Recherche et identification de candidats biomarqueurs
Transcription
Recherche et identification de candidats biomarqueurs
nc ol og iq ue ue O DSV/iBiTec-S/SPI/LEMM og ie C lin iq Recherche et identification de candidats biomarqueurs par analyse métabolomique ac ol Christophe Junot G ro up e de Ph a rm CEA/Laboratoire d’Etude du Métabolisme des Médicaments CEA-Saclay (iBiTec-S) christophe.junot@cea.fr nc ol og iq ue DSV/iBiTec-S/SPI/LEMM O Laboratoire d’Etude du Métabolisme des Médicaments (LEMM) ue MASS SPECTROMETRY FOR BIOLOGICAL MEDIA Metabolomics Quantification of small molecules (A. Pruvost) C lin iq (C. Junot, B. Colsch, F. Fenaille, F. Castelli, A. Damont) Lipidomics og ie (B. Colsch) Glycomics ol 12 LC/MS instruments, 1 MALDI-FOF/TOF ac (F. Fenaille) Quantification of proteins (F. Bécher) Structural analysis of proteins (F. Fenaille) ANTIBODY ENGINEERING (A. Mabondzo) (D. Boquet) Ph a rm CELLULAR PHARMACOLOGY de Neurovascular pharmacology Toxicity of nanomaterials G ro up e 30-35 people GLP (ANSM, since 1997) ISO 9001 (LRQA, since December 2014) Pharmacology, Diagnosis nc ol og iq ue DSV/iBiTec-S/SPI/LEMM O MetaboHUB: Infrastructure nationale de métabolomique ue Pharmacology & Clinical diagnostic Nutrition, Health & Environment Marc Ferrara G ro up e de Ph a rm ac ol og ie C lin iq Christophe Junot Plant Biology & Biotechnology Annick Moing Microbiology, Biotechnology & Toxicology JC Portais nc ol og iq ue DSV/iBiTec-S/SPI/LEMM ue CEA/DM2I/LADIS, CEA-Saclay, Dr. Etienne Thévenot Bioinformatics and Biostatistics C lin iq LCSOB (Université Paris 6) Pr. Richard Cole, Pr. Jean-Claude Tabet) Mass spectrometry, Interpretation of mass spectra ac ol og ie LEMM, DSV, CEA-Saclay, Dr. Christophe Junot Analytical chemistry, metabolomics O MetaboHUB-Paris: Mass Spectrometry based Metabolomics rm Activities Ph a 1. Development and validation of MS methods for metabolomics and targeted metabolite profiling: biomarkers (medicine, toxicology), microbiology de 2. Metabolite identification (MS/MS and MSn experiments) up e 3. Bioinformatics and biostatistics G ro 4. Metabolite database building nc ol og iq ue DSV/iBiTec-S/SPI/LEMM Analyse métabolomique par spectrométrie de masse Developpement et validation de méthodes de profilage métabolique dans des milieux biologiques ue 90 80 RelativeAbundance 70 60 50 40 30 20 10 0 0 20 40 60 80 Tim e (m in) G ro Darghouth D. et al. Blood, 2011 30 novembre 2015 Darghouth D. et al. Hematologica, 2011 120 140 Coll. Dr. F. Sedel G.H. Pitié-Salpétrière 1.1 0.8 0 .7 1.6 2.2 4 .4 3 .3 2 .5 8 .1 Thre onic acid 0 .8 1.1 0 .7 0 .6 0.9 2 .5 0 .5 1.1 1.3 1.0 0 .8 2 .3 1.2 1.9 1.6 3.3 nucleos ide derivative Quinic acid 3 .4 0.3 0 .6 0 .0 0.0 4 .7 0 .0 0.9 5.0 1.6 0 .8 1.8 4.8 4 .0 1.5 2.3 Succinylade nos ine 0 .8 0.6 0 .7 0.5 0.8 1.7 1.3 1.2 1.0 1.1 1.4 8.0 3 .9 6 .2 0.7 0 .5 2 .5 0.5 0.8 2 .1 0 .4 1.7 3 .0 2.3 0 .1 6 .0 0 .1 0 .6 0 .5 0 .9 0.5 0.9 1.5 1.2 1.1 0.8 0 .8 Proline Be taine Glutam ic acid Aminoacid and derivatives Aminoadipic acid N-acetyl-L-glutam ic acid N-Ace tyl-D-allo-isole ucine Pyrim idine derivate d Acylcarnitines 0 .4 0 .4 0 .8 0.6 0 .8 0 .6 0.9 1.4 0 .4 1.1 1.2 0.8 0 .8 0.5 0 .5 0 .7 0.5 1.0 1.4 1.0 2.8 1.2 0.8 0 .8 0 .6 0 .5 1.0 0.7 1.0 1.5 0 .5 1.4 1.2 1.0 1.1 0 .4 0.9 9 .1 7.7 6 .3 5.7 1.5 0.8 0 .6 0 .5 0 .6 0.7 1.3 0.5 0 .7 1.2 0 .5 0 .6 0 .8 1.2 0 .7 0 .6 0 .7 0 .7 1.0 0 .5 0 .4 1.5 1.7 0 .6 0 .6 1.3 0 .8 0 .7 0 .6 1.0 0 .5 0 .9 1.1 1.2 1.4 0 .6 1.1 3 .1 0 .1 1.1 0 .3 0.0 0 .6 1.2 0 .7 0 .0 1.0 0 .7 0 .8 1.2 0.8 0 .9 0.7 1.4 0.9 3 .3 1.1 0 .7 1.0 1.7 0.8 3 .2 5.3 1.1 0 .4 9 .3 2.3 4 .1 2 .3 1.5 0.9 0 .7 1.3 0.6 1.0 1.1 48 .6 0 .6 11.9 2.1 2.8 1.3 2 .3 1.2 1.7 0 .6 0.6 0 .9 0 .1 4 .1 0 .8 0 .7 0 .8 0 .7 0.6 1.0 0 .6 2.2 1.2 0 .5 1.0 2.1 0.8 3.6 0.7 0 .7 1.0 0.6 0 .7 0 .6 1.3 2.7 0 .7 0 .8 0.9 0.4 0 .9 3 .0 2 .2 1.2 0 .5 0 .8 1.0 5.0 5.0 4 .1 2 .0 0 .5 0 .7 1.2 7.8 4.4 8.1 4.0 0 .7 1166_117 1.3 1161_90 0 .6 1157_79 1.8 1148_77 0.8 1142_125 0 .4 1140_68 1.1 1138_89 1.1 0.6 1136_39 2 .2 0 .9 1135_131 8.3 Mannitol or isom ers 5.9 1134_43 2 .0 1124_67 0 .9 1114_50 1.0 1113_28 0 .7 2 .3 1.7 1087_27 2 .4 0.8 1.1 1086_114 0 .9 1.0 0 .3 1.4 1074_80 1.0 10 .2 3 .9 1.1 1199_121 1.2 0 .3 0.6 0.5 0.6 1073_29 1.0 1.5 0 .4 LM8 0 .3 0 .5 0 .7 0 .6 XC96 48 1.0 0.4 1.4 469 1067_74 0 .5 0 .6 0.5 1058_107 1061_32 Hydroxy acids 1057.B_133 0 .9 Pe ntose 1052_46 N-acetylneuram inic acid De oxyribos e 1050_71 1047_127 Carbohydrates 1048_95 1043_31 sugar acid 1057.A_88 Patients with unexplained encephalopathy 1018_55 Ph a up e de Coll. Dr. P.-H. Roméo (INSERM) Pr. Galactéros (AP-HP), Dr. Y. Colin (INTS) 100 Stratification de patients présentant des encéphalopathies inexpliquées rm ac Maladies génétiques du globule rouge (drépanocytose, stomatocytose) ol og Roux A. et al., Anal. Chem., 2012 Boudah S. et al., soumis 100 iq Attribution [(M+H)-(NH3)-(C4H6)-(NH3)]+ [(M+H)-(NH3)-(C3H7N)]+ [(M+H)-(NH3)-(C4H6)]+ [(M+H)-2(NH3)]+ [(M+H)-2(NH3)]+ (13C) [(M+H)-(NH3)]+ [(M+H)-(NH3)]+ (13C) [M+H]+ [M+H]+ (13C) [M+H]+ (13C2) C lin Composition C3 H8 N C4 H10 N C3 H11 N2 C7 H14 N C6 [13]C H14 N C7 H17 N2 C6 [13]C H17 N2 C7 H20 N3 C6 [13]C H20 N3 C5 [13]C2 H20 N3 ie SPERMIDINE SPECTRUM - MS N83_spermidine_fia_pos.RAW FTMS + p ESI Full ms [50.00-1000.00] Scan #: 28-36 RT: 0.55-0.70 AV: 3 m/z Intensity Relative Theo. Mass Delta (ppm) RDB equiv. 58.06492 1973821.3 3.28 58.06513 -3.58 0.5 72.08064 5000802.5 8.31 72.08078 -1.94 0.5 75.09137 630972 1.05 75.09167 -4.03 -0.5 112.11171 3586580.3 5.96 112.11208 -3.22 1.5 113.11506 164880.4 0.27 113.11543 -3.271 129.13825 4447115 7.39 129.13863 -2.91 0.5 130.14163 185404.8 0.31 130.14198 -2.689 146.1648 60633172 100 146.16517 -2.53 -0.5 147.16799 4654796.5 7.68 147.16853 -3.669 148.17134 68268.2 0.11 148.17188 -3.644 O Bases de données spectrales 0 .5 0 .6 1.1 0.0 0 .6 1.3 2 .1 0.1 0.9 1.9 4 .3 0.6 0 .2 0 .9 0 .1 2 .3 0 .8 0 .7 3 .2 0 .3 1.8 0.9 0 .8 1.2 0 .7 0 .9 0 .7 0 .8 1.1 0.8 0 .9 0.7 1.2 0 .8 0 .9 2 .9 1.7 0.9 0 .8 1.2 0 .7 0 .9 0 .7 0 .9 1.2 0.6 1.0 0 .8 1.5 0 .7 0 .8 1.1 0 .7 2 .0 0 .8 1.2 1.4 1.0 0.4 0 .9 0 .7 1.6 1.3 1.3 0 .8 0 .4 0.8 1.3 1.3 1.2 1.7 0.9 1.2 1.2 0.6 0 .7 0 .7 1.0 1.1 0.8 0 .8 0 .8 1.1 0 .9 1.0 1.4 1.1 3 .4 0 .7 2.3 2 .8 2.6 1.1 3 .2 1.8 1.2 2 .0 Dihydroorotic acid 0 .9 0 .7 0 .8 2 .2 0 .4 1.3 0 .9 0.8 1.0 2.1 2.2 5.0 1.3 0 .5 0 .7 1.1 0.8 1.0 0 .7 0 .5 1.4 0.6 0 .7 1.4 0 .5 0 .6 1.3 Acetyl-carnitine 1.8 0 .7 0 .6 1.1 0 .5 0 .9 0 .6 0.9 2.7 1.0 1.5 2.7 1.2 2.1 1.5 2.0 1.1 1.5 1.0 0 .4 1.5 1.2 0 .9 0.6 1.5 0 .9 0.9 0 .3 0.7 1.5 0 .8 0 .8 0.8 Propionyl-carnitine 1.9 0 .5 1.0 0 .5 1.6 0 .8 0.8 2 .3 1.3 1.5 2.5 0.8 3 .7 1.2 2 .1 0 .8 0 .8 1.0 0 .7 1.3 1.2 0 .8 0.6 1.9 0 .8 1.0 0 .2 0 .4 1.8 1.1 0 .9 0.9 Butyryl-carnitine 0 .9 1.6 1.4 1.5 2 .4 0 .6 0.8 0 .8 0.6 0 .6 Me thylbutyroyl-carnitine 0 .5 0 .5 0 .5 0.7 0.8 0 .6 0.6 1.3 0.4 0 .6 0 .9 0.8 1.9 0 .5 0.9 1.5 1.4 1.3 4 .4 0 .1 1.0 0 .2 0.2 2 .6 0 .6 0 .1 1.0 0.9 1.6 0 .0 1.7 0.0 1.0 0 .2 0.2 5.5 0 .1 0.0 0 .6 0.6 0 .0 Glycoche nodeoxycholic acid Bile acids Glycocholic acid 1.6 1.0 3 .0 1.0 0 .0 0.0 0 .0 0.0 5.5 3 .3 2 .5 11.0 16.0 2 .7 1.3 2.2 1.3 1.1 2.4 1.2 1.1 0 .9 1.2 1.0 0.9 0 .3 1.6 0 .7 0 .9 1.1 0.7 0.8 1.0 1.3 0.9 0 .7 0.6 1.1 0 .8 0.9 0 .3 0 .4 1.7 0 .9 0 .8 1.0 11.1 6 .7 0 .7 7.4 0.3 0 .0 0 .6 2.8 1.3 0.0 1.2 1.3 0 .1 0 .0 0 .0 0.6 0 .1 0.7 0.2 9.6 6 .2 0 .1 0 .4 0 .4 1.9 2 .2 0 .1 0 .5 1.8 0.2 0 .5 0 .0 0.2 0 .2 1.2 0 .0 0 .0 4 .8 0.9 nc ol og iq ue DSV/iBiTec-S/SPI/LEMM MS à haute résolution: détecter plus de métabolites et les identifier plus facilement 0.9885 R=1400 ue 1 O Résolution en masse 0.8 iq 0.6 0.4 0 999.00 m/z FWHM: R = (m /z)/( ∆ m/z) 1002.0 1.0000 R=3000 ie 0.8 1001.0 ∆m/z og 0.6 0.4 0.2 0 999.00 m/z 1001.0 1002.0 ac 1000.0 ol 1 1000.0 C lin 0.2 Ph a rm Précision en masse de C10H15O4 (0.1 ppm) G ro up e Databases nc ol og iq ue DSV/iBiTec-S/SPI/LEMM MS à haute résolution: détecter plus de métabolites et les identifier plus facilement Mais attention aux isomères!! 0.9885 R=1400 ue 1 O Résolution en masse 0.8 iq 0.6 0.4 0 999.00 m/z FWHM: R = (m /z)/( ∆ m/z) 1002.0 1.0000 R=3000 ie 0.8 1001.0 ∆m/z og 0.6 0.4 0.2 0 999.00 m/z 1001.0 1002.0 ac 1000.0 ol 1 1000.0 Urines humaines C lin 0.2 Ph a rm Précision en masse de C10H15O4 (0.1 ppm) G ro up e Databases 38 métabolites détectés en conditions C18 correspondent à 83 métabolites en conditions PFPP (Roux et al., Anal. Chem., 2012) nc ol og iq ue DSV/iBiTec-S/SPI/LEMM RP-C8 iq ue O To discriminate between isomer species C lin Isoleucine PFPP G ro up e de ac Ph a rm Norleucine ol og ie β Leucine ZICpHILIC nc ol og iq ue DSV/iBiTec-S/SPI/LEMM Valine ? Betaine ? Both ? ue O Alkyl RP vs PFPP Multiplatform strategy: toward a comprehensive assessment of metabolomic profiles iq ** *** e de Ph a rm * ac ol og ie C lin Extracted Ion Chromatogram of m/z= 118.086 obtained in RP-LC G ro up Proteinogenic amino acids Detoxification reaction : liver, kidney Betaine Valine Extracted Ion Chromatogram of m/z= 118.086 obtained in PFPP-LC nc ol og iq ue DSV/iBiTec-S/SPI/LEMM O Annotation of peak lists is required to help for metabolite identification iq C lin RT: 0,00 - 150,02 100 90 RT: 0,00 - 150,02 80 100 90 60 80 50 20 40 80 Time (min) 60 100 80 Time (min) 120 100 140 120 140 30 20 10 0 20 40 60 80 Time (min) 100 120 140 ie Ph a 0 og 60 ol 40 ac 20 10 50 0 40 0 rm 30 70 20 0 60 de Few thousands of variables… …Few hundreds of metabolites ?? Chemical and biochemical databases: KEGG (www.genome.jp/kegg), Metlin (www.metlin.scripps.edu), HMDB (www.hmdb.ca) e 0 up 10 50 90 40 80 spectral databases ro 20 G 30 60 0,00 - 150,02 RT: 100 Variables (Rt-mass) 70 Relative Abundance 40 Relative Abundance Relative Abundance 70 ? ? ? ? ? ? ? ? ? ue Samples nc ol og iq ue DSV/iBiTec-S/SPI/LEMM The relevance of a spectral database C lin iq ue O One molecule = several ions ie Automated detection of ions, list of annotated features Compound Attribution 5.28 C11H10NO2 Tryptophan [(M+H)-(NH3)]+ Tryptophan Tryptophan [(M+H)-(NH3)]+ (13C) [(M+H)-(NH3)]+ (13C2) RT Formula ol M/Z og Pic of interest ac 188.0709 rm 189.0757 190.0787 5.28 C11H13N2O2 206.1010 5.28 C10[13C]H13N2O2 Tryptophan [(M+H)]+ (13C) 207.1051 5.28 C9[13C]2H13N2O2 Tryptophan [(M+H)]+ (13C2) 409.1902 5.28 C22H25N4O4 [(2M+H)]+ 410.1938 5.28 C21[13C]H25N4O4 Tryptophan Ph a 205.0975 Tryptophan Tryptophan [(M+H)]+ G ro up e de 5.28 C10[13C]H10NO2 5.28 C9[13C]2H10NO2 [(2M+H)]+ (13C) Annotations (HMDB, KEGG, METLIN) Deethylatrazine 3-amino-2-naphthoic acid Indoleacrylic acid Ethyl Oxalacetate Tryptophan ethotoin Vasicinol Idazoxan Nirvanol N-Acetyl-D-fucosamine N-Acetyl-D-quinovosamine Gly Trp Phe (and isomers) Lys Met Met (and isomers) Tyr Leu Asp (and isomers) Ile Tyr Asp (and isomers) Val Tyr Glu (and isomers) (Roux et al., PhD work, 2008-2011, Roux et al., Anal. Chem. 2012) 1 6.6 9 100 x5 90 70 10 0 U Relative Abundance Metabolite identification 80 60 50 40 20 10 1 5.6 7 1 6 .5 2 Formal Identification 70 C lin 60 20 40 30 ie e de Ph a rm ac ol og 0 up 1 16. 03 42 7 72 .0 44 33 2 01.85 44 6 184 .0 97 23 80 60 STD 142.0 865 8 156 .1 02 29 40 9 0.05 49 1 20 1 16. 03 44 2 72 .0 44 17 10 ro 9 0.05 49 4 50 20 G 142.0 865 1 156 .1 01 93 40 0 10 0 iq 80 2 2 .57 23 .40 184 .0 97 19 60 ue 5 .4 0 90 Relative Abundance 80 O 30 0 100 nc ol og iq ue DSV/iBiTec-S/SPI/LEMM 3 .1 9 6 .6 5 18 .3 5 1 6 .5 3 2 01 .86 20 6 3 1.1 2 0 50 10 0 1 50 20 0 m /z ??? nc ol og iq ue DSV/iBiTec-S/SPI/LEMM Annotation of human biological matrices Plasma ol og ie C lin iq ue O Urine Red blood cells Ph a rm ac 236 identified metabolites 74 putatively identified metabolites 27% of isomers G ro up e de 205 annotated or identified metabolites (RP, PFPP, HILIC) Cerebrospinal fluid 146 annotated or identified metabolites (RP, HILIC) nc ol og iq ue DSV/iBiTec-S/SPI/LEMM C lin iq ue O Cerebrospinal fluid metabolomics highlights alterations of multiple metabolic pathways in patients with hepatic encephalopathy. ol og ie Nicolas Weiss1, Benoit Colsch2, Foucault Isnard1,2, Suleiman Attala3, Frédéric Sedel3, Dominique Thabut1, Christophe Junot2 1Assistance rm ac Publique - Hôpitaux de Paris, Brain Liver Pitié-Salpêtrière (B-LIPS) study group, Groupement Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France. 2CEA, de Ph a iBiTec-S, Service de Pharmacologie et d’Immunoanalyse, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, 91191 Gif-sur-Yvette cedex, France. 3 G ro up e Medday Pharmaceuticals, ICM-Brain and Spine Institute-iPEPS, Groupe Hospitalier Pitie Salpetriere-Charles Foix, 83 Boulevard de l'Hopital, 75013, Paris, France nc ol og iq ue DSV/iBiTec-S/SPI/LEMM ue HE is a neurological complication of acute or chronic liver disease. O Hepatic encephalopathy (HE) C lin iq The proportion of cirrhotic patients developing HE is about 40 to 60%. og ie 60 to 80 % of cirrhotic patients exhibit cognitive disorders potentially related to minimal HE. de Ph a rm ac ol However, the pathophysiological mechanism of HE remains poorly understood: - Hyperammonemia - Inflammation - Altered permeability of blood-brain barrier G ro up e The aim of the study: to highlight altered metabolic pathways in HE patients by using CSF metabolomics. patient stratification pharmacological targets (Morgan and Stubbs, CML Gastroenterology) nc ol og iq ue DSV/iBiTec-S/SPI/LEMM O The CSF metabolome analyzed by LC/MS ue ~500 annotated MS features C lin ie 120 metabolites identified og 100 µl CSF + 300 µl MeOH Centrifugation Evaporation to dryness Resuspension in 100 µl H2O, HCOOH 0.1% 5 µl of an internal standard mixture are added (10 labeled metabolites and xenobiotics) iq Sample preparation: UHPLC/MS: Others; 3 Ph a 10 µl of sample are injected rm ac ol 1.Hypersil C8 2.1× ×150 mm, 1.9 µm, run time: 30’ 2.ZIC-p-HILIC 2.1× ×150 mm, 5 µm, run time: 40’ Nucleosides and conjugates; 12 G ro up e de Orbitrap-Exactive and Q-Exactive Plus: Positive and negative ESI Scanning from m/z 75 to m/z 1000 Mass resolution: 100 000 FWHM Carbohydrates and conjugates; 6 Steroids and bile acids; 4 Amino acids and Amino Acid conjugates; 36 Ketones; 3 Amines; 4 Alcohols ; 3 Organic acids; 28 nc ol og iq ue DSV/iBiTec-S/SPI/LEMM ue O Patients C lin iq CSF samples collected from patients of Pitié-Salpétrière Hospital: og 11 HE patients with cirrhosis ie 27 control patients without any proven neurological disease ol 3 HE patient without cirrhosis ac • 1 patient with status epilepticus rm • 1 liver transplanted patient that developed a minimal HE G ro up e de Ph a • 1 patient with hepatoportal sclerosis nc ol og iq ue DSV/iBiTec-S/SPI/LEMM LC/MS based metabolomics for CSF analysis 90 10 50 40 30 0 20 0 20 10 80 10 0 70 90 60 80 50 40 30 0 20 0 20 100 90 60 80 50 70 100 40 30 20 0 0 60 60 80 Time (min) 100 12 0 140 40 20 20 10 30 20 80 70 100 70 60 50 4040 40 60 80 Ti me (m in) 100 1 20 20 20 40 140 10 0 20 40 60 10 80 Time (min) 100 60 80 Ti me (m in) 12 0 80 50 50 20 100 60 120 80 Tim e (m in) 40 10 140 100 120 30 0 0 0 90 60 70 80 40 Tim e (m in) 60 30 60 0 0 40 0 90 80 30 50 10 100 90 60 50 30 10 70 40 80 70 RelativeAbundance RelativeAbundance 20 90 60 RelativeAbundance 30 RelativeAbundance 1 00 70 40 RelativeAbundance RelativeAbundance 80 50 RelativeAbundance 1. Analytical chemistry 90 60 RelativeAbundance 10 0 70 RelativeAbundance 80 20 140 20 40 0 20 60 80 40 Tim e (m in) 60 10 0 0 0 20 40 100 1 20 140 0 CONTROL 20 40 60 100 ue 100 90 O UHPLC / Exactive 1 00 140 80 Tim e (m in) 80 Tim e (m in) 120 100 100 140 120 120 140 140 iq DISEASE Filtration according to: - Correlation between dilution factor of QC and area. r²>0.7 - Mean QC/ mean BL>3 - CV (QC) < 30% 20 t[2] 3. Statistical analyses og CONTROL 3 rm 10 ac ol 2. Data pre-treatment XCMS R package ie Variables (RT, m/z) C lin Samples 0 Multivariate statistics 13 4 27 56 16 15 9 11 18 10 (PCA, PLSDA) 14 Ph a -10 -20 de DISEASE 12 -20 -10 0 10 20 t[1] x100 x20 x20 247.0721 G ro up e 4. Identification Relative Abundance 100 204.0667 80 176.0720 218.0333 60 161.0612 20 0 198.8961 133.0664 40 60.9031 77.0776 85.4235 60 80 100.6693 114.1821 126.9277 137.0212 149.5655 100 120 140 179.1933 242.8735 191.3928 165.7842 160 m/z 220.7238 180 229.1446 214.9476 200 220 257.4338 240 260 Univariate statistics (Mann-Whitney test) Feature annotation using public databases, informatic tools (CAMERA R package) and a spectral database (ESI-MS and HCD) nc ol og iq ue DSV/iBiTec-S/SPI/LEMM HE and control patients have different metabotypes CTL patients HE patients O 40 BM2 ue HE with status epilepticus C lin iq 30 20 mEH after transplantation ie 10 SP3 MP01 GB6 PV2DA8 CC5 LT0 DK4 SV9 HK3 BL2 MJ8 RM70 HJ9 VP2 MR61 BF8 MM7 PJ4 AG6 BM1 AZ0 MP11 JM8 AN4 CM0 PD2 CE3 YB2 BS61 LK4 JB9 PO7 DQ0 BG9 NQ1 BC8 CJ3 og t[2] Hepatoportal sclerosis ac ol 0 rm -10 -30 -25 -20 e de -35 Ph a -20 up R2X[1] = 0.19505 -15 -10 ZG8 GM5MHG9 -5 0 5 10 15 20 25 30 35 t[1] R2X[2] = 0.0923833 Ellipse: Hotelling T2 (0.95) ro PCA score plot of a XCMS filtered peaktable (RP conditions and ESI positive mode) G 40 nc ol og iq ue DSV/iBiTec-S/SPI/LEMM C06948 Samples BM2 BG9 MGH9, NQ1, ZG8, AZ0 BC8, MHG9, MP01, NQ1, ZG8 896 581 1964 C07486 D00660 D08380 BC8, MHG9, MP01, NQ1, ZG8 BG9, NQ1, ZG8 BG9, NQ1, ZG8 N-Desmethyldiazepam HMDB60538 Tazobactam HMDB15544 Piperacillin HMDB14464 KEGG C07841 C07203 Could explain PCA outliers Drug induced HE??? ue Metlin 66750 573 2708 3521 iq HMDB HMDB15333 HMDB15052 HMDB14342 HMDB14967 C lin Putative annotation Levetiracetam Metronidazole Fluconazole diazepam O High intensity features related to drugs and metabolites have been detected in 7 out of the 14 HE patients [M+HCOOH-H]- T: FTMS {1;1} - p ESI Full ms [95.00-1000.00] 100 og CJ3 1.08 80 90 2.05 2.87 3.42 3.98 4.85 rm 5.65 MHG9 Ph a 60 40 20 0.84 1.06 0.76 1.99 2.24 2.89 3.45 0 100 1.93 G 1 2 2.89 3 [M-H]- 70 305.09677 60 Fluconazole 50 40 [M-C6H4F2H]- 20 191.06853 10 3.44 1.57 317.06319 6.24 4.17 4 341.07347 80 30 1.07 ro 0 0.85 up 20 6.37 7.21 7.83 e NQ1 60 40 6.23 4.17 4.58 5.65 80 [M+Cl]- m/z 191.0685 6.51 6.95 7.19 de Relative Abundance 0 100 6.02 5.40 ac 1.63 20 6.22 R e la tiv e A b u n d a n c e 1.46 1.58 40 ol 60 80 351.10211 ie RT: 0.16 - 11.11 0.86 100 5.35 5 6 Time (min) 6.96 7 7.85 8 197.80774 0 180 200 225.06145 238.00086 265.07056 278.10371 298.76626 220 240 260 280 m/z 300 329.03063 320 340 360 nc ol og iq ue DSV/iBiTec-S/SPI/LEMM The metabolic signature of HE in CSF samples 72 out of 120 CSF metabolites have altered concentrations in HE samples 2.4 2.5 2.4 2.1 6.1 7.7 2.2 7.6 1.9 1.3 9.0 og ol 0.6 4.0E-07 phenylalanine 1.0 3.2 0.8 4.0E-07 Tyrosine 1.0 5.5 0.6 2.5E-04 1.0 6.4 0.8 4.0E-07 kynurenine 1.0 6.3 0.9 4.7E-07 Hydroxytryptophan 1.0 4.2 1.1 1.1E-06 Tryptophan 1.0 3.8 0.6 5.4E-06 Aminomuconic acid 1.0 1.6 1.0 5.0E-05 5-hydroxyindoleacetic acid 1.0 2.7 0.8 8.2E-03 Taurocholic acid ILD Glycocholic acid 1.0 3E+5 259.0 1828 0.6 Glycoursodeoxycholic / Glycodeoxycholic acid 1.0 100.5 1.5 Ph a de e up G ro Bile Acids 9.9E-07 2.5E-04 1.2E-03 8.2E-03 2.5E-04 4.0E-07 6.3E-07 2.5E-04 1.8E-02 3.1E-02 4.0E-07 9.4 Indolelactic acid Tryptophan metabolism 1.1 0.9 0.8 0.3 0.7 0.2 0.7 0.6 1.1 0.8 0.4 1.0 ac Glutamylphenylalanine rm Phenylalanine metabolism p-values O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 MP11 ue HE ie Pyroglutamic acid Glutamine Glutamate/Glutamine metabolism Glutamic acid Phenylacetyl-L-glutamine glutamyl-glutamine Formylmethionine Methionine sulfoxide Methionine metabolism Methionine S-Adenosylmethioninamine Methylthioadenosine p-hydroxyphenyllactic acid CTL C lin Metabolite ID iq Biochemical pathway or chemical class e e ND 4.0E-07 4.0E-07 MP11: patient with hepatoportal sclerosis fold change > 3 σ 2 σ < fold change < 3 σ σ < fold change < 2 σ - 2 σ < fold change < - 1 σ fold change < - 2 σ nc ol og iq ue DSV/iBiTec-S/SPI/LEMM HE MP11 p-values 1.0 iq 1.8 0.3 2.7E-03 1.0 0.7 0.9 4.4E-02 1.0 4.3 0.9 1.8E-05 1.0 2.4 0.9 5.0E-04 Propionylcarnitine 1.0 2.6 0.7 7.7E-04 3-Hydroxyisovalerylcarnitine 1.0 5.8 0.8 4.5E-03 2-Hydroxyvaleric acid 1.0 4.1 0.6 8.1E-05 3-Hydroxy-2-methylbutanoic acid 1.0 2.6 0.7 3.4E-02 carnitine 1.9 0.7 4.9E-03 Metabolite ID Pyruvic acid Creatine ie Octanoylcarnitine C lin Carbohydrate/Amino-acids metabolism Energy metabolism CTL og Biochemical pathway or chemical class Acetyl-L-carnitine de Ph a MP11: patient with hepatoportal sclerosis rm ac ol Fatty acid metabolism ue O Alteration of energy metabolism in HE patients 1.0 fold change > 3 σ 2 σ < fold change < 3 σ σ < fold change < 2 σ - 2 σ < fold change < - 1 σ fold change < - 2 σ up e Krebs cycle activity reduced in animal model (Shorey, Gastroenterology, 1967) Reduced brain glucose utilization in rat with portocaval shunting G ro (Mans, J. Neurochem., 1994) nc ol og iq ue DSV/iBiTec-S/SPI/LEMM Metabolite ID Acetylated compounds Acetyl-methionine Acetyl-tyrosine Acetyl-glucosamine Acetyl-alanine Acetyl-valine / acetylnorvaline N-Acetyl-L-phenylalanine N-acetyl-isoleucine / N-acetylLeucine N-Acetyl-L-histidine O-Acetyl-L-homoserine Acetyl-serine 4-Acetamidobutanoic acid N4-Acetylcytidine og ol ac 20 rm HE/CTL 30 Ph a e up ro G ce ty l A de ce ty - g A c l- M lu e t e t co yl s -ty A c am r e in A c t yl e N- e -a A t y la ce l v A c t y l- a l P e h 4A t y l- e A c ce A ety Leu ta c m A e t l- H id c e y l i s ob ty -H u l- S S e A t an er r c e o i in ty c a e lc c y t id id in e 0 A ie C lin iq ue Biochemical pathway or chemical class 40 10 O Concentrations of acetylated compounds are increased in CSF samples of HE patients CTL HE MP11 p-values 1.0 1.0 1.0 1.0 11.5 7.3 2.3 2.4 0.2 1.0 1.1 0.7 4.0E-07 9.8E-07 2.0E-06 2.7E-06 1.0 2.1 0.8 8.1E-06 1.0 4.9 1.6 1.0E-05 1.0 2.3 0.6 1.2E-05 1.0 1.0 1.0 1.0 1.0 3.5 1.9 1.5 3.0 7.4 1.1 1.0 0.8 0.8 0.5 6.2E-04 1.7E-03 1.8E-02 1.8E-05 5.0E-05 MP11: patient with hepatoportal sclerosis fold change > 3 σ 2 σ < fold change < 3 σ σ < fold change < 2 σ - 2 σ < fold change < - 1 σ fold change < - 2 σ nc ol og iq ue DSV/iBiTec-S/SPI/LEMM Altered energy metabolism pathways in CSF of EH patients O Cytosol Mitochondrion Gln Glu ue + Not detected iq NH4 Saccharopine C lin Lys Succinyl CoA α KG Increased Succinic acid ie Isocitric acid FFA ol Citric acid AcylCoA rm Acylcarnitines ac AcetylCoA β-Oxidation Acylcarnitines α KG Malic acid de Asp Asp Malic acid α KG G ro up e Lys OAA PC Pyruvic acid Ala Trimethyllysine PDH Fumaric acid Glu Ph a Carnitine decreased Krebs cycle og Acetylated amino acids Unchanged Gln Glu NH4+ OAA Krebs cycle activity reduced in animal model (Shorey, Gastroenterology, 1967) nc ol og iq ue DSV/iBiTec-S/SPI/LEMM 30 of the significant metabolites out of 72 correlate with clinical scores 60000000 Ph a rm ac Pyrimidine metabolism Peptides Alcohols and polyols Steroid Vitamin B6 metabolism Severity of cirrhosis: MELD score: Model for End-Stage Liver Disease (1 to 40) Child Pugh score (1 to 15) West-Haven criteria (1 to 4). WH 2-4: overt HE e de Severity of HE: G ro up Stratification of HE patient? Severity prediction? 30 p=0.004 8000000.0 6000000.0 4000000.0 2000000.0 0.0 24 -0.193 -0.263 -0.175 0.77 -0.338 -0.143 -0.315 0.046 0.161 20 MELD W H 0.722 0.535 0.802 0.327 0.691 0.553 -0.803 0.622 0.512 10 1 0.653 0.662 0.612 0.434 0.626 0.644 -0.72 0.233 0.805 0 0- -0.278 [Trp], AU 0.47 ol Fatty acid metabolism 0.703 20000000 W H Bile acids 40000000 0 Carnitine (AU) Tryptophan metabolism -0.152 -0.029 -0.187 0.037 0.037 0.246 -0.137 -0.117 iq Phenylalanine metabolism 0.682 0.608 0.364 0.396 0.618 0.507 0.516 0.521 C lin Methionine metabolism West-Haven MELD 0.598 0.452 0.689 0.484 0.708 0.671 0.671 0.612 ie Acetyl-methionine 4-Acetamidobutanoic acid Methionine phenylalanine p-hydroxyphenyllactic acid Tryptophan Indolelactic acid Glycocholic acid Glycoursodeoxycholic / Glycodeoxycholic acid Taurocholic acid Octanoylcarnitine 2-Hydroxyvaleric acid carnitine Dihydrothymine Leu-Ala Quinic acid Cortisol Pyridoxic acid Acetylated compounds Child Pugh ue b Metabolite ID og Biochemical pathway or chemical class O rs 40 nc ol og iq ue DSV/iBiTec-S/SPI/LEMM O Conclusion C lin iq ue Metabotypes of HE patients: alterations of amino-acid, acylcarnitine, bile acid and energy metabolism pathways. rm ac ol og ie Accumulations of acetylated compounds is reported for the first time. It could be due to a dysregulation of the Krebs cycle in HE patients: G ro up e de Ph a Metabolomics could be used to stratify HE patients Energy metabolism as a pharmacological target for HE?? O Perspectives nc ol og iq ue DSV/iBiTec-S/SPI/LEMM ue Validation of the HE metabotype: iq In patients: og ie C lin Confirmatory cohort (CSF? Plasma?) Specificity of the signature: To include a group of patients with cirrhosis and without HE (plasma samples) G ro up e de Ph a rm ac ol Animal models: Hyperammonemia, drug induced HE models… Mechanistic studies nc ol og iq ue DSV/iBiTec-S/SPI/LEMM Acknowledgement ue iq C lin ie og Ph a rm ac ol CEA/SPI Christophe Créminon Sandrine Leblois Laurie Ménez Nicolas Caudy Florence Vizet CEA/LIST Etienne Thévenot Pierrick Roger Natacha Lenuzza Alexis Delabrière PROFILOMIC Céline Ducruix Alexandre Seyer Jérôme Cotton Stéphanie Oursel Fanny Leroux Marion Poirel Simon Broudin Bruno Corman G ro up e de UPMC Jean-Claude Tabet Anna Warnet Farid Ichou Sandra Alves Estelle Paris Richard Cole O CEA/SPI/LEMM Benoit Colsch François Fenaille Florence Castelli Marie-Françoise Olivier Lydie Oliveira Sandrine Aros-Calt Pierre Barbier Saint-Hilaire Mikail Berdi Ulli Hohenester And thank you for your attention!!!
Similar documents
Yoshida_Shimadzu_Metab2013_Analysis for Medical Research
Naproxen N-Acetyltyrosine Uric acid Margaric acid 3,6-Epoxydodecanedioic acid Indolelactic acid Stearic acid L-Tryptophan 3-hydroxydodecanedioic acid Chloramphenicol
More information798 Woodworking - RS Industrial Services
• Provides flexibility in a range of site and workshop applications • Handle mechanism allows the guard to retract automatically in mitre mode allowing safe and easy use • 3 way extractor connectio...
More information