Paez et al PAGES.cdr
Transcription
Paez et al PAGES.cdr
VARIABILIDAD AMBIENTAL DEL HOLOCENO EN REGIONES ARIDAS Y SEMIARIDAS DEL CENTRO-OESTE DE ARGENTINA. Holocene environmental variability in arid and semiarid regions of west-central Argentina. GRUPO DE INVESTIGACION DE PALEOECOLOGIA Y PALINOLOGIA RESUMEN Paez, M.M.(1), M.A. Zárate(2,3), L.Rojo(1,3), D. Navarro(1,3), A. Guerci(4), J. Chiesa(5), A. Srur(6,3) La comprensión de la variabilidad natural del Holoceno radica en la resolución cronoestratigráfica y en la correlación de los eventos detectados en diferentes tipos de registros (vegas, secuencias aluviales y lacustres y sitios arqueológicos). La respuesta diferencial de los proxies (estratigrafía, sedimentología, polen, carbón vegetal, diatomeas, moluscos) es dependiente de la localización y de los registros en los diferentes gradientes altitudinales y latitudinales. Los estudios multidisciplinarios realizados entre los 32°-38° S permiten discutir las hipótesis sobre los cambios climáticos del Holoceno medio y tardío. La variación regional de la vegetación, a escalas de centurias y milenios, evidencia el incremento de condiciones áridas desde ca. 9.500 14C años AP. Entre los ca. 5.000-6.000 14C años AP en alta montaña comienza la acumulación sedimentaria en los ambientes de vega actuales, se inicia la excavación en afluentes del curso medio del río Tunuyán y ocurren cambios en los niveles lacustres de Salina del Bebedero. Las asociaciones polínicas señalan vegetación Andina, del Monte y del Monte-Espinal y comunidades halófitas e hidrófitas que reflejan la dinámica de los sistemas fluvial y lacustre. En el último milenio se evidencian fluctuaciones en el transporte sedimentario y de las asociaciones polínicas en Precordillera y una degradación (excavación vertical) en la cuenca media de los ríos Tunuyán y del Atuel. La respuesta diferencial de los ambientes se discute en relación con las ocupaciones humanas. Facultad de Ciencias Exactas y Naturales, UNMdP (1) Laboratorio de Paleoecología y Palinología. Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Funes 3250 (7600) Mar del Plata. mmpaez@mdp.edu.ar (2) Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa. Santa Rosa, La Pampa. (3) CONICET. (4) Antorchas. Museo de Historia Natural de San rafael, Mendoza. (5) Departamento de Geología, Universidad Nacional de San Luis. San Luis. (6) IANIGLA-CRICYT, Mendoza. To compare the timing, direction and magnitude of climate changes and investigate the spatial pattern of these changes during Pleistocene-Holocene transition and Holocene using a multiproxy analysis with chrono-stratigraphic control on a network of records of altitudinal gradients between 32° and 38°S. The study area is subdivided in two latitudinal ranges, 32°-35°S and 35°-38°S, with different climate, vegetation and geomorphological conditions. The paleoenvironmental information comes from different types of records: peat/bogs, alluvial and lacustrine sequences and arqueological sites. In order to understand the paleoclimatic variability is essential a careful site-specific, archive-specific and time-scale-especific evaluation (sensu Grosjean et al. 2003). Data collected from these different archives and environments reveal more localized climatic information that can be used to identify the spatial pattern of climate change through time. Salinas del Bebedero Agua de La Cueva 33º32’S/66º39’W; 380 m asl 32º37’S/69º09’W, 3200 m asl 14 Stratigraphy C ye s ar BP De h pt ) m (c r St i at ap gr hy th Li o ol gy 0 100 Po lle n At latitudes higher than 30°S the orientation of the Cordillera is perpendicular to the atmospheric circulation. At latitudes lower than 35°S, the area is under the influence of semipermanent anticyclones of Pacific and Atlantic Oceans. South of these latitudes, the westerlies are predominant and the mean height of the Cordillera decreases. Grassland Hydrophitic C 14 ye sB ar 200 Decrease evaporation (sulfate) 5000 300 7500 Lower level lake High 11000 2100 +/- 25 High level lake 13000 rs ye a Río Mendoza, Río Blanco (Wayne, 1981; Espizúa, 1998, 2000) 600 2500 yrs BP? 700 Increase evaporation Holoceno 1 300 Holoceno II 2000 Holoceno III 4000 Till Almacenes 14000-12000? 8500 Travertino 9700 9500 Vallecito II 16000-12000? Vallecito I-Los Horcones 22000-18000? sand 100 150 200 250 300 350 400 450 500 550 Gruta del Indio 600 34º45’S\68º22’W, 700m asl BP 650 14C Glaciers yrs BP n le Po l C ye ar s 400 14 Río Valenzuela, Río Grande (Espizúa, 1998) Halophytic 2200 Riparian 3810 El Fierro 400 El Macho 2500-2200 B. Azufre 4700-5700 Valle Hermoso III ca. 11.000 Valle Hermoso II ca. 13600 S ? 8990 9650 0 y 5µ t. >1 2 Pa r t. >2 5 n lle Po ig ra p ra t St 400 400 Paleosoil 500 500 10250 ± 40 Halophytic Halophytic 600 Halophytic s s s 700 3570 ±45 Paludal s 3750 ±45 s 1100 800 3880 ±40 Paludal 900 1000 s 1200 1100 1200 paleosoil silts \ clays fine sands\ coarse sands s s 3570 ±20 Paludal 900 600 700 1000 Paludal: flooding plain vegetation Halophytic: Chenopodiaceae Hydrophytic: Cyperaceae-Typha th s Halophytic 300 3780 ±45 Shrub steppe: Asteraceae subf. Asteroideae ep 300 800 Andean-Patagonia: grassland, shrub steppe D le s s Halophytic 3050 ±25 ARCHAEOLOGY: A mid Holocene archaeological hiatus was Bañados del Atuel La Escala widespread in southern America (Nuñez et al., 2001). In southern Mendoza an archaeological hiatus occur between 6000 and 7000 14C yrs BP. The first occupations in the diferent envieonments began at ca. 3800 14C yrs BP . The available data suggest that all southern Mendoza has evidence of human use at ca. 2000 years BP, but with differences in biogeographical phases (Gil et al, 2005, Neme et al., 2005). Te p h r o c r o n o l o g y : A 100 540 ±25 200 2500 ±40 9610 ±70 9m 435 ±25 Paludal 100 200 Paludal n ra ph th 0 Charcoal 0 Po l 0,3 m Horizontal Lamination tig + Paludal St ra 9420 ±60 Modern analogous and pollen -climate calibration Patagonia-Monte: grassland, shrub steppe, jarillal hy BP rs ye a C 14 7m ep Paez (2004) Reinterpreted from D´Antoni (1983) 0µ Halophytic 11000 Gil et al. 2005 Monte-Espinal (jarillal, algarrobal, caldenal, grasslands) S 4000 yrs BP? Aggradational plain: homogeneous ca 9.6 ka sands (17 m), representing distal paleosuelo fan alluvial deposits (loess-like silt, ca 10.2 ka sensu Polanski, 1963) with several tephra layers interbedded. The pollen concentration is extremely low suggesting low vegetation density and abrupt deposition events. A soil, traceable along 12 km of the Alluvial terrace: sand arroyo La Estacada and its tributary the deposits at the lower Anchayuyo, develops on the topmost part of the part grading upward to alluvial sands. This paleosoil was buried by dominantly sand and sandy-silty paludal deposits between ca. 10.000 and 9600 sediments (11 to 17 m). Several 14C yrs BP. The upper sedimentary section, diatomite layers with interstratified overlying the paleosoil, is dominantly thin peat levels including composed by alluvial deposits including carbonaceous vegetation remains are diatomites with freshwater mollusk remains. interbedded in the lower sand Very thin peaty and buried soils of ca. 7900 14C deposits. The upper part is yrs BP, recording foodplain environments, are characterized by the occurrence of interbedded in the alluvial deposits. The upper several buried soils (3800, 3000, 2500, alluvial sediments are covered by an eolian 550 and 440 14C yrs BP) recording superficial layer which is the parent material of brief stability intervals in swampy present soils. environments. Puente El Zampal La Escala Brazo Abandonado 8690 ±70 ± D B P m ) s (c ar pt h ye C 14 De 50 sediments formed in the mid-Holocene when the Atuel River was dammed by alluvial fans downstream (Gosse and Evenson, 1994). The charcoal analysis showed non-woody charcoal concentration peaks (more than 1000 particles per cc) only in the peat levels suggesting a lake marginal and flooding plain vegetation for these stability intervals. Psammophytic 18 33º30’S/69ºW; 900 masl Grass >125u Stratigraphy: alluvial fan sediments of a small basing, tributary of the Atuel River, interbedded with lake Jarillal Arroyo La Estacada 0 part./cc Psammophytic 15 In VALLE DE UCO, the sedimentary material of both the aggradational surface (Late glacial/Early Holocene) and the alluvial terrace (Mid-Late Holocene) was grouped altogether into two stratigraphic units with remarkably different lithology and facies. 34º50’S/69º56’W; 2000 m asl 800 silt 1000 Agua Buena (Stingl and Garleff, 1978) 750 14 19 Hypothesis: Intensified Westerlies are the main reason for increased precipitation in Central Chile and Norte Chico (Jenny et al., 2002). In lowlands, high precipitation years correspond to El Niño years while not all El Niño years correspond to high annual precipitation (Aceituno, 1898). 700 High level lake BP (Villa-Martinez et al. 2003; Yenny et al. 2002) 900 salt silt-salt rs (Maldonado and Villagrán, 2003) 7500 Monte (jarillal, algarrobal, riparian) S 17 ye a 6100 part./cc 11 16 yrs BP C 5700 Glaciers 14C 14 4200 200 Hidrophytic C 3200 2000 Jarillal 500 Grassland Hydrophitic 800 1000 9 14 1800 4080±75 Hidrophytic 10 (Garcia et al. 2003) 1300 2380±40 8 400 BP BP rs ye a C 14 0 200 >125u 6 7 9200 200m asl Hidrophytic 5 S 32°50’S/70°54’W; 350m asl n - Jarillal 3 Lower level lake High evaporation 4 (chloride) P le 2 + Jarillal CENTRAL CHILE Ñague Aculeo 31°50’S/71°28’W l Po 1 Stable Summer 2005 Winter 2004 s Pa r Pressure at sea level pel m Sa 1300 5270 ±65 S 1400 sterile 1500 1600 20 40 60 80 100 20 40 60 80 100 Part cm-3 combination of luminescence dating and geochemical characterization of a series of adjacent tephra layers exposed in 18 m alluvial sequences was used. The wider significance of this study is that it is possible to trace tephras in eolian deposits of north and east as well as in glacial and lacustrine sequences located in the Andes. CONCLUSIONS # LGM stimated magnitude: temperature decrease of about 4.5-6.5°C - last large glacier extensions in the dry Andes to a much more humid (and probably warner )- westerly stormtracks in the Southern America moved equatorwards no more than 5-10°S, is evidenciated the study area . The paleoclimatic signal is opposite in relation to the inferred for the Pampa Interserrana, SE Buenos Aires, and are consistent with the model of anticyclone latitudinal migration. # Arid and semiarid conditions at different environments began to establish ca. 9500 14 C yrs BP. The Arid Diagonal (sensu Bruniard, 1982) began to establish ca. 8000 14C yrs BP. # Consensus exists about the occurence of a Mid-Holocene arid phase and the onset of more humid conditions about 3000 14C yr BP. In general, humid conditions persisted during the last 2000 years compared to the entire Holocene. Most of the records at Central Chile and Toms et al. 2004 the Altiplano suggest this tendency , however, the moisture sources in both region are very different (Jenny et al., 2002). # How was the biogeographical vegetation history of the arid-semiarid region? How their spatial distribution varied during Mid-Late An expansion of the study area may help to establish a regional litho-stratigraphic Holocene? framework for these alluvial sequences (Toms et al., 2004). # Peats are recorded at high mountain environments ca. 6000 (Markgraf, 1983, Wingenroth, 2000). In Vega Las Herraduras (Precordillera) ca.3.000 14C yrs BP, an stability interval in the agradation surface and an Andine grass-shrub steppe are recognized. Seasonal precipitation are inferred from hydrophytic taxa. # Sedimentary processes ocurred at Valle de Uco are also recognized at Atuel river (La Guevarina) ca. 7800 and 4000 14C yrs BP with a Monte and Monte-Patagonian associated vegetation respectively. # Spacial distribution of xerophytic Monte ca. 6000 14C yrs BP suggest a wider extension of the Arid Diagonal. # Low stimated magnitude of Mid-Late Holocene events, temperature decrease of about 0.5-0.6°C – Neoglacial extension ca. 50 km in the Cuyo, is registered in stratigraphyc sequences and in pollen spectra, with lower resolution. # ENSO-event is one but not a definite criterion for high precipitation/high river runoff in Cuyo . It is important to note that records for the Mendoza river show that some years before or after an ENSO event, the runoff is less than normal (Compagnucci, 2000). # The snow accumulation rates on the highest peaks of the Cordillera are closely related with precipitation on its western slope as well as to the water content of the snow in the Cuyo river basin on the eastern slope (Compagnucci, 1969). According to Llorens y Leiva (2000) while the fronts of many glaciers retreat, some glaciers advance significantly. A reliable chronology and precise study of the glacial formation and extension processes is still insufficient of area study. # The Late Holocene was not a uniform, stable or predictable period. For example, at Salinas del Bebedero, water level and halophytic and hydrophytic taxa fluctuations are suggested from lithology and pollen spectra. # Frecuent fluctuations in sediment transport and degradation (vertical excavation) are recognized in Tunuyán and Atuel basins during the last millenia. # Is the relative synchronicity among ENSO - neoglaciation - high precipitation - high river runoff and among intensification of Easterlies – decreased precipitation - high temperature - Monte, a consistent interpretation? Where was Arid Diagonal during the Mid-Late Holocene? Did the climatic variability actually affect the refuge availability and the human occupation hiatus?. Project PIP 5819, UNMdP-EXA 275/03, 354/06, PICT03-04-14695, UNLPam 186