HYDRUS Lecture - Nevada Agricultural Experiment Station
Transcription
HYDRUS Lecture - Nevada Agricultural Experiment Station
Advanced Modeling of Water Flow and Solute Transport in the Vadose Zone Agricultural Applications Using HYDRUS models Jirka Simunek Department of Environmental Sciences University of California Riverside George E. Brown, Jr. Salinity Laboratory, USDA, ARS Riverside, CA University of California, Davis May 26, 2003 Industrial and Environmental Applications HYDRUS models - Governing Equations Variably-Saturated Water Flow (Richards Equation) ∂θ ∂ ∂h = [ K ( h) − K ( h)] − S ∂t ∂z ∂z Observation wells Heat Movement ∂C p (θ )T ∂t Source Zone = ∂ ∂T ∂qT − C w ST [λ (θ ) ] − C w ∂z ∂z ∂z Solute Transport Control Planes The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface ∂ ( ρ s ) ∂ (θ c ) ∂ ∂c + = (θ D − qc ) − φ ∂t ∂t ∂z ∂z HYDRUS - References Šimunek, J., M. Šejna, and M. Th. van Genuchten, The HYDRUS-1D software package for simulating one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC - TPS - 70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 202pp., 1998. Šimunek, J., M. Šejna, and M. Th. van Genuchten, The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC - TPS - 53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 251pp., 1999. E-mail: igwmc@mines.edu http://www.mines.edu/igwmc http://www.ussl.ars.usda.gov/models/hydrus2d.HTM http://www.pc-progress.cz HYDRUS-2D - History of Development Israel: Neuman [1972] - UNSAT U. of Arizona: Davis and Neuman [1983] Princeton U.: van Genuchten [1978] MIT: Celia et al. [1990] Agr. U. in Wageningen: Feddes et al. [1978] Vogel [1987] - SWMII USSL - SWMS-2D Šimunek et al. [1992] USSL - HYDRUS-2D (1.0) Šimunek et al. [1996] USSL - CHAIN-2D Šimunek et al. [1994] USSL - HYDRUS-2D (2.0) Šimunek et al. [1999] HYDRUS –Modular Structure HYDRUS-2D - History (References) Neuman, S. P., Finite element computer programs for flow in saturated-unsaturated porous media, Second Annual Report, Part 3, Project No. A10-SWC-77, 87 p. Hydraulic Engineering Lab., Technion, Haifa, Israel, 1972. Davis, L. A., and S. P. Neuman, Documentation and user's guide: UNSAT2 - Variably saturated flow model, Final Report, WWL/TM-1791-1, Water, Waste & Land, Inc., Ft. Collins, Colorado, 1983. van Genuchten, Mass transport in saturated-unsaturated media: One-dimensional solution, Research Rep. No. 78-WR-11, Water Resources Program, Princeton Univ., Princeton, NJ, 1978. Celia, M. A., and E. T. Bouloutas, R. L. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26(7), 1483-1496, 1990. Vogel, T. SWMII - Numerical model of two-dimensional flow in a variably saturated porous medium, Research Report No. 87, Dept. of Hydraulics and Catchment Hydrology, Agricultural Univ., Wageningen, The Netherlands, 1987. Šimunek, J., T. Vogel, and M. Th. van Genuchten. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media, Version 1.1. Research Report No. 126, 169 p., U.S. Salinity Laboratory, USDA, ARS, Riverside, California, 1992. The HYDRUS Software Packages HYDRUS Graphical Interface Input, Output, Meshgen HYDRUS – Main Module Water Flow Soil Hydraulic Properties Pedotransfer Functions Solute Transport Heat Transport Root Uptake Equation Solvers Inverse Optimization Water Flow - Richards’ Equation The governing flow equation for two-dimensional isothermal Darcian flow in a variably saturated isotropic rigid porous medium: ∂θ ∂ A ∂h = + K izA ) − S K ( K ij ∂t ∂ x i ∂x j θ - volumetric water content [L3L-3] h - pressure head [L] K - unsaturated hydraulic conductivity [LT-1] KijA - components of a anisotropy tensor [-] xi - spatial coordinates [L] z - vertical coordinate positive upward [L] t - time [T] S - root water uptake [T-1] Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Richards Equation - Assumptions Effect of air phase is neglected Darcy’s equation is valid at very low and very high velocities Osmotic gradients in the soil water potential are negligible Fluid density is independent of solute concentration Matrix and fluid compressibilities are relatively small Soil Hydraulic Properties Soil Hydraulic Properties Retention Curve, θ(h) Hydraulic Conductivity Function, K(h) (Soil-water characteristic curve) - resistance of porous media to water flow - characterizes the energy status of the soil water log (Hydraulic Conductivity [cm/d]) 4 500 Loam |Pressure head| [cm] 400 Sand Clay 300 200 100 2 Loam Sand 0 Clay -2 -4 -6 -8 -10 0 0 0 0.1 0.2 0.3 0.4 1 2 3 4 5 log (|Pressure Head| [cm]) 0.5 Water Content [-] Soil Hydraulic Properties Retention Curve Hydraulic Conductivity Function, K(θ) Brooks and Corey [1964]: log (Hydraulic Conductivity [cm/d]) 4 van Genuchten [1980]: 2 0 -2 |α h |- n Se = 1 Se = Kosugi [1996]: -4 Se = -6 Loam θs - saturated water content [-] θr - residual water content [-] α, n, h0, σ - empirical parameters [L-1], [-], [L], [-] Sand -8 Clay -10 0 0.1 0.2 0.3 0.4 0.5 Se - effective water content [-] W a ter Content [-] Brooks and Corey [1964]: K (h) = K s S e2 / n + l + 2 van Genuchten [1980]: (Mualem [1976]) K ( h ) = K S S el 1 − 1 − S e1 / m 2 Kosugi [1996]: (Mualem [1976]) ln ( h / h0 ) 1 + σ K (h) = K s Sel erfc 2σ 2 2 θs - saturated water content [-] θr - residual water content [-] α, n, h0, σ, l - empirical parameters [L-1], [-], [L], [-], [-] Se - effective water content [-] ΚS - saturated hydraulic conductivity [LT-1] Se = θ − θr θs − θr 1 n (1 + α h )1−1/ n ln ( h / h0 ) 1 erfc 2 2σ Se = θ − θr θs − θr Soil Water Retention Curve, 2(h) Hydraulic Conductivity Function ( h < -1/α h ≥ -1/α ) m Hydraulic Conductivity Function, K(2) Richards Equation - Complications Hysteresis in the soil water retention function Extreme nonlinearity of the hydraulic functions Lack of accurate and cheap methods for measuring the hydraulic properties Extreme heterogeneity of the subsurface Inconsistencies between scale at which the hydraulic and solute transport parameters are measured, and the scale at which the models are being applied Soil Water Hysteresis Boundary Conditions: System-Independent Pressure head (Dirichlet type) boundary conditions: h ( x, z, t ) = ψ ( x, z, t ) for ( x, z ) ε Γ D Flux (Neumann type) boundary conditions: - [ K ( K ijA ∂h + K izA )] n i = σ 1( x, z , t ) ∂x j for ( x , z ) ε Γ N Gradient boundary conditions: ( K ijA Boundary Conditions: System-Dependent ∂h - K |≤ E ∂x for ( x , z ) ε Γ G Boundary Conditions: System-Dependent Seepage face (free draining lysimeter, dike) if(h<0) => q=0 if(h=0) => q=? Atmospheric boundary condition: |- K ∂h + K izA ) n i = σ 2 ( x , z , t ) ∂xj h A ≤ h ≤ hS Tile drains Ponding 0 -20 -20 -25 Soil surface 1D soil profile -30 -40 Groundwater table -35 -40 -60 -45 -80 Tile drain -50 -100 0 0.025 0.05 Time [days] 0.075 0.1 -55 0.00 0.05 0.10 Time [days] 0.15 0.20 Impermeable layer The HYDRUS Software Packages Root Water Uptake Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface van Genuchten (1987): Y / Ym = Bresler et al. [1982] S ( z, t ) = - b1 ( z ) K (θ ) [ hr - h( z, t ) ] Feddes et al. [1978] S ( z ,t ) = - b 2 ( z ) α 1 ( h ( z ,t )) T 1 1 + (c / c 50) p p The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface General structure of the system of solutes: Products Products µg,1 µw,1 µs,1 µg,2 µw,2 µs,2 A g1 c1 s1 kg,1 ks,1 γg,1 γw,1 γs,1 Products µw,1 µs,1 µg,1 B g2 c2 s2 kg,2 ks,2 γg,2 γw,2 γs,2 Products Typical examples of sequential first-order chains: Radionuclides [van Genuchten, 1985] 238Pu 234U 230Th c1 s 1 µw,2 µs,2 µg,2 C ... c2 s 2 c3 s 3 226Ra c4 s 4 Nitrogen [Tillotson et al., 1980] g2 (NH2) 2CO c1 s1 NH4+ c2 s2 N2 NO2c3 NO3c4 N2O Typical examples of sequential firstorder chains: Pesticides [Wagenet and Hutson, 1987] Uninterrupted chain - one reaction path: Dechlorination of chlorinated ethenes Gas Parent pesticide c1 s1 Product (aldicarb, oxime) Daughter product 1 Daughter product 2 c2 s2 Typical examples of sequential firstorder chains: Organic Hydrocarbons [Schaerlaekens et al., 1999; Casey and Simunek, 2002] Products c3 s3 Product t-DCE Product PCE (sulfone, sulfone oxime) (sulfoxide, sulfoxide oxime) Interrupted chain - two independent reaction paths: Gas Parent pesticide 1 c1 s1 Product c-DCE VC ethylene 1,2-DCE Gas Daughter product 1 Products c2 s2 c3 s3 Product Parent pesticide 2 Products Product Pharmaceuticals, hormones (Estrogen, Testosterone): Estradiol Perchloroethylene trichloroethylene dichloroethylene vinylchloride c4 s4 Typical Examples of Sequential Firstorder Chains: Pharmaceuticals and Explosives Estrone Estriol 4ADNT 4ADNT 2ADNT 4ADNT TNT ∂q c ∂θ c k ∂ρ s k ∂ag k ∂ ∂ g ∂gk w ∂c k (θ D ij,k )+ (a D ij,k )- i k + + = ∂t ∂t ∂t ∂ xi ∂ x j ∂ xi ∂x j ∂ xi ' ' − µ s,k −1 ρ s k −1 - µ g,k −1a g k −1 + γ w,kθ + γ s,k ρ + γ g,ka − Scr , k TAT 2-amino-4,6-dinitrotoluene Governing Solute Transport Equations ' -( µ w,k + µ w,k ' )θ c k - ( µ s,k + µ s,k ' ) ρ s k - ( µ g,k + µ g,k ' )a g k + µ w,k −1θ c k -1 + Explosives (TNT, RDX HMX) 2,4,6 trinitrotoluene TCE 4-amino-2,6-dinitrotoluene 2,4,6-triminotoulene w, s, g c, s, g kε (2, ns ) subscripts corresponding with the liquid, solid and gaseous phases, respectively concentration in liquid, solid, and gaseous phase, respectively 2,4DANT; 2,6DANT; 2,4DNT; 2,6DNT Governing Solute Transport Equations qi i-th component of the volumetric flux soil bulk density a air content S sink term in the water flow equation concentration of the sink term cr w g Dij , Dij dispersion coefficient tensor for the liquid and gaseous phase, respectively k subscript representing the kth chain number µw, µs, µg first-order rate constants for solutes in the liquid, solid, and gaseous phases, respectively γw, γs, γg zero-order rate constants for the liquid, solid, and gaseous phases, respectively µw', µs', µg' first-order rate constants for solutes in the liquid, solid and gaseous phases, respectively; these rate constants provide connections between the individual chain species. number of solutes involved in the chain reaction ns ρ The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Interactions Among Phases Equation s = k1c + k 2 Linear Adsorption s = ∂ Rθ c ∂t Nonlinear Equilibrium Adsorption kc R s = k 1 c k2 Freundlich k 1 c 1 + k 2 c k 1 c k3 s = 1 + k 2 c k3 k3c k1c + s = 1+ k2c 1+ k4c Langmuir Langmuir [1918] Freundlich-Langmuir Sips [1950] Double Langmuir Shapiro and Fried [1959] k2/ k3 Extended Freundlich Sibbesen [1981] k 1 c c + k Gunary Gunary [191970] s = k1 ck2 - k 3 Fitter-Sutton Fitter and Sutton [1975] s = k 1 { 1 - [ 1 + k 2 c k 3 ] k4 } Barry Barry [1992] Temkin Bache and Williams [1971] s = k1cc Steady-State s = ∂c ∂t = D ∂ 2c ∂c −v ∂ z2 ∂z Reference Lapidus and Amundson [1952] Lindstrom et al. [1967] Freundlich [1909] s = ∂ ∂c θD − q i c + φ ∂ x i ij ∂ x j = Model Linear s = 1 + k RT k 2 3 ln ( k 2 c ) c 1 s = k 1 c exp( -2 k 2 s ) modified Kielland s c = sT [ c + k1 ( cT − c )exp{ k2 ( cT − 2c )}] Interactions Among Phases The HYDRUS Software Packages Equilibrium interactions between the solution (c) and gaseous (g) concentrations (Henry’s law) Nonequilibrium interactions between the solution (c) and adsorbed (s) concentrations Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface A generalized nonlinear empirical equation s= kd , η , β kd cβ 1+η cβ empirical constants Non-Equilibrium Adsorption Equations Nonequilibrium two-site adsorption model e Equation ∂s = α ( k1 c + k 2 - s ) ∂t Model Linear ∂s = α ( k1 ck2 - s ) ∂t Freundlich kc ∂s = α 1 - s ∂t 1+ k 2 c k1 c k 3 ∂s = α - s k ∂t 1+ k 2 c 3 Langmuir FreundlichLangmuir Reference Lapidus and Amundson [1952] Oddson et al. [1970] Hornsby and Davidson [1973] van Genuchten et al. [1974] Hendricks [1972] Fava and Eyring [42] ∂s = α exp ( k 2 s ){ k1 c exp ( -2 k 2 s ) - s} ∂t Lindstrom et al. [1971] ∂s = α c k1 s k 2 ∂t Leenheer and Ahlrichs [1971] Enfield et al. [1976] k sk = sk + sk sk e sk k Šimunek and van Genuchten [1994] sT - s ∂s =α(sT -s)sinh k1 s - si ∂t T Lindstrom et al. [1971] van Genuchten et al. [1974] Lai and Jurinak [1971] Type - 1 sites with instantaneous sorption Type - 2 sites with kinetic sorption ∂ s ek ∂ sk = f ∂t ∂t ∂ skk k cβ k = α k (1- f k ) s,k k β - skk - µs,k skk + (1- f )γ s,k k ∂t 1+ηk ck f fraction of exchange sites assumed to be at equilibrium The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Interaction among phases Liquid - Gas: a linear relation g = k gc k g,k KH R TA empirical constant equal to (KHRTA)-1 Henry's Law constant universal gas constant absolute temperature Temperature Dependence of Transport and Reaction Coefficients Most of the diffusion (Dw, Dg), distribution (ks, kg), and reaction rate (γw, γs , γg , µw', µs', µg', µw , µs , and µg) coefficients are strongly temperature dependent. HYDRUS_2D assumes that this dependency can be expressed by an Arrhenius equation [Stumm and Morgan, 1981]. E (T A - T rA) aT = a r exp A A RT T r ar, aT coefficient values at a reference absolute temperature, TrA, and absolute temperature, TA, respectively E activation energy of the reaction or process Two-Region Physical Nonequilibrium Transport ∂ ∂ ∂c (θ m + fρ k D) cm = (θ m Dm m - qcm) - α (cm - cim) - (θ µ l,m + fρ k D µ s,m) cm ∂t ∂z ∂z [θ im + ( 1 - f ) ρ k D] ∂ cim = α (cm - cim) - [θ im µ l,im + ( 1 - f ) ρ k D µ s,im] cim ∂t Volatilization ∂( ρ s) ∂(θ c) ∂(ag) ∂ ∂c ∂g w + + = (θ Dijw + aDija - qi c - qia g) +φ ∂t ∂t ∂t ∂xi ∂x j ∂x j g = kH c Steady-State: 2 qw + qa k ∂c ρ kD akH ∂c w i H 1 + = D + D a k a ∂ c - i + ij H θ ∂x ∂x ∂t ij θ θ θ ∂xi i j Solute Transport - Dispersion Coefficient Bear [1972]: θ D ij = D T | q | δ ij + ( D L - D T ) q j qi |q | + θ Dd τ δ [L2T-1] Dd - ionic or molecular diffusion coefficient in free water τ - tortuosity factor [-] δij - Kronecker delta function (δij =1 if i=j, and δij =0 otherwise) DL , DT - longitudinal and transverse dispersivities [L] 2 2 qx q + DT z + θ D d τ |q| |q | 2 2 q q θ D zz = D L z + DT x + θ D d τ |q| |q | q q θ D xz = ( D L - DT ) x z |q | θ D xx = D L ij Solute Transport - Boundary Conditions First-type (or Dirichlet type) boundary conditions c ( x, z, t ) = c 0( x, z, t ) for ( x, z ) ε Γ D Third-type (Cauchy type) boundary conditions - θ D ij ∂c n i + q i n i c = q i 0 n i c 0 for ( x, z ) ε Γ C ∂ xj Second-type (Neumann type) boundary conditions θ D ij ∂c ni = 0 ∂ xj for ( x, z ) ε Γ N Dispersivity as a function of scale The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Thermal Conductivity λ ij (θ ) = λ T C w |q| δ ij + ( λ L - λ T ) C w q j qi | q| + λ 0 (θ ) δ ij λ0(θ) thermal conductivity of the porous medium (solid plus water) in the absence of flow λL, λT longitudinal and transverse thermal dispersivities, respectively Chung and Horton [1987] λ 0 (θ ) = b1 + b 2 θ w + b 3 θ 0w.5 b1, b2, b3 empirical parameters. Governing Heat Transport Equation Sophocleous [1979] C(θ ) λij(θ) C(θ), Cw ∂ ∂T ∂T ∂T = [λij (θ ) ] - Cw qi ∂t ∂ xi ∂ xj ∂ xi apparent thermal conductivity of the soil volumetric heat capacities of the porous medium and the liquid phase, respectively de Vries [1963] C (θ ) = C n θ n + C o θ o + C w θ + C g a θ volumetric fraction n, o, g, w subscripts representing solid phase, organic matter, gaseous phase, and liquid phase, respectively. The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Pedotransfer Functions: Rosetta Estimation of Soil Hydraulic Properties With Artificial Neural Networks Retention Schaap et al. (2001) Saturated Conductivity 0.25 TXT Textural Class Clay 2 1 Sand, Silt, Clay % SSCBD Same + Bulk Density SSCBD + 233 SSCBD + 2 at 33 kPa SSCBD + 233 + 21500 Same + 2 at 1500 kPa 0.2 0.2 Sand 0.15 0.1 Clay 0.05 Sand 0 SSC Probability Input Data 3 0.4 0 0.6 Water Content [cm 3/cm 3] 1 2 3 4 Log(Ks) [cm/day ] Unsaturated Conductivity Sand % Silt % Clay % Bulk d. Sand 79 13 8 1.45 Clay 28 29 43 1.44 Log K(h) [cm/day] Model Log Suction [cm] 4 2 Sand 0 -2 Clay -4 -6 1 2 3 4 Log Suction [cm] The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Objective Function Φ ( b,q, p )= mq nq j ∑v ∑w j j= 1 mp ∑v ∑w j j= 1 nb ∑ vˆ i, j [ q *j ( x, t i ) - q j ( x, t i , b ) ] 2 + i, j [ p *j (θ i ) - p j (θ i , b ) ] 2 + i= 1 npj i= 1 * j [b j - b j ]2 j= 1 1st term: deviations between measured and calculated space-time variables 2nd term: differences between independently measured, pj*, and predicted , pj, soil hydraulic properties 3rd term: penalty function for deviations between prior knowledge of the soil hydraulic parameters, bj*, and their final estimates, bj . Parameter Estimation in HYDRUS Parameter Estimation: - Soil hydraulic parameters - Solute transport and reaction parameters - Heat transport parameters Sequence: - Independently - Simultaneously - Sequentially Method: - Marquardt-Levenberg optimization The HYDRUS Software Packages Variably-Saturated Flow (Richards Eq.) Root Water Uptake (water, salinity stress) Multiple Solutes (decay chains, ADE) Nonlinear Sorption Two-Site Nonequilibrium Sorption Mobile-Immobile Water Heat Transport Pedotransfer Functions (hydraulic properties) Parameter Estimation Interactive Graphics-Based Interface Furrow Irrigation – Pressure Heads Dike - Velocity Vectors Solute Plume Under Dam Dike – Pressure Heads Finite Element Mesh – Cut-off Wall Capillary Barrier - Material Distributions Capillary Barrier - Velocity Vectors Tunnel - Spectral Color Maps Plume Movement in a Transect with Stream Mesh Generator Tunnel - Velocity Vectors HYDRUS - Existing Applications Agricultural: Irrigation management (FREP, LINK , Bristow et al., 2002) Drip irrigation design (FREP, LINK, Bristow et al., 2002) Sprinkler irrigation design (FREP, LINK) Tile drainage design and performance (Mohanty et al., 1998, do Vos et al., 2000) Studies of root and crop growth (Vrugt et al., 2001, 2002) Salinization and reclamation processes (Šimůnek and Suarez, 1998) Nitrogen dynamics and leaching (Ventrella et al., 2001; Jacques et al., 2002) Transport of pesticides and degradation products (Wang et al., 1998) Non-point source pollution Seasonal simulation of water flow and plant response ... HYDRUS - Existing Applications HYDRUS - Existing Applications Non-Agricultural: Non-Agricultural: Stream-aquifer interactions Leaching from radioactive waste sites at the Nevada test Site (DRI, DOE) Flow around nuclear subsidence craters at the Nevada test site (Pohll et al., 1996; Environmental impact of the drawdown of shallow water tables Wilson et al., 2000) Analysis of cone permeameter and tension infiltrometer experiments Capillary barrier at Texas low-level radioactive waste disposal site (Scanlon, 1998) Evaluation of approximate analytical analysis of capillary barriers (Morris and (Gribb et al., 1996; Kodesova et al., 1998, 1999; Šimůnek et al., 1997, 1998, 1999) Virus and bacteria transport (Shijven and Šimůnek, 2002, Bradford et al., 2002a,b, Yates et al., 2000) Hill-slope analyses Transport of TCE and its degradation products (Scharlaekens et al., 2000; Casey and Stormont, 1997; Kampf and Montenegro, 1997; Heiberger, 1998) Landfill covers with and without vegetation (Abbaspour et al, 1997; Albright, 1997; Gee et al., 1999, Scanlon et al., 2002) Simunek, 2002) Risk analysis of contaminant plumes from landfills Seepage of wastewater from land treatment systems Tunnel design - flow around buried objects (Knight, 1999) Highway design - road construction - seepage (de Haan, 2002) Stochastic analyses of solute transport in heterogeneous media (Tseng and Jury, 1993; Multicomponent geochemical transport (Jacques and Šimůnek, 2002) Analyses of riparian systems (Whitaker, 2000) Fluid flow and chemical migration within the capillary fringe (Silliman et al., 2002) Flow in historical monuments (Ishizaki et al., 2001) Flow and transport around land mines (Das et al., 2001; Šimůnek et al., 2001) Analyses of Chloride profiles in deep vadose zones to evaluate historical fluxes Roth, 1995; Roth and Hammel, 1996; Kasteel et al. 1999; Hammel et al., 1999; Roth et al., 1999; Vanderborght et al., 1998, 1999) Lake basin recharge analysis (Lee, 2000) (Scanlon et al., 2003) Coupled movement of water and energy, including vapor transport Modified Richards Equation: ∂θ ∂ ∂h ∂T ∂h ∂T = + K Lh ( h ) + K LT ( h ) + K vh + K vT −S K Lh ( h ) ∂t ∂ z ∂z ∂z ∂z ∂ z KLh KLT Kvh KvT Current and Future Development - hydraulic conductivity for liquid phase fluxes due to gradient in h - hydraulic conductivity for liquid phase fluxes due to gradient in T - isothermal vapor hydraulic conductivity - thermal vapor hydraulic conductivity Energy Transport: ∂C pT ∂θ v ∂q T ∂q ∂q T ∂ ∂T + L0 = λ (θ ) − C w l − C w ST − L0 v − C v v ∂t ∂t ∂ z ∂ z ∂z ∂z ∂z (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) Coupled Movement of Water and Energy -1000 -500 0 0 1000 2000 3000 4000 10 15 20 0 yrs 1 kyr 5 kyr 9 kyr Field 0 Amargosa Desert 0 10 20 30 40 50 0 yrs 5 kyr Field 2000 4000 6000 0 Eagle Flat 8 8000 10000 5 kyr 10 kyr 16 kyr Measured 10 kyr 16 kyr Lab 2000 4000 6000 8000 10000 5 15 20 Hueco Bolson 0 5 15 20 0 yrs 5 kyr Field 10 kyr 13 kyr 5000 10000 15000 20000 5 kyr 10 kyr 13 kyr Measured Simulated matric potentials and chloride concentrations from wet initial conditions (pluvial period) to different times of upward flow. (Scanlon et al. 2003) 10 T=0 t=0.25 d t=1 t=0.25 d 8 t=1 t=5 t=5 t=25 t=25 t=25 6 T=0 t=0.25 d 8 t=5 6 t=5 4 4 4 2 2 2 2 0 0 0.05 0.1 0.15 0.2 0 Total flux=water flux+vapor flux 0.02 0.04 Total Flux [cm/d] 0.06 0 t=1 t=25 6 4 Water Content [-] 5 kyr 12 kyr Measured 0 10 6 0 0 yrs 5 kyr 12 kyr Field Field - OP 10 T=0 8 t=1 0 0 10 10 T=0 t=0.25 d 1 kyr 5 kyr 9 kyr Measured Central High Plains Depth [cm] 5 Coupled movement of water and energy 5000 0 10 Soil heat flow by conduction Convection of sensible heat by water flow Heat removed by root water uptake Transfer of latent heat by diffusion of water vapor Transfer of sensible heat by diffusion of water vapor 0 10 20 Temperature [C] 30 0 2 4 6 Concentration [-] 8 10 Coupled movement of water and energy, freezing/thawing cycle Coupled Movement of Water and Energy, Freezing/thawing Cycle Modified Richards Equation: (1) (2) (3) (4) (5) (6) Soil heat flow by conduction Convection of sensible heat by water flow Heat removed by root water uptake Transfer of latent heat by diffusion of water vapor Transfer of sensible heat by diffusion of water vapor Freezing/thawing term -1 -3 1.00E+09 1.00E+08 1.00E+07 1.00E+06 0.02 0.00 -0.02 -0.04 -0.06 -0.08 -0.10 o Te mpe rature [ C] 1.00E+12 Silty clay Loam 1.00E+11 Sand 1.00E+10 1.00E+09 1.00E+08 Apparent heat capacity for different textures 1.00E+07 1.00E+06 0.50 0.00 -0.50 -1.00 -1.50 -2.00 o Te mpe rature [ C] Coupled movement of water and energy Freezing/thawing cycle Silty Clay Depths (cm): 0, 0.5. 1, 2, 3.5, 5, 10 Sand 1.00E+10 -1 Energy Transport: ∂C pT ∂θ v ∂θ i ∂q T ∂q ∂q T ∂ ∂T λ (θ ) + L0 − L f ρi = − C w l − C w ST − L0 v − C v v ∂t ∂t ∂t ∂ z ∂ z ∂z ∂z ∂z (6) (1) (2) (3) (4) (5) Silty clay Loam 1.00E+11 -3 - hydraulic conductivity for liquid phase fluxes due to gradient in h - hydraulic conductivity for liquid phase fluxes due to gradient in T - isothermal vapor hydraulic conductivity - thermal vapor hydraulic conductivity Apparent Capacity [Jm K ] KLh KLT Kvh KvT Apparent Capacity [Jm K ] 1.00E+12 ρ ∂θ i ∂θ ∂ ∂h ∂T ∂h ∂T K Lh ( h ) + i = + K Lh ( h ) + K LT ( h ) + K vh + K vT −S ∂t ρ w ∂t ∂ z ∂z ∂z ∂z ∂ z Heterogeneity, Layering 0 4 2 - 20 000 0 - 40 000 -2 - 60 000 -4 -6 - 0.5 0.0 0.5 1.0 1.5 2 .0 - 80 000 - 0.5 0 .0 0.5 1.0 1.5 2.0 T ime [d ays] T ime [d ays] 0.36 1.5 1.4 0.34 1.3 0.32 1.2 0.30 1.1 1.0 0.28 0.9 0.26 0.24 - 0.5 0.8 0.0 0.5 1.0 T ime [d ays] 1.5 2 .0 0.7 - 0.5 0.0 0.5 1 .0 1.5 2 .0 T ime [d ays] Nonequilibrium and Preferential Flow and Transport Dual-porosity approach (Richards eq. for water, mobileimmobile concept for solute) Dual-porosity approach (mobile-immobile concept for both water and solute) Dual-permeability approach (two overlapping porous media, one for matrix flow, one for preferential flow) [Gerke and van Genuchten, 1993] Kinematic wave approach for flow in macropores [Jarvis, 1991] Simplified first-order approach [Ross and Smettem, 2000] ∂θ θ −θ = f (θ ,θ e ) = e ∂t τ Dual-porosity hydraulic property models [Durner, 1994] Design experiments that would provide parameters for above models Dual-permeability Approach Multicomponent solute transport: Coupling HYDRUS and PHREEQC [Parkhurst and Appelo, 1999]) Gerke and van Genuchten [1993]: (two overlapping porous media, one for matrix flow, one for preferential flow) 60 0 50 0 5 5 10 10 t = 0.01 d t = 0.04 d t = 0.08 d 15 t = 0.08 d (-25%) t = 0.08 d (+25%) Fracture Flux Matrix Flux Mass Transfer Mass Transfer (-25%) Mass Transfer (+25%) 20 15 20 t = 0.01 d 25 t = 0.04 d t = 0.08 d 30 0 0.04 0.06 0.08 25 30 t = 0.08 d (+25%) 35 0.02 20 t = 0.08 d (-25%) 10 0 Depth [cm] 30 Depth [cm] F lux [cm /d ] 40 0.1 40 0.25 Time [d] 35 40 0.3 0.35 0.4 0.45 0.5 0 Water Content [-] 0.005 0.01 0.015 0.02 0.025 Water Content [-] Infiltration and mass exchange fluxes (a), water contents in the matrix Available chemical reactions: Aqueous complexation Redox reactions Ion exchange (Gains-Thomas) Surface complexation – diffuse double-layer model and nonelectrostatic surface complexation model Precipitation/dissolution Chemical kinetics Biological reactions (b) and fracture (c) domains 0.01 a) Initially the 8-cm column contains a solution (with heavy metals) in equilibrium with the cation exchanger. b) The column is then flushed with three pore volumes of solution without heavy metals. Exchange Species: Verification of HYDRUS-PHREEQC Kinetic biodegradation of NTA (nitrylotriacetate), cell growth, complexation with Co, and kinetic sorption Processes: Bacterially mediated degradation of an organic substrate Bacterial cell growth and death Aqueous speciation including metal-ligand complexation Kinetic sorption of Co and CoNTA Convective dispersive transport Parameters: L=10m, θs=0.4 m, ρ=1.5 kg/m3, v=1 m/h, , λ=0.05 m. Iinitial Cond.: O2=3.125e-5, Na=0.001, Cl=0.001 mol/L, Biomass=0.000136g/L Boundary Cond.: O2=3.125e-5, Co=5.23e-6, NTA=5.23e-6, Na=0.001, Cl=0.001 mol/L Na 0.006 Ca 0.004 0.002 Al Zn 6E-004 4E-004 Pb 2E-004 Cd 0E+000 0 3 6 9 Time (days) 12 15 0.005 0.004 CaX2 0.003 0.002 ZnX2 0.001 CdX2 0 0 3 6 9 Time (days) 12 15 0 3 6 9 Time (days) 12 15 Cl Ca Al Cd Zn 1.5 1.2 0.9 0.6 0.3 0 0 3 6 9 Time (days) 12 15 Verification of HYDRUS-PHREEQC Kinetic biodegradation of NTA, cell growth, complexation with Co, and kinetic sorption Rate equations: 1.6E-09 NTA degradation: RHNTA2− = −qm X m [HNTA ] [O ] K + [HNTA ] K + [O ] 4.0E-04 Sorbed Co - PHREEQC Sorbed CoNta Sorbed Co - HYDRUS Sorbed CoNta Biomass Biomass 2− 2 2− s a 2 Biomass production: R cell = − YR HNTA 2 − − bX Kinetic sorption (Co2+, CoNTA-): Z R Z = − k m [Z ] − K d m 1.2E-09 8.0E-10 2.0E-04 4.0E-10 1.0E-04 0.0E+00 0.0E+00 0 Xm – biomass Ks, Ka– half-saturation constants Z – species concentration 3.0E-04 10 20 30 40 Time [hours] 50 60 70 80 Biomass [g/L] Boundary concentration: Species and Complexes: 0.008 0 q=2 cm/d, λ=0.2 cm, CEC=11 mmol/cell. Al=0.5, Br=11.9, K=2, Na=6, Mg=0.75, Cd=0.09, Pb=0.1, Zn=0.25 mmol/L. Al= 0.1, Br=3.7, Cl=10, Ca=5, Mg=1 mmol/L. Al3+, Al(OH)2+, Al(OH)2+, Al(OH)3, Al(OH)4-, Br-, Cl-, Ca2+, Ca(OH)+ , Cd2+, Cd(OH)+, Cd(OH)2, Cd(OH)3-, Cd(OH)42-, CdCl+, CdCl2, CdCl3-, K+, KOH, Na+, NaOH, Mg2+, Mg(OH)+, Pb2+, Pb(OH)+, Pb(OH)2, Pb(OH)3-, Pb(OH)42-, PbCl+, PbCl2, PbCl3-, PbCl42-, Zn2+, Zn(OH)+, Zn(OH)2, Zn(OH)3-, Zn(OH)42-, ZnCl+, ZnCl2, ZnCl3-, ZnCl42 AlX3, AlOHX2, CaX2, CdX2, KX, NaX, MgX2, PbX2, ZnX2 Concentration (mol/l) Parameters: Initial concentrations: 8E-004 Cl Concentration (mol/l) Transport and cation exchange of major cations and heavy metals Relative mass balance errors (%) (cations - Ca, Mg, Na, K, Cd, Pb, Zn; anions – Cl, Br, Al) Verification of HYDRUS-PHREEQC Concentrations [mol/g] Transport and Cation Exchange (major ions and heavy metals): Concentration (mol/l) Verification of HYDRUS-PHREEQC Verification of HYDRUS-PHREEQC 0.000004 7 6 CoNTA HNTA Co CoNTA HNTA Co pH pH 0.0000025 0.000002 0.0000015 9 Processes: 5 4 Heterotrophic Organisms Hydrolysis Aerobic growth of heterotrophs on readily biodegradable OM NO3-growth of heterotrophs on readily biodegradable OM NO2-growth of heterotrophs on readily biodegradable OM Lysis Nitrosomonas Aerobic growth of N.somonas on NH4 Lysis of n-somonas Aerobic growth of N.bacter on NO2 Lysis of N.bacter Nitrobacter Ph 0.000003 Concentration [m ol/kg] Dissolved oxygen O2 Organic matter: readily biodegradable, slowly biodegradable, inert Nitrogen: NH4+, NO2-, NO3-, N2 Inorganic phosphorus Heterotrophic micro-organisms Autotropic micro-organisms: Nitrosomonas & Nitrobacter 8 0.0000035 3 0.000001 2 0.0000005 1 0 0 0 10 20 30 40 50 60 70 Constructed Wetlands 12 Components: Kinetic biodegradation of NTA, cell growth, complexation with Co, and kinetic sorption 80 Tim e [hours] Overland Flow HYDRUS-3D - Preview Kinematic wave equation: ∂h ∂Q + = q ( x, t ) ∂t ∂x h Q q(x,t) Q = α hm 100*0.5 m - unit storage of water (or mean depth), - discharge per unit width, - rate of local input, or lateral inflows (precipitation - infiltration) Manning hydraulic resistance law: α = 1.49 n S S 1/ 2 n and m = 5/3 - Manning’s roughness coefficient for overland flow - slope HYDRUS-3D - Preview HYDRUS Web Site – FAQ HYDRUS Web Site – Tutorials HYDRUS-2D – User Manual David Rassam, Jirka Šimůnek and Rien Van Genuchten Introductory examples 1. A Journey Through HYDRUS Windows 1.1. Pre-Processing 1.2. Post-Processing 2. 3. 4. 5. 6. HYDRUS Output Files Root Water Uptake Example Application Inverse Solution Trouble Shooting Appendices: I. Soil Hydraulic Properties II. Concept Related to Modelling Evaporation III. Root Water Uptake IV. Scaling Factors V. Inverse Solution VI. Alphabetical Index for HYDRUS Windows HYDRUS Web Site – Discussion Forum