pachmayer
Transcription
pachmayer
Exploring the Quark-Gluon Plasma with ALICE at the LHC Yvonne Pachmayer, University of Heidelberg Introductory remarks Selected results Pb-Pb collisions • Global observables • Hard probes Summary and outlook Pb-Pb √sNN = 2.76 TeV (2011) Quantum Chromodynamics Theory of strong interaction Part of the standard model Quarks as constituents, gluons as interaction carriers Confinement Quarks and gluons are not observed as free particles, they are confined in hadrons Baryon Meson Chiral symmetry breaking Hadrons are much heavier than their constituents Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 2 Asymptotic Freedom Coupling α s between color charges gets weaker for high momentum transfers, i.e. for small distances r Vanishing QCD coupling constant at short distances r implies that the interactions of quarks and gluons are negligible at very high temperatures → creation of practically non-interacting quark-gluon plasma at extreme temperatures S. Bethke Eur.Phys.J. C64 (2009) Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 3 Tracing back the Big Bang Electroweak phase transition QCD phase transition 100 000 x Tcore sun Non perturbative! Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 4 Predictions from First Principles: Lattice QCD 4 ε/T ~ # degrees of freedom F. Karsch and E. Laermann, arXiv: hep‐lat/0305025 Hadron HadronGas Gasto toQGP QGPphase phase transition transition many d.o.f. → deconfined few d.o.f. → confined Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 5 Expected QCD Phase Diagram Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 6 LHC Heavy Ion Program CERN-SPS Fixed target program since 1986 √sNN ≈ 20 GeV → press release February 2000 “Discovery of new State of Matter” BNL-RHIC Heavy ion collider program since 2000 √sNN ≈ 200 GeV → press release April 2005 “Appears to be more like a liquid” What is different at LHC? Large energy: √sNN = 2.76 TeV Large abundance of jets and heavy quarks, very large volumes, temperatures, densities, decoupling times Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) Characterize the Quark-Gluon Plasma 7 Time Evolution of a Heavy Ion Collision adapted from A. Mocsy Quark-Gluon Plasma Phase of strongly interacting matter Hydrodynamic expansion Chemical and Thermal Freeze-out Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 8 Geometry Plays a Key Role in Ultra‐Relativistic Heavy‐Ion Physics Number of participants: number of nucleons in the overlap region Number of binary collisions: number of inelastic nucleon‐nucleon collisions Small impact parameter b corresponds to large particle multiplicity Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 9 Central Pb-Pb Collision Pb-Pb √sNN = 2.76 TeV (2011) 2009-2012: pp at √s = 0.9, 2.76, 7 and 8 TeV Autumn 2010: Pb-Pb at √sNN = 2.76 TeV Autumn 2011: Pb-Pb at √sNN = 2.76 TeV Autumn 2012: p-Pb Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) at √sNN = 4.4 TeV 10 The Large Hadron Collider and ALICE LHC 8.6 km Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) World’s largest and most powerful particle accelerator Four large experiments ALICE dedicated to heavy-ion physics 11 11 A Large Ion Collider Experiment The Collaboration 1300 Members 35 Countries 120 Institutes ALICE Covers Forward Muon Arm: -2.4 ≤ η ≤ -4.0 Central Barrel: -0.9 ≤ η ≤ 0.9 STRIP ACORDE PIXEL ITS EMCAL FMD T0 & V0 TRD HMPID PMD ZDC V0 T0 FMD TRACKING TRACKING CHAMBERS CHAMBERS MUON FILTER ~116m from IP V0 T0 TRIGGER CHAMBERS TPC ZDC ALICE measures Hadrons, muons, electrons, photons ~116m from IP TOF Transverse impact parameter resolution PHOS < 75(20) μm for pT > 1(20) GeV/c ABSORBER DIPOLE MAGNET Momentum resolution <2% for p < 20 GeV/c Particle identification with various systems Graduiertenkolleg, Uni Freiburg Drift Yvonne Pachmayer (University of Heidelberg) Size: 16 x 26 meters Weight: 10,000 tons Subsystems: 18 Tracking: 7 PID: 6 Calo.: 5 Trigger, Nch: 11 12 12 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 13 Particle Identification in ALICE ITS Silicon Drift/Strip dE/dx TPC dE/dx TRD TOF Graduiertenkolleg, Uni Freiburg Excellent particle identification from low to high momenta Yvonne Pachmayer (University of Heidelberg) 14 Anti-Particle Identification Antimatter Helium-4 nucleus Heaviest observed antinucleus TPC dE/dx Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 15 Global Observables Charged Particle Multiplicity in Central Pb-Pb Collisions Charge particle multiplicity increases with Bjoerken estimate: beam energy significantly steeper than in pp Multiplicity factor 2.1 larger than at top RHIC energy (200 GeV) 2 → ετ ~ 15 GeV/fm c dN /dη = 1600 in central Pb-Pb collisions ch (~factor 3 larger than RHIC) (~3000 in +/- 45°) → ε α T4 → 30% temperature increase Predictions cover wide range – of QGP compared to RHIC many excluded by very first data Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 16 Global Observables Hanbury Brown-Twiss Interferometry and Space-Time Extent of Fireball Technique of intensity interferometry developed by Hanbury-Brown and Twiss in astrophysics as a means to determine size of distant objects γ (π) ∆r, t γ (π) J. Stachel ∆p, E Freeze-out volume huge growth at LHC From Rlong: expansion at LHC 10 fm/c Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 17 Global Observables Identified Particle Ratios 0-5% centrality Very similar particle/anti-particle production Net baryon density compatible with 0 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 18 Global Observables Particle Ratios Comparison with Thermal Model Thermal model: A. Andronic et al., Phys.Lett.B673:142-145,2009 Same results from THERMUS S. Wheaton, J. Cleymans and M. Hauer, Comput. Phys. Commun. 180 (2009) 84‐106 Tch= 164 MeV μb = 1 MeV All yields (except protons) described by thermal model for grand-canonical ensemble with Tch= 164 MeV and μb= 1 MeV Proton/pion ratio below expectation Tension already present at RHIC Strange particles constrain fit Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 19 Global Observables Collective Effects Fourier decomposition of momentum distribution relative to reaction plane ∞ z Reaction plane dN ∝ 1 ∑ 2v n p T cos n φ−Ψ RP dφ n=1 2v2 y x y py φ x px Coordinate space: initial asymmetry Graduiertenkolleg, Uni Freiburg Collective interaction pressure Yvonne Pachmayer (University of Heidelberg) Momentum space: final asymmetry 20 Integrated Elliptic Flow Collision Energy Dependence Viewpoint: A 'Little Bang“ arrives at the LHC E. Shuryak Physics 3 (2010) 105 Some researchers expected that the QGP at LHC would be more weakly interacting due to higher temperature leading to - larger mean free path of particles - larger viscosity/entropy density - to smaller flow components (v2) QGP remains a nearly ideal liquid Hydro behavior continues at LHC v2 (pT int.) LHC ~1.3x (pT int.) RHIC The overall increase is Graduiertenkolleg, Uni Freiburg consistent with the increased radial expansion leading to a higher mean pT Yvonne Pachmayer (University of Heidelberg) 21 Identified particle elliptic flow Pronounced mass dependence due to radial flow Hydrodynamics predicts mass ordering: v2 1 ( pT −〈 v 〉 m T ) T <ν> = average flow velocity Hydrodynamic model predictions are able to describe the data for π, K v 2 =〈 cos ( 2 ( φ−Ψ RP ) ) 〉 Graduiertenkolleg, Uni Freiburg Small viscosity/entropy density Yvonne Pachmayer (University of Heidelberg) 22 Triangular flow Initial spatial anisotropy and its fluctuations lead to event by event fluctuating symmetry planes Odd harmonics are not zero Triangular flow (v3) only weak centrality dependence When calculated w.r.t. participant plane v3 vanishes More sensitive to shear viscosity η/s and initial conditions Small viscosity/entropy density → Perfect liquid Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 23 Higher Harmonics 0-2% most central Pb-Pb ALICE Collaboration arXiv:1109.2501v1 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 24 Higher Harmonics 0-2% most central Pb-Pb cosmic microwave background radiation (WMAP data) power spectrum - typical angular separation of the fluctuations ALICE Collaboration arXiv:1109.2501v1 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 25 Higher Harmonics 0-2% most central Pb-Pb ALICE Collaboration arXiv:1109.2501v1 Graduiertenkolleg, Uni Freiburg B. Schenke et al. e-by-e hydro Viscosity suppresses higher harmonics, → vn provide additional sensitivity to η/s Yvonne Pachmayer (University of Heidelberg) 26 Hard Probes Hard probes are highly penetrating observables (particles, radiation) used to explore properties of matter that cannot be viewed directly High pT hadrons, jets Open heavy flavors (charm and beauty) Quarkonia (J/Ψ, Ψ(2S), Ψ(1S), Ψ(2S), Ψ(3S)) Hard probes originate from hard processes, characterized by large momentum transfer Q2, where pQCD can be applied Well understood in vacuum (pp collisions) Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 27 Hadron Production High p T hadrons/open heavy flavours are produced in hard scattering, in the earliest collision time, by fragmentation of high p T partons Hadron production cross section in pp can be calculated in pQCD Modification in the nucleus? Modified in Pb-Pb collisions! Depends on the properties of the medium (temperature, density, color charge, Transport coefficient, ...) p-Pb measurement autumn 2012 Graduiertenkolleg, Uni Freiburg Quenching Yvonne Pachmayer (University of Heidelberg) 28 Nuclear Modification Factor RAA R AA p T = 1 2 d N AA /dp T dy N coll d 2 N pp / dpT dy Needs pp reference at same √s ! At high pT: RAA = 1 if no nuclear modification! Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 29 Charged particle RAA pp Reference pp: power law at high pT Consistent with pQCD Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 30 Charged particle RAA Pb-Pb Measurement Strong discrepancy from scaled pQCD result Strong suppression of particle production at high pT in central Pb-Pb collisions Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 31 Charged particle RAA R AA p T = 1 2 d N AA /dp T dy N coll d 2 N pp / dpT dy Max. suppression at pT ~ 7 GeV/c Rise at pT ~ 10-30 GeV/c Shape of pT distribution changes with collision centrality → different suppression pattern depending on collision centrality Hint of leveling off above pT =30 GeV/c - maybe pQCD limit is never reached? Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 32 Charged particle RAA R AA p T = 1 2 d N AA /dp T dy N coll d 2 N pp / dpT dy All models tuned with RHIC data Rise qualitatively described Strength of suppression model dependent LHC data very sensitive to details of energy loss mechanisms → Program for the next years Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 33 Energy Loss in the Medium Heavy Quarks Heavy quarks (charm, beauty) expected to be produced in primary partonic scatterings and to coexist with the surrounding medium Energy loss depends on Properties of the medium (gluon densities, size) Properties of the probe (color charge, mass) Dead cone effect Gluon radiation is suppressed for angles θ < MQ/EQ Heavy flavour energy loss should be smaller than the one of light hadrons: ΔEg > ΔEup,down > ΔEcharm > ΔEbeauty RAA (light hadrons) < RAA (D) < RAA (B) path length L Color Charge CR=3 for gluons, CR=4/3 for quarks Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493. BDMPS approach Possible other mechanisms for the interaction with the medium Transport coefficient related to (collisional energy loss, in-medium dissociation, resonance scattering) medium characteristics and gluon density Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 34 D Meson RAA pp reference at 2.76 TeV: measured 7 TeV spectrum scaled with FONLL Cross-checked against measured result at 2.76 TeV (large errors and limited pt-coverage due to short data taking period) arXiv:1203.2160 R. Averbeck et al, arXiv:1107.3243 → Suppression in central collisions: factor 3-4 for pt > 5 GeV/c → Suppression for 40-80% CC: factor 1.5 for pt > 5 GeV/c → Reduce errors with Pb-Pb data from 2011 run: ~factor 6-7 more statistics in 0-7.5% CC Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 35 D Meson RAA RAA (π) < RAA (D) < RAA (B) ? arXiv:1203.2160 arXiv:1201.5069 (CMS) Initial State Effects Comparison to NLO + shadowing AA coincides with charged hadron RAA for pt > 5 GeV/c (EPS09 parametrization) → Strong suppression likely to be a final state effect → p-Pb measurement end of 2012 will give decisive answer Graduiertenkolleg, Uni Freiburg Preliminary charged π R → Hint of RAA (π) < RAA (D) → RAA (D) < RAA (B) ? not conclusive different pt range → Reduce errors (2011 Pb-Pb run) Yvonne Pachmayer (University of Heidelberg) 36 D0 and D+ Meson v2 in 30-50% Collision Centrality arXiv:1205.4945 (BAMPS), arXiv:1201.4192 (Aichelin et al.) → Indication of non zero v2 → 3σ effect in 2-6 GeV/c for D0 → D meson v2 comparable with v2 of charged hadrons measured with ALICE in the same rapidity region → Models based on charm transport in the medium predict a non-zero v2 of up to 0.15-0.20 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 37 D0 and D+ Meson v2 in 30-50% Collision Centrality arXiv:1203.2160 arXiv:1205.4945 (BAMPS), arXiv:1201.4192 (Aichelin et al.) → Indication of non zero v2 → 3σ effect in 2-6 GeV/c for D0 → D meson v2 comparable with v2 of charged hadrons measured with ALICE in the same rapidity region → Models based on charm transport in the medium predict a non-zero v2 of up to 0.15-0.20, but do not describe well the RAA Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 38 Charmonia (I) State J/ψ χc ψ' Mass (GeV/c2) 3.10 3.53 3.68 Radius (fm) 0.25 0.36 0.45 Bound state of heavy quarks (cc) Original idea (1986) Implant charmonia into the QGP and observe their T/TC modification (Debye screening of QCD) → Sequential melting J/ψ → Estimate initial temperature c χc c ψ’ C o lo r S c r e e n in g Graduiertenkolleg, Uni Freiburg L. Kluberg and H. Satz, arXiv:0901.3831 Yvonne Pachmayer (University of Heidelberg) 39 Charmonia (II) New insight (2000) QGP screens all charmonia, but charmonium production takes place at the phase boundary → Enhanced production at high energy → Signal for deconfinement Start of Collision Development of QGP Hadronisation P. Braun-Munzinger and J. Stachel, arXiv:0901.2500 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 40 J/ψ Meson Reconstructed via μ+μ- decay Challenging measurement in Pb-Pb collisions Resonance well visible despite large combinatorial background Down to pT = 0 GeV/c, rapidity range: 2.5 < y < 4 17.65 ∙ 106 Pb-Pb collisions Proton-proton collisions: provide important reference R AA ( pT )= Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 1 N coll d N 2 AA 2 pp /dp T dy d N / dpT dy 41 J/ψ Nuclear Modification Factor RAA Larger RAA (at forward rapidity) at LHC compared to RHIC Hint of J/ψ regeneration Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 42 J/ψ Nuclear Modification Factor RAA Larger RAA (at forward rapidity) at LHC compared to RHIC Hint of J/ψ regeneration Precisely measure charm cross section in nucleus collisions Need p-Pb collisions: disentangle initial and final state effects Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 43 Plans and Outlook Have created the hottest matter ever on Earth T > 2 x 1012 K, > 100,000 times hotter than the core of Sun It has characteristics of a soup of quarks and gluons It flows like a liquid, better than any we know or have made The LHC is a “hard probes” machine There has been a burst of new data and observables. Much more to come, leading to full characterization of this new (and old) state of matter Upcoming p+Pb run in fall 2012 will reduce some of the uncertainties due to initial state effects Upgrade for 2018 Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 44 backup Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 45 A Large Ion Collider Experiment ACORDE STRIP Drift PIXEL ITS EMCAL FMD T0 & V0 TRD HMPID ZDC TRACKING CHAMBERS PMD ~116m from IP V0 T0 TPC MUON FILTER V0 T0 FMD TRIGGER CHAMBERS ZDC ~116m from IP TOF PHOS DIPOLE ABSORBER MAGNET B-Field: 0.5 T Forward Muon Arm: -2.4 ≤ η ≤ -4.0 Central Barrel: -0.9 ≤ η ≤ 0.9 Transverse impact parameter resolution < 75(20) μm for pT > 1(20) GeV/c Momentum resolution <2% for p < 20 GeV/c Particle identification with various systems Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 46 Higher Harmonics 0-2% most central Pb-Pb Sensitivity to in-medium speed-of-sound and to expansion velocity ALICE Collaboration arXiv:1109.2501v1 P. Staig, E. Shuryak arxiv: 1105.0676v2 (initial perturbation 0.7fm; Tf = 120 MeV) Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 47 Signal Extraction for D Meson v2 Event plane determination from Q-vector n ∑ w i cos ( 2 φi ) Q2= i−1 n ∑ w i cos ( 2 φi ) i−1 Using tracks in TPC at central rapidity φi-weights to improve EP flatness Signal extraction in-plane and out-of-plane Calculate v 2 π N inp − N outp v 2= 4 N inp + N outp Correct for EP resolution Graduiertenkolleg, Uni Freiburg Yvonne Pachmayer (University of Heidelberg) 48