High-Quality Beams for Next-Generation Accelerators Rami A. Kishek
Transcription
High-Quality Beams for Next-Generation Accelerators Rami A. Kishek
High-Quality Beams for Next-Generation Accelerators Rami A. Kishek Institute for Research in Electronics & Applied Physics University of Maryland, College Park, MD, USA Outline: 1. Why Cold Beams? 2. What is Beam Quality? 3. Key Issues 4. Past Work 5. Future Prospects Research sponsored by US DOE & DOD ONR International Linear Collider (ILC) Primary Goal: Higher Acceleration Energy (200-500 GeV) IREAP 2 Old Paradigm: Livingston Plot Energy M. Stanley Livingston Historical Development of Accelerators IREAP Year of commissioning 3 New Applications Demand Higher-Quality Spallation Neutron Source Energy Recovery Linacs IREAP X-Ray Free Electron Lasers Heavy Ion Inertial Fusion 4 “Nanoscopes” Revolutionize Science X-rays: • Diffraction Imaging • Scattering • Protein Folding 1 cm 10 mm Microwave 106 nanometers = ~ 2.5 nm 10-4 m 0.1 mm 100 μm 10-5 m 0.01 mm 10 μm Infrared DNA, Proteins 10-3 m Microworld Neutrons: • Plastics • Medicine • Magnets • Manufacturing • Environment 10-2 m 1,000 nanometers = 1 micrometer (μm) Visible 10-6 m 0.1 μm 100 nm Ultraviolet Nanoworld 10-7 m 10-8 m 0.01 μm 10 nm 10-9 m Soft x-ray http://www.sns.gov/ IREAP 1 nanometer (nm) 10-10 m 0.1 nm 5 Why Brightness? • Very short pulses ⇒ movies of reactions / processes • More X-rays ⇒ ability to image single molecules Bright secondary beams (X-rays / neutrons) require high-quality primary beams (electrons / protons) Typical requirements 1 nC, 1 ps, 1 μm emittance IREAP 6 Measures of Beam Quality 1 mc 2 Phase space volume compactness Emittance εx,n = Brightness 2I Bn = 2 π ε x,nε y,n Phase space density Luminosity N1 L= N2 νrev 4πσ x σ yB Reaction Rate at target (composite measure) Intensity K χ≡ 2 2 k 0R m x 2 p 2 x K≡ − xpx 2I Io (βγ ) 3 Dimensionless, transport dynamics K = Generalized perveance space charge potential energy / total kinetic energy IREAP 7 Intensity Parameter Definition external focusing K ε Matched Beam κ oR m = + 3 (Smooth Focusing) Rm Rm 2 k 02a Define intensity parameter χ≡ K space charge force 2 2 = k 0R m external force Beam Space charge + emittance 0 ≤ χ ≤1 IREAP 2a K ε 2 + 3 a a Betatron tune depression: ω = 1− χ ω0 Plasma frequency: ωp = 2χ ω0 8 Plot frequencies vs. intensity parameter χ≡ K k 02Rm2 Plasma kp = 2χ ko 1.5 Betatron k = 1− χ ko 1 0.5 0 EmittanceDominated Space-ChargeDominated λD > Rm λD < Rm 0 Rings IREAP M. Reiser, et al., PAC ’99. 0.5 χ 1 Sources 9 Space Charge Effects – Cold Beams are Plasmas χ = 0.21 EmittanceDominated Space-Charge-Dominated Halo χ = 0.7 - 0.9 1 cm Experiment Z=17 cm 27 cm 35 cm 42 cm 50 cm 58 cm 66 cm 74 cm Simulation Bernal, Kishek, Haber, and Reiser, PRL, 82, 4002 (1999). IREAP 10 Higher-order modes can result in nonlinear x-y coupling χ = 0.98 SG y x z I. Hofmann, Phys. Rev. E, 57 (4), 4713 (1998). Kishek, O’Shea, Reiser, Physical Review Letters, 85, 4514 (2000). ε 4ε rms oscillation scale length ~ plasma wavelength (mm-mr) 100 (a) x ε y 50 IREAP 0 5s (m ) 10 15 11 New Paradigm: Quality Counts beta*gamma COST V V==electrons electrons 1.E+06 ILC O O==protons protons Q Q==heavy heavyions ions XFEL 1.E+03 LHC LCLS Livingston Axis 15 MeV Cornell ERL Fermi Booster 1.E+00 11, 6 MeV SNS UMER HIF 1.E-03 Reiser Axis 0.0 IREAP 0.5 Intensity Parameter 1.0 COMPLEXITY 12 The University of Maryland Electron Ring (UMER) Use 10 keV electrons to inexpensively model space charge effects in other accelerators 3.7 m Energy Energy Spread Current Range 10 keV 20 eV 0.6-100 mA rmsIREAP Emittance (n) 0.2-3 μm Circulation time Pulse length Zero-Current Tune 200 ns 5-100 ns 7.6 Depressed Tune 1.5 – 6.5 13 UMER Magnets & Lattice 72 Quads (~ 7.8 G/cm) 32 cm 36 Dipoles (~ 15 G) IREAP 14 UMER Multi-Turn: “Low-Current” Results (Work in Progress) Typical BPM signals for low current 060525 test2 : Beam Current Per Turn from BPM 2 8. -4 6. 4. 1 mV/div up to 125 turns 2. 500 ns/div 0. 0 50 100 time along pulse [ns] Zero-current Tune=7.3 Beam Current Estimated Emittance* Intensity Parameter, χ Tune Shift Injected 690 μA 0.28 μm 0.21 0.80 After 25 turns 300 μA 0.23 μm 0.12 0.45 *rms, normalized IREAP S. Bernal, Proc. Advanced Accelerators Concepts Wkshp 2006. 15 Multi-Turn: More Intense Space Charge p Beam Current (mA) 20 (Work in Progress) 15 up to 60 turns 10 05 0 500 Zero-current Tune=7.3 1000 Time [ns] 1500 Injected Beam Current 18.6 mA Estimated Emittance * 1.2 μm Intensity Parameter, χ 0.70 After 9 turns 3.6 mA 0.5-1.25 μm 0.48-0.25 Tune Shift 3.3 2.0-0.9 *rms, normalized IREAP M. Walter, Proc. Advanced Accelerators Concepts Wkshp 2006. 16 Next – the “Maryland Recipe” IREAP 17 Step 1: Simulate Two sets of coils at 45 deg Quadrupoles with Electronically Adjustable Skewness Exp. data 0.93o Skew angle: 1.86o 2.79o 3.72o 4.66o 5.60o χ = 0.98 Experiment Simulation Q1 is electronically rotated 3.720 IREAP H. Li, et al., PAC 2001 18 Step 2: Measure (6-D Phase-Space Mapping) Longitudinal Phase-Space Imagers: – Fluorescent Screen Imagers – Optical Transition Radiation (OTR) Imagers Y. Cui, et al, Rev Sci Inst, 2004 E Beam pickups: – Capacitive Beam Position Monitors – Bergoz Current Monitors 10-4 energy resolution t Phase-Space Mappers: – Slit-slit (⊥) – Pepper-pot (⊥) – Retarding Potential Energy Analyzers (//) – Tomography (⊥) High-Fidelity Tomography RC3 y x y’ RC6 IREAP D. Stratakis, R. Kishek, et al., to appear19 Step 3: Perturb (real beams are not perfect) 5200 Initial density modulation splits into slow and fast wave, transforming to energy modulation Energy (eV) 5150 At z = 0.64m 1.2 Laser induced perturbation Normalized Current 0.8 0.6 0.4 0 0.2 100 ns 0 -0.2 -7 -1.5 10 -7 -1.0 10 Time -8 -5.0 10 5100 5050 5000 4950 20 WARP-RZ Experiment 1-D Theory 40 60 80 100 Time (ns) OTR Time-Resolved Images 0 0.0 10 -8 5.0 10 With perturbation -7 1.0 10 Time (s) At z=5.11m (RC6) 1.2 Peturbation splits into fast and slow space-charge waves 1 Normalized Current Beam Current (normalized) 1 K. Tian, PRSTAB, 2006. C. Tobin IREAP 0.8 0.6 Without perturbation 0.4 0.2 0 -0.2 -7 -1.5 10 -1.0 10 -7 -5.0 10 -8 Time (s) 0.0 5.0 10 -8 1.0 10 -7 R. Fiorito 21 New: Capability to produce pure energy modulations 20 ns Converts to Current modulation over 2 turns (RC7) Beam Current (normalized) 9-ns energy pulse applied in RC4 using induction module Time IREAP 200 ns Time B. Beaudoin 22 Step 4: Control • Linear Control – Hui Li, Ph.D. 2004 (steering, matching, skew correction) – Gang Bai – Dr. Mark Walter • Nonlinear Control – Chao Wu, w/ Prof. Eyad Abed (ISR) – Model Predictive Control • Can we reverse perturbations? IREAP 23 Step 5: Join Forces • Usually expertise in accelerator physics tied to particular machine • Can learn much by interacting across boundaries Ongoing collaborations: • LBNL / LLNL / Princeton – Heavy Ion Fusion • Ingo Hofmann – Ion Linacs / Rings • Dave Dowell – SLAC FEL IREAP 24 Chaos in Beams and Galaxies X' X Court Bohn Henry Kandrup (1953-2007) (1954-2003) X' X C. L. Bohn, in The Physics of High Brightness Beams, (WS, Singapore: 2000), p. 358. R.A. Kishek, et al., PAC 2001, 151-153 (2001). H.E. Kandrup, et al., Annals of the New York Academy of Sciences 1045, 12–33 (2005). R.A. Kishek, et al., ibid., 45-54 (2005). IREAP 25 Synergistic Research Directions for Cornell • Space Charge Issues and Beam Quality, Halo – ERL Injector and Linac – ILC Damping Rings • Portable items – Some diagnostics (e.g. tomography) – Use of controlled perturbations as a tool? – Theoretical/Computational research IREAP 26 Beam-Induced Multipactor – “Electron Cloud” e- + Stray electrons, attracted by beam potential and accelerated to hit other side of beam pipe, generate more secondaries. Eventually a cloud develops that will break up trailing beam bunches Limits on beam current Can also develop in long bunch with slow fall time IREAP 27 Electron Clouds Of interest to a wide class of machines – – – – ILC damping rings (positron) Spallation Neutron Source Ring LHC Upgrade Heavy Ion Accelerators (e.g. GSI) Specific items of interest: – Theoretical modeling – Low-energy electron diagnostics (e.g. energy analyzer) IREAP 28 Conclusion • Intensity Parameter characterizes space charge forces in beam • Intense beams exhibit plasma-like behavior / can carry waves • Cornell ERL is extremely intense at the front end • Beam in ILC damping rings has significant space charge • Can benefit significantly from UMER experience IREAP 29 I like to thank my colleagues … University of Maryland Electron Ring (UMER) Team: Patrick O’Shea Martin Reiser Rami Kishek Irving Haber Brian Beaudoin Junior Scientists: Santiago Bernal Mark Walter BryanQuinn Bryan Quinn Brian Beaudoin Graduate: Gang Bai Kai Tian Donald Dave C Papadopoulos Feldman Sutter Diktys Stratakis Charles Tobin Former: Yun Zou Jonathan Neumann Diktys Stratakis Yupeng Cui Hui Li Yijie Huo Santiago John Martin Harris Renee Feldman Don Feldman Ralph Fiorito Irving Charles Kai Tian Henry FreundGang Bai Haber Tobin Bernal Terry F. Godlove A. Shkvarunets Mike Holloway Kevin Jensen Dave Gillingham Mark Christos Patrick David RamiDemske Renee Walter Papadopoulos O’Shea Kishek Feldman Nathan Moody Terry http://www.umer.umd.edu/ Godlove Webmaster Reiser Ralph Fiorito Extras IREAP 31 High Resolution Energy Analyzer Retarding Mesh Collimating Cylinder Compact 10-4 energy resolution 1 mm spatial resolution few ns time resolution Y. Cui, et al, Rev Sci Inst, 2004 E Collector Grounded Housing IREAP t33 Generating Perturbations with Lasers Beam Current Electron Beam Thermionic only, 100ns pulse Heated Photocathode Drive Laser Photoemission + Thermionic 5ns pulse Photoemission only (Cool cathode) IREAP 34