Batteries and Battery systems State of Charge
Transcription
Batteries and Battery systems State of Charge
POLITECNICO DI BARI-SMART GRID SEMINARY E-MOBILITY Battery technique in E-mobility Dr.-Ing. Pio Lombardi Fraunhofer-Institut für Fabrikbetriebund Automatisierung IFF Bari 02-03.02.2012 Structure Introduction Battery technique Battery test technique Battery and battery systems 2 Elektromobilität Introduction Developing and market Development since 20th century (1) 1948 maintenance free battery (Neumann) In the 70th and 80th development for mobile applications (NiMH) 1991 Lithium-Ions cells 2003 rapid growth in Asia (China, Korea, Japan) European and American Firms in niche applications (traction) Marketshare of secondary cells, Quelle: Seeking Alpha, Umicore (1)- A. Jossen, W. Weydanz „Moderne Akkumulatoren richtig einsetzen“ Global Marketshare of Battery Producers (CYcalender year) Quelle: batteryuniversity.com 3 Elektromobilität Introduction battery application areas Developing for high power batteries After introduction of hybrid vehicles (12kWh) Applications and utilized battery-technologies, vgl. (1) applications Lead NiCd Need of high charge and discharge power Starter battery X x Trends to lithium based systems Hybrid vehicle Need of battery energy management Electric traction X Solar application X equipments Camera, mobile phones NiMH LiIonen X x X X x x X X Consume weighting of criteria of batteries for elektromobility Quelle: Frankenberg 2010 Primary cells X (1)- A. Jossen, W. Weydanz „Moderne Akkumulatoren richtig einsetzen“ 4 Elektromobilität Introduction battery application areas Traction application Secondary elements High voltage plants Hogh current Volume and weight Overview of voltage levels and power densities for traction applications Application-Areas of batteries Quelle: G. Schädlic Hoppecke, 2010 5 Elektromobilität Battery technique Nominal values Nominal voltage different batteries Nominal voltage Nominal voltage per cell Voltage Medium voltage by discharging under nominal conditions Lead batterie 2,0V NiCd-Battery 1,2V Nominal voltage is defined NiMH-Battery 1,2V Nominal voltage can increase improving the technology (i.e. Li-Ion) Na/NiCl (ZEBRA) 2,58V LiFePO4-Battery 3,3V Li-Ions Battery 3,7V Nominal current and temperature for different applications Source: A. Jossen, W. Weydanz „Moderne Akkumulatoren richtig einsetzen“ t Nominal capacity CN (TN ) IN t dt o Anwendung Nominal current Nominal temperature Starter battery 0.2C-Rate 20°C Stationary Battery 1/20C-Rate 27°C Traction battery 1/5C-Rate 30°C Solar battery 1/100C-Rate 25°C 6 Elektromobilität Battery technique Capacity and efficiency 13 capacity Usable charged amount Depends on discharge current, temperature and age conditions Spannung [V] 12 t C( ) I t dt 10 15,5A 20A 29A 40A 9 8 o 0 1 2 3 4 5 Zeit [h] Measured discharging-curve of a plumbaccumulator 16 Strom [A] Ratio between discharged energy an EE and charged energy EL 16 12 12 8 8 4 Wh EE EL 4 Strom Spannung 0 0 2 4 0 8 6 Zeit [h] Measured Loading-curve of a plumb-accumulator 7 Elektromobilität Spannung [V] efficiency 11 Battery technique Energy and power Energy and power specific data Valutation of the technology Rapresenation as Ragone-Diagram Ragone Diagram for different storage technologies Source: Maxwell Technologies Typical specific value Specific Energy between 20 and 200Wh/kg Specific power up tp max. 5kW/kg Specific energy content in volume between 50 bis 500 Wh/l Ragone Diagram for battery technologies Batterietechnologien Source: GAIA Advanced Lithium Battery Systems 2007 8 Elektromobilität Battery technique State-of-charge Charging condition: State-of-Charge (SoC) It represents the remaining amount of the charge in (0,1 or 0, 100%) SoC and charging characteristic of a E-car with Lead battery Influence on the charging conditions Aging condition Charge-discharge current Temperature Measured capacity Cm Qb I dt t SoC Cm Qb Cm Difference between energy and increment of the charge Elektromobilität 9 Battery technique State-of-health Aging of the battery Described using the state-of-health (SoH) Reduction of the capacity Increase of the internal resistances Increase of the self-discharge Reduction of the nominal voltage SoH Cm 100% CN Durability of a VRLA-Batterie, Quelle: CSB-Battery EVH12150 State-of-health (SoH) Ratio between measured capacity and nominal capacity Limit value 80% (60, 70% possible) Quelle: www.cadex.com Limit value related to the end of the life time 10 Elektromobilität Battery technique self-discharge Self-discharge Discharge losses depending on time Dangerous for the cells Caused by Connected consumers(i.e. BMS) Nominal reactions Tipical representation of self-discharge Internal short circuit Self-discharge affetcs: charging, discharging, pause 100 Kapazität [%] 80 60 40 Berechnung 3 Tage 28 Tage 20 0 0 5 10 QSR 15 20 25 30 QS 100% t Lag CN Zeit [d] Self-discharge of a LiFePO4- battery Full charge Pause time Discharge Rate of self-discharge 11 Elektromobilität Battery technique internal resistance Internal resistance direct current Reduction terminal voltage. It depends on the current It may cause increase of the temperature It depends on the SoC and the Temperature 50 Strom [A] Strom Spannung 20 40 10 0 30 0 2 4 6 8 Zeit [min] Principle of DC-resistance identification 10 12 20 14 Spannung [V] 30 Gleichstromwiderstand [mOhm] Equivalent circuit diagram of a battery 300 250 200 150 100 0 2 4 6 8 10 12 14 Zeit [min] Calculated distribution of the DC-resistance of a LiFePO4-battery 12 Elektromobilität Battery technique charging methods Overview of charging methods Source: Battery Technology Handbook IU-charging methods Charging at constant current After achieving the end of charge voltage it charges at constant voltage Ending of charging according the current or time criteria applications for lead, Li-Ion, Na/NiCl Principles of the IU-Loading method Quelle: www.itwissen.info 13 Elektromobilität Battery technique charging methods IUoU- Charging method as IU-charging, however the voltage in the first phase can be higher After a specific time the voltage decreases Short charging time is possible Application for lead, Li-Ion Principles of the IUoU-Loading Method Quelle: www.itwissen.info I-Load og a NiMH-Cell with ΔU-Cut-Off 14 Elektromobilität Battery technique boost charging method Theory of boost charging High current. The charge progressively decreases SoC (progressively increases) The maximal current decreases with the time The charging can be improved by using negative current pulse (Depolarization) Tipical carge-times for boost-charges up to 80% SoC Ultra-Fast DC-Charge Infrastructures for EV-Mobility and Future Smart Grids MCC-CV Negative current pulse for the depolarization Maximal Load-current over the time MCC-CV-Boostcharging Method with negative pulses Research on Fast Charge Method for Lead-acid EV-Batteries Elektromobilität 15 Battery technique boost charging method Boost charging NiCd I-charging IUa-charging End after formation of hydrogen Higher charging current (I>1C) Increase of the temperature reduces the efficiency Charging time lower than one hour Potential-diagrams during a pulsecharge R. Groiß, „Schnellladung und Pulsladung von Bleibatterien“ Pulse method Special case of Icharging Variation Pulse/Pause Measurement of the voltage during the pause IUa-boost-charge of a LiPo-battery with 3C Performance Evaluation of Lithium Polymer Batteries for Use in Electric Vehicles I-boostcharge of a NiCd-battery (6V, 100Ah) Application Range of Fast-Charging in Ni-Cd Batteries 16 Elektromobilität Battery test technique overview Battery testing : Different manufacturer´s data Determination of the capacity, temperature performance, life time, … Modification of the batteries for the system targets t Capacity: C I t dt o Efficiency: Ah QE QL Standards für the applications and type of batteries Battery testing-station up to1000kW (1000A), Quelle: FuelCon IEC Battery-testing-station, Quelle: Digitron 17 Elektromobilität Battery test technique overview Field of applications of battery test technique: Test- Accuracy, Quelle: DIN IEC 61960 Battery design (optimization) Battery producer ( quality, cell selection) Equipments design (choice, battery parameter) Equipement producer (control of quality) Service, operator (SoC, SoH…) Parameter accuracy Voltage ±1% Current ±1% Capacity ±1% Temperature ±2°C time ±0,1% Choice of standards for battery testing, Source: Jossen, Weydanz: „Moderne Akkumulatoren richtig einsetzen“ Application Lead acid NiCd-Battey NiMH-Battery Lithium-Ions Battery Small traction IEC 61982-2 BCI-Standard IEC 60623 Keine Norm Keine Norm Traction IEC 60254-1 AS 2402 IEC 60623 Keine Norm Keine Norm EV / HEV IEC 61982 USABC IEC 61982 USCAR/USABC EUCAR USCAR/USABC EUCAR 18 Elektromobilität Battery test technique life time test Life time test Reduction of the terminal voltage It depends on SoC, Temperature Principle of testing durability Cycletests for batteries, Quelle: C3 Prozess- und Analysetechnik GmbH Test-accuracy, Quelle: DIN IEC 61960 19 Elektromobilität Battery test technique Temperature Temperature has an influence on Self-discharge capacity Life time Conservation of the charged current degradation („thermal runaway“) Temperature-increasement of a NiMH-hybrid vehicle battery with a current of100A Quelle: Electro-Thermal Modeling to improve Battery design Temperature test Temperature chamber Infra red thermography DIN IEC 21/455/CD Test-assembling with temperature-chamber 20 Elektromobilität Batteries and Battery systems Battery management system Battery management system (BMS) Controlling of the important safety parameters (T, I, U) Cell balancing Estimation of the SoC Diagnostic functions and interfaces Key-functions of a BMS, Quelle: courtesy of Compact Power Inc. Other functions Load management History Autentication Block diagram of a battery management system, Quelle Hochschule Bochum 21 Elektromobilität Batteries and Battery systems Battery management systems Cell balancing By seriall connection Same types cells may be different in Time perfomance capacity Self-discharge ≠ Temperature performance Loss of Capacity through un-balanced cells, Quelle: Intersil Balancing of 3 LiFePO4-cells 22 Elektromobilität Batteries and Battery systems State of Charge State of charge (SoC) Estimation of remaining charge Consideration of current and temperature Based on the Ah-meter, open circuit voltage or methods for modeling is possible Blockstructure of an Soc-module State of the Charge Information on the cruise range Information on remaining capacity Compact SoC-module of an electric vehicle Elektromobilität Indirect information on remaining charging time 23 Batteries and Battery systems Heat management Heat management for batteries Observation of tolerable operation temperature Cooling during discharge Heating at low ambient temperature (high temperature battery) Heat transport from a battery, Battery Technology Handbook 2008 Battery of PH Toyota Prius with internal cooling system, Quelle: Autonews Battery heating- and cooling system of the Chevrolet Volt, Quelle: //gm-volt.com 24 Elektromobilität Batteries and Battery systems Lead gel battery Wirkleistung [kW] Maintenance free (VRLA) for traction Cell voltage: 2V but high weight Robust and high life time Low priced 100 1.5 Wirkleistung State of Charge 75 1 50 0.5 25 0 0 2 4 6 State of Charge [%] 2 Lead battery 0 10 8 Zeit [h] AC-loadcharacteristics of the electric vehicle MEGA e-City Strom [A] 0 -100 -200 -300 Electric vehicle MEGA e-City and interconnection of the transaction-battery 0 2 4 6 8 10 12 Zeit [min] 14 16 18 20 22 Measured speed profile and current intake of MEGA eCity during an extra urban trip 25 Elektromobilität Batteries and Battery systems Lead gel battery Operation Discharge as deep as necessary Before the charging no discharge Storing in full charged status Aeration needed (Hydrogen can be produced) Traction battery of the E-car SAM Quelle: cree TWIKE AC- charging characteristic of a Twike DC-charging characteristic of SAM 26 Elektromobilität Batteries and Battery systems Lithium-Ions (Li-Ion) Lithium-Ions Cells voltage circa 3,7V Limited self-discharge High efficiency Costs- and energy density trend of Li-Ions cells Quelle: batteryuniversity.com Lithium Leight metal 0,006% in der earth crust High reactiveness 27 Elektromobilität Batteries and Battery systems Lithium-Iones-Accumulator (Li-Ion) Li-Ion as a transaction battery In case of failure thermical energy 6 times higher than electrical energy Prefered for traction because of high energy density, freedom of maintenance and longlife-cycles Gasoline-car with consumption of 3-4l/100km corrisponds a Li-Ions-loaded vehicle with europ. current mix, Quelle: S. Voser, EMPA 2010 Li-Ion-Battery of E-Mini Quelle: Li-Ion-cells for vehicle- applications, flickR, BMW Automedienportal.net/Bosch Construction of a Li-Ion for Hybrid vehicles, www.automobil-produktion.de 450kg storage-battery unit of Tesla Roadstar, RW=365km, Kosten 13.300€, Quelle: heise Autos Elektromobilität 28 Batteries and Battery systems Lithium-Polymer (LiPo) Lithium-Polymer-Accumulatores (LiPo) Seperator made of Polymer Very high specific energy-density Temperature-sensitive Sensitive against mechanical exposures Popular field: pattern-making CCCV-Load of the cellblocks Electrical Characteristics Nominal voltage ca. 3,7V Picture and construction of a transaction-battery on the base of LiPO-Cells for CCCV-load, decrease of endof-charge-voltage is advantageous 29 Elektromobilität Batteries and Battery systems Lithium-Iron-Phosphate-Accumulator (LiFePO4) Lithium-Iron-Phosphate Battery (LiFEPO4) Electrical characteristics Comperatively a quite „young“ technology Nominal tension 3,3V Reversible 2-phase-reaction (very plain potential curves) High thermal stability Excellent Aging-Characteristics Strom [A] 40 100 30 75 20 50 10 Ladung [Ah] LiFePO 4 Li FePO4 Good sicurity characteristics 25 Strom Ladung 0 0 0.5 1 1.5 2 0 2.5 Zeit [h] Construction of a LiFePO4-System for traction applications and CCCV-chargingcharacteristic Elektromobilität 30 Batteries and Battery systems Lithium-Iron-Phosphate-Accumulator (LiFePO4) Limo-Green Hybrid LiFePO4-Battery- system Quelle: aquawatt LiFePO4-Battery- system from GAIA Quelle: www.solar-sicherheit.de LiFePO4-Accu (8,6kWh) behind the back seats of the Jaguar Limo-Green, Quelle: www.motorvision.de Electrovehicle Stromos andcurrent profile during loading Stromverlauf 31 Elektromobilität Batteries and Battery systems Natrium-Nickel chloride-Accumulator (NaNiCl) Natrium-Nickel chloride (NaNiCl) Developed in the 1980s (ZEBRA – Zero Emission Battery Research Activities) Battery at high temperature with a cell tension of 2,58V temperature range from 250 to 350°C (heating system) ZEBRA-complete system (Battery, BMS, battery charger) Ampere degree of efficiency of 100% NaNiCl-accumulator Quelle: A. Gillhuber, elektroniknet, 09 NaNiCl-accumulatores (ZEBRA) and demonstration of the principle of the battery system Quelle: Dustmann,C. H. “Advances in ZEBRA batteries” 32 Elektromobilität Batteries and Battery systems Natrium-Nickel chloride-Accumulator (NaNiCl) Particularity of the ZEBRA-Battery 1- and 3-phasic battery charger possible 150 100 100 Temperatur Spannung 0 4 8 300 1500 1000 Temperatur [°C] Wirkleistung [W] 2000 16 20 24 Heating-cycle of a ZEBRA-Battery Body with thermical isolation With CAN the BMS can be read-out (SoC, U, I, T) 12 Zeit [h] Temperatur Spannung 253,5V 3000 2500 200 300 208,6°C 200 200 100 100 500 0 0 2 4 6 8 10 Zeit [h] Monophasic Load of a ZEBRA-Battery 0 12 Manufacturer´s suggested battery charger, Quelle: MES-DEA 0 2 4 6 8 0 10 Zeit [d] Termperature and voltage characteristic during cooling-down 33 Elektromobilität Spannung [V] 252V 200 Spannung [V] Co-current flow heating (selfdischarge) 300 211,5°C Temperatur [°C] Monophasic alternating current heating 250 Batteries and Battery systems Natrium-Nickel chloride-Accumulator (NaNiCl) Crash-Test with 50km/h (1) Electric vehicles and hybrid vehicles with ZEBRA-Batteries(1) (1) Dustmann,C. H. “Advances in ZEBRA batteries” Self-discharge of a ZEBRA-Battery in parking-mode 34 Elektromobilität Batteries and Battery systems Nickel- Metal-hydride –Accumulator (NiMH) Nickel-Metal-hydride-Accu Advencement of the NiCd-Accu (no memory-effect anymore) Cell voltage of 1,2V Relatively high weight Mainly used for hybrid vehicles NiMH-Battery (6,5Ah, 288V) of the Toyota Prius, Quelle: wapedia Toyota Rav4-EV caruuu.com NiMH-Batterypack of Rav4-EV Quelle: www.techno-fandom.org AC-load characteristics of the NiMH-Battery of the Rav4-EV Quelle: Southern California Edison, datasheet, 1999 35 Elektromobilität Batteries and Battery systems Nickel- Metal-hydride –Accumulator (NiMH) Characteristics of NiMH-Accu Storable at every state of charge Properties are not inflammable Sensitive against overload, overheating, deep discharge Phileas Bus (Hybrid) and NiMH-Battery Quelle: G. Schädlich, Hoppecke, 2010 Load- and unload characteristics for the refreshcycle of a NiMHcell Elektromobilität Quelle: G. Schädlich, Hoppecke, 2010 36 Batteries and Battery systems Future Trends Developmental potentials Cathodic materials Safety tecnologies Durability System of Battery management Cost reduction within the mass production Start-Stop technology for hybrid and electro vehicles Higher nergy densities with new zinc-air-cells for electric vehicles Quelle: ReVolt Application of Nano technologies Enlargement of electrode surface Optimization of iontransport Objective for the consumer batteries costs less 37 Elektromobilität Thanks for your attention! Quelle: www.zazzle.de 38 Elektromobilität Einleitung Geschichte des Akkumulators Die „Bagdad-Batterie“ Ca. 100 v. Chr. 15 cm hohes Tongefäß Kupferzylinder gefüllt mit Essiglösung 0,5V zwischen Eisenstab und Zylinder Nachbidung der „Bagdad-Batterie“ Quelle: w³.praschensky.com Galvanische Elemente 1780 durch Luigi Galvani entdeckt Grundlage für elektrochem. Zellen Die Voltasche Säule Nachbidung einer Voltasäule Quelle: Luigi Chiesa Galvani‘s Experiment, Quelle: w³.life.com 1799 durch Alessandro Volta entwickelt Geschichtete Kupfer(Silber)-Zink(Zinn)plättchen Salzsäure getränktes Papier (Leder) als Separator 39 Elektromobilität
Similar documents
Free (PDF 1.4 MB)
© 2011 by J. R. Kuehmayer · Austrian Marine Equipment Manufacturers – www.amem.at
More information