Dieta Aceite de maíz Aceite de calamar Aceite de soja Aceite de hígado de bacalao Aceite de girasol/ aceite de pescado (1:1) Aceite de maíz / aceite de pescado (1:1) Aceite de soja / Aceite de hígado de abadejo (3:2 + 1% Vit E) Aceite de pescado Fuente lipídica y contenido Nutriente Tabla 5. Composición nutricional (% peso seco) de dietas artificiales testadas para el abalón: Fuentes lipídicas y niveles de inclusión Spanish summary Spanish summary 1.5.3.4. Energía / carbohidratos: fuentes y contenidos La dieta del abalón en el medio natural contiene entre un 40-50% de carbohidratos. Por tanto, la inclusion de altos niveles de carbohidratos en la dieta favorece el crecimiento de este molusco (Thongrod et al., 2003) que tiene diversas enzimas capaces de hidrolizar carbohidratos complejos (Fleming et al., 1996), y una buena capacidad para sintetizar lípidos no esenciales a partir de ellos. En consecuencia, la energía en las dietas de abalón se suministra principalmente a través de los carbohidratos, cuya proporción ronda el 45% de la dieta (Tabla 6). Las fuentes más empleadas como aporte energético son los cereales tales como harina de trigo o maíz, harina de soja y almidón de maíz o de arróz. En relación a los almidones, en la mayoría de las dietas experimentales y también en las comerciales, éstos juegan un importante doble papel no sólo como fuente de energía, sino también como aglutinante (Tabla 6). A pesar de la habilidad del abalón para utilizar un amplio rango de fuentes energéticas, al tratarse de un molusco, su metabolismo es bajo y en consecuencia también lo es su requerimiento energético. Generalmente, el contenido calórico (energía bruta) de las dietas se sitúa alrededor de las 4 Kcal g-1 (Tabla 3). El alimento de los animales acuáticos se diferencia del empleado en las ganaderías convencionales, en que éstos necesitan una matriz que incluya los distintos nutrientes. Otro requerimiento adicional de las dietas de animales lentos para comer, como es el caso de la oreja de mar, es que tanto los nutrientes solubles en agua, como el resto de partículas se han de mantener en el alimento, de modo que los granos de pienso se conserven intactos en el agua durante al menos dos días. Indudablemente, las propiedades físicas tales como textura o establidad en el agua, difieren mucho entre las dietas artificiales y las macroalgas. Estas características afectan a la alimentación, digestión, absorción y por tanto, al crecimiento de los animales. Así, la estabilidad de la dieta en el agua es una cualidad muy importante, siendo responsable de los diferentes rendimientos obtenidos entre los animales que se alimentan de algas frescas y aquellos que lo hacen de piensos compuestos (Mai et al., 1995a). En este sentido, alcanzar la estabilidad es crucial para el éxito en el desarrollo de un pienso (Fleming et al, 1996; Hernández et al., 2009). La estabilidad promedio de las dietas comerciales es alrededor 184 Spanish summary de 2-3 días (Fleming et al., 1996), pudiendo perder entre un 30-40% de su peso seco tras 48 horas de inmersión (Maguire, 1996; Bautista- Teruel et al., 2003). Las fuentes más comunes de aglutinantes incluyen el almidón, gluten, alginatos y algas (Tabla 6). Los geles también se han testasdo frecuentemente en dietas experimentales, si bien su elevado precio no parece indicar su inclusion en dietas comerciales (Fleming et al., 1996). A pesar de la presencia de celulasas en el intestino, la capacidad del abalón para digerir la fibra es limitada. Algunas dietas incluyen fibra a modo de aglutinante, con unos contenidos máximos del 6% del peso seco (Fleming et al., 1996; Guzmán y Viana, 1998; Serviere-Zaragoza et al., 2001; Naidoo et al., 2006) (Tabla 6). 185 5 5 18 47 * 5-11 4-18 28-82 42-44 13-23 21-49 9 4 31-48 0,5 5 13-29 10 39-47 7 2-3 12 11 5-6 14-23 12 4-18 11 46-50 9-43 9 6-16 5.8 47 9 5-20 20 8 5 33-47 6 20 26-88 7 4 01-1.3 40-50 6 4 7 0.5-31 16-27 6 Dieta 6 1,2 43 13 15 2 6 19 14 186 1. Mai et al., 1995a (Irlanda: H. tuberculata y H. discus hannai); 2. Fleming et al., 1996 (revisión) ; 3. Guzmán y Viana, 1998 (México: H.fulgens); 4. Bautista-Teruel y Millamena, 1999 (Filipinas: H.asinina); 5. Serviere-Zaragoza et al., 2001(México: H.fulgens); 6. Shipton y Britz, 2001(Sudáfrica: H. midae); 7. Sales et al., 2003 (Sudáfrica: H. midae); 8. Bautista-Teruel et al., 2003 (Filipinas: H.asinina); 9. Gómez-Montes et al., 2003 (México: H.fulgens); 10. Thongrod et al., 2003 (Tailandia: H. asinina); 11. Reyes y Fermín., 2003 (Filipinas: H. asinina); 12. DurazoBeltrán et al., 2004 (México: H. fulgens); 13. Naidoo et al., 2006 (Sudáfrica: H. midae); 14. García-Esquivel et al., 2007 (México: H.fulgens) Cenizas Celulosa Fibra Carbohidratos totales Aglutinantes químicos Gelatina Agar Alginato de sodio Algas 3-26 * Almidón (arróz / maíz) Salvado de arróz 19 * Harina de soja 5 15 10 12 5 * 20 4 Maíz (harina / gluten) 3 4 2 * 32-43 1 Trigo (harina /gluten) Dextrina Energía/aglutinantes fuentes y niveles Nutriente Tabla 6. Composición nutricional (% peso seco) de las dietas artificales testadas para el abalón: Energía / aglutinantes fuentes y niveles Spanish summary Spanish summary 1.5.3.5. Vitaminas y minerales En ausencia de información referente al requerimiento de vitaminas y minerales del abalón, las dietas experimentadas por Uki y colaboradores (1985a), se basaron en los requerimientos de la carpa y trucha arcoiris, con excepción del cloruro de colina y vitamina E, añadidos para mantener la mezcla de lípidos que se añadió de forma independiente (Tabla 7). El nivel de inclusion fue del 4% y 1.5% de la dieta para la mezcla de minerales y vitaminas respectivamente. A partir de entonces, la mayoría de las dietas formuladas para el abalón incluyen dichos valores (Tabla 8). Tabla 7. Mezclas de vitaminas y minerals ensayadas por Uki y col. (1985a) Mezcla de vitaminas Mezcla de minerales Composiciónn Composición (Total 100 g) (mg) Tiamina 6 NaCl 1.0 Riboflavina 5 MgSO4-7 H2O 15.0 HCl Piridoxina 2 NaH2PO4-2H2O 25.0 Niacina 40 KH2PO4 32.0 Pantotenato cálcico 10 Ca(H2PO4)2.H2O 20.0 Inositol 200 Citrato de Fe 2.5 Biotina 0.6 Mezcla de trazas* 1.0 Ácido fólico 1.5 Lactato-Ca 3.5 PABA 20 Mezcla de elementos trazas Menadiona 4 B12 Ácido ascórbico ZnSO4.7H2O 35.3 MnSO4.4H2O 16.2 CuSO4.5H2O 3.1 CoCl2.6H2O 0.1 KIO3 0.3 Celulosa 45 0.009 200 Vitamina A 5000 U.I. Vitamina D 100 U.I. 187 0.5 0.5 Cloruro de colina 0.02 0.1 0.3 4.4 4 0.4 9 0.1 0.5 5 2 3 10 5.5 4 1.5 11 0.08 0.2 0.35 0.01 0.1 4.2 2.9 1.3 12 0.08 0.23 0.4 0.11 4.6 3.3 1.3 13 188 1. Uki et al., 1985a,b (Japón: H. discus hannai); 2. Mai et al., 1995a (Irlanda: H. tuberculata y H. discus hannai); 3. Britz et al., 1997 (Sudáfrica: H. midae); 4. Guzmán y Viana, 1998 (México: H. fulgens); 5. Bautista-Teruel et al., 1999 (Filipinas: H. asinina); 6. Serviere-Zaragoza et al., 2001(México: H. fulgens); 7. Reyes y Fermín, 2003 (Filipinas: H. asinina); 8.Sales et al., 2003 (Sudáfrica: H. midae); 9. Thongrod et al., 2003 (Tailandia: H. asinina); 10. Vandepeer et al., 2003 (Australia: H. rubra y H. laevigata); 11. Naidoo et al., 2006 (Sudáfrica: H. midae); 12. García-Esquivel et al., 2007(México: H. fulgens); 13. Viana et al., 2007 (México: H. fulgens) 15 Bentonita 3 8 0.5 3 5 2 3 7 Dieta Mono fosfato de Ca Fosfato dicálcico 0.09 4 0.11 5.1 3.4 1.7 6 BTH 0.05 7 4 3 5 0.23 2 0.8 6 6 2 4 2 1 3 Benzoato de Na Vitamina E Vitamina C Estabilizante de vit C Alfa-Tocoferol 6 4 5.5 4 Mezcla de minerales 2 2 Total 1.5 1 Mezcla de vitaminas Vitaminas y minerales Nutriente Tabla 8. Composición nutricional (% peso seco) de dietas artificiales testadas para el abalón. Ingredientes secundarios Spanish summary Spanish summary 1.5.4. Crecimiento de la oreja de mar en condiciones de cultivo La revisión de los trabajos de nutrición realizados a nivel mundial, evidencian una enorme variación en el crecimiento de los animales en cultivo, particularmente durante el primer año de vida y hasta los 30 mm de talla. En general, las investigaciones en curso demuestran que el alimento para abalón está aún en pleno desarrollo, tratándose de alcanzar un mayor potencial para mejorar el crecimiento, salud y calidad de los animales en cultivo. Es más, la revisión realizada demuestra que un crecimiento de abalón óptimo está basado en la conjunción de muchos factores, en particular el contenido en proteínas y la fuente proteica; niveles de carbohidratos y lípidos; temperatura y fotoperíodo; calidad del agua; densidad de cultivo; edad; características específicas de la especie o sistema de cultivo (Tabla 9). Por tanto, para la selección de la tecnología de engorde adecuada, son muchos los factores que han de entrar en consideración. 189 Dieta vs macroalga Uki et al., 1985a 2124 Dietas artificiales vs macroalgas Alga sfrescas Viana et al., 1993 Fleming, 1995 1020 14 Tª Algas frescas Mercer et al., 1993 Asunto Autor 150 350 90 365 30-40 Días 3 13 12 13 13 6 10 U. lactuca Mixed diet C. crispus A. esculenta L. digitata L. saccharina H. rubra H. fulgens H. discus hannai 4 17 P. palmata 260 101 50 M.angustifolia P.comosa E.radiata FI 310 1.2 FCR 540 WS U. australis 190 P/E L.botryoides 17 21 E 1260 1 0 1 4 28 27 18 13 17 17 21 28 27 18 13 17 C -28 0.1 1.2 2 -1 4.0 13 11 13 12 14 15 15 14 10 12 6 12 4 0.7 0.1 FCE 4.3 3.5 PER Consumo y eficacia de utilización del alimento J. lobata 2 35 M. pyrifera 13 C. crispus Harina de pescado 44 9 12 Mixed diet Caseína 4 13 U. lactuca 6 17 P. palmata 3 4 4 4 6 3 4 tuberculata 3 6 10 4 13 L. digitata 1 17 A. esculenta L. saccharina 5 L 28 P Caseína, harina de pescado E. biciclys Tratamiento H. H. discus hannai Especie Composición proximal y contenido energético 40-70 13 19 29 T0 25 0.8 0.9 3 P0 -1.7 0.1 0.3 0.7 -0.6 5.4 SGR 16 45 47 61 90 53 95 106 93-117 DGSL (μm d-1) 35 37 WG (%) Crecimiento y supervivencia Superv. (%) Tabla 9. Resumen de varios estudios nutricionales en relación al crecimiento del abalón, durante las últimas 3 décadas de desarrollo del cultivo Spanish summary Fuentes proteicas; macroalgas Proteína; Energía ratio; Talla Sustitución harina de pescado Proteína / Niveles energía Britz y Hetch, 1997 Guzmán y Viana, 1998 BautistaTeruel et al., 1999 Niveles de lípidos Mai et al., 1995a Britz, 1996b Asunto Autor 2731 2215 18 19 13 Tª Tabla 9. Continuación 90 179 142 72 124 100 Días H. asinina H. fulgens H. midae pequeño H. midae grande H. midae H. discus hannai H. tuberculata Especie 5 5 5 5 5 6 6 10 6 6 18 31 29 32 19 29 20 10 34 44 44 44 39 P. palmata P. palmata Caseína Harina soja Garcilariopsis bailinae Harina de langostino Víscera, harina de soja Abfeed Harina pescado Harina pescado Almidón, pescado, celulosa pescado Harina soja Spirulina spp. Levadura tórula P. corallorhiza E. maxima Harina Dietas artificiales 6 0.5 31 17 6 6 6 38 22 28 8 36 4 0.6 3 5 7 9 11.6 4 0.6 3 5 7 9 11.6 25 25 25 25 25 25 18 25 25 25 25 25 25 Dietas artificiales L P Tratamiento 35 33 40 48 47 40 41 C 2.2 3 3.1 3.2 3.6 3.6 4 3.6 4 4.2 4.3 4.4 4.6 4.6 3.7 4 4.2 4.3 4.4 4.6 4.6 3. 7 E 191 P/E 90 76 86 75 80 80 80 80 80 75 80 80 80 80 80 WS Composición proximal y contenido energético 7 1.5 1.8 0.9 2.3 1.6 2.8 3.4 1.4 1.2 1.4 1.2 1 1 1 0.8 0.8 0.7 FCR 1.0 1.8 1.3 2.8 9.3 9.4 34 35 1.1 0.7 0.6 0.8 0.8 0.5 FI FCE 0.1 2.5 2.3 2.2 2.2 3 3.6 2.3 2.2 2.5 3.3 3.4 3.9 6.5 4.7 PER Consumo y eficacia de utilización del alimento 16 7 36 10 21 T0 0.7 7.3 0.2 1.8 0.4 0.6 P0 0.06 0.8 0.7 0.8 0.5 1.1 0.4 0.6 2.2 2.1 0.3 0.5 1 0.6 0.6 0.8 0.8 0.6 1 0.6 0.8 0.7 0.7 0.7 0.6 0.9 0.6 0.9 0.9 0.9 0.8 0.7 SGR 135 248 244 49 222 71 29 54 103 108 43 58 65 42 41 65 58 45 DGSL (μm d-1) 134 347 307 252 WG (%) Crecimiento y supervivencia 85 85 95 85 98 93 95 95 95 97 95 97 87 92 98 90 88 92 Superv. (%) Spanish summary Macroalgas y dieta artificial Fuentes de porteínas terrestres Fuentes de proteínas animales y vegetales Proteínas / Niveles de energía Lípidos / ServiereZaragoza et al., 2001 Reyes y Fermín, 2003 BautistaTeruel et al., 2003 GómezMontes et al., 2003 Thongrod et al., 2003 Niveles de lípidos Macroalgas DurazoBeltrán et al., 2004 Legrand, 2005 carbohidratos Asunto Autor 717 20 2730 21 2831 2830 20 Tª 183 60 196 60 90 120 106 Días H. tuberculata grande H. tuberculata pequeña H. fulgens H. asinina H. fulgens H. asinina H. asinina H. fulgens Especie 62 74 85 100 108 1.6 1.4 1.4 1.5 1.6 FCE 21 24 P. p+ U. l. 41 42 41 24 44 42 1.6 1.4 1.4 1.5 1.6 48 43 39 36 31 42 42 3 3 3 6 6 6 7 7 1 6 10 15 19 0.1 39 38 43 42 21 39 28 27 26 31 35 40 44 38 38 37 36 37 3 5 1 3 27 5 25 13 28 4 3 3 4 4 4 4 4 4.2 4.5 4.7 4.9 5.2 3 3 3 3 99.4 192 95.9 3.9 2 5.6 4.3 1.3 1.4 1.9 3.2 7.4 1 1 1 5 38 1 4 5.8 3.7 3.6 3.5 0.7 0.9 76.4 93 110 138 120 5 25 25 5 13 59 36 25 3 30 16 47 33 18 63 6.0 FI 12 WS 52 3 P/E 7.6 41 E 4.1 4.6 3 3 3.1 3.4 2.7 4.2 3.9 PER FCR C P L Consumo y eficacia de utilización del alimento Composición proximal y contenido energético Laminarias; soja; ensilado pescado P. palmata P. palmata + U. lactuca P. palmata Soja, almidón Spirulina spp., aceite de pescado, Gracilaria Pescado, soja, kelp, maíz modificado, almidón Harina soja Spirulina Harina de langostino Eisenia arborea Macrocystis pyrifera Gelidium robustum Phyyospadix torreyi Dieta artificial Carica papaya Leucaena leucocephala Moringa oliefera Azolla pinnata G. bailinae Harina pescado Tratamiento 10 23 36 1112 12 11 39 40 38 37 40 17 T0 0.1 2 6.4 0.9 0.2 0.7 14 15.3 11.4 14.7 14.7 0.4 P0 1.2 1.3 0.6 0.7 0.7 0.9 1.3 1.5 1.9 2.4 2.5 0.9 1.9 2.1 0.8 1.9 0.9 0.65 1.8 0.45 0.32 0.7 0.27 SGR 230 40 29 61 7 92 123 123 76 61 86 47 42 71 25 23 46 19 DGSL (μm d-1) 30 779 615 353 223 97 29 326 421 454 75 84 400 90 28 59 WG (%) Crecimiento y supervivencia 81 93 90 75 76 85 85 95 90 90 95 95 100 97 80 95 89 93 93 Superv.. (%) Spanish summary 2025 15 Dieta artificial; algas fresca; dieta mixta Hernández et al., 2009 Tª Temperatura Fotoperiodo Dietas basadas en algas; Macroalgas; Macroalgas enriquecida; dieta comercial Asunto GarcíaEsquivel et al., 2007 Naidoo et al., 2006 Autor 90 180 270 Días H. rufescens H. fulgens H. midae Especie 4 96 33 FI FCE 3 PER 35 T0 7.5 P0 1.8 SGR DGSL (μm d-1) 6.7 34 M. pyrifera P. columbina + dieta artificial P. columbina 12 27 2.8 0.6 40 45 2.6 3.5 4.5 193 44 78 93 94 25ºC/ 24:00 44 1.4 1.6 25ºC/ 12:12 Dieta artificial 0.9 4 44 0.9 20ºC / 24:00 25ºC/ 00:24 20ºC / 12:12 20ºC / 00:24 Pescado, soja, kelp Estipes kelp seco Pienso de Kelp seco 1.5 1.8 2.8 1.7 2.6 6.6 31 0.06 3.7 2.5 2.3 1.8 87 70 110 50 38 55 72 69 82 109 29 32 34 49 Abfeed Hojas kelp secas 53 E. maxima + Abfeed 55 0.8 FCR 58 45 WS Ecklonia maxima 5 P/E Rotación 35 E 60 C E. maxima + Epífitos L 728 548 1004 471 WG (%) Crecimiento y supervivencia 66 P Consumo y eficacia de utilización del alimento U. rigida enriquecida + E. G. gracilis+kelp Tratamiento Composición proximal y contenido energético 80 93 90 85 Superv. (%) Spanish summary Talla Densidad de cultivo Cultivo en jaulas Sistema de recirculación Niveles de lípidos, ratio P/E constante Cultivo algas en long-line - abalón Idoneidad algal Asunto 1121 18 1023 Tª 180 84 120 Días H. discus hannai H. midae grande H. midae pequeño H. discus hannai Especie WS 1 FCR 4.2 6.5 FI Cestas apiladas Jaulas sumergibles Harina pescado, caseína, kelp, almidón, aceite de pescado 10 1.8 2 0.3 0.5 0.2 0.4 5.8 P/E L. j. + S. p. 4.5 4.6 4.8 5 5.1 4.5 4.6 4.8 5 5.1 E 6 C 4.4 2.8 5.3 8.7 12.5 16.1 2.8 5.3 8.7 12.5 16.1 L L. j. + G. l. 34 36 38 39 36 34 36 38 39 36 P S. pallidum L. japonica G. lemaneiformis Tratamiento 1.8 2.3 2.5 2.8 2.3 FCE 0.7 1.3 1.9 3.2 PER Consumo y eficacia de utilización del alimento 48 61 55 48 61 55 65 25 76 T0 32 45 37 32 45 37 50 2.6 62 P0 0.1 0.5 0.2 0.7 SGR 53 37 78 77 63 64 60 67 17 43 20 26 18 21 DGSL (μm d-1) 22 WG (%) Crecimiento y supervivencia 100 100 100 100 100 99 97 97 96 100 >87.5 >87.5 >87.5 >87.5 >87.5 >87.5 100 100 100 100 Superv. (%) 100 194 P= protenías; L= lípidos; C= carbohidratos; E= energía bruta (Kcalg-1); P/E= ratio proteína: energía; WS= Estabilidad en el agua (“Water Stability”) (Guzmán y Viana, 1998; Hernández et al., 2009 (12 h inmersión); Mai, 1995a (48 h inmersion); FCR=Tasa de conversion del alimento (“Feed Conversion Ratio”); FI= Alimento ingerido (“Feed intake”) expresado en % BW día-1 (Jackson, 2001) o por mg abalón día-1 (Fleming, 1995); FCE= Eficiencia de conversion del alimento (“Feed Conversion Efficiency”) (%); PER = Tasa de eficiencia proteica (“Protein Efficiency Ratio”) ; T0 = talla inicial; P0 = peso inicial; SGR = Tasa específica de crecimiento (“Specific Growth Rate”); DGSL= crecimiento diario en talla (“Daily Growth Rate, in shell lenght”; WG= Peso ganado (“Weight gain”); Superv.= Supervivencia. Wu y Zhang, 2013 Green et al., 2011 Qi et al., 2010 Autor Composición proximal y contenido calórico Spanish summary Spanish summary 1.6. ACUICULTURA INTEGRADA DE CULTIVOS MULTI-TRÓFICOS (AIMT) 1.6.1. Aspectos generales La creciente demanda de alimentos de origen marino junto a la disminución de las capturas, han dado lugar a un incremento de los cultivos marinos que se duplican cada diez años, crecimiento que se espera persista en las próximas décadas (FAO, 2012). La industria acuícola, tanto semi-intensiva como intensiva, libera al medio materia orgánica, principalmente pienso sin consumir, pero también compuestos inorgánicos derivados de la excreción de los organísmos en cultivo (Msuya et al., 2006). De entre todos ellos, el amonio y los sólidos en suspension son los compuestos contaminantes más importantes (Tovar et al., 2000), ya que si son liberados directamente al mar, puede causar la eutrofización del medio circundante, afectando por tanto al crecimiento natural de los organísmos. Es más, la propia instalación acuícola puede verse afectada por el deterioro de la calidad del medio en donde desarrolla su actividad (Neori et al., 2004). En la actualidad, existe un amplio conceso por parte de la comunidad científica, la propia industria, la opinion pública o los politicos, en cuanto a catalogar como insostenibles aquellas tecnologías que no controlen sus emisiones al medio (CostaPierce, 1996; Sorgeloos, 1999; Naylor et al., 2000; Chopin et al., 2001). En consecuencia, es necesario el tratamiento de los efluentes y la mitigación del potencial impacto medioambiental de la acuicultura, y una de las formas de lograrlo es a través de la Acuicultura Integrada de Cultivos Multi-Tróficos (AIMT), donde la excreción procedente de unos niveles tróficos, sirve de alimento para otros (Gordin et al., 1981; Edwards et al., 1988). Además, la implantación de este tipo de acuicultura puede considerarse como una Estrategia de Gestión Ambiental. El concepto de AIMT no hace referencia únicamente a sistemas de cultivos marinos abiertos, en los que los peces son el eslavón que genera el efluente y las algas y organísmos invertebrados el componente biofiltrador, sino que también puede extenderse a sistemas en tierra, en circuito cerrado e incluso a cultivos de agua dulce. Lo que es importante es la correcta selección de organísmos de diferentes niveles tróficos basada en la complementariedad de sus funciones, a la vez que en su valor económico (Chopin et al., 2012). Así, en la actualidad los AIMT integran el cultivo de 195 Spanish summary peces o langostinos con algas, microalgas, mariscos y/o algas, pudiendo desarrollarse tanto en aguas costeras como en estanques, siendo válida incluso para cultivos superintensivos (Neori et al., 2004; Zhou et al., 2006; Cunha et al., 2012; Liping et al., 2012). 1.6.2. Acuicultura integrada basada en macroalgas El papel principal de la biofiltración en los cultivos de langostinos o peces, es el tratamiento mediante absorción de los metabolitos tóxicos y contaminantes. Las bacterias biofiltrantes reducen el amonio a nitrato, mucho menos tóxico pero igualmente contaminante (Touchtte y Burkholder, 2000), mientras que las microalgas, a través de la fotosíntesis, convierten los nutrientes inorgánicos disueltos en materia particulada (Troell y Norberg, 1998), que sigue permaneciendo en el agua. Por el contrario, las macroalgas no sólo son capaces de eliminar de forma eficiente todas los compuestos nitrogenados inorgánicos de los efluentes (Ryther et al., 1975; MacDonald, 1987; Vandermeulen y Gordin, 1990; Cohen y Neori, 1991; Buschmann et al., 1994; Demetropoulos y Langdon, 2004; Zhou et al., 2006), sino que también actúan como productores de oxígeno que aportan a los animales (Schuenhoff et al., 2003; Neori et al., 2003). Dichos nutrientes actúan como fertilizantes para las algas, incrementando así su biomasa (Cohen y Neori, 1991; Muir, 1996; Neori et al., 1996, 2000; Shpigel y Neori, 1996). Es más, las algas, especialmente las marinas, son las más adecuadas para sistemas de biofiltración ya que probablemente, son las plantas de mayor productividad pudiendo además producirse de forma económica (Gao y McKinley, 1994). Además, diversos autores han constatado que la calidad de las algas cultivadas en efluentes de cultivos, es superior a la de aquellas cultivadas en agua marina limpia con adición de fertilizantes (Harlin et al., 1978; Vandermeulen y Gordin, 1990; Neori et al., 1991; Viera et al., 2006, 2009b). En cuanto a la selección de la especie algal para su inclusion en un sistema integrado, ésta debe de cumplir unos criterios básicos: alta tasa de crecimiento y concentración de nitrógeno en los tejidos; facilidad de cultivo y ciclo de vida controlado; resistencia a epífitos y a organísmos patógenos; y adaptación entre las características ecofisiológicas del alga y el medio de crecimiento. Además, teniendo en cuenta el daño ecológico que podría derivarse de la introducción de especies exóticas, el alga a elegir debería ser así mimo una especie local. Más allá de estos criterios básicos, 196 Spanish summary también dede considerarse la futura aplicación del alga a integrar en el cultivo (producción de biomasa o biorremediación), siendo lo óptimo aquel alga que satisfaga ambas aplicaciones (Neori et al., 2004). Por último, el precio de mercado de la biomasa producida también es un factor a considerar (Buschmann et al., 1996). Así, en acuicultura marina, los géneros algales más comunmente utilizado como organismos biofiltrantes son el género Ulva: U. lactuca (Cohen y Neori, 1991; Neori et al., 1991, 2000, 2003; Shpigel et al., 1993; Schuenhoff et al., 2003; Vandermeulen y Gordin, 1990, Naidoo et al., 2006; Robertson-Andersson et al., 2011; Ben-Ari et al., 2012), U. reticulata (Msuya et al., 2006), U. rigida (Jiménez del Río et al., 1994, 1996; García, 1999; Toledo et al., 2000; Viera et al., 2006, 2009b; Izquierdo et al., 2013) y Gracilaria: G. lemaneiformis (Fei et al., 2000, 2002; Fei, 2004; Zhou et al., 2006; Yongjian et al., 2008; Mao et al., 2009), G. chilensis (Buschmann et al., 1994, 1995, 1996, 2001; Chow et al., 2001; Marquardt et al., 2010), G. changii (Phang et al., 1996), G. parvispora (Nelson et al., 2001; Nagler et al., 2003), G. tenuistipitata (Haglund y Pedersen, 1993), G. gracilis (Anderson et al., 1999; Njobeni, 2005; Hansen et al., 2006; Naidoo et al., 2006), G. textorii (Pang et al., 2006), G.lichenoides (Xu et al., 2008) o G. cornea (Viera et al., 2006, 2009b; Izquierdo et al., 2013). Sin embargo, a pesar de que la tecnología de cultivo industrial y la capacidad de captación de nutrientes del género Ulva son de los mayores conocidos (Marínez-Aragón et al., 2002), el valor comercial de la biomasa resultante es bajo. Por el contrario, de las especies del género Gracilaria, a pesar de que presentan crecimientos generalmente menores (Marinho-Soriano et al., 2002; Nagler et al., 2003), sí se obtienen bio-productos de altísimo valor commercial, como es el caso del agar-agar (Neori et al., 2004). Otros géneros de valor comercial como Porphyra (Chopin et al., 1999; Carmona et al., 2001; Fei, 2001, Yarish et al., 2001), Palmaria (Demetropoulos y Langdon, 2004; Matos et al., 2006), Hypnea (Langton et al., 1977; Viera et al., 2009b) o laminarias (Laminaria and Macrocystis), también han sido satisfactoriamente integrados en sistemas multitróficos (Chopin y Bastarache, 2002; Buschmann et al., 2008). 197 Spanish summary 1.6.3. Sistemas de cultivos integrados peces-macroalgas-oreja de mar La producción de algas de alta calidad en sistemas de biofiltración hace oportuno el co-cultivo de otros organísmos herbivoros de alto valor comercial, como es el caso de la oreja de mar. Ya en los años 70, Tenore (1976) publicó un primer trabajo acerca del cultivo integrado de algas-abalón (Fig. 13). Este trabajo fue seguido por los implementados en Israel que integraban abalón - Ulva y Gracilaria (Shpigel et al., 1993, 1996a, b, 1999; Shpigel y Neori, 1996; Neori et al., 1998, 2000), en Japón con abalón y algas verdes (Sakai yHirata, 2000), o Palmaria – abalón en los EUA (Evans y Langdon, 2000). De forma general, dichos trabajos evidenciaron un buen crecimiento de la oreja de mar cuando se alimenta con algas producidas en sistemas de biofiltro, probablemente debido al alto contenido en proteínas de las algas cultivadas en las altas concentraciones de nitrógeno del sistema integrado (Neori et al., 1998; Shpigel et al., 1999; Boarder y Shigel, 2001; Naidoo et al., 2006; Robertson-Andersson et al., 2011). Figura 13. Esquema de un sistema de cultivo integrado peces-algas-abalón. 198 Spanish summary 9.2. OBJETIVOS El objetivo general de la presente tesis fue el “desarrollo de la tecnología de engorde de la oreja de mar, Haliotis tuberculata coccinea“, como nueva especie para el sector acuícola de Canarias. De forma específica se evaluó la idoneidad de distintas dietas, tanto algales como artificiales, el crecimiento y la supervivencia de los ejemplares, así como el efecto de distintos parámetros sobre el rendimiento del proceso productivo. Además, la tecnología de cultivo a desarrollar se abordó desde un enfoque tal que garantice la sostenibilidad mediambiental de los procesos productivos a implementar. A tal fin, se llevaron a cabo cuatro estudios: Estudio I. Idoneidad de tres algas rojas como alimento para la oreja de mar Haliotis tuberculata coccinea Reeve. El objetivo de este estudio fue evaluar la viabilidad de tres algas rojas, pertenecientes a géneros ampliamente utilizados para el cultivo de distintas especies de abalón, como alimento potencial para el engorde de juveniles de la especie presente en Canarias. Debido a que la biomasa macroalgal existente en el medio no es suficiente para sustentar una producción comercial de este molusco, las macroalgas experimentales se cultivaron en un Sistema Multi-Trófico de Acuicultura Integrada (AMTI). Este objetivo se abordó a fin de identificar algas capaces de promover un alto crecimiento y supervivencia para la especie local, así como para investigar el valor nutricional de las algas producidas en sistemas de biofiltros. Para alcanzar dicho se llevó a cabo un ensayo nutricional de dos meses de duración. Estudio II. Crecimiento comparativo de juveniles de oreja de mar (Haliotis tuberculata coccinea Reeve) alimentados con algas enriquecidas vs sin enriquecer: Efecto sobre el crecimiento y la composición corporal. El propósito del presente trabajo fue evaluar el efecto de diferentes dietas algales: rojas y verdes, monoalgales y mixtas, sin enriquecer y cultivadas en efluentes de cultivos marinos, sobre el crecimiento de juveniles de la oreja de mar de Canarias. 199 Spanish summary Dicho objetivo se abordó no sólo con el fin de identificar dietas idóneas para el crecimiento de los animales, sino también para evaluar las ventajas del cultivo multitrófico de algas y H. tuberculata coccinea en sistemas integrados, que permitan tanto la sostenibilidad de la futura producción de abalón como una mejora en el crecimiento. Estudio III. Desarrollo de las primeras dietas vegetales y su idoneidad para el cultivo de Haliotis tuberculata coccinea Reeve. El objetivo de este trabajo fue el desarrollo y evaluación de varias dietas compuestas, exclusivamente vegetales, para el cultivo del abalón Haliotis tuberculata coccinea, con particular interés en determinar la potencialidad de la inclusión de las cuatros especies de macroalgas más comúnmente utilizadas en la producción de abalón en Europa. El objetivo descrito se abordó con el fin de obtener dietas sin harinas de pescado, adaptadas a los requerimientos nutricionales del abalón, que permitan al sector productor disponer de fuentes nutricionales estables que además validen la sostenibilidad medioambiental de sus procesos productivos. Para la implementación de este estudio se llevó a cabo un experimento en tierra de seis meses. Estudio IV. Cultivo de la oreja de mar Haliotis tuberculata coccinea Reeve, alimentadas con algas procedentes de Sistemas Multi-Tróficos Integrados (AMTI), en una instalación de peces/ abalón en mar abierto: Efecto de la densidad. La finalidad de este estudio fue evaluar el efecto de la densidad de cultivo, uno de los parámetros más influyentes en el engorde de oreja de mar, sobre el crecimiento y la supervivencia de ejemplares de oreja de mar de dos tallas distintas. Se abordó dicho objetivo con el fin de identificar ciertas condiciones de cultivo que mejoren el rendimiento del proceso, al tiempo que evaluar la potencialidad del cultivo de abalón en mar abierto durante la última fase del proceso de engorde. A tal fin se realizó un ensayo de engorde en jaulas en mar abierto durante seis meses 200 Spanish summary 9.3. MATERIAL Y MÉTODOS 3.1. EMPLAZAMIENTO E INSTALACIONES GENERALES Las experiencias que se describen en esta tesis, (con excepción de la implementada en mar abierto; 3.5.2.), han sido realizadas en la nave de cultivos del Grupo de Investigación en Acuicultura (GIA- ULPGC), en el Instituto Canario de Ciencias Marinas (ICCM). Dicho instituto está emplazado en Melenara, municipio de Telde, isla de Gran Canaria, provincia de Las Palmas (Islas Canarias, España),con una situación geográfica de latitud 27º59’31’’N y longitud 15º22’31’’W (Fig. 14). Figura 14. Fotografía desde satélite de las Islas Canarias y ubicación del ICCM (Foto del Google Earth). Las instalaciones de cultivo de oreja de mar comprenden las siguientes zonas: acondicionamiento de reproductores (Fig. 15-A), inducción a la puesta y cría larvaria (Fig. 15-B); cultivo de post-larvas y producción de diatomeas (Fig. 15-C, D); engorde (Fig. 15-E) y ensayos de nutrición (Fig. 15-F); y unidades de biofiltración y reutilización de los efluentes de la nave de cultivo para la producción de macroalgas (Fig. 15-G, H). Tanto las instalaciones destinadas al cultivo del abalón del ICCM, como los estudios realizados, han sido financiados por proyectos de Canarias (PI 2007/034), España (JACUMAR Oreja de mar, 2005/07; JACUMAR Multitrófico, TR 2003/08) y Europa (SUDEVAB: FP 7-SME-2007-1/BSG-SME). 201 Spanish summary Figura 15. Acondicionamiento de reproductores (A); cultivo larvario (B); post-larvas y pre- B engorde (C); cultivo de diatomeas (D); zona de engorde (E); zona experimental (F) producción de macroalgas en el exterior (G, H). 202 Spanish summary 3.2. PRODUCCIÓN DE OREJA DE MAR B 3.2.1. Acondicionamiento y selección de repodructores Los reproductores de Haliotis tuberculata coccinea se mantuvieron en cautividad en tanques de 60 l cubiertos y flujo abierto, bajo condiciones naturales de fotoperíodo y temperatura (Fig. 15-A). Se estabularon entre 10-15 ejemplares (dependiendo del tamaño) dentro de cada uno de los 24 tanques, y se colocaron tejas de PVC a modo de refugios. Los reproductores se separaron de los desechos, a través de la colocación de una pared perforada en la parte inferior del tanque. Machos y hembras, diferenciados por el color de las gónadas (de color blanco cremoso para los machos y de gris oscuro a violeta par las hembras) (Fig. 16), se mantuvieron por separado en los tanques de acondicionamiento. De forma general, los animales se alimentaron dos veces por semana con una dieta mixta de Ulva rigida y Gracilaria cornea, producidas en el sistema de biofiltros. Los ejemplares seleccionados para ser inducidos para los distintos desoves fueron siempre los que presentaban gónadas maduras en estadío 3 o entre 2 y 3 de maduración (Ebert y Houk, 1984). B Figura 16. Hembra (A) y macho (B) de H. tuberculata coccinea en estadío 2-3 de maduración gonadal. 3.2.2. Inducción a la puesta Los machos y hembras maduros, con un ratio macho/hembra de 1:2, fueron inducidos a desovar por separado, en recipientes con agua de mar filtrada a 1µm mediante filtros de cartucho y esterilizada por UV. Los gametos de distinto sexo se 203 Spanish summary obtuvieron por separado con el fin de controlar el ratio de gametos empleado durante la fecundación para así tener un mejor control sobre el proceso de fertilización (Fig. 17). Durante la inducción al desove los recipientes se mantuvieron en oscuridad. Se utilizaron dos métodos de inducción, el método del peróxido de hidrógeno (Morse et al., 1977) y el del ultravioleta (Kikuchi y Uki, 1974). Figura 17. Desove de hembras (A) y machos (B). B 3.2.3. Fertilización Una vez obtenidos los gametos, los ovocitos expulsados (depositados en el fondo), fueron sifonados de los recipientes de desove y tamizados a través de una malla A de 300 µm con el fin de retener las heces y restos de residuos. Los ovocitos se recogieron en un cubo de 10 l y fueron fertilizados a una concentración de espermatozoides final de 105/ml durante 30 minutos. A continuación, los huevos se lavaron con agua de mar esterilizada para eliminar el exceso de esperma (Fig. 18), y se determinaron las tasas de fertilización mediante el registro bajo una lupa (Mod. SL 260004, Optech, Duisburg, Alemania), de la proporción de los huevos que presentaban células en división 1 h después de la fertilización. Los huevos fertilizados se transfirieron a los tanques de cultivo larvario (Fig 15-B). Figura 18. Enjuague de los huevos para eliminar el exceso de esperma. 204 B Spanish summary 3.2.4. Cultivo larvario Las distintas fases larvarias de la oreja de mar comienzan con la larva trocófora y acaban con la formación del cuarto túbulo en los tentáculos cefálicos, si bien las larvas se consideran preparadas para el asentamiento cuando el tercer túbulo aparece, y las larvas empiezan a explorar la superficie (Fig. 19). Las larvas de H. tuberculata coccinea se cultivaron bajo fotoperíodo natural y en flujo abierto, en tanques larvarios de 100 l a una densidad de 10-20 larvas/ml. El agua suministrada a los tanques larvarios se filtró a través de filtros de cartucho de 1 µm y se esterilizó por radiación UV. Las larvas se mantuvieron sin comer en los mismos tanques hastas que fueron transferidas a los tanques de nursery, una vez listas para la fijación y posterior metamorfosis (Fig. 15-C). La competencia para la fijación se observó entre 62 y 72 horas después de la fertilización, en función de la temperatura del cultivo larvario de los distintos lotes utilizados en los diferentes experimentos. Figura19. Larva trocófora con cilios (A), aparición del tercer túbulo en los tentáculos cefálicos (B) (Courtois de ViÇose et al., 2007). 3.2.5. Fijación larvaria La inducción a la fijación de las larvas de H. tuberculata coccinea, se realizó en places verticales de fijación, agrupadas y situadas dentro de los tanques de asentamiento de 2500 l (Fig. 20). 205 Spanish summary Figura 20. Placas verticales para la fijación de las larvas. Para la inducción al asentamiento, las placas se colonizaron con distintos tipos de sustratos: algas coralinas incrustantes, diatomeas bentónicas y esporas del alga verde Ulvella lens. 3.2.6. Cultivo de postlarvas y juveniles Las postlarvas de abalón se alimentaron con cuatro cepas de diatomeas: Navicula incerta, Proschkinia sp., Nitzschia sp. y Amphora sp. (Fig. 21). Dichas microalgas se cultivaron en bolsas horizontales de 40 l, a una densidad de inóculo inicial de 105 cel/ ml, en medio f/2 suplementado con silicatos (1 mgl-1) (Guillard, 1975), a temperatura ambiente y bajo luz continua de 62±µmol fotones m-2 s-1. Las diatomeas se cosecharon tras 5 días de cultivo, correspondiente a la fase de crecimiento exponencial. Figura 21. Especies de diatomeas suministradas a las postlarvas: Proschkinia sp. (A), Navicula incerta (B), Amphora sp. (C) y Nitzschia sp. (D) (Courtois de ViÇose et al., 2012b). 206 Spanish summary Los animales mantuvieron estas dietas durante 4-5 meses, cuando de forma gradual, ya juveniles, se les comenzó a alimentar con macroalgas: Ulva rigida (Estudio I); Ulva rigida, Hypnea spinella y Gracilaria cornea (Estudio II); o Ulva rigida y Gracilaria cornea (Estudios III y IV). 3.3. CULTIVO ALGAL B 3.3.1. Especies de macroalgas A lo largo de los experimentos se cultivaron cuatro especies de macroalgas: las rodofitas: Gracilaria cornea J. Agardh, Hypnea spinella (C. Agardh) Kützing e Hypnea musciformis (Wulfen) J.V. Lamoroux; y la clorofita Ulva rigida J. Agardh. Además, el alga roja Palmaria palmata (L.) Weber y Mohr, la parda Laminaria digitata (Hudson) Lamoroux y la verde Ulva lactuca Linnaeus, se testaron como ingredientes en dietas compuestas (Estudio III). Las citadas macroalgas fueron seleccionadas debido a su idoneidad para ser incluídas en AIMT como biofiltros (Neori et al., 2004), y también como alimento para la oreja de mar (Boarder y Shigel, 2001; Naidoo et al., 2006; Watson y Dring, 2011). 3.3.2. Sistema de cultivo: Acuicultura Integrada de Cultivos Multitróficos (AIMT) Excepto aquellos tratamientos experimentales en el que las algas no fueron enriquecidas (Estudio II), el resto de las algas frescas utilizadas en los distintos ensayos de nutrición, fueron producidas en un sistema integrado peces-macroalgas. En los Estudios I y II, las algas se cultivaron en el sistema multitrófico integrado del Centro de Biotecnología Marina (CBM-ULPGC, Gran Canaria, España). En dicho sistema, el efluente de los tanques de peces (Fig. 22-A) fue canalizado a un tanque de sedimientación de 11 m3 con el fin de eliminar el material en suspension, y de ahí, bombeado con un flujo de 10 m3 h-1 a los tanques de algas situados en un invernadero, donde la radiación máxima fue de aproximadamente µmol fotones m-2 s-1. Para el cultivo de las algas se emplearon tanques de fibra de vidrio semicirculares de 1.8 m2 de 207 Spanish summary superficie y 0.75 m3 de volumen, y aireación a través de un tubo lineal situado en en centro del fondo (Fig. 22- B). En el Estudio I, las algas G. cornea, H. spinella e H. musciformis se inocularon a una densidad de 6 g l-1, mientras que en el II, la densidad de inóculo fue de 1, 3 y 4 g l-1 para U. rigida, H. spinella y G. cornea, respectivamente. La tasa de renovación del agua en los tanques algales fue de 4 vol día-1 y el TAN (Namonio total) que entró en los biofiltros osciló entre 10 y 400 µM. Figura 22. Tanques de peces y tanques semicirculares para el cultivo de algas (CBM-ULPGC). En cuanto a los Estudios III y IV, las algas U. rigida y G. cornea fueron cultivadas en el sistema de cultivo multitrófico integrado en las instalaciones de cultivo del Grupo de Investigación en Acuicultura (GIA, Islas Canarias, España). En dicho sistema, los efluentes generales de la nave fueron conducidos a un tanque de sedimentación de 11 m3 para eliminar las material en suspension, y de allí bombeados a tanques exteriores donde la radiación máxima es de alrededor de 1600 µmol fotones m-2 s-1. El cultivo de las algas se realizó en tanques plásticos circulars de 1.5 m3 de volumen, y la aireación se suministró mediante manguera porosa circular situada en el fondo del tanque (Fig. 23). Las algas se inocularon a una densidad de 1 y 4 g l-1 para U. rigida y G. cornea, respectivamente. La tasa de renovación del agua de los tanques algales fue de 12 vol día-1, y TAN (N-amonio total) que entró a los tanques osciló entre los 10 y 30 µmoles. 208 Spanish summary Figura 23. Esquema del Sistema Multitrófico Integrado (ICCM-ULPGC). Las algas se cultivaron por triplicados y se cosecharon quincenalmente. Antes de alimentar a los animales, las algas se secaban en una centrífuga (AEG SV 4528, Alemania; Fig. 24) y se pesaba la cantidad necesaria de cada tratamiento para cada réplica (KERN EW 1500-2M, Balingen, Alemania). Figura 24. Biomasa algal producida en los biofiltros y centrífuga para el secado. 3.4. DIETAS ARTIFICIALES Con el fin de evaluar el valor nutricional de diversas macroalgas como ingredientes en dietas de abalón, se diseñaron tres dietas exclusivamente con ingredientes vegetales, y se suministraron durante seis meses en un experimento en tanques en tierra (Estudio III). El procesado de las harinas de las algas, así como la formulación y preparación de las dietas, se detalla en los capítulo correspondiente a 209 Spanish summary dicho experimento, en esta sección, sólo se incluye una descripción general de la metodología y materiales empleados. 3.4.1. Formulación de las dietas Antes de la preparación de las dietas, en el laboratorio del GIA se analizó la composición proximal tanto de las harinas de las algas experimentales (U. lactuca (U), G. cornea (G), L. digitata (L) y P. palmata (P)), como de la del resto de los ingredientes. Así mismo, se analizó el perfil de aminoácidos de las algas en el Laboratorio de Diagnóstico General de Barcelona, España, (LDG). A raíz de los resultados obtenidos, y teniendo en cuenta los valores descritos en la literatura como óptimos para el crecimiento de la oreja de mar, se formularon tres dietas (UG, UGL y UGP) de modo que contuviesen un 35% proteínas, 4% lípidos y una energía bruta de alrededor de 4 kcal g-1. La mezcla de vitaminas y minerales añadida fue la recomendada por Uki y col. (1985a). Con el fin de ajustar el perfil de aminoácidos de las dietas a la del músculo del abalón, que se tomó como patrón, todas las dietas se suplementaron con los aminoácidos sintéticos L-metionina y lisina. Como aglutinante se usó el alginato de sodio. 3.4.2. Preparación de las dietas Para preparar los tratamientos experimentales, una vez molidos todos los ingredientes, se pesaron y mezclaron hasta homogeneizarlos. Las dietas se procesaron a través de una máquina de pasta industrial (Parmigiana, RV3, Italia), de la que se obtuvieron unas cintas de 2 mm de grosor, que se cortaron en cuadrados de aproximadamente 0.5 x 0.5 cm. Una vez procesados, los piensos se secaron en una estufa a 38ºC durante 24 h, se empaquetaron al vacío, y se almacenaron en una cámara a 4ºC hasta ser usados (Fig. 25 y 26). Se recogieron muestras para el análisis proximal y se conservaron a -80ºC. 210 Spanish summary Figura 25. Detalles del procesado de las dietas: ingredientes, preparación y secado. 3.4.3. Estabilidad de las dietas en el agua La estabilidad de las dietas en el agua se evaluó mediante el método de Hastings y col. (1971). Se determinó para un período de 17-h (16:00-9:00h). El porcentaje de estabilidad de las dietas se calculó de la manera siguiente: % 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝐵𝐵 − 𝐴𝐴) (% 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑥𝑥 100 𝐴𝐴 (% 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) donde B es el peso final del alimento y A es el peso inicial. 211 Spanish summary Figura 26. Producto final: dietas experimentales con ingredientes exclusivamente vegetales. 3.5. DISEÑO EXPERIMENTAL Los detalles tanto del diseño experimental como de los protocolos de muestreo se describen de forma detallada en cada uno de los capítulos correspondientes a los distintos experimentos. En esta sección, unicamente se describen, de forma general, los materiales y métodos empleados en dichos estudios. Para seleccionar los ejemplares experimentales, los animales se secaron, pesaron con una balanza con un rango de 0.1 mg (Peso húmedo total, “total wet body weight”: TWBW) (KERN EW 1500-2M, Belingen, Alemania) y se midieron con un calibrador de 0.1 mm de precisión (Longitud total de la concha, “total shell length”: SL) (Fig. 27a). Una vez seleccionados, se ditribuyeron entre las réplicas de modo que no hubiese diferencias significativas en talla o peso, y se asignaron a cada unidad experimental (Fig. 27b). Figura 27a. Selección de los animales experimenales: muestreo de los ejemplares. 212 Spanish summary Figura 27b. Réplicas de los animales seleccionados. Las dietas algales se suministraban semanalmente a los animales experimentales (Estudios I-IV) (Fig. 28-A, B, C), mientras que las artificiales (Estudio III), se suministraban diariamente en una sola toma de lunes a sábado (Fig. 28-D). Todas se testaron por triplicado y se suministraban en exceso para garantizar una alimentación a saciedad. Figura 28. Réplicas de las dietas algales: Estudios I y II (A), Estudio III (B) y Estudio IV (C); o con dietas compuestas: Estudio IV (D). 213 Spanish summary Para una estimación real del consumo de alimento, se usaron como control unidades experimentales con alimento pero sin animales. En los experimentos en tierra, los animales estuvieron bajo un fotoperíodo natural de aproximadamente 12 h L / 12 h D. Para evaluar el crecimiento, tanto en talla como en peso, se midió mensualmente el SL y TFBW del 100% de la población de cada réplica. En el experimento en el mar, las jaulas se limpiaron mensualmentede con el fin de evitar la acumulación de fouling. 3. 5.1. Instalación experimental de los ensayos en tierra La unidad experimental empleada para los juveniles de 11-12 mm de longitud en los dos primeros experimentos, consistió en un tubo de PVC (20 x 14 cm) de 1 l de capacidad, provisto con tapas de malla plástica en los extremos (luz de malla de 2 mm). Dichas unidades se introdujeron en tanques cilíndricos de fibra de vidrio de 100 l, llenos de agua de mar filtrada a través de un cartucho de 50 µm, y aireación constante. El flujo de agua fue de aproximadamente 2.4 l/min. (Fig. 29). Figura 29. Unidad experimental y tanque empleado para el cultivo de los juveniles (Estudios I y II). En el Estudio III, la unidades experimentales consistieron en unas cestas plásticas (15x16cm), suspendidas dentro de una cajas rectangulares de 100-l de capacidad (100x40x25cm), provistos de agua de mar filtrada a 50 µm, flujo abierto y aireación constante (Fig. 30-A, B). El flujo de agua fue de aproximadamente 2.8 l/min. (Fig. 29). En cada cesta se introdujeron dos tejas de PVC a modo de refugio. 214 Spanish summary Figura 30. Sistema de cultivo empleado para los ejemplares de 30 - 45 mm (Estudio III). 3.5.2. Instalación para el ensayo de cultivo en el mar El sistema experimental para el engorde del abalón en el mar se instaló en una piscifactoría commercial de jaulas flotantes (CANEXMAR, S.L., Telde, Gran Canaria, España) (27º 57´ 31.7´´N, 15º 22´ 22.5´´W) (Fig. 31). Figura 31. Localización y jaulas de la piscifactoría CANEXMAR en Gran Canaria. Las jaulas marinas, diseñadas expresamente para el cultivo de la oreja de mar (ORTACS, Jersey Sea Farms, St. Martins, Irlanda), consistían en unos dispositivos negros de PVC perforados, con una capacidad 33 l y 1.5 kg de peso. Cada jaula disponía de una tapa, y una superficie interior total 0.4 m2. En el interior de cada ortac, se colocaron seis discos negros (12.0 cm Ø) a modo de refugios (Fig. 32). La superficie total disponible para la adeherencia de los animales fue de 0.5 m2 por jaula. Las jaulas 215 Spanish summary se suspendieron desde las estachas de las jaulas de peces (25 m Ø), situándose aproximadamente a 10 m de la superficie del agua (Fig. 33-35). Figura 32. Detalle de las jaulas experimentales y de los refugios. 216 Spanish summary Figura 33. Diagrama de la instalación en el mar para el engorde de abalón. A: Planta de las jaulas de peces. B: Detalle de la disposición de los ortacs. 217 Spanish summary Figura. 34. Equipamiento e instalación en el mar de las jaulas de abalón. Figure 35. Imágenes de los ortacs sumergidos junto a las jaulas de peces (Fotos de Elodie Turpin). 218 Spanish summary 3.6. EVALUACIÓN DE LOS PARÁMETROS BIOLÓGICOS 3.6.1. Crecimiento en talla La tasa de crecimiento en talla al día (μm d-1), se calculó para cada muestreo y al final de cada uno de los ensayos mediante la siguiente ecuación: 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒅𝒅𝒅𝒅 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = (𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑺𝑺𝑺𝑺𝑺𝑺) 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒕𝒕 donde SL1 es la talla media inicial de los animales; SL2 es la talla media final al tiempo t (días de cultivo). 3.6.2. Tasa de crecimiento específico (SGR) También se calculó la Tasa de crecimiento especifíco en peso, que indica el incremento en peso ganado en relación al número de días experimentales y se expresa en porcentajes: SGR (% 𝒅𝒅−𝟏𝟏 ) = (𝑳𝑳𝑳𝑳𝑾𝑾𝟐𝟐 −𝑳𝑳𝑳𝑳𝑾𝑾𝟏𝟏 ) 𝒕𝒕 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 W2 es el peso al tiempo t (días de cultivo) y W1 es el peso inicial. 3.6.3. Peso ganado (WG) Se calcula a partir de la relación entre el incremento en peso y el peso inicial, expresado en porcentaje mediante la siguiente ecuación: 𝑾𝑾𝑾𝑾 (%) = (𝒘𝒘𝟐𝟐 − 𝒘𝒘𝟏𝟏 ) 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 𝒘𝒘𝟏𝟏 3.6.4. Tasa de conversión del alimento (FCR) Este parámetro se calculó con el fin de determinar la eficiencia de los diferentes regímenes alimenticios para promover el crecimiento del abalón en relación al alimento 219 Spanish summary ingerido. Se define como la relación entre el alimento consumido y la generación de biomasa (g): 𝑭𝑭𝑭𝑭𝑭𝑭 = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 (𝒈𝒈) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒅𝒅𝒅𝒅 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 (𝒈𝒈) 3.6.5. Tasa de eficiencia proteica (PER) Este parámetro relaciona el incremento en peso de los animales durante el período experimental, con la proteína ingerida. Se calcula de la forma siguiente: 𝑷𝑷𝑷𝑷𝑷𝑷 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒆𝒆𝒆𝒆 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒉𝒉ú𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒈𝒈) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑í𝒏𝒏𝒏𝒏 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝒈𝒈) 3.6.6. Consumo de alimento (FI) Para evaluar el consumo de alimento en los estudios I, II y IV, donde sólo se alimentó con algas frescas, antes de cada toma semanal, el alga se cosechó, se secó y se pesó para su reparto en cada réplica, pesándose así mismo el alga sobrante al final de la semana. El peso del sobrante se corrigió mediante el cálculo de la variación natural del alga en las réplicas de control (sin animales), durante el mismo período experimental. En el Estudio III, las dietas artificiales se suministraron por la tarde, en una sola toma de lunes a sábado (ad libitum). El pienso sobrante se sifonaba todas las mañanas a las 9:00 h, con excepción de los domingos. La estimación del consumo se hizo en peso seco mediante la relación del peso seco del pienso sobrante con el peso seco del pienso suministrado (Fig. 36). El dato del consumo se corrigió restándole la pérdida debida a la lixiviación, que se estimó a partir de dejar el pienso durante el mismo período de 17-h (16:00-9:00h), en las unidades de control sin animales, y secando la dieta sobrante hasta peso constante. En todos los ensayos, el consumo de alimento por individuo y día, se calculó dividiendo el alimento ingerido cada semana entre el número de días y entre los ejemplares de cada réplica. 220 Spanish summary Figura 36. Secado del pienso sobrante para la estimación del consumo. 3.6.7. Índice de condición Al final de los experimentos II y III, se recolectaron respectivamente seis y diez individuos de cada réplica, separando el animal (SB) de la concha (S). Para calcular el índice de condición, como parámetro indicador del estatus nutricional de los animales, la concha y la carne (vísceras y pie), se pesaron por separado, y el índice se calculó mediante la siguiente relación (Fig 37): 𝑪𝑪𝑪𝑪 = 𝑺𝑺𝑺𝑺 𝑺𝑺 Figura 37. Evaluación del índice de condición: disección y pesado del abalón. 221 Spanish summary 3.6.8. Supervivencia La mortalidad se estimó diariamente (Estudios I-III) y semanalmente (Estudio IV). Al final del experimento, se calculó la supervivencia mediante la relación entre los individuos vivos y la mortalidad de cada réplica. 3.7. ANÁLISIS BIOQUÍMICOS Durante el transcurso de las diferentes experiencias, se tomaron por triplicado muestras de los diferentes tratamientos experimentales (algas frescas y dietas compuestas), así como ingredientes y animales experimentales (víceras y músculo) para el análisis de su composición proximal. Los métodos de recolección de las muestras difieren en función de su naturaleza. En el caso de las algas frescas, una vez recogidas, se lavaban con agua dulce y luego destilada para eliminar la sal y posible epizoos, a continuación se eliminaba la mayor cantidad de agua posible con papel secante y se procedía a su congelación a -80ºC así como posterior liofilización y molienda (<0.1 mm). Una vez recogidas, todas todas las muestras se congelaban a -80 ºC en bolsas herméticas bajo atmósfera de nitrógeno. Antes de los análisis, las muestras se homogeneizaron con mortero y luego se pesaban. Se hicieron determinaciones del contenido en humedad, cenizas, proteínas, lípidos totales y ácidos grasos. Los análisis bioquímicos se realizaron en el laboratoprio del Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA; ULPGC). 3.7.1. Determinación de la humedad Se determinó siguiendo la métodología oficial de análisis internacional (AOAC, 2005). El procedimiento consiste en secar en una estufa a 110ºC una cantidad conocida de muestra fresca (Pi) hasta obtener un peso constante (Pf). Posteriormente, la muestra se introduce en el desecador 30 minutos y se realiza la pesada. El porcentaje de humedad de la muestra se obtiene mediante la expresión: % 𝑯𝑯 = (𝑷𝑷𝒊𝒊 − 𝑷𝑷𝒇𝒇) 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 𝑷𝑷𝒊𝒊 222 Spanish summary 3.7.2. Determinación de las cenizas El contenido em cenizas se determinó gravimétricamente después de la incineración de una cantidad conocida de muestra (1-2 g) (Pi) en un horno mufla a una temperatura de 600ºC durante 24 h. La cantidad de cenizas remanente (Pf) se pesó hasta alcanzar un peso constante, de acuerdo a las recomendaciones establecidas por la AOAC (2005). El contenido de cenizas se calculó según la siguiente fórmula: % 𝑨𝑨𝑨𝑨𝑨𝑨 = 𝑷𝑷𝑷𝑷 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏 𝑷𝑷𝑷𝑷 3.7.3. Determinación de las proteínas El contenido proteico se calculó a partir del contenido de nitrógeno total de la muestra, según el método de Kjeldahl. De acuerdo con la AOAC (2005), la técnica consiste en la digestion de la muestra con ácido sulfúrico (H2SO4) a 420ºC en presencia de un catalizador de cobre durante una hora, seguido de una destilación con NaOH al 40%, utilizando ácido bórico saturado (H3BO3) como sustancia receptora en una unidad detiladora (Mod. Foss Tecator, 1002, Höganäs, Suecia). Finalmente se realiza una valoración con HCl 0.1.M. El cálculo del porcentaje en proteínas se realiza de la forma siguiente: % Proteina = (𝑽𝑽𝒔𝒔 −𝑽𝑽𝒃𝒃 ) 𝒙𝒙 𝑵𝑵 𝒙𝒙 𝑷𝑷𝒎𝒎 Siendo: 𝑾𝑾 𝒙𝒙 𝑭𝑭 Vs = Volumen de (HCl) usado en la valoración en ml Vb = Media de la valoración de los patrones en ml N = Normalidad del HCl Pm = Peso molecular del nitrógeno (14.007) F = Factor de conversión empírico para convertir el porcentaje de nitrógeno de la muestra en porcentaje de proteínas, tiene un valor de 6.25 W = Peso de la muestra en mg 223 Spanish summary 3.7.4. Determinación de lípidos totales La extracción de los lípidos se realizó según el método de Folch et al. (1957). El método consistió en tomar una cantidad de muestra de entre 50-200 mg, que se homogeneizó en un Ultra Turrax (IKA-Werke, T25 BASIC, Staufen, Alemania) a 11,000 rpm durante 5 min en una solución de 5 ml de cloroformo: metanol (2:1) con 0.01% de BHT. La solución resultante se filtró a presión reducida a través de fibra de vidrio, añadiendo KCl al 0.88% para aumentar la polaridad de la fase acuosa. Por decantación y tras un centrifugado a 2000 rpm durante 5 min, la fase orgánica y la acuosa se separaron. Una vez retirada la fase acuosa, la fase resultante se evaporó a sequedad con una corriente de N2. Finalmente, el contendido en lípidos totales se determinó por gravimetría. 3.7.5. Determinación de ácidos grasos Los lípidos totales extraídos, se trasesterificaron a esteres metílicos (FAMEs) con un 1% de ácido sulfúrico: metanol (Christie, 1982) y se conservaron en atmósfera de N2. La mezcla se dejó incubando a 50ºC durante 16 horas y se enfrió. Se le añadió agua destilada ultrapura y hexano: dietileter 1:1 y BHT al 0.01%. Los FAMEs purificados se evaporaron a sequedad con N2 y se pesaron. Por último, los FAMEs fueron extraídos en hexano y se conservaron a - 80ºC hasta el momento de su identificación mediante un cromatógrafo de gases (Mod. Shimadzu GC-14A; Analytical instrument division, Kyoto, Japón), equipado con un detector de ionización en llama (260ºC) y un integrador Shimazu (CR-5A). Los FAMESs fueron separados en columna capilar de sílice fundida con supelco-10 como fase estacionaria (Longitud: 28 m; 0.32 mm x 0.25 diámetro interno; Supelco, Bellefonte, USA), actuando el helio como gas portador bajo las presiones de los gases siguientes: He 1 kg cm-2, H2 0.5 kg cm-2, N2 1 kg cm-2, aire 0.5 kg cm-2. Las condicioenes fueron las siguientes: temperatura del inyector 180ºC durante 10 min, aumentando a 215ºC a una tasa de incremento de 2.5ºC min -1, para luego mantenerse a una temperatura final de 215ºC durante 15 min. La identificación de los ácido grasos se llevó a cabo mediante la utilización de EPA 28 (EPA 28, Nippai, Ltd Tokyo, Japón), como aceite estándar. 224 Spanish summary 3.8. ANÁLISIS ESTADÍSTICO El análisis estadístico se realizó mediante el programa Statgraphics Plus 5.1 (MANUGISTIES, Rockville, Maryland, USA). Los datos de cada experimento, composición proximal, crecimiento, supervivencia e indices nutricionales, se compararon estadísticamente mediante test de la T-Student (Sokal y Rolf, 1995), cuando había sólo dos tratamientos o con un análisis de varianza (ANOVA) si era mayor el número de tratamientos ensayado. Como criterio general se tomó el 5% como nivel de significación. Una vez detectadas diferencias significativas con la ANOVA, las diferencias entre medias fueron puestas de manifiesto mediante el test de comparación multiple de Tuckey. La anormalidad y homogeneidad de varianza fueron evaluados con Skewness y Kurtosis estandarizados y la prueba de Barlett. Cuando los datos no tenían distribución normal, se aplicó el test no-paramétrico de Kruskal-Wallis (Zar, 1984). 225 Spanish summary 9.4. CONCLUSIONES Estudio I. Idoneidad de tres algas rojas como alimento para la oreja de mar Haliotis tuberculata coccinea Reeve. 6. La composición nutricional de las macroalgas producidas en sistemas de biofiltros Hypnea musciformis, Hypnea spinella y Gracilaria cornea, evidenció la potencialidad de dichas macroalgas para ser usadas como alimento de juveniles de Haliotis tuberculata coccinea. Las tres algas analizadas mostraron un alto contenido en proteínas, que estaría relacionado con las altas condiciones de nitrógeno del sistema integrado (AMTI). 7. H. spinella fue la mejor dieta para el crecimiento de la oreja de mar, debido a un mayor consumo y eficiencia protéica. La mayor dureza de G. cornea tuvo un efecto negativo en la ingesta lo que dió lugar al peor crecimiento. 8. De forma general, las tasas de crecimiento de la oreja de mar estuvieron en el rango de las obtenidas en condiciones comerciales este hecho, unido a la alta supervivencia registrada, sugiere la idoneidad de las tres algas rojas testadas para el engorde de H. tuberculata coccinea. Estudio II. Crecimiento comparativo de juveniles de oreja de mar (Haliotis tuberculata coccinea Reeve) alimentados con algas enriquecidas vs sin enriquecer: Efecto sobre el crecimiento y la composición corporal. 9. El sistema de cultivo empleado influyó de forma significativa sobre la composición proximal de las algas, particularmente en el contenido en proteínas, que registró un incremento del 100-163% en aquellas cultivadas en efluentes de cultivos marinos respecto a las cultivadas en agua de mar. 10. El perfil de ácidos grasos de las algas estudiadas fue el característico de las algas verdes y rojas siendo el ácido palmítico el más abundante, en la clorofita Ulva rigida, predominaron los ácidos grasos poliinsaturados de C16 y C18 siendo mínimos los C20. Los niveles de DHA fueron muy bajos en todas 226 Spanish summary las algas estudiadas, por tanto este ácido graso no parece ser esencial para H. t. coccinea, ya que todas ellas dieron lugar a un óptimo crecimiento. 6. Las orejas de mar alimentadas con las algas cultivadas en efluentes de cultivos marinos tuvieron un crecimiento mucho mayor que aquellas alimentadas con las no enriquecidas, lo que sugiere que el nitrógeno puede ser un factor limitante para el crecimiento de H. tuberculata coccinea. 7. Los animales alimentados con las dietas mixtas, tanto enriquecidas como sin enriquecer, tuvieron un crecimiento mucho mayor que los alimentados con dietas monoalgales, indicando que el abalón satisface sus requerimentos nutricionales a partir de la ingesta de varias dietas, pudiendo verse limitados cuando se suministra una unica dieta. 8. Las dietas ingeridas afectaron de forma significativa a la composición bioquímica de los animales. El contenido en lípidos de los tejidos fue generalmente mayor que los de las dietas. El nivel de lípidos en el músculo fue significativamente menor que el de las vísceras, indicando que éstos son almacenados en el conjunto (apéndice conical) hepatopáncreas/gónada. 9. El valor dietético de los regímenes alimenticios testados pueden dividirse en tres categorías: El mejor es el de las dietas mixtas, intermedio el de las dietas monoalgales de U. rigida o H. spinella y el menor el de G. cornea. 10. Los resultados indican de forma clara que la oreja de mar H. tuberculata coccinea puede crecer de forma eficiente en un sistema de cultivo integrado, sugiriendo que este tipo sistemas multitróficos algas-abalón, podría formar parte del desarrollo de la producción industrial de este molusco en las Islas Canarias. Estudio III. Primer desarrollo de dietas vegetales y su idoneidad para el cultivo de Haliotis tuberculata coccinea Reeve. 227 Spanish summary 11. La alimentación con algas frescas dio lugar a un crecimiento mucho mayor que el obtenido con cualquiera de los piensos compuestos, indicando el alto valor nutricional de las algas producidas en el sistema integrado. 12. La inclusion de P. palmata mejoró el crecimiento, índice de condición y utilización de la proteína de la dieta, mientras que la inclusion de L. digitata redujo ésta última de forma significativa. 13. Los elevados contenidos, en relación a las dietas, de ARA en los animales alimentados con las dietas experimentales y de EPA en los alimentados con algas frescas, denotaron la presencia de las respectivas elongasas Δ4 y Δ5 desaturasas. Sin embargo el bajo contenido de DHA sugirió de nuevo la no esencialidad de este ácido graso. 14. De forma general, la alimentación de H. tuberculata coccinea con dietas exclusivamente vegetales dio lugar a una alta supervivencia y una buena utilización de las proteínas de la dieta. Estudio IV. Cultivo de la oreja de mar Haliotis tuberculata coccinea Reeve, alimentadas con algas procedentes de Sistemas Multi-Tróficos Integrados (AMTI), en una instalación de peces/ abalón en mar abierto: Efecto de la densidad. 15. Al doblar la densidad de cultivo se redujo significativamente el crecimiento en los dos grupos de tallas de ejemplares de abalón, sugiriendo una mayor competencia por el espacio y alimento que se refleja tanto en una reducción de la ingesta como en la eficiencia de utilización del alimento. 16. Para el rango de talla de 30-45 mm, se recomiendan densidades de cultivos de alrededor de 100 abalones m-2, mientras que para los mayors de 45 mm y hasta talla commercial, la densidad optima estaría en torno a los 30 abalones m-2. 17. Tanto el sistema de cultivo en mar abierto como la alimentación con macroalgas cultivadas en sistemas integrados mostraron su idoneidad para 228 Spanish summary obtener altos crecimientos y supervivencias de H. tuberculata coccinea que, de forma general podría alcanzar la talla commercial de 45-60 mm en tan sólo 18-22 meses. 229 Development of a Sustainable Grow-out Technology for Abalone Haliotis tuberculata coccinea (Reeve) as a New Species for Aquaculture Diversification in the Canary Islands REFERENCES References 10. REFERENCES Alcántara, L., Noro, T., 2006. Growth of the abalone Haliotis diversicolor (Reeve) fed with macroalgae in floating net cage and plastic tank. Journal of Shellfish Research 37, 708-717. Allen, V.J., Marsden, I.D., Ragg, N.L.C., Gieseg, S., 2006. The effect of tactile stimulants on feeding, growth, behaviour, and meat quality of cultured blackfoot abalone, Haliotis iris. Aquaculture 257, 294-308. Anderson, R.J., Smit, A.J., Levitt, G.J., 1999. Upwelling and fish factory waste as nitrogen sources for suspended cultivation of Gracilaria gracilis in Saldanha Bay, South Africa. Hydrobiologia 399, 455- 462. AOAC, 1995. Official Methods of Analysis of the Association of Analytical Chemistry, 15th ed. Washington, DC, 1018 pp. AOAC, 2005. Official Methods of Analysis of the Association of Analytical Chemistry. Washington, DC 1018 pp. APROMAR, 2012. La Acuicultura Marina en España 2012. www.apromar.es. Aviles, J. G. G., Shepherd, S.A., 1996. Growth and survival of the blue abalone Haliotis fulgens in barrel at Cedros Island, Baja California, with a review of abalone barrel culture. Aquaculture 140, 169-176. Badillo, L., Segovia, M., Searcy-Bernal, R., 2007. Effect of two stocking densities on the growth and mortality of the pink abalone Haliotis corrugata in recirculating and flow-trough systems. Journal of Shellfish Research 26 (3), 801-807. Bardach, J.E., Ryther, J.H., McLarney, W.O., 1972. Aquaculture - The farming and husbandry of freshwater and marine organisms. John Wiley and Sons Inc., New York. 868 pp. Barkai, R., Griffiths, L.,1986. Diet of the South African abalone Haliotis midae. South African Journal of Marine Science 4, 37-44. Barkai R., Griffiths L., 1987. Consumption, absorption efficiency, respiration and excretion in the South African abalone Haliotis midae. South African Journal of Marine Science 5, 523-529. Basuyaux, O., Mathieu, M., 1999. Inorganic nitrogen and its effect on growth of the abalone Haliotis tuberculata Linnaeus and the sea urchin Paracentrotus lividus Lamarck. Aquaculture 174, 95-107. 231 References Bautista – Teruel, M.N., Millamena, O.M., 1999. Diet development and evaluation for juvenile abalone, Haliotis asinina: protein/energy levels. Aquaculture 178, 117126 Bautista-Teruel, M.N., Fermin, A.C., Koshio, S.S., 2003. Diet development and evaluation for juvenile abalone, Haliotis asinina: animal and plant protein sources. Aquaculture 219, 645-653. Bautista-Teruel, M.N., Koshio, S.S., Ishikawa, M., 2011. Diet development and evaluation for juvenile abalone, Haliotis asinina Linne: Lipid and essential fatty acid levels. Aquaculture 312, 172-179. Ben-Ari, T., Ben-Ezra, D., Odintzov, V., Shauli, L., Shpigel, M., 2012. Lowering aeration regimes in Ulva cultivation: an energy approach for treating mariculture effluents. In: Proceedings of European Aquaculture Society (EAS) and the World Aquaculture Society (WAS) conference (AQUA 2012), Prague, Czech Republic, 1-5 Sep, 2012, pp. 64. Benson, J.A., 1986. Polyculture of abalone and algae in the sea. US Department of Commerce, National Technical Information Service Report (unpublished), 21 pp. Bester, A. E., Slabbert, R., D’amato, M. E., 2004. Isolation and characterization of microsatellite markers in South African abalone (Haliotis midae). Molecular Ecology Notes 4, 618-619. Beveridge, M., 2004. Cage Aquaculture, 3rd ed. Blackwell Publishing Ltd, Oxford, UK, 368 pp. Bilbao, A, Viera, M.P., Courtois de Vicose, G., Socorro, J., Fernández-Palacios, H. 2004. Characterization of females broodstocks Haliotis tuberculata coccinea R. European Aquaculture SocietySpecial publication, 34, 168. Bilbao, A., Courtois de Viçose, G., Viera, M.P., Sosa, B., Fernández-Palacios, H., Hernández, C. 2010a. Efficiency of clove oil as anesthetic for abalone (Haliotis tuberculata coccinea, Reeve). Journal of Shellfish Research, 29 (3), 679-682. Bilbao, A., Tuset, V, Viera, M.P., Courtois de Viçose, G., Fernández-Palacios, H., Haroun, R., Izquierdo, M., 2010b. Reproduction, fecundity and growth of abalone (Haliotis tuberculata coccinea, Reeve 1846) in the Canary Islands. Journal of Shellfish Research, 29 (4), 959-967. 232 References Boarder, S.J., Shpigel, M., 2001. Comparative performances of juvenile Haliotis roei fed on enriched Ulva rigida and various artificial diets. Journal of Shellfish Research 20(2), 653-657. Bonnot, P., 1930. Abalones in California. California Fish and Game 16, 15-23. Booth, M. A., Allan, G. L., Evans, A. J., Gleeson, V. P., 2002. Effects of steam pelleting or extrusion on digestibility and performance of silver perch Bidyanus bidyanus. Aquaculture Research 33, 1163-1173. Bossy, S. F. 1989. Provisional results of ormer (Haliotis tuberculata) ongrowing trials in cages off Jersey, Channel Islands. European Aquaculture Society Special Publication 10, 41-2. Bossy, S. F. 1990. Ongrowing of the ormer Haliotis tuberculata in Jersey, Channel Islands. European Aquaculture Society Special Publication 12, 172-3. Bossy, S.F., Culley, M.B., 1976. Abalone fishing in Britain´s Channel Islands. Fish. New International 15(9), 55-62. Britz, P. J., 1991. Global status of abalone aquaculture. In: Cook P A (ed) Perlemoen farming in South Africa. Mariculture Association of Southern Africa, pp 20-26. Britz, P.J., 1994. The development of an artificial feed for abalone farming. South African Journal of Science 90, 6-7. Britz, P.J., 1996a. Effect of dietary protein level on growth performance of South African abalone, Haliotis midae, fed fishmeal-based semi-purified diets. Aquaculture 140, 55-61. Britz, P.J., 1996b. The suitability of selected protein sources for inclusion in formulated diets for the South African abalone, Haliotis midae. Aquaculture 140, 63-73. Britz, P.J., 2012. The status of the South African abalone sector. 8th International Abalone Symposium, May 2012, Hobart, Tasmania. pp 100. Britz, P.J., Hecht, T., 1997. Effect of dietary protein and energy levels on growth and body composition of South African abalone, Haliotis midae. Aquaculture 156, 195-210 Britz, P. J., Hecht, T., Mangold, T. S. 1997. Effect of temperature on growth, feed consumption and nutritional indices of Haliotis midae fed a formulated diet. Aquaculture 140, 75-85. Buschmann, A.H., Mora, O.A., Gómez, P., Böttger, M., Buitano, S., Retamales, C., Vergara, P.A., Gutierrez, A., 1994. Gracilaria chilensis outdoor tank cultivation 233 References in Chile: use of land-based salmon culture effluents. Aquacultural Engineering 13, 283– 300. Buschmann, A.H., Westermeier, R., Retamales, C.A., 1995. Cultivation of Gracilaria in the seabottom in southern Chile: a review. Journal of Applied Phycololy 7, 291– 301. Buschmann, A.H., Troell, M., Kautsky, N., Kautsky, L., 1996. Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales Rhodophyta). Hidrobiologia 326/327, 75-82. Buschmann, A.H., Troell, M., Kaustby, N., 2001. Integrated algal farming: a review. Can. Biology Marine 42, 93-90. Buschmann, A.H., Varela, M., Hernández-González, M., Huovinen, P., 2008. Opportunities and challenges for the development of an integrated seaweedbased aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology 20 (5), 571-577. Capinpin, E.C, Corre, K.G., 1996. Growth rate of the Philippine abalone Haliotis asinina fed an artificial diet and macroalgae. Aquaculture, 144,81-89 Capinpin, E.C.J., Toledo, J.D., Encena, V.C.I., Doi, M., 1999. Density dependent growth of the tropical abalone Haliotis asinina in cage culture. Aquaculture 171, 227-235. Carmona, R., Kraemer, G.P., Zertuche, J.A., Chanes, L., Chopin, T., Neefus, C., Yarish., C., 2001. Exploring Porphyra species for use as nitrogen scrubbers in integrated aquaculture. Journal of Phycology 37, 9-10 (suppl.). Cheng, W., Hsiao, I.S., Chen, J.C., 2004. Effect of ammonia on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunology 17, 193–202. Chiou, T.K., Lai, M.M., 2002. Comparison of taste components in cooked meats of small abalone fed different diets. Fisheries Science 68, 388-394. Cho, C.Y., Slinger, S.J., Bayley, H.S., 1982. Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comparative Biochemistry and Physiology 73B, 25-41. Chopin, T., Bastarache, S., 2002. Finfish, shellfish and seaweed mariculture in Canada. Bulletin of the Aquaculture Association of Canada 102, 119-124. 234 References Chopin, T., Yarish, C., Wilkes, R., Belyea, E., Lu, S., Mathieson, A., 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. Journal of Applied Phycology 11, 463– 472. Chopin, T., Bushmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-González, J.A., Yarish, C., Neefus, C., 2001. Integrating seaweeds into marine aquaculture sytems: a key towards sustainability. Journal of Phycology 37, 975-986. Chopin, T., Bakhsh, H.K., Elliot, J., Ang, K.P., Taylor, C., Dickie, M., Ketchum, G., Powell, F., Lyons, T., 2012. Integrated Multi-Trophic Aquaculture (IMTA) can also be developed for the first phase of salmon aquaculture taking place in landbased, closed-containment, freshwater hatcheries. In: Proceedings of European Aquaculture Society (EAS) and the World Aquaculture Society (WAS) conference (AQUA 2012), Prague, Czech Republic, 1-5 Sep, 2012, pp.213. Chow, F.Y., Macchiavello, J., Cruz, S.S., Fonck, E., Olivares, J., 2001. Utilization of Gracilaria chilensis (Rhodophyta: Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters, and sea urchins. Journal of the World Aquaculture Society 32 (2), 215– 220. Christie, W. W., 1982. Lipids Analysis. Christie, W. W. (Ed.). Pergamon Press, Oxford, UK. Chua, T.E., Tech, E., 2002. Introduction and history of cage culture. In: by, P.T.K., Woo, D.W., Bruno, L.H.S., Lim (Eds.), Diseases and Disorders of Finfish in Cage Culture. CABI Publishing, Wallingford, 1-39. Clarke, S.M., 1988. Abalone mariculture: the significance of algae. Austasia Aquaculture 3, 9 –11. Clavier, J., 1992. The ormer (Haliotis tuberculata) fishery of France and the Channel Islands. In: S.A. Shepherd, M.J. Tegner and S.A. Guzmán del Próó (Editors), Abalone of the World: Biology, Fisheries and Culture. Proceeding of the First International Symposium on Abalone, 21-25 November 1989, La Paz México. Fishing News Books, Osney Mead, Oxford, Uk, pp. 454-457. Cochard J. C., 1980. Recherche sur les facteurs déterminants la sexualité et la reproduction chez Haliotis tuberculata L. Thèse 3ème cycle. Brest. Université de Bretagne Occidentale. pp 163. 235 References Cohen, I., Neori, A., 1991. Ulva lactuca biofilters for marine fishponds effluents. Botánica Marina 34, 475–482. Colt, J.E., Armostrong, D.A., 1981. Nitrogen toxicity to crustaceans, fish and mollusks. Bioengineering Symposium for Fish Culture. Publication, vol. 1, 34-47. Cook, P. A., 1991. The potential for abalone culture in South Africa. In: Cook P A (ed) Perlemoen farming in South Africa. Mariculture Association of Southern Africa, pp 27-32. Cook, P.A., Gordon, H.R., 2010. World abalone supply, markets, and pricing. Journal of Shellfish Research 29 (3), 569-571. Coote, T.A., Hone, P.W., van Barneveld R.J., Maguire, G.B., 2000. Optimal protein level in semi-purified diet for juvenile Haliotis laevigata. Aquaculture Nutrition 6, 213-220. Corazani, D., Illanes, J.E., 1998. Growth of juvenile abalone, Haliotis discus hannai Ino 1953 and Haliotis rufescens Swainson 1822, fed with different diets. Journal of Shellfish Research 17 (3), 663– 666. Corraze, G., 2001. Lipid nutrition. In: Guillaume J, Kaushik S, Bergot P, Metailler R (eds.), Nutrition and Feeding of Fish and Crustaceans. Springer, Chichester, UK, pp. 111–130. Costa-Pierce, B.A., 1996. Environmental impact of nutrients from aquaculture: towards the evolution of sustainable aquaculture systems. In: Baird, J.D., Beveridge, M.C.M., Kelly, L.A., Muir, J.F. (Eds.), Aquaculture and Water Resource Management, Blackwell, UK, pp. 81– 109. Courtois de Vicose, G., M. P. Viera, A. Bilbao, M. S. Izquierdo, 2007. Embriology and complete larval development of Haliotis tuberculata coccinea Reeve: an indexed micro-photografic sequence. Journal of Shellfish Research 26, 1-8. Courtois de Vicose, G., Porta, A., M. P. Viera, A. Bilbao, Fernández-Palacios, H, M. S. Izquierdo, 2009. Potential value of Navicula incerta, Proschkinia sp., Nitzschia sp. and Amphora sp. as feed for Haliotis tuberculata coccinea post-larvae: effect of inoculums density on algal growth rates. Aquaculture Society Special Publication 38, 56-59. Courtois de Vicose, G., Viera, M. P., Bilbao, A., Izquierdo, M.S., 2010. Larval settlement of Haliotis tuberculata coccinea in response to different inductives cues and the effect of larval density on settlement, early growth and survival. Journal of Shellfish Research 29 (3), 587-591. 236 References Courtois de Vicose, G., Viera, M.P., Huchette, S., Izquierdo, M.S., 2012a. Improving nursery performances of Haliotis tuberculata coccinea: Nutritional value of four species of benthic diatoms and green macroalgae germlings. Aquaculture, 334337, 124-131. Courtois de Vicose, G., Porta, A., Viera, M.P., Fernández-Palacios, H., Izquierdo, M.S., 2012b. Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated to growth phase. Journal of Applied Phycology 24, 1427-1437. Crofts, D. R., 1929. Haliotis. Liverpool Marine Biology Committee. Memorial 39, 1174. Crofts, D. R., 1932. Haliotis. In: LMBC (Ed.), Memoirs on Typical British Marine Plants and Animals. University of Liverpool, Liverpool, pp.174. Cuevas, E., 2006. Evolución futura del clima canario. El cambio climático en Canarias. Ciclo de Conferencias organizado por la Academia Canaria de Ciencias. Museo de la Ciencia y el Cosmos, La Laguna 20 de octubre. http://acanacie. Webs.ull.es/cuevas.pdf Culley, M.B., Peck, L.S., 1981. The feeding preferences of the ormer, Haliotis tuberculata (L.), in: Rheinheimer, G. et al. (Ed.) (1981). Lower Organisms and their Role in the Food Web: Proceedings of the 15th European Marine Biology Symposium, Kiel, Damp 2000, Federal Republic of Germany (September 29October 3, 1980). Kieler Meeresforschungen. Sonderheft, 5: pp. 570-572. Cunha, M.E., Quental-Ferreira, H., Leão, A.C., Matias, A., Matias, D., Joaquim, S., 2012. Integrated Multitrophic Aquaculture (IMTA) in earthen ponds. In: Proceedings of European Aquaculture Society (EAS) and the World Aquaculture Society (WAS) conference (AQUA 2012), Prague, Czech Republic, 1-5 Sep, 2012, pp.238. Dallimore, J., 2010. Developing Marketing Data for Abalone in Europe. SUDEVABSymposium, Brest -October 2010. Daume, S., Huchette, S., Ryan, S., Day, R.W., 2004. Nursery culture of Haliotis rubra: the effect of cultured algae and larval density on settlement and juvenile production. Aquaculture 236, 221–239. Daume, S., Ryan, S., 2004. Nursery culture of the abalone Haliotis laevigata: larval settlement and juvenile production using cultured algae or formulated feed. Journal of Shellfish Research 23,1019–1026. 237 References Dawczynski, C., Shubert, R., Jahreis, G., 2007. Amino acids, fatty acids, and dietary fibre in edible seaweeds products. Food Chemistry 103, 891-899. Day, R. W., Fleming, A. E., 1992. The determinants and measurement of abalone growth En: abalone of the world: biology, fisheries and culture. In: S. A. Shepherd, M. J. Tegner & S. A. Guzmán del Próo, editors. First international symposium on abalone, La Paz, Mexico, 1989. Oxford: Blackwell Scientific Publications Ltd. 141–165 pp. Day, R.W., Cook, P., 1995. Bias towards brown algae in determining diet and food preferences: the South African abalone Haliotis midae: Marine and Freshwater Research 46 (3), 623-627. de Waal, S.W.P., Branch, G.M., Navarro, R., 2003. Interpreting evidence of dispersal by Haliotis midae juveniles seeded in the wild. Aquaculture 221, 299 – 310 Demetropoulos, C., Langdon, C., 2004. Pacific dulse (Palmaria mollis) as a food and biofilter in recirculated, land-based abalone culture systems. Aquaculture Engineering 32, 57-75. Dlaza, T.S., 2006. Growth of juvenile abalone under aquaculture conditions. Ph Thesis. Department of Biodiversity & Conservation Biology. University of the Western Cape, South Africa, 182 pp. Dlaza, T. S., Maneveldt, G.W., Viljoen, C., 2008. The growth of post-weaning abalone (Haliotis midae Linnaeus) fed commercially available formutaled feeds supplemented with fresh wild seaweed. African Journal of Marine Science 30 (1), 199-203. Douros, W.J., 1987. Stacking behaviour of an intertidal abalone: an adaptive response or a consequence of space limitation?. Journal of Experimental Marine Biology and Ecology 108, 1-14. Dunstan, G.A., Baillie, H.J, Barret, S.M., Volkman, J.K., 1996. Effect of diet on the lipid composition of wild and cultured abalone. Aquaculture 140, 115-127. Dunstan, G.A., Brown, M.R., Augerinos, M., Johns, D.R., Knuckey, R., 1998. ʻFormulated feeds for juvenile abalone: based on natural feeds (diatoms and crustose coralline algae).ʼ In: Hone, P. (Ed). Proceedings of the 5th Annual Abalone Aquaculture Workshop, July, 1997, Hobart, Tasmania, Fisheries Research and Development Corporation, pp 16-21. 238 References Durazo-Beltrán, E., Viana, M.T, 2013. Fatty acid profile of cultured green abalone (Haliotis fulgens) exposed to lipid restriction and long-term starvation. Ciencias Marinas, 39 (4), 363–370. http://dx.doi.org/10.7773/cm.v39i4.2283. Durazo-Beltrán, E., D´Abramo, L.R., Toro-Váquez, J.F., Vásquez-Peláez, C., Viana, M.T., 2003. Effect of triacylglycerols in formulated diets on growth and fatty acid composition in tissue of green abalone (Haliotis fulgens). Aquaculture 224, 257–270. Durazo-Beltrán E., Viana, M.T., D´Abramo L.R., Toro-Váquez J.F., 2004. Effect of starvation and dietary lipid on the lipid and fatty acid composition of muscle tissue of juvenile green abalone (Haliotis fulgens). Aquaculture 238, 329-341. Edwards, P., Pullin, R.S.V., Gartner, J.A., 1988. Research and education for the development of integrated crop –livestock– fish farming systems in the tropics. ICLARM Studies and Reviews, vol. 16. International Center for Living Aquatic resources Management, Manila, p. 53. Edwards, S., Cook, K., 1999. Rapid leaching of minerals from abalone dietary binders is not determined by ionic mobility and competition between cations. Dry matter loss is not a good indicator. Proceeding of the 6th Annual Abalone Aquaculture Workshop. Sydney, pp. 235. Ebert, E.E., Houk, J.L., 1984. Elements and innovations in the cultivation of red abalone Haliotis rufescens. Aquaculture, 39, 375-392. Elliott, N.G., 2000. Genetic improvement programmes in abalone: what is the future?. Aquaculture Research, 13: 51-59. Erasmus, J.H., Cook, P.A., Coyne, V.E., 1997. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture, 155, 377–386. Espino, F., Herrera, R. 2002. Seguimiento de poblaciones de especies amenazadas 2002 (Haliotis tuberculata coccinea, Nordsieck, 1975) Gran Canaria. Informe final presentado por Gesplan y la Consejería de Política Territorial y Medio Ambiente (Viceconsejería de Medio ambiente de Gran Canaria y Dirección General de Política Ambiental). Informe no publicado. 52 pp. Estefanell, J., Roo, J., Guirao, R., Izquierdo, M.S., Socorro, J., 2012. Benthic cages versus floating cages in Octopus vulgaris: biological performance and biochemical composition feeding on Boops boops discarded from fish farms. Aquaculture Engineering 49, 46-52. 239 References Evans, F., Langdon, C.J. 2000. Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions. Aquaculture 185, 137-158. FAO, 2012. The State of World Fisheries and Aquaculture 2012. FAO Fisheries and Aquaculture Department. Food and Agricultural Organization of the United Nations. Rome. pp 230. Fei, X.G., 2001. Seaweed cultivation in large scale- a possible solution to the problem of eutrophication by removing nutrients. Proceedings of the second Asian Pacific Phycological Forum. Hydrobiologia, 167-175 (special volume). Fei, X.G., 2004. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512, 145– 151. Fei, X.G., Bao, Y., Lu, S., 2000. Seaweed cultivation—traditional way and its reformation. Oceanologia et Limnologia Sinica 31, 575–580. Fei, X.G., Tseng, C.K., Pang, S.J., Lian, S.X., Huang, R.K., Chen, W.Z., 2002. Transplant of Gracilaria lemaneiformis by raft culture on the sea along fish cages in southern China. Proc. World Aquaculture Society, April 23–27, 2002. World Aquaculture Soc, Baton Rouge, LA, USA, p. 219 (636). Fermin, A., Buen, S.M., 2002. Grow-out culture of tropical abalone, Haliotis asinina (Linnaeus) in suspended mesh cages with different shelter surface areas. Aquaculture International 9, 499-508. Fitzgerald, A., 2008. Abalone Feed Requirements. South West abalone Growers Association (SWAGA). Report for Seafish, pp. 34. Flassch, J.P., Aveline, C., 1984. Production de jeunes ormeaux à la station expérimentale d´Argenton. Centre Natiotal pour l¨Explotation des Oceans, Rapports Scientifiques et Techniques, 50-68. Fleming, A.E., 1995. Growth, intake, feed conversion efficiency and chemosensry preference of the Australian abalone, Haliotis rubra.Aquaculture 132, 297-311. Fleming, A. E., Hone, P. W., 1996. Abalone aquaculture. Aquaculture 140, 1-4. Fleming, A.E., Van Barneveld, R.J., Hone, P.W., 1996. The development of artificial diets for abalone: a review and future directions. Aquaculture 140, 5-53. Fleming, A.E., Hone, P., Higham J., 1997. The effect of water velocity on consumption and growth of greenlip abalone in tanks. In: Proceedings of the 4th Annual Abalone Aquaculture Workshop, Port Fairy, Victoria, Australia, July 1997 (ed. by P.W. Hone & A. Fleming). Fisheries Research and Development Corporation, Canberra, Australia. pp. 23–30. 240 References Fleurence, J., 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology 10, 25–28. Foale, S., Day, R., 1992. Recognizability of algae ingested by abalone. Australian Journal of Marine and Freshwater Research 43 (6), 1331-1338. Folch, J. Lees, M., Sloane-Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissue. Journal of Biological Chemistry 226, 479-509. Ford, E., Langdon, C.J., 2000. Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions. Aquaculture 185 (1-2), 137158. Foster, G.G., Hodgson, A.N., 1998. Consumption and apparent dry matter digestibility of six intertidal macroalgae by 11 (Mollusca: Vetgastropoda: Turbinidae). Aquaculture 167, 211-227. Freeman, K.A., 2001. Aquaculture and related biological attributes of abalone species in Australia- a review. Fisheries Research Report. Department of Fisheries, Perth, Western Australia. No. 128. Fry, F.E.J., 1971. The effect of environmental factors on the physiology of fish. In.W.S. Hoar and D.J. Randall (Editors), Fish Physiology, 9, Academic Press New York, pp 1-98. Gao, K., McKinley, K.R., 1994. Use of macroalgae for marine biomass production and CO2 remediation- a review. Journal of Applied Phycology 6, 45-60. García, R.M.I. 1999. Utilización de Ulva como biofiltro en la Acuicultura. Estudio comparativo de la retención de compuestos nitrogenados. Tesis doctoral. Universidad de las Palmas de Gran Canaria, España. pp 172. García-Esquivel, Z., Felbeck, H., 2006. Activity of digestive enzymes along the gut of juvenile red abalone, Haliotis rufescens, fed natural and balanced diets. Aquaculture 261, 615-625. García-Esquivel, Z., Montes-Magallón, S., González-Gómez, M.A., 2007. Effect of temperature and photoperiod on the growth, feed consumption, and biochemical content of juvenile green abalone, Haliotis fulgens, fed on a balanced diet. Aquaculture 262, 129-141. Geiger, D.L., 2000. Distribution and biogeography of Haliotidae (Gastropoda: veti gastropoda), worldwide. Bolletinno Malacologico. Vol. 35, 57-120. 241 References Geiger, D.L., Owen, B., 2012. Abalone: Worldwide Haliotidae. Hackenheim: Conchbooks. viii + 361 pp. Gilroy, A., Edwards, S., J., 1998. Optimum temperature for growth of Australian abalone: preferred temperature and critical thermal maximum for blacklip abalone, Haliotis rubra (Leach) and greenlip abalone, Haliotis laevigata (Leach). Aquaculture Research 29, 481 – 485. GMA, 2014. http://gmaquaculture.com. Gómez-Montes, L., García-Esquivel, Z., D´Abramo, L.R., Shimada, A., VásquezPeláez, C., Viana, M.T., 2003. Effect of dietary protein: energy ratio on intake, growth and metabolism of juvenile green abalone Haliotis fulgens. Aquaculture 220, 769-780. González-Aviles, J.G., Shepherd, S. A., 1996. Growth and survival of the blue abalone Haliotis fulgens in barrels at Cedros Island, Baja California, with a review of abalone barrel culture. Aquaculture 140, 169-176. Gordin, H., Motzkin, F., Huges-Games, W.L., Porter, C. 1981. Seawater mariculture pond and integrated system. European Mariculture Society Special Publication 6, 1-13. Gordon, H.R., Cook, P.A., 2001. World supply, market and pricing: Historical, current and future. Journal of Shellfish Research 20 (2), 567–570. Green, A.J., Jones, C.L.W., Britz, P.J., 2011. The protein and energy requirements of farmed South African abalone Haliotis midae L. cultured at optimal and elevated water temperatures. Aquaculture Research 42 (11), 1653-1663. Grubert, M.A., Dunstan, G.A., Ritar, A.J., 2004. Lipid and fatty acid composition of pre- and post spawning blacklip (Haliotis rubra) and greenlip (Haliotis laevigata) abalone conditioned at two temperatures on a formulated diets. Aquaculture 242, 297-311. Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L. and Chanley M.H. (Eds.). Culture of Marine Invertebrates Animals. Plenum Press, New York, USA. pp.29-60. Guzmán del Proó, S. A. 1992. A review of the biology of abalone and its fishery in México. In: S. A. Shepherd, M. J. Tegner & S. A. Guzmán del Proó, editors. Abalone of the world: biology, fisheries and culture.Oxford: Fishing News Books, pp. 341–360. 242 References Guzmán, J.M., Viana, M.T., 1998. Growth of abalone Haliotis fulgens fed diets with and without fishmeal compared to a commercial diet. Aquaculture 165, 321-331. Haglund, K., Pedersen, M., 1993. Outdoor cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. Journal of Applied Phycology 5, 271– 284. Hahn, K.O., 1989. Handbook of culture of abalone and other marine gastropods. CRC Press, Boca Ratón, Florida. 348 pp. Haldane, C., 2002. Measuring stress in greenlip abalone (Haliotis laevigata) using biochemical indicators. Honors thesis, Flinders University of South Australia. Hansen, J.P., Robertson-Andresson, D., Troell, M., 2006. Control of the herbivorous gastropod Fissurella mutabilis (Sow.) in a land-based integrated abalone– seaweed cultura. Aquaculture 255, 384–388. Hargreaves, J.A., Kucuk, S., 2000. Effects of diel un-ionized ammonia fluctuation on juvenile hybrid striped bass, channel catfish, and blue tilapia. Aquaculture 195 (1-2), 163-181. Harlin, M.M., Thorne-Miller, B., Thursby, G.B., 1978. Ammonium uptake by Gracilaria sp (Florideophyceae) and Ulva lactuca (Clorophyceae) in closed system fish culture. In: Jensen, A., Stein, J.R. (Eds), Proc. IXth Int. Seaweed Symposium Science Press., Princeton, pp. 285-293 Harris, J.O., Maguire, G.B., Edwards, S., Hindrum, S.M., 1998. Effect of ammonia on the growth rate and oxygen consumption of juvenile greenlip abalone Haliotis laevigata Donovan. Aquaculture 160, 259–272. Hastings, W.H., Meyers, S.P., Butler, D.P., 1971. A commercial process for waterstable fish feeds. Feedstuffs 43(47), 38. Hay, M.E., Kappel, Q.E., Fenical, W., 1994. Synergism in plant defenses against herbivores: interactions of chemistry, calcification and plant quality. Ecology, 75, 1714– 1726. Hayashi, I., 1982. Small scale laboratory culture of the ormer, Haliotis tuberculata. Journal of the Marine Biological Association of the United Kingdom 62, 835 44. Heath, P., Moss, G., 2009. Farming the Abalone. Aquaculture, 290 (1-2), 80-86. Hensey, J., 1991. Abalone. Aquaculture Ireland 49, 28. Hensey, J., 1993. Abalones- the Irish ongrowing experience. In M.S. van Patten (ed.), Irish-American technical exchange on the aquaculture of abalone, sea urchins, 243 References lobsters and kelp. Abstracts of an international workshop. Connecticut Sea Grant College Program, publication no. CT-SG-93-05. pp. 5-6. Hernández, J., Uriarte, I., Viana, M.T., Westermeier, R., Farías, A., 2009. Growth performance of weaning red abalone (Haliotis rufescens) fed with Macrocystis pyrifera plantlets and Porphyra columbina compared with a formulated diet. Aquaculture Research 40, 1694–1702. Hernández, J., Matus de la Parra, A., Lastra, M., Viana, M.T., 2013. Effect of lipid composition of diets and environmental temperature on the performance and fatty acid composition of juvenile European abalone (Haliotis tuberculata L. 1758). Aquaculture 412-413, 34-40. Hernández-Carmona, G., Carrillo-Domínguez, S., 2009. Monthly variation in the chemical composition of Eisenia erborea J.E. Areschoug. Journal of Applied Phycololy 21, 607-616. Higham, J., Hone, P., Clarke, S., Baudinette, R., Geddes, M., 1998. ʻThe effect of flow on growth in juvenile Greenlip abalone, Haliotis laevigata (Donovan).ʼ In: Hone, P. (Ed). Proceedings of the 5th Annual Abalone Aquaculture Workshop, July, 1997, Hobart, Tasmania. Fisheries Research and Development Corporation. Pp. 116-124. Hindrum, S., Edwards, S., Burke, C., Johns, D., Maguire, G., 1999. Exploring the dynamic relationship between water quality, stocking density and refuge provision for greenlip abalone (Haliotis laevigata). In: Burke, C.M., Harris, J.O., Hindrum, Edwards, S.J. and Maguire, G.B., (Eds). Enviromental Requirements of Abalone. Final Report Proj. ect 97/323. Fisheries Research and Development Corporation, Canberra, Australia. Tasmanian Aquaculture and Fisheries Institute, Hobart. Hindrum, S., Burke, C., Edwards, Johns, D., 2001. Effects of combined exposure to elevated ammonia and low dissolved oxygen levels in greenlip (Haliotis laviegata Donovan) and blacklip (H. rubra) abalone. 1. Growth and mortality data from simulated system failure. Journal of Shellfish Research 20, 679-684. Hjul, P., 1991. Abalone farmer has hatchery in from garden. Fish Farming International 18 (11), 24-25 Hone, P.W., Fleming, A.E., 1998. ʻAbalone.ʼ In: K. Hyde, (Ed), 1998. The new rural industries – A handbook for farmers and investors. Rural Industries and Development Corporation, Canberra. Pp. 85-92. 244 References Hone, P.W., Madigan, S.M., Fleming, A.E., 1997. Abalone hatchery manual for Australia. South Australian Research and Development Institute, Adelaide. 33 pp. Horn, M.N., 1989. Biology of marine herbivorous fishes. Oceanography and Marine Biology Annual Reviews 27, 167– 272. Hoshikawa, H., Sakai, Y., Kijima, A., 1998. Growth characteristics of the hybrid between pinto abalone, Haliotis kamtschatkana Jonas, and ezo abalone, H. discus hannai Ino, under high and low temperature. Journal of Shellfish Research 17, 673 – 677. Howorth, P.C., 1988. The abalone book. Naturegraph Publishers. Happy Camp. CA. 80 pp. Huchette, S. M. H., Clavier, J., 2004. Status of the ormer (Haliotis tuberculata L.) industry in Europe. Journal of Shellfish Research 23, 951–955. Huchette, S.M.H., Koh, C.S., Day, R.W., 2003a. Growth of juvenile blacklip abalone (Haliotis rubra) in aquaculture tanks: effect of density and ammonia. Aquaculture 219, 457-470. Huchette, S.M.H., Koh, C.S., Day, R.W., 2003b. The effect of density on the behaviour and growth of juvenile blacklip abalone (Haliotis rubra). Aquaculture International 11, 411-428. Hutchinson, W., Vandepeer, M., 2004. Water quality: Effects and management on abalone farms. South Australian Research and Development Institute (SARDI) Aquatic Sciences, Adelaide. Pp. 65. Izquierdo, M. S., Watanabe, T., Takeuchi, T., Arakawa, Kitajima, C., 1989. Requirements of larval red seabream Pagrus major for essential fatty acids. Nippon Suisan Gakkaishi 55, 859-867. Izquierdo, M. S., Viera, M.P., Courtois de ViÇose, G., Haroun, R., Fernández-Palacios, H., 2013. Nutritional value of Ulva lactuca, Gracilaria cornea, Laminaia digitata and Palmaria palmata for European abalone. 10th International Phycological Congress. Orlando, USA. Jackson, D., Williams, K.C., Degnan, B.M., 2001. Suitability of Australian formulated diets for aquaculture of the tropical abalone Haliotis asinina Linnaeus. Journal of Shellfish Research 20, 627-636. Jarayabhand, P., Paphavasit, N., 1996. A review of the culture of tropical abalone with special reference to Thailand. Aquaculture 140,159-168. 245 References Jarayabhand, P., Kruiroongroj, W., Chaisanit, Ch., 2010. Effect of stocking density on growth performance of Thai abalone, Haliotis asinina, Linnaeus 1758, reared under a semiclosed recirculating land-based system. Journal of Shellfish Research 29 (3), 593-597. Jee, Y.J., Yoo, S.K., Rho, S., Kim, S.H., 1988. The stocking density and growth of young abalone Haliotis discus hannai Ino cultured in the hanging net cage. Bulletin of Fisheries Research and Development Agency 42, 59-69. Jiménez del Río, M., Ramazanov, Z., García-Reina, G., 1994. Optimization of yield and biofiltering efficiencies of Ulva rigida cultivated with Sparus aurata wastewaters. Scientia Marina 58(4), 329-335. Jiménez del Río, M., Ramazanov, Z., García-Reina, G. 1996. (Ulvales, Chlorophyta) tanks culture as biofilters for dissolved inorganics nitrogen from fishpond effluents. Hydrobiologia 326/327, 62-66. Johns, R.B., Reid Nichols, P.D., Perry, G.J., 1979. Fatty acid composition of ten marine algae from Australian waters. Phytochemistry 18 (5), 799-802. Johnston, T., Moltschaniswskyj, N., Wells, J., 2005. Development of the radula and digestive system of juvenile blacklip abalone (Haliotis rubra): Potential factors responsible for variable weaning success on artificial diets. Aquaculture 250, 341-355. Joll, L., 1996. ʻAbalone in the wild- life history and habitat in WA.ʼ In: Forster, A. (Ed). Proceedings of the Abalone Aquaculture Workshop, December, 1995, Albany, Western Australia. Aquaculture Development Council and Fisheries Department of Western Australia. pp 11-13. Kaehler, S., Kennish, R., 1996. Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Botanica Marina 39, 11-17. Kautsky, N., Folke, C., Rönnback, P., Troell, M., Beveridge, M., Primavera, J., 2001. Aquaculture. Encyclopedia of Biodiversity 1, 185-198. Kawamura, T., Takami, H., Roberts, R. D., Yamashita, Y., 2001. Radula development in abalone, Haliotis discus hannai, from larva to adult in relation to feeding transitions. Fisheries Science 67, 596-605. Ke, C., You, W., Luo, X., 2012. Current status of abalone aquaculture industry in China. Proceedings of the 8th International Abalone Symposium, May 2012, Hobart, Tasmania. pp. 56. 246 References Kemp, J.O.G., Britz P.J., 2012. Abalone nutrition from an aquaculture perspective: a review. Proceedings of the 8th International Abalone Symposium, May 2012, Hobart, Tasmania. pp 62. Kinne, O. (Ed.), 1976. Marine Ecology, vol. 3. Wiley, London.1293 pp. Kikuchi, S. Uki, N., 1974. Technical study on artificial spawning of abalone (genus Haliotis). 2-Effect of irradiated sea water with U.V. rays on inducing spawning. Bulletin of Tohoku Regional Fisheries Research Laboratory 33, 79-96. Kirkendale, L., Robertson-Andersson D.V., Winberg, P.C., 2010. Review on the use and production of algae and manufacturated diets as feed for sea-based abalone aquaculture in Victoria. Report by the University of Wollongon, Shoalhaven Marine and Freshwater Centre, Nowra, for the Department of Primary Industries, Fisheries Victoria, 198 p. Koike, Y., 1978. Biological and ecological studies on the propagation of the ormer, Haliotis tuberculata Linnaeus. I: Larval development and growth of juveniles. La Mer (Bulletin de la Société Franco Japonaise d'Océanographie) 16 (3), 12436. Koike, Y., Flassch, J., Mazurier, J., 1979. Biological and ecological studies on the propagation of the ormer, Haliotis tuberculata Linnaeus. II: Influence of food and density on the growth of juveniles. La Mer (Bulletin de la Société FrancoJaponaise d'Océanog raphie) 17 (1), 43-52. Korsoen, J., Dempster, T., Fjelldal, P.G., Oppedal, F., Kristiansen, T.S., 2009. Longterm culture of Atlantic salmon (Salmo salar L.) in submerged cages during winter affects behavior, growth and condition. Aquaculturre 296, 373-381. Kunavongdate, P., Sakares, W., Muangsakorn, S., 1995. Experimental rearing on abalone, Haliotis asinina Linneus with three species of seaweed. Technical Paper, 39. Department of Fisheries, Ministry of Agriculture and Cooperatives, Thailand. Lamare, M.D., Wing, S.R., 2001. Caloric content of New Zealand marine macrophytes. New Zealand Journal of Marine Freshwater Research 35, 341-355. Langton, R.W., Haines, K.C., Lyon, R.E., 1977. Ammonia nitrogen produced by the bivalve mollusc Tapes japonica and its recovery by the red seaweed Hypnea musciformis in a tropical mariculture system. Helgolander Wissenschaftjiche Meeresuntersuchungen 30, 217-229. 247 References LaTouche, B., Moylan, K., 1984. Abalone farming in Ireland. Aquaculture Ireland 16, 12-14. LaTouche, B., Moylan, K. 1986. Abalone. Aquaculture Ireland 28, 12-13. LaTouche, B., Moylan, K., Twomey, W., 1993. Abalone on-growing manual. Aquaculture Explained, 14. Dublin. Irish Sea Fisheries Board (BIM) Aquaculture Technical Section, Dun Laoghaire, Co. Dublin. 39 pp. Leaf, R.T., Rogers-Bennett, L., Haaker, P.L., 2007. Spatial, temporal, and size-specific variation in mortality estimates of red abalone, Haliotis rufescens, from markrecapture data in California. Fisheries Research 83, 341-350. Lee, K.K., Liu, P.C., Chen, Y.C., Huang, C.Y., 2001. The implications of ambient temperature with the outbreak of vibriosis in cultured small abalone Haliotis diversicolor supertexta Lischke. Journal of Thermal Biology 26, 585-587. Legg, T., Lesage, X., Huchette, S., 2012. Technical and economical analysis of seabased abalone farming systems in Europe. Proceedings of the 8th International Abalone Symposium, Hobart, Tasmania. pp 51. Leighton, D.L., 1974. The influence of temperature on larval and juvenile growth in three species of southern California abalones. Fishery Bulletin of the United States 72, 1137-1145. Leighton, D.L., 1989. Abalone (Genus Haliotis) mariculture on the North American Pacific Coast. Fisheries Bulletin 87(3), 689-702. Leighton, D.L., 2000. The Biology and Culture of the California Abalones. Dorrance Publishing Co., Pittsburgh, PA . 216 pp. Leighton, P., 2008. Abalone hatchery manual. Aquaculture Technical Section, Aquaculture Development Division, Bord Iascaigh Mhara 5, 1. Li, X., Fan, F., Han, L., Lou, Q., 2002. Fatty acids of some algae from the Bohai Sea. Phytoquemistry 59, 157-161. Liao, Ch-M., Ling, M-P., Chen, J-Sh., 2003. Appraising zinc bioaccumulation in abalone Haliotis diversicolor supertexta and alga Gracilaria tenuistipitata var. liui by probabilistic analysis. Aquaculture 217, 285-299. Lindsay, R.C., 1988. Flavor chemistry and seafood quality factors. Proc. Ocean´88, Maine Technology, Baltimore, MD, 31 October to 2 November, pp. 61-65. Liping, L., Hayse-Gregson, K., Diana, J.S., Weimin, W., Biyu, S., Zongwen, W., 2012. Impacts of integrated cage culture system on Water Quality in Deep Water Lakes. Proceedings of the European Aquaculture Society (EAS) and the World 248 References Aquaculture Society (WAS) conference (AQUA 2012), Prague, Czech Republic, 1-5 Sep, 2012. Pp. 654. Liu, K.M., Chen W.K., 1999. Examining the effect of stocking density and depth on growth of intensive cultured abalone, Haliotis diversicolor supertexta Lischke, Journal of the Fisheries Society of Taiwan 26, 23-33. Lloyd, M., Bates, A., 2008. Influence of density-dependent food consumption, foraging and stacking behaviour on the growth rate of the Northern abalone, Haliotis kamtschatkana. Aquaculture, 277, 24-29. Lopez, L.M., Viana, M.T., 1995. Determination of the quality of food elaborated from unheated and heated fish silage for the juveniles abalone Haliotis fulgens. Ciencias Marinas 21 (3), 331–342. Lopez, L.M., Tyler, P.A., Viana, M.T., 1998. The effect of temperature and artificial diets on growth rates of juvenile Haliotis tuberculata (Linnaeus, 1758). Journal of Shellfish Research 17, 657 – 662. Lu, H., Xu, J., Vander Haegen, G., 2008. Supplementing Marine Capture Fisheries in the East China Sea: Sea Ranching of Prawn Penaeus orientalis, Restocking of Large Yellow Croaker Pseudosciaena crocea, and Cage Culture. Reviews in Fisheries Science, Volume 16 (1-3), 366-376. Lyon, R.G., 1995. Aspects of the physiology of the South African abalone, Haliotis midae L., and implications for intensive abalone culture. M.Sc. Thesis, Rhodes University, Grahamstown, South Africa, 85 pp. Mabeau, S., Fleurence, J., 1993. Seaweed in food products: biochemical and nutritional aspects. Trends in Food Science and Technology, 4, 103–107. Maguire, G.B., Johns, D., Hindrum, S., Cropp, M., 1996. Effects of shading and refuges on the growth of juvenile Greenlip abalone Haliotis laevigata. In: Hone, P. (Ed). Proceedings of the 3rd Annual Abalone Aquaculture Workshop. Port Lincoln, South Australian. Fisheries Research and Development Corporation. pp 40-45. Mai, K., Mercer, J.P., Donlon, J., 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: III. Response of abalone to various levels of dietary lipid. Aquaculture, 134, 65–80. Mai, K., Mercer, J.P., Donlon J., 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture 136, 165-180. 249 References Mai, K., Mercer, J.P., Donlon J., 1996. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. V. The role of polyunsaturated fatty acids of macroalgae in abalone nutrition. Aquaculture 139, 77-89 Malham, S. K., Lacoste, A., Gelebart, F., Cueff, A., Poulet, S. A., 2003. Evidence for a direct link between stress and immunity in the mollusk Haliotis tuberculata. Journal of Experimental Zoology 295A, 136- 144. Mao, Y.Z., Yang, H.S., Zhoy, Y., Ye, N.H., Fang, J.G., 2009. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. Journal of Applied Phycology 21(69), 649-656. Marchetti, M., Tossani, N., Marchetti, S., Bruce G., 1999. Leaching of crystalline and coated vitamins in pelleted and extruded feeds. Aquaculture 171, 83-92. Marinho-Soriano, E., Morales, C., Moreira, W.C., 2002. Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil. Aquaculture Research 33, 1081– 1086. Marquardt, R., Schubert, H., Varela, D.A., Huovinen, P., Henríquez L., Buschmann, A.H., 2010. Light acclimation strategies of three commercially important red algal species. Aquaculture 299 (1-4), 140-148. Marsden, I.D., Williams, P.M.J., 1996. Factors affecting the grazing rate of the New Zeland abalone Haliotis iris Martyn. Journal of Shellfish Research 15, 401-406. Marshall, P.A., Keogh, M.J. 1994. Asymetry in intraspecific competition in the limpet Cellana tramoserica (Sowerby). Journal of Experimental Marine Biology and Ecology 177, 121-138. Martínez-Aragón, J.F., Hernández, I., Pérez Llorens, J.L., Vázquez, R., Vergara, J.J., 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with seabass (Dicentrarchus labrax) waste waters:1. Phosphate. Journal of Applied Phycology 14, 365-374. Matos, J., Costa, S., Rogríguez A., Pereira, R., Sousa Pinto, I., 2001. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture 252, 31–42. Mcbride S.C., Rotem, E., Ben-Ezra, D., Shpigel, M., 2001. Seasonal energetics of Haliotis fulgens (Philippi) and Haliotis tuberculata (L.). Journal of Shellfish Research 20, 659-665. 250 References McCormick, T.B., Arguirre, A., Mill, T.S., Herbison, K.T., 1992. Growth and survival of red (Haliotis rufescens), green (Haliotis fulgens) and pink (Haliotis corrugata) abalone in land-based cultivation systems. Fisheries Research Paper, Department of Fisheries (South Australia) 24, 49-60. McDonald, M.E., 1987. Biological removal of nutrients from wastewater: an algal-fish system model. In: Reddy, K.R., Smith, W.H. (Eds.), Aquatic Plants for Waste Water Resource Recovery, Magnolia Publishing, Orlando, Florida, USA, pp. 959– 968. McShane, P.E., 1988. ʻWorld developments in abalone culture.ʼ In: L. Evans and D. OʼSullivan (Eds). In: Proceedings 1st Australian Shellfish Aquaculture Conference, Perth, Western Australia. (Editors L.H. Evans and D. O'Sullivan), pp. 212-223. Mercer, J P., 1981. Low cost spat production units. In G. Gardner (ed.) Proceedings of the Twelfth Annual Shellfish Conference, London. Shellfish Association of Great Britain. Pp. 69-78. Mercer, J.P., Mai, K.S., Donlon, J., 1993. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata coccinea Linneaeus and Haliotis discus hannai Ino. I. Effects of algal diets on growth and biochemical composition. Invertebrate Reproduction and Development 23, 75-88. Mgaya, Y. D., 1995. Synopsis of biological data on the European abalone (Ormer) Haliotis tuberculata Linnaeus, 1758 (Gastropoda, Haliotidae) FAO-FISHSYNOP. 1995 no. 156, 28 pp. Mgaya, Y.D., Mercer, J.P., 1994. A Review of the Biology, Ecology, Fisheries and Mariculture of the European Abalone Haliotis tuberculata Linnaeus 1758 (Gastropoda: Haliotidae). Biology and Environment: Proceedings of the Royal Irish Academy, Vol. 94B, No. 3, 285-304. Mgaya, Y.D., Mercer, J.P, 1995. The effect of size grading and stocking densities on growth performance of juvenile abalone, Haliotis tuberculata Linnaeus. Aquaculture 136, 297-312. Midlen, A., Redding, T.A., 1998. Environmental Management for Aquaculture, Aquaculture Series 2. Kluwer Academic Publishers. Dordrecht, Boston, London. Pp 215. 251 References Minh, N.D., Petpiroon S., Jarayabhand P., Meksumpun S., Tunkijjanukij S., 2010. Growth and survival of abalone, Haliotis asinina Linnaeus 1758, reared in suspended plastic cages. Kasetsart Journal: Natural Science 44, 621–630. Montano-Vargas, J., Viana, M.T., D’Abramo, L.R., Armando, S., Vásquez-Peláez, C., 2005. Growth and energy utilization of juvenile pink abalone Haliotis corrugata fed diets containing different levels of protein and two starch: lipid ratios. Journal of Shellfish Research 24, 1179-1187. Morikawa, Y., Norman, C.P., 2003. Perception of light intensity by Haliotis discus discus based on locomotor activity patterns. Fisheries Science 69, 478-486. Moriyama, S., Kawauchi, H., 2004. Somatic growth acceleration of juvenile abalone, Haliotis discus hannai, by immersion in and intramuscular injection of recombinant salmon growth hormone. Aquaculture 229, 469-478. Morrison, J., Smith, B., 2000. ʻTank design changes direction.ʼ In: Fleming, A. (Ed). AB-brief, 4(1), 5-5. Morse, D. E., Duncan, H., Hooker, N., Morse, A., 1977. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase, Science, 196, 298-300. Mortensen, A., Toften, H., Aas K., 2007. Cage culture of spotted wolffish (Anarhichas minor Olafsen). Aquaculture 264, 475–478. Msuya, F.E., Kyewalyanga, M.S., Salum, D., 2006. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar, Tanzania. Aquaculture 254, 284–292. Muir, J.F., 1996. A systems approach to aquaculture and environmental management. In: Baird, J.D., Beveridge, M.C.M., Kelly, L.A., Muir, J.F. (Eds.), Aquaculture and Water Resource Management. Blackwell Science, UK, pp. 19– 47. Mulvaney, W., Jahangard, S., Krsinich, A., Ingram, B., Winberg, P., 2012. Growth of hybrid abalone (H. rubra Leach x H. laevigata Leach) in offshore cages. Proceedings of AQUA 2012, Prague, Czech Republic.pp Nagler, P.L., Glenn E.P., Nelson S.G., Napoleon, S., 2003. Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvipora (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture 219, 379-391. 252 References Naidoo, K., Maneveldt, G., Ruck, K., Bolton, J., 2006. A comparison of various seaweed-based diets and formulated feed growth rate of abalone in a land-based aquaculture system. Journal of Applied Phycology 18, 437-443. Najmudeen, T. M., Víctor, A.C.C., 2004. Reproductive biology of the tropical abalone Haliotis varia from Gulf of Mannar. Journal of Marine Biological Association of India, 46 (2), 154 – 161. Naylor, R., Goldberg, R., Primavera, J., Kautsky, N., Beveridge, M., Clay, J., Folke, C., Lubchenco, J., Mooney, J., Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017–1024. Naylor, M.A., Kaiser, H., Jones, C.L.W, 2011. Water quality in a serial-use raceway and its effect on the growth of South African abalone, Haliotis midae Linnaeus, 1758. Aquaculture Research 42, 918-930. Naylor, M.A., Kaiser, H., Jones, C.L.W., 2012. The effect of free ammonia nitrogen, pH and supplementation with oxygen on the growth of South African abalone, Haliotis midae L. in an abalone serial-use raceway with three passes. Aquaculture Research 45, 213–224. Nelson, M.M., Leighton, D.L., Phleger, C.F., Nichols P.D., 2002. Comparison of growth and lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comparative Biochemistry and Physiology Part B 131, 695-712. Nelson, S.G., Glenn, E.P., Conn, J., Moore, D., Walsh, T., Akutagawa, M., 2001. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture 193, 239– 248. Neori, A., 1996. The type of N-supply (ammonia or nitrate) determines the performance of seaweed biofilters integrated with intensive fish culture. The Israeli Journal of Aquaculture-Bamidgeh, 48, 19– 27. Neori, A., Cohen, I., Gordin, H., 1991. Ulva lactuca biofilters for marine fish-pond effluents: II. Growth rate, yield and C:N ratio. Botanica Marina 34, 483– 489. Neori, A., Krom, M.D., Ellner, S.P., Boyd, C.E., Popper, D., Rabinovitch, R., Davison, P.J., Dvir, O., Zuber, D., Ucko, M., Angel, D., Gordin, H., 1996. Seaweed biofilters as regulators of water quality in integrated fishseaweed culture units. Aquaculture 141, 183–199. 253 References Neori, A., Ragg, N.L.C., Shpigel, M., 1998. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquaculture Engineering 17(4), 215-239. Neori, A., Shpigel, M., Ben-Ezra, D., 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186, 279-291. Neori, A., Msuya, F.E., Shauli, L., Schuenhoff, A., Kopel, F., Shpigel, M., 2003. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. Journal of Applied Phycology 15, 543– 553. Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish, C., 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231, 361-391. Nie, Z.Q., Ji, M.F., Yan, J.P., 1996. Preliminary studies on increased survival and accelerated growth of overwintering juvenile abalone, Halioti discus hannai Ino. Aquaculture 140, 177-186 Njobeni A., 2006. The cultivation of Gracilaria gracilis (Rhodophyta) in an integrated culture system for the production for abalone feed and the bioremediation of aquaculture effluent. MCs Dissertation, Cape Town University, Cape Town. Pp. 222. Oakes, F., Ponte, R., 1996. The abalone market: opportunities for cultured abalone. Aquaculture 140, 187–195. Ogino, C., Kato, N., 1964. Studies on the nutrition of abalone-II. Protein requirements for growth of abalone, Haliotis discus. Bulletin of the Japanese Society for the Science of Fiseries 30, 523– 526 (in Japanese with English abstract). Pang, S.J., Xiao, T., Bao, Y., 2006. Dynamic changes of total bacteria and Vibrio in an integrated seaweed–abalone culture system. Aquaculture 252, 289– 297. Park, Ch. J., Kim., S.Y. 2013. Abalone aquaculture in Korea. Journal of Shellfish Research 32(1), 17-19. Doi: http.//dx.doi.org/10.2983/035.032.0104. Park, J., Kim, H., Kim, P., Jo, J., 2008. The growth of disk abalone, Haliotis discus hannai at different culture densities in a pilot-scale recirculating aquaculture system with a based culture tank. Aquaculture Engineering 38,161-170. Peck, L.S., 1989. ʻFeeding, growth and temperature in the ormer, Haliotis tuberculata (L.).ʼ Progress in Underwater Science, 14, 95-107. 254 References Peña, J., 1985. Primeras experiencias de inducción a la puesta en Haliotis coccinea canariensis Nordsieck, 1975 (Gastropoda, Prosobranchia). Informes Técnicos del Instituto de Investigaciones Pesqueras130, 3-12. Peña, J., 1986. Preliminary study on the induction of artificial spawning in Haliotis coccinea canariensis Nordsieck (1975). Aquaculture, 52, 35-41. Pérez, J., Moreno, E., 1991. Invertebrados Marinos de Canarias. En: Cabildo Insular de Gran Canaria, editor. Las Palmas de Gran Canaria. 335 pp. Phang, S.M., Shaharuddin, S., Noraishah, H., Sasekumar, A., 1996. Studies on Gracilaria changii (Gracilariales Rhodophyta) from Malaysian mangroves. Hydrobiologia 326/327, 347– 352. Poore, G.C.B., 1972. Ecology of New Zealand abalones, Haliotis species (Mollusca: astropoda): I. Feeding. New Zealand Journal of Marine and Freshwater Research 6, 11 –22. Portugal, T.R., Ladines, E.O., Ardena, S.S., Resurreccio´n, L., Medina, C.R., Matibag, P.M., 1983. Nutritive value of some Philippine seaweeds: Part II. Proximate, amino acids and vitamin composition. Philippine Journal of Nutrition, 166– 172. Preece, M.A., Mladenov, P.V., 1999. Growth and mortality of the New Zealand abalone Haliotis iris Martyn 1784 cultured in offshore structures and fed artificial diets. Aquaculture Research 30, 865-877. Qi, Z., Liu, H., Li, B., Mao, Y., Jiang, Zhang, J., Fang, J., 2010. Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300, 189–193. Reddy-Lopata, K., Auerswald, L., Cook, P., 2006. Ammonia toxicity and its effect on the growth of the South African abalone Haliotis midae Linnaeus. Aquaculture 261, 678-687. Reyes, O.S., Fermin, A.C., 2003. Terrestrial leaf meals or freshwater aquatic fern as potential feed ingredients for farmed abalone Haliotis asinina (Linnaeus 1758). Aquaculture Research 34, 593-599. Rivero, L.E., Viana, M.T., 1996. Effect of pH, water stability and toughness of artificial diets on the palatability for juvenile abalone Haliotis fulgens. Aquaculture 144, 353–362. Roberts, R., 2001. A review of settlement cues for larval abalone (Haliotis spp.). Journal of Shellfish Research, 20, 571-586. 255 References Roberts, R. D., Kaspar, H. F., Barker. R. J., 2004. Settlement of abalone (Haliotis iris) larvae in response to five species of coralline algae. Journal of Shellfish Research, 23, 975–987. Robertson-Andersson, D.V., 2003. The cultivation of Ulva lactuca (Chlorophyta) in an integrated culture system for the production for abalone feed and the bioremediation of aquaculture effluent. MCs Dissertation, Cape Town University, Cape Town. Robertson-Andersson D.V., Leitao, D., Bolton, J.J., Anderson, R.J., Njobeni, A., Ruck, K., 2006. Can kelp extract (Kelpac) be useful in seaweed mariculture?. Journal of Applied Phycology 18, 315-321. Robertson-Andersson, D.V., Maneveldt, G.W., K. Naidoo, 2011. Effects of wild and farm-grown macroalgae on the growth of juvenile South African abalone Haliotis midae Linnaeus. African Journal of Aquatic Science, 36 (3), 331-337. Rosen, G., Langdon, Ch. J., Evans, F., 2000. The nutritional value of Palmaria mollis cultured under different light intensities and water exchange rates for juvenile red abalone Haliotis rufescens. Aquaculture 185, 121–136. Roussel, S., Huchette, S., Clavier, J., Chauvaud, L., 2011. Growth of the European abalone (Haliotis tuberculata L.) in situ: seasonality and aging using stable oxygen isotopes. Journal of Sea Research 65 (2), 213-218. Russo, R.C., Thurston, R.V., 1991. Toxicity of ammonia, nitrite, and nitrate to fishes. In: Brune, D.E., Tomasso, J.R. (Eds.), Aquaculture and Water Quality. The World Aquaculture Society, Baton Rouge, LA, USA, pp. 58-89. Ryther, J.H., Goldman, J.C., Gifford, J.E., Huguenin, J.E., Wing, A.S., Clarner, J.P., Williams, L.D., Lapointe, B.E., 1975. Physical models of integrated waste recycling—marine polyculture systems. Aquaculture 5, 163–177. Saito, K., 1981. The appearance and growth of 0-year-old Ezo abalone. Japanese Society for the Science of Fiseries 47, 1393-1400. Sakai, K., Hirata, H., 2000. Integrated culture of Ulva and abalone. In: Notoya, X. (Ed.), Utilization of Ulvacea for Mitigation Fish Farms Seizando, Tokio. Sakata, K., Itoh, T., Ina, K., 1984. A new bioassay method for phagostimulants for a young abalone, Haliotis discus Reeve. Agricultural and Biological Chemistry 48 (2), 425-429. 256 References Sales, J., Britz, P.J., 2001. Research on abalone (Haliotis midae L.) cultivation in South Africa. Aquaculture Research 32 (11), 863–874. Sales, J., Britz, P.J., 2002. Influence of ingredient particle size and inclusion level of pre-gelatinised maize starch on apparent digestibility coefficients of diets in South African abalone (Haliotis midae L.). Aquaculture 212, 299-309. Sales, J., Janssens, J. J., 2004. Use of feed ingredients in artificial diets for abalone: a brief update. Nutrition Abstracts and Reviews Series B74: 13N-21N. Sales, J., Truter, P.J., Britz P.J., 2003. Optimum dietary crude protein level for growth in South African abalone (Haliotis midae L.). Aquaculture Nutrition 9, 85-89. Schiel, D.R.T., 1992. The paua (abalone) fishery of New Zealand. In: S.A. Shepherd, M.J. Tegner and S.A. Guzmán del Proó, editors. Abalone of the world: Biology, fisheries and culture. Oxford, UK: Blackwell Scientific. Pp. 427-437. Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F.E., Neori, A., 2003. A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 221, 167-181. Searcy-Bernal, R., Gorrostieta-Hurtado, E., 2007. Effect of darkness and water flow rate on survival, grazing and growth rate of abalone Haliotis rufescens postlarvae. Journal of Shellfish Research 26 (3), 789-794. Serviere-Zaragoza, E., Mazariegos-Villareal, A., Ponce-Dıaz, G., Montes-Magallon, S., 2001. Growth of juvenile abalone, ´Haliotis fulgens Philippi, fed different diets. Journal of Shellfish Research 20, 689–693. Shepherd, S.A., 1973. Studies on southern Australian abalone (Genus Haliotis): I. Ecology of five sympatric species. Australian Journal of Marine and Freshwater Research 24, 217– 257. Shepherd, S.A., 1975. Distribution habit and feeding habits of abalone. Australian Fisheries 34, 12–15. Shepherd, S.A., Cannon, J., 1988. Studies on southern Australian abalone (Genus Haliotis) X. Food and feeding of juveniles. Journal of the Malacalogical Society of Australia 9, 21-26. Shepherd, S.A, Steinberg, P.D., 1992. Food preference of three Australian abalone species with the review of the algal food of abalone. In: Shepherd, S.A., Tegner, M.J., Guzmán del Próo, S.A. (Eds.), Abalone of the world. Biology, Fisheries and Culture. Blackwell Scientific Publications, Oxford, pp. 169-181. 257 References Shipton, T.A., Britz, P.J., 2001. The partial and total replacement of fishmeal with selected plant sources in diets for the South African abalone Haliotis midae L. Journal of Shellfish Research 20 (2), 637-645. Shpigel, M., Neori, A., 1996. Abalone and seaweeds intensive cultivation in integrated land-based mariculture system: I. Proposed design and cost analysis. Aquaculture Engineering 15, 313-326. Shpigel, M., Neori, A., Popper, D.M., Gordin, H., 1993. A proposed model for ‘‘environmentally clean’’ landbased culture of fish, bivalves and seaweeds. Aquaculture 117, 115– 128. Shpigel, M., Marshall, I., Lupatsch, J.P., Mercer, J.P., Neori, A., 1996a. Acclimatation and propagation of the abalone Haliotis tuberculata in a land-based culture system in Israel. Journal of World Aquaculture Society 27, 435-442. Shpigel, M., Neori, A., Marshall, A., 1996b. The suitability of several introduced species of abalone (Gastropoda: Haliotidae) for land-based culture with pondgrown seaweed in Israel. Israeli Journal of Aquaculture- Bamidgeh 48, 192-200. Shpigel, M., Ragg, N.C., Lupatsch, I., Neori, A., 1999. Protein content determines the nutritional value of the seaweed Ulva lactuca for the abalone Haliotis tuberculata and H. discus hannai. Journal of Shellfish Research 18, 223– 227. Simental-Trinidad, J. A., Sánchez-Saavedra, M. D. P., Flores-Acevedo, N., 2004. Growth and survival of juvenile red abalone (Haliotis rufescens) fed with macroalgae enriched with a benthic diatom film. Journal of Shellfish Research 23(4), 995-999. Simpson, B.J.A., Cook, P.A., 1998. Rotation diets: A method of improving growth of cultured abalone using natural algal diets. Journal of Shellfish Research 17(3), 635-640. Smith, R.R., 1989. Nutritional energetics. In: Halver, J.E. (Ed.), Fish Nutrition, (2nd ed.)Academic Press, San Diego, CA, USA, pp. 1– 29. Sokal, R.R., Rolf, S.J.,1995. Biometry. The Principles And Practice Of Statistics In Biological Research. 3rd edition. 419 pp. New York, W.H. Freeman and Company. Sorgeloos, P., 1999. Challenges and opportunities for aquaculture research and development in the next century. World Aquaculture Magazine 30, 11– 15. 258 References Southgate, P.C., Partridge, G.J., 1998. Developments of Artificial Diets for Marine finfish larvae: Problems and Aspects. In: De Silva SS (ed) Tropical Mariculture, Academic Press, California, 487 pp. Steinarsson, A., Imsland, A.K., 2003. Size dependent variation in optimum growth temperature of red abalone (Haliotis rufescens). Aquaculture 224, 353–362. Steneck, R.S., Watling, L., 1982. Feeding cababilities and limitations of herbivorous mollusc: a functional group aproach. Marine Biololy 68, 299-319. Stephenson, T. A., 1924. Notes on Haliotis tuberculata. I. Journal of the Marine Biological Association of the United Kingdom 13, 480-495. SUDEVAB, 2007. Sustainable Development of European SMEs engaged in Abalone Aquaculture – SUDEVAB. FP 7-SME-2007-1/BSG-SME. Sun, Z., Li, N., Song, Z., Zhao, Y., Guan, X., 1993. The condition of triploid induction in abalone Haliotis discus hannai and its indoor raised experiment. Journal of Fisheries of China 17(3), 243-248. Tacon, A.G.J., Halwart, M., 2007. Cage aquaculture: a global overview. In: Halwart M., Soto D. & Arthur J.R. (Eds.), Cage Aquaculture-Regional Reviews and Global Overview, FAO Fisheries Technical Paper. No. 498. Rome. 240 pp. Tahil, A.S., Juinio-Menes, M.A., 1999. Natural diet, feeding periodicity and functional response for food density of the abalone, Haliotis asinina L. (Gastropoda). Aquaculture Research 30, 95-107. Tait, M., 2012. From the trenches- a story by development of New Zealand Abalone Ltd in intensive recirculating aquaculture. Proceedings of the 8th International Abalone Symposium, Hobart, Tasmania. pp 50. Tan, B., Mai, K., 2001. Effects of dietary vitamin K on survival, growth, and tissue concentrations of phylloquinone (PK) and menaquinone-4 (MK-4) for juvenile abalone, Haliotis discus hannai Ino. Journal of Experimental Marine Biology and Ecology 256, 229-239. Tanaka, R., Sugimura, I., Sawabe, T., Yoshimizu, M., Ezura, Y., 2003. Gut microflora of abalone Haliotis discus hannai in culture changes coincident with a change in diet. Fish Science 69, 951–958. Tarr, R.J.Q., 1995. Growth and movement of the South African abalone Haliotis midae: a reassessment. Marine and Freshwater Research 46, 583-590. Taylor, B., 1992. Abalone nutrition: optimum protein levels in artificial diets for Haliotis kamtschatkana. Journal of Shellfish Research 11, 556. 259 References Tenore, K., 1976. Food chain dynamiolcs of abalone in a polyculture system. Aquaculture 8, 23-27 Thongrod, S., Tamtin, M., Boonyaratpalin, M., 2003. Lipid to carbohydrate ratio in donkey´s ear abalone (Haliotis asinina, Linne) diets. Aquaculture 225, 165-174. Tissot, B. N., 1992. Water movement and the ecology and evolution of the Haliotidae. In: Shepherd S A, Tegner M J and del Proo G (ed’s.), Abalone of the World – Biology, fisheries and culture. Fishing News Books. Pp. 34 – 45. Toledo, P., Haroun, R., Fernández-Palacios, H., Izquierdo, M., Peña, J., 2000. First culture experiences of Haliotis coccinea canariensis in a biofilter system. Journal of Shellfish Research 19, 493-541. Touchette, B.W., Burkholder, J.M., 2000. Overview of the physiological ecology of carbon metabolism in seagrass. Journal of Experimenatl Marine Biology and Ecology 250, 169-205. Tovar, A., Moreno, C., Manuel-vez, M.P., García-Vargas, M., 2000. Environmental impact of intensive aquaculture in marine waters. Water Research 34, 334-342. Troell, M., Norberg, J., 1998. Modelling output and retention of suspended solids in an integrated salmon –mussel culture. Ecological Modelling 110, 65-77. Troell, M., Robertson-Andersson, D., Anderson, R.J., Bolton, J.J., Maneveldt, G., Halling C., Probyn, T., 2006. Abalone farming in South Africa: An overview with perspective on kelp resources, abalone feed, potential for on-farm seaweed production and socio-economic importance. Aquaculture 257, 266-281. Tuschulte, T.C., Connell, J.H., 1988. Feeding behavior and algal food of three species of abalones (Haliotis) in southern California. Marine Ecology Progress Series, 49, 57-64. Uki, N., Kikuchi, S., 1984. Regulation of maturation and spawning of an abalone, Haliotis (Gastropoda) by external enviroment factors. Aquaculture 39, 247-261. Uki, N., Watanabe, T., 1986. Effect of heat-treatment of dietary protein sources on their protein quality for abalone. Bulletin of the Japanese Society of Scientific Fisheries 52(7), 1199-1204. Uki, N., Watanabe, T., 1992. Review of the nutritional requirements of abalone (Haliotis spp.) and development of more efficient diets. En: Shepherd, S.A., Tegner, M.J. Guzmán-del Proo, S.A. (Eds.), Abalone of the World: Biology, Fisheries and Culture. Fishing News Books, Oxford, pp. 504-517. 260 References Uki, N., Grant, J.F., Kikuchi, S., 1981. Juvenile growth of the abalone, Haliotis discus hannai, fed certain benthic micro algae related to temperature. Bulletin of Tohoku Regional Fisheries Research Laboratory 43, 59-64. Uki, N., Kemuyama, A., Watanabe, T., 1985a. Development of semipurified test diets for abalone. Bulletin of the Japanese Society of Scientific Fisheries 51(11), 1825-1833. Uki, N., Kemuyama, A., Watanabe, T., 1985b. Nutritional evaluation of several protein sources in diets for abalone Haliotis discus hannai. Bulletin of the Japanese Society of Scientific Fisheries 51(11), 1835-1839. Uki, N., Kemuyama, A. Watanabe, T., 1986. Optimum protein level in diets for abalone. Bulletin of the Japanese Society of Scientific Fisheries 52, 1005-1012 (in Japanese, with English abstract). Upatham, E.S., Sawatpeeran, S., Kruatrachue, M., Chitramvong, Y.P., Singhagraiwan, T., Jarayabhand, P., 1998. Food utilization by Haliotis asinina L. Journal of Shellfish Research 17, 771– 776. Valdés-Urriolagoitia, A. A., 2000. Efecto de tres densidades de cultivo en la sobrevivencia y crecimiento de juveniles de abulón rojo Haliotis rufescens en un laboratorio comercial. Tesis de Licenciatura, UABC. Ensenada, México, 52pp Van Barneveld, R.J., Fleming, A.E., Vandepeer, M.E., Kruk, J.A., Hone, P.W., 1998. Influence of dietary oil type and oil inclusion level in manufactured feeds on the digestibility of nutrients by juvenile greenlip abalone (Haliotis laevigata). Journal of Shellfish Research 42, 1501-1508. Vandepeer, M.E., 2006. Preventing summer mortality of abalone in aquaculture systems by understanding interactions between nutrition and water temperature. South Australian Research and Development Institute (SARDI), Aquatic Sciences Publication No. RD02/0035-2, 54 pp. Vandepeer, M.E., Van Barneveld, R.J., 2003. A comparison of the digestive capacity of blacklip (Haliotis rubra) and greenlip (Haliotis laevigata) abalone. Journal of Shellfish Research 22 (1), 171-175. Vandepeer, M. E., Hone, P.W., Van Barneveld, R.J., Havenhand, J.N., 1999. The utility of apparent digestibility coefficients for predicting comparative diet growth performance in juvenile greenlip abalone Haliotis laevigata. Journal of Shellfish Research 18, 235-241. 261 References Vandermeulen, H., Gordin, H., 1990. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. Journal of Applied Phycology 2, 363– 374. Viana, M.T., 2002. Avances en la nutrición, fisiología digestiva y metabolismo del abulón. In: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., GaxiolaCortés, M., Simoes, N. (Eds.). Avances en Nutrición Acuícola VI. Memorias del VI Symposium Internacuional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México. Viana, M.T., López, L.M., Salas, A., 1993. Diet development for juvenile abalone Haliotis fulgens: Evaluation of two articicial diets and macroalgae. Aquaculture 117, 149-156. Viana, M.T., Trujano, M., Solana-Sansores, R., 1994. Palatability and attraction activities in juveniles of abalone H. fulgens: nine ingredients used in artificial diets. Aquaculture 127, 19-28. Viana, M.T., López, L.M., García-Esquivel, Z., Méndez, E., 1996. The use of silage from fish and abalone viscera as an ingredient for abalone feed. Aquaculture 140, 87-98. Viana, M.T., Jarayabhand, P., Menasveta, P., 2000. Evaluation of an artificial diet for use in the culture of the tropical abalone Haliotis ovina. Journal of Aquaculture in the Tropics 15, 71-79. Viana, M.T., D´Abramo, L.R., González, M.A., García-Suárez, J.V., Shimada, A., Vázquez-Peláez, C., 2007. Energy and nutrient utilization of juvenile green abalone (Haliotis fulgens) during starvation. Aquaculture 264, 323-329. Viera, M.P., Courtois de Vicose, G., Fernández-Palacios, H., Roo, J., Valencia, A., 2003. Inducción al desove de la almeja canaria Haliotis tuberculata coccinea mediante el método del Peróxido de Hidrogeno. In: Actas del IX Congreso Nacional de Acuicultura. Consejería de Agricultura y Pesca. Junta de Andalucía, 289. Viera, M.P., Gómez-Pinchetti J.L., Courtois de Viçose, G., Bilbao, A., Suárez, S., Haroun, R.J., Izquierdo, M.S., 2005. Suitability of three red macroalgae as a feed for the abalone Haliotis tuberculata coccinea Reeve. Aquaculture 248, 7582. Viera, M.P., Bilbao, A., Suárez Alvarez, S., Courtois de Viçose, G, Gómez-Pinchetti J.L, Hernández-Cruz, C.M., Haroun, R.J., 2006. Yield, biofiltering efficiencies 262 References and nutritional composition of Gracilaria cornea J. Agardh and Ulva rigida C. Agardh cultivated with marine fish waste waters: VI Internacional Abalone Symposium, Chile. Viera, M.P., Gómez-Pinchetti J.L., Courtois de Viçose, G., Bilbao, A., Izquierdo, M.S., 2007. Crecimiento comparativo de juveniles de oreja de mar Haliotis tuberculata coccinea Reeve alimentados con macroalgas cultivadas en agua de mar y en efluentes marinos. Antonio Cerviño Eiroa, Alejandro Guerra Díaz y Carmen Pérez Acosta (EDS). ISBN TOMO I: 978-84-611-9086-7. 1, 627-630. Viera, M.P., Courtois de Viçose, G., Bilbao, A., Fernández-Palacios, H., Robaina, L., Izquierdo, M.S., 2009a. Requerimientos nutricionales y dietas artificiales en el cultivo de la oreja de mar Haliotis spp.: Revisión. Libro de Actas del XII Congreso Nacional de Acuicultura, 1:46-47. D. Baez, M. Villaroel y S. Cardenas. Madrid (ISBN: 978-84-937611-0-3) Viera, M.P., Fidalgo, P., Haroun, R.J, Courtois de Viçose, G., Bilbao, A., GómezPinchetti J.L., Izquierdo, M.S., 2009b. Effect of different rearing conditions on the growth performance of the macroalgae Ulva rigida, Hypnea spinella and Gracilaria cornea. Proceedings of the 7th International Abalone Symposium, Pattaya-Thailand, pp. 107. Viera, M. P., Courtois de Vicose, G., Gómez-Pinchetti, J.L., Bilbao, A., FernándezPalacios, H., Izquierdo, M.S., 2011. Comparative performances of juvenile abalone (Haliotis tuberculata coccinea Reeve) fed enriched vs non-enriched macroalgae: Effect on growth and body composition. Aquaculture 319, 423-429. Viera, M. P., Courtois de Vicose, G., Fernández-Palacios, H., Izquierdo, M.S., 2014. Grow out culture of abalone Haliotis tuberculata coccinea Reeve, fed landbased IMTA produced macroalgae, in a combined fish/abalone offshore mariculture system: effect of stocking density. Aquaculture Research, DOI: 10.1111/are.12467 Vivanco-Aranda, M., Gallardo-Escárate, C.J., del Río-Portilla, M.A., 2011. Lowdensity culture of red abalone juveniles, Haliotis rufescens Swainson 1822, recirculating aquaculture system and flow-through system. Aquaculture Research 42, 161-168. Walsh, M., Watson, L., 2011. A Market Analysis towards the Further Development of Seaweed Aquaculture in Ireland. Irsh Sea Fisheries Board. Pp. 52. 263 References Wassnig, M., Roberts, R.D., Krsinich, A., Day, R.W., 2010. Effects of water flow rate on growth rate, mortality and biomass return of abalone in slab tanks. Aquaculture Research 41, 839-846. Watson, L., Dring, M., 2011. Business Plan for the Establishment of a Seaweed Hatchery & Grow-out Farm. Part II. Irish Sea Fisheries Board., unpublished report. 37pp. Webber, H.H., 1970. Changes in metabolite composition during the reproductive cycle of the abalone Haliotis cracheroidii (Gastropoda: Prosobranchiata). Phisiology 2, 213-231. Wells, F.E., Keesing, J.K., 1989. Reproduction and feeding in the abalone Haliotis roei Gray Australian Journal of Marine and Freshwater Research 40, 187-197. Wong, K.H., Cheung, P.C.K., 2000. Nutritional evaluation of some subtropical red and green seaweeds Part I- proximate composition, amino acid profiles and some physico-chemical properties. Food Chemistry 71, 475-482 Wu, F., Zhang G., 2010. Preliminary study on over summering of juvenile hybrid Pacific abalone in east Fujian inner bay. Journal of Marine Science of China 33, 9–14 (in Chinese with English abstract). Wu, F., Zhang, G., 2013. Suitability of cage culture for Pacific abalone Haliotis discus hannai Ino production in China. Aquaculture Research 44, 485-494. WWW (World Wildlife Fund, Inc.), 2010. Abalone Aquaculture Dialogue Standards. Abalone Aquaculture Dialogue. 34pp. Wu, F., Liu, X., Zhang, G., Wang, Ch., 2009. Effects of the initial size, stocking density and sorting on the growth of juvenile Pacific abalone, Haliotis discus hannai Ino. Aquaculture Research 40, 1103-1110. Xu, Y.J., Fang, J.G., Wei, W., 2008. Application of Gracilaria chilenoides (Rhodophyta) for alleviating excess nutrients in aquaculture. Journal of Applied Phycoloogy 20 (2), 199-203. Yarish, C., Neefus, C.D., Kraemer, G.P., Chopin, T., Nardi, G., Curtis, J., 2001. Development of an integrated recirculating aquaculture system for nutrient bioremediation in urban aquaculture. The Connecticut Sea Grant College grant R/A-34, NOAA OAR’s National Marine Aquaculture Initiative project number NA16RG1635. 264 References Yearsley, R.D., Jones, C.L.W., Britz, P., 2009. Effect of settled sludge on dissolved ammonia concentration in tanks used to grow abalone (Haliotis midae L.) fed a formulated diet. Aquaculture Research 40, 166-171. Yongjian, X., Fang, J., Tang, Q., Lin, J., Le, G., Liao, L. 2008. Improvement of Water Quality by the Macroalga, Gracilaria lemaniformis (Rhodopyhta), near Aquaculture Effluent Outlets, Journal of the World Aquaculture Society 39 (4), 549-554. Zar, J.H., 1984. Biostatistical Analysis, 2nd ed., Prenting Englewood Cliffs, New Jersey. Zhou Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X., Zhang, F., 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252, 264– 276. 265