Compilerbau - DHBW Stuttgart

Transcription

Compilerbau - DHBW Stuttgart
Compilerbau
Stephan Schulz
stephan.schulz@dhbw-stuttgart.de
Code-Generierung
Semantik
Optimierung
Scanner Parser
AST
Table of Contents
Preliminaries
Introduction
Refresher: Flex and Bison
Exercise 1: Scientific Calculator
Syntax Analysis
Example Language: nanoLang
Grammars and Derivations
Semantic Analysis
Runtime Environment and Code Generation
2
,
Introduction
I
Stephan Schulz
I
I
I
I
I
I
Dipl.-Inform., U. Kaiserslautern, 1995
Dr. rer. nat., TU München, 2000
Visiting professor, U. Miami, 2002
Visiting professor, U. West Indies, 2005
Visiting lecturer (Hildesheim, Offenburg, . . . ) seit 2009
Industry experience: Building Air Traffic Control systems
I
I
I
System engineer, 2005
Project manager, 2007
Product Manager, 2013
I Professor, DHBW Stuttgart, 2014
3
,
Introduction
I
Stephan Schulz
I
I
I
I
I
I
Dipl.-Inform., U. Kaiserslautern, 1995
Dr. rer. nat., TU München, 2000
Visiting professor, U. Miami, 2002
Visiting professor, U. West Indies, 2005
Visiting lecturer (Hildesheim, Offenburg, . . . ) seit 2009
Industry experience: Building Air Traffic Control systems
I
I
I
System engineer, 2005
Project manager, 2007
Product Manager, 2013
I Professor, DHBW Stuttgart, 2014
Research: Logic & Deduction
3
,
Goals for Today
I
Practical issues
I
Programming language survey
I
Execution of languages
I
Low-level code vs. high-level code
I
Structure of a Compiler
Refresher
I
I Grammars
I Flex/Bison
I
Programming exercises
I Scientific calculator revisited
4
,
This Course in Context
I
Formal languages and automata
I
I
I
I
Basic theory - languages and automata
General grammars
Abstract parsing
Computability
Focus on foundations
I
Compiler construction
I
I
I
I
Advanced theory - parsers and languages
Tools and their use
Writing parsers and scanners
Code generation and run times
Focus on practical applications
5
,
Practical issues
I
Lecture time: Wednesdays, 12:30-16:45
I
I
I
I
I
Lecture (with exercises): 12:30-14:45
Lab: 15:00-16:45
Breaks will be somewhat flexible
No lecture on March 25th (I’m snowboarding)
Grading:
I Lecture Compilerbau: Written Exam, grade averaged with Formal
Languages&Automata for module grade
I Lab: Pass/Fail based on success in exercises
6
,
Computing Environment
I
For practical exercises, you will need a complete Linux/UNIX
environment. If you do not run one natively, there are several
options:
I You can install VirtualBox (https://www.virtualbox.org) and
then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual
machine. Make sure to install the Guest Additions
I For Windows, you can install the complete UNIX emulation package
Cygwin from http://cygwin.com
I For MacOS, you can install fink
(http://fink.sourceforge.net/) or MacPorts
(https://www.macports.org/) and the necessary tools
I
You will need at least flex, bison, gcc, grep, sed, AWK, make, and
a good text editor
7
,
Resources
I
Course web page
I http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html
I
Literature
I Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman:
Compilers: Principles, Techniques, and Tools
I Kenneth C. Louden: Compiler Construction - Principles and Practice
I Ulrich Hedtstück: Einführung in die theoretische Informatik
8
,
Exercise: Programming Languages
I
Name and describe several modern programming languages!
9
,
Modern Programming Languages
Desirable properties of high-level languages
I Expressive and flexible
I
I
I
I
Close to application domains
Good abstractions
Powerful constructs
Readable
I
Compact
I
Machine independent
I Programmer productivity depends on length (!)
I Code should run on many platforms
I Code should run on evolving platforms
I
Strong error-checking
I Static
I Dynamic
I
Efficiently executable
10
,
Low-Level Code
I
Machine code
I
I
I
I
I
I
I
I
Binary
Machine-specific
Operations (and operands) encoded in instruction words
Basic operations only
Manipulates finite number of registers
Direct access to memory locations
Flow control via conditional and unconditional jumps (think goto)
Basic data types (bytes, words)
11
,
Low-Level Code
I
Machine code
I
I
I
I
I
I
I
I
Binary
Machine-specific
Operations (and operands) encoded in instruction words
Basic operations only
Manipulates finite number of registers
Direct access to memory locations
Flow control via conditional and unconditional jumps (think goto)
Basic data types (bytes, words)
Directly executable by processor
11
,
Low-Level Code
I
Machine code
I
I
I
I
I
I
I
I
Binary
Machine-specific
Operations (and operands) encoded in instruction words
Basic operations only
Manipulates finite number of registers
Direct access to memory locations
Flow control via conditional and unconditional jumps (think goto)
Basic data types (bytes, words)
Directly executable by processor
I
Assembly languages
I Textual representation of machine code
I Symbolic names for operations and operands
I Labels for addresses (code and data)
11
,
Low-Level Code
I
Machine code
I
I
I
I
I
I
I
I
Binary
Machine-specific
Operations (and operands) encoded in instruction words
Basic operations only
Manipulates finite number of registers
Direct access to memory locations
Flow control via conditional and unconditional jumps (think goto)
Basic data types (bytes, words)
Directly executable by processor
I
Assembly languages
I Textual representation of machine code
I Symbolic names for operations and operands
I Labels for addresses (code and data)
Direct one-to-one mapping to machine code
11
,
Exercise: Low-Level Code – Minimal C
I
Predefined global variables
I Integers R0, R1, R2, R3, R4
I Integer array mem[MAXMEM]
I No new variables allowed
I
No parameters (or return) for functions
Flow control: Only if and goto (not while, for, . . . )
I
Arithmetic only between R0, R1, R2, R3, R4
I
I No blocks after if (only one command allowed)
I Result must be stored in one of R0, R1, R2, R3, R4
I Operands: Only R0, R1, R2, R3, R4 allowed (no nested
sub-expressions)
I Unary incement/decrement is ok (R0++)
I R0, R1, R2, R3, R4 can be stored in/loaded from mem, indexed
with a fixed address or one of the variables.
12
,
Exercise: Minimal C Example
/∗ Compute sum from 0 t o R0 , r e t u r n r e s u l t i n R1 ∗/
void user code ( void )
{
/∗ R0 i s t h e i n p u t v a l u e and l i m i t ∗/
R1 = 0 ;
/∗ Sum , v a l u e r e t u r n e d ∗/
R2 = 0 ;
/∗ Loop c o u n t e r ∗/
R3 = 1 ;
/∗ For i n c r e m e n t s ∗/
loop :
i f ( R2 > R0 )
goto end ;
R1 = R1+R2 ;
R2 = R2+R3 ;
goto l o o p ;
end :
return ;
}
13
,
Exercise: Low-Level Code
I
Write (in Minimal C) the following functions:
I A program computing the factorial of R0
I A program computing the Fibonacci-number of R0 iteratively
I A program computing the Fibonacci-number of R0 recursively
I
You can find a frame for your code at the course web page,
http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html
14
,
Surprise!
Computers don’t execute high-level languages (directly)!
15
,
Execution of high-level programs
Compiled languages
Interpreted languages
Development Time
Run Time
16
,
Execution of high-level programs
Data
Compiled languages
Program
Compiler
Executable
Results
Interpreted languages
Development Time
Run Time
16
,
Execution of high-level programs
Data
Compiled languages
Program
Compiler
Executable
Results
Interpreted languages
Program
Data
Interpreter
Results
Development Time
Run Time
16
,
Compilers
Compilers translate high-level languages into low-level code!
17
,
Reminder: Syntactic Structure of Computer Languages
I
Most computer languages are mostly context-free
I Regular: vocabulary
I
I
I
Keywords, operators, identifiers
Described by regular expressions or regular grammar
Handled by (generated or hand-written) scanner/tokenizer/lexer
I Context-free: program structure
I
I
I
Matching parenthesis, block structure, algebraic expressions, . . .
Described by context-free grammar
Handled by (generated or hand-written) parser
I Context-sensitive: e.g. declarations
I
I
Described by human-readable constraints
Handled in an ad-hoc fashion (e.g. symbol table)
18
,
High-Level Architecture of a Compiler
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
19
,
Source Handler
I
Handles input files
I
Provides character-by-character access
I
May maintain file/line/colum (for error messages)
I
May provide look-ahead
Result: Sequence of characters (with positions)
20
,
Lexical Analysis/Scanning
I
I
Breaks program into token
Typical tokens:
I Reserved word (if, while)
I Identifier (i, database)
I Symbols ({, }, (, ), +, -, ...
Result: Sequence of tokens
21
,
Exercise: Lexical Analysis
i n t main ( i n t a r g c , char ∗ a r g v [ ] )
{
R0 = 0 ;
R1 = 0 ;
R2 = 0 ;
R3 = 1 ;
R4 = 1 ;
f o r ( i n t i = 0 ; i <MAXMEM; i ++)
{
mem[ i ] = 0 ;
}
user code ();
return 0;
}
22
,
Automatisation with Flex
Flex
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
23
,
Syntactical Analysis/Parsing
I
I
Description of the language with a context-free grammar
Parsing:
I Try to build a parse tree/abstract syntax tree (AST)
I Parse tree unambiguously describes structure of a program
I AST reflects abstract syntax (can e.g. drop parenthesis)
I
Methods:
I Manual recursive descent parser
I Automatic with a table-driven bottom-up parser
Result: Abstract Syntax Tree
24
,
Automatisation with Bison
Flex
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Bison
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
25
,
Semantic Analysis
I
Analyze static properties of the program
I
I
I
I
I
Which variable has which type?
Are all expressions well-typed?
Which names are defined?
Which names are referenced?
Core tool: Symbol table
Result: Annotated AST
26
,
Optimization
I
Transform Abstract Syntax Tree to generate better code
I Smaller
I Faster
I Both
I
Mechanisms
I
I
I
I
Common sub-expression elimination
Loop unrolling
Dead code/data elimination
...
Result: Optimized AST
27
,
Code Generation
I
I
Convert optimized AST into low-level code
Target languages:
I
I
I
I
I
Assembly code
Machine code
VM code (z.B. JAVA byte-code, p-Code)
C (as a “portable assembler”)
...
Result: Program in target language
28
,
Refresher: Flex
29
,
Flex Overview
I
I
Flex is a scanner generator
Input: Specification of a regular language and what to do with it
I Definitions - named regular expressions
I Rules - patters+actions
I (miscellaneous support code)
I
Output: Source code of scanner
I
I
I
I
Scans input for patterns
Executes associated actions
Default action: Copy input to output
Interface for higher-level processing: yylex() function
30
,
Flex Overview
!
Definitions
Rules
Miscellanous code
flex+gcc
!
!
!
Input
scanner
!
Tokenized/
processed
output
31
,
Flex Overview
Development time
!
Definitions
Rules
Miscellanous code
flex+gcc
!
!
!
Input
scanner
!
Tokenized/
processed
output
Execution time
31
,
Flex Example Task
I
I
(Artificial) goal: Sum up all numbers in a file, separately for ints and
floats
Given: A file with numbers and commands
I Ints: Non-empty sequences of digits
I Floats: Non-empty sequences of digits, followed by decimal dot,
followed by (potentially empty) sequence of digits
I Command print: Print current sums
I Command reset: Reset sums to 0.
I
At end of file, print sums
32
,
Flex Example Output
Input
Output
12 3.1415
0.33333
print reset
2 11
1.5 2.5 print
1
print 1.0
int:
12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int:
2 ("2")
int:
11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
Current: 13 : 4.000000
int:
1 ("1")
Current: 14 : 4.000000
float: 1.000000 ("1.0")
Final 14 : 5.000000
33
,
Basic Structure of Flex Files
I
Flex files have 3 sections
I Definitions
I Rules
I User Code
I
Sections are separated by %%
I
Flex files traditionally use the suffix .l
34
,
Example Code (definition section)
%%option noyywrap
DIGIT
[0-9]
%{
int
intval
= 0;
double floatval = 0.0;
%}
%%
35
,
Example Code (rule section)
{DIGIT}+
{
printf( "int:
%d (\"%s\")\n", atoi(yytext), yytext );
intval += atoi(yytext);
}
{DIGIT}+"."{DIGIT}*
{
printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
floatval += atof(yytext);
}
reset {
intval = 0;
floatval = 0;
printf("Reset\n");
}
print {
printf("Current: %d : %f\n", intval, floatval);
}
\n|. {
/* Skip */
}
36
,
Example Code (user code section)
%%
int main( int argc, char **argv )
{
++argv, --argc; /* skip over program name */
if ( argc > 0 )
yyin = fopen( argv[0], "r" );
else
yyin = stdin;
yylex();
printf("Final
%d : %f\n", intval, floatval);
}
37
,
Generating a scanner
> flex -t numbers.l > numbers.c
> gcc
-c -o numbers.o numbers.c
> gcc numbers.o -o scan_numbers
> ./scan_numbers Numbers.txt
int:
12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int:
2 ("2")
int:
11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
...
38
,
Flexing in detail
> flex -tv numbers.l > numbers.c
scanner options: -tvI8 -Cem
37/2000 NFA states
18/1000 DFA states (50 words)
5 rules
Compressed tables always back-up
1/40 start conditions
20 epsilon states, 11 double epsilon states
6/100 character classes needed 31/500 words
of storage, 0 reused
36 state/nextstate pairs created
24/12 unique/duplicate transitions
...
381 total table entries needed
39
,
Definition Section
I
I
Can contain flex options
Can contain (C) initialization code
I
I
I
I
I
Typically #include() directives
Global variable definitions
Macros and type definitions
Initialization code is embedded in %{ and %}
Can contain definitions of regular expressions
I Format: NAME RE
I Defined NAMES can be referenced later
40
,
Example Code (definition section) (revisited)
%%option noyywrap
DIGIT
[0-9]
%{
int
intval
= 0;
double floatval = 0.0;
%}
%%
41
,
Rule Section
I
This is the core of the scanner!
I
Rules have the form PATTERN ACTION
Patterns are regular expressions
I
I Typically use previous definitions
I
I
THERE IS WHITE SPACE BETWEEN PATTERN AND ACTION!
Actions are C code
Can be embedded in { and }
Can be simple C statements
For a token-by-token scanner, must include return statement
Inside the action, the variable yytext contains the text matched by
the pattern
I Otherwise: Full input file is processed
I
I
I
I
42
,
Example Code (rule section) (revisited)
{DIGIT}+
{
printf( "int:
%d (\"%s\")\n", atoi(yytext), yytext );
intval += atoi(yytext);
}
{DIGIT}+"."{DIGIT}*
{
printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
floatval += atof(yytext);
}
reset {
intval = 0;
floatval = 0;
printf("Reset\n");
}
print {
printf("Current: %d : %f\n", intval, floatval);
}
\n|. {
/* Skip */
}
43
,
User code section
I
Can contain all kinds of code
I
For stand-alone scanner: must include main()
I
In main(), the function yylex() will invoke the scanner
I
yylex() will read data from the file pointer yyin (so main() must
set it up reasonably
44
,
Example Code (user code section) (revisited)
%%
int main( int argc, char **argv )
{
++argv, --argc; /* skip over program name */
if ( argc > 0 )
yyin = fopen( argv[0], "r" );
else
yyin = stdin;
yylex();
printf("Final
%d : %f\n", intval, floatval);
}
45
,
A comment on comments
I
Comments in Flex are complicated
I . . . because nearly everything can be a pattern
I
Simple rules:
I
I
I
I
Use old-style C comments /* This is a comment */
Never start them in the first column
Comments are copied into the generated code
Read the manual if you want the dirty details
46
,
Flex Miscellany
I
Flex online:
I http://flex.sourceforge.net/
I Manual: http://flex.sourceforge.net/manual/
I REs: http://flex.sourceforge.net/manual/Patterns.html
I
make knows flex
I Make will automatically generate file.o from file.l
I Be sure to set LEX=flex to enable flex extensions
I Makefile example:
LEX=flex
all: scan_numbers
numbers.o: numbers.l
scan_numbers: numbers.o
gcc numbers.o -o scan_numbers
47
,
Refresher: Bison
48
,
YACC/Bison
I
Yacc - Yet Another Compiler Compiler
I Originally written ≈1971 by Stephen
C. Johnson at AT&T
I LALR parser generator
I Translates grammar into syntax
analyzer
I
GNU Bison
I Written by Robert Corbett in 1988
I Yacc-compatibility by Richard
Stallman
I Output languages now C, C++, Java
I
Yacc, Bison, BYacc, . . . mostly
compatible (POSIX P1003.2)
49
,
Yacc/Bison Background
I
By default, Bison constructs a 1 token Look-Ahead Left-to-right
Rightmost-derivation or LALR(1) parser
I Input tokens are processed left-to-right
I Shift-reduce parser:
I
I
I
I
I
I
I
Stack holds tokens (terminals) and non-terminals
Tokens are shifted from input to stack. If the top of the stack
contains symbols that represent the right hand side (RHS) of a
grammar rule, the content is reduced to the LHS
Since input is reduced left-to-right, this corresponds to a rightmost
derivation
Ambiguities are solved via look-ahead and special rules
If input can be reduced to start symbol, success!
Error otherwise
LALR(1) is efficient in time and memory
I Can parse “all reasonable languages”
I For unreasonable languages, Bison (but not Yacc) can also construct
GLR (General LR) parsers
I
I
Try all possibilities with back-tracking
Corresponds to the non-determinism of stack machines
50
,
Yacc/Bison Overview
I
I
Bison reads a specification file and converts it into (C) code of a
parser
Specification file: Definitions, grammar rules with actions, support
code
I Definitions: Token names, associated values, includes, declarations
I Grammar rules: Non-terminal with alternatives, action associated with
each alternative
I Support code: e.g. main() function, error handling. . .
I Syntax similar to (F)lex
I
I
I
I
Sections separated by %%
Special commands start with %
Bison generates function yyparse()
Bison needs function yylex()
I Usually provided via (F)lex
51
,
Yacc/Bison workflow
Bison Input File
<file>.y
Bison
Flex Input file
<file>.l
Definitions file
<file>.tab.h
Flex
Parser Source
<file>.tab.c
#include
gcc
Lexer Source
<file>.c
Parser object
<file>.tab.o
gcc
Lexer object
<file>.o
linker (gcc)
Some input
to process
Final executable
parser
Some output
produced
52
,
Yacc/Bison workflow
Development time
Bison Input File
<file>.y
Bison
Flex Input file
<file>.l
Definitions file
<file>.tab.h
Flex
Parser Source
<file>.tab.c
#include
gcc
Lexer Source
<file>.c
Parser object
<file>.tab.o
gcc
Lexer object
<file>.o
linker (gcc)
Some input
to process
Final executable
parser
Some output
produced
Execution time
52
,
Example task: Desk calculator
I
Desk calculator
I Reads algebraic expressions and assignments
I Prints result of expressions
I Can store values in registers R0-R99
53
,
Example task: Desk calculator
I
Desk calculator
I Reads algebraic expressions and assignments
I Prints result of expressions
I Can store values in registers R0-R99
I
Example session:
[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000
(3.1415*R10+3)
> 87.820500
R9=(3.1415*R10+3)
> RegVal: 87.820500
R9+R10
> 114.820500
...
53
,
Abstract grammar for desk calculator (partial)
GDC = hVN , VT , P, Si
I
VT = {PLUS, MULT,
ASSIGN, OPENPAR,
CLOSEPAR, REGISTER,
FLOAT, . . . }
I Some terminals are
single characters (+,
=, . . . )
I Others are complex:
R10, 1.3e7
I Terminals (“tokens”)
are generated by the
lexer
I
VN = {stmt, assign,
expr, term, factor, . . . }
I P :
stmt
assign
expr
term
factor
I
→
|
→
→
|
→
|
→
|
|
assign
expr
REGISTER ASSIGN expr
expr PLUS term
term
term MULT factor
factor
REGISTER
FLOAT
OPENPAR expr CLOSEPAR
S = *handwave*
I For a single statement, S = stmt
I In practice, we need to handle
sequences of statements and empty
input lines (not reflected in the
grammar)
54
,
Lexer interface
I
I
Bison parser requires yylex() function
yylex() returns token
I Token text is defined by regular expression pattern
I Tokens are encoded as integers
I Symbolic names for tokens are defined by Bison in generated header
file
I
I
By convention: Token names are all CAPITALS
yylex() provides optional semantic value of token
I Stored in global variable yylval
I Type of yylval defined by Bison in generated header file
I
I
I
Default is int
For more complex situations often a union
For our example: Union of double (for floating point values) and
integer (for register numbers)
55
,
Lexer for desk calculator (1)
/*
Lexer for a minimal "scientific" calculator.
Copyright 2014 by Stephan Schulz, schulz@eprover.org.
This code is released under the GNU General Public Licence
Version 2.
*/
%option noyywrap
%{
#include "scicalcparse.tab.h"
%}
56
,
Lexer for desk calculator (2)
DIGIT
INT
PLAINFLOAT
EXP
NUMBER
REG
[0-9]
{DIGIT}+
{INT}|{INT}[.]|{INT}[.]{INT}|[.]{INT}
[eE](\+|-)?{INT}
{PLAINFLOAT}{EXP}?
R{DIGIT}{DIGIT}?
%%
"*"
"+"
"="
"("
")"
\n
{return
{return
{return
{return
{return
{return
MULT;}
PLUS;}
ASSIGN;}
OPENPAR;}
CLOSEPAR;}
NEWLINE;}
57
,
Lexer for desk calculator (3)
{REG}
{
yylval.regno = atoi(yytext+1);
return REGISTER;
}
{NUMBER} {
yylval.val = atof(yytext);
return FLOAT;
}
[ ] { /* Skip
.
whitespace*/ }
/* Everything else is an invalid character. */
{ return ERROR;}
%%
58
,
Data model of desk calculator
I
Desk calculator has simple state
I 100 floating point registers
I R0-R99
I
Represented in C as array of doubles:
#define MAXREGS 100
double regfile[MAXREGS];
I
Needs to be initialized in support code!
59
,
Bison code for desk calculator: Header
%{
#include <stdio.h>
#define MAXREGS 100
double regfile[MAXREGS];
extern int yyerror(char* err);
extern int yylex(void);
%}
%union {
double val;
int
regno;
}
60
,
Bison code for desk calculator: Tokens
%start stmtseq
%left
%left
%token
%token
%token
%token
%token
%token
%token
PLUS
MULT
ASSIGN
OPENPAR
CLOSEPAR
NEWLINE
REGISTER
FLOAT
ERROR
%%
61
,
Actions in Bison
I
Bison is based on syntax rules with associated actions
I Whenever a reduce is performed, the action associated with the rule
is executed
I
I
Actions can be arbitrary C code
Frequent: semantic actions
I The action sets a semantic value based on the semantic value of the
symbols reduced by the rule
I For terminal symbols: Semantic value is yylval from Flex
I Semantic actions have “historically valuable” syntax
I
I
I
I
I
Value of reduced symbol: $$
Value of first symbol in syntax rule body: $1
Value of second symbol in syntax rule body: $2
...
Access to named components: $<val>1
62
,
Bison code for desk calculator: Grammar (1)
stmtseq: /* Empty */
| NEWLINE stmtseq
{}
| stmt NEWLINE stmtseq {}
| error NEWLINE stmtseq {};
/* After an error,
start afresh */
I
Head: sequence of statements
I
First body line: Skip empty lines
I
Second body line: separate current statement from rest
I
Third body line: After parse error, start again with new line
63
,
Bison code for desk calculator: Grammar (2)
stmt: assign
|expr
{printf("> RegVal: %f\n", $<val>1);}
{printf("> %f\n", $<val>1);};
assign: REGISTER ASSIGN expr {regfile[$<regno>1] = $<val>3;
$<val>$ = $<val>3;} ;
expr: expr PLUS term {$<val>$ = $<val>1 + $<val>3;}
| term {$<val>$ = $<val>1;};
term: term MULT factor {$<val>$ = $<val>1 * $<val>3;}
| factor {$<val>$ = $<val>1;};
factor: REGISTER {$<val>$ = regfile[$<regno>1];}
| FLOAT {$<val>$ = $<val>1;}
| OPENPAR expr CLOSEPAR {$<val>$ = $<val>2;};
64
,
Bison code for desk calculator: Support code
int yyerror(char* err)
{
printf("Error: %s\n", err);
return 0;
}
int main (int argc, char* argv[])
{
int i;
for(i=0; i<MAXREGS; i++)
{
regfile[i] = 0.0;
}
return yyparse();
}
65
,
Reminder: Workflow and dependencies
Bison Input File
<file>.y
Bison
Flex Input file
<file>.l
Definitions file
<file>.tab.h
Flex
Parser Source
<file>.tab.c
#include
gcc
Lexer Source
<file>.c
Parser object
<file>.tab.o
gcc
Lexer object
<file>.o
linker (gcc)
Some input
to process
Final executable
parser
Some output
produced
66
,
Building the calculator
1. Generate parser C code and include file for lexer
I bison -d scicalcparse.y
I Generates scicalcparse.tab.c and scicalcparse.tab.h
2. Generate lexer C code
I flex -t scicalclex.l > scicalclex.c
3. Compile lexer
I gcc -c -o scicalclex.o scicalclex.c
4. Compile parser and support code
I gcc -c -o scicalcparse.tab.o scicalcparse.tab.c
5. Link everything
I gcc scicalclex.o scicalcparse.tab.o -o scicalc
6. Fun!
I ./scicalc
67
,
Exercise
I
Exercise 1 (Refresher):
I Go to
http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html
I Download scicalcparse.y and scicalclex.l
I Build the calculator
I Run and test the calculator
I
Exercise 2 (Warm-up):
I Add support for division and subtraction /, I Add support for unary minus (the negation operator -)
I
Exercise 3 (Bonus):
I Change the desk calculator so that it converts its input into a C
program that will perform the same actions that the calculator
performed interactively!
68
,
Review: Goals for Today
I
Practical issues
I
Programming language survey
I
Execution of languages
I
Low-level code vs. high-level code
I
Structure of a Compiler
Refresher
I
I Grammars
I Flex/Bison
I
Programming exercises
I Scientific calculator revisited
69
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
70
,
Goals for Today
I
I
Refresher
Reminder: Grammars and Chomsky-Hierarchy
I Grammars
I Regular languages and expressions
I Context-free grammars and languages
I
Syntactic structure of programming languages
I
nanoLang
I
Programming exercise: Tokenizing nanoLang
71
,
Refresher
I
Some properties of programming languages and implementations
I
I
I
I
I
Object oriented vs. Procedural
Imperative vs. Functional
Statically typed vs. dynamically typed (vs. no types“)
”
Compiled vs. interpreted
High-level level languages
I Expressive/Complex functionality
I Features correspond to application concepts
I Good abstraction
I
Low-level languages
I
I
I
I
Simple operations
Features dictated by hardware architecture
(Close to) what processors can execute
Limited abstraction
72
,
Refresher
I
Structure of compiler
I
I
I
I
I
I
I
Tokenizer
Parser
Semantic analyis
Optimizer
Code generator
...
Some applications of compiler technology
I Implementation of programming languages
I Parsing of data formats/serialization
I
I
I
I
I
I
I
E.g. Word documents - may include optimization!
HTML/XML for web pages/SOA
XSLT document transformers
LATEX
ATCCL
...
Flex & Bison
73
,
Refresher: Grammars
74
,
Formal Grammars: Motivation
Formal grammars describe formal languages!
I Derviative approach
I A grammar has a set of rules
I Rules replace words with words
I A word that can be derived from a special start symbol is in the
language of the grammar
75
,
Formal Grammars: Motivation
Formal grammars describe formal languages!
I Derviative approach
I A grammar has a set of rules
I Rules replace words with words
I A word that can be derived from a special start symbol is in the
language of the grammar
In the concrete case of programming languages, “Words of the
language” are syntactically correct programs!
75
,
Grammars: Examples
S → aA,
A → bB,
B→ε
76
,
Grammars: Examples
S → aA, A → bB, B → ε
generates ab (starting from S): S → aA → abB → ab
76
,
Grammars: Examples
S → aA, A → bB, B → ε
generates ab (starting from S): S → aA → abB → ab
S → ε,
S → aSb
76
,
Grammars: Examples
S → aA, A → bB, B → ε
generates ab (starting from S): S → aA → abB → ab
S → ε, S → aSb
generates an b n
76
,
Grammars: definition
Noam Chomsky defined a grammar as a quadruple
G = hVN , VT , P, Si
(1)
with
1. the set of non-terminal symbols VN ,
2. the set of terminal symbols VT ,
3. the set of production rules P of the form
α→β
(2)
with α ∈ V ∗ VN V ∗ , β ∈ V ∗ , V = VN ∪ VT
4. the distinguished start symbol S ∈ VN .
77
,
Grammars: Shorthand
For the sake of simplicity, we will be using the short form
α → β1 | · · · |βn replacing α → β1
..
.
(3)
α → βn
78
,
Example: C identifiers
We want to define a grammar
G = hVN , VT , P, Si
(4)
to describe identifiers of the C programming language:
I alpha-numeric words
I which must not start with a digit
I and may contain an underscore ( )
79
,
Example: C identifiers
We want to define a grammar
G = hVN , VT , P, Si
(4)
to describe identifiers of the C programming language:
I alpha-numeric words
I which must not start with a digit
I and may contain an underscore ( )
VN = {I , R, L, D} (identifier, rest, letter, digit),
VT = {a, · · · , z, A, · · · , Z, 0, · · · , 9, },
P={
I → LR| R|L|
R → LR|DR| R|L|D|
L → a| · · · |z|A| · · · |Z
D → 0| · · · |9}
S = I.
79
,
Formal grammars: derivation
Derivation: description of operation of grammars
Given the grammar
G = hVN , VT , P, Si,
(5)
we define the relation
x ⇒G y
iff ∃u, v , p, q ∈
V∗
: (x = upv ) ∧ (p → q ∈ P) ∧ (y = uqv )
(6)
(7)
pronounced as “G derives y from x in one step”.
80
,
Formal grammars: derivation
Derivation: description of operation of grammars
Given the grammar
G = hVN , VT , P, Si,
(5)
we define the relation
x ⇒G y
iff ∃u, v , p, q ∈
V∗
: (x = upv ) ∧ (p → q ∈ P) ∧ (y = uqv )
(6)
(7)
pronounced as “G derives y from x in one step”.
We also define the relation
x ⇒∗G y iff ∃w0 , . . . , wn
(8)
with w0 = x, wn = y , wi−1 ⇒G wi for i ∈ {1, · · · , n}
pronounced as “G derives y from x (in zero or more steps)”.
80
,
Formal grammars: derivation example I
G = hVN , VT , P, Si
with
1. VN = {S},
2. VT = {0},
3. P = {S → 0S,
4. S = S.
(9)
S → 0},
81
,
Formal grammars: derivation example I
G = hVN , VT , P, Si
(9)
with
1. VN = {S},
2. VT = {0},
3. P = {S → 0S, S → 0},
4. S = S.
Derivations of G have the general form
S ⇒ 0S ⇒ 00S ⇒ · · · ⇒ 0n−1 S ⇒ 0n
(10)
81
,
Formal grammars: derivation example I
G = hVN , VT , P, Si
(9)
with
1. VN = {S},
2. VT = {0},
3. P = {S → 0S, S → 0},
4. S = S.
Derivations of G have the general form
S ⇒ 0S ⇒ 00S ⇒ · · · ⇒ 0n−1 S ⇒ 0n
(10)
Apparently, the language produced by G (or the language of G) is
L(G ) = {0n |n ∈ N; n > 0}.
(11)
81
,
Formal grammars: derivation example II
G = hVN , VT , P, Si
with
1. VN = {S},
2. VT = {0, 1},
3. P = {S → 0S1,
4. S = S.
(12)
S → 01},
82
,
Formal grammars: derivation example II
G = hVN , VT , P, Si
(12)
with
1. VN = {S},
2. VT = {0, 1},
3. P = {S → 0S1, S → 01},
4. S = S.
Derivations of G have the general form
S ⇒ 0S1 ⇒ 00S11 ⇒ · · · ⇒ 0n−1 S1n−1 ⇒ 0n 1n .
(13)
82
,
Formal grammars: derivation example II
G = hVN , VT , P, Si
(12)
with
1. VN = {S},
2. VT = {0, 1},
3. P = {S → 0S1, S → 01},
4. S = S.
Derivations of G have the general form
S ⇒ 0S1 ⇒ 00S11 ⇒ · · · ⇒ 0n−1 S1n−1 ⇒ 0n 1n .
(13)
The language of G is
L(G ) = {0n 1n |n ∈ N; n > 0}.
(14)
82
,
Formal grammars: derivation example II
G = hVN , VT , P, Si
(12)
with
1. VN = {S},
2. VT = {0, 1},
3. P = {S → 0S1, S → 01},
4. S = S.
Derivations of G have the general form
S ⇒ 0S1 ⇒ 00S11 ⇒ · · · ⇒ 0n−1 S1n−1 ⇒ 0n 1n .
(13)
The language of G is
L(G ) = {0n 1n |n ∈ N; n > 0}.
(14)
Reminder: L(G) is not regular!
82
,
The Chomsky hierarchy (0)
Given the grammar
G = hVN , VT , P, Si,
(15)
we define the following grammar/language classes
I
G is of Type 0 or unrestricted
83
,
The Chomsky hierarchy (0)
Given the grammar
G = hVN , VT , P, Si,
(15)
we define the following grammar/language classes
I
G is of Type 0 or unrestricted
All grammars are Type 0!
83
,
The Chomsky hierarchy (1)
G = hVN , VT , P, Si,
I
(16)
G is Type 1 or context-sensitive
if all productions are of the form
α1 Aα2 → α1 βα2 with A ∈ VN ; α1 , α2 ∈ V ∗ , β ∈ VV ∗
(17)
Exception:
S → ε ∈ P is allowed if
α1 , α2 ∈ (V \{S})∗ and β ∈ (V \{S})(V \{S})∗
(18)
84
,
The Chomsky hierarchy (1)
G = hVN , VT , P, Si,
I
(16)
G is Type 1 or context-sensitive
if all productions are of the form
α1 Aα2 → α1 βα2 with A ∈ VN ; α1 , α2 ∈ V ∗ , β ∈ VV ∗
(17)
Exception:
S → ε ∈ P is allowed if
α1 , α2 ∈ (V \{S})∗ and β ∈ (V \{S})(V \{S})∗
(18)
I If S → ε ∈ P, then S is not allowed in any right hand side
I Consequence: Rules (almost) never derive shorter words
84
,
The Chomsky hierarchy (2)
G = hVN , VT , P, Si
I
(19)
G is of Type 2 or context-free
if all productions are of the form
A → β with A ∈ VN ; β ∈ VV ∗
(20)
S → ε ∈ P is allowed, if β ∈ (V \{S})(V \{S})∗
(21)
Exception:
85
,
The Chomsky hierarchy (2)
G = hVN , VT , P, Si
I
(19)
G is of Type 2 or context-free
if all productions are of the form
A → β with A ∈ VN ; β ∈ VV ∗
(20)
S → ε ∈ P is allowed, if β ∈ (V \{S})(V \{S})∗
(21)
Exception:
I Only single non-terminals are replaced
I If S → ε ∈ P, then S is not allowed in any right hand side
85
,
The Chomsky hierarchy (3)
G = hVN , VT , P, Si
I
(22)
G is of Type 3 or right-linear (regular) if all productions are of the
form
A → aB or
(23)
A → a with A, B ∈ VN ; a ∈ VT
Exception:
S → ε ∈ P is allowed, if B ∈ VN \{S}
(24)
86
,
The Chomsky hierarchy: exercises
G = hVN , VT , P, Si
with
1. VN = {S, A, B},
2. VT = {0},
3. P :
S
S
AB
0A
A
→
→
→
→
→
ε
ABA
00
000A
0
(25)
1
2
3
4
5
4. S = S.
87
,
The Chomsky hierarchy: exercises
G = hVN , VT , P, Si
with
1. VN = {S, A, B},
2. VT = {0},
3. P :
S
S
AB
0A
A
→
→
→
→
→
ε
ABA
00
000A
0
(25)
1
2
3
4
5
4. S = S.
a)
b)
c)
d)
What is G ’s highest type?
Show how G derives the word 00000.
Formally describe the language L(G ).
Define a regular grammar G 0 equivalent to G .
87
,
The Chomsky hierarchy: exercises (cont.)
An octal constant is a finite sequence of digits starting with 0 followed by
at least one digit ranging from 0 to 7. Define a regular grammar
encoding exactly the set of possible octal constants.
88
,
Context-free grammars
I
Reminder: G = hVN , VT , P, Si is context-free, if all l → r ∈ P are
of the form A → β with
I A ∈ VN and β ∈ VV ∗
I (special case: S → ∈ P, then S is not allowed in any β)
I
Context-free languages/grammars are highly relevant
I
I
I
I
Core of most programming languages
Algebraic expressions
XML
Many aspects of human language
89
,
Grammars in Practice
I
Most programming languages are described by context-free
grammars (with extra “semantic” constraints)
I
Grammars generate languages
I
PDAs and e.g. CYK-Parsing recognize words
For compiler we need to . . .
I
I identify correct programs
I and understand their structure!
90
,
Lexing and Parsing
I
Lexer: Breaks programs into tokens
I
I
I
I
I
I
Smallest parts with semantic meaning
Can be recognized by regular languages/patterns
Example: 1, 2, 5 are all Integers
Example: i, handle, stream are all Identifiers
Example: >, >=, * are all individual operators
Parser: Recognizes program structure
I Language described by a grammar that has token types as terminals,
not individual characters
I Parser builds parse tree
91
,
Introduction: nanoLang
92
,
Our first language: nanoLang
I
I
Simple but Turing-complete language
Block-structured
I Functions with parameters
I Blocks of statements with local variables
I
Syntax C-like”but simplified
I Basic flow control (if, while, return)
I
Simple static type system
I Integers (64 bit signed)
I Strings (immutable)
93
,
nanoLang “Hello World”
# The f i r s t e v e r nanoLang program
I n t e g e r main ( )
{
p r i n t ” H e l l o World \n” ;
return 0;
}
94
,
More Substantial nanoLang Example
I n t e g e r h e l l o ( I n t e g e r r e p e a t , S t r i n g message )
{
Integer i ;
i = 0;
w h i l e ( i <r e p e a t )
{
p r i n t message ;
i = i +1;
}
return 0;
}
I n t e g e r main ( )
{
h e l l o ( 1 0 , ” H e l l o \n” ) ;
return 0;
}
95
,
nanoLang Lexical Structure
I
Reserved words:
I if, while, return, print, Integer, String
I
I
Comments: # to the end of the line
Variable length tokens:
I Identifier (letter, followed by letters and digits)
I Strings (enclosed in double quotes (¨This is a string¨)
I Integer numbers (non-empty sequences of digits)
I
Other tokens:
I
I
I
I
I
Brackets: (,), {,}
Operators: +, -, *, /
Comparison operators: >, >=, <, <=, !=
Equal sign = (used for comparison and assignments!)
Separators: ,, ;
96
,
nanoLang Program Structure
I
A nanoLang program consists of a number of definitions
I Definitions can define global variables or functions
I All symbols defined in the global scope are visible everywhere in the
global scope
I
Functions accept arguments and return values
I Functions consit of a header and a statement blocks
I Local variables can be defined in statement blocks
I
Statements:
I
I
I
I
I
I
I
if: Bedingte Ausführung
while: Schleifen
return: Return value from function
print: Print value to Screen
Assignment: Set variables to values
Function calls (return value ignored)
Expressions:
I Integers: Variables, numbers, +,-,*,/
I Booleans: Compare two values of equal type
97
,
Exercise: Fibonacci in nanoLang
I
Write a recursive and an iterative implementation of Fibonacci
numbers in nanoLang
98
,
nanoLang Grammar (Bison format) (0 -tokens)
%start prog
%token
%left
%left
%token
%token
%token
OPENPAR CLOSEPAR
MULT DIV
PLUS MINUS
EQ NEQ LT GT LEQ GEQ
OPENCURLY CLOSECURLY
SEMICOLON COMA
%token
%token
%token
%token
%token
<ident> IDENT
<string> STRINGLIT
<intval> INTLIT
INTEGER STRING
IF WHILE RETURN PRINT
%token ERROR
99
,
nanoLang Grammar (Bison format) (1)
prog: /* Nothing */
| prog def
;
def: vardef
| fundef
;
vardef: type IDENT SEMICOLON
;
fundef: type IDENT OPENPAR params CLOSEPAR body
;
type: STRING
| INTEGER
;
100
,
nanoLang Grammar (Bison format) (2)
params: /* empty */
| paramlist
;
paramlist: type IDENT
| type IDENT COMA paramlist
;
body: OPENCURLY vardefs stmts CLOSECURLY
;
vardefs: /* empty */
| vardefs vardef
;
stmts: /* empty */
| stmts stmt
101
,
nanoLang Grammar (Bison format) (3)
stmt:
|
|
|
|
|
;
while_stmt
if_stmt
ret_stmt
print_stmt
assign
funcall_stmt
while_stmt: WHILE OPENPAR boolexpr CLOSEPAR body
;
if_stmt: IF OPENPAR boolexpr CLOSEPAR body
;
ret_stmt: RETURN expr SEMICOLON
;
102
,
nanoLang Grammar (Bison format) (4)
print_stmt: PRINT expr SEMICOLON
;
assign: IDENT EQ expr SEMICOLON
;
funcall_stmt: funcall SEMICOLON
;
boolexpr:
|
|
|
|
|
;
expr
expr
expr
expr
expr
expr
EQ expr
NEQ expr
LT expr
GT expr
LEQ expr
GEQ expr
103
,
nanoLang Grammar (Bison format) (5)
expr:
|
|
|
|
|
|
|
|
|
;
funcall
INTLIT
IDENT
STRINGLIT
OPENPAR expr CLOSEPAR
expr PLUS expr
expr MINUS expr
expr MULT expr
expr DIV expr
MINUS expr
104
,
nanoLang Grammar (Bison format) (6)
funcall: IDENT OPENPAR args CLOSEPAR
;
args: /* empty */
| arglist
;
arglist: expr
|expr COMA arglist
;
105
,
Exercise
I
Write a flex-based scanner for
nanoLang
I At minimum, it should output
the program token by token
I Bonus: Find a way to keep
track of line numbers for
tokens
I Superbonus: Also keep track
of columns
I
Reminder: Compiling flex
programs:
flex -t myflex.l > myflex.c
gcc -o myflex myflex.c
Example output for Hello World
Integer = 277
main = 274
( = 258
) = 259
{ = 270
print = 282
"Hello World\n" = 275
; = 272
return = 281
0 = 276
; = 272
} = 271
106
,
Review: Goals for Today
I
I
Refresher
Reminder: Grammars and Chomsky-Hierarchy
I Grammars
I Regular languages and expressions
I Context-free grammars and languages
I
Syntactic structure of programming languages
I
nanoLang
I
Programming exercise: Tokenizing nanoLang
107
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
108
,
Goals for Today
I
I
Refresher
Syntax analysis revisited
I The truth about Context-Free Grammars
I Derivations and Parse Trees
I Abstract Syntax Trees
I
Programming exercise: Parsing nanoLang
109
,
Refresher
I
I
Refresher
Reminder: Grammars and Chomsky-Hierarchy
I Grammars
I Regular languages and expressions
I Context-free grammars and languages
I
Syntactic structure of programming languages
I
nanoLang
I
Programming exercise: Tokenizing nanoLang
110
,
The Truth about Context-Free Grammars (1)
I
Reminder: G is of Type 2 or context-free
if all productions are of the form
A → β with A ∈ VN ; β ∈ VV ∗
(26)
S → ε ∈ P is allowed, if β ∈ (V \{S})(V \{S})∗
(27)
Exception:
I Only single non-terminals are replaced
I If S → ε ∈ P, then S is not allowed in any right hand side
111
,
The Truth about Context-Free Grammars (2)
I
Question: Is nanoLang context-free?
112
,
The Truth about Context-Free Grammars (2)
I
Question: Is nanoLang context-free?
I
Question: Is the nanoLang grammar context-free?
112
,
The Truth about Context-Free Grammars (2)
I
Question: Is nanoLang context-free?
I
Question: Is the nanoLang grammar context-free?
Yes/No, but . . .
112
,
The Truth about Context-Free Grammars (2)
I
Question: Is nanoLang context-free?
I
Question: Is the nanoLang grammar context-free?
Yes/No, but . . .
I
Problem:
prog: /* Nothing */
| prog def
;
112
,
The Truth about Context-Free Grammars (2)
I
Question: Is nanoLang context-free?
I
Question: Is the nanoLang grammar context-free?
Yes/No, but . . .
I
Problem:
I
prog: /* Nothing */
| prog def
;
prog is the start symbol
I prog → I prog → prog def
112
,
The Truth about Context-Free Grammars (3)
I
Chomsky’s original definition:
G is of Type 2 or context-free
if all productions are of the form
A → β with A ∈ VN ; β ∈ V ∗
(28)
113
,
The Truth about Context-Free Grammars (3)
I
Chomsky’s original definition:
G is of Type 2 or context-free
if all productions are of the form
A → β with A ∈ VN ; β ∈ V ∗
(28)
Fact: Every Chomsky-CF-Grammar can be converted into a
FLA-CF-Grammar!
113
,
Exercise: Eliminating rules
I
Consider the following productions:
1. S → 2. S → A; S
3. A → i = n
I
Upper-case letters are non-terminals, S is the start symbol
I Specify VN and VT
I Create an equivalent FLA-CF-Grammar
I Can you give a general method to convert Chomsky-CF-grammars to
FLA-CF-gammars?
114
,
A Running Example
I
We will consider the set of well-formed expressions over x, +, ∗.(, )
as an example, i.e. L(G ) for G as follows
I
I
I
I
VN = {E }
VT = {(, ), +, ∗, x}
Start symbol is E
Productions:
1.
2.
3.
4.
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
115
,
Derivations
Definition: Assume a Grammar G . A derivation of a word wn in L(G )
is a sequence S =⇒ w1 =⇒ . . . =⇒ wn where S is the start symbol,
and each wi is generated from its predecessor by application of a
production of the grammar
I
Example: Consider our running example. We bold the replaced
symbol. The following is a derivation of x + x + x ∗ x:
=⇒
=⇒
=⇒
=⇒
=⇒
=⇒
=⇒
E
E+E
E +E +E
E+E +E ∗E
x +E+E ∗E
x +x +E∗E
x +x +x ∗E
x +x +x ∗x
116
,
Rightmost/Leftmost Derivations
Definition:
I
A derivation is called a rightmost derivation, if at any step it
replaces the rightmost non-terminal in the current word.
I
A derivation is called a leftmost derivation, if at any step it replaces
the leftmost non-terminal in the current word.
I
Examples:
I The derivation on the previous slide is neither leftmost nor rightmost.
I E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
is a rightmost derivation.
117
,
Parse trees
Definition: A parse tree for a derivation in a grammar
G = hVN , VT , P, Si is an ordered, labelled tree with the following
properties:
I
Each node is labelled with a symbol from VN ∪ VT
I
The root of the tree is labelled with the start symbol S.
I
Each inner node is labelled with a single non-terminal symbol from
VN
I
If an inner node with label A has children labelled with symbols
α1 , . . . , αn , then there is a production A → α1 . . . αn in P.
I
The parse tree represents a derivation of the word formed by the
labels of the leaf nodes
It abstracts from the order in which productions are applied.
I
118
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
n08
+
E
E
+
n09
n10
E
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
E
*
E
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
E
*
E
x
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
E
*
x
E
x
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
x
E
*
x
E
x
119
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
x
E
+
E
x
E
*
x
E
x
119
,
Ambiguity
Definition: A grammar G = hVN , VT , P, Si is ambiguous, if it has
multiple different parse trees for a word w in L(G ).
I
Consider our running example with the following productions:
1.
2.
3.
4.
I
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
The following 2 parse trees represent derivations of x + x + x:
E
E
E
+
E
x
E
+
x
E
E
x
x
E
+
E
+
E
x
x
120
,
Exercise: Ambiguity is worse. . .
I
Consider our example
and the parse trees from
the previous slide:
1.
2.
3.
4.
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
E
E
E
+
E
x
E
+
x
E
E
x
x
I
Provide a rightmost derivation for the right tree.
I
Provide a rightmost derivation for the left tree.
I
Provide a leftmost derivation for the left tree.
I
Provide a leftmost derivation for the right tree.
E
+
E
+
E
x
x
121
,
Exercise: Eliminating Ambiguity
I
Consider our running example with the following productions:
1.
2.
3.
4.
I
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
Define a grammar G 0 with L(G ) = L(G 0 ) that is not ambiguous,
that respects that ∗ has a higher precedence than +, and that
respects left-associativity for all operators.
122
,
Flex/Bison Interface
I
I
Bison callse function yylex to get the next token
yylex executes user rules (pattern/action)
I User actions return token (integer value)
I Additionally: yylval can be set and is available in Bison via the
$$/$1/ldots mechanism
I
yylval provides the semantic value of a token
I For complex languages: Use a pointer to a struct
I
Content: Position, string values, numerical values, . . .
I Type of yylval if set in Bison file!
%define api.value.type {YourType}
123
,
Grading Exercise 2
I
Write a Bison parser for nanoLang
I Bonus: Translate nanoLang into Abstract Syntax Trees (will be
required next week!)
124
,
Review: Goals for Today
I
I
Refresher
Syntax analysis revisited
I The truth about Context-Free Grammars
I Derivations and Parse Trees
I Abstract Syntax Trees
125
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
126
,
Goals for Today
I
Refresher
I
Revisiting derivations, parse trees, abstract syntax trees
I
Walk-through: Parsing expressions in practice
I
Programming exercise: ASTs for nanoLang
127
,
Refresher
I
I
Refresher
Syntax analysis revisited
I The truth about Context-Free Grammars
I Derivations and Parse Trees
I Abstract Syntax Trees
I
Programming exercise: Parsing nanoLang (i.e. writing a program
that accepts syntactically correct nanoLang programs and rejects
syntactially incorrect ones (due next week)
128
,
Parse trees
Definition: A parse tree for a derivation in a grammar
G = hVN , VT , P, Si is an ordered, labelled tree with the following
properties:
I
Each node is labelled with a symbol from VN ∪ VT
I
The root of the tree is labelled with the start symbol S.
I
Each inner node is labelled with a single non-terminal symbol from
VN
I
If an inner node with label A has children labelled with symbols
α1 , . . . , αn , then there is a production A → α1 . . . αn in P.
I
The parse tree represents a derivation of the word formed by the
labels of the leaf nodes
It abstracts from the order in which productions are applied.
I
129
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
n08
+
E
E
+
n09
n10
E
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
E
*
E
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
E
*
E
x
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
E
*
x
E
x
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
E
+
E
x
E
*
x
E
x
130
,
Parse trees: Example
Consider the following derivation:
E =⇒ E + E =⇒ E + E + E =⇒ E + E + E ∗ E =⇒
E + E + E ∗ x =⇒ E + E + x ∗ x =⇒ E + x + x ∗ x =⇒ x + x + x ∗ x
It can be represented by a sequence of parse trees:
E
E
+
E
x
E
+
E
x
E
*
x
E
x
130
,
Ambiguity
Definition: A grammar G = hVN , VT , P, Si is ambiguous, if it has
multiple different parse trees for a word w in L(G ).
I
Consider our running example with the following productions:
1.
2.
3.
4.
I
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
The following 2 parse trees represent derivations of x + x + x:
E
E
E
+
E
x
E
+
x
E
E
x
x
E
+
E
+
E
x
x
131
,
Exercise: Ambiguity is worse. . .
I
Consider our example
and the parse trees from
the previous slide:
1.
2.
3.
4.
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
E
E
E
+
E
x
E
+
x
E
E
x
x
I
Provide a rightmost derivation for the right tree.
I
Provide a rightmost derivation for the left tree.
I
Provide a leftmost derivation for the left tree.
I
Provide a leftmost derivation for the right tree.
E
+
E
+
E
x
x
132
,
Abstract Syntax Trees
I
Abstract Syntax Trees represent the structure of a derivation
without the specific details
I
Think: “Parse trees without the syntactic sugar”
I
Example:
Corresponding AST:
Parse Tree:
E
+
E
+
E
+
E
x
+
E
x
x
x
x
x
133
,
From text to AST in practice: Parsing nanoLang
expressions
I
Example for syntax analysis and building abstract syntax trees
I
Language: nanoLang expressions (without function calls)
I
Structure of the project
I
Building
I
Code walk-through
134
,
Exercise: Building exprcc
I
I
I
I
Go to
http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html
Download NANOEXPR.tgz
Unpack, build and test the code
To test:
I ./exprcc expr1.nano
I ./exprcc --sexpr expr1.nano
I ./exprcc --dot expr1.nano
135
,
exprcc Overview
AST definitions
ast.h
#include
flex/bison
gcc
Parser specification
nanoparse.y
linker
Parser defs
nanoparse.tab.h
Lexer specification
nanolex.l
Lexer implementation
nanolex.c
Parser impl.
nanoparse.tab.c
AST implementation
ast.c
Lexer object file
nanolex.o
Parser object file
nanoparse.tab.c
AST object file
ast.o
Executable:
exprcc
136
,
exprcc Makefile
137
,
A first Abstract Syntax Tree
I
Test expression: -a+b*(c+d)
I
Corresponding AST?
138
,
A first Abstract Syntax Tree
I
Test expression: -a+b*(c+d)
I
Corresponding AST?
t_PLUS
t_MINUS
t_MULT
t_IDENT
a
t_IDENT
b
t_IDENT
c
t_PLUS
t_IDENT
d
138
,
Simplified nanoLang expression syntax
expr:
|
|
|
|
|
|
|
|
;
INTLIT
IDENT
STRINGLIT
OPENPAR expr CLOSEPAR
expr PLUS expr
expr MINUS expr
expr MULT expr
expr DIV expr
MINUS expr
139
,
Alternative notation
expr -> INTLIT
| IDENT
| STRINGLIT
| ( expr )
| expr + expr
| expr - expr
| expr * expr
| expr / expr
| - expr
140
,
Alternative notation
expr -> INTLIT
| IDENT
| STRINGLIT
| ( expr )
| expr + expr
| expr - expr
| expr * expr
| expr / expr
| - expr
Question: Is the grammar unambiguous?
140
,
Alternative notation
expr -> INTLIT
| IDENT
| STRINGLIT
| ( expr )
| expr + expr
| expr - expr
| expr * expr
| expr / expr
| - expr
Question: Is the grammar unambiguous?
I
How do we solve this?
140
,
Precedences and Associativity in Bison
I
Code: nanoparse.y token definitions
I
The trick with unary -
141
,
Implementing ASTs
I
Code: ast.c, ast.h
142
,
Lexical Analysis
I
Code: nanolex.l
143
,
Building ASTs
I
Code: nanoparse.y syntax rules and semantic actions
144
,
Grading Exercise 3
I
Extend the nanoLang parser to generate abstract syntax trees
nanoLang programs
I You can use your own parser or extend the expression parser from this
lecture
I Due date: Our lecture on April 22nd
145
,
Review: Goals for Today
I
Refresher
I
Revisiting derivations, parse trees, abstract syntax trees
I
Walk-through: Parsing expressions in practice
I
Programming exercise: ASTs for nanoLang
146
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
147
,
Goals for Today
I
I
Refresher
Semantic properties
I Names, variables, identifiers
I Visibility and scopes
I Simple types and type systems
I
Symbol tables
I
Memory organisation and storage locations
148
,
Refresher
I
Formal definition of parse trees
I
Ambiguity and derivation types
I
Abstract syntax trees
Syntax analysis in practice
I
I nanoLang expression parser
I Abstract syntax tree datatype and algorithms
I Parsing nanoLang expressions with Bison
I
Programming exercise: Parsing nanoLang into abstract syntax trees
149
,
High-Level Architecture of a Compiler
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
150
,
High-Level Architecture of a Compiler
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
150
,
High-Level Architecture of a Compiler
Flex
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
150
,
High-Level Architecture of a Compiler
Flex
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Bison
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
150
,
High-Level Architecture of a Compiler
Flex
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Bison
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
C Code
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
150
,
Semantic Constraints
151
,
Group Exercise: Spot the Bugs (1)
I n t e g e r fun1 ( I n t e g e r i , I n t e g e r i )
{
Integer i ;
i f ( i > 0)
{
print j ;
}
}
I n t e g e r main ( )
{
fun1 (1 , 2 ) ;
fun2 (1 , 2 ) ;
return 0;
}
152
,
Group Exercise: Spot the Bugs (2)
I n t e g e r fun1 ( I n t e g e r i , I n t e g e r j )
{
Integer i ;
i f ( i > ”0” )
{
p r i n t j+” 12 ” ;
}
return 1;
}
I n t e g e r main ( )
{
fun1 (1 , ” Hello ” ) ;
fun2 (1 , 2 , 3 ) ;
return 0;
}
153
,
Group Exercise: Spot the Bugs (3)
I n t e g e r fun1 ( I n t e g e r i , I n t e g e r j )
{
w h i l e ( j >i )
{
Integer j ;
print j ;
j=j +1;
}
return 1;
}
154
,
Semantic constraints of nanoLang (V 1.0)
I
Every name has to be defined before it can be used
I
Every name can only be defined once in a given scope
I
Functions must be called with arguments of the right type in the
right order
I
Operands of comparison operators must be of the same type
I
Operands of the arithmetic operators must be of type Integer
I
Every program must have a main()
I
(Every function must have a return of proper type)
155
,
Managing Symbols
I
Properties of identifiers are stored in a symbol table
I Name
I Type
I
Properties of identifiers depend on part of the program under
consideration!
I Names are only visible in the scope they are declared in
I Names can be redefined in new scopes
156
,
Managing Symbols
I
Properties of identifiers are stored in a symbol table
I Name
I Type
I
Properties of identifiers depend on part of the program under
consideration!
I Names are only visible in the scope they are declared in
I Names can be redefined in new scopes
Symbol tables need to change when traversing the program/AST for
checking properties and generating code!
156
,
Names and Variables
I
Definition: A variable is a location in memory (or “in the store”)
that can store a value (of a given type)
I Variables can be statically or dynamically allocated
I
I
I
I
Typically: global variables are statically allocated (and in the data
segment of the process
Local variables are dynamically managed and on the stack
Large data structures and objects are stored in the heap
Definition: A name is an identifier that identifies a variable (in a
given scope)
I The same name can refer to different variables (recursive function
calls)
I Different names can refer to the same variables (depends on
programming languages - aliasing
157
,
Scopes and Environments
I
I
The environment establishes a mapping from names to variables
Static scope: Environment depends on block structure of the
language
I In any situation, the name refers to the variable defined in the neares
surrounding block in the program text
I Examples: C (mostly), Pascal, Java, modern LISPs (mostly)
I
Dynamic scope: Environment depends on calling sequence in
program
I Name refers to the same variable it referred to in the calling function
I Traditional LISP systems (Emacs LISP)
158
,
Group exercise: Static and dynamic scopes
#i n c l u d e <s t d i o . h>
i n t a =10;
i n t b =10;
#d e f i n e a d d e r ( x ) ( x)+a
v o i d machwas ( i n t a , i n t c )
{
p r i n t f ( ” a d d e r ( a)=%d\n” , a d d e r ( a ) ) ;
p r i n t f ( ” a d d e r ( b)=%d\n” , a d d e r ( b ) ) ;
p r i n t f ( ” a d d e r ( c)=%d\n” , a d d e r ( c ) ) ;
{
int c = 5;
p r i n t f ( ” a d d e r ( c)=%d\n” , a d d e r ( c ) ) ;
}
}
i n t main ( v o i d )
{
machwas ( 1 , 2 ) ;
machwas ( 2 , 3 ) ;
return 0;
}
159
,
Example: Scopes in nanoLang
Integer i ;
I n t e g e r fun1 ( I n t e g e r loop )
{
Integer i ;
i =0;
w h i l e ( i <l o o p )
{
i=i +1;
print ” Hallo ” ;
}
}
I n t e g e r main ( )
{
i = 5;
fun1 ( i ) ;
}
160
,
Scopes in nanoLang
I
Global scope
I Global variables
I Functions
I
Function scope
I Function parameters
I
Block scope
I block-local variables
161
,
Example: Scopes in nanoLang
Integer i ;
I n t e g e r fun1 ( I n t e g e r loop )
{
Integer i ;
i =0;
w h i l e ( i <l o o p )
{
i=i +1;
print ” Hallo ” ;
}
}
I n t e g e r main ( )
{
i = 5;
fun1 ( i ) ;
}
162
,
Walking the AST
prog
prog
prog
vardef
t_INTEGER
t_IDENT
i
t_INTEGER
fundef
fundef
t_INTEGER
t_IDENT
fun1
param
t_IDENT
loop
t_INTEGER
t_IDENT
main
t_INTEGER
params
params
body
body
stmts
vardef
stmts
t_IDENT
i
assign
while_stmt
t_INTLIT
0
t_LT
t_IDENT
i
assign
t_IDENT
i
t_IDENT
i
t_IDENT
i
stmts
assign
t_IDENT
i
t_IDENT
fun1
body
t_IDENT
loop
t_IDENT
i
t_INTLIT
5
funcall
t_PLUS
print_stmt
Hallo
t_INTLIT
1
163
,
Static type checking
I
Types are associated with variables
I
Types are checked at compile time or development time
Advantages:
I
I ?
I
Disadvantages:
I ?
I
Typically used in:
I ?
164
,
Dynamic type checking
I
Types are associated with values
I
Types are checked at run time
Advantages:
I
I ?
I
Disadvantages:
I ?
I
Typically used in:
I ?
165
,
No type checking
I
Programmer is supposed to know what (s)he does
I
Types are not checked at all
Advantages:
I
I ?
I
Disadvantages:
I ?
I
Typically used in:
I ?
166
,
Exercise: How many types occur in this example?
Integer i ;
I n t e g e r fun1 ( I n t e g e r loop )
{
Integer i ;
i =0;
w h i l e ( i <l o o p )
{
i=i +1;
print ” Hallo ” ;
}
}
I n t e g e r main ( )
{
i = 5;
fun1 ( i ) ;
}
167
,
Symbol tables
I
I
Store name (identifier) and type
Nested for each scope:
I Global scope
I Each new scope entered will result in a new symbol table for that
scope, pointing to the preceeding (larger scope)
I
Local operations:
I
Global operations:
I Add name/type (error if already defined)
I Find name (finds “nearest” matching entry, or error)
I Enter new scope (creates a new empty symbol table pointing to the
predecessor (if any)
I Leave scope (remove current scope)
168
,
Walking the AST
prog
prog
prog
vardef
t_INTEGER
t_IDENT
i
t_INTEGER
fundef
fundef
t_INTEGER
t_IDENT
fun1
param
t_IDENT
loop
t_INTEGER
t_IDENT
main
t_INTEGER
params
params
body
body
stmts
vardef
stmts
t_IDENT
i
assign
while_stmt
t_INTLIT
0
t_LT
t_IDENT
i
assign
t_IDENT
i
t_IDENT
i
t_IDENT
i
stmts
assign
t_IDENT
i
t_IDENT
fun1
body
t_IDENT
loop
t_IDENT
i
t_INTLIT
5
funcall
t_PLUS
print_stmt
Hallo
t_INTLIT
1
169
,
Walking the AST
prog
prog
prog
vardef
t_INTEGER
t_IDENT
i
t_INTEGER
fundef
fundef
t_INTEGER
t_IDENT
fun1
param
t_IDENT
loop
t_INTEGER
t_IDENT
main
t_INTEGER
params
params
body
body
stmts
vardef
stmts
t_IDENT
i
assign
while_stmt
t_INTLIT
0
t_LT
t_IDENT
i
assign
t_IDENT
i
t_IDENT
i
t_IDENT
i
stmts
assign
t_IDENT
i
t_IDENT
fun1
body
t_IDENT
loop
t_IDENT
i
t_INTLIT
5
funcall
t_PLUS
print_stmt
Hallo
t_INTLIT
1
169
,
Representing types
I
Types table:
I Numerical encoding for each type
I Recipe for each type
I
I
I
nanoLang basic types are atomic
Atomic types can also be addressed by name
Function types are vectors of existing types
Encoding
0
I E.g.
1
2
I
Type
String
Integer
Integer fun(Integer, String)
Recipe
atomic
atomic
(1, 1, 0)
Operations:
I Find-or-insert type
I
I
Return encoding for a new type
If type does not exist yet, create it
170
,
Programming Exercise
I
Develop data structures for representing nanoLang types
I
Develop data structures for implementing nested symbol tables
171
,
Review: Goals for Today
I
I
Refresher
Semantic properties
I Names, variables, identifiers
I Visibility and scopes
I Simple types and type systems
I
Symbol tables
I
Memory organisation and storage locations
172
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
173
,
Goals for Today
I
Refresher
I
Symbol Tables in practice
I
Type inference and type checking
I
Exercise: Build symbol tables
174
,
Refresher
I
Semantic properties
I Names, variables, identifiers
I Visibility and scopes
I Simple types and type systems
I
Symbol tables
I
Memory organisation and storage locations
175
,
The Big Picture: Type Checking
I
We need to know the type of every expression and variable in the
program
I . . . to detect semantic inconsistencies
I . . . to generate code
I
Some types are simple in nanoLang
I String constants are type String
I Integer constants are type Integer
I Results of arithmetic operations are Integer
I
Harder: What to do with identifiers?
I Type of the return value of a function?
I Types of the arguments of a function?
I Types of the values of a variable?
176
,
The Big Picture: Type Checking
I
We need to know the type of every expression and variable in the
program
I . . . to detect semantic inconsistencies
I . . . to generate code
I
Some types are simple in nanoLang
I String constants are type String
I Integer constants are type Integer
I Results of arithmetic operations are Integer
I
Harder: What to do with identifiers?
I Type of the return value of a function?
I Types of the arguments of a function?
I Types of the values of a variable?
The answers depend on the definitions in the program!
176
,
Symbol Tables
I
I
Symbol tables associate identifiers and types
Symbol tables form a hierarchy
I Symbols can be redefined in every new context
I The “innermost” definition is valid
I
Symbol tables are filled top-down
I Outermost symbol-table contains global definitions
I Each new context adds a new layer
I Search for a name is from innermost to outermost symbol table
177
,
Building Symbol Tables
Program
Symbol table
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Symbol table
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
loop Integer
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
loop Integer
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
loop Integer
i
Integer
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
loop Integer
i
Integer
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
loop Integer
i
Integer
-
-
Integer main()
{
i = 5;
fun1(i);
}
178
,
Building Symbol Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
Symbol table
i
Integer
fun1 (Integer)→Integer
main ()→Integer
loop Integer
i
Integer
-
-
i
Integer
fun1 (Integer)→Integer
main ()→Integer
-
-
-
-
178
,
Simplified Type Handling
I
I
Handling complex types directly is cumbersome
Better: Manage types separately
I Types are stored in a separate table
I Symbol table only needs to handle indices into type table
179
,
Symbol Tables and Type Tables
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
Symbol table
Type table
i
1
1
Integer
fun1 2
2
(Integer)→Integer
main 3
loop 1
3
()→Integer
i
1
-
-
i
1
fun1 2
main 3
-
-
180
,
Type Inference in nanoLang
I
I
Goal: Determine the (result) type of every expression in the program
Process: Process AST bottom-up
I Constants: “natural” type
I Variables: Look up in symbol table
I Function calls: Look up in symbol table
I
I
If arguments are not of proper type, error
Otherwise: return type of the function
I Arithmetic expressions:
I
I
If arguments are Integer, result type is Integer
Otherwise: error
181
,
Contrast: Aspects of Type Inference in C
I
Arithmetic expressions:
I Roughly: arithmetic types are ordered by size (char < int < long <
long long < float < double)
I Type of a + b is the greater of the types of a and b
I
Arrays
I
Pointers
I If a is an array of int, than a[1] is of type int
I If a is of type char*, then *a is of type char
I
Many more cases:
I Structures
I Enumerations
I Function pointers
182
,
Symbol Tables and the AST
prog
prog
prog
vardef
t_INTEGER
t_INTEGER
Program
Integer i;
Integer fun1(Integer loop)
{
Integer i;
}
i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
Integer main()
{
i = 5;
fun1(i);
}
fundef
t_IDENT
fun1
t_INTEGER
t_IDENT
i
fundef
params
t_INTEGER
Symbol table
i
params
body
body
param
t_IDENT
loop
t_IDENT
main
t_INTEGER
stmts
vardef
stmts
t_IDENT
i
assign
while_stmt
t_INTLIT
0
t_LT
t_IDENT
i
assign
t_IDENT
i
t_INTLIT
5
funcall
t_IDENT
fun1
t_IDENT
i
body
Integer
fun1 (Integer)→Integer
main ()→Integer
t_IDENT
i
t_IDENT
loop
stmts
loop Integer
i
Integer
-
-
assign
t_IDENT
i
i
Integer
fun1 (Integer)→Integer
t_IDENT
i
t_PLUS
print_stmt
Hallo
t_INTLIT
1
main ()→Integer
-
-
-
-
183
,
Implementation Examples
I
main() in nanoparse.y
I
STBuildAllTables() in semantic.c
I
symbols.h and symbols.c
I
types.h and types.c
184
,
Grading Exercise 4
Extend your compiler project by computing the relevant symbol tables for
all nodes of your AST
I Develop a type table date type for managing different types
I Define a symbol table data type for managing symbols and their
types
I Use a hierarchical structure
I Suggested operations:
I
I
I
I
I
EnterScope()
LeaveScope()
InserSymbol() (with type)
FindSymbol() (return entry including type)
...
Traverse the AST in a top-down fashion, computing the valid
symbol table at each node
I Annotate each AST node with the symbol table valid at that node
At the end, print all symbols and types of the global, top-level symbol
table!
I
185
,
Example Output
> ncc NANOEXAMPLES/scopes.nano
Global symbols:
--------------i
: Integer
fun1
: (Integer) -> Integer
main
: () -> Integer
Types:
-----0: NoType
1: String
2: Integer
3: (Integer) -> Integer
4: () -> Integer
186
,
Review: Goals for Today
I
Symbol Tables in practice
I
Type inference and type checking
I
Exercise: Build symbol tables
187
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
188
,
Goals for Today
I
Refresher
I
Excursion: assert() in C
Code generation considerations
I
I
I
I
I
I
I
Parameter passing
Assignments
Calling conventions
Runtime support
Libraries
nanoLang runtime
I Parameter passing
I nanoLang string semantics
I nanoLang library functions and OS interaction
I
Exercise: Type checking
189
,
Refresher
I
Symbol Tables in practice (top-down traversal)
I
Type inference and type checking (bottom-up traversal)
I
Example code walk-through
I
Exercise: Build symbol tables
190
,
Excursion: assert()
I
assert() is a facility to help debug programs
I Part of the C Standard since C89
I To use, #include <assert.h>
I
assert(expr) evaluates expr
I If expr is false, then an error message is written and the program is
aborted
I Otherwise, nothing is done
I
Hints:
I Particularly useful to check function parameter values
I To disable at compile time, define the macro NDEBUG (e.g. with the
compiler option -DNDEBUG
I Useful idiom: assert(expr && "What’s wrong");
I More information: man assert
191
,
Semantics of Compiled and Target Language
I
I
Before we can compile a language, we must understand its semantics
Important questions:
I How are parameter passed into functions?
I Related: How do assignments work?
I
Before we can compile a language, we must understand the target
language and environment
I How are parameters and local variables handled?
I How does the program interact with the OS and the environment?
192
,
Parameter Passing
I
Call by value
I Formal parameters become new local variables
I Actual parameters are evaluated and used to initialize those variables
I Changes to variables are irrelevant after function terminates
I
Call by reference
I Only references to existing variables are passed
I In effect, formal parameters are bound to existing variables
I Actual parameters that are not variables themselves are evaluated and
placed in anonymous new variables
I Changes to paramters in functions change the original variable
I
Call by name
I Only historically interesting
I Semantics mostly similar to call-by-value
193
,
Parameter Passing - Advantages and Disadvantages?
I
I
Call by value?
Call by reference?
194
,
Parameter Passing - Advantages and Disadvantages?
I
I
I
Call by value?
Call by reference?
For your consideration:
int fun ( int a , int b)
{
a++;
b++;
r e t u r n a+b ;
}
i n t main ( v o i d )
{
i n t i =0;
fun ( i , i ) ;
p r i n t f ( ” i=%d\n” , i ) ;
}
194
,
Parameter Passing in C/C++/Pascal/Scheme?
I
C?
I
C++?
I
Pascal?
I
LISP/Scheme?
I
Others?
195
,
Assignments
I
What happens if a = b; is encountered?
I
I
I
I
If
If
If
If
both
both
both
both
are integer variables?
are string variables?
have an object type?
are arrays?
196
,
Calling conventions
I
How are paramters values passed at a low level?
I Registers?
I Stack?
I Other?
I
Who is responsible for preserving registers?
I Caller?
I Callee?
I
In which order are parameters passed?
I
How is the old context (stack frame and PC) preserved and restored?
197
,
Calling conventions
I
How are paramters values passed at a low level?
I Registers?
I Stack?
I Other?
I
Who is responsible for preserving registers?
I Caller?
I Callee?
I
In which order are parameters passed?
I
How is the old context (stack frame and PC) preserved and restored?
For our nanoLang compiler, we rely on C to handle these things!
197
,
Runtime system and OS Integration
I
Runtime system provides the glue between OS and program
I
Runtime system provides execution support for program semantics
I Translates OS semantics/conventions to compiled language and back
I Higher-level functions/data types
I Memory management
I Library functions
198
,
Parameter passing and assignments in nanoLang
I
Suggestion: All parameter passed “as if” by value
I
Integer: Pass by value
Immutable strings
I
I Can be passed by reference
I Need to be memory-managed (reference counting, a job for the
runtime system)
I Alternative is not simpler!
199
,
nanoLang OS integration
I
Command line arguments
I Suggestion: main() takes arbitrary number of string arguments
I These are filled from the command line
I Spare arguments are represented by the empty string
I
Exit and return value
I Library function Exit(val) terminates program and returns integer
value
I return from main() has the same effect
200
,
nanoLang Library Functions
I
Suggested function to make things interesting:
I StrIsInt(str): Returns 1 if str encodes a valid integer, 0 otherwise
I StrToInt(): Converts a string to an integer. If str is not an integer
encoding, result is undefined
I IntToStr(int): Returns a string encoding of the given integer
I StrLength(str): Returns the lengths of str
I
More sugegstions?
I String StrFront(str, int) - return first int characters as new
string
I String StrRest(str, int) - return all but first int characters
I String StrCat(str, str) - concatenate strings, return as new
string
I Integer StrToASCII(str) - only for strings of lenght 1, return
ASCII value
I String ASCIIToStr(int) - reverse of the above
201
,
nanoLang Strings
I
Temptation: Use C char*
I
Fails as soon as strings can be dynamically created
Suggestion: Structure with reference counting
I
I String value - the actual string (malloc()ed char*)
I Length (maybe)
I Reference count - how many places have a reference to the string?
I
I
I
Increase if string is assigned to a variable or passed to a function
Decrease, if a variable is reassigned or goes out of scope
Free string, if this reaches 0
202
,
Grading Exercise 5
Extend your compiler project by computing the types of all expressions in
your system and check type constraints
I
Check that variables are only assigned values of the right type
I
Check that functions are only called with correctly typed parameters
I
Check that operators have compatible types
I
Check that comparisons only happen between expressions of the
same type
I
Bonus: Check that functions (always) return the correct type
203
,
Review: Goals for Today
I
I
Excursion: assert() in C
Code generation considerations
I
I
I
I
I
I
Parameter passing
Assignments
Calling conventions
Runtime support
Libraries
nanoLang runtime
I Parameter passing
I nanoLang string semantics
I nanoLang library functions and OS interaction
204
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
205
,
Goals for Today
I
Refresher
I
Coding Hints
I
Code generation nanoLang to C
I
(Simple) Optimizations
I
Exercise: Code generation (I)
206
,
Refresher
I
I
assert()
General considerations for code generation
I Semantics of parameters/assignments
I Function calls
I Runtime support and libraries
I
Special considerations for nanoLang
I Strings
I Command line processing
I Built-in library functions
207
,
Coding hints
I
The nanoLang compiler is a non-trivial piece of software
I Several modules
I Several different data types (AST, Types, Symbols)
I
It helps to follow good coding practices
I The big stuff: Good code structure
I
I
One function per function
Not more than one screen page per function
I The small stuff
I
I
I
I
I
Clean formatting (including vertical space)
Use expressive names for functions and variables
Reasonable comments (don’t over-comment, though!)
Use assert()
Compile with warnings enables (Makefile: CFLAGS = -Wall)
208
,
The Final Phase
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
209
,
The Final Phase
Source handler
Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;
Lexical analysis
(tokeniser)
Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)
Syntactic analysis
(parser)
����
����
e.g. Abstract syntax tree
�����
����
���
����
����������
���
�
���
�
���
�
�
���
�
Semantic analysis
���
�
����
�����
e.g. AST+symbol table+attributes
����������
���
�
Code generation
(several optimisation passes)
e.g. assembler code
�
���
�
Variable
Type
a
int
b
int
���
�
ld a,b
ld c, 1
add c
...
209
,
Code Generation nanoLang to C
I
Suggestion: Code generation uses separate phases
I
I
I
I
I
I
Initial boilerplate
Global variable definitions
Function declarations
Constant library code
Translation of function definitions
C main() function
210
,
Name Mangling
I
I
To avoid name conflicts, nanoLang identifer should use a standard
naming scheme
Suggestion:
I Atomic type names are prepended with N
I Function and variable names are prepended with n
211
,
Initial boilerplate
I
Emit constant code needed for each translated nanoLang program
I
I
I
I
I
Comment header
Standard system includes
Type definitions
Possibly macro definitions
Implementation via printing constant string
I Easiest way
I Alternative: Read from file
212
,
Global variable definitions
I
Visibility difference between nanoLang and C
I Globally defined nanoLang identifiers are visible throughout the
program
I C definitions are visible from the point of definition only
I Hence we need to declare variables (and functions) upfront
I
Implementation suggestion:
I Iterate over all symbols in the global symbol table
I For each variable symbol, emit a declaration
213
,
Function declarations
I
The same visibility difference between nanoLang and C affects
functions
I We need to declare all functions upfront!
I
Implementation suggestion:
I Iterate over all symbols in the global symbol table
I For each function symbol, emit a declaration
214
,
Function declarations
I
The same visibility difference between nanoLang and C affects
functions
I We need to declare all functions upfront!
I
Implementation suggestion:
I Iterate over all symbols in the global symbol table
I For each function symbol, emit a declaration
Suggestion: For simplicity and consistency, we should insert the
nanoLang standard library functions (Exit(), StrIsInt(), StrToInt,
. . . ) into the symbol table (and do so before semantic analysis to stop
the user from inadvertently redefining them!)
214
,
Constant library code
I
The nanoLang runtime will need various pieces of code
I Data types and helper functions to handle e.g. Strings
I Implementations of the build-in functions
I
Implementation options
I
I
I
I
Just insert plain C code here (Alternative 0, but this may be lengthy)
Alternative 1: Read this C code from a file
Alternative 2: Just #include the full C code
Alternative 3: #include only header with declarations, then require
linking with a run time library later
215
,
Translation of function definitions
I
I
This is the heart of the compiler!
Go over the AST and emit a definition for each function
nanoLang functions become C functions
Local nanoLang variables become C variables of an appropriate type
nanoLang blocks become C blocks
nanoLang instructions are translated into equivalent C statement
sequences
I Mostly straightforward
I
I
I
I
I
I
print requires case distinction
String comparisions require library calls
216
,
Translation of function definitions
I
I
This is the heart of the compiler!
Go over the AST and emit a definition for each function
nanoLang functions become C functions
Local nanoLang variables become C variables of an appropriate type
nanoLang blocks become C blocks
nanoLang instructions are translated into equivalent C statement
sequences
I Mostly straightforward
I
I
I
I
I
I
print requires case distinction
String comparisions require library calls
More complex: Proper string handling
216
,
C main() function
I
I
Generate an appropriate main() function
Tasks:
I Read commandline and initialize parameters for nanoLang main()
I Call nanoLang main
I Exit program, returning value from nanoLang main() to OS
217
,
Ideas for optimization
I
I
Constant subexpression evaluation
Common subexpression elimination
I To do this well, we need to identify pure functions!
I
Shift unneeded computations out of loop
I
Eliminate computations of unused values
w h i l e ( i <10)
{
a = 3∗10∗ i ;
b = 3∗10∗ f u n ( a ) ;
i=i +1;
}
return a ;
218
,
Grading Exercise 6
Extend your compiler project to generate a basic C programm
I
Compile nanoLang statements into equivalent C statements
I
Compile nanoLang definitions into C declarations and definitions
I
Generate a basic main()
I
For now, you can treat String as an imutable char* - we’ll do the
library next week
219
,
Review: Goals for Today
I
Refresher
I
Coding Hints
I
Code generation nanoLang to C
I
Optimizations
I
Exercise: Code generation (I)
220
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
221
,
Goals for Today
I
Refresher
I
Practical aspects of nanoLang code generation
I
An introduction to top-down recursive descent parsing
222
,
Refresher
I
I
Coding Hints
Code generation nanoLang to C
I
I
I
I
I
I
Name handling
Global definitions
Libraries
Functions
...
Optimizations
I
I
I
I
I
Constant subexpressions
Common subexpressions (purely functional functions!)
Lift invariant expression out of loops
Eliminate computation of unused results
...
223
,
Practical code generation for nanoLang
224
,
nanoLang C premable (1)
/∗
∗ A u t o m a t i c a l l y g e n e r a t e d by t h e nanoLang c o m p i l e r n c c .
∗
∗ The b o l i e r p l a t e and l i b r a r y c o d e i s r e l e a s e d u n d e r t h e GNU G e n e r a l P u b l i c
∗ L i c e n c e , v e r s i o n 2 or , a t y o u r c h o i c e , any l a t e r v e r s i o n .
Other code i s
∗ g o v e r n e d by t h e l i c e n s e o f t h e o r i g i n a l s o u r c e c o d e .
∗/
#i n c l u d e <s t d i o . h>
#i n c l u d e <s t d l i b . h>
#i n c l u d e <s t r i n g . h>
typedef long long N Integer ;
typedef char
∗N String ;
#d e f i n e NANO MAKESTR( s ) s
#d e f i n e NANO STRASSIGN ( l , r ) ( l ) = ( r )
#d e f i n e NANO STRVAL( s ) s
/∗ G l o b a l u s e r v a r i a b l e s ∗/
225
,
nanoLang C premable (2)
/∗ F u n c t i o n d e c l a r a t i o n s ∗/
N
N
N
N
N
N
N
N
N
N
N
N
Integer
Integer
Integer
Integer
String
String
String
String
Integer
String
String
Integer
n
n
n
n
n
n
n
n
n
n
n
n
Exit ( N Integer );
S t r I s I n t ( N String ) ;
StrToInt ( N String ) ;
StrLen ( N String ) ;
IntToStr ( N Integer );
StrFront ( N String , N Integer ) ;
StrRest ( N String , N Integer ) ;
StrCat ( N String , N String ) ;
StrToASCII ( N String ) ;
ASCIIToStr ( N Integer ) ;
testfun ( N Integer , N String ) ;
main ( N String , N S t r i n g ) ;
/∗ nanoLang r u n t i m e l i b r a r y c o d e ∗/
/∗ S t r i n g f u n c t i o n s ∗/
N String
n S t r C a t ( N S t r i n g arg1 , N S t r i n g arg2 )
{
l e n = s t r l e n ( arg1 ) + s t r l e n ( arg2 ) + 1;
size t
char
∗res = malloc ( len ) ;
s t r c p y ( res , arg1 ) ;
s t r c a t ( res , arg2 ) ;
return res ;
}
[...]
226
,
nanoLang and its translation (2)
S t r i n g t e s t f u n ( I n t e g e r co un t ,
S t r i n g message )
{
Integer i ;
String res ;
i =0;
r e s=” ” ;
w h i l e ( i<c o u n t )
{
print ”Schleifendurchlauf ”;
print i ;
p r i n t ”\n” ;
r e s = StrCat ( r e s , message ) ;
i=i +1;
}
return res ;
}
N String n t e s t f u n ( N I n t e g e r n count ,
N String n message )
{
N Integer
n i = 0;
N String
n res = 0;
n i = (0);
NANO STRASSIGN ( n r e s , (NANO MAKESTR( ” ” ) ) ) ;
n r e s = (NANO MAKESTR( ” ” ) ) ;
while (( n i ) < ( n count )) {
p r i n t f ( ”%s ” , NANO STRVAL ( (
NANO MAKESTR( ” S c h l e i f e n d u r c h l a u f ” ) ) ) ) ;
p r i n t f ( ”%l l d ” , ( n i ) ) ;
p r i n t f ( ”%s ” , NANO STRVAL ( (NANO MAKESTR( ”\n” ) ) ) ) ;
NANO STRASSIGN ( n r e s , ( n S t r C a t ( ( n r e s ) ,
( n message ) ) ) ) ;
n r e s = ( n StrCat (( n r e s ) , ( n message ) ) ) ;
n i = (( n i ) + (1));
}
return ( n res );
}
227
,
nanoLang and its translation (2)
I n t e g e r main ( S t r i n g a r g 1 ,
S t r i n g arg2 )
N I n t e g e r n main ( N S t r i n g n arg1 ,
N String n arg2 )
{
{
N Integer
n limit = 0;
n limit = (10);
i f ( ( n S t r I s I n t ( ( n a r g 1 ) ) ) == ( 1 ) ) {
n l i m i t = ( n StrToInt (( n arg1 ) ) ) ;
}
p r i n t f ( ”%s ” , NANO STRVAL ( ( n t e s t f u n ( ( n l i m i t ) ,
( n arg2 ) ) ) ) ) ;
p r i n t f ( ”%s ” , NANO STRVAL ( (NANO MAKESTR( ”\n” ) ) ) ) ;
return (0);
Integer limit ;
l i m i t = 10;
i f ( S t r I s I n t ( a r g 1 )=1)
{
l i m i t =S t r T o I n t ( a r g 1 ) ;
}
p r i n t t e s t f u n ( l i m i t , arg2 ) ;
p r i n t ”\n” ;
}
return 0;
}
228
,
nanoLang C main
/∗ C main f u n c t i o n ∗/
i n t main ( i n t a r g c , c h a r ∗ a r g v [ ] )
{
N S t r i n g a r g 1 = NANO MAKESTR( ” ” ) ;
i f (1 < argc ) {
a r g 1 = NANO MAKESTR( a r g v [ 1 ] ) ;
}
N S t r i n g a r g 2 = NANO MAKESTR( ” ” ) ;
i f (2 < argc ) {
a r g 2 = NANO MAKESTR( a r g v [ 2 ] ) ;
}
n m a i n ( arg1 , a r g 2 ) ;
}
229
,
Top-Down Parsing
230
,
Basic Idea of Recursive Descent
I
One parsing function per non-terminal
I
Initial function corresponds to start symbol
Each function:
I
I Uses an oracle to pick the correct production
I Processes the right hand side against the input as follows:
I
I
If the next symbol is a terminal, it consumes that terminal from the
input (if it’s not in the input: error)
If the next symbol is a non-terminal, it calls the corresponding
function
231
,
Basic Idea of Recursive Descent
I
One parsing function per non-terminal
I
Initial function corresponds to start symbol
Each function:
I
I Uses an oracle to pick the correct production
I Processes the right hand side against the input as follows:
I
I
If the next symbol is a terminal, it consumes that terminal from the
input (if it’s not in the input: error)
If the next symbol is a non-terminal, it calls the corresponding
function
Oracle: Based on next character to be read!
I Good case: Every production can be clearly identified
231
,
Basic Idea of Recursive Descent
I
One parsing function per non-terminal
I
Initial function corresponds to start symbol
Each function:
I
I Uses an oracle to pick the correct production
I Processes the right hand side against the input as follows:
I
I
If the next symbol is a terminal, it consumes that terminal from the
input (if it’s not in the input: error)
If the next symbol is a non-terminal, it calls the corresponding
function
Oracle: Based on next character to be read!
I Good case: Every production can be clearly identified
I Bad case: Common initial parts of right hand sides =⇒ ?
231
,
Example/Exercise
I
Consider the following productions from G1 :
I
I
I
I
I
I
S → aA
A → Bb
B → aA
B→
What is the language produced?
How can we parse aabb?
232
,
Example/Exercise
I
Consider the following productions from G1 :
I
I
I
I
I
I
I
S → aA
A → Bb
B → aA
B→
What is the language produced?
How can we parse aabb?
What happens if we use the following productions from G2 ?
I S → aSb
I S → ab
232
,
Example/Exercise
I
Consider the following productions from G1 :
I
I
I
I
I
I
I
S → aA
A → Bb
B → aA
B→
What is the language produced?
How can we parse aabb?
What happens if we use the following productions from G2 ?
I S → aSb
I S → ab
I
Productions in G2 have common prefixes
232
,
Example/Exercise
I
Consider the following productions from G1 :
I
I
I
I
I
I
I
S → aA
A → Bb
B → aA
B→
What is the language produced?
How can we parse aabb?
What happens if we use the following productions from G2 ?
I S → aSb
I S → ab
I
Productions in G2 have common prefixes
I Common prefixes make the oracle work hard(er)
I How can we get G1 from G2 ?
232
,
Example/Exercise
I
Consider the following productions from G1 :
I
I
I
I
I
I
I
S → aA
A → Bb
B → aA
B→
What is the language produced?
How can we parse aabb?
What happens if we use the following productions from G2 ?
I S → aSb
I S → ab
I
Productions in G2 have common prefixes
I Common prefixes make the oracle work hard(er)
I How can we get G1 from G2 ?
Left factoring!
232
,
Example/Exercise
I
Consider the following productions from G1 :
I
I
I
I
I
I
I
S → aA
A → Bb
B → aA
B→
What is the language produced?
How can we parse aabb?
What happens if we use the following productions from G2 ?
I S → aSb
I S → ab
I
Productions in G2 have common prefixes
I Common prefixes make the oracle work hard(er)
I How can we get G1 from G2 ?
Left factoring! Plus. . .
232
,
Left recursion
Definition: A grammar G = hVN , VT , P, Si is left-recursive, if there
+
exist A ∈ VN , w ∈ (VN ∪ VT )∗ with A =⇒ Aw .
233
,
Left recursion
Definition: A grammar G = hVN , VT , P, Si is left-recursive, if there
+
exist A ∈ VN , w ∈ (VN ∪ VT )∗ with A =⇒ Aw .
I
Left recursion leads to infinite loops in recursive descent parsers
I To parse A, we first need to parse A . . .
I
Solution: Reformulate grammar
233
,
Our Running Example
I
We will again consider the set of well-formed expressions over
x, +, ∗.(, ) as an example, i.e. L(G ) for G as follows
I
I
I
I
VN = {E }
VT = {(, ), +, ∗, x}
Start symbol is E
Productions:
1.
2.
3.
4.
E
E
E
E
→x
→ (E )
→E +E
→E ∗E
234
,
Our Running Example (unambiguous)
I
We will again consider the set of well-formed expressions over
x, +, ∗.(, ) as an example, i.e. L(G ) for G as follows
I
I
I
I
VN = {E , T , F }
VT = {(, ), +, ∗, x}
Start symbol is E
Productions:
1.
2.
3.
4.
5.
6.
E
E
T
T
F
F
→E +T
→T
→T ∗F
→F
→ (E )
→x
235
,
Our Running Example (unambiguous)
I
We will again consider the set of well-formed expressions over
x, +, ∗.(, ) as an example, i.e. L(G ) for G as follows
I
I
I
I
VN = {E , T , F }
VT = {(, ), +, ∗, x}
Start symbol is E
Productions:
1.
2.
3.
4.
5.
6.
E
E
T
T
F
F
→E +T
→T
→T ∗F
→F
→ (E )
→x
What happens if we want to parse this using recursive descent?
235
,
Exercise: Recursive Descent for Expressions
I
Consider the following productions:
1.
2.
3.
4.
5.
6.
E
E
T
T
F
F
→E +T
→T
→T ∗F
→F
→ (E )
→x
I
Can we find an equivalent grammar that can be top-down parsed?
I
How?
236
,
Grading Exercise 7
Extend your compiler project to generate a basic C programm
I Finish the basic nanoLang compiler
I Your program should produce a correct C program that compiles and
implements the nanoLang semantics
I A testprogram (“testprog3.nano”) is on the web site.
I
Bonus: Implement full string functionality (including automatic
memory management and garbage collection)
237
,
Feedback round
I
I
What was the best part of todays lecture?
What part of todays lecture has the most potential for
improvement?
I Optional: how would you improve it?
238
,
Goals for Today
I
Training exam
I
Solution discussion
239
,
Review: Goals for Today
I
Training exam
I
Solution discussion
240
,
Feedback round
I
What was the best part of the course?
I
Suggestions for improvements?
241
,