CLIMSLIP Climate Impacts of Short-Lived Pollutants
Transcription
CLIMSLIP Climate Impacts of Short-Lived Pollutants
CLIMSLIP Climate Impacts of Short-Lived Pollutants & Methane in the Arctic (Nov. 2011 – Sept. 2015) Kathy Law (LATMOS) Site web : http://www.latmos.ipsl.fr/index.php/fr/tact/themes-de-recherche/climslip… Séminaire ANR Changements Environnementaux 19-20-21 mars 2014 Consortium • Projet porté par : • Partenaires : – Kathy Law/ Gerard Ancellet, LATMOS, Paris – LSCE (Jean-Daniel Paris, Isabelle Pison), Paris – LaMP (Olivier Jourdan, Alfons Schwarzenboeck), Clermont Ferrand – LGGE (Hans-Werner Jacobi, Paolo Laj), Grenoble – LMD (Solene Turquety), Paris • Additional funding/linked projects: CLIMSLIP-LEFE(2010-2013), CLIMSLIP-ESF (2010-2013), and CLIMSLIP-IPEV (2012-2014), EU ECLIPSE, CNES, POLARCAT-France S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4 Participants LATMOS: K. Law, G. Ancellet, J.-C. Raut, J. Thomas, J. Pelon, F. Ravetta, A. Bazerau, J. Delanoe, L. Marelle, B. Quennehen, L. Doppler LSCE: J.-D. Paris, I. Pison, A. Berchet, E. Azoumanian, A. Pruvost LaMP: O. Jourdan, G. Guyot, A. Schwarzeboeck, W. Wobrock, C. Gourbeyre LGGE: H.-W. Jacobi, P. Laj, H. Gallee LMD: S. Turquety, Y. Long S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4 Overland and Wang, GRL (2013) ANR CLIMSLIP Motivation: 89 ensembles from 36 CMIP5 models run with RCP8.5 Arctic warming more rapidly than elsewhere, summer sea-ice disappearing – climate models do not perform well in Arctic Why? E.g. representation of Arctic clouds/aerosol-cloud interactions Short-lived pollutants (ozone and aerosols) and methane warm the atmosphere – important contributors to Arctic warming – pollutants transported from mid-latitudes + new local sources (e.g. oil/gas) Much interest in mitigating short-lived pollutants e.g. Climate & Clean Air Coalition (http://www.unep.org/ccac/), Arctic Council AMAP Expert Group on Black Carbon & Ozone ANR CLIMSLIP Motivation: carbon monoxide black carbon Lee et al. (2013) Global chemistry-climate models (e.g. IPCC CMIP5) have problems simulating seasonal cycle of pollutants in the Arctic & thus climate impacts Requires better understanding about emissions (e.g. fires), pollutant processing during transport & loss processes esp. washout (surface + free troposphere) IPCC AR5 models CLIMSLIP objectives: To improve understanding about short-‐lived pollutants (ozone, aerosols) and methane in the Arc;c: – – – – – – Tropospheric ozone/aerosols – anthropogenic vs fire emissions Pollutant processing during transport to the ArcBc Arc;c methane – quan;fica;on of sources (e.g. oil/gas, wetlands) Aerosol-‐cloud interac;ons – new data on mixed phase/ice clouds Black carbon (BC) – new data in atmosphere/snow Climate impacts (ozone, methane, aerosols (direct effects + BC snow-‐ albedo feedback) Combina;on of new (exis;ng) data analysis + regional/global modelling) S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4 Etat d’avancement: • Field campaign in Svalbard (spring 2012) new data on black carbon & aerosol-‐cloud interacBons • Analysis of new YAK aircraQ data over Siberia 2012/1 (trace gases (CH4, O3) and aerosols • State of art inversions of methane sources over Siberia • Regional case studies of ozone/aerosol plume processing • New scheme for fire plume rise in global chemistry-‐climate model (LMDzORINCA) • New retrievals of Arc;c aerosols/clouds using CALIOP/ CloudSAT satellite data + validaBon (IASI, CALIOP) • 1 year extension to Sept. 2015 (addi%onal YAK campaign with new French aerosol lidar instrument (fall 2014), chemistry-‐climate modelling) S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4 ANR CLIMSLIP: CAMPAIGNS x YAK-‐AEROSIB Yakutsk Trace gas & aerosols summer 2012/13, Siberia Analysis of ANR-‐POLARCAT(IPY) spring/summer 2008 data X x ANR CLIMSLIP: Svalbard, spring 2012 (soot dNorilsk eposi;on & aerosol-‐cloud interac;ons) Xx Svalbard Kangerlussuaq X Kiruna Arctic Aerosol distributions (CALIOP) - spring 2008 based on new retrieval algorithms 0 to 2 km 4 to 6 km 532nm aerosol scattering ratio Ancellet et al. (ACPD) Evidence for secondary aerosol max. in free tropopshere due to boreal fires + Asian emissions transported to Arctic in spring 2008 – superimposed on declining « Arctic Haze » below 2km (Law et al., 2014 – POLARCAT review) Improved characterization of Arctic mixed phase clouds using aircraft data and satellite retrievals Cloud top In situ characteriza;on of mixed phase clouds microphysical proper;es (Svalbard/ASTAR)) Supercooled droplets (cloud top) + precipita;ng ice (cloud base) Cloud base WINTER SPRING Cloud fracBon (%) Below cloud Seasonal frequency occurrences of mixed phase clouds from CALIPSO-‐CloudSat observa;ons (2007-‐2010) – DARDAR algorithm Svalbard in region with high % of mixed-‐phase clouds (use to improve washout processes in models) SUMMER FALL Mioche et al. (in prep.)/collab. ECCLAT Pollution transport from North America to Greenland 4 July – 7 July 2008 Pollutant plumes upliQed from 1-‐2km to 8km by synop;c fronts Fire Analysis of POLARCAT data using regional WRF-‐Chem model Anthropogenic Pommier et al. (2010) Thomas et al. (2013) Pollution impact on ozone in the Arctic troposphere Significant ozone production in fire and anthropogenic plumes transported from North America to Greenland Thomas, et al., 2013. 800 800 CO (ppbv) 800 O3 (ppbv) 200 0 800 50 100 150 200 250 300 CO (ppbv) DC8 20080629-20080713 800 1000 0 r=0.83 r=0.81 r=0.82 r=0.88 r=0.91 r=0.86 r=0.76 r=0.69 r=0.86 r=0.89 0 0 0 50 600 1000 0.00 DC8 20080629-20080713 0.05 0.10 0.15 OH (pptv) 0.20 DC8 20080629-20080713 50 100 150 200 250 300 200 (ppbv) CO r=0.97 r=0.97 r=0.99 r=0.95 r=0.96 r=0.93 r=0.78 r=0.98 r=0.98 r=0.97 400 400 800 100 O3 (ppbv) 200 Alt (hPa) 0 1000 10 600 r=0.97 r=0.97 r=0.99 r=0.99 r=0.99 r=0.99 r=0.88 r=0.98 r=0.99 r=1.00 r=0.82 r=0.88 r=0.94 r=0.91 r=0.93 r=0.95 r=0.86 r=0.66 r=0.93 r=0.76 r=0.91 r=0.98 r=0.69 r=0.93 r=0.83 r=0.86 r=0.63 r=0.89 Alt (hPa) 600 r=0.83 DC8 20080401-20080419 r=0.81 200 Alt (hPa) 0 400 400 Alt (hPa) r=0.99 r=0.98 r=0.99 r=0.99 r=0.98 r=0.96 r=0.99 r=0.99 r=0.99 r=0.99 0 Alt (hPa) 200 Alt (hPa) DC8 20080401-20080419 400 r=0.30 r=0.33 r=0.88 r=0.64 r=0.58 r=0.60 r=0.80 r=0.35 r=0.27 r=0.34 0.05 0.10 OH (pptv) DC8 20080629-20080713 DC8 20080629-2 POLARCAT model intercomparison project (POLMIP): models run with same emissions 200 200 • General underesBmaBon of carbon monoxide r=0.97 (CO), except LMDzORINCA r=0.97 400 • 400 Fire plumes strongly r=0.99 underesBmated (Monks et al., 2014) r=0.95 r=0.96 600 Obs. CAM4Chem 800 CAM5Chem CIFS GEOSChem GMI 1000 LMDZ-INCA MATCH 10 MOZART TM5 TOMCAT Alt (hPa) 20080629-20080713 NASA DC8 aDC8 ircraQ data (June-‐July 2008) 0 0 0 r=0.88 r=0.98 r=0.99 r=1.00 Global modelling of ozone and its 1000 1000 1000 precursors – role of boreal fires 0 50 100 150 200 250 300 10 100 0.00 DC8 20080401-20080419 0 0 r=0.99 r=0.99 r=0.99 r=0.99 r=0.93 600 r=0.78 r=0.98 r=0.98 of CO (850hPa) ModificaBon 800 r=0.97 (plume rise – surface emission) 100 O3 (ppbv) 1000 0.0 0.1 0.2 0.3 OH (pptv) 600 of plume rise fire model to Implementa;on account for pyro-‐convec;on in LMDZORINCA : 800 800 • EvaluaBon against satellite ofrom bservaBons Fig. 7. DC8 vertical the spring (top) and summer (botto 1000 1000 profiles 100 150 200 250 300 10 100 0.0 0.1 0.2 0.3 0.4 0.5 shows (first results) CO (ppbv) O (ppbv)good consistency OH (pptv) concentrations of CO (left), Oof 3pollutants (middle) • Direct impact on transport and OH (right) along with erro S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4 Long et al., in prep. percentiles of the observations. Pearson’s correlation coefficients are al 600 3 vertical profiles from the spring (top) and summer (bottom) ARCTAS campaign. Median s of CO (left), O3 (middle) and OH (right) along with error bars showing the 25th and 75th New yak aircraft campaigns over siberia in Summer 2012/2013 2013 campaign: CO concentraBons Backplume for high CO, fires in 2012 • Signal dominated by fires in 2012 (very high CO in plumes) • Analysis of air mass origins (ozone) (Berchet et al., 2013) • InstallaBon of aerosol micro-‐ lidar (LATMOS, IAO Tomsk, LSCE) + analysis of Russian aerosol data • New CH4 data over Siberia (LSCE) Inverse modelling of natural & anthropogenic CH4 fluxes in Siberia Total emissions over Siberia (2010) (5.5-‐22.7 TgCH4 yr-‐1): Natural : 0-‐12 TgCH4yr-‐1 Anthropogenic : 5-‐12 TgCH4yr-‐1 => 60% reduc;on uncertain;es over study region (lowlands) Berchet et al., in prep. Methane sources : oil/gas, urban, wetlands, boreal fires New analyBc method to reduce uncertainBes Used regional model CHIMERE & available data (13 staBons (10 conBnuous & 3 daily flasks) Climslip Field Campaign Svalbard (Mar. -May 2012) : Aerosol-Cloud Interactions on Mount Zeppelin (480m) -‐ “Aged” pollu;on -‐ low concentraBon of -‐ Local pollu;on -‐ higher fracBon of « small » aerosols (D<100nm) “small” aerosols -‐ Lower acBvaBon fracBon ranging from -‐ Aerosol acBvaBon fracBon (red dots) 40% to 60 % from 60% to 100 % -‐ Long-‐range transport of aerosols from -‐ Local sources (ArcBc or Kola Peninsula) Russia or Canada Air masses from Russia: SP2 Zeppelin (32 ± 23) ng m-‐3 Aethalometer Corbel (48 ± 27) ng m-‐3 Aethalometer Zeppelin (48 ± 24) ng m-‐3 Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France CLIMSLIP Field Campaign (March/April 2012): New measurements of atmospheric black carbon svalbard (zeppelin) using SP2 instrument Modelling black carbon in the Arctic NASA ARCTAS BC data Regional models (e.g. WRF-‐Chem) & other global models compared to aircrap & surface data 12 April 2008 aircraft sampling flight paths WRF-‐Chem performs « well » compared to other models Contribu;ng to Arc;c Council AMAP report on BC & ozone color shading = emission rates of BC (red and gray = high rates) emissions from flaring not included in previous inventories (EU ECLIPSE (Stohl et al., 2013)) Kongsvegen Avg = (0.6 ± 0.4) ppb Avg = (1.9 ± 0.9) ppb Avg = (1.3 ± 0.5) ppb Work in progress to assess impacts of BC in snow on surface albedo Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France First BC measurements in surface snow at Corbel (15 m), Austre/Vestre Lovenbren (300 m) and in a snow pit on the Kongsvegen glacier (670 m) Dissémination et valorisation • 12 papers published, 1 in revision (5 in prep.) • Conferences (LEFE, EGU, AGU, ChanBer ArcBque) + popular arBcles • 4 PhD theses + 4 postdocs/CDDs http://www.latmos.ipsl.fr/index.php/fr/tact/ themes-de-recherche/climslip S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4 Perspectives ….. • YAK campaign – september 2014 (collab. NILU) • Aerosol radia;ve impacts + ozone source airibu;on over the ArcBc • Chemistry-‐climate modelling – climate impacts of short-‐lived pollutants • Arc;c Council expert group on Black Carbon & Ozone (report due fall 2014, mtg Paris-‐June 2014) • Discussing new interna;onal ini;a;ve on ArcBc air polluBon • ChanBer ArcBque … S é m i n a i r e A N R C h a n g e m e n t s E n v i r o n n e m e n t a u x 1 9 -‐ 2 0 -‐ 2 1 m a r s 2 0 1 4
Similar documents
CLIMSLIP Meeting - Issues • Campaign data analysis
! New methane data over Siberia (YAK) + inverse modelling of CH4 sources • Study impact of anthropogenic pollution on Arctic cloud properties and aerosol direct/indirect radiative forcing (T3,4) ...
More informationCellular Stress Responses
• Mutated, secreted proteins linked to nephrotic syndrome (e.g., nephrin and podocin) are retained in the ER and induce the unfolded protein response (UPR)
More information