A Modern Almagest - Richard Fitzpatrick
Transcription
A Modern Almagest - Richard Fitzpatrick
A Modern Almagest An Updated Version of Ptolemy’s Model of the Solar System Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 1.1 Euclid’s Elements and Ptolemy’s Almagest 1.2 Ptolemy’s Model of the Solar System . . . 1.3 Copernicus’s Model of the Solar System . . 1.4 Kepler’s Model of the Solar System . . . . 1.5 Purpose of Treatise . . . . . . . . . . . . . . . . . . 2 Spherical Astronomy 2.1 Celestial Sphere . . . . . . . . . . . . . . . . 2.2 Celestial Motions . . . . . . . . . . . . . . . 2.3 Celestial Coordinates . . . . . . . . . . . . . 2.4 Ecliptic Circle . . . . . . . . . . . . . . . . . 2.5 Ecliptic Coordinates . . . . . . . . . . . . . . 2.6 Signs of the Zodiac . . . . . . . . . . . . . . 2.7 Ecliptic Declinations and Right Ascenesions. 2.8 Local Horizon and Meridian . . . . . . . . . 2.9 Horizontal Coordinates . . . . . . . . . . . . 2.10 Meridian Transits . . . . . . . . . . . . . . . 2.11 Principal Terrestrial Latitude Circles . . . . . 2.12 Equinoxes and Solstices . . . . . . . . . . . . 2.13 Terrestrial Climes . . . . . . . . . . . . . . . 2.14 Ecliptic Ascensions . . . . . . . . . . . . . . 2.15 Azimuth of Ecliptic Ascension Point . . . . . 2.16 Ecliptic Altitude and Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 10 11 12 . . . . . . . . . . . . . . . . 15 15 15 15 17 18 19 20 20 23 24 25 25 26 27 29 30 3 Dates 63 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Determination of Julian Day Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Geometric Planetary Orbit Models 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2 MODERN ALMAGEST 4.2 4.3 4.4 4.5 Model of Kepler . . . Model of Hipparchus Model of Ptolemy . . Model of Copernicus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 69 71 72 5 The Sun 5.1 Determination of Ecliptic Longitude . . . . . 5.2 Example Longitude Calculations . . . . . . . 5.3 Determination of Equinox and Solstice Dates 5.4 Equation of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 75 77 78 80 . . . . 87 87 88 90 91 6 The Moon 6.1 Determination of Ecliptic Longitude 6.2 Example Longitude Calculations . . 6.3 Determination of Ecliptic Latitude . 6.4 Lunar Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Lunar-Solar Syzygies and Eclipses 7.1 Introduction . . . . . . . . . . . . . . . . 7.2 Determination of Lunar-Solar Elongation 7.3 Example Syzygy Calculations . . . . . . . 7.4 Solar and Lunar Eclipses . . . . . . . . . 7.5 Example Eclipse Calculations . . . . . . . 7.6 Eclipse Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 101 101 102 104 107 108 8 The Superior Planets 8.1 Determination of Ecliptic Longitude . . . . . . . . . . . . . . 8.2 Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Determination of Conjunction, Opposition, and Station Dates 8.4 Jupiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Saturn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 115 119 121 124 125 9 The Inferior Planets 9.1 Determination of Ecliptic Longitude . . . . . . . . . . . . . . 9.2 Venus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Determination of Conjunction and Greatest Elongation Dates 9.4 Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 141 142 145 147 10 Planetary Latitudes 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 10.2 Determination of Ecliptic Latitude of Superior Planet 10.3 Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Jupiter . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Saturn . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 Determination of Ecliptic Latitude of Inferior Planet . 10.7 Venus . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8 Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 157 157 159 160 161 162 164 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONTENTS 3 11 Glossary 179 12 Index of Symbols 185 13 Bibliography 187 4 MODERN ALMAGEST Introduction 5 1 Introduction 1.1 Euclid’s Elements and Ptolemy’s Almagest The modern world inherited two major scientific treaties from the civilization of Ancient Greece. The first of these, the Elements of Euclid, is a large compendium of mathematical theorems concerning geometry, proportion, and number theory. These theorems were not necessarily discovered by Euclid himself—being largely the work of earlier mathematicians, such as Eudoxos of Cnidus, and Theaetetus of Athens—but were arranged by him in a logical manner, so as to demonstrate that they can all ultimately be derived from five simple axioms. The Elements is rightly regarded as the first, largely succesful, attempt to construct an axiomatic system in mathematics, and is still held in high esteem within the scientific community. The second treatise, the Almagest1 of Claudius Ptolemy, is an attempt to find a simple geometric explanation for the apparent motions of the sun, the moon, and the five visible planets in the earth’s sky. On the basis of his own naked-eye observations, combined with those of earlier astronomers such as Hipparchus of Nicaea, Ptolemy proposed a model of the solar system in which the earth is stationary. According to this model, the sun moves in a circular orbit, (nearly) centered on the earth, which maintains a fixed inclination of about 23◦ to the terrestrial equator. Furthermore, the planets move on the rims of small circles called epicycles, whose centers revolve around the earth on large eccentric circles called deferents—see Fig. 8.2. The planetary deferents and epicycles also maintain fixed inclinations,2 which are all fairly close to 23◦ , to the terrestrial equator. The scientific reputation of the Almagest has not fared as well as that of Euclid’s Elements. Nowadays, it is a commonly held belief, even amongst scientists, that Ptolemy’s mistaken adherence to the tenets of Aristotelian philosophy—in particular, the immovability of the earth, and the necessity for heavenly bodies to move uniformly in circles—led him to construct an overcomplicated, unwieldy, and faintly ridiculous model of planetary motion. As is well-known, this model was superseded in 1543 CE by the heliocentric model of Nicolaus Copernicus, in which the planets revolve about the sun in circular orbits.3 The Copernican model was, in turn, superseded in the early 1600’s CE by the, ultimately correct, model of Johannes Kepler, in which the planets revolve about the sun in eccentric elliptical orbits. The aim of this treatise is to re-examine the scientific merits of Ptolemy’s Almagest. 1.2 Ptolemy’s Model of the Solar System Claudius Ptolemy lived and worked in the city of Alexandria, capital of the Roman province of Egypt, during the reigns of the later Flavian and the Antonine emperors. Ptolemy was heir—via the writings of Euclid, and later mathematicians such as Apollonius of Perga, and Archimedes of Syracuse—to the considerable mathematical knowledge of geometry and arithmetic acquired by 1 The true title of this work is Syntaxis Mathematica, which means something like “Mathematical Treatise”. The name Almagest is probably an Arabic corruption of the work’s later Greek nickname, H Megiste (Syntaxis), meaning “The Greatest (Treatise)”. 2 Actually, Ptolemy erroneously allowed the inclinations of the deferents and epicycles to vary slightly. 3 In fact, the planets revolve on small circular epicycles, whose centers revolve around the sun on eccentric circular deferents. 6 MODERN ALMAGEST the civilization of Ancient Greece. Ptolemy also inherited an extensive Ancient Greek tradition of observational and theoretical astronomy. The most important astronomer prior to Ptolemy was undoubtedly Hipparchus of Nicaea (second century BCE), who developed the theory of solar motion used by Ptolemy, discovered the precession of the equinoxes, and collected an extensive set of astronomical observations—some of which he made himself, and some of which dated back to Babylonian times—which were available to Ptolemy (probably via the famous Library of Alexandria). Other astronomers who made significant contributions prior to Ptolemy include Meton of Athens (5th century BCE), Eudoxos of Cnidus (5th/4th century BCE), Callipus of Cyzicus (4th century BCE), Aristarchus of Samos (4th/3rd century BCE), Eratosthenes of Cyrene (3rd/2nd century BCE), and Menelaus of Alexandria (1st century CE). Ptolemy’s aim in the Almagest is to construct a kinematic model of the solar system, as seen from the earth. In other words, the Almagest outlines a relatively simple geometric model which describes the apparent motions of the sun, moon, and planets, relative to the earth, but does not attempt to explain why these motions occur (in this respect, the models of Copernicus and Kepler are similar). As such, the fact that the model described in the Almagest is geocentric in nature is a non-issue, since the earth is stationary in its own frame of reference. This is not to say that the heliocentric hypothesis is without advantages. As we shall see, the assumption of heliocentricity allowed Copernicus to determine, for the first time, the ratios of the mean radii of the various planets in the solar system. We now know, from the work of Kepler, that planetary orbits are actually ellipses which are confocal with the sun. Such orbits possess two main properties. First, they are eccentric: i.e., the sun is displaced from the geometric center of the orbit. Second, they are elliptical: i.e., the orbit is elongated along a particular axis. Now, Keplerian orbits are characterized by a quantity, e, called the eccentricity, which measures their deviation from circularity. It is easily demonstrated that the eccentricity of a Keplerian orbit scales as e, whereas the corresponding degree of elongation scales as e2. Since the orbits of the visible planets in the solar system all possess relatively small values of e (i.e., e ≤ 0.21), it follows that, to an excellent approximation, these orbits can be represented as eccentric circles: i.e., circles which are not quite concentric with the sun. In other words, we can neglect the ellipticities of planetary orbits compared to their eccentricities. This is exactly what Ptolemy does in the Almagest. It follows that Ptolemy’s assumption that heavenly bodies move in circles is actually one of the main strengths of his model, rather than being the main weakness, as is commonly supposed. Kepler’s second law of planetary motion states that the radius vector connecting a planet to the sun sweeps out equal areas in equal time intervals. In the approximation in which planetary orbits are represented as eccentric circles, this law implies that a typical planet revolves around the sun at a non-uniform rate. However, it is easily demonstrated that the non-uniform rotation of the radius vector connecting the planet to the sun implies a uniform rotation of the radius vector connecting the planet to the so-called equant: i.e., the point directly opposite the sun relative to the geometric center of the orbit—see Fig. 1.1. Ptolemy discovered the equant scheme empirically, and used it to control the non-uniform rotation of the planets in his model. In fact, this discovery is one of Ptolemy’s main claims to fame. It follows, from the above discussion, that the geocentric model of Ptolemy is equivalent to a heliocentric model in which the various planetary orbits are represented as eccentric circles, and in which the radius vector connecting a given planet to its corresponding equant revolves at a uniform rate. In fact, Ptolemy’s model of planetary motion can be thought of as a version of Kepler’s Introduction 7 model which is accurate to first-order in the planetary eccentricities—see Cha. 4. According to the Ptolemaic scheme, from the point of view of the earth, the orbit of the sun is described by a single circular motion, whereas that of a planet is described by a combination of two circular motions. In reality, the single circular motion of the sun represents the (approximately) circular motion of the earth around the sun, whereas the two circular motions of a typical planet represent a combination of the planet’s (approximately) circular motion around the sun, and the earth’s motion around the sun. Incidentally, the popular myth that Ptolemy’s scheme requires an absurdly large number of circles in order to fit the observational data to any degree of accuracy has no basis in fact. Actually, Ptolemy’s model of the sun and the planets, which fits the data very well, only contains 12 circles (i.e., 6 deferents and 6 epicycles). Ptolemy is often accused of slavish adherence to the tenants of Aristotelian philosophy, to the overall detriment of his model. However, despite Ptolemy’s conventional geocentrism, his model of the solar system deviates from orthodox Aristotelism in a number of crucially important respects. First of all, Aristotle argued—from a purely philosophical standpoint—that heavenly bodies should move in single uniform circles. However, in the Ptolemaic system, the motion of the planets is a combination of two circular motions. Moreover, at least one of these motions is non-uniform. Secondly, Aristotle also argued—again from purely philosophical grounds—that the earth is located at the exact center of the universe, about which all heavenly bodies orbit in concentric circles. However, in the Ptolemaic system, the earth is slightly displaced from the center of the universe. Indeed, there is no unique center of the universe, since the circular orbit of the sun and the circular planetary deferents all have slightly different geometric centers, none of which coincide with the earth. As described in the Almagest, the non-orthodox (from the point of view of Aristolelian philosophy) aspects of Ptolemy’s model were ultimately dictated by observations. This suggests that, although Ptolemy’s world-view was based on Aristolelian philosophy, he did not hesitate to deviate from this standpoint when required to by observational data. From our heliocentric point of view, it is easily appreciated that the epicycles of the superior planets (i.e., the planets further from the sun than the earth) in Ptolemy’s model actually represent the earth’s orbit around the sun, whereas the deferents represent the planets’ orbits around the sun—see Fig. 8.1. It follows that the epicycles of the superior planets should all be the same size (i.e., the size of the earth’s orbit), and that the radius vectors connecting the centers of the epicycles to the planets should always all point in the same direction as the vector connecting the earth to the sun. We can also appreciate that the deferents of the inferior planets (i.e., the planets closer to the sun than the earth) in Ptolemy’s model actually represent the earth’s orbit around the sun, whereas the epicycles represent the planets’ orbits around the sun—see Fig. 9.1. It follows that the deferents of the inferior planets should all be the same size (i.e., the size of the earth’s orbit), and that the centers of the epicycles (relative to the earth) should all correspond to the position of the sun (relative to the earth). The geocentric model of the solar system outlined above represents a perfected version of Ptolemy’s model, constructed with a knowledge of the true motions of the planets around the sun. Not surprisingly, the model actually described in the Almagest deviates somewhat from this ideal form. In the following, we shall refer to these deviations as “errors”, but this should not be understood in a perjorative sense. Ptolemy’s first error lies in his model of the sun’s apparent motion around the earth, which he inherited from Hipparchus. Figure 1.1 compares what Ptolemy actually did, in this respect, 8 MODERN ALMAGEST Π Π S S G G C Q e e A 2e C A Figure 1.1: Hipparchus’ (and Ptolemy’s) model of the sun’s apparent orbit about the earth (right) compared to the optimal model (left). The radius vectors in both models rotate uniformly. Here, S is the sun, G the earth, C the geometric center of the orbit, Q the equant, Π the perigee, and A the apogee. The radius of the orbit is normalized to unity. compared to what he should have done in order to be completely consistent with the rest of his model. Let us normalize the mean radius of the sun’s apparent orbit to unity, for the sake of clarity. Ptolemy should have adopted the model shown on the left in Fig. 1.1, in which the earth is displaced from the center of the sun’s orbit a distance e = 0.0167 (the eccentricity of the earth’s orbit around the sun) towards the perigee (the point of the sun’s closest approach to the earth), and the equant is displaced the same distance in the opposite direction. The instantaneous angular position of the sun is then obtained by allowing the radius vector connecting the equant to the sun to rotate uniformly at the sun’s mean orbital angular velocity. Of course, this implies that the sun rotates non-uniformly about the earth. Ptolemy actually adopted the Hipparchian model shown on the right in Fig. 1.1. In this model, the earth is displaced a distance 2e from the center of the sun’s orbit in the direction of the perigee, and the sun rotates at a uniform rate (i.e., the radius vector CS rotates uniformly). It turns out that, to first-order in e, these two models are equivalent in terms of their ability to predict the angular position of the sun relative to the earth— see Cha. 4. Nevertheless, the Hippachian model is incorrect, since it predicts too large (by a factor of 2) a variation in the radial distance of the sun from the earth (and, hence, the angular size of the sun) during the course of a year (see Cha. 4). Ptolemy probabaly adopted the Hipparchian model because his Aristotelian leanings prejudiced him in favor of uniform circular motion whenever this was consistent with observations. (It should be noted that Ptolemy was not interested in explaining the relatively small variations in the angular size of the sun during the year—presumably, because this effect was difficult for him to accurately measure.) Ptolemy’s next error was to neglect the non-uniform rotation of the superior planets on their epicycles. This is equivalent to neglecting the orbital eccentricity of the earth (recall that the epicycles of the superior planets actually represent the earth’s orbit) compared to those of the Introduction 9 superior planets. It turns out that this is a fairly good approximation, since the superior planets all have significantly greater orbital eccentricities than the earth. Nevertheless, neglecting the nonuniform rotation of the superior planets on their epicycles has the unfortunate effect of obscuring the tight coupling between the apparent motions of these planets, and that of the sun. The radius vectors connecting the epicycle centers of the superior planets to the planets themselves should always all point exactly in the same direction as that of the sun relative to the earth. When the aforementioned non-uniform rotation is neglected, the radius vectors instead point in the direction of the mean sun relative to the earth. The mean sun is a fictitious body which has the same apparent orbit around the earth as the real sun, but which circles the earth at a uniform rate. The mean sun only coincides with the real sun twice a year. Ptolemy’s third error is associated with his treatment of the inferior planets. As we have seen, in going from the superior to the inferior planets, deferents and epicycles effectively swap roles. For instance, it is the deferents of the inferior planets, rather than the epicycles, which represent the earth’s orbit. Hence, for the sake of consistency with his treatment of the superior planets, Ptolemy should have neglected the non-uniform rotation of the epicycle centers around the deferents of the inferior planets, and retained the non-uniform rotation of the planets themselves around the epicycle centers. Instead, he did exactly the opposite. This is equivalent to neglecting the inferior planets’ orbital eccentricities relative to that of the earth. It follows that this approximation only works when an inferior planet has a significantly smaller orbital eccentricity than that of the earth. It turns out that this is indeed the case for Venus, which has the smallest eccentricity of any planet in the solar system. Thus, Ptolemy was able to successfully account for the apparent motion of Venus. Mercury, on the other hand, has a much larger orbital eccentricity than the earth. Moreover, it is particularly difficult to obtain good naked-eye positional data for Mercury, since this planet always appears very close to the sun in the sky. Consequently, Ptolemy’s Mercury data was highly inaccurate. Not surprisingly, then, Ptolemy was not able to account for the apparent motion of Mercury using his standard deferent-epicycle approach. Instead, in order to fit the data, he was forced to introduce an additional, and quite spurious, epicycle into his model of Mercury’s orbit. Ptolemy’s fourth, and possibly largest, error is associated with his treatment of the moon. It should be noted that the moon’s motion around the earth is extremely complicated in nature, and was not fully understood until the early 20th century CE. Ptolemy constructed an ingenious geometric model of the moon’s orbit which was capable of predicting the lunar ecliptic longitude to reasonable accuracy. Unfortunately, this model necessitates a monthly variation in the earthmoon distance by a factor of about two, which implies a similarly large variation in the moon’s angular diameter. However, the observed variation in the moon’s diameter is much smaller than this. Hence, Ptolemy’s model is not even approximately correct. Ptolemy’s fifth error is associated with his treatment of planetary ecliptic latitudes. Given that the deferents and epicycles of the superior planets represent the orbits of the planets themselves around the sun, and the sun’s apparent orbit around the earth, respectively, it follows that one should take the slight inclination of planetary orbits to the ecliptic plane (i.e., the plane of the sun’s apparent orbit) into account by tilting the deferents of superior planets, whilst keeping their epicycles parallel to the ecliptic. Similarly, given that the epicycles and deferents of inferior planets represent the orbits of the planets themselves around the sun, and the sun’s apparent orbit around the earth, respectively, one should tilt the epicycles of inferior planets, whilst keeping their deferents parallel to the ecliptic. Finally, since the inclination of planetary orbits are all essentially constant in time, the inclinations of the epicycles and deferents should also be constant. Unfortunately, when 10 MODERN ALMAGEST Ptolemy constructed his theory of planetary latitudes he tilted the both deferents and epicyles of all the planets. Even worse, he allowed the inclinations of the epicycles to the ecliptic plane to vary in time. The net result is a theory which is far more complicated than is necessary. The final failing in Ptolemy’s model of the solar system lies in its scale invariance. Using angular position data alone, Ptolemy was able to determine the ratio of the epicycle radius to that of the deferent for each planet, but was not able to determine the relative sizes of the deferents of different planets. In order to break this scale invariance it is necessary to make an additional assumption— i.e., that the earth orbits the sun. This brings us to Copernicus. 1.3 Copernicus’s Model of the Solar System The Polish astronomer Nicolaus Copernicus (1473–1543 CE) studied the Almagest assiduously, but eventually became dissatisfied with Ptolomy’s approach. The main reason for this dissatisfaction was not the geocentric nature of Ptolomy’s model, but rather the fact that it mandates that heavenly bodies execute non-uniform circular motion. Copernicus, like Aristotle, was convinced that the supposed perfection of the heavens requires such bodies to execute uniform circular motion only. Copernicus was thus spurred to construct his own model of the solar system, which was described in the book De Revolutionibus Orbium Coelestium (On the Revolutions of the Heavenly Spheres), published in the year of his death. The most well-known aspect of Copernicus’s model is the fact that it is heliocentric. As has already been mentioned, when describing the motion of the sun, moon, and planets relative to the earth, it makes little practical difference whether one adopts a geocentric or a heliocentric model of the solar system. Having said this, the heliocentric approach does have one large advantage. If we accept that the sun, and not the earth, is stationary, then it immediately follows that the epicycles of the superior planets, and the deferents of the inferior planets, represent the earth’s orbit around the sun. Hence, all of these circles must be the same size. This realization allows us to break the scale invariance which is one of the main failings of Ptolemy’s model. Thus, the ratio of the deferent radius to that of the epicycle for a superior planet, which is easily inferred from observations, actually corresponds to the ratio of planet’s orbital radius to that of the earth. Likewise, the ratio of the epicycle radius to that of the deferent for an inferior planet, which is again easily determined observationally, also corresponds to the ratio of the planet’s orbital radius to that of the earth. Using this type of reasoning, Copernicus was able to construct the first accurate scale model of the solar system, and to firmly establish the order in which the planets orbit the sun. In some sense, this was his main achievement. Copernicus’s insistence that heavenly bodies should only move in uniform circles lead him to reject Ptolemy’s equant scheme, and to replace it with the scheme illustrated in Fig. 1.2. According to Copernicus, a heliocentric planetary orbit is a combination of two circular motions. The first is motion of the planet around a small circular epicycle, and the second is the motion of the center of the epicycle around the sun on a circular deferent. Both motions are uniform, and in the same direction. However, the former motion is twice as fast as the latter. In addition, the sun is displaced from the center of the deferent in the direction of the perihelion, the displacement being proportional to the orbital eccentricity. Furthermore, the sun’s displacement is three times greater than the radius of the epicycle. Finally, the radius of the deferent is equal to the major radius of the planetary orbit. It turns out that Copernicus’ scheme is a marginally less accurate approximation than Ptolemy’s to a low eccentricity Keplerian orbit (see Cha. 4). Introduction 11 Π P X (1/2)e S (3/2)e C A Figure 1.2: Copernicus’ model of a heliocentric planetary orbit. Here, S is the sun, P the planet, C the geometric center of the deferent, X the center of the epicycle, Π the perihelion, and A the aphelion. The radius vectors CX and XP both rotate uniformly in the same direction, but XP rotates twice as fast as CX. The major radius of the orbit is normalized to unity. Copernicus modeled the orbit of the earth around the sun using an Hippachian scheme (see Fig. 1.1) in which the earth moves uniformly around an eccentric circle. Unfortunately, such a scheme exaggerates the variation in the radial distance between the earth and the sun during the course of a year by a factor of 2, and so introduces significant errors into the calculation of the parallax of the planets due to the motion of the earth. On the other hand, Copernicus’ model of the moon’s orbit around the earth is a considerable improvement on Ptolemy’s, since it does not grossly exaggerate the monthly variation in the earth-moon distance. Like Ptolemy, Copernicus introduced an additional spurious epicycle into his model of Mercury’s orbit, and erroneously allowed the inclination of his planetary orbits to vary slightly in time. In summary, Copernicus’s model of the solar system contains approximately the same number of epicycles as Ptolemy’s, the only difference being that Copernicus’ epicycles are much smaller than Ptolemy’s. Indeed, the model of Copernicus is about as complicated, and not appreciably more accurate, than that described in the Almagest. In this respect, Copernicus cannot be said to have demonstrated the correctness of his heliocentric approach on the basis of observational data. 1.4 Kepler’s Model of the Solar System Johannes Kepler (1571–1630 CE) was fortunate enough to inherit an extensive set of naked-eye solar, lunar, and planetary angular position data from the Danish astronomer Tycho Brahe (1546– 1601 CE). This data extended over many decades, and was of unprecedented accuracy. Although Kepler adopted the heliocentric approach of Copernicus, what he effectively first did was to perfect Ptolemy’s model of the solar system (or, rather, its heliocentric equivalent). Thus, Kepler replaced Ptolemy’s erroneous equantless model of the sun’s apparent orbit around the earth 12 MODERN ALMAGEST with a corrected version containing an equant—in the process, halving the eccentricity of the orbit (see Fig. 1.1). Kepler also introduced equants into the epicycles of the superior and inferior planets. Once he had perfected Ptolemy’s model, the heliocentric nature of the solar system became manifestly apparent to Kepler. For instance, he found that the epicycles of the superior planets, the sun’s apparent orbit around the earth, and the deferents of the inferior planets all have exactly the same eccentricity. The obvious implication is that these circles all correspond to some common motion within the solar system—in fact, the motion of the earth around the sun. Once Kepler had corrected the Almagest model, he compared its predictions with his observational data. In particular, Kepler investigated the apparent motion of Mars in the night sky. Kepler found that his model performed extremely well, but that there remained small differences between its predictions and the observational data. The maximum discrepancy was about 8 ′ : i.e., about 1/4 the apparent size of the sun. By the standards of naked-eye astronomy, this was a very small discrepancy indeed. Nevertheless, given the incredible accuracy of Tycho Brahe’s observations, it was still significant. Thus, Kepler embarked on an epic new series of calculations which eventually lead him to the conclusion that the planetary orbits are actually eccentric ellipses, rather than eccentric circles. Kepler published the results of his research in Astronomia Nova (New Astronomy) in 1609 CE. It is interesting to note that had Tycho’s data been a little less accurate, or had the orbit of Mars been a little less eccentric, Kepler might well have settled for a model which was kinematically equivalent to a perfected version of the model described in the Almagest. We can also appreciate that, given the far less accurate observational data available to Ptolemy, there was no way in which he could have discerned the very small difference between elliptical planetary orbits and the eccentric circular orbits employed in the Almagest. 1.5 Purpose of Treatise As we have seen, misconceptions abound regarding the details of Ptolemy’s model of the solar system, as well as its scientific merit. Part of the reason for this is that the Almagest is an extremely difficult book for a modern reader to comprehend. For instance, virtually all of its theoretical results are justified via lengthy and opaque geometric proofs. Moreover, the plane and spherical trigonometry employed by Ptolemy is of a rather primitive nature, and, consequently, somewhat unwieldy. Dates are also a major stumbling block, since three different systems are used in the Almagest, all of which are archaic, and essentially meaningless to the modern reader. Another difficulty is the unfamiliar, and far from optimal, Ancient Greek method of representing numbers and fractions. Finally, the terminology employed in the Almagest is, in many instances, significantly different to that used in modern astronomy textbooks. The aim of this treatise is to reconstruct Ptolemy’s model of the solar system employing modern mathematical methods, standard dates, and conventional astronomical terminology. It is hoped that the resulting model will enable the reader to comprehend the full extent of Ptolemy’s scientific achievement. In fact, the model described in this work is a somewhat improved version of Ptolemy’s, in that all of the previously mentioned deficiencies have been corrected. Furthermore, Ptolemy’s equant scheme has been replaced by a Keplerian scheme, expanded to second-order in the planetary eccentricities. It should be noted, however, that these two schemes are essentially indistinguishable for small eccentricity orbits. Certain aspects of the Almagest have not been reproduced. For instance, it was not thought necessary to instruct the reader on how to construct trigonometric tables, or primitive astronomical instruments. Furthermore, no attempted has been Introduction 13 made to derive any of the model parameters directly from observational data, since the orbital elements and physical properties of the sun, moon, and planets are, by now, extremely well established. Any detailed discussion of the fixed stars has also been omitted, because stellar positions are also very well established, and the apparent motion of the stars in the sky is comparatively straightforward compared to those of solar system objects. What remains is a mathematical model of the solar system which is surprisingly accurate (the maximum errors in the ecliptic longitudes of the sun, moon, Mercury, Venus, Mars, Jupiter, and Saturn during the years 1995–2006 CE are 0.7 ′ , 14 ′ , 28 ′ , 10 ′ , 14 ′ , 4 ′ , and 1 ′ , respectively), yet sufficiently simple that all of the necessary calculations can be performed by hand, with the aid of tables. The form of the calculations, as well as the layout of the tables, is, for the most part, fairly similar to those found in the Almagest. Many examples of the use of the tables are provided. 14 MODERN ALMAGEST Spherical Astronomy 15 2 Spherical Astronomy 2.1 Celestial Sphere It is often helpful to imagine that celestial objects are attached to a vast sphere centered on the earth. This fictitious construction is known as the celestial sphere. The earth’s dimensions are assumed to be infinitesimally small compared to those of the sphere (since the distance of a typical celestial object from the earth is very much larger than the earth’s radius). It follows that only half of the sphere is visible from any particular observation site on the earth’s surface. Furthermore, the angular position of a given celestial object (relative to some fixed celestial reference) is the same at all such sites. In other words, there is negligible parallax associated with viewing the same celestial object from different observation sites on the surface of the earth.1 2.2 Celestial Motions Celestial objects exhibit two different types of motion. The first motion is such that the whole celestial sphere, and all of the celestial objects attached to it, rotates uniformly from east to west once every 24 (sidereal) hours, about a fixed axis passing through the earth’s north and south poles. This type of motion is called diurnal motion, and is a consequence of the earth’s daily rotation. Diurnal motion preserves the relative angular positions of all celestial objects. However, certain celestial objects, such as the sun, the moon, and the planets, possess a second motion, superimposed on the first, which causes their angular positions to slowly change relative to one another, and to the fixed stars. This intrinsic motion of objects in the solar system is due to a combination of the earth’s orbital motion about the sun, and the orbital motions of the moon and the planets about the earth and the sun, respectively. 2.3 Celestial Coordinates Consider Fig. 2.1. The celestial sphere rotates about the celestial axis, PP ′ , which is the imagined extension of the earth’s axis of rotation. This axis intersects the celestial sphere at the north celestial pole, P, and the south celestial pole, P ′ . It follows that the two celestial poles are unaffected by diurnal motion, and remain fixed in the sky. The celestial equator, VUV ′ U ′ , is the intersection of the earth’s equatorial plane with the celestial sphere, and is therefore perpendicular to the celestial axis. The so-called vernal equinox, V, is a particular point on the celestial equator that is used as the origin of celestial longitude. Furthermore, the autumnal equinox, V ′ , is a point which lies directly opposite the vernal equinox on the celestial equator. Let the line UU ′ lie in the plane of the celestial equator such that it is perpendicular to VV ′ , as shown in the figure. It is helpful to define three, right-handed, mutually perpendicular, unit vectors: v, u, and p. Here, v is directed from the earth to the vernal equinox, u from the earth to point U, and p from the earth to the north celestial pole—see Fig. 2.1. 1 The one exception to this rule is the moon, which is sufficiently close to the earth that its parallax is significant—see Sect. 6.4. 16 MODERN ALMAGEST P V p ′ U u G v U′ V P′ Figure 2.1: The celestial sphere. G, P, P ′ , V, and V ′ represent the earth, north celestial pole, south celestial pole, vernal equinox, and autumnal equinox, respectively. VUV ′ U ′ is the celestial equator, and PP ′ the celestial axis. P R r V ′ G δ α R′ V P′ Figure 2.2: Celestial coordinates. R is a celestial object, and R ′ its projection onto the plane of the celestial equator, VR ′ V ′ . Spherical Astronomy 17 Consider a general celestial object, R—see Fig. 2.2. The location of R on the celestial sphere is conveniently specified by two angular coordinates, δ and α. Let GR ′ be the projection of GR onto the equatorial plane. The coordinate δ, which is known as declination, is the angle subtended between GR ′ and GR. Objects north of the celestial equator have positive declinations, and vice versa. It follows that objects on the celestial equator have declinations of 0◦ , whereas the north and south celestial poles have declinations of +90◦ and −90◦ , respectively. The coordinate α, which is known as right ascension, is the angle subtended between GV and GR ′ . Right ascension increases from west to east (i.e., in the opposite direction to the celestial sphere’s diurnal rotation). Thus, the vernal and autumnal equinoxes have right ascensions of 0◦ and 180◦ , respectively. Note that α lies in the range 0◦ to 360◦ . Right ascension is sometimes measured in hours, instead of degrees, with one hour corresponding to 15◦ (since it takes 24 hours for the celestial sphere to complete one diurnal rotation). In this scheme, the vernal and autumnal equinoxes have right ascensions of 0 hrs. and 12 hrs., respectively. Moreover, α lies in the range 0 to 24 hrs. (Incidentally, in this treatise, α is measured relative to the mean equinox at date, unless otherwise specified.) Finally, let r be a unit vector which is directed from the earth to R—see Fig. 2.2. It is easily demonstrated that r = cos δ cos α v + cos δ sin α u + sin δ p, (2.1) sin δ = r · p, r·u tan α = . r·v (2.2) and (2.3) 2.4 Ecliptic Circle During the course of a year, the sun’s intrinsic motion causes it to trace out a fixed circle which bisects the celestial sphere. This circle is known as the ecliptic. The sun travels around the ecliptic from west to east (i.e., in the opposite direction to the celestial sphere’s diurnal rotation). Moreover, the ecliptic circle is inclined at a fixed angle of ǫ = 23◦ 26 ′ to the celestial equator. This angle actually represents the fixed inclination of the earth’s axis of rotation to the normal to its orbital plane.2 The vernal equinox, V, is defined as the point at which the ecliptic crosses the celestial equator from south to north (in the direction of the sun’s ecliptic motion)—see Fig. 2.3. Likewise, the autumnal equinox, V ′ , is the point at which the ecliptic crosses the celestial equator from north to south. In addition, the summer solstice, S, is the point on the ecliptic which is furthest north of the celestial equator, whereas the winter solstice, S ′ , is the point which is furthest south. It follows that the lines VV ′ and SS ′ are perpendicular. Let QQ ′ be the normal to the plane of the ecliptic which passes through the earth, as shown in Fig. 2.3. Here, Q is termed the northern ecliptic pole, and Q ′ the southern ecliptic pole. It is easily demonstrated that 2 s = cos ǫ u + sin ǫ p, (2.4) q = − sin ǫ u + cos ǫ p, (2.5) In fact, ǫ is very slowly decreasing in time. The value of ǫ used in the Almagest is 23◦ 51 ′ . However, the true value of ǫ in Ptolemy’s day was 23◦ 41 ′ . 18 MODERN ALMAGEST Q P S ǫ ′ V q s U′ U v V S′ P ′ Q′ Figure 2.3: The ecliptic circle. P, P ′ , Q, Q ′ , V, V ′ , S, and S ′ denote the north celestial pole, south celestial pole, north ecliptic pole, south ecliptic pole, vernal equinox, autumnal equinox, summer solstice, and winter solstice, respectively. VUV ′ U ′ is the celestial equator, VSV ′ S ′ the ecliptic, and PP ′ the celestial axis. where s is a unit vector which is directed from the earth to the summer solstice, and q a unit vector which is directed from the earth to the north ecliptic pole—see Fig. 2.3. We can also write u = cos ǫ s − sin ǫ q, (2.6) p = sin ǫ s + cos ǫ q. (2.7) Thus, v, s, and q constitute another right-handed, mutually perpendicular, set of unit vectors. 2.5 Ecliptic Coordinates It is convenient to specify the positions of the sun, moon, and planets in the sky using a pair of angular coordinates, β and λ, which are measured with respect to the ecliptic, rather than the celestial equator. Let R denote a celestial object, and GR ′ the projection of the line GR onto the plane of the ecliptic, VR ′ V ′ —see Fig. 2.4. The coordinate β, which is known as ecliptic latitude, is the angle subtended between GR ′ and GR. Objects north of the ecliptic plane have positive ecliptic latitudes, and vice versa. The coordinate λ, which is known as ecliptic longitude, is the angle subtended between GV and GR ′ . Ecliptic longitude increases from west to east (i.e., in the same direction that the sun travels around the ecliptic). (Again, in this treatise, λ is measured relative to the mean equinox at date, unless specified otherwise.) Note that the basis vectors in the ecliptic coordinate system are v, s, and q, whereas the corresponding basis vectors in the celestial coordinate system are v, u, and p—see Figs. 2.1 and 2.3. By analogy with Eqs. (2.1)–(2.3), we can write r = cos β cos λ v + cos β sin λ s + sin β q, (2.8) Spherical Astronomy 19 Q R r V ′ G β λ R′ V Q′ Figure 2.4: Ecliptic coordinates. G is the earth, R a celestial object, and R ′ its projection onto the ecliptic plane, VR ′ V ′ . sin β = r · q, r·s , tan λ = r·v (2.9) (2.10) where r is a unit vector which is directed from G to R. Hence, it follows from Eqs. (2.1), (2.4), and (2.5) that sin β = cos ǫ sin δ − sin ǫ cos δ sin α, (2.11) cos ǫ cos δ sin α + sin ǫ sin δ . (2.12) cos δ cos α These expressions specify the transformation from celestial to ecliptic coordinates. The inverse transformation follows from Eqs. (2.2), (2.3), and (2.6)–(2.8): tan λ = sin δ = cos ǫ sin β + sin ǫ cos β sin λ, (2.13) cos ǫ cos β sin λ − sin ǫ sin β . cos β cos λ (2.14) tan α = Figures 2.13 and 2.14 show all stars of visible magnitude less than +6 lying within 15◦ of the ecliptic. Table 2.1 gives the ecliptic longitudes, ecliptic latitudes, and visible magnitudes of a selection of these stars which lie within 10◦ of the ecliptic. The figures and table can be used to convert ecliptic longitude and latitude into approximate position in the sky against the backdrop of the fixed stars. 2.6 Signs of the Zodiac The signs of the zodiac are a well-known set of names given to 30◦ long segments of the ecliptic circle. Thus, the sign of Aries extends over the range of ecliptic longitudes 0◦ –30◦ , the sign of 20 MODERN ALMAGEST Taurus over the range 30◦ –60◦ , and so on. Note that, as a consequence of the precession of the equinoxes, the signs of the zodiac no longer coincide with the constellations of the same name (see Figs. 2.13 and 2.14). The 12 zodiacal signs are listed in the table below. It can be seen from the table that ecliptic longitude 72◦ corresponds to the twelfth degree of Gemini, and ecliptic longitude 242◦ to the second degree of Sagittarius, etc. Sign Aries Taurus Gemini Cancer Abbr. Longitude Sign AR TA GE CN 0◦ –30◦ 30◦ –60◦ 60◦ –90◦ 90◦ –120◦ Leo Virgo Libra Scorpio Abbr. Longitude Sign LE VI LI SC 120◦ –150◦ 150◦ –180◦ 180◦ –210◦ 210◦ –240◦ Sagittarius Capricorn Aquarius Pisces Abbr. Longitude SG CP AQ PI 240◦ –270◦ 270◦ –300◦ 300◦ –330◦ 330◦ –360◦ 2.7 Ecliptic Declinations and Right Ascenesions. According to Eqs. (2.13) and (2.14), the celestial coordinates of a point on the ecliptic circle (i.e., β = 0) which has ecliptic longitude λ are specified by sin δ = sin ǫ sin λ, (2.15) tan α = cos ǫ tan λ. (2.16) The above formulae have been used to construct Tables 2.2 and 2.3, which list the declinations and right ascensions of a set of equally spaced points on the ecliptic circle. 2.8 Local Horizon and Meridian Consider a general observation site X on the surface of the earth. (Note that, in the following, it is tacitly assumed that the site lies the earth’s northern hemisphere. However, the analysis also applies to sites situated in the the southern hemisphere.) The local zenith Z is the point on the celestial sphere which is directly overhead at X, whereas the nadir Z ′ is the point which is directly underfoot—see Fig. 2.5. The horizon is the tangent plane to the earth at X, and divides the celestial sphere into two halves. The upper half, containing the zenith, is visible from site X, whereas the lower half is invisible. Figure 2.6 shows the visible half of the celestial sphere at observation site X. Here, NESW is the local horizon, and N, E, S, and W are the north, east, south, and west compass points, respectively. The plane NPZS, which passes through the north and south compass points, as well as the zenith, is known as the local meridian. The meridian is perpendicular to the horizon. The north celestial pole lies in the meridian plane, and is elevated an angular distance L above the north compass point—see Figs. 2.5 and 2.6. Here, L is the terrestrial latitude of observation site X. It is helpful to define three, right-handed, mutually perpendicular, local unit vectors: e, n, and z. Here, e is directed toward the east compass point, n toward the north compass point, and z toward the zenith—see Fig. 2.6. Figure 2.7 shows the meridian plane at X. Let the line MM ′ lie in this plane such that it is perpendicular to the celestial axis, PP ′ . Moreover, let M lie in the visible hemisphere. It is helpful Spherical Astronomy 21 P N Z L X axis S L equator Z′ P′ Figure 2.5: A general observation site X, of latitude L, on the surface of the earth. P, P ′ , Z, and Z ′ denote the directions to the north celestial pole, south celestial pole, zenith, and nadir, respectively. The line NS represents the local horizon. Z meridian P E z N L n e S horizon W Figure 2.6: The local horizon and meridian. N, S, E, W denote the north. south, east, and west compass points, Z the zenith, and P the north celestial pole. NESW is the horizon, and NPZS the meridian. 22 MODERN ALMAGEST Z M P p L n N z m S P′ M′ Z′ Figure 2.7: The local meridian. to define the unit vector m which is directed toward M, as shown in the diagram. It is easily seen that n = cos L p − sin L m, (2.17) z = sin L p + cos L m. (2.18) Figure 2.8 shows the celestial equator viewed from observation site X. Here, α0 is the right ascension of the celestial objects culminating (i.e., reaching their highest altitude in the sky) on the meridian at the time of observation. Incidentally, it is easily demonstrated that all objects culminating on the meridian at any instant in time have the same right ascension. Note that the angle α0 increases uniformly in time, at the rate of 15◦ a (sidereal) hour, due to the diurnal motion of the celestial sphere. It can be seen from the diagram that m = sin α0 u + cos α0 v, (2.19) e = cos α0 u − sin α0 v. (2.20) Thus, from Eqs. (2.17) and (2.18), e = − sin α0 v + cos α0 u, (2.21) n = − sin L cos α0 v − sin L sin α0 u + cos L p, (2.22) z = cos L cos α0 v + cos L sin α0 u + sin L p. (2.23) Similarly, from Eqs. (2.6) and (2.7), e = − sin α0 v + cos ǫ cos α0 s − sin ǫ cos α0 q, n = − sin L cos α0 v + (cos L sin ǫ − sin L cos ǫ sin α0) s + (cos L cos ǫ (2.24) Spherical Astronomy 23 M V U m u E v α0 e W U′ V′ M′ Figure 2.8: The local celestial equator. + sin L sin ǫ sin α0) q, (2.25) z = cos L cos α0 v + (sin L sin ǫ + cos L cos ǫ sin α0) s + (sin L cos ǫ − cos L sin ǫ sin α0) q. (2.26) 2.9 Horizontal Coordinates It is convenient to specify the positions of celestial objects in the sky, when viewed from a particular observation site, X, on the earth’s surface, using a pair of angular coordinates, a and A, which are measured with respect to the local horizon. Let R denote a celestial object, and XR ′ the projection of the line XR onto the horizontal plane, NESW—see Fig. 2.9. The coordinate a, which is known as altitude, is the angle subtended between XR ′ and XR. Objects above the horizon have positive altitudes, whereas objects below the horizon have negative altitudes. The zenith has altitude 90◦ , and the horizon altitude 0◦ . The coordinate A, which is known as azimuth, is the angle subtended between XN and XR ′ . Azimuth increases from the north towards the east. Thus, the north, east, south, and west compass points have azimuths of 0◦ , 90◦ , 180◦ , and 270◦ , respectively. Note that the basis vectors in the horizontal coordinate system are e, n, and z, whereas the corresponding basis vectors in the celestial coordinate system are v, u, and p—see Figs. 2.1 and 2.6. By analogy with Eqs. (2.1)—(2.3), we can write r = cos a sin A e + cos a cos A n + sin a z, sin a = r · z, r·e tan A = , r·n (2.27) (2.28) (2.29) 24 MODERN ALMAGEST Z R r E R′ a A N X S W Figure 2.9: Horizontal coordinates. R is a celestial object, and R ′ its projection onto the horizontal plane, NESW. where r is a unit vector directed from X to R. Hence, it follows from Eqs. (2.1), and (2.22)–(2.23), that sin a = sin L sin δ + cos L cos δ cos(α − α0), (2.30) cos δ sin(α − α0) . cos L sin δ − sin L cos δ cos(α − α0) (2.31) tan A = These expressions allow us to calculate the altitude and azimuth of a celestial object of declination δ and right ascension α which is viewed from an observation site on the earth’s surface of terrestrial latitude L at an instant in time when celestial objects of right ascension α0 are culminating at the meridian. According to Eqs. (2.8), and (2.25)–(2.26), the altitude and azimuth of a similarly viewed point on the ecliptic (i.e., β = 0) of ecliptic longitude λ are given by sin a = cos L cos λ cos α0 + sin L sin ǫ sin λ + cos L cos ǫ sin λ sin α0, cos ǫ sin λ cos α0 − cos λ sin α0 . tan A = cos L sin ǫ sin λ − sin L cos λ cos α0 − sin L cos ǫ sin λ sin α0 (2.32) (2.33) 2.10 Meridian Transits Consider a celestial object, of declination δ and right ascension α, which is viewed from an observation site on the earth’s surface of terrestrial latitude L. According to Eq. (2.30), the object culminates, or attains its highest altitude in the sky, when α0 = α. This event is known as an upper transit. Furthermore, the object attains its lowest altitude in the sky when α0 = 180◦ + α. This event is known as a lower transit. Both upper and lower transits take place as the object in question passes through the meridian plane. Spherical Astronomy 25 According to Eq. (2.30), the altitude of a celestial object at its upper transit satisfies sin a+ = cos(L − δ), implying that a+ = 90◦ − |L − δ|. (2.34) Likewise, the altitude at its lower transit satisfies sin a− = − cos(L + δ), giving a− = |L + δ| − 90◦ . (2.35) The previous two expressions allow us to group celestial objects into three classes. Objects with declinations satisfying |L + δ| > 90◦ never set: i.e., their lower transits lie above the horizon. Objects with declinations satisfying |L − δ| > 90◦ never rise: i.e., their upper transits lie below the horizon. Finally, objects with declinations which satisfy neither of the two previous inequalities both rise and set during the course of a day. It follows that all celestial objects appear to rise and set when viewed from an observation site on the terrestrial equator (i.e., L = 0◦ ) . On the other hand, when viewed from an observation site at the north pole (i.e., L = 90◦ ), objects north of the celestial equator never set, whilst objects south of the celestial equator never rise, and vice versa for objects viewed from the south pole. All three classes of celestial object are present when the sky is viewed from an observation site on the earth’s surface of intermediate latitude. 2.11 Principal Terrestrial Latitude Circles According to Eq. (2.15), the sun’s declination varies between −ǫ and +ǫ during the course of a year. It follows from Eq. (2.34) that it is only possible for the sun to have an upper transit at the zenith in a region of the earth whose latitude lies between −ǫ and ǫ. The circles of latitude bounding this region are known as the tropics. Thus, the tropic of Capricorn—so-called because the sun is at the winter solstice, and, therefore, at the first point of Capricorn (i.e., the zeroth degree of Capricorn), when it culminates at the zenith at this latitude—lies at L = −23◦ 26 ′ . Moreover, the tropic of Cancer—so-called because the sun is at the summer solstice, and, therefore, at the first point of Cancer, when it culminates at the zenith at this latitude—lies at L = +23◦ 26 ′ . Equations (2.34) and (2.35) imply that the sun does not rise for part of the year, and does not set for part of the year, in two regions of the earth whose terrestrial latitudes satisfy |L| > 90◦ − ǫ. These two regions are bounded by the poles and two circles of latitude known as the arctic circles. The south arctic circle lies at L = −66◦ 34 ′ . Likewise, the north arctic circle lies at L = +66◦ 34 ′ . The equator, the two tropics, and the two arctic circles constitute the five principal latitude circles of the earth, and are shown in Fig. 2.10. 2.12 Equinoxes and Solstices The ecliptic longitude of the sun when it reaches the vernal equinox is λ = 0◦ . It follows, from Eq. (2.32), that the altitude of the sun on the day of the equinox is given by sin a = cos L cos α0. Thus, the sun rises when α0 = −90◦ , culminates at an altitude of 90◦ − |L| when α0 = 0◦ , and sets when α0 = 90◦ . We conclude that the length of the equinoctial day is 180 time-degrees, which is equivalent to 12 hours (since 15◦ of right ascension cross the meridian in one hour). Thus, day and night are equally long on the day of the vernal equinox. It is easily demonstrated that the same is true on the day of the autumnal equinox. The ecliptic longitude of the sun when it reaches the summer solstice is λ = 90◦ . It follows that the altitude of the sun on the day of the solstice is given by sin a = sin L sin ǫ + cos L cos ǫ sin α0. 26 MODERN ALMAGEST N. Arctic Circle Tropic of Cancer Equator Tropic of Capricorn S. Arctic Circle Figure 2.10: The principal latitude circles of the earth. Thus, the sun rises when α0 = − sin−1(tan L tan ǫ), culminates at an altitude of 90◦ − |L − ǫ| when α0 = 90◦ , and sets when α0 = 180◦ + sin−1(tan L tan ǫ). We conclude that the length of the longest day of the year in the earth’s northern hemisphere (which, of course, occurs when the sun reaches the summer solstice) is 180 + 2 sin−1(tan L tan ǫ) time-degrees. Likewise, the length of the shortest night (which also occurs at the summer solstice) is 180 − 2 sin−1(tan L tan ǫ) time-degrees. These formulae are only valid for northern latitudes below the arctic circle. At higher latitudes, the sun never sets for part of the year, and the longest “day” is consequently longer than 24 hours. It is easily demonstrated that the shortest day in the earth’s northern hemisphere, which takes place when the sun reaches the winter solstice, is equal to the shortest night, and the longest night (which also occurs at the winter solstice) to the longest day. Moreover, the sun culminates at an altitude of 90◦ − |L + ǫ| on day of the winter solstice. Again, at latitudes above the arctic circle, the sun never rises for part of the year, and the longest “night” is consequently longer than 24 hours. Consider an observation site on the earth’s surface of latitude L which lies above the northern arctic circle. The declination of the sun on the first day after the spring equinox on which it fails to set is δ = 90◦ − L. According to Eq. (2.15), its ecliptic longitude on this day is sin−1(cos L/ sin ǫ). Likewise, the declination of the sun on the day when it starts to set again is δ = 90◦ − L, and its ecliptic longitude is 180◦ − sin−1(cos L/ sin ǫ). Assuming that the sun travels around the ecliptic circle at a uniform rate (which is approximately true), the fraction of a year that the sun stays above the horizon in summer is 0.5 − sin−1(cos L/ sin ǫ)/180◦ . It is easily demonstrated that the fraction of a year that the sun stays below the horizon in winter is also 0.5 − sin−1(cos L/ sin ǫ)/180◦ . 2.13 Terrestrial Climes Table 2.4 specifies the length of the longest day, as well as the altitude of the sun when it culminates at the meridian on the days of the equinoxes and solstices, calculated for a set of observation sites in the northern hemisphere with equally spaced terrestrial latitudes. This table was constructed Spherical Astronomy 27 using the formulae in the previous section. The table can be adapted to observation sites in the earth’s southern hemisphere via the following simple transformation: L → −L, Summer ↔ Winter, N ↔ S. For instance, at a latitude of −10◦ , the longest day, which corresponds to the winter solstice, is of length 12h35m. Moreover, on this day, the sun’s upper transit is south of the zenith, at an altitude of +76◦ 34 ′ . 2.14 Ecliptic Ascensions Consider the rising, or ascension, of celestial objects at the eastern horizon, as viewed from a particular observation site on the earth’s surface. If the observation site lies on the terrestrial equator then all celestial objects appear to ascend at right angles to the horizon. This process is known as right ascension. On the other hand, if the observation site does not lie at the equator then celestial objects appear to ascend at an oblique angle to the horizon. This process is known as oblique ascension. For the case of right ascension, it is easily demonstrated that all celestial objects with the same celestial longitude ascend simultaneously. Indeed, celestial longitude is generally known as “right ascension” because, in the case of right ascension, the celestial longitude of an object (in hours) is simply the time elapsed between the ascension of the vernal equinox, and the ascension of the object in question. Let us now consider the ascension of points on the ecliptic. Applying Eq. (2.30) to a point on the celestial equator (i.e., δ = 0) of right ascension α, we obtain sin a = cos L cos(α − α0) = cos L sin(α0 − α + 90◦ ). (2.36) It follows that we can write α0 = α − 90◦ , (2.37) where α is the right ascension of the point on the celestial equator which ascends at the eastern horizon (i.e., a = 0 and da/dt > 0) at the same time that celestial objects of right ascension α0 are culminating at the meridian. Substituting this result into Eq. (2.32), we get sin a = cos L cos λ sin α + sin L sin ǫ sin λ − cos L cos ǫ sin λ cos α, (2.38) which implies that if a = 0 and da/dt > 0 then tan λ = cos L sin α . cos L cos ǫ cos α − sin ǫ sin L (2.39) This expression specifies the ecliptic longitude, λ, of the point on the ecliptic circle which ascends simultaneously with a point on the celestial equator of right ascension α. Note, incidentally, that points on the celestial equator ascend at a uniform rate of 15◦ an hour at all viewing sites on the earth’s surface (except the poles, where the celestial equator does not ascend at all). The same is not true of points on the ecliptic. Expression (2.39) can be inverted to give −1 α = tan (tan λ cos ǫ) − sin −1 " # sin λ sin ǫ tan L . (1 − sin2 λ sin2 ǫ)1/2 (2.40) The solution of Eq. (2.40) for observation sites lying above the arctic circle is complicated by the fact that, at such sites, a section of the ecliptic never sets, or descends, and a section never ascends. 28 MODERN ALMAGEST It is easily demonstrated that the section which never descends lies between ecliptic longitudes λc and 180◦ − λc, whereas the section which never ascends lies between longitudes 180◦ + λc and 360◦ − λc. Here, λc = sin−1(cos L/ sin ǫ). Points on the ecliptic of longitude λc, 180◦ − λc, 180◦ + λc, and 360◦ −λc ascend simultaneously with points on the celestial equator of right ascension 360◦ −αc, αc, 360◦ − αc, and αc, respectively. Here, αc = cos−1(1/ tan L tan ǫ). Tables 2.5–2.17 list the ascensions of a series of equally spaced points on the ecliptic circle, as viewed from a set of observation sites in the earth’s northern hemisphere with different terrestrial latitudes. The tables were calculated with the aid of formula (2.40). Let us now illustrate the use of these tables. Consider a day on which the sun is at ecliptic longitude 14LE00 (i.e., 14◦ 00 ′ into the sign of Leo). What is the length of the day (i.e., the period between sunrise and sunset) at an observation site on the earth’s surface of latitude +30◦ ? Consulting Table 2.8, we find that the sun ascends simultaneously with a point on the celestial equator of right ascension 126◦ 32 ′ . Now, the ecliptic is a great circle on the celestial sphere. Hence, exactly half of the ecliptic is visible from any observation site on the earth’s surface. This implies that when a given point on the ecliptic circle is ascending, the point directly opposite it on the circle is descending, and vice versa. Let us term the directly opposite point the complimentary point. By definition, the difference in ecliptic longitude between a given point on the ecliptic circle and its complementary point is 180◦ . Thus, the complimentary point to 14LE00 is 14AQ00. It follows that 14AQ00 ascends at the same time that 14LE00 descends. In other words, the sun sets when 14AQ00 ascends. Consulting Table 2.8, we find that the sun sets at the same time that a point on the celestial equator of right ascension 326◦ 23 ′ rises. Thus, in the time interval between the rising and setting of the sun a 326◦ 23 ′ − 126◦ 32 ′ = 199◦ 51 ′ section of the celestial equator ascends at the eastern horizon. However, points on the celestial equator ascend at the uniform rate of 15◦ an hour. Thus, the length, in hours, of the period between the rising and setting of the sun is 199◦ 51 ′ /15◦ = 13h14m. In other words, the length of the day in question is 13h14m. The above calculation is slightly inaccurate for a number of reasons. Firstly, it neglects the fact that the sun is continuously moving on the ecliptic circle at the rate of about 1◦ a day. Secondly, it neglects the fact that the celestial equator ascends at the rate of 15◦ per sidereal, rather than solar, hour. A sidereal hour is 1/24th of a sidereal day, which is the time between successive upper transits of a fixed celestial object, such as a star. On the other hand, a solar hour is 1/24th of a solar day, which is the mean time between successive upper transits of the sun. A sidereal day is shorter than a solar day by 4 minutes. Fortunately, it turns out that these first two inaccuracies largely cancel one another out. Another source of inaccuracy is the fact that, due to refraction of light by the atmosphere, the sun is actually 1◦ below the horizon when it appears to rise or set. The final source of inaccuracy is the fact that the sun has a finite angular extent (of about half a degree), and that, strictly speaking, dawn and dusk commence when the sun’s upper limb rises and sets, respectively. Of course, our calculation only deals with the rising and setting of the center of the sun. All in all, the above mentioned inaccuracies can make the true length of a day differ from that calculated from the ascension tables by up to 15 minutes. Tables 2.5–2.17 also effectively list the descents of a series of equally spaced points on the ecliptic circle, as viewed from a set of observation sites in the earth’s southern hemisphere with different terrestrial latitudes (which are minus those specified in the various tables). For instance, Table 2.6 gives the right ascensions of points on the celestial equator which set simultaneously with points on the ecliptic, as seen from an observation site at latitude −10◦ . Spherical Astronomy 29 Consider a day on which the sun is at ecliptic longitude 08SC00. Let us calculate the length of the day at an observation site on the earth’s surface of latitude −50◦ ? Consulting Table 2.10, we find that the sun sets simultaneously with a point on the celestial equator of right ascension 233◦ 09 ′ . Now, the complementary point on the ecliptic to 08SC00 is 08TA00. Consulting Table 2.10 again, we find that this point sets simultaneously with a point on the celestial equator of right ascension 18◦ 07 ′ . It follows that the sun rises simultaneously with the latter point. Thus, the time interval between the rising and setting of the sun is 233◦ 09 ′ − 18◦ 07 ′ = 215◦ 02 ′ time-degrees, or 14h20m. The ascendent, or horoscope, is defined as the point on the ecliptic which is ascending at the eastern horizon. Suppose that we wish to find the ascendent 2.6 hours after sunrise, as seen from an observation site of latitude +55◦ , on a day on which the sun has ecliptic longitude 16SC00. Of course, knowledge of the ascendent at the time of birth is key to drawing up a natal chart in astrology. Hence, this type of calculation was of great importance to the ancients. Consulting Table 2.11, we find that, on the day in question, the sun rises simultaneously with a point on the celestial equator of right ascension 248◦ 46 ′ . Now, 2.6 hours corresponds to 39◦ 00 ′ . Thus, the ascendent rises simultaneously with a point on the celestial equator of right ascension 248◦ 46 ′ + 39◦ 00 ′ = 287◦ 46 ′ . Consulting Table 2.11 again, we find that, to the nearest degree, the ascendent at the time in question has ecliptic longitude 13SG00. Suppose, next, that we wish to find the right ascension, α, of the point on the celestial equator which culminates simultaneously with a given point on the ecliptic of ecliptic longitude λ. From Eq. (2.33), we can see that if A = 180◦ then tan A = 0, and tan λ cos ǫ = sin α, or α = sin−1(tan λ cos ǫ). (2.41) However, this expression is identical to expression (2.40), when the latter is evaluated for the special case L = 0◦ . It follows that our problem can be solved by consulting Table 2.5, which is the ascension table for the case of right ascension. For instance, on a day on which the ecliptic longitude of the sun is 08TA00, we find from Table 2.5 that the right ascension of the point on the celestial equator which culminates simultaneously with the sun (i.e., which culminates at local noon) is 35◦ 38 ′ . Moreover, this is the case for observation sites at all terrestrial latitudes. Note that we have effectively calculated the right ascension of the sun on the day in question. Suppose, finally, that we wish to find the point on the ecliptic which culminates 7 hours after local noon on the aforementioned day. Since 7 hours corresponds to 105◦ , the right ascension of the point on the celestial equator which culminates simultaneously with the point is question is 35◦ 38 ′ + 105◦ 00 ′ = 143◦ 38 ′ . Consulting Table 2.5 again, we find that, to the nearest degree, the ecliptic longitude of the point in question is 21LE00. 2.15 Azimuth of Ecliptic Ascension Point Consider the azimuth of the point on the ecliptic circle which is ascending at the eastern horizon. According to Eq. (2.27), the azimuth of any point on the horizon (i.e., a = 0◦ ) satisfies cos A = r · n. It follows from Eqs. (2.8) and (2.25) that cos A = − cos λ sin L sin α + sin λ cos L sin ǫ + sin λ sin L cos ǫ cos α. (2.42) Here, we have made use of the fact that the point in question also lies on the ecliptic (i.e., β = 0), as well as the fact that α0 = α − 90◦ , where α is the right ascension of the simultaneously rising point on the celestial equator. Here, λ is the ecliptic longitude of the point in question, and L the 30 MODERN ALMAGEST Z a D β µ Y S λ C B E Figure 2.11: Parallactic angle in the case where increasing altitude corresponds to increasing ecliptic latitude. SCBE is the southern horizon, with S and E the south and east compass points, respectively. DYB is the ecliptic. ZDS the meridian, and Z the zenith. ZYC is an altitude circle. terrestrial latitude of the observation site. Now, λ and α satisfy Eq. (2.39), as well as the above equation. Thus, eliminating α between these two equations, we obtain sin λ sin ǫ . (2.43) cos L This expression gives the azimuth, A, of the ascending point of the ecliptic as a function of its ecliptic longitude, λ, and the latitude, L, of the observation site. For instance, suppose that we wish to find the azimuth of the point at which the sun rises on the eastern horizon at an observation site of terrestrial latitude +60◦ , on a day on which the sun’s ecliptic longitude is 08PI00. It follows from Eq. (2.43) that A = cos−1[sin(338◦ ) sin(23◦ 26 ′ )/ cos(60◦ )] = 107◦ 20 ′ . We conclude that the sun rises 17◦ 20 ′ to the south of the east compass point on the day in question. It is easily demonstrated that the sun sets 17◦ 20 ′ south of the west compass point on the same day (neglecting the slight change in the sun’s ecliptic latitude during the course of the day.) Likewise, it can easily be shown that, at an observation site of terrestrial latitude −60◦ , the sun also rises 17◦ 20 ′ to the south of the east compass point on the day in question, and sets 17◦ 20 ′ to the south of the west compass point. cos A = 2.16 Ecliptic Altitude and Orientation Consider a point on the ecliptic circle of ecliptic longitude λ. We wish to determine the altitude of this point, as well as the angle subtended there between the ecliptic and the vertical, t hours before or after it culminates at the meridian, as seen from an observation site on the earth’s surface of latitude L. The situation is as shown in Fig. 2.11. Here, Y is the point in question, and ZYC an altitude circle (i.e., a great circle passing through the zenith) drawn through it. We wish to determine the Spherical Astronomy 31 Z a D Y β µ S λ C B E Figure 2.12: Parallactic angle in the case where increasing altitude corresponds to decreasing ecliptic latitude. SCBE is the southern horizon, with S and E the south and east compass points, respectively. DYB is the ecliptic. ZDS the meridian, and Z the zenith. ZYC is an altitude circle. altitude a ≡ CY of point Y, as well as the angle µ ≡ ZYB. Note that µ is defined such that it lies between the ecliptic in the direction of increasing ecliptic longitude and the altitude circle in the direction of increasing altitude. Moreover, µ is acute when increasing altitude, a, corresponds to increasing ecliptic latitude, β, and obtuse when increasing a corresponds to decreasing β. See Figs. 2.11 and 2.12. Incidentally, this definition is adopted in order to simplify the calculation of lunar parallax—see Sect. 6.4. In the following, we shall refer to µ as the parallactic angle. However, it should be noted that, according to the modern definition, the parallactic angle is 90◦ − µ. From Eqs. (2.15) and (2.16), the declination and right ascension of point Y are given by sin δ = sin ǫ sin λ, (2.44) tan α = cos ǫ tan λ, (2.45) respectively. We can also write α0 = α − t, where α0 is the right ascension of the point on the ecliptic which is culminating (i.e., point D in the diagram), and t is measured in time-degrees. Note that if t is positive then it measures time before culmination, whereas if it is negative then its magnitude measures time after culmination. It follows from Eqs. (2.30) and (2.31) that the altitude and azimuth of point Y satisfy sin a = sin L sin δ + cos L cos δ cos t, cos δ sin t tan A = , cos L sin δ − sin L cos δ cos t (2.46) (2.47) respectively. From Eq. (2.8), the unit vector r = cos λ v + sin λ s (2.48) 32 MODERN ALMAGEST is directed from the observation site to point Y. Furthermore, the unit vector ∂r = − sin λ v + cos λ s ∂λ (2.49) is tangent to the ecliptic circle, at point Y, in the direction of increasing ecliptic longitude. From Eq. (2.27), the unit vector r = cos a sin A e + cos a cos A n + sin a z (2.50) is directed from the observation site to point Y. Here, a and A are the altitude and azimuth, respectively, of this point in the sky. Moreover, the unit vector ∂r ∂a = − sin a sin A e − sin a cos A n − cos a z ≡ (cos A e − sin A n) × r (2.51) is a tangent to the altitude circle passing through point Y in the direction of increasing altitude. It follows from the definition of parallactic angle, and elementary vector algebra, that cos µ = ∂r ∂r · ∂λ ∂a = − sin λ cos A v × e · r + sin λ sin A v × n · r + cos λ cos A s × e · r − cos λ sin A s × n · r. (2.52) However, according to Eqs. (2.24), (2.25), and (2.48), v × n · r = − sin L (cos L cos ǫ + sin L sin ǫ sin α0), (2.53) v × e · r = sin λ sin ǫ cos α0, (2.54) s × e · r = − cos λ sin ǫ cos α0, (2.55) s × n · r = cos λ (cos L cos ǫ + sin L sin ǫ sin α0). (2.56) The previous five equations can be combined to give cos µ = − cos A sin ǫ cos(α − t) − sin A [cos L cos ǫ + sin L sin ǫ sin(α − t)] . (2.57) Now, it follows from Eq. (2.26) that z · q = sin L cos ǫ − cos L sin ǫ sin(α − t). (2.58) This quantity is significant because if z · q > 0 then increasing altitude corresponds to increasing ecliptic latitude, whereas if z · q < 0 then increasing altitude corresponds to decreasing ecliptic latitude. Thus, in the former case, µ is the solution of (2.57) which lies in the range 0◦ ≤ µ ≤ 180◦ , whereas in the latter case it is the solution which lies in the range 180◦ ≤ µ ≤ 360◦ . According to Eq. (2.46), the critical value of t at which point Y reaches the horizon is given by cos th = − tan L tan δ. (2.59) Spherical Astronomy 33 Of course, the above equation is only soluble if | tan L tan δ| < 1. However, it is easily demonstrated that if tan L tan δ < −1 then point Y never sets, whereas if tan L tan δ > 1 then point Y never rises. Note that the value of µ at t = 0 represents the inclination of the ecliptic to the vertical as point Y culminates. Furthermore, the values of µ at t = th (corresponding to a = 0◦ ) represent the inclination of the ecliptic to the vertical as point Y rises and sets. Tables 2.18–2.26 show the altitudes of twelve equally spaced points on the ecliptic, as well as the parallactic angle at these points, as functions of time, calculated for a series of observation sites in the earth’s northern hemisphere with equally spaced terrestrial latitudes. The twelve points correspond to the start of the twelve zodiacal signs, and are named accordingly. Thus, “Aries” corresponds to ecliptic longitude 0◦ , “Taurus” to ecliptic longitude 30◦ , etc. For each point, four columns of data are provided. The first column corresponds to the time (in hours and minutes) either before or after the culmination of the point, the second column gives the altitude of the point (which is the same in both cases), the third column gives the parallactic angle, µ, for the case in which the first column indicates time prior to the culmination of the point, and the fourth column gives the parallactic angle for the opposite case. Data is only provided for cases in which the various points on the ecliptic lie on or above the horizon. Now, it can be seen, from the above analysis, that if L → −L, t → t, λ → λ + 180◦ then δ → −δ, α → α + 180◦ , A → 180◦ − A, cos µ → cos µ, z · q → −z · q, and so a → a, µ → 360◦ − µ. It follows that Tables 2.18–2.26 can also be used to calculate altitudes and parallactic angles of points on the ecliptic, as functions of time, for observation sites in the earth’s southern hemisphere. For example, suppose that we wish to determine the altitude and parallactic angle of the first point of Gemini (i.e., λ = 60◦ ), as seen from an observation site of terrestrial latitude −10◦ , 3 hours before and after it culminates at the meridian. In order to do this, we must examine the Sagittarius (i.e., λ = 240◦ ) entry in the L = +10◦ ecliptic altitude table: i.e., Table 2.19 (since λ → λ + 180◦ when L → −L). The fourth row of this entry tells us that t = 03:00 hrs. before culmination the altitude and parallactic angle of the first point of Gemini are a = 36◦ 26 ′ and µ = 360◦ − 162◦ 11 ′ = 197◦ 49 ′ , respectively (since a → a and µ → 360◦ − µ as L → −L). This row also tells us that t = 03:00 hrs. after culmination the altitude and parallactic angle of the first point of Gemini are a = 36◦ 26 ′ and µ = 360◦ − 042◦ 17 ′ = 317◦ 43 ′ , respectively 34 MODERN ALMAGEST Virgo Leo Cancer 10 0 -10 180 170 160 150 140 Geminii 130 120 110 Taurus 100 90 10 0 Aries 10 0 -10 90 80 70 60 50 40 30 20 Figure 2.13: Map showing all stars of visual magnitude less than +6 lying within 15◦ of the ecliptic plane. (a) Spherical Astronomy 35 Pisces Aquarius Capricorn 10 0 -10 360 350 340 330 320 Saggitarius 310 300 290 Scorpio 280 270 190 180 Libra 10 0 -10 270 260 250 240 230 220 210 200 Figure 2.14: Map showing all stars of visual magnitude less than +6 lying within 15◦ of the ecliptic plane. (b) 36 MODERN ALMAGEST Aries λ ◦ Mag. Name λ +2.8 +3.6 γ PEG η PSC ◦ 04 50 10◦ 08 ′ 11◦ 28 ′ 22◦ 08 ′ 23◦ 51 ′ Taurus Mag. Name +2.6 +2.0 β ARI α ARI 15 5 19◦ 22 ′ Gemini β Mag. Name λ +2.9 +0.9 +1.7 η TAU α TAU β TAU ◦ 02 34 02◦ 56 ′ 03◦ 11 ′ 07◦ 48 ′ 09◦ 46 ′ 11◦ 27 ′ 17◦ 58 ′ Cancer β Mag. Name λ β ′ ◦ 09 09 26◦ 49 ′ +12 36 +5◦ 23 ′ λ β ◦ ′ 03 58 07◦ 39 ′ λ ◦ ′ 00 00 09◦ 47 ′ 22◦ 34 ′ λ ◦ ′ ◦ ′ ′ +8 29 +9◦ 58 ′ ◦ ′ +4 03 −5◦ 28 ′ +5◦ 23 ′ ◦ ′ 05 18 09◦ 06 ′ 09◦ 56 ′ 20◦ 14 ′ 23◦ 13 ′ − 0 49 − 6◦ 44 ′ + 2◦ 04 ′ +10◦ 06 ′ + 6◦ 41 ′ λ β β ′ ′ ◦ ′ 20 47 29◦ 37 ′ 29◦ 50 ′ +9 43 +8◦ 49 ′ +0◦ 28 ′ λ β ′ 06 23 13◦ 25 ′ 17◦ 34 ′ 27◦ 10 ′ ◦ ′ +0 09 +9◦ 40 ′ +6◦ 06 ′ +0◦ 42 ′ λ Scorpio β Mag. Name ◦ ′ ◦ ◦ ′ ′ ′ +2.8 +2.6 α LIB β LIB Sagittarius β Mag. Name +0 20 +8◦ 30 ′ ◦ ′ +2.3 +2.9 +2.6 +2.9 +1.0 +2.8 +2.4 δ SCO π SCO β SCO σ SCO α SCO τ SCO η OPH Capricorn β Mag. Name −1 59 −5◦ 29 ′ +1◦ 00 ′ −4◦ 02 ′ −4◦ 34 ′ −6◦ 08 ′ +7◦ 12 ′ ◦ ′ +2.9 +1.9 +3.0 +2.0 +1.1 µ GEM γ GEM ǫ GEM α GEM β GEM 01 16 04◦ 34 ′ 06◦ 19 ′ 12◦ 23 ′ 13◦ 38 ′ 16◦ 15 ′ Mag. Name λ +3.0 +2.6 +1.4 ǫ LEO γ LEO α LEO ◦ 23 24 23◦ 33 ′ +8 37 −2◦ 36 ′ Mag. Name λ β ρ LEO θ LEO ι LEO β VIR ◦ +3.9 +3.3 +3.9 +3.6 Name η VIR γ VIR δ VIR ζ VIR α VIR +1 22 +2◦ 46 ′ +8◦ 37 ′ +8◦ 38 ′ −2◦ 03 ′ ′ +3.0 +2.7 +2.8 +2.0 +2.6 +2.9 γ SGR δ SGR λ SGR σ SGR ζ SGR π SGR Aquarius β Mag. Name −7 00 −6◦ 28 ′ −2◦ 08 ′ −3◦ 27 ′ −7◦ 11 ′ +1◦ 26 ′ ◦ Virgo ◦ ′ +3.9 +3.5 +3.4 +3.4 +1.0 Leo ◦ ◦ Libra Mag. ′ 06 43 08◦ 52 ′ 11◦ 34 ′ 21◦ 27 ′ ◦ ′ +2.9 +2.9 β AQR δ CAP Pisces Mag. Name ′ +8 14 −8◦ 12 ′ −0◦ 23 ′ +7◦ 15 ′ +3.8 +3.3 +3.7 +3.7 γ AQR δ AQR λ AQR γ PSC Table 2.1: Ecliptic longitudes (relative to the mean equinox at the J2000 epoch), ecliptic latitudes, and visual magnitudes of selected bright stars lying within 10◦ of the ecliptic plane. Spherical Astronomy λ Aries δ 37 Taurus δ Gemini δ α λ α λ 00◦ +00◦ 00 ′ 000◦ 00 ′ 00◦ +11◦ 28 ′ 027◦ 55 ′ 00◦ +20◦ 09 ′ 02◦ +00◦ 48 ′ 001◦ 50 ′ 02◦ +12◦ 10 ′ 029◦ 50 ′ 02◦ +20◦ 33 ′ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ +01◦ 35 ′ +02◦ 23 ′ +03◦ 10 ′ +03◦ 58 ′ +04◦ 45 ′ +05◦ 31 ′ +06◦ 18 ′ +07◦ 04 ′ +07◦ 49 ′ +08◦ 34 ′ +09◦ 19 ′ +10◦ 02 ′ +10◦ 46 ′ +11◦ 28 ′ 003◦ 40 ′ 005◦ 30 ′ 007◦ 21 ′ 009◦ 11 ′ 011◦ 02 ′ 012◦ 53 ′ 014◦ 44 ′ 016◦ 36 ′ 018◦ 28 ′ 020◦ 20 ′ 022◦ 13 ′ 024◦ 07 ′ 026◦ 00 ′ 027◦ 55 ′ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ +12◦ 51 ′ +13◦ 31 ′ +14◦ 10 ′ +14◦ 49 ′ +15◦ 26 ′ +16◦ 02 ′ +16◦ 37 ′ +17◦ 11 ′ +17◦ 44 ′ +18◦ 16 ′ +18◦ 46 ′ +19◦ 15 ′ +19◦ 43 ′ +20◦ 09 ′ 031◦ 45 ′ 033◦ 41 ′ 035◦ 38 ′ 037◦ 36 ′ 039◦ 34 ′ 041◦ 33 ′ 043◦ 32 ′ 045◦ 32 ′ 047◦ 33 ′ 049◦ 35 ′ 051◦ 38 ′ 053◦ 41 ′ 055◦ 45 ′ 057◦ 49 ′ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ +20◦ 57 ′ +21◦ 18 ′ +21◦ 38 ′ +21◦ 57 ′ +22◦ 13 ′ +22◦ 28 ′ +22◦ 42 ′ +22◦ 54 ′ +23◦ 03 ′ +23◦ 12 ′ +23◦ 18 ′ +23◦ 22 ′ +23◦ 25 ′ +23◦ 26 ′ α λ α λ λ Cancer δ Leo δ Virgo δ 00◦ +23◦ 26 ′ 090◦ 00 ′ 00◦ +20◦ 09 ′ 122◦ 11 ′ 00◦ +11◦ 28 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ +23◦ 25 ′ +23◦ 22 ′ +23◦ 18 ′ +23◦ 12 ′ +23◦ 03 ′ +22◦ 54 ′ +22◦ 42 ′ +22◦ 28 ′ +22◦ 13 ′ +21◦ 57 ′ +21◦ 38 ′ +21◦ 18 ′ +20◦ 57 ′ +20◦ 33 ′ +20◦ 09 ′ 092◦ 11 ′ 094◦ 21 ′ 096◦ 32 ′ 098◦ 43 ′ 100◦ 53 ′ 103◦ 03 ′ 105◦ 12 ′ 107◦ 21 ′ 109◦ 30 ′ 111◦ 38 ′ 113◦ 46 ′ 115◦ 53 ′ 117◦ 60 ′ 120◦ 06 ′ 122◦ 11 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ +19◦ 43 ′ +19◦ 15 ′ +18◦ 46 ′ +18◦ 16 ′ +17◦ 44 ′ +17◦ 11 ′ +16◦ 37 ′ +16◦ 02 ′ +15◦ 26 ′ +14◦ 49 ′ +14◦ 10 ′ +13◦ 31 ′ +12◦ 51 ′ +12◦ 10 ′ +11◦ 28 ′ 124◦ 15 ′ 126◦ 19 ′ 128◦ 22 ′ 130◦ 25 ′ 132◦ 27 ′ 134◦ 28 ′ 136◦ 28 ′ 138◦ 27 ′ 140◦ 26 ′ 142◦ 24 ′ 144◦ 22 ′ 146◦ 19 ′ 148◦ 15 ′ 150◦ 10 ′ 152◦ 05 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ +10◦ 46 ′ +10◦ 02 ′ +09◦ 19 ′ +08◦ 34 ′ +07◦ 49 ′ +07◦ 04 ′ +06◦ 18 ′ +05◦ 31 ′ +04◦ 45 ′ +03◦ 58 ′ +03◦ 10 ′ +02◦ 23 ′ +01◦ 35 ′ +00◦ 48 ′ +00◦ 00 ′ α 057◦ 49 ′ 059◦ 54 ′ 062◦ 00 ′ 064◦ 07 ′ 066◦ 14 ′ 068◦ 22 ′ 070◦ 30 ′ 072◦ 39 ′ 074◦ 48 ′ 076◦ 57 ′ 079◦ 07 ′ 081◦ 17 ′ 083◦ 28 ′ 085◦ 39 ′ 087◦ 49 ′ 090◦ 00 ′ α 152◦ 05 ′ 153◦ 60 ′ 155◦ 53 ′ 157◦ 47 ′ 159◦ 40 ′ 161◦ 32 ′ 163◦ 24 ′ 165◦ 16 ′ 167◦ 07 ′ 168◦ 58 ′ 170◦ 49 ′ 172◦ 39 ′ 174◦ 30 ′ 176◦ 20 ′ 178◦ 10 ′ 180◦ 00 ′ Table 2.2: Declinations and right ascensions of points on the ecliptic circle (a). 38 MODERN ALMAGEST λ Libra δ Scorpio δ α λ α λ 00◦ -00◦ 00 ′ 180◦ 00 ′ 00◦ -11◦ 28 ′ 207◦ 55 ′ 02◦ -00◦ 48 ′ 181◦ 50 ′ 02◦ -12◦ 10 ′ 209◦ 50 ′ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ -01◦ 35 ′ -02◦ 23 ′ -03◦ 10 ′ -03◦ 58 ′ -04◦ 45 ′ -05◦ 31 ′ -06◦ 18 ′ -07◦ 04 ′ -07◦ 49 ′ -08◦ 34 ′ -09◦ 19 ′ -10◦ 02 ′ -10◦ 46 ′ -11◦ 28 ′ 183◦ 40 ′ 185◦ 30 ′ 187◦ 21 ′ 189◦ 11 ′ 191◦ 02 ′ 192◦ 53 ′ 194◦ 44 ′ 196◦ 36 ′ 198◦ 28 ′ 200◦ 20 ′ 202◦ 13 ′ 204◦ 07 ′ 206◦ 00 ′ 207◦ 55 ′ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ -12◦ 51 ′ -13◦ 31 ′ -14◦ 10 ′ -14◦ 49 ′ -15◦ 26 ′ -16◦ 02 ′ -16◦ 37 ′ -17◦ 11 ′ -17◦ 44 ′ -18◦ 16 ′ -18◦ 46 ′ -19◦ 15 ′ -19◦ 43 ′ -20◦ 09 ′ 211◦ 45 ′ 213◦ 41 ′ 215◦ 38 ′ 217◦ 36 ′ 219◦ 34 ′ 221◦ 33 ′ 223◦ 32 ′ 225◦ 32 ′ 227◦ 33 ′ 229◦ 35 ′ 231◦ 38 ′ 233◦ 41 ′ 235◦ 45 ′ 237◦ 49 ′ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ λ Capricorn δ α λ Aquarius δ α λ Sagittarius δ α -20◦ 09 ′ -20◦ 33 ′ -20◦ 57 ′ -21◦ 18 ′ -21◦ 38 ′ -21◦ 57 ′ -22◦ 13 ′ -22◦ 28 ′ -22◦ 42 ′ -22◦ 54 ′ -23◦ 03 ′ -23◦ 12 ′ -23◦ 18 ′ -23◦ 22 ′ -23◦ 25 ′ -23◦ 26 ′ Pisces δ 00◦ -23◦ 26 ′ 270◦ 00 ′ 00◦ -20◦ 09 ′ 302◦ 11 ′ 00◦ -11◦ 28 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ -23◦ 25 ′ -23◦ 22 ′ -23◦ 18 ′ -23◦ 12 ′ -23◦ 03 ′ -22◦ 54 ′ -22◦ 42 ′ -22◦ 28 ′ -22◦ 13 ′ -21◦ 57 ′ -21◦ 38 ′ -21◦ 18 ′ -20◦ 57 ′ -20◦ 33 ′ -20◦ 09 ′ 272◦ 11 ′ 274◦ 21 ′ 276◦ 32 ′ 278◦ 43 ′ 280◦ 53 ′ 283◦ 03 ′ 285◦ 12 ′ 287◦ 21 ′ 289◦ 30 ′ 291◦ 38 ′ 293◦ 46 ′ 295◦ 53 ′ 297◦ 60 ′ 300◦ 06 ′ 302◦ 11 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ -19◦ 43 ′ -19◦ 15 ′ -18◦ 46 ′ -18◦ 16 ′ -17◦ 44 ′ -17◦ 11 ′ -16◦ 37 ′ -16◦ 02 ′ -15◦ 26 ′ -14◦ 49 ′ -14◦ 10 ′ -13◦ 31 ′ -12◦ 51 ′ -12◦ 10 ′ -11◦ 28 ′ 304◦ 15 ′ 306◦ 19 ′ 308◦ 22 ′ 310◦ 25 ′ 312◦ 27 ′ 314◦ 28 ′ 316◦ 28 ′ 318◦ 27 ′ 320◦ 26 ′ 322◦ 24 ′ 324◦ 22 ′ 326◦ 19 ′ 328◦ 15 ′ 330◦ 10 ′ 332◦ 05 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ -10◦ 46 ′ -10◦ 02 ′ -09◦ 19 ′ -08◦ 34 ′ -07◦ 49 ′ -07◦ 04 ′ -06◦ 18 ′ -05◦ 31 ′ -04◦ 45 ′ -03◦ 58 ′ -03◦ 10 ′ -02◦ 23 ′ -01◦ 35 ′ -00◦ 48 ′ -00◦ 00 ′ 237◦ 49 ′ 239◦ 54 ′ 242◦ 00 ′ 244◦ 07 ′ 246◦ 14 ′ 248◦ 22 ′ 250◦ 30 ′ 252◦ 39 ′ 254◦ 48 ′ 256◦ 57 ′ 259◦ 07 ′ 261◦ 17 ′ 263◦ 28 ′ 265◦ 39 ′ 267◦ 49 ′ 270◦ 00 ′ α 332◦ 05 ′ 333◦ 60 ′ 335◦ 53 ′ 337◦ 47 ′ 339◦ 40 ′ 341◦ 32 ′ 343◦ 24 ′ 345◦ 16 ′ 347◦ 07 ′ 348◦ 58 ′ 350◦ 49 ′ 352◦ 39 ′ 354◦ 30 ′ 356◦ 20 ′ 358◦ 10 ′ 360◦ 00 ′ Table 2.3: Declinations and right ascensions of points on the ecliptic circle (b). Spherical Astronomy 39 L Longest Day Summer Solstice Noon Altitude of Sun +00◦ +05◦ +10◦ +15◦ +20◦ +25◦ +30◦ +35◦ +40◦ +45◦ +50◦ +55◦ +60◦ +65◦ +70◦ +75◦ +80◦ +85◦ +90◦ 12h00m 12h17m 12h35m 12h53m 13h13m 13h33m 13h56m 14h21m 14h51m 15h25m 16h09m 17h06m 18h29m 21h07m 61d06h 100d06h 130d02h 156d22h 182d15h +66◦ 34 ′ N +71◦ 34 ′ N +76◦ 34 ′ N +81◦ 34 ′ N +86◦ 34 ′ N +88◦ 26 ′ N +83◦ 26 ′ S +78◦ 26 ′ S +73◦ 26 ′ S +68◦ 26 ′ S +63◦ 26 ′ S +58◦ 26 ′ S +53◦ 26 ′ S +48◦ 26 ′ S +43◦ 26 ′ S +38◦ 26 ′ S +33◦ 26 ′ S +28◦ 26 ′ S +23◦ 26 ′ S Equinoctial Noon Altitude of Sun +90◦ 00 ′ +85◦ 00 ′ +80◦ 00 ′ +75◦ 00 ′ +70◦ 00 ′ +65◦ 00 ′ +60◦ 00 ′ +55◦ 00 ′ +50◦ 00 ′ +45◦ 00 ′ +40◦ 00 ′ +35◦ 00 ′ +30◦ 00 ′ +25◦ 00 ′ +20◦ 00 ′ +15◦ 00 ′ +10◦ 00 ′ +05◦ 00 ′ +00◦ 00 ′ S S S S S S S S S S S S S S S S S S S Winter Solstice Noon Altitude of Sun +66◦ 34 ′ +61◦ 34 ′ +56◦ 34 ′ +51◦ 34 ′ +46◦ 34 ′ +41◦ 34 ′ +36◦ 34 ′ +31◦ 34 ′ +26◦ 34 ′ +21◦ 34 ′ +16◦ 34 ′ +11◦ 34 ′ +06◦ 34 ′ +01◦ 34 ′ −03◦ 26 ′ −08◦ 26 ′ −13◦ 26 ′ −18◦ 26 ′ −23◦ 26 ′ S S S S S S S S S S S S S S S S S S S Table 2.4: Terrestrial climes in the earth’s northern hemisphere. The superscripts h, m, and d stand for hours, minutes, and days, respectively. The symbols S and N indicated that the upper transit of the sun occurs to the south and north of the zenith, respectively. 40 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 001◦ 50 ′ 003◦ 40 ′ 005◦ 30 ′ 007◦ 21 ′ 009◦ 11 ′ 011◦ 02 ′ 012◦ 53 ′ 014◦ 44 ′ 016◦ 36 ′ 018◦ 28 ′ 020◦ 20 ′ 022◦ 13 ′ 024◦ 07 ′ 026◦ 00 ′ 027◦ 55 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 027◦ 55 ′ 029◦ 50 ′ 031◦ 45 ′ 033◦ 41 ′ 035◦ 38 ′ 037◦ 36 ′ 039◦ 34 ′ 041◦ 33 ′ 043◦ 32 ′ 045◦ 32 ′ 047◦ 33 ′ 049◦ 35 ′ 051◦ 38 ′ 053◦ 41 ′ 055◦ 45 ′ 057◦ 49 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 181◦ 50 ′ 183◦ 40 ′ 185◦ 30 ′ 187◦ 21 ′ 189◦ 11 ′ 191◦ 02 ′ 192◦ 53 ′ 194◦ 44 ′ 196◦ 36 ′ 198◦ 28 ′ 200◦ 20 ′ 202◦ 13 ′ 204◦ 07 ′ 206◦ 00 ′ 207◦ 55 ′ Scorpio λ α ◦ 00 207◦ 55 ′ ◦ 02 209◦ 50 ′ ◦ 04 211◦ 45 ′ ◦ 06 213◦ 41 ′ ◦ 08 215◦ 38 ′ ◦ 10 217◦ 36 ′ ◦ 12 219◦ 34 ′ ◦ 14 221◦ 33 ′ ◦ 16 223◦ 32 ′ ◦ 18 225◦ 32 ′ ◦ 20 227◦ 33 ′ ◦ 22 229◦ 35 ′ ◦ 24 231◦ 38 ′ ◦ 26 233◦ 41 ′ ◦ 28 235◦ 45 ′ ◦ 30 237◦ 49 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 057◦ 49 ′ 059◦ 54 ′ 062◦ 00 ′ 064◦ 07 ′ 066◦ 14 ′ 068◦ 22 ′ 070◦ 30 ′ 072◦ 39 ′ 074◦ 48 ′ 076◦ 57 ′ 079◦ 07 ′ 081◦ 17 ′ 083◦ 28 ′ 085◦ 39 ′ 087◦ 49 ′ 090◦ 00 ′ Sagittarius λ α ◦ 00 237◦ 49 ′ ◦ 02 239◦ 54 ′ ◦ 04 242◦ 00 ′ ◦ 06 244◦ 07 ′ ◦ 08 246◦ 14 ′ ◦ 10 248◦ 22 ′ ◦ 12 250◦ 30 ′ ◦ 14 252◦ 39 ′ ◦ 16 254◦ 48 ′ ◦ 18 256◦ 57 ′ ◦ 20 259◦ 07 ′ ◦ 22 261◦ 17 ′ ◦ 24 263◦ 28 ′ ◦ 26 265◦ 39 ′ ◦ 28 267◦ 49 ′ ◦ 30 270◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 090◦ 00 ′ 092◦ 11 ′ 094◦ 21 ′ 096◦ 32 ′ 098◦ 43 ′ 100◦ 53 ′ 103◦ 03 ′ 105◦ 12 ′ 107◦ 21 ′ 109◦ 30 ′ 111◦ 38 ′ 113◦ 46 ′ 115◦ 53 ′ 117◦ 60 ′ 120◦ 06 ′ 122◦ 11 ′ Capricorn λ α ◦ 00 270◦ 00 ′ ◦ 02 272◦ 11 ′ ◦ 04 274◦ 21 ′ ◦ 06 276◦ 32 ′ ◦ 08 278◦ 43 ′ ◦ 10 280◦ 53 ′ ◦ 12 283◦ 03 ′ ◦ 14 285◦ 12 ′ ◦ 16 287◦ 21 ′ ◦ 18 289◦ 30 ′ ◦ 20 291◦ 38 ′ ◦ 22 293◦ 46 ′ ◦ 24 295◦ 53 ′ ◦ 26 297◦ 60 ′ ◦ 28 300◦ 06 ′ ◦ 30 302◦ 11 ′ Leo α 122◦ 11 ′ 124◦ 15 ′ 126◦ 19 ′ 128◦ 22 ′ 130◦ 25 ′ 132◦ 27 ′ 134◦ 28 ′ 136◦ 28 ′ 138◦ 27 ′ 140◦ 26 ′ 142◦ 24 ′ 144◦ 22 ′ 146◦ 19 ′ 148◦ 15 ′ 150◦ 10 ′ 152◦ 05 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 152◦ 05 ′ 153◦ 60 ′ 155◦ 53 ′ 157◦ 47 ′ 159◦ 40 ′ 161◦ 32 ′ 163◦ 24 ′ 165◦ 16 ′ 167◦ 07 ′ 168◦ 58 ′ 170◦ 49 ′ 172◦ 39 ′ 174◦ 30 ′ 176◦ 20 ′ 178◦ 10 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 302◦ 11 ′ ◦ 02 304◦ 15 ′ ◦ 04 306◦ 19 ′ ◦ 06 308◦ 22 ′ ◦ 08 310◦ 25 ′ ◦ 10 312◦ 27 ′ ◦ 12 314◦ 28 ′ ◦ 14 316◦ 28 ′ ◦ 16 318◦ 27 ′ ◦ 18 320◦ 26 ′ ◦ 20 322◦ 24 ′ ◦ 22 324◦ 22 ′ ◦ 24 326◦ 19 ′ ◦ 26 328◦ 15 ′ ◦ 28 330◦ 10 ′ ◦ 30 332◦ 05 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 332◦ 05 ′ 333◦ 60 ′ 335◦ 53 ′ 337◦ 47 ′ 339◦ 40 ′ 341◦ 32 ′ 343◦ 24 ′ 345◦ 16 ′ 347◦ 07 ′ 348◦ 58 ′ 350◦ 49 ′ 352◦ 39 ′ 354◦ 30 ′ 356◦ 20 ′ 358◦ 10 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.5: Right ascensions of the ecliptic for latitude 0◦ . Spherical Astronomy 41 λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 001◦ 42 ′ 003◦ 23 ′ 005◦ 05 ′ 006◦ 47 ′ 008◦ 29 ′ 010◦ 12 ′ 011◦ 55 ′ 013◦ 38 ′ 015◦ 21 ′ 017◦ 05 ′ 018◦ 49 ′ 020◦ 34 ′ 022◦ 19 ′ 024◦ 05 ′ 025◦ 52 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 025◦ 52 ′ 027◦ 39 ′ 029◦ 27 ′ 031◦ 16 ′ 033◦ 05 ′ 034◦ 55 ′ 036◦ 46 ′ 038◦ 38 ′ 040◦ 31 ′ 042◦ 25 ′ 044◦ 19 ′ 046◦ 15 ′ 048◦ 11 ′ 050◦ 09 ′ 052◦ 07 ′ 054◦ 07 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 181◦ 59 ′ 183◦ 57 ′ 185◦ 56 ′ 187◦ 54 ′ 189◦ 53 ′ 191◦ 52 ′ 193◦ 52 ′ 195◦ 51 ′ 197◦ 51 ′ 199◦ 51 ′ 201◦ 52 ′ 203◦ 53 ′ 205◦ 54 ′ 207◦ 56 ′ 209◦ 58 ′ Scorpio λ α ◦ 00 209◦ 58 ′ ◦ 02 212◦ 00 ′ ◦ 04 214◦ 03 ′ ◦ 06 216◦ 07 ′ ◦ 08 218◦ 11 ′ ◦ 10 220◦ 16 ′ ◦ 12 222◦ 21 ′ ◦ 14 224◦ 27 ′ ◦ 16 226◦ 33 ′ ◦ 18 228◦ 40 ′ ◦ 20 230◦ 47 ′ ◦ 22 232◦ 55 ′ ◦ 24 235◦ 04 ′ ◦ 26 237◦ 13 ′ ◦ 28 239◦ 22 ′ ◦ 30 241◦ 32 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 054◦ 07 ′ 056◦ 07 ′ 058◦ 08 ′ 060◦ 10 ′ 062◦ 13 ′ 064◦ 17 ′ 066◦ 22 ′ 068◦ 28 ′ 070◦ 34 ′ 072◦ 41 ′ 074◦ 49 ′ 076◦ 58 ′ 079◦ 07 ′ 081◦ 16 ′ 083◦ 26 ′ 085◦ 37 ′ Sagittarius λ α ◦ 00 241◦ 32 ′ ◦ 02 243◦ 42 ′ ◦ 04 245◦ 53 ′ ◦ 06 248◦ 03 ′ ◦ 08 250◦ 15 ′ ◦ 10 252◦ 26 ′ ◦ 12 254◦ 38 ′ ◦ 14 256◦ 50 ′ ◦ 16 259◦ 02 ′ ◦ 18 261◦ 14 ′ ◦ 20 263◦ 26 ′ ◦ 22 265◦ 37 ′ ◦ 24 267◦ 49 ′ ◦ 26 270◦ 01 ′ ◦ 28 272◦ 12 ′ ◦ 30 274◦ 23 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 085◦ 37 ′ 087◦ 48 ′ 089◦ 59 ′ 092◦ 11 ′ 094◦ 23 ′ 096◦ 34 ′ 098◦ 46 ′ 100◦ 58 ′ 103◦ 10 ′ 105◦ 22 ′ 107◦ 34 ′ 109◦ 45 ′ 111◦ 57 ′ 114◦ 07 ′ 116◦ 18 ′ 118◦ 28 ′ Capricorn λ α ◦ 00 274◦ 23 ′ ◦ 02 276◦ 34 ′ ◦ 04 278◦ 44 ′ ◦ 06 280◦ 53 ′ ◦ 08 283◦ 02 ′ ◦ 10 285◦ 11 ′ ◦ 12 287◦ 19 ′ ◦ 14 289◦ 26 ′ ◦ 16 291◦ 32 ′ ◦ 18 293◦ 38 ′ ◦ 20 295◦ 43 ′ ◦ 22 297◦ 47 ′ ◦ 24 299◦ 50 ′ ◦ 26 301◦ 52 ′ ◦ 28 303◦ 53 ′ ◦ 30 305◦ 53 ′ Leo α 118◦ 28 ′ 120◦ 38 ′ 122◦ 47 ′ 124◦ 56 ′ 127◦ 05 ′ 129◦ 13 ′ 131◦ 20 ′ 133◦ 27 ′ 135◦ 33 ′ 137◦ 39 ′ 139◦ 44 ′ 141◦ 49 ′ 143◦ 53 ′ 145◦ 57 ′ 148◦ 00 ′ 150◦ 02 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 150◦ 02 ′ 152◦ 04 ′ 154◦ 06 ′ 156◦ 07 ′ 158◦ 08 ′ 160◦ 09 ′ 162◦ 09 ′ 164◦ 09 ′ 166◦ 08 ′ 168◦ 08 ′ 170◦ 07 ′ 172◦ 06 ′ 174◦ 04 ′ 176◦ 03 ′ 178◦ 01 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 305◦ 53 ′ ◦ 02 307◦ 53 ′ ◦ 04 309◦ 51 ′ ◦ 06 311◦ 49 ′ ◦ 08 313◦ 45 ′ ◦ 10 315◦ 41 ′ ◦ 12 317◦ 35 ′ ◦ 14 319◦ 29 ′ ◦ 16 321◦ 22 ′ ◦ 18 323◦ 14 ′ ◦ 20 325◦ 05 ′ ◦ 22 326◦ 55 ′ ◦ 24 328◦ 44 ′ ◦ 26 330◦ 33 ′ ◦ 28 332◦ 21 ′ ◦ 30 334◦ 08 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 334◦ 08 ′ 335◦ 55 ′ 337◦ 41 ′ 339◦ 26 ′ 341◦ 11 ′ 342◦ 55 ′ 344◦ 39 ′ 346◦ 22 ′ 348◦ 05 ′ 349◦ 48 ′ 351◦ 31 ′ 353◦ 13 ′ 354◦ 55 ′ 356◦ 37 ′ 358◦ 18 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.6: Oblique ascensions of the ecliptic for latitude +10◦ . 42 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 001◦ 33 ′ 003◦ 06 ′ 004◦ 38 ′ 006◦ 12 ′ 007◦ 45 ′ 009◦ 18 ′ 010◦ 52 ′ 012◦ 26 ′ 014◦ 01 ′ 015◦ 36 ′ 017◦ 12 ′ 018◦ 48 ′ 020◦ 25 ′ 022◦ 02 ′ 023◦ 41 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 023◦ 41 ′ 025◦ 20 ′ 026◦ 59 ′ 028◦ 40 ′ 030◦ 22 ′ 032◦ 04 ′ 033◦ 48 ′ 035◦ 32 ′ 037◦ 18 ′ 039◦ 04 ′ 040◦ 52 ′ 042◦ 41 ′ 044◦ 31 ′ 046◦ 23 ′ 048◦ 15 ′ 050◦ 09 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 182◦ 07 ′ 184◦ 15 ′ 186◦ 23 ′ 188◦ 30 ′ 190◦ 38 ′ 192◦ 46 ′ 194◦ 54 ′ 197◦ 02 ′ 199◦ 11 ′ 201◦ 20 ′ 203◦ 29 ′ 205◦ 38 ′ 207◦ 48 ′ 209◦ 58 ′ 212◦ 09 ′ Scorpio λ α ◦ 00 212◦ 09 ′ ◦ 02 214◦ 20 ′ ◦ 04 216◦ 31 ′ ◦ 06 218◦ 42 ′ ◦ 08 220◦ 54 ′ ◦ 10 223◦ 07 ′ ◦ 12 225◦ 20 ′ ◦ 14 227◦ 33 ′ ◦ 16 229◦ 46 ′ ◦ 18 232◦ 00 ′ ◦ 20 234◦ 14 ′ ◦ 22 236◦ 29 ′ ◦ 24 238◦ 44 ′ ◦ 26 240◦ 59 ′ ◦ 28 243◦ 14 ′ ◦ 30 245◦ 30 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 050◦ 09 ′ 052◦ 04 ′ 054◦ 00 ′ 055◦ 57 ′ 057◦ 56 ′ 059◦ 56 ′ 061◦ 57 ′ 063◦ 59 ′ 066◦ 02 ′ 068◦ 07 ′ 070◦ 13 ′ 072◦ 19 ′ 074◦ 27 ′ 076◦ 35 ′ 078◦ 45 ′ 080◦ 55 ′ Sagittarius λ α ◦ 00 245◦ 30 ′ ◦ 02 247◦ 45 ′ ◦ 04 250◦ 01 ′ ◦ 06 252◦ 16 ′ ◦ 08 254◦ 32 ′ ◦ 10 256◦ 48 ′ ◦ 12 259◦ 03 ′ ◦ 14 261◦ 18 ′ ◦ 16 263◦ 33 ′ ◦ 18 265◦ 48 ′ ◦ 20 268◦ 02 ′ ◦ 22 270◦ 16 ′ ◦ 24 272◦ 29 ′ ◦ 26 274◦ 42 ′ ◦ 28 276◦ 53 ′ ◦ 30 279◦ 05 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 080◦ 55 ′ 083◦ 07 ′ 085◦ 18 ′ 087◦ 31 ′ 089◦ 44 ′ 091◦ 58 ′ 094◦ 12 ′ 096◦ 27 ′ 098◦ 42 ′ 100◦ 57 ′ 103◦ 12 ′ 105◦ 28 ′ 107◦ 44 ′ 109◦ 59 ′ 112◦ 15 ′ 114◦ 30 ′ Capricorn λ α ◦ 00 279◦ 05 ′ ◦ 02 281◦ 15 ′ ◦ 04 283◦ 25 ′ ◦ 06 285◦ 33 ′ ◦ 08 287◦ 41 ′ ◦ 10 289◦ 47 ′ ◦ 12 291◦ 53 ′ ◦ 14 293◦ 58 ′ ◦ 16 296◦ 01 ′ ◦ 18 298◦ 03 ′ ◦ 20 300◦ 04 ′ ◦ 22 302◦ 04 ′ ◦ 24 304◦ 03 ′ ◦ 26 306◦ 00 ′ ◦ 28 307◦ 56 ′ ◦ 30 309◦ 51 ′ Leo α 114◦ 30 ′ 116◦ 46 ′ 119◦ 01 ′ 121◦ 16 ′ 123◦ 31 ′ 125◦ 46 ′ 128◦ 00 ′ 130◦ 14 ′ 132◦ 27 ′ 134◦ 40 ′ 136◦ 53 ′ 139◦ 06 ′ 141◦ 18 ′ 143◦ 29 ′ 145◦ 40 ′ 147◦ 51 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 147◦ 51 ′ 150◦ 02 ′ 152◦ 12 ′ 154◦ 22 ′ 156◦ 31 ′ 158◦ 40 ′ 160◦ 49 ′ 162◦ 58 ′ 165◦ 06 ′ 167◦ 14 ′ 169◦ 22 ′ 171◦ 30 ′ 173◦ 37 ′ 175◦ 45 ′ 177◦ 53 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 309◦ 51 ′ ◦ 02 311◦ 45 ′ ◦ 04 313◦ 37 ′ ◦ 06 315◦ 29 ′ ◦ 08 317◦ 19 ′ ◦ 10 319◦ 08 ′ ◦ 12 320◦ 56 ′ ◦ 14 322◦ 42 ′ ◦ 16 324◦ 28 ′ ◦ 18 326◦ 12 ′ ◦ 20 327◦ 56 ′ ◦ 22 329◦ 38 ′ ◦ 24 331◦ 20 ′ ◦ 26 333◦ 01 ′ ◦ 28 334◦ 40 ′ ◦ 30 336◦ 19 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 336◦ 19 ′ 337◦ 58 ′ 339◦ 35 ′ 341◦ 12 ′ 342◦ 48 ′ 344◦ 24 ′ 345◦ 59 ′ 347◦ 34 ′ 349◦ 08 ′ 350◦ 42 ′ 352◦ 15 ′ 353◦ 48 ′ 355◦ 22 ′ 356◦ 54 ′ 358◦ 27 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.7: Oblique ascensions of the ecliptic for latitude +20◦ . Spherical Astronomy 43 λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 001◦ 23 ′ 002◦ 45 ′ 004◦ 08 ′ 005◦ 31 ′ 006◦ 54 ′ 008◦ 17 ′ 009◦ 41 ′ 011◦ 05 ′ 012◦ 30 ′ 013◦ 55 ′ 015◦ 21 ′ 016◦ 47 ′ 018◦ 15 ′ 019◦ 42 ′ 021◦ 11 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 021◦ 11 ′ 022◦ 41 ′ 024◦ 11 ′ 025◦ 43 ′ 027◦ 15 ′ 028◦ 49 ′ 030◦ 23 ′ 031◦ 59 ′ 033◦ 37 ′ 035◦ 15 ′ 036◦ 55 ′ 038◦ 36 ′ 040◦ 19 ′ 042◦ 03 ′ 043◦ 48 ′ 045◦ 36 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 182◦ 18 ′ 184◦ 35 ′ 186◦ 53 ′ 189◦ 11 ′ 191◦ 29 ′ 193◦ 47 ′ 196◦ 05 ′ 198◦ 23 ′ 200◦ 42 ′ 203◦ 01 ′ 205◦ 20 ′ 207◦ 39 ′ 209◦ 59 ′ 212◦ 18 ′ 214◦ 38 ′ Scorpio λ α ◦ 00 214◦ 38 ′ ◦ 02 216◦ 59 ′ ◦ 04 219◦ 19 ′ ◦ 06 221◦ 40 ′ ◦ 08 224◦ 01 ′ ◦ 10 226◦ 22 ′ ◦ 12 228◦ 44 ′ ◦ 14 231◦ 06 ′ ◦ 16 233◦ 28 ′ ◦ 18 235◦ 50 ′ ◦ 20 238◦ 12 ′ ◦ 22 240◦ 34 ′ ◦ 24 242◦ 56 ′ ◦ 26 245◦ 19 ′ ◦ 28 247◦ 41 ′ ◦ 30 250◦ 03 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 045◦ 36 ′ 047◦ 24 ′ 049◦ 14 ′ 051◦ 06 ′ 053◦ 00 ′ 054◦ 55 ′ 056◦ 51 ′ 058◦ 50 ′ 060◦ 49 ′ 062◦ 51 ′ 064◦ 54 ′ 066◦ 58 ′ 069◦ 04 ′ 071◦ 12 ′ 073◦ 20 ′ 075◦ 30 ′ Sagittarius λ α ◦ 00 250◦ 03 ′ ◦ 02 252◦ 25 ′ ◦ 04 254◦ 46 ′ ◦ 06 257◦ 08 ′ ◦ 08 259◦ 28 ′ ◦ 10 261◦ 49 ′ ◦ 12 264◦ 09 ′ ◦ 14 266◦ 28 ′ ◦ 16 268◦ 46 ′ ◦ 18 271◦ 04 ′ ◦ 20 273◦ 21 ′ ◦ 22 275◦ 37 ′ ◦ 24 277◦ 52 ′ ◦ 26 280◦ 05 ′ ◦ 28 282◦ 18 ′ ◦ 30 284◦ 30 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 075◦ 30 ′ 077◦ 42 ′ 079◦ 55 ′ 082◦ 08 ′ 084◦ 23 ′ 086◦ 39 ′ 088◦ 56 ′ 091◦ 14 ′ 093◦ 32 ′ 095◦ 51 ′ 098◦ 11 ′ 100◦ 32 ′ 102◦ 52 ′ 105◦ 14 ′ 107◦ 35 ′ 109◦ 57 ′ Capricorn λ α ◦ 00 284◦ 30 ′ ◦ 02 286◦ 40 ′ ◦ 04 288◦ 48 ′ ◦ 06 290◦ 56 ′ ◦ 08 293◦ 02 ′ ◦ 10 295◦ 06 ′ ◦ 12 297◦ 09 ′ ◦ 14 299◦ 11 ′ ◦ 16 301◦ 10 ′ ◦ 18 303◦ 09 ′ ◦ 20 305◦ 05 ′ ◦ 22 307◦ 00 ′ ◦ 24 308◦ 54 ′ ◦ 26 310◦ 46 ′ ◦ 28 312◦ 36 ′ ◦ 30 314◦ 24 ′ Leo α 109◦ 57 ′ 112◦ 19 ′ 114◦ 41 ′ 117◦ 04 ′ 119◦ 26 ′ 121◦ 48 ′ 124◦ 10 ′ 126◦ 32 ′ 128◦ 54 ′ 131◦ 16 ′ 133◦ 38 ′ 135◦ 59 ′ 138◦ 20 ′ 140◦ 41 ′ 143◦ 01 ′ 145◦ 22 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 145◦ 22 ′ 147◦ 42 ′ 150◦ 01 ′ 152◦ 21 ′ 154◦ 40 ′ 156◦ 59 ′ 159◦ 18 ′ 161◦ 37 ′ 163◦ 55 ′ 166◦ 13 ′ 168◦ 31 ′ 170◦ 49 ′ 173◦ 07 ′ 175◦ 25 ′ 177◦ 42 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 314◦ 24 ′ ◦ 02 316◦ 12 ′ ◦ 04 317◦ 57 ′ ◦ 06 319◦ 41 ′ ◦ 08 321◦ 24 ′ ◦ 10 323◦ 05 ′ ◦ 12 324◦ 45 ′ ◦ 14 326◦ 23 ′ ◦ 16 328◦ 01 ′ ◦ 18 329◦ 37 ′ ◦ 20 331◦ 11 ′ ◦ 22 332◦ 45 ′ ◦ 24 334◦ 17 ′ ◦ 26 335◦ 49 ′ ◦ 28 337◦ 19 ′ ◦ 30 338◦ 49 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 338◦ 49 ′ 340◦ 18 ′ 341◦ 45 ′ 343◦ 13 ′ 344◦ 39 ′ 346◦ 05 ′ 347◦ 30 ′ 348◦ 55 ′ 350◦ 19 ′ 351◦ 43 ′ 353◦ 06 ′ 354◦ 29 ′ 355◦ 52 ′ 357◦ 15 ′ 358◦ 37 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.8: Oblique ascensions of the ecliptic for latitude +30◦ . 44 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 001◦ 10 ′ 002◦ 20 ′ 003◦ 30 ′ 004◦ 41 ′ 005◦ 52 ′ 007◦ 03 ′ 008◦ 14 ′ 009◦ 26 ′ 010◦ 38 ′ 011◦ 51 ′ 013◦ 05 ′ 014◦ 19 ′ 015◦ 34 ′ 016◦ 50 ′ 018◦ 07 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 018◦ 07 ′ 019◦ 24 ′ 020◦ 43 ′ 022◦ 03 ′ 023◦ 24 ′ 024◦ 46 ′ 026◦ 10 ′ 027◦ 35 ′ 029◦ 02 ′ 030◦ 30 ′ 031◦ 59 ′ 033◦ 31 ′ 035◦ 04 ′ 036◦ 38 ′ 038◦ 15 ′ 039◦ 54 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 182◦ 30 ′ 185◦ 00 ′ 187◦ 31 ′ 190◦ 01 ′ 192◦ 31 ′ 195◦ 02 ′ 197◦ 32 ′ 200◦ 03 ′ 202◦ 34 ′ 205◦ 05 ′ 207◦ 36 ′ 210◦ 08 ′ 212◦ 39 ′ 215◦ 11 ′ 217◦ 43 ′ Scorpio λ α ◦ 00 217◦ 43 ′ ◦ 02 220◦ 15 ′ ◦ 04 222◦ 47 ′ ◦ 06 225◦ 20 ′ ◦ 08 227◦ 52 ′ ◦ 10 230◦ 25 ′ ◦ 12 232◦ 57 ′ ◦ 14 235◦ 30 ′ ◦ 16 238◦ 03 ′ ◦ 18 240◦ 35 ′ ◦ 20 243◦ 07 ′ ◦ 22 245◦ 40 ′ ◦ 24 248◦ 12 ′ ◦ 26 250◦ 43 ′ ◦ 28 253◦ 14 ′ ◦ 30 255◦ 45 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 039◦ 54 ′ 041◦ 34 ′ 043◦ 16 ′ 045◦ 01 ′ 046◦ 48 ′ 048◦ 36 ′ 050◦ 27 ′ 052◦ 20 ′ 054◦ 15 ′ 056◦ 12 ′ 058◦ 12 ′ 060◦ 13 ′ 062◦ 17 ′ 064◦ 23 ′ 066◦ 31 ′ 068◦ 40 ′ Sagittarius λ α ◦ 00 255◦ 45 ′ ◦ 02 258◦ 15 ′ ◦ 04 260◦ 44 ′ ◦ 06 263◦ 13 ′ ◦ 08 265◦ 41 ′ ◦ 10 268◦ 07 ′ ◦ 12 270◦ 33 ′ ◦ 14 272◦ 57 ′ ◦ 16 275◦ 21 ′ ◦ 18 277◦ 42 ′ ◦ 20 280◦ 03 ′ ◦ 22 282◦ 22 ′ ◦ 24 284◦ 39 ′ ◦ 26 286◦ 54 ′ ◦ 28 289◦ 08 ′ ◦ 30 291◦ 20 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 068◦ 40 ′ 070◦ 52 ′ 073◦ 06 ′ 075◦ 21 ′ 077◦ 38 ′ 079◦ 57 ′ 082◦ 18 ′ 084◦ 39 ′ 087◦ 03 ′ 089◦ 27 ′ 091◦ 53 ′ 094◦ 19 ′ 096◦ 47 ′ 099◦ 16 ′ 101◦ 45 ′ 104◦ 15 ′ Capricorn λ α ◦ 00 291◦ 20 ′ ◦ 02 293◦ 29 ′ ◦ 04 295◦ 37 ′ ◦ 06 297◦ 43 ′ ◦ 08 299◦ 47 ′ ◦ 10 301◦ 48 ′ ◦ 12 303◦ 48 ′ ◦ 14 305◦ 45 ′ ◦ 16 307◦ 40 ′ ◦ 18 309◦ 33 ′ ◦ 20 311◦ 24 ′ ◦ 22 313◦ 12 ′ ◦ 24 314◦ 59 ′ ◦ 26 316◦ 44 ′ ◦ 28 318◦ 26 ′ ◦ 30 320◦ 06 ′ Leo α 104◦ 15 ′ 106◦ 46 ′ 109◦ 17 ′ 111◦ 48 ′ 114◦ 20 ′ 116◦ 53 ′ 119◦ 25 ′ 121◦ 57 ′ 124◦ 30 ′ 127◦ 03 ′ 129◦ 35 ′ 132◦ 08 ′ 134◦ 40 ′ 137◦ 13 ′ 139◦ 45 ′ 142◦ 17 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 142◦ 17 ′ 144◦ 49 ′ 147◦ 21 ′ 149◦ 52 ′ 152◦ 24 ′ 154◦ 55 ′ 157◦ 26 ′ 159◦ 57 ′ 162◦ 28 ′ 164◦ 58 ′ 167◦ 29 ′ 169◦ 59 ′ 172◦ 29 ′ 175◦ 00 ′ 177◦ 30 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 320◦ 06 ′ ◦ 02 321◦ 45 ′ ◦ 04 323◦ 22 ′ ◦ 06 324◦ 56 ′ ◦ 08 326◦ 29 ′ ◦ 10 328◦ 01 ′ ◦ 12 329◦ 30 ′ ◦ 14 330◦ 58 ′ ◦ 16 332◦ 25 ′ ◦ 18 333◦ 50 ′ ◦ 20 335◦ 14 ′ ◦ 22 336◦ 36 ′ ◦ 24 337◦ 57 ′ ◦ 26 339◦ 17 ′ ◦ 28 340◦ 36 ′ ◦ 30 341◦ 53 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 341◦ 53 ′ 343◦ 10 ′ 344◦ 26 ′ 345◦ 41 ′ 346◦ 55 ′ 348◦ 09 ′ 349◦ 22 ′ 350◦ 34 ′ 351◦ 46 ′ 352◦ 57 ′ 354◦ 08 ′ 355◦ 19 ′ 356◦ 30 ′ 357◦ 40 ′ 358◦ 50 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.9: Oblique ascensions of the ecliptic for latitude +40◦ . Spherical Astronomy 45 λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 000◦ 53 ′ 001◦ 47 ′ 002◦ 40 ′ 003◦ 34 ′ 004◦ 27 ′ 005◦ 22 ′ 006◦ 16 ′ 007◦ 11 ′ 008◦ 07 ′ 009◦ 03 ′ 010◦ 00 ′ 010◦ 57 ′ 011◦ 56 ′ 012◦ 55 ′ 013◦ 55 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 013◦ 55 ′ 014◦ 56 ′ 015◦ 59 ′ 017◦ 02 ′ 018◦ 07 ′ 019◦ 13 ′ 020◦ 21 ′ 021◦ 31 ′ 022◦ 42 ′ 023◦ 54 ′ 025◦ 09 ′ 026◦ 26 ′ 027◦ 44 ′ 029◦ 05 ′ 030◦ 28 ′ 031◦ 54 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 182◦ 47 ′ 185◦ 34 ′ 188◦ 21 ′ 191◦ 08 ′ 193◦ 55 ′ 196◦ 43 ′ 199◦ 30 ′ 202◦ 18 ′ 205◦ 05 ′ 207◦ 53 ′ 210◦ 41 ′ 213◦ 29 ′ 216◦ 17 ′ 219◦ 06 ′ 221◦ 54 ′ Scorpio λ α ◦ 00 221◦ 54 ′ ◦ 02 224◦ 43 ′ ◦ 04 227◦ 32 ′ ◦ 06 230◦ 20 ′ ◦ 08 233◦ 09 ′ ◦ 10 235◦ 58 ′ ◦ 12 238◦ 46 ′ ◦ 14 241◦ 34 ′ ◦ 16 244◦ 23 ′ ◦ 18 247◦ 10 ′ ◦ 20 249◦ 58 ′ ◦ 22 252◦ 45 ′ ◦ 24 255◦ 31 ′ ◦ 26 258◦ 16 ′ ◦ 28 261◦ 01 ′ ◦ 30 263◦ 45 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 031◦ 54 ′ 033◦ 22 ′ 034◦ 52 ′ 036◦ 25 ′ 038◦ 01 ′ 039◦ 40 ′ 041◦ 22 ′ 043◦ 06 ′ 044◦ 54 ′ 046◦ 45 ′ 048◦ 38 ′ 050◦ 35 ′ 052◦ 35 ′ 054◦ 38 ′ 056◦ 45 ′ 058◦ 54 ′ Sagittarius λ α ◦ 00 263◦ 45 ′ ◦ 02 266◦ 27 ′ ◦ 04 269◦ 09 ′ ◦ 06 271◦ 48 ′ ◦ 08 274◦ 27 ′ ◦ 10 277◦ 03 ′ ◦ 12 279◦ 38 ′ ◦ 14 282◦ 11 ′ ◦ 16 284◦ 42 ′ ◦ 18 287◦ 10 ′ ◦ 20 289◦ 36 ′ ◦ 22 292◦ 00 ′ ◦ 24 294◦ 20 ′ ◦ 26 296◦ 39 ′ ◦ 28 298◦ 54 ′ ◦ 30 301◦ 06 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 058◦ 54 ′ 061◦ 06 ′ 063◦ 21 ′ 065◦ 40 ′ 068◦ 00 ′ 070◦ 24 ′ 072◦ 50 ′ 075◦ 18 ′ 077◦ 49 ′ 080◦ 22 ′ 082◦ 57 ′ 085◦ 33 ′ 088◦ 12 ′ 090◦ 51 ′ 093◦ 33 ′ 096◦ 15 ′ Capricorn λ α ◦ 00 301◦ 06 ′ ◦ 02 303◦ 15 ′ ◦ 04 305◦ 22 ′ ◦ 06 307◦ 25 ′ ◦ 08 309◦ 25 ′ ◦ 10 311◦ 22 ′ ◦ 12 313◦ 15 ′ ◦ 14 315◦ 06 ′ ◦ 16 316◦ 54 ′ ◦ 18 318◦ 38 ′ ◦ 20 320◦ 20 ′ ◦ 22 321◦ 59 ′ ◦ 24 323◦ 35 ′ ◦ 26 325◦ 08 ′ ◦ 28 326◦ 38 ′ ◦ 30 328◦ 06 ′ Leo α 096◦ 15 ′ 098◦ 59 ′ 101◦ 44 ′ 104◦ 29 ′ 107◦ 15 ′ 110◦ 02 ′ 112◦ 50 ′ 115◦ 37 ′ 118◦ 26 ′ 121◦ 14 ′ 124◦ 02 ′ 126◦ 51 ′ 129◦ 40 ′ 132◦ 28 ′ 135◦ 17 ′ 138◦ 06 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 138◦ 06 ′ 140◦ 54 ′ 143◦ 43 ′ 146◦ 31 ′ 149◦ 19 ′ 152◦ 07 ′ 154◦ 55 ′ 157◦ 42 ′ 160◦ 30 ′ 163◦ 17 ′ 166◦ 05 ′ 168◦ 52 ′ 171◦ 39 ′ 174◦ 26 ′ 177◦ 13 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 328◦ 06 ′ ◦ 02 329◦ 32 ′ ◦ 04 330◦ 55 ′ ◦ 06 332◦ 16 ′ ◦ 08 333◦ 34 ′ ◦ 10 334◦ 51 ′ ◦ 12 336◦ 06 ′ ◦ 14 337◦ 18 ′ ◦ 16 338◦ 29 ′ ◦ 18 339◦ 39 ′ ◦ 20 340◦ 47 ′ ◦ 22 341◦ 53 ′ ◦ 24 342◦ 58 ′ ◦ 26 344◦ 01 ′ ◦ 28 345◦ 04 ′ ◦ 30 346◦ 05 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 346◦ 05 ′ 347◦ 05 ′ 348◦ 04 ′ 349◦ 03 ′ 350◦ 00 ′ 350◦ 57 ′ 351◦ 53 ′ 352◦ 49 ′ 353◦ 44 ′ 354◦ 38 ′ 355◦ 33 ′ 356◦ 26 ′ 357◦ 20 ′ 358◦ 13 ′ 359◦ 07 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.10: Oblique ascensions of the ecliptic for latitude +50◦ . 46 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 000◦ 42 ′ 001◦ 24 ′ 002◦ 06 ′ 002◦ 48 ′ 003◦ 31 ′ 004◦ 14 ′ 004◦ 57 ′ 005◦ 41 ′ 006◦ 25 ′ 007◦ 10 ′ 007◦ 55 ′ 008◦ 41 ′ 009◦ 28 ′ 010◦ 15 ′ 011◦ 04 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 011◦ 04 ′ 011◦ 54 ′ 012◦ 44 ′ 013◦ 36 ′ 014◦ 30 ′ 015◦ 24 ′ 016◦ 21 ′ 017◦ 18 ′ 018◦ 18 ′ 019◦ 19 ′ 020◦ 23 ′ 021◦ 28 ′ 022◦ 36 ′ 023◦ 46 ′ 024◦ 58 ′ 026◦ 14 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 182◦ 58 ′ 185◦ 57 ′ 188◦ 55 ′ 191◦ 53 ′ 194◦ 52 ′ 197◦ 50 ′ 200◦ 49 ′ 203◦ 48 ′ 206◦ 47 ′ 209◦ 46 ′ 212◦ 46 ′ 215◦ 45 ′ 218◦ 45 ′ 221◦ 45 ′ 224◦ 45 ′ Scorpio λ α ◦ 00 224◦ 45 ′ ◦ 02 227◦ 46 ′ ◦ 04 230◦ 46 ′ ◦ 06 233◦ 46 ′ ◦ 08 236◦ 46 ′ ◦ 10 239◦ 47 ′ ◦ 12 242◦ 47 ′ ◦ 14 245◦ 47 ′ ◦ 16 248◦ 46 ′ ◦ 18 251◦ 46 ′ ◦ 20 254◦ 44 ′ ◦ 22 257◦ 42 ′ ◦ 24 260◦ 39 ′ ◦ 26 263◦ 36 ′ ◦ 28 266◦ 31 ′ ◦ 30 269◦ 25 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 026◦ 14 ′ 027◦ 31 ′ 028◦ 52 ′ 030◦ 16 ′ 031◦ 44 ′ 033◦ 14 ′ 034◦ 48 ′ 036◦ 26 ′ 038◦ 07 ′ 039◦ 52 ′ 041◦ 41 ′ 043◦ 34 ′ 045◦ 31 ′ 047◦ 32 ′ 049◦ 37 ′ 051◦ 45 ′ Sagittarius λ α ◦ 00 269◦ 25 ′ ◦ 02 272◦ 17 ′ ◦ 04 275◦ 08 ′ ◦ 06 277◦ 57 ′ ◦ 08 280◦ 44 ′ ◦ 10 283◦ 29 ′ ◦ 12 286◦ 12 ′ ◦ 14 288◦ 52 ′ ◦ 16 291◦ 29 ′ ◦ 18 294◦ 03 ′ ◦ 20 296◦ 33 ′ ◦ 22 299◦ 01 ′ ◦ 24 301◦ 25 ′ ◦ 26 303◦ 45 ′ ◦ 28 306◦ 02 ′ ◦ 30 308◦ 15 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 051◦ 45 ′ 053◦ 58 ′ 056◦ 15 ′ 058◦ 35 ′ 060◦ 59 ′ 063◦ 27 ′ 065◦ 57 ′ 068◦ 31 ′ 071◦ 08 ′ 073◦ 48 ′ 076◦ 31 ′ 079◦ 16 ′ 082◦ 03 ′ 084◦ 52 ′ 087◦ 43 ′ 090◦ 35 ′ Capricorn λ α ◦ 00 308◦ 15 ′ ◦ 02 310◦ 23 ′ ◦ 04 312◦ 28 ′ ◦ 06 314◦ 29 ′ ◦ 08 316◦ 26 ′ ◦ 10 318◦ 19 ′ ◦ 12 320◦ 08 ′ ◦ 14 321◦ 53 ′ ◦ 16 323◦ 34 ′ ◦ 18 325◦ 12 ′ ◦ 20 326◦ 46 ′ ◦ 22 328◦ 16 ′ ◦ 24 329◦ 44 ′ ◦ 26 331◦ 08 ′ ◦ 28 332◦ 29 ′ ◦ 30 333◦ 46 ′ Leo α 090◦ 35 ′ 093◦ 29 ′ 096◦ 24 ′ 099◦ 21 ′ 102◦ 18 ′ 105◦ 16 ′ 108◦ 14 ′ 111◦ 14 ′ 114◦ 13 ′ 117◦ 13 ′ 120◦ 13 ′ 123◦ 14 ′ 126◦ 14 ′ 129◦ 14 ′ 132◦ 14 ′ 135◦ 15 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 135◦ 15 ′ 138◦ 15 ′ 141◦ 15 ′ 144◦ 15 ′ 147◦ 14 ′ 150◦ 14 ′ 153◦ 13 ′ 156◦ 12 ′ 159◦ 11 ′ 162◦ 10 ′ 165◦ 08 ′ 168◦ 07 ′ 171◦ 05 ′ 174◦ 03 ′ 177◦ 02 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 333◦ 46 ′ ◦ 02 335◦ 02 ′ ◦ 04 336◦ 14 ′ ◦ 06 337◦ 24 ′ ◦ 08 338◦ 32 ′ ◦ 10 339◦ 37 ′ ◦ 12 340◦ 41 ′ ◦ 14 341◦ 42 ′ ◦ 16 342◦ 42 ′ ◦ 18 343◦ 39 ′ ◦ 20 344◦ 36 ′ ◦ 22 345◦ 30 ′ ◦ 24 346◦ 24 ′ ◦ 26 347◦ 16 ′ ◦ 28 348◦ 06 ′ ◦ 30 348◦ 56 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 348◦ 56 ′ 349◦ 45 ′ 350◦ 32 ′ 351◦ 19 ′ 352◦ 05 ′ 352◦ 50 ′ 353◦ 35 ′ 354◦ 19 ′ 355◦ 03 ′ 355◦ 46 ′ 356◦ 29 ′ 357◦ 12 ′ 357◦ 54 ′ 358◦ 36 ′ 359◦ 18 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.11: Oblique ascensions of the ecliptic for latitude +55◦ . Spherical Astronomy 47 λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 000◦ 27 ′ 000◦ 55 ′ 001◦ 23 ′ 001◦ 50 ′ 002◦ 18 ′ 002◦ 46 ′ 003◦ 15 ′ 003◦ 44 ′ 004◦ 13 ′ 004◦ 43 ′ 005◦ 13 ′ 005◦ 44 ′ 006◦ 15 ′ 006◦ 47 ′ 007◦ 20 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 007◦ 20 ′ 007◦ 54 ′ 008◦ 29 ′ 009◦ 05 ′ 009◦ 42 ′ 010◦ 20 ′ 011◦ 00 ′ 011◦ 41 ′ 012◦ 24 ′ 013◦ 08 ′ 013◦ 55 ′ 014◦ 43 ′ 015◦ 34 ′ 016◦ 28 ′ 017◦ 23 ′ 018◦ 22 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 183◦ 13 ′ 186◦ 26 ′ 189◦ 38 ′ 192◦ 51 ′ 196◦ 05 ′ 199◦ 18 ′ 202◦ 31 ′ 205◦ 45 ′ 208◦ 59 ′ 212◦ 13 ′ 215◦ 28 ′ 218◦ 43 ′ 221◦ 58 ′ 225◦ 13 ′ 228◦ 29 ′ Scorpio λ α ◦ 00 228◦ 29 ′ ◦ 02 231◦ 45 ′ ◦ 04 235◦ 01 ′ ◦ 06 238◦ 18 ′ ◦ 08 241◦ 34 ′ ◦ 10 244◦ 51 ′ ◦ 12 248◦ 08 ′ ◦ 14 251◦ 24 ′ ◦ 16 254◦ 40 ′ ◦ 18 257◦ 56 ′ ◦ 20 261◦ 12 ′ ◦ 22 264◦ 27 ′ ◦ 24 267◦ 41 ′ ◦ 26 270◦ 54 ′ ◦ 28 274◦ 06 ′ ◦ 30 277◦ 16 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 018◦ 22 ′ 019◦ 24 ′ 020◦ 29 ′ 021◦ 38 ′ 022◦ 50 ′ 024◦ 07 ′ 025◦ 27 ′ 026◦ 52 ′ 028◦ 22 ′ 029◦ 57 ′ 031◦ 38 ′ 033◦ 23 ′ 035◦ 14 ′ 037◦ 11 ′ 039◦ 13 ′ 041◦ 21 ′ Sagittarius λ α ◦ 00 277◦ 16 ′ ◦ 02 280◦ 25 ′ ◦ 04 283◦ 32 ′ ◦ 06 286◦ 36 ′ ◦ 08 289◦ 38 ′ ◦ 10 292◦ 37 ′ ◦ 12 295◦ 33 ′ ◦ 14 298◦ 25 ′ ◦ 16 301◦ 13 ′ ◦ 18 303◦ 57 ′ ◦ 20 306◦ 37 ′ ◦ 22 309◦ 12 ′ ◦ 24 311◦ 42 ′ ◦ 26 314◦ 06 ′ ◦ 28 316◦ 26 ′ ◦ 30 318◦ 39 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 041◦ 21 ′ 043◦ 34 ′ 045◦ 54 ′ 048◦ 18 ′ 050◦ 48 ′ 053◦ 23 ′ 056◦ 03 ′ 058◦ 47 ′ 061◦ 35 ′ 064◦ 27 ′ 067◦ 23 ′ 070◦ 22 ′ 073◦ 24 ′ 076◦ 28 ′ 079◦ 35 ′ 082◦ 44 ′ Capricorn λ α ◦ 00 318◦ 39 ′ ◦ 02 320◦ 47 ′ ◦ 04 322◦ 49 ′ ◦ 06 324◦ 46 ′ ◦ 08 326◦ 37 ′ ◦ 10 328◦ 22 ′ ◦ 12 330◦ 03 ′ ◦ 14 331◦ 38 ′ ◦ 16 333◦ 08 ′ ◦ 18 334◦ 33 ′ ◦ 20 335◦ 53 ′ ◦ 22 337◦ 10 ′ ◦ 24 338◦ 22 ′ ◦ 26 339◦ 31 ′ ◦ 28 340◦ 36 ′ ◦ 30 341◦ 38 ′ Leo α 082◦ 44 ′ 085◦ 54 ′ 089◦ 06 ′ 092◦ 19 ′ 095◦ 33 ′ 098◦ 48 ′ 102◦ 04 ′ 105◦ 20 ′ 108◦ 36 ′ 111◦ 52 ′ 115◦ 09 ′ 118◦ 26 ′ 121◦ 42 ′ 124◦ 59 ′ 128◦ 15 ′ 131◦ 31 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 131◦ 31 ′ 134◦ 47 ′ 138◦ 02 ′ 141◦ 17 ′ 144◦ 32 ′ 147◦ 47 ′ 151◦ 01 ′ 154◦ 15 ′ 157◦ 29 ′ 160◦ 42 ′ 163◦ 55 ′ 167◦ 09 ′ 170◦ 22 ′ 173◦ 34 ′ 176◦ 47 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 341◦ 38 ′ ◦ 02 342◦ 37 ′ ◦ 04 343◦ 32 ′ ◦ 06 344◦ 26 ′ ◦ 08 345◦ 17 ′ ◦ 10 346◦ 05 ′ ◦ 12 346◦ 52 ′ ◦ 14 347◦ 36 ′ ◦ 16 348◦ 19 ′ ◦ 18 349◦ 00 ′ ◦ 20 349◦ 40 ′ ◦ 22 350◦ 18 ′ ◦ 24 350◦ 55 ′ ◦ 26 351◦ 31 ′ ◦ 28 352◦ 06 ′ ◦ 30 352◦ 40 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 352◦ 40 ′ 353◦ 13 ′ 353◦ 45 ′ 354◦ 16 ′ 354◦ 47 ′ 355◦ 17 ′ 355◦ 47 ′ 356◦ 16 ′ 356◦ 45 ′ 357◦ 14 ′ 357◦ 42 ′ 358◦ 10 ′ 358◦ 37 ′ 359◦ 05 ′ 359◦ 33 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.12: Oblique ascensions of the ecliptic for latitude +60◦ . 48 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 000◦ 00 ′ 000◦ 08 ′ 000◦ 16 ′ 000◦ 23 ′ 000◦ 31 ′ 000◦ 39 ′ 000◦ 47 ′ 000◦ 55 ′ 001◦ 04 ′ 001◦ 12 ′ 001◦ 21 ′ 001◦ 29 ′ 001◦ 38 ′ 001◦ 48 ′ 001◦ 57 ′ 002◦ 07 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus α 002◦ 07 ′ 002◦ 17 ′ 002◦ 28 ′ 002◦ 39 ′ 002◦ 51 ′ 003◦ 03 ′ 003◦ 16 ′ 003◦ 29 ′ 003◦ 44 ′ 003◦ 59 ′ 004◦ 15 ′ 004◦ 32 ′ 004◦ 51 ′ 005◦ 11 ′ 005◦ 33 ′ 005◦ 56 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 183◦ 32 ′ 187◦ 05 ′ 190◦ 38 ′ 194◦ 10 ′ 197◦ 44 ′ 201◦ 17 ′ 204◦ 51 ′ 208◦ 25 ′ 212◦ 00 ′ 215◦ 35 ′ 219◦ 11 ′ 222◦ 48 ′ 226◦ 25 ′ 230◦ 03 ′ 233◦ 42 ′ Scorpio λ α ◦ 00 233◦ 42 ′ ◦ 02 237◦ 22 ′ ◦ 04 241◦ 02 ′ ◦ 06 244◦ 43 ′ ◦ 08 248◦ 25 ′ ◦ 10 252◦ 08 ′ ◦ 12 255◦ 52 ′ ◦ 14 259◦ 36 ′ ◦ 16 263◦ 21 ′ ◦ 18 267◦ 06 ′ ◦ 20 270◦ 52 ′ ◦ 22 274◦ 38 ′ ◦ 24 278◦ 24 ′ ◦ 26 282◦ 10 ′ ◦ 28 285◦ 56 ′ ◦ 30 289◦ 42 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini α 005◦ 56 ′ 006◦ 22 ′ 006◦ 51 ′ 007◦ 22 ′ 007◦ 57 ′ 008◦ 36 ′ 009◦ 19 ′ 010◦ 07 ′ 011◦ 02 ′ 012◦ 04 ′ 013◦ 14 ′ 014◦ 33 ′ 016◦ 02 ′ 017◦ 42 ′ 019◦ 34 ′ 021◦ 39 ′ Sagittarius λ α ◦ 00 289◦ 42 ′ ◦ 02 293◦ 27 ′ ◦ 04 297◦ 10 ′ ◦ 06 300◦ 52 ′ ◦ 08 304◦ 31 ′ ◦ 10 308◦ 08 ′ ◦ 12 311◦ 41 ′ ◦ 14 315◦ 10 ′ ◦ 16 318◦ 34 ′ ◦ 18 321◦ 51 ′ ◦ 20 325◦ 01 ′ ◦ 22 328◦ 02 ′ ◦ 24 330◦ 54 ′ ◦ 26 333◦ 35 ′ ◦ 28 336◦ 04 ′ ◦ 30 338◦ 21 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer α 021◦ 39 ′ 023◦ 56 ′ 026◦ 25 ′ 029◦ 06 ′ 031◦ 58 ′ 034◦ 59 ′ 038◦ 09 ′ 041◦ 26 ′ 044◦ 50 ′ 048◦ 19 ′ 051◦ 52 ′ 055◦ 29 ′ 059◦ 08 ′ 062◦ 50 ′ 066◦ 33 ′ 070◦ 18 ′ Capricorn λ α ◦ 00 338◦ 21 ′ ◦ 02 340◦ 26 ′ ◦ 04 342◦ 18 ′ ◦ 06 343◦ 58 ′ ◦ 08 345◦ 27 ′ ◦ 10 346◦ 46 ′ ◦ 12 347◦ 56 ′ ◦ 14 348◦ 58 ′ ◦ 16 349◦ 53 ′ ◦ 18 350◦ 41 ′ ◦ 20 351◦ 24 ′ ◦ 22 352◦ 03 ′ ◦ 24 352◦ 38 ′ ◦ 26 353◦ 09 ′ ◦ 28 353◦ 38 ′ ◦ 30 354◦ 04 ′ Leo α 070◦ 18 ′ 074◦ 04 ′ 077◦ 50 ′ 081◦ 36 ′ 085◦ 22 ′ 089◦ 08 ′ 092◦ 54 ′ 096◦ 39 ′ 100◦ 24 ′ 104◦ 08 ′ 107◦ 52 ′ 111◦ 35 ′ 115◦ 17 ′ 118◦ 58 ′ 122◦ 38 ′ 126◦ 18 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 126◦ 18 ′ 129◦ 57 ′ 133◦ 35 ′ 137◦ 12 ′ 140◦ 49 ′ 144◦ 25 ′ 148◦ 00 ′ 151◦ 35 ′ 155◦ 09 ′ 158◦ 43 ′ 162◦ 16 ′ 165◦ 50 ′ 169◦ 22 ′ 172◦ 55 ′ 176◦ 28 ′ 180◦ 00 ′ Aquarius λ α ◦ 00 354◦ 04 ′ ◦ 02 354◦ 27 ′ ◦ 04 354◦ 49 ′ ◦ 06 355◦ 09 ′ ◦ 08 355◦ 28 ′ ◦ 10 355◦ 45 ′ ◦ 12 356◦ 01 ′ ◦ 14 356◦ 16 ′ ◦ 16 356◦ 31 ′ ◦ 18 356◦ 44 ′ ◦ 20 356◦ 57 ′ ◦ 22 357◦ 09 ′ ◦ 24 357◦ 21 ′ ◦ 26 357◦ 32 ′ ◦ 28 357◦ 43 ′ ◦ 30 357◦ 53 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 357◦ 53 ′ 358◦ 03 ′ 358◦ 12 ′ 358◦ 22 ′ 358◦ 31 ′ 358◦ 39 ′ 358◦ 48 ′ 358◦ 56 ′ 359◦ 05 ′ 359◦ 13 ′ 359◦ 21 ′ 359◦ 29 ′ 359◦ 37 ′ 359◦ 44 ′ 359◦ 52 ′ 360◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 2.13: Oblique ascensions of the ecliptic for latitude +65◦ . Spherical Astronomy 49 λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 360◦ 00 ′ 359◦ 39 ′ 359◦ 18 ′ 358◦ 57 ′ 358◦ 35 ′ 358◦ 14 ′ 357◦ 52 ′ 357◦ 29 ′ 357◦ 06 ′ 356◦ 43 ′ 356◦ 18 ′ 355◦ 53 ′ 355◦ 27 ′ 355◦ 00 ′ 354◦ 32 ′ 354◦ 02 ′ Taurus λ α 00◦ 354◦ 02 ′ 02◦ 353◦ 30 ′ ◦ 04 352◦ 57 ′ ◦ 06 352◦ 21 ′ ◦ 08 351◦ 42 ′ ◦ 10 351◦ 00 ′ ◦ 12 350◦ 14 ′ ◦ 14 349◦ 23 ′ ◦ 16 348◦ 26 ′ ◦ 18 347◦ 20 ′ ◦ 20 346◦ 04 ′ ◦ 22 344◦ 32 ′ ◦ 24 342◦ 37 ′ ◦ 26 340◦ 03 ′ ◦ 28 335◦ 55 ′ ◦ ′ 29 19 327◦ 07 ′ Gemini λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Cancer λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — λ 00◦ 41 ′ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Leo α 032◦ 54 ′ 044◦ 26 ′ 052◦ 41 ′ 059◦ 22 ′ 065◦ 22 ′ 070◦ 57 ′ 076◦ 15 ′ 081◦ 21 ′ 086◦ 18 ′ 091◦ 07 ′ 095◦ 49 ′ 100◦ 26 ′ 104◦ 58 ′ 109◦ 27 ′ 113◦ 51 ′ 118◦ 13 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 118◦ 13 ′ 122◦ 31 ′ 126◦ 47 ′ 131◦ 01 ′ 135◦ 13 ′ 139◦ 22 ′ 143◦ 31 ′ 147◦ 37 ′ 151◦ 43 ′ 155◦ 47 ′ 159◦ 51 ′ 163◦ 54 ′ 167◦ 56 ′ 171◦ 57 ′ 175◦ 59 ′ 180◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 184◦ 01 ′ 188◦ 03 ′ 192◦ 04 ′ 196◦ 06 ′ 200◦ 09 ′ 204◦ 13 ′ 208◦ 17 ′ 212◦ 23 ′ 216◦ 29 ′ 220◦ 38 ′ 224◦ 47 ′ 228◦ 59 ′ 233◦ 13 ′ 237◦ 29 ′ 241◦ 47 ′ Scorpio λ α ◦ 00 241◦ 47 ′ ◦ 02 246◦ 09 ′ ◦ 04 250◦ 33 ′ ◦ 06 255◦ 02 ′ ◦ 08 259◦ 34 ′ ◦ 10 264◦ 11 ′ ◦ 12 268◦ 53 ′ ◦ 14 273◦ 42 ′ ◦ 16 278◦ 39 ′ ◦ 18 283◦ 45 ′ ◦ 20 289◦ 03 ′ ◦ 22 294◦ 38 ′ ◦ 24 300◦ 38 ′ ◦ 26 307◦ 19 ′ ◦ 28 315◦ 34 ′ ◦ ′ 29 19 327◦ 07 ′ Sagittarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Capricorn λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Aquarius λ α ◦ ′ 00 41 032◦ 52 ′ ◦ 02 024◦ 05 ′ ◦ 04 019◦ 57 ′ ◦ 06 017◦ 23 ′ ◦ 08 015◦ 28 ′ ◦ 10 013◦ 56 ′ ◦ 12 012◦ 40 ′ ◦ 14 011◦ 34 ′ ◦ 16 010◦ 37 ′ ◦ 18 009◦ 46 ′ ◦ 20 009◦ 00 ′ ◦ 22 008◦ 18 ′ ◦ 24 007◦ 39 ′ ◦ 26 007◦ 03 ′ ◦ 28 006◦ 30 ′ ◦ 30 005◦ 58 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 005◦ 58 ′ 005◦ 28 ′ 005◦ 00 ′ 004◦ 33 ′ 004◦ 07 ′ 003◦ 42 ′ 003◦ 17 ′ 002◦ 54 ′ 002◦ 31 ′ 002◦ 08 ′ 001◦ 46 ′ 001◦ 25 ′ 001◦ 03 ′ 000◦ 42 ′ 000◦ 21 ′ 000◦ 00 ′ Table 2.14: Oblique ascensions of the ecliptic for latitude +70◦ . 50 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries α 360◦ 00 ′ 358◦ 52 ′ 357◦ 44 ′ 356◦ 35 ′ 355◦ 25 ′ 354◦ 13 ′ 353◦ 00 ′ 351◦ 44 ′ 350◦ 26 ′ 349◦ 05 ′ 347◦ 39 ′ 346◦ 08 ′ 344◦ 30 ′ 342◦ 45 ′ 340◦ 50 ′ 338◦ 42 ′ Taurus λ α 00◦ 338◦ 42 ′ 02◦ 336◦ 16 ′ ◦ 04 333◦ 24 ′ ◦ 06 329◦ 54 ′ ◦ 08 325◦ 10 ′ ◦ 10 316◦ 55 ′ ◦ ′ 11 36 308◦ 12 ′ ◦ 14 — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Gemini λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Cancer λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 19◦ 24 ′ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Leo α — — — — — — — — — 051◦ 50 ′ 061◦ 44 ′ 073◦ 54 ′ 082◦ 31 ′ 089◦ 54 ′ 096◦ 36 ′ 102◦ 52 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo α 102◦ 52 ′ 108◦ 49 ′ 114◦ 32 ′ 120◦ 04 ′ 125◦ 27 ′ 130◦ 43 ′ 135◦ 52 ′ 140◦ 57 ′ 145◦ 58 ′ 150◦ 56 ′ 155◦ 50 ′ 160◦ 43 ′ 165◦ 34 ′ 170◦ 23 ′ 175◦ 12 ′ 180◦ 00 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra α 180◦ 00 ′ 184◦ 48 ′ 189◦ 37 ′ 194◦ 26 ′ 199◦ 17 ′ 204◦ 10 ′ 209◦ 04 ′ 214◦ 02 ′ 219◦ 03 ′ 224◦ 08 ′ 229◦ 17 ′ 234◦ 33 ′ 239◦ 56 ′ 245◦ 28 ′ 251◦ 11 ′ 257◦ 08 ′ Scorpio λ α ◦ 00 257◦ 08 ′ ◦ 02 263◦ 24 ′ ◦ 04 270◦ 06 ′ ◦ 06 277◦ 29 ′ ◦ 08 286◦ 06 ′ ◦ 10 298◦ 16 ′ ◦ ′ 11 36 308◦ 12 ′ ◦ 14 — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Sagittarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Capricorn λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Aquarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 19◦ 24 ′ 051◦ 50 ′ 20◦ 043◦ 05 ′ ◦ 22 034◦ 50 ′ ◦ 24 030◦ 06 ′ ◦ 26 026◦ 36 ′ ◦ 28 023◦ 44 ′ ◦ 30 021◦ 18 ′ λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces α 021◦ 18 ′ 019◦ 10 ′ 017◦ 15 ′ 015◦ 30 ′ 013◦ 52 ′ 012◦ 21 ′ 010◦ 55 ′ 009◦ 34 ′ 008◦ 16 ′ 007◦ 00 ′ 005◦ 47 ′ 004◦ 35 ′ 003◦ 25 ′ 002◦ 16 ′ 001◦ 08 ′ 000◦ 00 ′ Table 2.15: Oblique ascensions of the ecliptic for latitude +75◦ . Spherical Astronomy 51 Aries λ α 00◦ 360◦ 00 ′ 02◦ 357◦ 19 ′ ◦ 04 354◦ 37 ′ ◦ 06 351◦ 52 ′ ◦ 08 349◦ 02 ′ ◦ 10 346◦ 04 ′ ◦ 12 342◦ 58 ′ ◦ 14 339◦ 39 ′ ◦ 16 336◦ 02 ′ ◦ 18 331◦ 59 ′ ◦ 20 327◦ 20 ′ ◦ 22 321◦ 39 ′ ◦ 24 313◦ 51 ′ ◦ ′ 25 53 294◦ 01 ′ ◦ 28 — 30◦ — Taurus λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Gemini λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Cancer λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Leo λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Virgo λ α 00◦ — 02◦ — 04◦ 07 ′ 066◦ 01 ′ 06◦ 089◦ 25 ′ ◦ 08 100◦ 58 ′ ◦ 10 110◦ 24 ′ ◦ 12 118◦ 47 ′ ◦ 14 126◦ 33 ′ ◦ 16 133◦ 52 ′ ◦ 18 140◦ 54 ′ ◦ 20 147◦ 42 ′ ◦ 22 154◦ 20 ′ ◦ 24 160◦ 51 ′ ◦ 26 167◦ 16 ′ ◦ 28 173◦ 39 ′ ◦ 30 180◦ 00 ′ Libra λ α ◦ 00 180◦ 00 ′ ◦ 02 186◦ 21 ′ ◦ 04 192◦ 44 ′ ◦ 06 199◦ 09 ′ ◦ 08 205◦ 40 ′ ◦ 10 212◦ 18 ′ ◦ 12 219◦ 06 ′ ◦ 14 226◦ 08 ′ ◦ 16 233◦ 27 ′ ◦ 18 241◦ 13 ′ ◦ 20 249◦ 36 ′ ◦ 22 259◦ 02 ′ ◦ 24 270◦ 35 ′ ◦ ′ 25 53 294◦ 01 ′ ◦ 28 — 30◦ — Scorpio λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Sagittarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Capricorn λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Aquarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Pisces λ α ◦ 00 — 02◦ — 04◦ 07 ′ 066◦ 01 ′ 06◦ 046◦ 09 ′ ◦ 08 038◦ 21 ′ ◦ 10 032◦ 40 ′ ◦ 12 028◦ 01 ′ ◦ 14 023◦ 58 ′ ◦ 16 020◦ 21 ′ ◦ 18 017◦ 02 ′ ◦ 20 013◦ 56 ′ ◦ 22 010◦ 58 ′ ◦ 24 008◦ 08 ′ ◦ 26 005◦ 23 ′ ◦ 28 002◦ 41 ′ ◦ 30 000◦ 00 ′ Table 2.16: Oblique ascensions of the ecliptic for latitude +80◦ . 52 MODERN ALMAGEST Aries λ α 00◦ 360◦ 00 ′ 02◦ 352◦ 42 ′ ◦ 04 345◦ 11 ′ ◦ 06 337◦ 07 ′ ◦ 08 328◦ 02 ′ ◦ 10 316◦ 53 ′ ◦ 12 299◦ 32 ′ ◦ ′ 12 40 281◦ 40 ′ ◦ 16 — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Taurus λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Gemini λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Cancer λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Leo λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Virgo λ α 00◦ — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 17◦ 20 ′ 078◦ 23 ′ 18◦ 097◦ 28 ′ ◦ 20 118◦ 31 ′ ◦ 22 133◦ 20 ′ ◦ 24 146◦ 06 ′ ◦ 26 157◦ 50 ′ ◦ 28 169◦ 02 ′ ◦ 30 180◦ 00 ′ Libra λ α ◦ 00 180◦ 00 ′ ◦ 02 190◦ 58 ′ ◦ 04 202◦ 10 ′ ◦ 06 213◦ 54 ′ ◦ 08 226◦ 40 ′ ◦ 10 241◦ 29 ′ ◦ 12 262◦ 32 ′ ◦ ′ 12 40 281◦ 40 ′ ◦ 16 — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Scorpio λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Sagittarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Capricorn λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Aquarius λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 16◦ — 18◦ — 20◦ — 22◦ — 24◦ — 26◦ — 28◦ — 30◦ — Pisces λ α ◦ 00 — 02◦ — 04◦ — 06◦ — 08◦ — 10◦ — 12◦ — 14◦ — 17◦ 20 ′ 078◦ 23 ′ 18◦ 060◦ 28 ′ ◦ 20 043◦ 07 ′ ◦ 22 031◦ 58 ′ ◦ 24 022◦ 53 ′ ◦ 26 014◦ 49 ′ ◦ 28 007◦ 18 ′ ◦ 30 000◦ 00 ′ Table 2.17: Oblique ascensions of the ecliptic for latitude +85◦ . Spherical Astronomy 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 Aries 90◦ 00 ′ 314◦ 53 ′ 75◦ 00 ′ 156◦ 34 ′ 60◦ 00 ′ 156◦ 34 ′ 45◦ 00 ′ 156◦ 34 ′ 30◦ 00 ′ 156◦ 34 ′ 15◦ 00 ′ 156◦ 34 ′ 00◦ 00 ′ 156◦ 34 ′ Taurus 78◦ 32 ′ 249◦ 26 ′ 71◦ 12 ′ 196◦ 00 ′ 58◦ 04 ′ 178◦ 26 ′ 43◦ 52 ′ 170◦ 40 ′ 29◦ 20 ′ 165◦ 58 ′ 14◦ 42 ′ 162◦ 29 ′ 00◦ 00 ′ 159◦ 26 ′ Gemini 69◦ 51 ′ 257◦ 46 ′ 65◦ 04 ′ 219◦ 53 ′ 54◦ 24 ′ 198◦ 35 ′ 41◦ 36 ′ 186◦ 47 ′ 28◦ 00 ′ 179◦ 01 ′ 14◦ 04 ′ 173◦ 03 ′ 00◦ 00 ′ 167◦ 46 ′ Cancer 69◦ 51 ′ 282◦ 14 ′ 65◦ 04 ′ 244◦ 21 ′ 54◦ 24 ′ 223◦ 03 ′ 41◦ 36 ′ 211◦ 14 ′ 28◦ 00 ′ 203◦ 28 ′ 14◦ 04 ′ 197◦ 30 ′ 00◦ 00 ′ 192◦ 14 ′ 00◦ 00 ′ 192◦ 14 ′ Leo 69◦ 51 ′ 282◦ 14 ′ 65◦ 04 ′ 244◦ 21 ′ 54◦ 24 ′ 223◦ 03 ′ 41◦ 36 ′ 211◦ 14 ′ 28◦ 00 ′ 203◦ 28 ′ 14◦ 04 ′ 197◦ 30 ′ 00◦ 00 ′ 192◦ 14 ′ Virgo 78◦ 32 ′ 290◦ 34 ′ 71◦ 12 ′ 237◦ 09 ′ 58◦ 04 ′ 219◦ 35 ′ 43◦ 52 ′ 211◦ 49 ′ 29◦ 20 ′ 207◦ 07 ′ 14◦ 42 ′ 203◦ 37 ′ 00◦ 00 ′ 200◦ 34 ′ 53 178◦ 15 ′ 336◦ 34 ′ 336◦ 34 ′ 336◦ 34 ′ 336◦ 34 ′ 336◦ 34 ′ 336◦ 34 ′ 249◦ 26 ′ 302◦ 51 ′ 320◦ 25 ′ 328◦ 11 ′ 332◦ 53 ′ 336◦ 23 ′ 339◦ 26 ′ 257◦ 46 ′ 295◦ 39 ′ 316◦ 57 ′ 328◦ 46 ′ 336◦ 32 ′ 342◦ 30 ′ 347◦ 46 ′ 282◦ 14 ′ 320◦ 07 ′ 341◦ 25 ′ 353◦ 13 ′ 000◦ 59 ′ 006◦ 57 ′ 012◦ 14 ′ 012◦ 14 ′ 282◦ 14 ′ 320◦ 07 ′ 341◦ 25 ′ 353◦ 13 ′ 000◦ 59 ′ 006◦ 57 ′ 012◦ 14 ′ 290◦ 34 ′ 344◦ 00 ′ 001◦ 34 ′ 009◦ 20 ′ 014◦ 02 ′ 017◦ 31 ′ 020◦ 34 ′ 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 Libra 90◦ 00 ′ 045◦ 07 ′ 75◦ 00 ′ 203◦ 26 ′ 60◦ 00 ′ 203◦ 26 ′ 45◦ 00 ′ 203◦ 26 ′ 30◦ 00 ′ 203◦ 26 ′ 15◦ 00 ′ 203◦ 26 ′ 00◦ 00 ′ 203◦ 26 ′ Scorpio 78◦ 32 ′ 110◦ 34 ′ 71◦ 12 ′ 164◦ 00 ′ 58◦ 04 ′ 181◦ 34 ′ 43◦ 52 ′ 189◦ 20 ′ 29◦ 20 ′ 194◦ 02 ′ 14◦ 42 ′ 197◦ 31 ′ 00◦ 00 ′ 200◦ 34 ′ Sagittarius 69◦ 51 ′ 102◦ 14 ′ 65◦ 04 ′ 140◦ 07 ′ 54◦ 24 ′ 161◦ 25 ′ 41◦ 36 ′ 173◦ 13 ′ 28◦ 00 ′ 180◦ 59 ′ 14◦ 04 ′ 186◦ 57 ′ 00◦ 00 ′ 192◦ 14 ′ Capricorn 66◦ 34 ′ 090◦ 00 ′ 62◦ 24 ′ 123◦ 58 ′ 52◦ 37 ′ 145◦ 26 ′ 40◦ 27 ′ 158◦ 19 ′ 27◦ 18 ′ 167◦ 04 ′ 13◦ 44 ′ 173◦ 55 ′ 00◦ 00 ′ 180◦ 00 ′ Aquarius 69◦ 51 ′ 077◦ 46 ′ 65◦ 04 ′ 115◦ 39 ′ 54◦ 24 ′ 136◦ 57 ′ 41◦ 36 ′ 148◦ 46 ′ 28◦ 00 ′ 156◦ 32 ′ 14◦ 04 ′ 162◦ 30 ′ 00◦ 00 ′ 167◦ 46 ′ Pisces 78◦ 32 ′ 069◦ 26 ′ 71◦ 12 ′ 122◦ 51 ′ 58◦ 04 ′ 140◦ 25 ′ 43◦ 52 ′ 148◦ 11 ′ 29◦ 20 ′ 152◦ 53 ′ 14◦ 42 ′ 156◦ 23 ′ 00◦ 00 ′ 159◦ 26 ′ 181◦ 45 ′ 023◦ 26 ′ 023◦ 26 ′ 023◦ 26 ′ 023◦ 26 ′ 023◦ 26 ′ 023◦ 26 ′ 110◦ 34 ′ 057◦ 09 ′ 039◦ 35 ′ 031◦ 49 ′ 027◦ 07 ′ 023◦ 37 ′ 020◦ 34 ′ 102◦ 14 ′ 064◦ 21 ′ 043◦ 03 ′ 031◦ 14 ′ 023◦ 28 ′ 017◦ 30 ′ 012◦ 14 ′ 090◦ 00 ′ 056◦ 02 ′ 034◦ 34 ′ 021◦ 41 ′ 012◦ 56 ′ 006◦ 05 ′ 360◦ 00 ′ 077◦ 46 ′ 039◦ 53 ′ 018◦ 35 ′ 006◦ 47 ′ 359◦ 01 ′ 353◦ 03 ′ 347◦ 46 ′ 069◦ 26 ′ 016◦ 00 ′ 358◦ 26 ′ 350◦ 40 ′ 345◦ 58 ′ 342◦ 29 ′ 339◦ 26 ′ Table 2.18: Ecliptic altitude and parallactic angle for latitude 0◦ . 54 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:08 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:14 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:17 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:14 00:00 01:00 02:00 03:00 04:00 05:00 MODERN ALMAGEST Aries 80◦ 00 ′ 066◦ 34 ′ 72◦ 02 ′ 122◦ 18 ′ 58◦ 32 ′ 137◦ 08 ′ 44◦ 08 ′ 142◦ 34 ′ 29◦ 30 ′ 145◦ 03 ′ 14◦ 46 ′ 146◦ 13 ′ 00◦ 00 ′ 146◦ 34 ′ Taurus 88◦ 32 ′ 249◦ 26 ′ 75◦ 11 ′ 163◦ 41 ′ 60◦ 30 ′ 159◦ 21 ′ 45◦ 48 ′ 156◦ 49 ′ 31◦ 08 ′ 154◦ 35 ′ 16◦ 31 ′ 152◦ 16 ′ 01◦ 59 ′ 149◦ 37 ′ 00◦ 00 ′ 149◦ 13 ′ Gemini 79◦ 51 ′ 257◦ 46 ′ 72◦ 20 ′ 200◦ 37 ′ 59◦ 22 ′ 182◦ 38 ′ 45◦ 32 ′ 174◦ 04 ′ 31◦ 28 ′ 168◦ 13 ′ 17◦ 24 ′ 163◦ 15 ′ 03◦ 26 ′ 158◦ 22 ′ 00◦ 00 ′ 157◦ 07 ′ Cancer 76◦ 34 ′ 270◦ 00 ′ 70◦ 22 ′ 220◦ 40 ′ 58◦ 23 ′ 200◦ 04 ′ 45◦ 04 ′ 189◦ 35 ′ 31◦ 23 ′ 182◦ 27 ′ 17◦ 38 ′ 176◦ 31 ′ 03◦ 58 ′ 170◦ 49 ′ 00◦ 00 ′ 169◦ 05 ′ Leo 79◦ 51 ′ 282◦ 14 ′ 72◦ 20 ′ 225◦ 05 ′ 59◦ 22 ′ 207◦ 06 ′ 45◦ 32 ′ 198◦ 31 ′ 31◦ 28 ′ 192◦ 40 ′ 17◦ 24 ′ 187◦ 42 ′ 03◦ 26 ′ 182◦ 50 ′ 00◦ 00 ′ 181◦ 34 ′ Virgo 88◦ 32 ′ 290◦ 34 ′ 75◦ 11 ′ 204◦ 50 ′ 60◦ 30 ′ 200◦ 30 ′ 45◦ 48 ′ 197◦ 58 ′ 31◦ 08 ′ 195◦ 44 ′ 16◦ 31 ′ 193◦ 25 ′ 066◦ 34 ′ 010◦ 50 ′ 356◦ 00 ′ 350◦ 34 ′ 348◦ 05 ′ 346◦ 55 ′ 346◦ 34 ′ 249◦ 26 ′ 335◦ 10 ′ 339◦ 30 ′ 342◦ 02 ′ 344◦ 16 ′ 346◦ 35 ′ 349◦ 14 ′ 349◦ 38 ′ 257◦ 46 ′ 314◦ 55 ′ 332◦ 54 ′ 341◦ 29 ′ 347◦ 20 ′ 352◦ 18 ′ 357◦ 10 ′ 358◦ 26 ′ 270◦ 00 ′ 319◦ 20 ′ 339◦ 56 ′ 350◦ 25 ′ 357◦ 33 ′ 003◦ 29 ′ 009◦ 11 ′ 010◦ 55 ′ 282◦ 14 ′ 339◦ 23 ′ 357◦ 22 ′ 005◦ 56 ′ 011◦ 47 ′ 016◦ 45 ′ 021◦ 38 ′ 022◦ 53 ′ 290◦ 34 ′ 016◦ 19 ′ 020◦ 39 ′ 023◦ 11 ′ 025◦ 25 ′ 027◦ 44 ′ 06:00 06:08 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 05:51 00:00 01:00 02:00 03:00 04:00 05:00 05:45 00:00 01:00 02:00 03:00 04:00 05:00 05:42 00:00 01:00 02:00 03:00 04:00 05:00 05:45 00:00 01:00 02:00 03:00 04:00 05:00 05:51 01◦ 59 ′ 00◦ 00 ′ 190◦ 46 ′ 190◦ 22 ′ Libra 80◦ 00 ′ 113◦ 26 ′ 72◦ 02 ′ 169◦ 10 ′ 58◦ 32 ′ 184◦ 00 ′ 44◦ 08 ′ 189◦ 26 ′ 29◦ 30 ′ 191◦ 55 ′ 14◦ 46 ′ 193◦ 05 ′ 00◦ 00 ′ 193◦ 26 ′ Scorpio 68◦ 32 ′ 110◦ 34 ′ 63◦ 52 ′ 145◦ 55 ′ 53◦ 15 ′ 165◦ 58 ′ 40◦ 23 ′ 176◦ 40 ′ 26◦ 37 ′ 183◦ 07 ′ 12◦ 26 ′ 187◦ 30 ′ 00◦ 00 ′ 190◦ 22 ′ Sagittarius 59◦ 51 ′ 102◦ 14 ′ 56◦ 26 ′ 129◦ 41 ′ 47◦ 48 ′ 149◦ 23 ′ 36◦ 26 ′ 162◦ 11 ′ 23◦ 44 ′ 170◦ 55 ′ 10◦ 20 ′ 177◦ 27 ′ 00◦ 00 ′ 181◦ 34 ′ Capricorn 56◦ 34 ′ 090◦ 00 ′ 53◦ 29 ′ 115◦ 22 ′ 45◦ 31 ′ 134◦ 39 ′ 34◦ 44 ′ 147◦ 56 ′ 22◦ 30 ′ 157◦ 24 ′ 09◦ 29 ′ 164◦ 40 ′ 00◦ 00 ′ 169◦ 05 ′ Aquarius 59◦ 51 ′ 077◦ 46 ′ 56◦ 26 ′ 105◦ 13 ′ 47◦ 48 ′ 124◦ 55 ′ 36◦ 26 ′ 137◦ 43 ′ 23◦ 44 ′ 146◦ 28 ′ 10◦ 20 ′ 153◦ 00 ′ 00◦ 00 ′ 157◦ 07 ′ Pisces 68◦ 32 ′ 069◦ 26 ′ 63◦ 52 ′ 104◦ 47 ′ 53◦ 15 ′ 124◦ 49 ′ 40◦ 23 ′ 135◦ 31 ′ 26◦ 37 ′ 141◦ 59 ′ 12◦ 26 ′ 146◦ 21 ′ 00◦ 00 ′ 149◦ 13 ′ 030◦ 23 ′ 030◦ 47 ′ 113◦ 26 ′ 057◦ 42 ′ 042◦ 52 ′ 037◦ 26 ′ 034◦ 57 ′ 033◦ 47 ′ 033◦ 26 ′ 110◦ 34 ′ 075◦ 13 ′ 055◦ 11 ′ 044◦ 29 ′ 038◦ 01 ′ 033◦ 39 ′ 030◦ 47 ′ 102◦ 14 ′ 074◦ 47 ′ 055◦ 05 ′ 042◦ 17 ′ 033◦ 32 ′ 027◦ 00 ′ 022◦ 53 ′ 090◦ 00 ′ 064◦ 38 ′ 045◦ 21 ′ 032◦ 04 ′ 022◦ 36 ′ 015◦ 20 ′ 010◦ 55 ′ 077◦ 46 ′ 050◦ 19 ′ 030◦ 37 ′ 017◦ 49 ′ 009◦ 05 ′ 002◦ 33 ′ 358◦ 26 ′ 069◦ 26 ′ 034◦ 05 ′ 014◦ 02 ′ 003◦ 20 ′ 356◦ 53 ′ 352◦ 30 ′ 349◦ 38 ′ Table 2.19: Ecliptic altitude and parallactic angle for latitude +10◦ . Spherical Astronomy 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:16 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:30 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:36 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:30 00:00 01:00 02:00 03:00 04:00 05:00 Aries 70◦ 00 ′ 066◦ 34 ′ 65◦ 11 ′ 101◦ 59 ′ 54◦ 28 ′ 120◦ 31 ′ 41◦ 38 ′ 129◦ 20 ′ 28◦ 01 ′ 133◦ 46 ′ 14◦ 05 ′ 135◦ 55 ′ 00◦ 00 ′ 136◦ 34 ′ Taurus 81◦ 28 ′ 069◦ 26 ′ 73◦ 15 ′ 126◦ 58 ′ 59◦ 57 ′ 139◦ 10 ′ 45◦ 59 ′ 142◦ 26 ′ 31◦ 54 ′ 142◦ 53 ′ 17◦ 50 ′ 141◦ 53 ′ 03◦ 54 ′ 139◦ 48 ′ 00◦ 00 ′ 139◦ 00 ′ Gemini 89◦ 51 ′ 257◦ 46 ′ 75◦ 55 ′ 165◦ 46 ′ 61◦ 52 ′ 162◦ 48 ′ 47◦ 52 ′ 159◦ 52 ′ 33◦ 59 ′ 156◦ 42 ′ 20◦ 15 ′ 153◦ 07 ′ 06◦ 46 ′ 148◦ 54 ′ 00◦ 00 ′ 146◦ 24 ′ Cancer 86◦ 34 ′ 270◦ 00 ′ 75◦ 39 ′ 190◦ 58 ′ 61◦ 58 ′ 181◦ 12 ′ 48◦ 13 ′ 175◦ 44 ′ 34◦ 33 ′ 171◦ 08 ′ 21◦ 03 ′ 166◦ 33 ′ 07◦ 49 ′ 161◦ 32 ′ 00◦ 00 ′ 158◦ 07 ′ Leo 89◦ 51 ′ 282◦ 14 ′ 75◦ 55 ′ 190◦ 14 ′ 61◦ 52 ′ 187◦ 16 ′ 47◦ 52 ′ 184◦ 19 ′ 33◦ 59 ′ 181◦ 09 ′ 20◦ 15 ′ 177◦ 34 ′ 06◦ 46 ′ 173◦ 22 ′ 00◦ 00 ′ 170◦ 52 ′ Virgo 81◦ 28 ′ 110◦ 34 ′ 73◦ 15 ′ 168◦ 07 ′ 59◦ 57 ′ 180◦ 19 ′ 45◦ 59 ′ 183◦ 35 ′ 31◦ 54 ′ 184◦ 02 ′ 17◦ 50 ′ 183◦ 02 ′ 55 066◦ 34 ′ 031◦ 09 ′ 012◦ 37 ′ 003◦ 48 ′ 359◦ 22 ′ 357◦ 13 ′ 356◦ 34 ′ 069◦ 26 ′ 011◦ 53 ′ 359◦ 41 ′ 356◦ 25 ′ 355◦ 58 ′ 356◦ 58 ′ 359◦ 03 ′ 359◦ 51 ′ 257◦ 46 ′ 349◦ 46 ′ 352◦ 44 ′ 355◦ 41 ′ 358◦ 51 ′ 002◦ 26 ′ 006◦ 38 ′ 009◦ 08 ′ 270◦ 00 ′ 349◦ 02 ′ 358◦ 48 ′ 004◦ 16 ′ 008◦ 52 ′ 013◦ 27 ′ 018◦ 28 ′ 021◦ 53 ′ 282◦ 14 ′ 014◦ 14 ′ 017◦ 12 ′ 020◦ 08 ′ 023◦ 18 ′ 026◦ 53 ′ 031◦ 06 ′ 033◦ 36 ′ 110◦ 34 ′ 053◦ 02 ′ 040◦ 50 ′ 037◦ 34 ′ 037◦ 07 ′ 038◦ 07 ′ 06:00 06:16 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 05:43 00:00 01:00 02:00 03:00 04:00 05:00 05:29 00:00 01:00 02:00 03:00 04:00 05:00 05:23 00:00 01:00 02:00 03:00 04:00 05:00 05:29 00:00 01:00 02:00 03:00 04:00 05:00 05:43 03◦ 54 ′ 00◦ 00 ′ 180◦ 57 ′ 180◦ 09 ′ Libra 70◦ 00 ′ 113◦ 26 ′ 65◦ 11 ′ 148◦ 51 ′ 54◦ 28 ′ 167◦ 23 ′ 41◦ 38 ′ 176◦ 12 ′ 28◦ 01 ′ 180◦ 38 ′ 14◦ 05 ′ 182◦ 47 ′ 00◦ 00 ′ 183◦ 26 ′ Scorpio 58◦ 32 ′ 110◦ 34 ′ 55◦ 14 ′ 135◦ 49 ′ 46◦ 51 ′ 153◦ 58 ′ 35◦ 41 ′ 165◦ 27 ′ 23◦ 06 ′ 172◦ 48 ′ 09◦ 48 ′ 177◦ 40 ′ 00◦ 00 ′ 180◦ 09 ′ Sagittarius 49◦ 51 ′ 102◦ 14 ′ 47◦ 15 ′ 123◦ 13 ′ 40◦ 15 ′ 140◦ 14 ′ 30◦ 24 ′ 152◦ 37 ′ 18◦ 52 ′ 161◦ 33 ′ 06◦ 21 ′ 168◦ 11 ′ 00◦ 00 ′ 170◦ 52 ′ Capricorn 46◦ 34 ′ 090◦ 00 ′ 44◦ 10 ′ 109◦ 49 ′ 37◦ 38 ′ 126◦ 24 ′ 28◦ 16 ′ 138◦ 59 ′ 17◦ 10 ′ 148◦ 24 ′ 05◦ 00 ′ 155◦ 40 ′ 00◦ 00 ′ 158◦ 07 ′ Aquarius 49◦ 51 ′ 077◦ 46 ′ 47◦ 15 ′ 098◦ 46 ′ 40◦ 15 ′ 115◦ 46 ′ 30◦ 24 ′ 128◦ 10 ′ 18◦ 52 ′ 137◦ 05 ′ 06◦ 21 ′ 143◦ 44 ′ 00◦ 00 ′ 146◦ 24 ′ Pisces 58◦ 32 ′ 069◦ 26 ′ 55◦ 14 ′ 094◦ 41 ′ 46◦ 51 ′ 112◦ 49 ′ 35◦ 41 ′ 124◦ 18 ′ 23◦ 06 ′ 131◦ 39 ′ 09◦ 48 ′ 136◦ 31 ′ 00◦ 00 ′ 139◦ 00 ′ 040◦ 12 ′ 041◦ 00 ′ 113◦ 26 ′ 078◦ 01 ′ 059◦ 29 ′ 050◦ 40 ′ 046◦ 14 ′ 044◦ 05 ′ 043◦ 26 ′ 110◦ 34 ′ 085◦ 19 ′ 067◦ 11 ′ 055◦ 42 ′ 048◦ 21 ′ 043◦ 29 ′ 041◦ 00 ′ 102◦ 14 ′ 081◦ 14 ′ 064◦ 14 ′ 051◦ 50 ′ 042◦ 55 ′ 036◦ 16 ′ 033◦ 36 ′ 090◦ 00 ′ 070◦ 11 ′ 053◦ 36 ′ 041◦ 01 ′ 031◦ 36 ′ 024◦ 20 ′ 021◦ 53 ′ 077◦ 46 ′ 056◦ 47 ′ 039◦ 46 ′ 027◦ 23 ′ 018◦ 27 ′ 011◦ 49 ′ 009◦ 08 ′ 069◦ 26 ′ 044◦ 11 ′ 026◦ 02 ′ 014◦ 33 ′ 007◦ 12 ′ 002◦ 20 ′ 359◦ 51 ′ Table 2.20: Ecliptic altitude and parallactic angle for latitude +20◦ . 56 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:26 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:48 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:57 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:48 00:00 01:00 02:00 03:00 04:00 05:00 MODERN ALMAGEST Aries 60◦ 00 ′ 066◦ 34 ′ 56◦ 46 ′ 090◦ 43 ′ 48◦ 35 ′ 107◦ 28 ′ 37◦ 46 ′ 117◦ 20 ′ 25◦ 40 ′ 122◦ 53 ′ 12◦ 57 ′ 125◦ 42 ′ 00◦ 00 ′ 126◦ 34 ′ Taurus 71◦ 28 ′ 069◦ 26 ′ 66◦ 49 ′ 104◦ 08 ′ 56◦ 33 ′ 121◦ 13 ′ 44◦ 24 ′ 128◦ 24 ′ 31◦ 35 ′ 131◦ 07 ′ 18◦ 36 ′ 131◦ 23 ′ 05◦ 42 ′ 129◦ 55 ′ 00◦ 00 ′ 128◦ 45 ′ Gemini 80◦ 09 ′ 077◦ 46 ′ 73◦ 15 ′ 128◦ 48 ′ 61◦ 12 ′ 141◦ 47 ′ 48◦ 20 ′ 144◦ 53 ′ 35◦ 22 ′ 144◦ 39 ′ 22◦ 30 ′ 142◦ 39 ′ 09◦ 55 ′ 139◦ 19 ′ 00◦ 00 ′ 135◦ 36 ′ Cancer 83◦ 26 ′ 090◦ 00 ′ 75◦ 06 ′ 150◦ 38 ′ 62◦ 30 ′ 159◦ 40 ′ 49◦ 32 ′ 160◦ 38 ′ 36◦ 36 ′ 159◦ 05 ′ 23◦ 52 ′ 156◦ 10 ′ 11◦ 28 ′ 152◦ 05 ′ 00◦ 00 ′ 146◦ 59 ′ Leo 80◦ 09 ′ 102◦ 14 ′ 73◦ 15 ′ 153◦ 15 ′ 61◦ 12 ′ 166◦ 14 ′ 48◦ 20 ′ 169◦ 20 ′ 35◦ 22 ′ 169◦ 06 ′ 22◦ 30 ′ 167◦ 06 ′ 09◦ 55 ′ 163◦ 46 ′ 00◦ 00 ′ 160◦ 03 ′ Virgo 71◦ 28 ′ 110◦ 34 ′ 66◦ 49 ′ 145◦ 17 ′ 56◦ 33 ′ 162◦ 22 ′ 44◦ 24 ′ 169◦ 33 ′ 31◦ 35 ′ 172◦ 16 ′ 18◦ 36 ′ 172◦ 32 ′ 066◦ 34 ′ 042◦ 25 ′ 025◦ 40 ′ 015◦ 48 ′ 010◦ 15 ′ 007◦ 26 ′ 006◦ 34 ′ 069◦ 26 ′ 034◦ 43 ′ 017◦ 38 ′ 010◦ 27 ′ 007◦ 44 ′ 007◦ 28 ′ 008◦ 56 ′ 010◦ 06 ′ 077◦ 46 ′ 026◦ 45 ′ 013◦ 46 ′ 010◦ 40 ′ 010◦ 54 ′ 012◦ 54 ′ 016◦ 14 ′ 019◦ 57 ′ 090◦ 00 ′ 029◦ 22 ′ 020◦ 20 ′ 019◦ 22 ′ 020◦ 55 ′ 023◦ 50 ′ 027◦ 55 ′ 033◦ 01 ′ 102◦ 14 ′ 051◦ 12 ′ 038◦ 13 ′ 035◦ 07 ′ 035◦ 21 ′ 037◦ 21 ′ 040◦ 41 ′ 044◦ 24 ′ 110◦ 34 ′ 075◦ 52 ′ 058◦ 47 ′ 051◦ 36 ′ 048◦ 53 ′ 048◦ 37 ′ 06:00 06:26 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 05:33 00:00 01:00 02:00 03:00 04:00 05:00 05:11 00:00 01:00 02:00 03:00 04:00 05:00 05:02 00:00 01:00 02:00 03:00 04:00 05:00 05:11 00:00 01:00 02:00 03:00 04:00 05:00 05:33 05◦ 42 ′ 00◦ 00 ′ 171◦ 04 ′ 169◦ 54 ′ Libra 60◦ 00 ′ 113◦ 26 ′ 56◦ 46 ′ 137◦ 35 ′ 48◦ 35 ′ 154◦ 20 ′ 37◦ 46 ′ 164◦ 12 ′ 25◦ 40 ′ 169◦ 45 ′ 12◦ 57 ′ 172◦ 34 ′ 00◦ 00 ′ 173◦ 26 ′ Scorpio 48◦ 32 ′ 110◦ 34 ′ 46◦ 05 ′ 129◦ 26 ′ 39◦ 28 ′ 144◦ 41 ′ 30◦ 03 ′ 155◦ 36 ′ 18◦ 58 ′ 163◦ 03 ′ 06◦ 54 ′ 168◦ 00 ′ 00◦ 00 ′ 169◦ 54 ′ Sagittarius 39◦ 51 ′ 102◦ 14 ′ 37◦ 49 ′ 118◦ 43 ′ 32◦ 08 ′ 132◦ 59 ′ 23◦ 45 ′ 144◦ 13 ′ 13◦ 33 ′ 152◦ 43 ′ 02◦ 11 ′ 159◦ 04 ′ 00◦ 00 ′ 160◦ 03 ′ Capricorn 36◦ 34 ′ 090◦ 00 ′ 34◦ 40 ′ 105◦ 49 ′ 29◦ 18 ′ 119◦ 46 ′ 21◦ 17 ′ 131◦ 05 ′ 11◦ 27 ′ 139◦ 56 ′ 00◦ 23 ′ 146◦ 47 ′ 00◦ 00 ′ 146◦ 59 ′ Aquarius 39◦ 51 ′ 077◦ 46 ′ 37◦ 49 ′ 094◦ 15 ′ 32◦ 08 ′ 108◦ 32 ′ 23◦ 45 ′ 119◦ 46 ′ 13◦ 33 ′ 128◦ 16 ′ 02◦ 11 ′ 134◦ 37 ′ 00◦ 00 ′ 135◦ 36 ′ Pisces 48◦ 32 ′ 069◦ 26 ′ 46◦ 05 ′ 088◦ 17 ′ 39◦ 28 ′ 103◦ 33 ′ 30◦ 03 ′ 114◦ 27 ′ 18◦ 58 ′ 121◦ 54 ′ 06◦ 54 ′ 126◦ 51 ′ 00◦ 00 ′ 128◦ 45 ′ 050◦ 05 ′ 051◦ 15 ′ 113◦ 26 ′ 089◦ 17 ′ 072◦ 32 ′ 062◦ 40 ′ 057◦ 07 ′ 054◦ 18 ′ 053◦ 26 ′ 110◦ 34 ′ 091◦ 43 ′ 076◦ 27 ′ 065◦ 33 ′ 058◦ 06 ′ 053◦ 09 ′ 051◦ 15 ′ 102◦ 14 ′ 085◦ 45 ′ 071◦ 28 ′ 060◦ 14 ′ 051◦ 44 ′ 045◦ 23 ′ 044◦ 24 ′ 090◦ 00 ′ 074◦ 11 ′ 060◦ 14 ′ 048◦ 55 ′ 040◦ 04 ′ 033◦ 13 ′ 033◦ 01 ′ 077◦ 46 ′ 061◦ 17 ′ 047◦ 01 ′ 035◦ 47 ′ 027◦ 17 ′ 020◦ 56 ′ 019◦ 57 ′ 069◦ 26 ′ 050◦ 34 ′ 035◦ 19 ′ 024◦ 24 ′ 016◦ 57 ′ 012◦ 00 ′ 010◦ 06 ′ Table 2.21: Ecliptic altitude and parallactic angle for latitude +30◦ . Spherical Astronomy 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:39 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:11 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:25 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:11 00:00 01:00 02:00 Aries 50◦ 00 ′ 066◦ 34 ′ 47◦ 44 ′ 083◦ 43 ′ 41◦ 34 ′ 097◦ 21 ′ 32◦ 48 ′ 106◦ 41 ′ 22◦ 31 ′ 112◦ 28 ′ 11◦ 26 ′ 115◦ 35 ′ 00◦ 00 ′ 116◦ 34 ′ Taurus 61◦ 28 ′ 069◦ 26 ′ 58◦ 32 ′ 091◦ 45 ′ 51◦ 05 ′ 106◦ 59 ′ 41◦ 12 ′ 115◦ 28 ′ 30◦ 13 ′ 119◦ 34 ′ 18◦ 47 ′ 120◦ 50 ′ 07◦ 21 ′ 120◦ 00 ′ 00◦ 00 ′ 118◦ 26 ′ Gemini 70◦ 09 ′ 077◦ 46 ′ 66◦ 21 ′ 107◦ 24 ′ 57◦ 35 ′ 123◦ 23 ′ 46◦ 53 ′ 130◦ 11 ′ 35◦ 31 ′ 132◦ 22 ′ 24◦ 03 ′ 131◦ 54 ′ 12◦ 47 ′ 129◦ 33 ′ 02◦ 01 ′ 125◦ 32 ′ 00◦ 00 ′ 124◦ 34 ′ Cancer 73◦ 26 ′ 090◦ 00 ′ 69◦ 09 ′ 123◦ 52 ′ 59◦ 48 ′ 139◦ 36 ′ 48◦ 49 ′ 145◦ 21 ′ 37◦ 23 ′ 146◦ 36 ′ 25◦ 57 ′ 145◦ 23 ′ 14◦ 49 ′ 142◦ 24 ′ 04◦ 14 ′ 137◦ 54 ′ 00◦ 00 ′ 135◦ 32 ′ Leo 70◦ 09 ′ 102◦ 14 ′ 66◦ 21 ′ 131◦ 51 ′ 57◦ 35 ′ 147◦ 50 ′ 46◦ 53 ′ 154◦ 39 ′ 35◦ 31 ′ 156◦ 49 ′ 24◦ 03 ′ 156◦ 21 ′ 12◦ 47 ′ 154◦ 00 ′ 02◦ 01 ′ 150◦ 00 ′ 00◦ 00 ′ 149◦ 01 ′ Virgo 61◦ 28 ′ 110◦ 34 ′ 58◦ 32 ′ 132◦ 54 ′ 51◦ 05 ′ 148◦ 08 ′ 57 066◦ 34 ′ 049◦ 25 ′ 035◦ 47 ′ 026◦ 27 ′ 020◦ 40 ′ 017◦ 33 ′ 016◦ 34 ′ 069◦ 26 ′ 047◦ 06 ′ 031◦ 52 ′ 023◦ 23 ′ 019◦ 17 ′ 018◦ 01 ′ 018◦ 51 ′ 020◦ 25 ′ 077◦ 46 ′ 048◦ 09 ′ 032◦ 10 ′ 025◦ 21 ′ 023◦ 11 ′ 023◦ 39 ′ 026◦ 00 ′ 030◦ 00 ′ 030◦ 59 ′ 090◦ 00 ′ 056◦ 08 ′ 040◦ 24 ′ 034◦ 39 ′ 033◦ 24 ′ 034◦ 37 ′ 037◦ 36 ′ 042◦ 06 ′ 044◦ 28 ′ 102◦ 14 ′ 072◦ 36 ′ 056◦ 37 ′ 049◦ 49 ′ 047◦ 38 ′ 048◦ 06 ′ 050◦ 27 ′ 054◦ 28 ′ 055◦ 26 ′ 110◦ 34 ′ 088◦ 15 ′ 073◦ 01 ′ 03:00 04:00 05:00 06:00 06:39 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 05:20 00:00 01:00 02:00 03:00 04:00 04:48 00:00 01:00 02:00 03:00 04:00 04:34 00:00 01:00 02:00 03:00 04:00 04:48 00:00 01:00 02:00 03:00 04:00 05:00 05:20 41◦ 12 ′ 30◦ 13 ′ 18◦ 47 ′ 07◦ 21 ′ 00◦ 00 ′ 156◦ 37 ′ 160◦ 43 ′ 161◦ 59 ′ 161◦ 09 ′ 159◦ 35 ′ Libra 50◦ 00 ′ 113◦ 26 ′ 47◦ 44 ′ 130◦ 35 ′ 41◦ 34 ′ 144◦ 13 ′ 32◦ 48 ′ 153◦ 33 ′ 22◦ 31 ′ 159◦ 20 ′ 11◦ 26 ′ 162◦ 27 ′ 00◦ 00 ′ 163◦ 26 ′ Scorpio 38◦ 32 ′ 110◦ 34 ′ 36◦ 41 ′ 124◦ 53 ′ 31◦ 29 ′ 137◦ 16 ′ 23◦ 46 ′ 146◦ 52 ′ 14◦ 20 ′ 153◦ 47 ′ 03◦ 49 ′ 158◦ 26 ′ 00◦ 00 ′ 159◦ 35 ′ Sagittarius 29◦ 51 ′ 102◦ 14 ′ 28◦ 15 ′ 115◦ 14 ′ 23◦ 40 ′ 126◦ 57 ′ 16◦ 41 ′ 136◦ 40 ′ 07◦ 57 ′ 144◦ 17 ′ 00◦ 00 ′ 149◦ 01 ′ Capricorn 26◦ 34 ′ 090◦ 00 ′ 25◦ 03 ′ 102◦ 38 ′ 20◦ 41 ′ 114◦ 10 ′ 13◦ 58 ′ 123◦ 56 ′ 05◦ 30 ′ 131◦ 48 ′ 00◦ 00 ′ 135◦ 32 ′ Aquarius 29◦ 51 ′ 077◦ 46 ′ 28◦ 15 ′ 090◦ 47 ′ 23◦ 40 ′ 102◦ 30 ′ 16◦ 41 ′ 112◦ 13 ′ 07◦ 57 ′ 119◦ 50 ′ 00◦ 00 ′ 124◦ 34 ′ Pisces 38◦ 32 ′ 069◦ 26 ′ 36◦ 41 ′ 083◦ 44 ′ 31◦ 29 ′ 096◦ 07 ′ 23◦ 46 ′ 105◦ 43 ′ 14◦ 20 ′ 112◦ 38 ′ 03◦ 49 ′ 117◦ 18 ′ 00◦ 00 ′ 118◦ 26 ′ 064◦ 32 ′ 060◦ 26 ′ 059◦ 10 ′ 060◦ 00 ′ 061◦ 34 ′ 113◦ 26 ′ 096◦ 17 ′ 082◦ 39 ′ 073◦ 19 ′ 067◦ 32 ′ 064◦ 25 ′ 063◦ 26 ′ 110◦ 34 ′ 096◦ 16 ′ 083◦ 53 ′ 074◦ 17 ′ 067◦ 22 ′ 062◦ 42 ′ 061◦ 34 ′ 102◦ 14 ′ 089◦ 13 ′ 077◦ 30 ′ 067◦ 47 ′ 060◦ 10 ′ 055◦ 26 ′ 090◦ 00 ′ 077◦ 22 ′ 065◦ 50 ′ 056◦ 04 ′ 048◦ 12 ′ 044◦ 28 ′ 077◦ 46 ′ 064◦ 46 ′ 053◦ 03 ′ 043◦ 20 ′ 035◦ 43 ′ 030◦ 59 ′ 069◦ 26 ′ 055◦ 07 ′ 042◦ 44 ′ 033◦ 08 ′ 026◦ 13 ′ 021◦ 34 ′ 020◦ 25 ′ Table 2.22: Ecliptic altitude and parallactic angle for latitude +40◦ . 58 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 06:55 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:43 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 08:04 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:43 00:00 01:00 MODERN ALMAGEST Aries 40◦ 00 ′ 066◦ 34 ′ 38◦ 23 ′ 078◦ 49 ′ 33◦ 50 ′ 089◦ 20 ′ 27◦ 02 ′ 097◦ 15 ′ 18◦ 45 ′ 102◦ 34 ′ 09◦ 35 ′ 105◦ 36 ′ 00◦ 00 ′ 106◦ 34 ′ Taurus 51◦ 28 ′ 069◦ 26 ′ 49◦ 32 ′ 084◦ 17 ′ 44◦ 15 ′ 096◦ 05 ′ 36◦ 43 ′ 103◦ 58 ′ 27◦ 52 ′ 108◦ 27 ′ 18◦ 23 ′ 110◦ 17 ′ 08◦ 46 ′ 110◦ 00 ′ 00◦ 00 ′ 108◦ 01 ′ Gemini 60◦ 09 ′ 077◦ 46 ′ 57◦ 51 ′ 096◦ 00 ′ 51◦ 51 ′ 109◦ 08 ′ 43◦ 40 ′ 116◦ 42 ′ 34◦ 26 ′ 120◦ 14 ′ 24◦ 50 ′ 120◦ 57 ′ 15◦ 18 ′ 119◦ 34 ′ 06◦ 11 ′ 116◦ 25 ′ 00◦ 00 ′ 113◦ 05 ′ Cancer 63◦ 26 ′ 090◦ 00 ′ 60◦ 58 ′ 110◦ 03 ′ 54◦ 38 ′ 123◦ 43 ′ 46◦ 12 ′ 131◦ 02 ′ 36◦ 50 ′ 134◦ 04 ′ 27◦ 13 ′ 134◦ 17 ′ 17◦ 44 ′ 132◦ 27 ′ 08◦ 45 ′ 128◦ 55 ′ 00◦ 34 ′ 123◦ 50 ′ 00◦ 00 ′ 123◦ 24 ′ Leo 60◦ 09 ′ 102◦ 14 ′ 57◦ 51 ′ 120◦ 27 ′ 51◦ 51 ′ 133◦ 35 ′ 43◦ 40 ′ 141◦ 10 ′ 34◦ 26 ′ 144◦ 41 ′ 24◦ 50 ′ 145◦ 24 ′ 15◦ 18 ′ 144◦ 01 ′ 06◦ 11 ′ 140◦ 52 ′ 00◦ 00 ′ 137◦ 33 ′ Virgo 51◦ 28 ′ 110◦ 34 ′ 49◦ 32 ′ 125◦ 26 ′ 066◦ 34 ′ 054◦ 19 ′ 043◦ 48 ′ 035◦ 53 ′ 030◦ 34 ′ 027◦ 32 ′ 026◦ 34 ′ 069◦ 26 ′ 054◦ 34 ′ 042◦ 46 ′ 034◦ 53 ′ 030◦ 24 ′ 028◦ 34 ′ 028◦ 51 ′ 030◦ 50 ′ 077◦ 46 ′ 059◦ 33 ′ 046◦ 25 ′ 038◦ 50 ′ 035◦ 19 ′ 034◦ 36 ′ 035◦ 59 ′ 039◦ 08 ′ 042◦ 27 ′ 090◦ 00 ′ 069◦ 57 ′ 056◦ 17 ′ 048◦ 58 ′ 045◦ 56 ′ 045◦ 43 ′ 047◦ 33 ′ 051◦ 05 ′ 056◦ 10 ′ 056◦ 36 ′ 102◦ 14 ′ 084◦ 00 ′ 070◦ 52 ′ 063◦ 18 ′ 059◦ 46 ′ 059◦ 03 ′ 060◦ 26 ′ 063◦ 35 ′ 066◦ 55 ′ 110◦ 34 ′ 095◦ 43 ′ 02:00 03:00 04:00 05:00 06:00 06:55 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 05:04 00:00 01:00 02:00 03:00 04:00 04:16 00:00 01:00 02:00 03:00 03:55 00:00 01:00 02:00 03:00 04:00 04:16 00:00 01:00 02:00 03:00 04:00 05:00 05:04 44◦ 15 ′ 36◦ 43 ′ 27◦ 52 ′ 18◦ 23 ′ 08◦ 46 ′ 00◦ 00 ′ 137◦ 14 ′ 145◦ 07 ′ 149◦ 36 ′ 151◦ 26 ′ 151◦ 09 ′ 149◦ 10 ′ Libra 40◦ 00 ′ 113◦ 26 ′ 38◦ 23 ′ 125◦ 41 ′ 33◦ 50 ′ 136◦ 12 ′ 27◦ 02 ′ 144◦ 07 ′ 18◦ 45 ′ 149◦ 26 ′ 09◦ 35 ′ 152◦ 28 ′ 00◦ 00 ′ 153◦ 26 ′ Scorpio 28◦ 32 ′ 110◦ 34 ′ 27◦ 08 ′ 121◦ 21 ′ 23◦ 09 ′ 131◦ 02 ′ 17◦ 03 ′ 138◦ 58 ′ 09◦ 22 ′ 144◦ 55 ′ 00◦ 37 ′ 148◦ 57 ′ 00◦ 00 ′ 149◦ 10 ′ Sagittarius 19◦ 51 ′ 102◦ 14 ′ 18◦ 36 ′ 112◦ 20 ′ 15◦ 00 ′ 121◦ 40 ′ 09◦ 22 ′ 129◦ 39 ′ 02◦ 10 ′ 136◦ 05 ′ 00◦ 00 ′ 137◦ 33 ′ Capricorn 16◦ 34 ′ 090◦ 00 ′ 15◦ 22 ′ 099◦ 56 ′ 11◦ 54 ′ 109◦ 10 ′ 06◦ 27 ′ 117◦ 13 ′ 00◦ 00 ′ 123◦ 24 ′ Aquarius 19◦ 51 ′ 077◦ 46 ′ 18◦ 36 ′ 087◦ 53 ′ 15◦ 00 ′ 097◦ 12 ′ 09◦ 22 ′ 105◦ 12 ′ 02◦ 10 ′ 111◦ 38 ′ 00◦ 00 ′ 113◦ 05 ′ Pisces 28◦ 32 ′ 069◦ 26 ′ 27◦ 08 ′ 080◦ 12 ′ 23◦ 09 ′ 089◦ 53 ′ 17◦ 03 ′ 097◦ 49 ′ 09◦ 22 ′ 103◦ 46 ′ 00◦ 37 ′ 107◦ 49 ′ 00◦ 00 ′ 108◦ 01 ′ 083◦ 55 ′ 076◦ 02 ′ 071◦ 33 ′ 069◦ 43 ′ 070◦ 00 ′ 071◦ 59 ′ 113◦ 26 ′ 101◦ 11 ′ 090◦ 40 ′ 082◦ 45 ′ 077◦ 26 ′ 074◦ 24 ′ 073◦ 26 ′ 110◦ 34 ′ 099◦ 48 ′ 090◦ 07 ′ 082◦ 11 ′ 076◦ 14 ′ 072◦ 11 ′ 071◦ 59 ′ 102◦ 14 ′ 092◦ 07 ′ 082◦ 48 ′ 074◦ 48 ′ 068◦ 22 ′ 066◦ 55 ′ 090◦ 00 ′ 080◦ 04 ′ 070◦ 50 ′ 062◦ 47 ′ 056◦ 36 ′ 077◦ 46 ′ 067◦ 40 ′ 058◦ 20 ′ 050◦ 21 ′ 043◦ 55 ′ 042◦ 27 ′ 069◦ 26 ′ 058◦ 39 ′ 048◦ 58 ′ 041◦ 02 ′ 035◦ 05 ′ 031◦ 03 ′ 030◦ 50 ′ Table 2.23: Ecliptic altitude and parallactic angle for latitude +50◦ . Spherical Astronomy 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:22 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 08:37 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 09:14 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 Aries 30◦ 00 ′ 066◦ 34 ′ 28◦ 53 ′ 075◦ 04 ′ 25◦ 40 ′ 082◦ 40 ′ 20◦ 42 ′ 088◦ 46 ′ 14◦ 29 ′ 093◦ 08 ′ 07◦ 26 ′ 095◦ 43 ′ 00◦ 00 ′ 096◦ 34 ′ Taurus 41◦ 28 ′ 069◦ 26 ′ 40◦ 12 ′ 079◦ 11 ′ 36◦ 37 ′ 087◦ 35 ′ 31◦ 15 ′ 093◦ 51 ′ 24◦ 40 ′ 097◦ 53 ′ 17◦ 24 ′ 099◦ 50 ′ 09◦ 55 ′ 099◦ 56 ′ 02◦ 36 ′ 098◦ 20 ′ 00◦ 00 ′ 097◦ 20 ′ Gemini 50◦ 09 ′ 077◦ 46 ′ 48◦ 44 ′ 089◦ 05 ′ 44◦ 49 ′ 098◦ 24 ′ 39◦ 04 ′ 104◦ 52 ′ 32◦ 12 ′ 108◦ 33 ′ 24◦ 49 ′ 109◦ 55 ′ 17◦ 21 ′ 109◦ 22 ′ 10◦ 11 ′ 107◦ 09 ′ 03◦ 39 ′ 103◦ 29 ′ 00◦ 00 ′ 100◦ 29 ′ Cancer 53◦ 26 ′ 090◦ 00 ′ 51◦ 57 ′ 102◦ 07 ′ 47◦ 53 ′ 111◦ 53 ′ 41◦ 58 ′ 118◦ 24 ′ 35◦ 01 ′ 121◦ 55 ′ 27◦ 35 ′ 123◦ 01 ′ 20◦ 09 ′ 122◦ 11 ′ 13◦ 03 ′ 119◦ 43 ′ 06◦ 36 ′ 115◦ 51 ′ 01◦ 09 ′ 110◦ 43 ′ 00◦ 00 ′ 109◦ 17 ′ Leo 50◦ 09 ′ 102◦ 14 ′ 48◦ 44 ′ 113◦ 33 ′ 44◦ 49 ′ 122◦ 52 ′ 39◦ 04 ′ 129◦ 19 ′ 32◦ 12 ′ 133◦ 01 ′ 24◦ 49 ′ 134◦ 23 ′ 17◦ 21 ′ 133◦ 49 ′ 10◦ 11 ′ 131◦ 37 ′ 03◦ 39 ′ 127◦ 57 ′ 59 066◦ 34 ′ 058◦ 04 ′ 050◦ 28 ′ 044◦ 22 ′ 040◦ 00 ′ 037◦ 25 ′ 036◦ 34 ′ 069◦ 26 ′ 059◦ 40 ′ 051◦ 17 ′ 045◦ 00 ′ 040◦ 58 ′ 039◦ 01 ′ 038◦ 55 ′ 040◦ 31 ′ 041◦ 31 ′ 077◦ 46 ′ 066◦ 27 ′ 057◦ 08 ′ 050◦ 41 ′ 046◦ 59 ′ 045◦ 37 ′ 046◦ 11 ′ 048◦ 23 ′ 052◦ 03 ′ 055◦ 04 ′ 090◦ 00 ′ 077◦ 53 ′ 068◦ 07 ′ 061◦ 36 ′ 058◦ 05 ′ 056◦ 59 ′ 057◦ 49 ′ 060◦ 17 ′ 064◦ 09 ′ 069◦ 17 ′ 070◦ 43 ′ 102◦ 14 ′ 090◦ 55 ′ 081◦ 36 ′ 075◦ 08 ′ 071◦ 27 ′ 070◦ 05 ′ 070◦ 38 ′ 072◦ 51 ′ 076◦ 31 ′ 08:37 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 07:22 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 04:37 00:00 01:00 02:00 03:00 03:22 00:00 01:00 02:00 02:45 00:00 01:00 02:00 03:00 03:22 0:00 01:00 02:00 03:00 04:00 04:37 00◦ 00 ′ 124◦ 56 ′ Virgo 41◦ 28 ′ 110◦ 34 ′ 40◦ 12 ′ 120◦ 20 ′ 36◦ 37 ′ 128◦ 43 ′ 31◦ 15 ′ 135◦ 00 ′ 24◦ 40 ′ 139◦ 02 ′ 17◦ 24 ′ 140◦ 59 ′ 09◦ 55 ′ 141◦ 05 ′ 02◦ 36 ′ 139◦ 29 ′ 00◦ 00 ′ 138◦ 29 ′ Libra 30◦ 00 ′ 113◦ 26 ′ 28◦ 53 ′ 121◦ 56 ′ 25◦ 40 ′ 129◦ 32 ′ 20◦ 42 ′ 135◦ 38 ′ 14◦ 29 ′ 140◦ 00 ′ 07◦ 26 ′ 142◦ 35 ′ 00◦ 00 ′ 143◦ 26 ′ Scorpio 18◦ 32 ′ 110◦ 34 ′ 17◦ 31 ′ 118◦ 22 ′ 14◦ 36 ′ 125◦ 33 ′ 10◦ 02 ′ 131◦ 37 ′ 04◦ 11 ′ 136◦ 18 ′ 00◦ 00 ′ 138◦ 29 ′ Sagittarius 09◦ 51 ′ 102◦ 14 ′ 08◦ 56 ′ 109◦ 45 ′ 06◦ 13 ′ 116◦ 48 ′ 01◦ 56 ′ 122◦ 57 ′ 00◦ 00 ′ 124◦ 56 ′ Capricorn 06◦ 34 ′ 090◦ 00 ′ 05◦ 40 ′ 097◦ 28 ′ 03◦ 02 ′ 104◦ 30 ′ 00◦ 00 ′ 109◦ 17 ′ Aquarius 09◦ 51 ′ 077◦ 46 ′ 08◦ 56 ′ 085◦ 18 ′ 06◦ 13 ′ 092◦ 20 ′ 01◦ 56 ′ 098◦ 29 ′ 00◦ 00 ′ 100◦ 29 ′ Pisces 18◦ 32 ′ 069◦ 26 ′ 17◦ 31 ′ 077◦ 14 ′ 14◦ 36 ′ 084◦ 24 ′ 10◦ 02 ′ 090◦ 28 ′ 04◦ 11 ′ 095◦ 09 ′ 00◦ 00 ′ 097◦ 20 ′ 079◦ 31 ′ 110◦ 34 ′ 100◦ 49 ′ 092◦ 25 ′ 086◦ 09 ′ 082◦ 07 ′ 080◦ 10 ′ 080◦ 04 ′ 081◦ 40 ′ 082◦ 40 ′ 113◦ 26 ′ 104◦ 56 ′ 097◦ 20 ′ 091◦ 14 ′ 086◦ 52 ′ 084◦ 17 ′ 083◦ 26 ′ 110◦ 34 ′ 102◦ 46 ′ 095◦ 36 ′ 089◦ 32 ′ 084◦ 51 ′ 082◦ 40 ′ 102◦ 14 ′ 094◦ 42 ′ 087◦ 40 ′ 081◦ 31 ′ 079◦ 31 ′ 090◦ 00 ′ 082◦ 32 ′ 075◦ 30 ′ 070◦ 43 ′ 077◦ 46 ′ 070◦ 15 ′ 063◦ 12 ′ 057◦ 03 ′ 055◦ 04 ′ 069◦ 26 ′ 061◦ 38 ′ 054◦ 27 ′ 048◦ 23 ′ 043◦ 42 ′ 041◦ 31 ′ Table 2.24: Ecliptic altitude and parallactic angle for latitude +60◦ . 60 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 08:15 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 MODERN ALMAGEST Aries 20 00 066◦ 34 ′ ◦ ′ 19 17 071◦ 57 ′ ◦ ′ 17 14 076◦ 53 ′ ◦ ′ 14 00 081◦ 00 ′ ◦ ′ 09 51 084◦ 04 ′ ◦ ′ 05 05 085◦ 56 ′ ◦ ′ 00 00 086◦ 34 ′ Taurus 31◦ 28 ′ 069◦ 26 ′ 30◦ 42 ′ 075◦ 20 ′ 28◦ 30 ′ 080◦ 39 ′ 25◦ 05 ′ 084◦ 55 ′ 20◦ 46 ′ 087◦ 54 ′ 15◦ 53 ′ 089◦ 31 ′ 10◦ 46 ′ 089◦ 48 ′ 05◦ 45 ′ 088◦ 49 ′ 01◦ 06 ′ 086◦ 40 ′ 00◦ 00 ′ 085◦ 55 ′ Gemini 40◦ 09 ′ 077◦ 46 ′ 39◦ 20 ′ 084◦ 21 ′ 37◦ 00 ′ 090◦ 08 ′ 33◦ 25 ′ 094◦ 37 ′ 28◦ 58 ′ 097◦ 34 ′ 24◦ 00 ′ 098◦ 58 ′ 18◦ 53 ′ 098◦ 58 ′ 13◦ 55 ′ 097◦ 40 ′ 09◦ 23 ′ 095◦ 15 ′ 05◦ 33 ′ 091◦ 50 ′ 02◦ 37 ′ 087◦ 38 ′ 00◦ 46 ′ 082◦ 51 ′ 00◦ 09 ′ 077◦ 46 ′ Cancer 43◦ 26 ′ 090◦ 00 ′ 42◦ 36 ′ 096◦ 54 ′ 40◦ 12 ′ 102◦ 56 ′ 36◦ 33 ′ 107◦ 31 ′ 32◦ 03 ′ 110◦ 27 ′ 27◦ 04 ′ 111◦ 47 ′ 21◦ 57 ′ 111◦ 38 ′ 17◦ 00 ′ 110◦ 13 ′ 12◦ 31 ′ 107◦ 40 ′ 08◦ 44 ′ 104◦ 10 ′ 05◦ 51 ′ 099◦ 54 ′ 04◦ 03 ′ 095◦ 05 ′ ◦ ′ 12:00 ◦ ′ 066 34 061◦ 11 ′ 056◦ 15 ′ 052◦ 08 ′ 049◦ 04 ′ 047◦ 12 ′ 046◦ 34 ′ 069◦ 26 ′ 063◦ 31 ′ 058◦ 12 ′ 053◦ 56 ′ 050◦ 58 ′ 049◦ 20 ′ 049◦ 03 ′ 050◦ 02 ′ 052◦ 12 ′ 052◦ 56 ′ 077◦ 46 ′ 071◦ 12 ′ 065◦ 25 ′ 060◦ 56 ′ 057◦ 59 ′ 056◦ 34 ′ 056◦ 35 ′ 057◦ 52 ′ 060◦ 18 ′ 063◦ 43 ′ 067◦ 55 ′ 072◦ 42 ′ 077◦ 46 ′ 090◦ 00 ′ 083◦ 06 ′ 077◦ 04 ′ 072◦ 29 ′ 069◦ 33 ′ 068◦ 13 ′ 068◦ 22 ′ 069◦ 47 ′ 072◦ 20 ′ 075◦ 50 ′ 080◦ 06 ′ 084◦ 55 ′ 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 08:15 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 03:44 00:00 01:00 02:00 03:00 03:44 03◦ 26 ′ 090◦ 00 ′ Leo 40◦ 09 ′ 102◦ 14 ′ 39◦ 20 ′ 108◦ 48 ′ 37◦ 00 ′ 114◦ 35 ′ 33◦ 25 ′ 119◦ 04 ′ 28◦ 58 ′ 122◦ 01 ′ 24◦ 00 ′ 123◦ 26 ′ 18◦ 53 ′ 123◦ 25 ′ 13◦ 55 ′ 122◦ 08 ′ 09◦ 23 ′ 119◦ 42 ′ 05◦ 33 ′ 116◦ 17 ′ 02◦ 37 ′ 112◦ 05 ′ 00◦ 46 ′ 107◦ 18 ′ 00◦ 09 ′ 102◦ 14 ′ Virgo 31◦ 28 ′ 110◦ 34 ′ 30◦ 42 ′ 116◦ 29 ′ 28◦ 30 ′ 121◦ 48 ′ 25◦ 05 ′ 126◦ 04 ′ 20◦ 46 ′ 129◦ 02 ′ 15◦ 53 ′ 130◦ 40 ′ 10◦ 46 ′ 130◦ 57 ′ 05◦ 45 ′ 129◦ 58 ′ 01◦ 06 ′ 127◦ 48 ′ 00◦ 00 ′ 127◦ 04 ′ Libra 20◦ 00 ′ 113◦ 26 ′ 19◦ 17 ′ 118◦ 49 ′ 17◦ 14 ′ 123◦ 45 ′ 14◦ 00 ′ 127◦ 52 ′ 09◦ 51 ′ 130◦ 56 ′ 05◦ 05 ′ 132◦ 48 ′ 00◦ 00 ′ 133◦ 26 ′ Scorpio 08◦ 32 ′ 110◦ 34 ′ 07◦ 52 ′ 115◦ 42 ′ 05◦ 56 ′ 120◦ 28 ′ 02◦ 53 ′ 124◦ 35 ′ 00◦ 00 ′ 127◦ 04 ′ Pisces 08◦ 32 ′ 069◦ 26 ′ 07◦ 52 ′ 074◦ 33 ′ 05◦ 56 ′ 079◦ 20 ′ 02◦ 53 ′ 083◦ 26 ′ 00◦ 00 ′ 085◦ 55 ′ 090◦ 00 ′ 102◦ 14 ′ 095◦ 39 ′ 089◦ 52 ′ 085◦ 23 ′ 082◦ 26 ′ 081◦ 02 ′ 081◦ 02 ′ 082◦ 20 ′ 084◦ 45 ′ 088◦ 10 ′ 092◦ 22 ′ 097◦ 09 ′ 102◦ 14 ′ 110◦ 34 ′ 104◦ 40 ′ 099◦ 21 ′ 095◦ 05 ′ 092◦ 06 ′ 090◦ 29 ′ 090◦ 12 ′ 091◦ 11 ′ 093◦ 20 ′ 094◦ 05 ′ 113◦ 26 ′ 108◦ 03 ′ 103◦ 07 ′ 099◦ 00 ′ 095◦ 56 ′ 094◦ 04 ′ 093◦ 26 ′ 110◦ 34 ′ 105◦ 27 ′ 100◦ 40 ′ 096◦ 34 ′ 094◦ 05 ′ 069◦ 26 ′ 064◦ 18 ′ 059◦ 32 ′ 055◦ 25 ′ 052◦ 56 ′ Table 2.25: Ecliptic altitude and parallactic angle for latitude +70◦ . Spherical Astronomy 00:00 01:00 02:00 03:00 04:00 05:00 06:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 Aries 10◦ 00 ′ 066◦ 34 ′ 09◦ 39 ′ 069◦ 11 ′ 08◦ 39 ′ 071◦ 36 ′ 07◦ 03 ′ 073◦ 40 ′ 04◦ 59 ′ 075◦ 15 ′ 02◦ 35 ′ 076◦ 14 ′ 00◦ 00 ′ 076◦ 34 ′ Taurus 21◦ 28 ′ 069◦ 26 ′ 21◦ 07 ′ 072◦ 11 ′ 20◦ 04 ′ 074◦ 44 ′ 18◦ 26 ′ 076◦ 52 ′ 16◦ 19 ′ 078◦ 26 ′ 13◦ 53 ′ 079◦ 23 ′ 11◦ 18 ′ 079◦ 38 ′ 08◦ 44 ′ 079◦ 12 ′ 06◦ 21 ′ 078◦ 08 ′ 04◦ 20 ′ 076◦ 30 ′ 02◦ 47 ′ 074◦ 25 ′ 01◦ 48 ′ 072◦ 00 ′ 01◦ 28 ′ 069◦ 26 ′ Gemini 30◦ 09 ′ 077◦ 46 ′ 29◦ 47 ′ 080◦ 44 ′ 28◦ 43 ′ 083◦ 27 ′ 27◦ 02 ′ 085◦ 42 ′ 24◦ 53 ′ 087◦ 19 ′ 22◦ 25 ′ 088◦ 14 ′ 19◦ 50 ′ 088◦ 25 ′ 17◦ 17 ′ 087◦ 53 ′ 14◦ 56 ′ 086◦ 44 ′ 12◦ 56 ′ 085◦ 01 ′ 11◦ 25 ′ 082◦ 51 ′ 10◦ 28 ′ 080◦ 24 ′ 10◦ 09 ′ 077◦ 46 ′ Cancer 33◦ 26 ′ 090◦ 00 ′ 33◦ 04 ′ 093◦ 04 ′ 31◦ 59 ′ 095◦ 53 ′ 30◦ 17 ′ 098◦ 10 ′ 28◦ 07 ′ 099◦ 49 ′ 25◦ 39 ′ 100◦ 43 ′ 23◦ 03 ′ 100◦ 53 ′ 20◦ 31 ′ 100◦ 19 ′ 61 066◦ 34 ′ 063◦ 57 ′ 061◦ 32 ′ 059◦ 28 ′ 057◦ 53 ′ 056◦ 54 ′ 056◦ 34 ′ 069◦ 26 ′ 066◦ 40 ′ 064◦ 07 ′ 061◦ 59 ′ 060◦ 25 ′ 059◦ 29 ′ 059◦ 14 ′ 059◦ 39 ′ 060◦ 43 ′ 062◦ 21 ′ 064◦ 26 ′ 066◦ 51 ′ 069◦ 26 ′ 077◦ 46 ′ 074◦ 48 ′ 072◦ 05 ′ 069◦ 51 ′ 068◦ 14 ′ 067◦ 19 ′ 067◦ 08 ′ 067◦ 39 ′ 068◦ 49 ′ 070◦ 32 ′ 072◦ 41 ′ 075◦ 09 ′ 077◦ 46 ′ 090◦ 00 ′ 086◦ 56 ′ 084◦ 07 ′ 081◦ 50 ′ 080◦ 11 ′ 079◦ 17 ′ 079◦ 07 ′ 079◦ 41 ′ 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 18◦ 11 ′ 16◦ 12 ′ 14◦ 42 ′ 13◦ 45 ′ 13◦ 26 ′ 099◦ 06 ′ 097◦ 21 ′ 095◦ 09 ′ 092◦ 39 ′ 090◦ 00 ′ Leo 30◦ 09 ′ 102◦ 14 ′ 29◦ 47 ′ 105◦ 12 ′ 28◦ 43 ′ 107◦ 55 ′ 27◦ 02 ′ 110◦ 09 ′ 24◦ 53 ′ 111◦ 46 ′ 22◦ 25 ′ 112◦ 41 ′ 19◦ 50 ′ 112◦ 52 ′ 17◦ 17 ′ 112◦ 21 ′ 14◦ 56 ′ 111◦ 11 ′ 12◦ 56 ′ 109◦ 28 ′ 11◦ 25 ′ 107◦ 19 ′ 10◦ 28 ′ 104◦ 51 ′ 10◦ 09 ′ 102◦ 14 ′ Virgo 21◦ 28 ′ 110◦ 34 ′ 21◦ 07 ′ 113◦ 20 ′ 20◦ 04 ′ 115◦ 53 ′ 18◦ 26 ′ 118◦ 01 ′ 16◦ 19 ′ 119◦ 35 ′ 13◦ 53 ′ 120◦ 31 ′ 11◦ 18 ′ 120◦ 46 ′ 08◦ 44 ′ 120◦ 21 ′ 06◦ 21 ′ 119◦ 17 ′ 04◦ 20 ′ 117◦ 39 ′ 02◦ 47 ′ 115◦ 34 ′ 01◦ 48 ′ 113◦ 09 ′ 01◦ 28 ′ 110◦ 34 ′ Libra 10◦ 00 ′ 113◦ 26 ′ 09◦ 39 ′ 116◦ 03 ′ 08◦ 39 ′ 118◦ 28 ′ 07◦ 03 ′ 120◦ 32 ′ 04◦ 59 ′ 122◦ 07 ′ 02◦ 35 ′ 123◦ 06 ′ 00◦ 00 ′ 123◦ 26 ′ 080◦ 54 ′ 082◦ 39 ′ 084◦ 51 ′ 087◦ 21 ′ 090◦ 00 ′ 102◦ 14 ′ 099◦ 16 ′ 096◦ 33 ′ 094◦ 18 ′ 092◦ 41 ′ 091◦ 46 ′ 091◦ 35 ′ 092◦ 07 ′ 093◦ 16 ′ 094◦ 59 ′ 097◦ 09 ′ 099◦ 36 ′ 102◦ 14 ′ 110◦ 34 ′ 107◦ 49 ′ 105◦ 16 ′ 103◦ 08 ′ 101◦ 34 ′ 100◦ 37 ′ 100◦ 22 ′ 100◦ 48 ′ 101◦ 52 ′ 103◦ 30 ′ 105◦ 35 ′ 108◦ 00 ′ 110◦ 34 ′ 113◦ 26 ′ 110◦ 49 ′ 108◦ 24 ′ 106◦ 20 ′ 104◦ 45 ′ 103◦ 46 ′ 103◦ 26 ′ Table 2.26: Ecliptic altitude and parallactic angle for latitude +80◦ . 62 MODERN ALMAGEST Dates 63 3 Dates 3.1 Introduction Following modern astronomical practice, in this treatise we shall specify dates by means of Julian day numbers. According to this scheme, days are numbered consecutively from January 1, 4713 BCE, which is designated day zero. For instance, October 14, 1066 CE (the date of the battle of Hastings) is day 2 110 701. Each Julian day commences at 12:00 universal time (UT). 3.2 Determination of Julian Day Numbers The Julian day number of a given day can be determined from Tables 3.1–3.3. The date must be expressed in terms of the Gregorian calendar. The procedure is as follows: 1. Enter the table of century years (Table 3.1) with the century year immediately preceding the date in question, and take out the tabular value. If the century year is marked with a †, note this fact for use in step 2. 2. Enter the table of years of the century (Table 3.2) with the last two digits of the year in question, and take out the tabular value. If the century year used in step 1 was marked with a †, diminish the tabular value by one day, unless the tabular value is zero. If the year in question is a leap year, marked with a ∗, note this fact for use in step 3. 3. Enter the table of the days of the year (Table 3.3) with the day in question, and take out the tabular value. If the year in question is a leap year and the table entry falls after February 28, add one day to the tabular value. The sum of the values obtained in steps 1, 2, and 3 then gives the Julian day number of the date in question. Example 1: June 10, 1992 CE: 1. Century year 2. Year of the century 3. Day of the year Julian day number † 1900 ∗ 92 June 10 33 603 - 1 = 161+1 = 2 415 020 33 602 162 2 448 784 Observe that in step 2 the tabular value has been diminished by 1 because 1900 is a common year (marked with a † in Table 3.1). In step 3, the tabular value has been increased by 1 because 1992 is a leap year (marked with a ∗ in Table 3.2), and the date falls after February 28. Example 2: January 18, 1824 CE: 64 1. Century year 2. Year of the century 3. Day of the year Julian day number MODERN ALMAGEST † 1800 ∗ 24 January 18 8 766 - 1 = 18 = 2 378 496 8 765 18 2 387 279 Observe that in step 2 the tabular value has been diminished by 1 because 1800 is a common year (marked with a † in Table 3.1). In step 3, the tabular value has not been increased by 1, despite the fact that 1824 is a leap year (marked with an ∗ in Table 3.2), because the date falls before February 28. We can specify the time of day (in universal time), as well as the date, by means of fractional Julian day numbers. For instance, t = 2 448 784.0 JD corresponds to 12:00 UT on June 10, 1992 CE, whereas t = 2 448 784.5 JD corresponds to 24:00 UT later the same day. Dates 65 † 1800 † 1900 2000 2 378 496 2 415 020 2 451 544 Table 3.1: Julian Day Number: Century Years. † Common years. All years are CE. From “The History and Practice of Ancient Astronomy”, J. Evans (Oxford University Press, Oxford UK, 1998). §0 1 2 3 ∗4 5 6 7 ∗8 9 10 11 ∗ 12 13 14 15 ∗ 16 17 18 19 0 336 731 1 096 ∗ 20 1 461 1 827 2 192 2 557 ∗ 24 2 922 3 288 3 653 4 018 ∗ 28 4 383 4 749 5 114 5 479 ∗ 32 5 844 6 210 6 575 6 940 ∗ 36 21 22 23 25 26 27 29 30 31 33 34 35 37 38 39 7 305 7 671 8 036 8 401 ∗ 40 8 766 9 132 9 497 9 862 ∗ 44 10 227 10 593 10 958 11 323 ∗ 48 11 688 12 054 12 419 12 784 ∗ 52 13 149 13 515 13 880 14 245 ∗ 56 41 42 43 45 46 47 49 50 51 53 54 55 57 58 59 14 610 14 976 15 341 15 706 ∗ 60 16 071 16 437 16 802 17 167 ∗ 64 17 532 17 898 18 263 18 628 ∗ 68 18 993 19 359 19 724 20 089 ∗ 72 20 454 20 820 21 185 21 550 ∗ 76 61 62 63 65 66 67 69 70 71 73 74 75 77 78 79 21 915 22 281 22 646 22 011 ∗ 80 23 376 23 742 24 107 24 472 ∗ 84 24 837 25 203 25 568 25 933 ∗ 88 26 298 26 664 27 029 27 394 ∗ 92 27 759 28 125 28 490 28 855 ∗ 96 81 82 83 85 86 87 89 90 91 93 94 95 97 98 99 29 220 29 586 29 951 30 316 30 681 31 047 31 412 31 777 32 142 32 508 32 873 33 238 33 603 33 969 34 334 34 699 35 064 35 430 35 795 36 160 Table 3.2: Julian Day Number: Years of the Century. ∗ Leap year. § Leap year unless century is marked †. In centuries marked †, subtract one day from the tabulated values for the years 1 through 99. From “The History and Practice of Ancient Astronomy”, J. Evans (Oxford University Press, Oxford UK, 1998). 66 MODERN ALMAGEST Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 2 3 4 5 1 2 3 4 5 32 33 34 35 36 60 61 62 63 64 91 92 93 94 95 121 122 123 124 125 152 153 154 155 156 182 183 184 185 186 213 214 215 216 217 244 245 246 247 248 274 275 276 277 278 305 306 307 308 309 335 336 337 338 339 6 7 8 9 10 6 7 8 9 10 37 38 39 40 41 65 66 67 68 69 96 97 98 99 100 126 127 128 129 130 157 158 159 160 161 187 188 189 190 191 218 219 220 221 222 249 250 251 252 253 279 280 281 282 283 310 311 312 313 314 340 341 342 343 344 11 12 13 14 15 11 12 13 14 15 42 43 44 45 46 70 71 72 73 74 101 102 103 104 105 131 132 133 134 135 162 163 164 165 166 192 193 194 195 196 223 224 225 226 227 254 255 256 257 258 284 285 286 285 288 315 316 317 318 319 345 346 347 348 349 16 17 18 19 20 16 17 18 19 20 47 48 49 50 51 75 76 77 78 79 106 107 108 109 110 136 137 138 139 140 167 168 169 170 171 197 198 199 200 201 228 229 230 231 232 259 260 261 262 263 289 290 291 292 293 320 321 322 323 324 350 351 352 353 354 21 22 23 24 25 21 22 23 24 25 52 53 54 55 56 80 81 82 83 84 111 112 113 114 115 141 142 143 144 145 172 173 174 175 176 202 203 204 205 206 233 234 235 236 237 264 265 266 267 268 294 295 296 297 298 325 326 327 328 329 355 356 357 358 359 26 27 28 29 30 31 26 27 28 29 30 31 57 58 59 ∗ 85 86 87 88 89 90 116 117 118 119 120 146 147 148 149 150 151 177 178 179 180 181 207 208 209 210 211 212 238 239 240 241 242 243 269 270 271 272 273 299 300 301 302 303 304 330 331 332 333 334 360 361 362 363 364 365 Table 3.3: Julian Day Number: Days of the Year. ∗ In leap year, after February 28, add 1 to the tabulated value. From “The History and Practice of Ancient Astronomy”, J. Evans (Oxford University Press, Oxford UK, 1998). Geometric Planetary Orbit Models 67 4 Geometric Planetary Orbit Models 4.1 Introduction In this section, Kepler’s geometric model of a geocentric planetary orbit is examined in detail, and then compared to the less accurate geometric models of Hipparchus, Ptolemy, and Copernicus. In the following, all orbits are viewed from the northern ecliptic pole. 4.2 Model of Kepler Kepler’s geometric model of a heliocentric planetary orbit is summed up in his three well-known laws of planetary motion. According to Kepler’s first law, all planetary orbits are ellipses which are confocal with the sun and lie in a fixed plane. Moreover, according to Kepler’s second law, the radius vector which connects the sun to a given planet sweeps out equal areas in equal time intervals. D Q B P b r T E A C a S R Π ea Figure 4.1: A Keplerian orbit. Consider Figure 4.1. ΠPBA is half of an elliptical planetary orbit. Furthermore, C is the geometric center of the orbit, S the focus at which the sun is located, P the instantaneous position of the planet, Π the perihelion point (i.e., the planet’s point of closest approach to the sun), and A the aphelion point (i.e., the point of furthest distance from the sun). The ellipse is symmetric about ΠA, which is termed the major axis, and about CB, which is termed the minor axis. The length CA ≡ a is called the orbital major radius. The length CS represents the displacement of the sun from the geometric center of the orbit, and is generally written e a, where e is termed the orbital eccentricity, where 0 ≤ e ≤ 1. The length CB ≡ b = a (1 − e2)1/2 is called the orbital minor radius. The length SP ≡ r represents the radial distance of the planet from the sun. Finally, the angle RSP ≡ T is the angular bearing of the planet from the sun, relative to the major axis of the orbit, and is termed the true anomaly. ΠQDA is half of a circle whose geometric center is C, and whose radius is a. Hence, the circle passes through the perihelion and aphelion points. R is the point at which the perpendicular from P 68 MODERN ALMAGEST meets the major axis ΠA. The point where RP produced meets circle ΠQDA is denoted Q. Finally, the angle SCQ ≡ E is called the elliptic anomaly. Now, the equation of the ellipse ΠPBA is x 2 y2 + = 1, a2 b2 (4.1) where x and y are the perpendicular distances from the minor and major axes, respectively. Likewise, the equation of the circle ΠQDA is x′ 2 y′ 2 + 2 = 1. a2 a (4.2) y b = , y′ a (4.3) b RP = . RQ a (4.4) Hence, if x = x ′ then and it follows that Now, CS = e a. Furthermore, it is easily demonstrated that SR = r cos T , RP = r sin T , CR = a cos E, and RQ = a sin E. Consequently, Eq. (4.4) yields r sin T = b sin E = a (1 − e2)1/2 sin E. (4.5) Also, since SR = CR − CS, we have r cos T = a (cos E − e). (4.6) Taking the square root of the sum of the squares of the previous two equations, we obtain r = a (1 − e cos E), (4.7) which can be combined with Eq. (4.6) to give cos E − e . 1 − e cos E (4.8) t − t∗ Area ΠPS = , πab τ (4.9) cos T = Now, according to Kepler’s second law, where t is the time at which the planet passes point P, t∗ the time at which it passes the perihelion point, and τ the orbital period. However, Area ΠPS = Area SRP + Area ΠRP = 1 2 r cos T sin T + Area ΠRP. 2 (4.10) But, Area ΠRP = b Area ΠRQ, a (4.11) Geometric Planetary Orbit Models 69 since RP/RQ = b/a for all values of T . In addition, Area ΠRQ = Area ΠQC − Area RQC = 1 1 E a2 − a2 cos E sin E. 2 2 (4.12) Hence, we can write b a2 1 t − t∗ (E − cos E sin E). π a b = r2 cos T sin T + τ 2 a 2 (4.13) According to Eqs. (4.5) and (4.6), r sin T = b sin E, and r cos T = a (cos E − e), so the above expression reduces to M = E − e sin E, (4.14) where M= 2π τ (t − t∗ ) (4.15) is an angle which is zero at the perihelion point, increases uniformly in time, and has a repetition period which matches the period of the planetary orbit. This angle is termed the mean anomaly. In summary, the radial and angular polar coordinates, r and T , respectively, of a planet in a Keplerian orbit about the sun are specified as implicit functions of the mean anomaly, which is a linear function of time, by the following three equations: M = E − e sin E, r = a (1 − e cos E), cos T = cos E − e . 1 − e cos E (4.16) (4.17) (4.18) It turns out that the earth and the five visible planets all possess low eccentricity orbits characterized by e ≪ 1. Hence, it is a good approximation to expand the above three equations using e as a small parameter. To second-order, we get E = M + e sin M + (1/2) e2 sin 2M, (4.19) r = a (1 − e cos T − e2 sin2 T ), (4.20) T = E + e sin E + (1/4) e2 sin 2E. (4.21) Finally, these equations can be combined to give r and T as explicit functions of the mean anomaly: r a = 1 − e cos M + e2 sin2 M, (4.22) T = M + 2 e sin M + (5/4) e2 sin 2M. (4.23) 4.3 Model of Hipparchus Hipparchus’ geometric model of the apparent orbit of the sun around the earth can also be used to describe a heliocentric planetary orbit. The model is illustrated in Fig. 4.2. The orbit of the planet corresponds to the circle ΠPDA (only half of which is shown), where Π is the perihelion point, P the planet’s instantaneous position, and A the aphelion point. The diameter ΠSCA is 70 MODERN ALMAGEST the effective major axis of the orbit (to be more exact, it is the line of apsides), where C is the geometric center of circle ΠPDA, and S the fixed position of the sun. The radius CP of circle ΠPDA is the effective major radius, a, of the orbit. The distance SC is equal to 2 e a, where e is the orbit’s effective eccentricity. The angle PCΠ is identified with the mean anomaly, M, and increases linearly in time. In other words, as seen from C, the planet P moves uniformly around circle ΠPDA in a counterclockwise direction. Finally, SP is the radial distance, r, of the planet from the sun, and angle PSΠ is the planet’s true anomaly, T . D P L T M A S C Π K Figure 4.2: A Hipparchian orbit. Let us draw the straight-line KSL parallel to CP, and passing through point S, and then complete the rectangle PCKL. Simple geometry reveals that CK = PL = 2 e a sin M, KS = 2 e a cos M, and SL = a − 2 e a cos M. Moreover, SP2 = SL2 + PL2, which implies that r = (1 − 4 e cos M + 4 e2)1/2. a (4.24) Now, T = M + q, where q is angle PSL. However, sin q = PL 2 e sin M = . SP (1 − 4 e cos M + 4 e2)1/2 (4.25) Finally, expanding the previous two equations to second-order in the small parameter e, we obtain r = 1 − 2 e cos M + 2 e2 sin2 M, (4.26) a T = M + 2 e sin M + 2 e2 sin 2M. (4.27) It can be seen, by comparison with Eqs. (4.22) and (4.23), that the relative radial distance, r/a, in the Hipparchian model deviates from that in the (correct) Keplerian model to first-order in e (in fact, the variation of r/a is greater by a factor of 2 in the former model), whereas the true Geometric Planetary Orbit Models 71 anomaly, T , only deviates to second-order in e. We conclude that Hipparchus’ geometric model of a heliocentric planetary orbit does a reasonably good job at predicting the angular position of the planet, relative to the sun, but significantly exaggerates (by a factor of 2) the variation in the radial distance between the two during the course of a complete orbital rotation. 4.4 Model of Ptolemy Ptolemy’s geometric model of the motion of the center of an epicycle around a deferent can also be used to describe a heliocentric planetary orbit. The model is illustrated in Fig. 4.3. The orbit of the planet corresponds to the circle ΠPDA (only half of which is shown), where Π is the perihelion point, P the planet’s instantaneous position, and A the aphelion point. The diameter ΠSCQA is the effective major axis of the orbit, where C is the geometric center of circle ΠPDA, S the fixed position of the sun, and Q the location of the so-called equant. The radius CP of circle ΠPDA is the effective major radius, a, of the orbit. The distances SC and CQ are both equal to e a, where e is the orbit’s effective eccentricity. The angle PQΠ is identified with the mean anomaly, M, and increases linearly in time. In other words, as seen from Q, the planet P moves uniformly around circle ΠPDA in a counterclockwise direction. Finally, SP is the radial distance, r, of the planet from the sun, and angle PSΠ is the planet’s true anomaly, T . D P L A Q M C T S Π K Figure 4.3: A Ptolemaic orbit. Let us draw the straight-line KSL parallel to QP, and passing through point S, and then complete the rectangle PQKL. Simple geometry reveals that QK = PL = 2 e a sin M, KS = 2 e a cos M, and SL = ρ − 2 e a cos M, where ρ = QP. The cosine rule applied to triangle CQP yields CP2 = CQ2 + QP2 − 2 CQ QP cos M, or ρ2 − 2 e a cos M ρ − a2 (1 − e2) = 0, which can be solved to give ρ/a = e cos M + (1 − e2 sin2 M)1/2. Moreover, SP2 = SL2 + PL2, which implies that r = [1 − 2 e cos M (1 − e2 sin2 M)1/2 + e2 + 2 e2 sin2 M]1/2. a (4.28) 72 MODERN ALMAGEST Now, T = M + q, where q is angle PSL. However, sin q = PL 2 e sin M . = 2 SP [1 − 2 e cos M (1 − e sin2 M)1/2 + e2 + 2 e2 sin2 M]1/2 (4.29) Finally, expanding the previous two equations to second-order in the small parameter e, we obtain r a = 1 − e cos M + (3/2) e2 sin2 M, (4.30) T = M + 2 e sin M + e2 sin 2M. (4.31) It can be seen, by comparison with Eqs. (4.22)–(4.23) and (4.26)–(4.27), that Ptolemy’s geometric model of a heliocentric planetary orbit is significantly more accurate than Hipparchus’ model, since the relative radial distance, r/a, and the true anomaly, T , in the former model both only deviate from those in the (correct) Keplerian model to second-order in e. 4.5 Model of Copernicus Copernicus’ geometric model of a heliocentric planetary orbit is illustrated in Fig. 4.4. The planet P rotates on a circular epicycle YP whose center X moves around the sun on the eccentric circle ΠXDA (only half of which is shown). The diameter ΠSCA is the effective major axis of the orbit, where C is the geometric center of circle ΠXDA, and S the fixed position of the sun. When X is at Π or A the planet is at its perihelion or aphelion points, respectively. The radius CX of circle ΠXDA is the effective major radius, a, of the orbit. The distance SC is equal to (3/2) e a, where e is the orbit’s effective eccentricity. Moreover, the radius XP of the epicycle is equal to (1/2) e a. The angle XCΠ is identified with the mean anomaly, M, and increases linearly in time. In other words, as seen from C, the center of the epicycle X moves uniformly around circle ΠXDA in a counterclockwise direction. The angle PXY, where Y is point at which CX produced meets the epicycle, is equal to the mean anomaly M. In other words, the planet P moves uniformly around the epicycle YP, in an counterclockwise direction, at twice the speed that point X moves around circle ΠXDA. Finally, SP is the radial distance, r, of the planet from the sun, and angle PSΠ is the planet’s true anomaly, T . Let us draw the straight-line KSL parallel to CX, and passing through point S, and then complete the rectangle XCKL. Simple geometry reveals that CK = XL = (3/2) e a sin M, KS = (3/2) e a cos M, and SL = a − (3/2) e a cos M. Let PZ be drawn normal to XY, and let it meet KSL produced at point W. Simple geometry reveals that ZW = XL, ZP = (1/2) e a sin M, and XZ = LW = (1/2) e a cos M. It follows that WP = ZW + ZP = XL + ZP = 2 e a sin M, and SW = SL + LW = SL + XZ = a − e a cos M. Moreover, SP2 = SW 2 + WP2, which implies that r = (1 − 2 e cos M + e2 + 3 e2 sin2 M)1/2. a (4.32) Now, T = M + q, where q is angle PSW. However, sin q = 2 e sin M WP = . SP (1 − 2 e cos M + e2 + 3 e2 sin2 M)1/2 (4.33) Geometric Planetary Orbit Models 73 D P X Y Z L M A T S C W Π K Figure 4.4: A Copernican orbit. Finally, expanding the previous two equations to second-order in the small parameter e, we obtain r a = 1 − e cos M + 2 e2 sin2 M, (4.34) T = M + 2 e sin M + e2 sin 2M. (4.35) It can be seen, by comparison with Eqs. (4.22)–(4.23) and (4.30)–(4.31), that, as is the case for Ptolemy’s model, both the relative radial distance, r/a, and the true anomaly, T , in Copernicus’ geometric model of a heliocentric planetary orbit only deviate from those in the (correct) Keplerian model to second-order in e. However, the deviation in the Ptolemaic model is slightly smaller than that in the Copernican model. To be more exact, the maximum deviation in r/a is (1/2) e2 in the former model, and e2 in the latter. On the other hand, the maximum deviation in T is (1/4) e2 in both models. 74 MODERN ALMAGEST The Sun 75 5 The Sun 5.1 Determination of Ecliptic Longitude Our solar longitude model is sketched in Figure 5.1. From a geocentric point of view, the sun, S, appears to execute a (counterclockwise) Keplerian orbit of major radius a, and eccentricity e, about the earth, G. As has already been mentioned, the circle traced out by the sun on the celestial sphere is known as the ecliptic circle. This circle is inclined at 23◦ 26 ′ to the celestial equator, which is the projection of the earth’s equator onto the celestial sphere. Suppose that the angle subtended at the earth between the vernal equinox (i.e., the point at which the ecliptic crosses the celestial equator from south to north) and the sun’s perigee (i.e., the point of closest approach to the earth) is ̟. This angle is termed the longitude of the perigee, and is assumed to vary linearly with time: i.e., (5.1) ̟ = ̟0 + ̟1 (t − t0). S A G λ T ̟ Π Υ Figure 5.1: The apparent orbit of the sun about the earth. Here, S, G, Π, A, ̟, T , λ, and Υ represent the sun, earth, perigee, apogee, longitude of the perigee, true anomaly, ecliptic longitude, and vernal equinox, respectively. View is from northern ecliptic pole. The sun orbits counterclockwise. The sun’s ecliptic longitude is defined as the angle subtended at the earth between the vernal equinox and the sun. Hence, from Fig. 5.1, λ = ̟ + T, (5.2) where T is the true anomaly (see Cha. 4). By analogy, the mean longitude is written λ̄ = ̟ + M, (5.3) 76 MODERN ALMAGEST where M is the mean anomaly (see Cha. 4). It follows from Eq. (4.23) that λ = λ̄ + q, (5.4) q = 2 e sin M + (5/4) e2 sin 2M, (5.5) where is called the equation of center. Note that λ, λ̄, T , and M are usually written as angles in the range 0◦ to 360◦ , whereas q is generally written as an angle in the range −180◦ to +180◦ . The mean longitude increases uniformly with time (since both ̟ and M increase uniformly with time) as λ̄ = λ̄0 + n (t − t0), (5.6) where λ̄0 is termed the mean longitude at epoch, n the rate of motion in mean longitude, and t0 the epoch. We can also write M = M0 + ñ (t − t0), (5.7) where M0 = λ̄0 − ̟0 (5.8) ñ = n − ̟1 (5.9) is called the mean anomaly at epoch, and the rate of motion in mean anomaly. Our procedure for determining the ecliptic longitude of the sun is described below. The requisite orbital elements (i.e., e, n, ñ, λ̄0, and M0) for the J2000 epoch (i.e., 12:00 UT on January 1, 2000 CE, which corresponds to t0 = 2 451 545.0 JD) are listed in Table 5.1. These elements are calculated on the assumption that the vernal equinox precesses at the uniform rate of −3.8246 × 10−5 ◦ /day. The ecliptic longitude of the sun is specified by the following formulae: λ̄ = λ̄0 + n (t − t0), (5.10) M = M0 + ñ (t − t0), (5.11) q = 2 e sin M + (5/4) e2 sin 2M, (5.12) λ = λ̄ + q. (5.13) These formulae are capable of matching NASA ephemeris data during the years 1995–2006 CE (see http://ssd.jpl.nasa.gov/) with a mean error of 0.2 ′ and a maximum error of 0.7 ′ . The ecliptic longitude of the sun can be calculated with the aid of Tables 5.3 and 5.4. Table 5.3 allows the mean longitude, λ̄, and mean anomaly, M, of the sun to be determined as functions of time. Table 5.4 specifies the equation of center, q, as a function of the mean anomaly. The procedure for using the tables is as follows: 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the sun’s ecliptic longitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t−t0, where t0 = 2 451 545.0 is the epoch. The Sun 77 2. Enter Table 5.3 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆λ̄ and ∆M. If ∆t is negative then the corresponding values are also negative. The value of the mean longitude, λ̄, is the sum of all the ∆λ̄ values plus the value of λ̄ at the epoch. Likewise, the value of the mean anomaly, M, is the sum of all the ∆M values plus the value of M at the epoch. Add as many multiples of 360◦ to λ̄ and M as is required to make them both fall in the range 0◦ to 360◦ . Round M to the nearest degree. 3. Enter Table 5.4 with the value of M and take out the corresponding value of the equation of center, q, and the radial anomaly, ζ. (The latter step is only necessary if the ecliptic longitude of the sun is to be used to determine that of a planet.) It is necessary to interpolate if M is odd. 4. The ecliptic longitude, λ, is the sum of the mean longitude, λ̄, and the equation of center, q. If necessary, convert λ into an angle in the range 0◦ to 360◦ . The decimal fraction can be converted into arc minutes using Table 5.2. Round to the nearest arc minute. Two examples of the use of this procedure are given below. 5.2 Example Longitude Calculations Example 1: May 5, 2005 CE, 00:00 UT: According to Tables 3.1–3.3, t = 2 453 495.5 JD. Hence, t − t0 = 2 453 495.5 − 2 451 545.0 = 1 950.5 JD. Making use of Table 5.3, we find: t(JD) λ̄(◦ ) M(◦ ) +1000 +900 +50 +.5 Epoch 265.647 167.083 49.280 0.493 280.458 762.961 42.961 265.600 167.040 49.280 0.493 357.588 840.001 120.001 Modulus Rounding the mean anomaly to the nearest degree, we obtain M ≃ 120◦ . It follows from Table 5.4 that q(120◦ ) = 1.641◦ , so λ = λ̄ + q = 42.961 + 1.641 = 44.602 ≃ 44◦ 36 ′ . Here, we have converted the decimal fraction into arc minutes using Table 5.2, and then rounded the final result to the nearest arc minute. Following the practice of the Ancient Greeks (and modern-day astrologers), we shall express ecliptic longitudes in terms of the signs of the zodiac, which are listed in Sect. 2.6. The ecliptic longitude 44◦ 36 ′ is conventionally written 14TA36: i.e., 14◦ 36 ′ into the sign of Taurus. Thus, we conclude that the position of the sun at 00:00 UT on May 5, 2005 CE was 14TA36. 78 MODERN ALMAGEST Example 2: December 25, 1800 CE, 00:00 UT: According to Tables 3.1–3.3, t = 2 378 854.5 JD. Hence, t−t0 = 2 378 854.5−2 451 545.0 = −72 690.5 JD. Making use of Table 5.3, we find: t(JD) λ̄(◦ ) M(◦ ) -70,000 -2,000 -600 -90 -.5 Epoch −235.315 −171.295 −231.388 −88.708 −0.493 280.458 −446.741 273.259 −232.017 −171.200 −231.360 −88.704 −0.493 357.588 −366.186 353.814 Modulus We conclude that M ≃ 354◦ . From Table 5.4, q(354◦ ) = −0.204◦ , so λ = λ̄ + q = 273.259 − 0.204 = 273.055 ≃ 273◦ 03 ′ . Thus, the position of the sun at 00:00 UT on December 25, 1800 CE was 3CP03. 5.3 Determination of Equinox and Solstice Dates We can also use Tables 5.3 and 5.4 to calculate the dates of the equinoxes and solstices, and, hence, the lengths of the seasons, in a given year. The vernal equinox (i.e., the point on the sun’s apparent orbit at which it passes through the celestial equator from south to north) corresponds to λ = 0◦ , the summer solstice (i.e., the point at which the sun is furthest north of the celestial equator) to λ = 90◦ , the autumnal equinox (i.e., the point at which the sun passes through the celestial equator from north to south) to λ = 180◦ , and the winter solstice (i.e., the point at which the sun is furthest south of the celestial equator) to λ = 270◦ —see Fig. 5.2. Furthermore, spring is defined as the period between the spring equinox and the summer solstice, summer as the period between the summer solstice and the autumnal equinox, autumn as the period between the autumnal equinox and the winter solstice, and winter as the period between the winter solstice and the following vernal equinox. Consider the year 2000 CE. For the case of the vernal equinox, we can first estimate the time at which this event takes place by approximating the solar longitude as the mean solar longitude: i.e., λ ≃ λ̄ = λ̄0 + n (t − t0) = 280.458 + 0.98564735 (t − t0), We obtain t ≃ t0 + (360 − 280.458)/0.98564735 ≃ t0 + 81 JD. Calculating the true solar longitude at this time, using Tables 5.3 and 5.4, we get λ = 2.177◦ . Now, the actual vernal equinox occurs when λ = 0◦ . Thus, a much better estimate for the date of the The Sun 79 SS 93.6 92.8 A C AE λ G VE Π 88.9 89.9 WS Figure 5.2: The sun’s apparent orbit around the earth, G, showing the vernal equinox (VE), summer solstice (SS), autumnal equinox (AE), and winter solstice (WS). Here, λ, Π, A, and C are the ecliptic longitude, perigee, apogee, and geometric center of the orbit, respectively. The lengths of the seasons (in days) are indicated. vernal equinox is t = t0 + 81 − 2.177/0.98564735 ≃ t0 + 78.8 JD, which corresponds to 7:00 UT on March 20. Similar calculations show that the summer solstice takes place at t = t0 + 171.6 JD, corresponding to 2:00 UT on June 21, that the autumnal equinox takes place at t = t0 + 265.2 JD, corresponding to 17:00 UT on September 22, and that the winter solstice takes place at t = t0 + 355.1 JD, corresponding to 14:00 UT on December 21. Thus, the length of spring is 92.8 days, the length of summer 93.6 days, and the length of autumn 89.9 days. Finally, the length of winter is the length of the tropical year (i.e., the time period between successive vernal equinoxes), which is 360/0.98564735 = 325.24 days, minus the sum of the lengths of the other three seasons. This gives 88.9 days. Figure 5.2 illustrates the relationship between the equinox and solstice points, and the lengths of the seasons. The earth is displaced from the geometric center of the sun’s apparent orbit in the direction of the solar perigee, which presently lies between the winter solstice and the vernal 80 MODERN ALMAGEST equinox. This displacement (which is greatly exaggerated in the figure) has two effects. Firstly, it causes the arc of the sun’s apparent orbit between the summer solstice and autumnal equinox to be longer than that between the winter solstice and the vernal equinox. Secondly, it causes the sun to appear to move faster in winter than in summer, in accordance with Kepler’s second law, since the sun is closer to the earth in the former season. Both of these effects tend to lengthen summer, and shorten winter. Hence, summer is presently the longest season, and winter the shortest. 5.4 Equation of Time At any particular observation site on the earth’s surface, local noon is defined as the instant in time when the sun culminates at the meridian. However, as a consequence of the inclination of the ecliptic to the celestial equatior, as well as the uneven motion of the sun around the ecliptic, the time interval between successive local noons, which is known as a solar day, is not constant, but varies throughout the year. Hence, if we were to define a second as 1/86, 400 of a solar day then the length of a second would also vary throughout the year, which is clearly undesirable. In order to avoid this problem, astronomers have invented a fictitious body called the mean sun. The mean sun travels around the celestial equator (from west to east) at a constant rate which is such that it completes one orbit every tropical year. Moreover, the mean sun and the true sun coincide at the spring equinox. Local mean noon at a particular observation site is defined as the instance in time when the mean sun culminates at the meridian. Since the orbit of the mean sun is not inclined to the celestial equator, and the mean sun travels around the celestial equator at a uniform rate, the time interval between successive mean noons, which is known as a mean solar day, takes the constant value of 24 hours, or 86,400 seconds, throughout the year. Universal time (UT) is defined such that 12:00 UT coincides with mean noon every day at an observation site of terrestrial longitude 0◦ . If we define local time (LT) as LT = UT − φ(◦ )/15◦ hrs., where φ is the terrestrial longitude of the observation site, then 12:00 LT coincides with mean noon every day at a general observation site on the earth’s surface. According to the above definition, the right ascension, ᾱ, of the mean sun satisfies ᾱ = λ̄, (5.14) where λ̄ is the sun’s mean ecliptic longitude. Moreover, it follows from Eqs. (2.16) and (5.4) that the right ascension of the true sun is given by tan α = cos ǫ tan(λ̄ + q), (5.15) where ǫ is the inclination of the ecliptic to the celestial equator, q(M) the sun’s equation of center, and M its mean anomaly. Now, neglecting the small time variation of the longitude of the sun’s perigee [i.e., setting ̟1 = 0 in Eq. (5.1)], we can write [see Eqs. (5.6), (5.7), and (5.9), as well as Table 5.1] M = λ̄ + M0 − λ̄0 = λ̄ + 77.213◦ . (5.16) It follows that, to first order in the solar eccentricity, e, we have ∆α = ᾱ − α = λ − tan−1(cos ǫ tan λ) − 2 e sin M, (5.17) M = λ + 77.213◦ . (5.18) where The Sun 81 Now, ∆t = ∆α(◦ )/15◦ (5.19) represents the time difference (in hours) between local noon and mean local noon (since right ascension crosses the meridian at the uniform rate of 15◦ an hour), and is known as the equation of time. If ∆t is positive then local noon occurs before mean local noon, and vice versa. The equation of time specifies the difference between time calculated using a sundial or sextant— which is known as solar time—and time obtained from an accurate clock—which is known as mean solar time. Table 5.5 shows the equation of time as a function of the sun’s ecliptic longitude. It can be seen that the difference between solar time and mean solar time can be as much as 16 minutes, and attains its maximum value between the autumnal equinox and the winter solstice, and its minimum value between the winter solstice and vernal equinox. 82 MODERN ALMAGEST Object Mercury Venus Sun Mars Jupiter Saturn a (AU) 0.387098 0.723334 1.000000 1.523706 5.202873 9.536651 e 0.205636 0.006777 0.016711 0.093394 0.048386 0.053862 n (◦ /day) 4.09237703 1.60216872 0.98564735 0.52407118 0.08312507 0.03350830 ñ (◦ /day) 4.09233439 1.60213040 0.98560025 0.52402076 0.08308100 0.03348152 λ̄0 (◦ ) 252.087 181.973 280.458 355.460 34.365 50.059 M0 (◦ ) 174.693 49.237 357.588 19.388 19.348 317.857 Table 5.1: Keplerian orbital elements for the sun and the five visible planets at the J2000 epoch (i.e., 12:00 UT, January 1, 2000 CE, which corresponds to t0 = 2 451 545.0 JD). The elements are optimized for use in the time period 1800 CE to 2050 CE. Source: Jet Propulsion Laboratory (NASA), http://ssd.jpl.nasa.gov/. The motion rates have been converted into tropical motion rates assuming a uniform precession of the equinoxes of 3.8246 × 10−5 ◦ /day. The Sun 83 00.0 ′ 00.2 ′ 00.4 ′ 00.6 ′ 00.8 ′ 01.0 ′ 01.2 ′ 01.4 ′ 01.6 ′ 01.8 ′ 02.0 ′ 02.2 ′ 02.4 ′ 02.6 ′ 02.8 ′ 03.0 ′ 03.2 ′ 03.4 ′ 03.6 ′ 03.8 ′ 04.0 ′ 04.2 ′ 04.4 ′ 04.6 ′ 04.8 ′ 05.0 ′ 05.2 ′ 05.4 ′ 05.6 ′ 05.8 ′ 06.0 ′ 06.2 ′ 06.4 ′ 06.6 ′ 06.8 ′ 07.0 ′ 07.2 ′ 07.4 ′ 07.6 ′ 07.8 ′ 08.0 ′ 08.2 ′ 08.4 ′ 08.6 ′ 08.8 ′ 09.0 ′ 09.2 ′ 09.4 ′ 09.6 ′ 09.8 ′ .000 .003 .007 .010 .013 .017 .020 .023 .027 .030 .033 .037 .040 .043 .047 .050 .053 .057 .060 .063 .067 .070 .073 .077 .080 .083 .087 .090 .093 .097 .100 .103 .107 .110 .113 .117 .120 .123 .127 .130 .133 .137 .140 .143 .147 .150 .153 .157 .160 .163 10.0 ′ 10.2 ′ 10.4 ′ 10.6 ′ 10.8 ′ 11.0 ′ 11.2 ′ 11.4 ′ 11.6 ′ 11.8 ′ 12.0 ′ 12.2 ′ 12.4 ′ 12.6 ′ 12.8 ′ 13.0 ′ 13.2 ′ 13.4 ′ 13.6 ′ 13.8 ′ 14.0 ′ 14.2 ′ 14.4 ′ 14.6 ′ 14.8 ′ 15.0 ′ 15.2 ′ 15.4 ′ 15.6 ′ 15.8 ′ 16.0 ′ 16.2 ′ 16.4 ′ 16.6 ′ 16.8 ′ 17.0 ′ 17.2 ′ 17.4 ′ 17.6 ′ 17.8 ′ 18.0 ′ 18.2 ′ 18.4 ′ 18.6 ′ 18.8 ′ 19.0 ′ 19.2 ′ 19.4 ′ 19.6 ′ 19.8 ′ .167 .170 .173 .177 .180 .183 .187 .190 .193 .197 .200 .203 .207 .210 .213 .217 .220 .223 .227 .230 .233 .237 .240 .243 .247 .250 .253 .257 .260 .263 .267 .270 .273 .277 .280 .283 .287 .290 .293 .297 .300 .303 .307 .310 .313 .317 .320 .323 .327 .330 20.0 ′ 20.2 ′ 20.4 ′ 20.6 ′ 20.8 ′ 21.0 ′ 21.2 ′ 21.4 ′ 21.6 ′ 21.8 ′ 22.0 ′ 22.2 ′ 22.4 ′ 22.6 ′ 22.8 ′ 23.0 ′ 23.2 ′ 23.4 ′ 23.6 ′ 23.8 ′ 24.0 ′ 24.2 ′ 24.4 ′ 24.6 ′ 24.8 ′ 25.0 ′ 25.2 ′ 25.4 ′ 25.6 ′ 25.8 ′ 26.0 ′ 26.2 ′ 26.4 ′ 26.6 ′ 26.8 ′ 27.0 ′ 27.2 ′ 27.4 ′ 27.6 ′ 27.8 ′ 28.0 ′ 28.2 ′ 28.4 ′ 28.6 ′ 28.8 ′ 29.0 ′ 29.2 ′ 29.4 ′ 29.6 ′ 29.8 ′ .333 .337 .340 .343 .347 .350 .353 .357 .360 .363 .367 .370 .373 .377 .380 .383 .387 .390 .393 .397 .400 .403 .407 .410 .413 .417 .420 .423 .427 .430 .433 .437 .440 .443 .447 .450 .453 .457 .460 .463 .467 .470 .473 .477 .480 .483 .487 .490 .493 .497 30.0 ′ 30.2 ′ 30.4 ′ 30.6 ′ 30.8 ′ 31.0 ′ 31.2 ′ 31.4 ′ 31.6 ′ 31.8 ′ 32.0 ′ 32.2 ′ 32.4 ′ 32.6 ′ 32.8 ′ 33.0 ′ 33.2 ′ 33.4 ′ 33.6 ′ 33.8 ′ 34.0 ′ 34.2 ′ 34.4 ′ 34.6 ′ 34.8 ′ 35.0 ′ 35.2 ′ 35.4 ′ 35.6 ′ 35.8 ′ 36.0 ′ 36.2 ′ 36.4 ′ 36.6 ′ 36.8 ′ 37.0 ′ 37.2 ′ 37.4 ′ 37.6 ′ 37.8 ′ 38.0 ′ 38.2 ′ 38.4 ′ 38.6 ′ 38.8 ′ 39.0 ′ 39.2 ′ 39.4 ′ 39.6 ′ 39.8 ′ .500 .503 .507 .510 .513 .517 .520 .523 .527 .530 .533 .537 .540 .543 .547 .550 .553 .557 .560 .563 .567 .570 .573 .577 .580 .583 .587 .590 .593 .597 .600 .603 .607 .610 .613 .617 .620 .623 .627 .630 .633 .637 .640 .643 .647 .650 .653 .657 .660 .663 40.0 ′ 40.2 ′ 40.4 ′ 40.6 ′ 40.8 ′ 41.0 ′ 41.2 ′ 41.4 ′ 41.6 ′ 41.8 ′ 42.0 ′ 42.2 ′ 42.4 ′ 42.6 ′ 42.8 ′ 43.0 ′ 43.2 ′ 43.4 ′ 43.6 ′ 43.8 ′ 44.0 ′ 44.2 ′ 44.4 ′ 44.6 ′ 44.8 ′ 45.0 ′ 45.2 ′ 45.4 ′ 45.6 ′ 45.8 ′ 46.0 ′ 46.2 ′ 46.4 ′ 46.6 ′ 46.8 ′ 47.0 ′ 47.2 ′ 47.4 ′ 47.6 ′ 47.8 ′ 48.0 ′ 48.2 ′ 48.4 ′ 48.6 ′ 48.8 ′ 49.0 ′ 49.2 ′ 49.4 ′ 49.6 ′ 49.8 ′ .667 .670 .673 .677 .680 .683 .687 .690 .693 .697 .700 .703 .707 .710 .713 .717 .720 .723 .727 .730 .733 .737 .740 .743 .747 .750 .753 .757 .760 .763 .767 .770 .773 .777 .780 .783 .787 .790 .793 .797 .800 .803 .807 .810 .813 .817 .820 .823 .827 .830 50.0 ′ 50.2 ′ 50.4 ′ 50.6 ′ 50.8 ′ 51.0 ′ 51.2 ′ 51.4 ′ 51.6 ′ 51.8 ′ 52.0 ′ 52.2 ′ 52.4 ′ 52.6 ′ 52.8 ′ 53.0 ′ 53.2 ′ 53.4 ′ 53.6 ′ 53.8 ′ 54.0 ′ 54.2 ′ 54.4 ′ 54.6 ′ 54.8 ′ 55.0 ′ 55.2 ′ 55.4 ′ 55.6 ′ 55.8 ′ 56.0 ′ 56.2 ′ 56.4 ′ 56.6 ′ 56.8 ′ 57.0 ′ 57.2 ′ 57.4 ′ 57.6 ′ 57.8 ′ 58.0 ′ 58.2 ′ 58.4 ′ 58.6 ′ 58.8 ′ 59.0 ′ 59.2 ′ 59.4 ′ 59.6 ′ 59.8 ′ Table 5.2: Arc minute to decimal fraction conversion table. .833 .837 .840 .843 .847 .850 .853 .857 .860 .863 .867 .870 .873 .877 .880 .883 .887 .890 .893 .897 .900 .903 .907 .910 .913 .917 .920 .923 .927 .930 .933 .937 .940 .943 .947 .950 .953 .957 .960 .963 .967 .970 .973 .977 .980 .983 .987 .990 .993 .997 84 MODERN ALMAGEST ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 136.474 272.947 49.421 185.894 322.367 98.841 235.315 11.788 148.262 136.002 272.005 48.007 184.010 320.012 96.015 232.017 8.020 144.022 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 265.647 171.295 76.942 342.589 248.237 153.884 59.531 325.179 230.826 265.600 171.200 76.801 342.401 248.001 153.601 59.202 324.802 230.402 100 200 300 400 500 600 700 800 900 98.565 197.129 295.694 34.259 132.824 231.388 329.953 68.518 167.083 98.560 197.120 295.680 34.240 132.800 231.360 329.920 68.480 167.040 10 20 30 40 50 60 70 80 90 9.856 19.713 29.569 39.426 49.282 59.139 68.995 78.852 88.708 9.856 19.712 29.568 39.424 49.280 59.136 68.992 78.848 88.704 1 2 3 4 5 6 7 8 9 0.986 1.971 2.957 3.943 4.928 5.914 6.900 7.885 8.871 0.986 1.971 2.957 3.942 4.928 5.914 6.899 7.885 8.870 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.099 0.197 0.296 0.394 0.493 0.591 0.690 0.789 0.887 0.099 0.197 0.296 0.394 0.493 0.591 0.690 0.788 0.887 Table 5.3: Mean motion of the sun. Here, ∆t = t − t0, ∆λ̄ = λ̄ − λ̄0, and ∆M = M − M0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 280.458◦ , and M0 = 357.588◦ . The Sun 85 M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 0.000 0.068 0.136 0.204 0.272 0.339 0.406 0.473 0.538 0.604 0.668 0.731 0.794 0.855 0.916 0.975 1.033 1.089 1.145 1.198 1.251 1.301 1.350 1.397 1.443 1.487 1.528 1.568 1.606 1.642 1.676 1.707 1.737 1.764 1.789 1.812 1.833 1.851 1.867 1.881 1.893 1.902 1.909 1.913 1.915 1.915 1.671 1.670 1.667 1.662 1.654 1.645 1.633 1.620 1.604 1.587 1.567 1.545 1.522 1.497 1.469 1.440 1.409 1.377 1.342 1.306 1.269 1.229 1.189 1.146 1.103 1.058 1.011 0.964 0.915 0.865 0.815 0.763 0.710 0.656 0.602 0.547 0.491 0.435 0.378 0.321 0.263 0.205 0.147 0.089 0.030 -0.028 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 1.915 1.912 1.907 1.900 1.891 1.879 1.865 1.849 1.830 1.809 1.787 1.762 1.735 1.705 1.674 1.641 1.606 1.569 1.530 1.490 1.447 1.403 1.358 1.310 1.261 1.211 1.160 1.107 1.052 0.997 0.940 0.882 0.824 0.764 0.703 0.642 0.580 0.517 0.454 0.390 0.326 0.261 0.196 0.131 0.065 0.000 -0.028 -0.086 -0.144 -0.202 -0.260 -0.317 -0.374 -0.431 -0.486 -0.542 -0.596 -0.650 -0.703 -0.755 -0.806 -0.856 -0.906 -0.954 -1.001 -1.046 -1.091 -1.134 -1.175 -1.216 -1.254 -1.292 -1.327 -1.362 -1.394 -1.425 -1.454 -1.482 -1.507 -1.531 -1.553 -1.574 -1.592 -1.608 -1.623 -1.636 -1.647 -1.655 -1.662 -1.667 -1.670 -1.671 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 0.000 -0.065 -0.131 -0.196 -0.261 -0.326 -0.390 -0.454 -0.517 -0.580 -0.642 -0.703 -0.764 -0.824 -0.882 -0.940 -0.997 -1.052 -1.107 -1.160 -1.211 -1.261 -1.310 -1.358 -1.403 -1.447 -1.490 -1.530 -1.569 -1.606 -1.641 -1.674 -1.705 -1.735 -1.762 -1.787 -1.809 -1.830 -1.849 -1.865 -1.879 -1.891 -1.900 -1.907 -1.912 -1.915 -1.671 -1.670 -1.667 -1.662 -1.655 -1.647 -1.636 -1.623 -1.608 -1.592 -1.574 -1.553 -1.531 -1.507 -1.482 -1.454 -1.425 -1.394 -1.362 -1.327 -1.292 -1.254 -1.216 -1.175 -1.134 -1.091 -1.046 -1.001 -0.954 -0.906 -0.856 -0.806 -0.755 -0.703 -0.650 -0.596 -0.542 -0.486 -0.431 -0.374 -0.317 -0.260 -0.202 -0.144 -0.086 -0.028 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 -1.915 -1.915 -1.913 -1.909 -1.902 -1.893 -1.881 -1.867 -1.851 -1.833 -1.812 -1.789 -1.764 -1.737 -1.707 -1.676 -1.642 -1.606 -1.568 -1.528 -1.487 -1.443 -1.397 -1.350 -1.301 -1.251 -1.198 -1.145 -1.089 -1.033 -0.975 -0.916 -0.855 -0.794 -0.731 -0.668 -0.604 -0.538 -0.473 -0.406 -0.339 -0.272 -0.204 -0.136 -0.068 -0.000 -0.028 0.030 0.089 0.147 0.205 0.263 0.321 0.378 0.435 0.491 0.547 0.602 0.656 0.710 0.763 0.815 0.865 0.915 0.964 1.011 1.058 1.103 1.146 1.189 1.229 1.269 1.306 1.342 1.377 1.409 1.440 1.469 1.497 1.522 1.545 1.567 1.587 1.604 1.620 1.633 1.645 1.654 1.662 1.667 1.670 1.671 Table 5.4: Anomalies of the sun. 86 MODERN ALMAGEST λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Aries ∆t -07m 28s -06m 51s -06m 15s -05m 38s -05m 01s -04m 24s -03m 48s -03m 12s -02m 36s -02m 01s -01m 28s +00m 55s +00m 23s +00m 06s +00m 34s +01m 02s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Taurus ∆t +01m 02s +01m 27s +01m 50s +02m 12s +02m 31s +02m 48s +03m 03s +03m 16s +03m 26s +03m 34s +03m 40s +03m 43s +03m 43s +03m 41s +03m 37s +03m 30s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Gemini ∆t +03m 30s +03m 21s +03m 10s +02m 56s +02m 41s +02m 23s +02m 04s +01m 43s +01m 20s +00m 57s +00m 32s +00m 06s +00m 20s +00m 47s -01m 14s -01m 42s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Libra ∆t +07m 28s +08m 10s +08m 53s +09m 34s +10m 14s +10m 53s +11m 30s +12m 06s +12m 41s +13m 13s +13m 43s +14m 12s +14m 38s +15m 01s +15m 22s +15m 40s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Scorpio ∆t +15m 40s +15m 55s +16m 08s +16m 17s +16m 23s +16m 26s +16m 26s +16m 23s +16m 16s +16m 06s +15m 52s +15m 36s +15m 15s +14m 52s +14m 25s +13m 55s Sagittarius λ ∆t ◦ 00 +13m 55s ◦ 02 +13m 22s ◦ 04 +12m 46s ◦ 06 +12m 08s ◦ 08 +11m 26s ◦ 10 +10m 42s ◦ 12 +09m 55s ◦ 14 +09m 07s ◦ 16 +08m 16s ◦ 18 +07m 23s ◦ 20 +06m 29s ◦ 22 +05m 33s ◦ 24 +04m 37s ◦ 26 +03m 39s ◦ 28 +02m 41s ◦ 30 +01m 42s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Cancer ∆t -01m 42s -02m 09s -02m 36s -03m 03s -03m 29s -03m 53s -04m 17s -04m 39s -05m 00s -05m 19s -05m 35s -05m 50s -06m 03s -06m 14s -06m 22s -06m 27s Capricorn λ ∆t ◦ 00 +01m 42s ◦ 02 +00m 43s ◦ 04 +00m 15s ◦ 06 -01m 13s ◦ 08 -02m 11s ◦ 10 -03m 07s ◦ 12 -04m 03s ◦ 14 -04m 57s ◦ 16 -05m 50s ◦ 18 -06m 41s ◦ 20 -07m 30s ◦ 22 -08m 16s ◦ 24 -09m 01s ◦ 26 -09m 42s ◦ 28 -10m 22s ◦ 30 -10m 58s Leo ∆t -06m 27s -06m 30s -06m 31s -06m 29s -06m 24s -06m 16s -06m 06s -05m 54s -05m 38s -05m 20s -05m 00s -04m 37s -04m 12s -03m 45s -03m 15s -02m 44s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Virgo ∆t -02m 44s -02m 11s -01m 36s +00m 59s +00m 21s +00m 18s +00m 58s +01m 40s +02m 22s +03m 05s +03m 49s +04m 32s +05m 16s +06m 00s +06m 44s +07m 28s Aquarius λ ∆t ◦ 00 -10m 58s ◦ 02 -11m 32s ◦ 04 -12m 02s ◦ 06 -12m 30s ◦ 08 -12m 54s ◦ 10 -13m 16s ◦ 12 -13m 34s ◦ 14 -13m 49s ◦ 16 -14m 01s ◦ 18 -14m 09s ◦ 20 -14m 15s ◦ 22 -14m 17s ◦ 24 -14m 17s ◦ 26 -14m 13s ◦ 28 -14m 07s ◦ 30 -13m 58s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Pisces ∆t -13m 58s -13m 46s -13m 31s -13m 14s -12m 55s -12m 33s -12m 10s -11m 44s -11m 17s -10m 48s -10m 17s -09m 45s -09m 12s -08m 38s -08m 03s -07m 28s λ 00◦ 02◦ 04◦ 06◦ 08◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦ 22◦ 24◦ 26◦ 28◦ 30◦ Table 5.5: The equation of time. The superscripts m and s denote minutes and seconds. The Moon 87 6 The Moon 6.1 Determination of Ecliptic Longitude The orbit of the moon around the earth is strongly perturbed by the gravitational influence of the sun. It follows that we cannot derive an accurate lunar longitude model from Keplerian orbit theory alone. Instead, we shall employ a greatly simplified version of modern lunar theory. According to such theory, the time variation of the ecliptic longitude of the moon is fairly well represented by the following formulae (see http://jgiesen.de/moonmotion/index.html, or Astronomical Algorithms, J. Meeus, Willmann-Bell, 1998): λ̄ = λ̄0 + n (t − t0), (6.1) M = M0 + ñ (t − t0), (6.2) F̄ = F̄0 + n̆ (t − t0), (6.3) D̃ = λ̄ − λS, (6.4) q1 = 2 e sin M + 1.430 e2 sin 2M, (6.5) q2 = 0.422 e sin(2D̃ − M), (6.6) q3 = 0.211 e (sin 2D̃ − 0.066 sin D̃), (6.7) q4 = −0.051 e sin MS, (6.8) q5 = −0.038 e sin 2F̄, (6.9) λ = λ̄ + q1 + q2 + q3 + q4 + q5. (6.10) Here, λS and MS are the longitude and mean anomaly of the sun, respectively. Moreover, e, λ, λ̄, F̄, and qi are the eccentricity, longitude, mean longitude, mean argument of latitude, and ith anomaly of the moon, respectively. The moon’s first anomaly is due to the eccentricity of its orbit, and is very similar in form to that obtained from Keplerian orbit theory (see Cha. 4). The moon’s second, third, and fourth anomalies are knows as evection, variation, and the annual inequality, respectively, and originate from the perturbing influence of the sun. Finally, the moon’s fifth anomaly is called the reduction to the ecliptic, and is a consequence of the fact that the moon’s orbit is slightly tilted with respect to the plane of the ecliptic. Note that Ptolemy’s lunar theory only takes the first two lunar anomalies into account. The moon’s orbital elements—e, n, ñ, n̆, λ̄0, M0, and F0—for the J2000 epoch are listed in Table 6.1. Note that the lunar perigee precesses in the direction of the moon’s orbital motion at the rate of n − ñ = 0.11140 ◦ per day, or 360◦ in 8.85 years. This very large precession rate (more than 2000 times the corresponding precession rate for the sun’s apparent orbit) is another consequence of the strong perturbing influence of the sun on the moon’s orbit. The above formulae are capable of matching NASA ephemeris data during the years 1995–2006 CE with a mean error of 5 ′ and a maximum error of 14 ′ . The ecliptic longitude of the moon can be calculated with the aid of Tables 6.2 and 6.3. Table 6.2 allows the lunar mean longitude, λ̄, mean anomaly, M, and mean argument of latitude, F̄, to be determined as functions of time. Table 6.3 specifies the lunar anomalies, q1–q5, as functions of their various arguments. 88 MODERN ALMAGEST The procedure for using the tables is as follows: 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the moon’s ecliptic longitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t − t0, where t0 = 2 451 545.0 is the epoch. 2. Calculate the ecliptic longitude, λS, and the mean anomaly, MS, of the sun using the procedure set out in Sect. 5.1. 3. Enter Table 6.2 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆λ̄, ∆M, and ∆F̄. If ∆t is negative then the values are minus those shown in the table. The value of the mean longitude, λ̄, is the sum of all the ∆λ̄ values plus the value of λ̄ at the epoch. Likewise, the value of the mean anomaly, M, is the sum of all the ∆M values plus the value of M at the epoch. Finally, the value of the mean argument of latitude, F̄, is the sum of all the ∆F̄ values plus the value of F̄ at the epoch. Add as many multiples of 360◦ to λ̄, M, and F̄ as is required to make them all fall in the range 0◦ to 360◦ . 4. Form D̃ = λ̄ − λS. 5. Form the five arguments a1 = M, a2 = 2D̃ − M, a3 = D̃, a4 = MS, a5 = 2F̄. Add as many multiples of 360◦ to the arguments as is required to make them all fall in the range 0◦ to 360◦ . Round each argument to the nearest degree. 6. Enter Table 6.3 with the value of each of the five arguments a1–a5 and take out the value of each of the five corresponding anomalies q1–q5. It is necessary to interpolate if the arguments are odd. 7. The moon’s ecliptic longitude is given by λ = λ̄ + q1 + q2 + q3 + q4 + q5. If necessary, convert λ into an angle in the range 0◦ to 360◦ . The decimal fraction can be converted into arc minutes using Table 5.2. Round to the nearest arc minute. Two examples of the use of this procedure are given below. 6.2 Example Longitude Calculations Example 1: May 5, 2005 CE, 00:00 UT: From Sect. 5.1, t − t0 = 1950.5 JD, λS = 44.602◦ , and MS = 120.001◦ . Making use of Table 6.2, we find: t(JD) λ̄(◦ ) M(◦ ) F̄(◦ ) +1000 +900 +50 +.5 Epoch 216.396 338.757 298.820 6.588 218.322 1078.883 358.883 104.993 238.494 293.250 6.532 134.916 778.185 58.185 269.350 26.415 301.468 6.615 93.284 697.132 337.132 Modulus The Moon 89 It follows that D̃ = λ̄ − λS = 358.883 − 44.602 = 314.281◦ . Thus, a1 = M ≃ 58◦ , a2 = 2D̃ − M = 2 × 314.281 − 58.185 = 570.377 ≃ 210◦ , a3 = D̃ ≃ 314◦ , a4 = MS ≃ 120◦ , a5 = 2F̄ = 2 × 337.132 = 674.264 ≃ 314◦ . Table 6.3 yields q1(a1) = 5.555◦ , q2(a2) = −0.663◦ , q3(a3) = −0.631◦ , q4(a4) = −0.139◦ , q5(a5) = 0.086◦ . Hence, λ = λ̄ + q1 + q2 + q3 + q4 + q5 = 358.883 + 5.555 − 0.663 − 0.631 − 0.139 + 0.086 = 363.091◦ , or λ = 3.091 ≃ 3◦ 05 ′ . Thus, the ecliptic longitude of the moon at 00:00 UT on May 5, 2005 CE was 3AR05. Example 2: December 25, 1800 CE, 00:00 UT: From Sect. 5.1, t − t0 = −72 690.5 JD, λS = 273.055◦ , and MS = 353.814◦ . Making use of Table 6.2, we find: t(JD) λ̄(◦ ) M(◦ ) F̄(◦ ) -70,000 -2,000 -600 -90 -.5 Epoch −27.752 −72.793 −345.838 −105.876 −6.588 218.322 −340.525 19.475 −149.506 −209.986 −278.996 −95.849 −6.532 134.916 −605.953 114.047 −134.519 −178.701 −17.610 −110.642 −6.615 93.284 −354.803 5.197 Modulus It follows that D̃ = λ̄ − λS = 19.475 − 273.055 = −253.580◦ . Thus, a1 = M ≃ 114◦ , a2 = 2D̃ − M = −2 × 253.580 − 114.047 = −621.207 ≃ 99◦ , a3 = D̃ ≃ 106◦ , a4 = MS ≃ 354◦ , a5 = 2F̄ = 2 × 5.197 = 10.394 ≃ 10◦ . Table 6.3 yields q1(a1) = 5.562◦ , q2(a2) = 1.311◦ , q3(a3) = −0.394◦ , q4(a4) = 0.017◦ , q5(a5) = −0.021◦ . 90 MODERN ALMAGEST Hence, λ = λ̄ + q1 + q2 + q3 + q4 + q5 = 19.475 + 5.562 + 1.311 − 0.394 + 0.017 − 0.021 = 25.950◦ , or λ = 25.950 ≃ 25◦ 57 ′ . Thus, the ecliptic longitude of the moon at 00:00 UT on December 25, 1800 CE was 25AR57. L M N F G Ω M′ N′ Υ Figure 6.1: The orbit of the moon about the earth. Here, G, L, N, N ′ , Ω, F, and Υ represent the earth, moon, ascending node, descending node, longitude of the ascending node, argument of latitude, and vernal equinox, respectively. View is from northern ecliptic pole. The moon orbits counterclockwise. 6.3 Determination of Ecliptic Latitude A model of the moon’s ecliptic latitude is needed in order to predict the occurrence of solar and lunar eclipses. Figure 6.1 shows the moon’s orbit about the earth. The plane of this orbit is fixed, but slightly tilted with respect to the plane of the ecliptic (i.e., the plane of the sun’s apparent orbit about the earth). Let the two planes intersect along the line of nodes, NGN ′ . Here, N is the point at which the orbit crosses the ecliptic plane from south to north (in the direction of the moon’s orbital motion), and is termed the ascending node. Likewise, N ′ is the point at which the orbit crosses the ecliptic plane from north to south, and is called the descending node. Incidentally, the line of nodes must pass through point G, since the earth is common to the ecliptic plane and the plane of the lunar orbit. The angle, Ω, subtended between the radius vector GΥ, connecting the earth to the vernal equinox, and the line GN, is known as the longitude of the ascending node. Note, incidentally, that the ascending node precessess in the opposite direction to the moon’s orbital motion at the rate n̆ − n = 5.2954 × 10−2 ◦ per day, or 360◦ in 18.6 years. This unusually large precession rate is another consequence of the sun’s strong perturbing influence on the moon’s orbit. Let the line MGM ′ lie in the plane of the moon’s orbit such that it is perpendicular to NGN ′ . The The Moon 91 inclination, i, of the moon’s orbital plane is the angle that GM subtends with its projection onto the ecliptic plane. Likewise, the moon’s ecliptic longitude, β, is the angle that GL subtends with its projection onto the ecliptic plane. Simple geometry yields sin β = sin i sin F, where F is the angle between GN and GL. This angle is termed the argument of latitude. Now, it is easily seen that F ≃ λ − Ω, where λ is the moon’s ecliptic longitude (i.e., the angle subtended between GΥ and GL). Here, we are assuming that the orbital inclination i is relatively small. The mean argument of latitude is defined F̄ = λ̄ − Ω. Hence, our model for the moon’s ecliptic latitude becomes F = F̄ + q1 + q2 + q3 + q4 + q5, sin β = sin i sin F. (6.11) (6.12) The value of the lunar orbital inclination, i, for the J2000 epoch is specified in Table 6.1. The above model is capable of matching NASA ephemeris data during the years 1995-2006 CE with a mean error of 6 ′ , and a maximum error of 11 ′ . The ecliptic latitude of the moon can be calculated with the aid of Table 6.4. The procedure for using this table is as follows: 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the moon’s ecliptic latitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t−t0, where t0 = 2 451 545.0 is the epoch. 2. Calculate the lunar mean argument of latitude, F̄, and the five lunar anomalies, q1–q5, using the procedure outlined earlier in this section. 3. Form the argument F = F̄ + q1 + q2 + q3 + q4 + q5. Add as many multiples of 360◦ to F as is required to make it fall in the range 0◦ to 360◦ . Round F to the nearest degree. 4. Enter Table 6.4 with the value of F and take out the lunar ecliptic latitude, β. It is necessary to interpolate if F is odd. For example, we have already seen that at 00:00 UT on May 5, 2005 CE the lunar mean argument of latitude, and the lunar anomalies, were F̄ = 337.132◦ , and q1 = 5.555◦ , q2 = −0.663◦ , q3 = −0.631◦ , q4 = −0.139◦ , and q5 = 0.086◦ , respectively. Hence, F = F̄ + q1 + q2 + q3 + q4 + q5 = 337.132 + 5.555 − 0.663 − 0.631 − 0.139 + 0.086 ≃ 341◦ . Thus, according to Table 6.4, the ecliptic latitude of the moon at 00:00 UT on May 5, 2005 CE was −1.680◦ ≃ −1◦ 41 ′ . 6.4 Lunar Parallax Now, it turns out that the moon is sufficiently close to the earth that its position in the sky is significantly modified by parallax. All of our previous analysis applies to a hypothetical observer situated at the center of the earth. Consider a real observer situated on the earth’s surface. It can be seen from Fig. 6.2 that the altitude of the moon is a ′ for the real observer, and a for the hypothetical observer. Simple trigonometry reveals that a ′ = a − δa, which implies that the real observer sees the moon at a lower altitude than the hypothetical observer. Let R be the radius of the earth, and r the distance from the center of the earth to the moon. More simple trigonometry yields R sin δa = cos a ′ . (6.13) r 92 MODERN ALMAGEST L δa X a′ r R a C Figure 6.2: The moon, L, as viewed by a hypothetical observer, C, at the center of the earth, and a real observer, X, on the surface of the earth. Let us assume that the moon’s orbit is elliptical to first order in its eccentricity. It follows, from Cha. 4, that r ≃ aM (1 − e cos M), (6.14) where aM, e, and M are major radius, eccentricity, and mean anomaly of the lunar orbit. Assuming that δa is small, we obtain δa ≃ δa0 cos a (1 + e cos M), (6.15) where δa0 = R/aM = 0.0166 = 56.98 ′ (since R = 6371 km and aM = 384, 399 km). According to Eq. (6.15), lunar parallax can be written in the form δa = δ(a) [1 + ζ(M)], (6.16) where a, a − δa, and M are the moon’s geocentric altitude (i.e., the altitude seen from the center of the earth), true altitude, and mean anomaly, respectively. The functions δ(a) = δa0 cos a and ζ(M) = e cos M are tabulated in Table 6.5. It can be seen from the table that lunar parallax increases with decreasing lunar altitude, reaching a maximum value of about 57 ′ when the moon is close to the horizon. For example, if a = 44◦ 00 ′ and M = 100◦ then Table 6.5 yields δ = 41.050 ′ and ζ = −0.00953. Hence, δa = 41.050 (1 − 0.00953) ≃ 41 ′ , and the true altitude of the moon becomes 43◦ 19 ′ . It now remains to investigate how parallax affects the moon’s ecliptic longitude and latitude. Figure 6.3 shows a detail of Fig. 2.11. Point Y is the moon’s geocentric position on the celestial sphere. DB is a line passing through this point which is parallel to the local ecliptic circle, whereas ZC is a small section of an altitude circle passing through Y. The angle subtended between the ecliptic and the altitude circle is the parallactic angle, µ. Let F be the true position of the moon. It follows that δa = YF. The changes in the moon’s ecliptic longitude and latitude are δλ = YE and −δβ = EF, respectively. Here, we are considering the case where increasing altitude corresponds to The Moon 93 Z a D β µ E Y λ B F C Figure 6.3: Parallactic shifts in the moon’s ecliptic longitude and latitude. increasing ecliptic latitude. Assuming that the arcs δa, δλ, and δβ are all fairly small, the triangle YEF can be treated as a plane triangle. Hence, we obtain δλ = −δa cos µ, (6.17) δβ = −δa sin µ. (6.18) As is easily demonstrated, the above formulae also apply to the case in which increasing altitude corresponds to decreasing ecliptic latitude. For example, consider a day on which the geocentric ecliptic longitude and mean anomaly of the moon are λ = 210◦ (i.e., 00SC00) and M = 90◦ , respectively. Suppose that the moon is viewed from an observation site located at terrestrial latitude +10◦ . The “Scorpio” entry in Table 2.19 gives the moon’s geocentric altitude, a, as a function of time, as well as the value of the parallactic angle µ. Making use of this data, in combination with Table 6.5 and Eqs. (6.17) and (6.18), we can calculate the parallax-induced changes in the moon’s ecliptic longitude and latitude as it transits the sky. Data from such a calculation is given in the table below. The first column specifies time since the moon’s upper transit (thus, t = +1 hrs. means one hour after the upper transit), the second column gives the moon’s geocentric altitude, the third column the parallactic angle, the fourth column the decrease in the moon’s real altitude due to parallax, and the fifth and sixth columns the parallax-induced changes in its ecliptic longitude and latitude, respectively. It can be seen that parallax causes the moon’s apparent location to shift by almost 2◦ relative to the fixed stars as it transits the sky. Note that the above calculation is somewhat inaccurate because it does not take into account the moon’s motion along the ecliptic (which can easily amount to 6◦ during the course of a night). However, the calculation does illustrate how the data contained in Tables 2.18–2.26, in combination with the data in Table 6.5, permits the parallax-induced shift in the moon’s ecliptic position to be calculated for a wide range of different lunar phases, observation sites, and observation times. 94 MODERN ALMAGEST t (hrs.) −5.51 −5.00 −4.00 −3.00 −2.00 −1.00 +0.00 +1.00 +2.00 +3.00 +4.00 +5.00 +5.51 a µ δa δλ δβ 00◦ 00 ′ 12◦ 26 ′ 26◦ 37 ′ 40◦ 23 ′ 53◦ 15 ′ 63◦ 52 ′ 68◦ 32 ′ 63◦ 52 ′ 53◦ 15 ′ 40◦ 23 ′ 26◦ 37 ′ 12◦ 26 ′ 00◦ 00 ′ 190◦ 22 ′ 187◦ 30 ′ 183◦ 07 ′ 176◦ 40 ′ 165◦ 58 ′ 145◦ 55 ′ 110◦ 34 ′ 075◦ 13 ′ 055◦ 11 ′ 044◦ 29 ′ 038◦ 01 ′ 033◦ 39 ′ 030◦ 47 ′ 57 ′ 56 ′ 51 ′ 43 ′ 34 ′ 25 ′ 21 ′ 25 ′ 34 ′ 43 ′ 51 ′ 56 ′ 57 ′ +56 ′ +55 ′ +51 ′ +43 ′ +33 ′ +21 ′ +07 ′ −06 ′ −20 ′ −31 ′ −40 ′ −46 ′ −49 ′ +10 ′ +07 ′ +03 ′ −03 ′ −08 ′ −14 ′ −20 ′ −24 ′ −28 ′ −30 ′ −32 ′ −31 ′ −29 ′ The Moon e 0.054881 95 n(◦ /day) 13.17639646 ñ(◦ /day) 13.06499295 n̆(◦ /day) 13.22935027 λ̄0(◦ ) 218.322 M0(◦ ) 134.916 F0(◦ ) 93.284 i(◦ ) 5.161 Table 6.1: Orbital elements of the moon for the J2000 epoch (i.e., 12:00 UT, January 1, 2000 CE, which corresponds to t0 = 2 451 545.0 JD). 96 MODERN ALMAGEST ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 3.965 7.929 11.894 15.858 19.823 23.788 27.752 31.717 35.681 329.930 299.859 269.788 239.718 209.648 179.577 149.506 119.436 89.366 173.503 347.005 160.508 334.011 147.513 321.016 134.519 308.022 121.524 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 216.396 72.793 289.189 145.586 1.982 218.379 74.775 291.172 147.568 104.993 209.986 314.979 59.972 164.965 269.958 14.951 119.944 224.937 269.350 178.701 88.051 357.401 266.751 176.102 85.452 354.802 264.152 100 200 300 400 500 600 700 800 900 237.640 115.279 352.919 230.559 108.198 345.838 223.478 101.117 338.757 226.499 92.999 319.498 185.997 52.496 278.996 145.495 11.994 238.494 242.935 125.870 8.805 251.740 134.675 17.610 260.545 143.480 26.415 10 20 30 40 50 60 70 80 90 131.764 263.528 35.292 167.056 298.820 70.584 202.348 334.112 105.876 130.650 261.300 31.950 162.600 293.250 63.900 194.550 325.199 95.849 132.294 264.587 36.881 169.174 301.468 73.761 206.055 338.348 110.642 1 2 3 4 5 6 7 8 9 13.176 26.353 39.529 52.706 65.882 79.058 92.235 105.411 118.588 13.065 26.130 39.195 52.260 65.325 78.390 91.455 104.520 117.585 13.229 26.459 39.688 52.917 66.147 79.376 92.605 105.835 119.064 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.318 2.635 3.953 5.271 6.588 7.906 9.223 10.541 11.859 1.306 2.613 3.919 5.226 6.532 7.839 9.145 10.452 11.758 1.323 2.646 3.969 5.292 6.615 7.938 9.261 10.583 11.906 Table 6.2: Mean motion of the moon. Here, ∆t = t−t0, ∆λ̄ = λ̄− λ̄0, ∆M = M−M0, and ∆F̄ = F̄− F̄0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 218.322◦ , M0 = 134.916◦ , and F̄0 = 93.284◦ . The Moon 97 Arg. (◦ ) q1 (◦ ) q2 (◦ ) q3 (◦ ) q4 (◦ ) q5 (◦ ) Arg. (◦ ) q1 (◦ ) q2 (◦ ) q3 (◦ ) q4 (◦ ) q5 (◦ ) 000/(360) 002/(358) 004/(356) 006/(354) 008/(352) 010/(350) 012/(348) 014/(346) 016/(344) 018/(342) 020/(340) 022/(338) 024/(336) 026/(334) 028/(332) 030/(330) 032/(328) 034/(326) 036/(324) 038/(322) 040/(320) 042/(318) 044/(316) 046/(314) 048/(312) 050/(310) 052/(308) 054/(306) 056/(304) 058/(302) 060/(300) 062/(298) 064/(296) 066/(294) 068/(292) 070/(290) 072/(288) 074/(286) 076/(284) 078/(282) 080/(280) 082/(278) 084/(276) 086/(274) 088/(272) 090/(270) 0.000 0.237 0.473 0.709 0.943 1.176 1.408 1.637 1.864 2.088 2.310 2.527 2.741 2.951 3.157 3.358 3.554 3.746 3.931 4.111 4.285 4.454 4.615 4.770 4.919 5.061 5.195 5.323 5.443 5.555 5.660 5.757 5.847 5.929 6.002 6.068 6.126 6.176 6.218 6.252 6.278 6.296 6.306 6.308 6.302 6.289 0.000 0.046 0.093 0.139 0.185 0.230 0.276 0.321 0.366 0.410 0.454 0.497 0.540 0.582 0.623 0.663 0.703 0.742 0.780 0.817 0.853 0.888 0.922 0.955 0.986 1.017 1.046 1.074 1.100 1.125 1.149 1.172 1.193 1.212 1.230 1.247 1.262 1.276 1.288 1.298 1.307 1.314 1.320 1.324 1.326 1.327 0.000 0.045 0.089 0.133 0.177 0.219 0.261 0.301 0.339 0.376 0.411 0.444 0.475 0.504 0.529 0.553 0.573 0.591 0.605 0.617 0.625 0.630 0.632 0.631 0.627 0.620 0.609 0.595 0.579 0.559 0.536 0.511 0.483 0.453 0.420 0.385 0.348 0.309 0.269 0.227 0.184 0.139 0.094 0.048 0.002 -0.044 -0.000 -0.006 -0.011 -0.017 -0.022 -0.028 -0.033 -0.039 -0.044 -0.050 -0.055 -0.060 -0.065 -0.070 -0.075 -0.080 -0.085 -0.090 -0.094 -0.099 -0.103 -0.107 -0.111 -0.115 -0.119 -0.123 -0.126 -0.130 -0.133 -0.136 -0.139 -0.142 -0.144 -0.147 -0.149 -0.151 -0.153 -0.154 -0.156 -0.157 -0.158 -0.159 -0.159 -0.160 -0.160 -0.160 -0.000 -0.004 -0.008 -0.012 -0.017 -0.021 -0.025 -0.029 -0.033 -0.037 -0.041 -0.045 -0.049 -0.052 -0.056 -0.060 -0.063 -0.067 -0.070 -0.074 -0.077 -0.080 -0.083 -0.086 -0.089 -0.092 -0.094 -0.097 -0.099 -0.101 -0.103 -0.106 -0.107 -0.109 -0.111 -0.112 -0.114 -0.115 -0.116 -0.117 -0.118 -0.118 -0.119 -0.119 -0.119 -0.119 090/(270) 092/(268) 094/(266) 096/(264) 098/(262) 100/(260) 102/(258) 104/(256) 106/(254) 108/(252) 110/(250) 112/(248) 114/(246) 116/(244) 118/(242) 120/(240) 122/(238) 124/(236) 126/(234) 128/(232) 130/(230) 132/(228) 134/(226) 136/(224) 138/(222) 140/(220) 142/(218) 144/(216) 146/(214) 148/(212) 150/(210) 152/(208) 154/(206) 156/(204) 158/(202) 160/(200) 162/(198) 164/(196) 166/(194) 168/(192) 170/(190) 172/(188) 174/(186) 176/(184) 178/(182) 180/(180) 6.289 6.268 6.239 6.203 6.160 6.109 6.051 5.986 5.915 5.836 5.751 5.660 5.562 5.458 5.348 5.233 5.111 4.985 4.853 4.716 4.575 4.428 4.277 4.122 3.963 3.799 3.632 3.462 3.288 3.111 2.931 2.748 2.562 2.375 2.184 1.992 1.798 1.603 1.406 1.207 1.008 0.807 0.606 0.404 0.202 0.000 1.327 1.326 1.324 1.320 1.314 1.307 1.298 1.288 1.276 1.262 1.247 1.230 1.212 1.193 1.172 1.149 1.125 1.100 1.074 1.046 1.017 0.986 0.955 0.922 0.888 0.853 0.817 0.780 0.742 0.703 0.663 0.623 0.582 0.540 0.497 0.454 0.410 0.366 0.321 0.276 0.230 0.185 0.139 0.093 0.046 0.000 -0.044 -0.090 -0.136 -0.182 -0.226 -0.270 -0.313 -0.354 -0.394 -0.432 -0.468 -0.502 -0.533 -0.562 -0.589 -0.613 -0.634 -0.652 -0.667 -0.678 -0.687 -0.693 -0.695 -0.694 -0.689 -0.682 -0.671 -0.657 -0.640 -0.620 -0.597 -0.571 -0.542 -0.511 -0.477 -0.442 -0.404 -0.364 -0.322 -0.279 -0.235 -0.189 -0.143 -0.095 -0.048 -0.000 -0.160 -0.160 -0.160 -0.159 -0.159 -0.158 -0.157 -0.156 -0.154 -0.153 -0.151 -0.149 -0.147 -0.144 -0.142 -0.139 -0.136 -0.133 -0.130 -0.126 -0.123 -0.119 -0.115 -0.111 -0.107 -0.103 -0.099 -0.094 -0.090 -0.085 -0.080 -0.075 -0.070 -0.065 -0.060 -0.055 -0.050 -0.044 -0.039 -0.033 -0.028 -0.022 -0.017 -0.011 -0.006 -0.000 -0.119 -0.119 -0.119 -0.119 -0.118 -0.118 -0.117 -0.116 -0.115 -0.114 -0.112 -0.111 -0.109 -0.107 -0.106 -0.103 -0.101 -0.099 -0.097 -0.094 -0.092 -0.089 -0.086 -0.083 -0.080 -0.077 -0.074 -0.070 -0.067 -0.063 -0.060 -0.056 -0.052 -0.049 -0.045 -0.041 -0.037 -0.033 -0.029 -0.025 -0.021 -0.017 -0.012 -0.008 -0.004 -0.000 Table 6.3: Anomalies of the moon. The common argument corresponds to M, 2D̃ − M, D̃, MS, and 2F̄ for the case of q1, q2, q3, q4, and q5, respectively. If the argument is in parenthesies then the anomalies are minus the values shown in the table. 98 MODERN ALMAGEST F(◦ ) 000/180 002/178 004/176 006/174 008/172 010/170 012/168 014/166 016/164 018/162 020/160 022/158 024/156 026/154 028/152 030/150 032/148 034/146 036/144 038/142 040/140 042/138 044/136 046/134 048/132 050/130 052/128 054/126 056/124 058/122 060/120 062/118 064/116 066/114 068/112 070/110 072/108 074/106 076/104 078/102 080/100 082/098 084/096 086/094 088/092 090/090 β(◦ ) 0.000 0.180 0.360 0.539 0.718 0.896 1.073 1.248 1.422 1.595 1.765 1.933 2.099 2.263 2.423 2.581 2.735 2.887 3.034 3.178 3.319 3.455 3.587 3.714 3.837 3.956 4.070 4.178 4.282 4.380 4.473 4.561 4.643 4.719 4.790 4.855 4.913 4.966 5.013 5.054 5.088 5.117 5.139 5.154 5.164 5.167 F(◦ ) (180)/(360) (182)/(358) (184)/(356) (186)/(354) (188)/(352) (190)/(350) (192)/(348) (194)/(346) (196)/(344) (198)/(342) (200)/(340) (202)/(338) (204)/(336) (206)/(334) (208)/(332) (210)/(330) (212)/(328) (214)/(326) (216)/(324) (218)/(322) (220)/(320) (222)/(318) (224)/(316) (226)/(314) (228)/(312) (230)/(310) (232)/(308) (234)/(306) (236)/(304) (238)/(302) (240)/(300) (242)/(298) (244)/(296) (246)/(294) (248)/(292) (250)/(290) (252)/(288) (254)/(286) (256)/(284) (258)/(282) (260)/(280) (262)/(278) (264)/(276) (266)/(274) (268)/(272) (270)/(270) Table 6.4: Ecliptic latitude of the moon. The latitude is minus the value shown in the table if the argument is in parenthesies. The Moon 99 Arg. (◦ ) δ( ′ ) 100 ζ Arg. (◦ ) 000/360 002/358 004/356 006/354 008/352 010/350 012/348 014/346 016/344 018/342 020/340 022/338 024/336 026/334 028/332 030/330 032/328 034/326 036/324 038/322 040/320 042/318 044/316 046/314 048/312 050/310 052/308 054/306 056/304 058/302 060/300 062/298 064/296 066/294 068/292 070/290 072/288 074/286 076/284 078/282 080/280 082/278 084/276 086/274 088/272 090/270 57.067 57.032 56.928 56.754 56.511 56.200 55.820 55.371 54.856 54.274 53.625 52.911 52.133 51.291 50.387 49.421 48.395 47.310 46.168 44.969 43.716 42.409 41.050 39.642 38.185 36.682 35.134 33.543 31.911 30.241 28.533 26.791 25.016 23.211 21.378 19.518 17.635 15.730 13.806 11.865 9.910 7.942 5.965 3.981 1.992 0.000 5.488 5.485 5.475 5.458 5.435 5.405 5.368 5.325 5.276 5.219 5.157 5.088 5.014 4.933 4.846 4.753 4.654 4.550 4.440 4.325 4.204 4.078 3.948 3.812 3.672 3.528 3.379 3.226 3.069 2.908 2.744 2.577 2.406 2.232 2.056 1.877 1.696 1.513 1.328 1.141 0.953 0.764 0.574 0.383 0.192 0.000 (180)/(180) (178)/(182) (176)/(184) (174)/(186) (172)/(188) (170)/(190) (168)/(192) (166)/(194) (164)/(196) (162)/(198) (160)/(200) (158)/(202) (156)/(204) (154)/(206) (152)/(208) (150)/(210) (148)/(212) (146)/(214) (144)/(216) (142)/(218) (140)/(220) (138)/(222) (136)/(224) (134)/(226) (132)/(228) (130)/(230) (128)/(232) (126)/(234) (124)/(236) (122)/(238) (120)/(240) (118)/(242) (116)/(244) (114)/(246) (112)/(248) (110)/(250) (108)/(252) (106)/(254) (104)/(256) (102)/(258) (100)/(260) (098)/(262) (096)/(264) (094)/(266) (092)/(268) (090)/(270) Table 6.5: Parallax of the moon. The arguments of δ and ζ are a and M, respectively. δ and ζ take minus the values shown in the table if their arguments are in parenthesies. 100 MODERN ALMAGEST Lunar-Solar Syzygies and Eclipses 101 7 Lunar-Solar Syzygies and Eclipses 7.1 Introduction Let λS and λM represent the ecliptic longitudes of the sun and the moon, respectively. The lunarsolar elongation is defined D = λM − λS. (7.1) Since the moon is only visible because of light reflected from the sun, there is a fairly obvious relationship between lunar-solar elongation and lunar phase—see Fig. 7.1. For instance, a new moon corresponds to D = 0◦ , a quarter moon to D = 90◦ or 270◦ , and a full moon to D = 180◦ . New moons and full moons are collectively known as lunar-solar syzygies. Quarter Moon Light from Sun Full Moon D Earth New Moon Figure 7.1: The phases of the moon. 7.2 Determination of Lunar-Solar Elongation We can determine the lunar-solar elongation by combining the solar and lunar models described in the previous two chapters. Our elongation model is as follows: (7.2) D̄ = λ̄M − λ̄S, 2 q1 = 2 eM sin MM + 1.430 e sin 2MM, (7.3) q2 = 0.422 eM sin(2D̄ − MM), (7.4) q3 = 0.211 eM (sin 2D̄ − 0.066 sin D̄), (7.5) q4 = −(0.051 eM + 2 eS) sin MS − (5/4) eS2 sin 2MS, (7.6) 102 MODERN ALMAGEST q5 = −0.038 eM sin 2F̄M, (7.7) D = D̄ + q1 + q2 + q3 + q4 + q5. (7.8) Here, eS, MS, and λ̄S are the eccentricity, mean anomaly, and mean longitude of the sun’s apparent orbit about the earth, respectively. Moreover, eM, MM, λ̄M, and F̄M are the eccentricity, mean anomaly, mean longitude, and mean argument of latitude of the moon’s orbit, respectively. The lunar-solar elongation can be calculated with the aid of Tables 7.1 and 7.2. Table 7.1 allows the mean lunar-solar elongation, D̄, the mean lunar argument of latitude, F̄M, the mean anomaly of the sun, MS, and the mean anomaly of the moon, MM, to be determined as functions of time. Table 7.2 specifies the anomalies q1–q5 as functions of their various arguments. The procedure for using the tables is as follows: 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the lunar-solar elongation is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t − t0, where t0 = 2 451 545.0 is the epoch. 2. Enter Table 7.1 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆D̄, ∆F̄M, ∆MS, and ∆MM. If ∆t is negative then the values are minus those shown in the table. The value of the mean lunar-solar elongation, D̄, is the sum of all the ∆D̄ values plus the value of D̄ at the epoch. Likewise, the value of the mean lunar argument of latitude, F̄M, is the sum of all the ∆F̄M values plus the value of F̄M at the epoch. Moreover, the value of the solar mean anomaly, MS, is the sum of all the ∆MS values plus the value of MS at the epoch. Finally, the value of the lunar mean anomaly, MM, is the sum of all the ∆MM values plus the value of MM at the epoch. Add as many multiples of 360◦ to D̄, F̄M, MS, and MM as is required to make them all fall in the range 0◦ to 360◦ . 3. Form the five arguments a1 = MM, a2 = 2D̄ − MM, a3 = D̄, a4 = MS, a5 = 2F̄M. Add as many multiples of 360◦ to the arguments as is required to make them all fall in the range 0◦ to 360◦ . Round each argument to the nearest degree. 4. Enter Table 7.2 with the value of each of the five arguments a1–a5 and take out the value of each of the five corresponding anomalies q1–q5. It is necessary to interpolate if the arguments are odd. 5. The lunar-solar elongation is given by D = D̄ + q1 + q2 + q3 + q4 + q5. If necessary, convert D into an angle in the range 0◦ to 360◦ . The decimal fraction can be converted into arc minutes using Table 5.2. In order to facilitate the calculation of syzygies, the above model has been used to contruct Table 7.3, which lists the dates and fractional Julian day numbers of the first new moons of the years 1900–2099 CE. Two examples of syzygy calculations are given below. 7.3 Example Syzygy Calculations Example 1: Sixth new moon in 2004 CE: From Table 7.3, the date of first new moon in 2004 CE is 2453026.4 JD. Now, the lunar-solar Lunar-Solar Syzygies and Eclipses 103 elongation increases at the mean rate nM − nS = 13.17639646 − 0.98564735 = 12.1907491◦ per day, or 360◦ in 29.53 days—the latter time period is known as a synodic month. Hence, a rough estimate for the date of the sixth new moon in 2004 CE is five synodic months after that of the first: i.e., 2453026.4 + 5 × 29.53 ≃ 2453174.1 JD. It follows that ∆t = 2453174.1 − 2451545.0 = 1629.1 JD. Let us calculate the lunar-solar elongation at this date. From Table 7.1: t(JD) D̄(◦ ) F̄M(◦ ) MS(◦ ) MM(◦ ) +1000 +600 +20 +9 +.1 Epoch 310.749 114.449 243.815 109.717 1.219 297.864 1077.813 357.813 269.350 17.610 264.587 119.064 1.323 93.284 765.218 45.218 265.600 231.360 19.712 8.870 0.099 357.588 883.229 163.229 104.993 278.996 261.300 117.585 1.306 134.916 899.096 179.096 Modulus Thus, a1 = MM ≃ 179◦ , a2 = 2D̄ − MM = 2 × 357.813 − 179.082 ≃ 177◦ , a3 = D̄ ≃ 358◦ , a4 = MS ≃ 163◦ , a5 = 2F̄M = 2 × 45.218 ≃ 90◦ . Table 7.2 yields q1(a1) = 0.101◦ , q2(a2) = 0.070◦ , q3(a3) = −0.045◦ , q4(a4) = −0.596◦ , q5(a5) = −0.119◦ . Hence, D = D̄ + q1 + q2 + q3 + q4 + q5 = 357.813 + 0.101 + 0.070 − 0.045 − 0.596 − 0.119 ≃ 357.22◦ . Now, the actual new moon takes place when D = 360.00◦ . Thus, a far better estimate for the date of the sixth new moon in 2004 CE is 2453174.10 + (360.00 − 357.22)/12.1907491 = 2453174.33 JD. This corresponds to 20:00 UT on June 17th. Example 2: Third full moon in 1982 CE: From Table 7.3, the fractional Julian day number of first new moon in 1982 CE is 2444994.7 JD, which corresponds to January 25th. Since there is more than half a synodic month between this event and the start of year, we conclude that the first full moon in 1982 CE took place before January 25th. Hence, a rough estimate for the date of the third full moon in 1982 CE is one and a half synodic months after that of the first new moon: i.e., 2444994.7 + 1.5 × 29.53 ≃ 2445039.0 JD. It follows that ∆t = 2445039.0 − 2451545.0 = −6506.0 JD. Let us calculate the lunar-solar elongation at this date. From Table 7.1: 104 MODERN ALMAGEST t(JD) D̄(◦ ) F̄M(◦ ) MS(◦ ) MM(◦ ) -6000 -500 -6 Epoch −64.495 −335.375 −73.144 297.864 −175.150 184.131 −176.102 −134.675 −79.376 93.284 −296.869 63.062 −153.601 −132.800 −5.914 357.588 65.273 65.273 −269.958 −52.496 −78.390 134.916 −265.928 94.072 Modulus Thus, a1 = MM ≃ 94◦ , a2 = 2D̄ − MM = 2 × 184.850 − 94.072 ≃ 276◦ , a3 = D̄ ≃ 185◦ , a4 = MS ≃ 65◦ , a5 = 2F̄M = 2 × 63.062 ≃ 126◦ . Table 7.2 yields q1(a1) = 6.239◦ , q2(a2) = −1.320◦ , q3(a3) = 0.119◦ , q4(a4) = −1.896◦ , q5(a5) = −0.097◦ . Hence, D = D̄ + q1 + q2 + q3 + q4 + q5 = 184.850 + 6.239 − 1.320 + 0.119 − 1.896 − 0.097 ≃ 187.895◦ . Now, the actual full moon takes place when D = 180.00◦ . Thus, a far better estimate for the date of the third full moon in 1982 CE is 2445039.0 + (180.00 − 187.90)/12.1907491 = 2445038.35 JD. This corresponds to 20:00 UT on March 9th. 7.4 Solar and Lunar Eclipses A solar eclipse—or, more accurately, a lunar-solar occultation—occurs when the moon blocks the light of the sun. Clearly, this is only possible at a new moon—see Fig. 7.1. On the other hand, a lunar eclipse occurs when the moon falls into the shadow of the earth. Of course, this is only possible at a full moon. It follows that eclipses can only take place at lunar-solar syzygies. In order to determine whether a particular lunar-solar syzygy conincides with an eclipse, we first need to calculate the angular radii of the sun, the moon, and the earth’s shadow in the sky. Using the small angle approximation, the angular radius of the sun is given by ρS = RS/rS, where RS is the solar radius, and rS the earth-sun distance. However, rS ≃ aS (1 − eS cos MS), where aS, eS, and MS are the major radius, eccentricity, and mean anomaly of the sun’s apparent orbit around the earth, respectively (see Cha. 4). Hence, ρS ≃ ρS0 (1 + eS cos MS), (7.9) where ρS0 = RS/aS = 6.960 × 105 km/1.496 × 108 km ≃ 15.99 ′ . Likewise, the angular radius of the moon is ρM ≃ ρM0 (1 + eM cos MM), (7.10) where ρM0 = RM/aM = 1743 km/384, 399 km ≃ 15.59 ′ . Here, RM, aM, eM, and MM are the radius of the moon, and the major radius, eccentricity, and mean anomaly of the moon’s orbit, Lunar-Solar Syzygies and Eclipses 105 ρS RS x RE rS RU rM Sun Earth ρU Moon Figure 7.2: The earth’s umbra. respectively. As was shown in the previous chapter, lunar parallax causes the angular position of the moon in the sky to shift by up to δM = RE = δM0 (1 + eM cos MM), rM (7.11) where δM0 = RE/aM = 6371 km/384, 399 km = 56.98 ′ . Here, RE is the radius of the earth. Finally, simple trigonometry reveals that the angular size of the earth’s shadow (i.e., umbra) at the radius of the moon’s orbit is ρU = δM − ρS. (7.12) This can be seen from Fig. 7.2. The radius of the umbra at the position of the moon is RU = RE −x = RE − rM ρS. Hence, the angular radius of the umbra is ρU = RU/rM = δM − ρS. Incidentally, the identification of two of the angles in the figure with ρS = RS/rS follows because RS ≫ RE. A solar eclipse does not take place every new moon, nor a lunar eclipse every full moon, because of the inclination of the moon’s orbit to the ecliptic plane, which causes the moon to pass either above or below the sun, or the earth’s shadow, respectively, in the majority of cases. It follows that the critical parameter which determines the occurrence of eclipses is the ecliptic latitude of the moon at syzygy, βsyz. Of course, once the date and time of a syzygy has been established, βsyz can be calculated from Table 6.4. However, the lunar argument of latitude, F, must first be determined using (7.13) F = F̄M + q1 + q2 + q3 + q4′ + q5, where F̄M comes from Table 7.1, q1, q2, q3, and q5 are obtained from Table 7.2, and q4′ is the q4 from Table 6.3. For instance, we have seen that for the third new moon of 1982 CE, F̄M = 63.131, MS ≃ 65◦ , q1 = 6.239◦ , q2 = −1.320◦ , q3 = 0.119◦ , and q5 = −0.097◦ . According to Table 6.3, q4′ (MS) = −0.145◦ . Hence, F = F̄M + q1 + q2 + q3 + q4′ + q5 = 63.139 + 6.239 − 1.320 + 0.119 − 0.145 − 0.097 = 67.926 ≃ 68◦ . It follows from Table 6.4 that βsyz = 4.790◦ ≃ 4◦ 47 ′ . The criterion for a lunar eclipse is particularly simple, since it is not complicated by lunar parallax. A total lunar eclipse, in which the moon is completely immersed in the earth’s shadow, 106 MODERN ALMAGEST Moon Moon ρM ρM ρU ρU βsyz βsyz Ecliptic Earth’s umbra Earth’s umbra Figure 7.3: The limiting cases for a total lunar eclipse (left) and a partial lunar eclipse (right). must take place at a full moon if |βsyz| < ρU − ρM (see Fig. 7.3), or equivalently |βsyz| < δM − ρM − ρS, (7.14) and either a total or a partial lunar eclipse, in which the moon is only partially immersed in the earth’s shadow, must take place if |βsyz| < ρU + ρM (see Fig. 7.3), or equivalently |βsyz| < δM + ρM − ρS. (7.15) Note that lunar eclipses are simultaneously visible at all observation sites on the earth for which the moon is above the horizon, since the earth’s shadow is larger than the moon, and the relative position of the moon and the earth’s shadow is not affected by parallax (since both the moon and the shadow are the same distance from the earth). The criterion for a solar eclipse is modified by lunar parallax, which causes the angular position of the moon relative to the sun to shift by up to δM from its geocentric position. The amount of the shift depends on the observation site. However, a site can always be found at which the shift takes its maximum value in any particular direction. Note that the sun has negligible parallax, since it is much further from the earth than the moon. Taking parallactic shifts into account, a total solar eclipse, in which the sun is totally obscured by the moon, must take place if ρM > ρS and |βsyz| < δM + ρM − ρS, (7.16) an annular solar eclipse, in which all of the sun apart from a thin outer ring is obscured by the moon, must take place if ρS > ρM and |βsyz| < δM + ρS − ρM, (7.17) and either a total, an annular, or a partial solar eclipse, in which the sun is only partially obscured by the moon, must take place if |βsyz| < δM + ρM + ρS. (7.18) Lunar-Solar Syzygies and Eclipses 107 As a consequence of lunar parallax, and the fact that the angular sizes of the sun and moon in the sky are very similar, solar eclipses are only visible in very localized regions of the earth. Note, finally, that the above criteria represent necessary, but not sufficient, conditions for the occurrence of the various eclipses with which they are associated. This is the case because the point of closest approach of the moon and the earth’s shadow, in the case of a lunar eclipse, and the moon and sun, in the case of a solar eclipse, does not necessarily occur exactly at the syzygy, due to the inclination of the moon’s orbit to the ecliptic. However, since the said inclination is fairly gentle, the above criteria turn out to be very accurate predictors of eclipses. The criterion for a total lunar eclipse can be written |βsyz| < βMt, where βMt = 25.41 ′ + δβ1(MM) − δβ2(MM) − δβ3(MS). (7.19) Here, the functions δβ1 = δM0 eM cos MM, δβ2 = ρM0 eM cos MM, and δβ3 = ρS0 eS cos MS are tabulated in Table 7.4. The criterion for any type of lunar eclipse becomes |βsyz| < βM, where βM = 56.59 ′ + δβ1(MM) + δβ2(MM) − δβ3(MS). (7.20) The criterion for a total solar eclipse can be written |βsyz| < βSt and βSt > βSa, where βSt = 56.59 ′ + δβ1(MM) + δβ2(MM) − δβ3(MS), (7.21) βSa = 57.39 ′ + δβ1(MM) − δβ2(MM) + δβ3(MS), (7.22) and The criterion for an annular solar eclipse is |βsyz| < βSa and βSa > βSt. Finally, the criterion for any type of solar eclipse is |βsyz| < βS, where βS = 88.57 ′ + δβ1(MM) + δβ2(MM) + δβ3(MS). (7.23) 7.5 Example Eclipse Calculations Let us use our model to examine the lunar-solar syzygies of the year 1992 CE, in order to see whether any of them were associated with solar or lunar eclipses. The table below shows the dates and times of the new moons of 1992 CE, calculated using the method described at the beginning of this section. Also shown is the magnitude of the moon’s ecliptic latitude at each syzygy, |βsyz|, calculated from Eqs. (6.12) and (7.13), as well as the critical values of this parameter for a general, total, and annular solar eclipse. The latter are calculated from Eqs. (7.21)–(7.23). It can be seen that the criterion for a total solar eclipse (i.e., |βsyz| < βSt and βSt > βSa) is satisfied for the syzygy marked with a T, the criterion for an annular solar eclipse (i.e., |βsyz| < βSa and βSa > βSt) for the syzygy marked with an A, and the criterion for a partial solar eclipse (i.e., βSt, βSa < |βsyz| < βS) for the syzygy marked with a P. It is easily verified that a total solar eclipse, an annular solar eclipse, and a partial solar eclipse did indeed take place in 1992 CE at the dates and times indicated. 108 Date 04/01/1992 03/02/1992 04/03/1992 03/04/1992 02/05/1992 01/06/1992 30/06/1992 29/07/1992 28/08/1992 26/09/1992 26/10/1992 24/11/1992 24/12/1992 MODERN ALMAGEST Time (UT) 23:00 16:00 09:00 00:00 14:00 01:00 12:00 21:00 05:00 14:00 00:00 11:00 01:00 βS( ′ ) 85.0 84.9 85.7 87.1 88.7 90.3 91.5 92.2 92.3 91.8 90.7 89.2 87.4 βSt( ′ ) 52.5 52.5 53.4 55.1 57.0 58.8 60.1 60.7 60.7 59.9 58.5 56.8 54.9 βSa( ′ ) 55.5 55.4 55.8 56.5 57.4 58.3 59.0 59.4 59.5 59.2 58.7 57.8 56.9 |βsyz|( ′ ) 22.8 177.9 282.7 307.5 245.8 115.6 46.3 195.3 290.2 304.8 234.8 99.3 64.3 A T P The table below shows the dates and times of the full moons of 1992 CE. Also shown is the magnitude of the moon’s ecliptic latitude at each syzygy, as well as the critical values of this parameter for a general and a total lunar eclipse. The latter are calculated from Eqs. (7.20) and (7.19), respectively. It can be seen that the criterion for a total lunar eclipse (i.e., |βsyz| < βMt) is satisfied for the syzygy marked with a T, whereas the criterion for a partial lunar eclipse (i.e., βMt < |βsyz| < βM) is satisfied for the syzygy marked with a P. It is easily verified that a total lunar eclipse, and a partial lunar eclipse did indeed take place in 1992 CE at the dates and times indicated. Date 19/01/1992 18/02/1992 18/03/1992 17/04/1992 16/05/1992 15/06/1992 14/07/1992 13/08/1992 12/09/1992 11/10/1992 10/11/1992 10/12/1992 08/01/1993 Time (UT) 20:00 05:00 14:00 01:00 13:00 03:00 20:00 13:00 05:00 21:00 12:00 01:00 12:00 βM( ′ ) 60.3 60.1 59.3 57.9 56.3 54.7 53.4 52.8 53.1 54.3 55.8 57.5 59.0 βMt( ′ ) 27.4 27.3 26.9 26.2 25.3 24.4 23.7 23.3 23.5 24.1 24.9 25.8 26.7 |βsyz|( ′ ) 104.2 237.8 305.6 288.5 190.8 39.4 123.4 251.6 308.6 278.2 169.6 13.8 145.4 P T 7.6 Eclipse Statistics Consider a very large collection of lunar-solar syzygies. For such a collection, we expect the lunar argument of latitude, F, the lunar mean anomaly, MM, and the solar mean anomaly, MS, to be statistically independent of one another, and randomly distributed in the range 0◦ to 360◦ . Using this insight, we can easily calculate the probability that a new moon is coincident with a solar Lunar-Solar Syzygies and Eclipses 109 eclipse, or a full moon with a lunar eclipse, using Eq. (6.12) and the criteria (7.19)–(7.23). For a new moon we find: Probability of total solar eclipse: Probability of annular solar eclipse: Probability of partial solar eclipse: Probability of any solar eclipse: 4.2% 7.7% 6.6% 18.5% For a full moon we get: Probability of total lunar eclipse: Probability of partial lunar eclipse: Probability of any lunar eclipse: 5.2% 6.5% 11.7% Thus, we can see that, over a long period of time, the ratio of the number of total/annular solar eclipses to the number of partial solar eclipses is about 9/5, whereas the ratio of the number of partial lunar eclipses to the number of total lunar eclipses is approximately 5/4. Furthermore, the ratio of the number of solar eclipses to the number of lunar eclipses is about 11/7. Since there are 12.37 synodic months in a year, the mean number of solar eclipses per year is approximately 12.37 × 0.185 ≃ 2.3, whereas the mean number of lunar eclipses per year is about 12.37 × 0.117 ≃ 1.4. Clearly, solar eclipses are more common that lunar eclipses. On the other hand, at a given observation site on the earth, lunar eclipses are much more common than solar eclipses, since the former are visible all over the earth, whereas the latter are only visible in a very localized region. 110 MODERN ALMAGEST ∆t(JD) ∆D̄(◦ ) ∆F̄M(◦ ) ∆MS(◦ ) ∆MM(◦ ) ∆t(JD) ∆D̄(◦ ) ∆F̄M(◦ ) ∆MS(◦ ) ∆MM(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 227.491 94.982 322.473 189.964 57.455 284.947 152.438 19.929 247.420 173.503 347.005 160.508 334.011 147.513 321.016 134.519 308.022 121.524 136.002 272.005 48.007 184.010 320.012 96.015 232.017 8.020 144.022 329.930 299.859 269.788 239.718 209.648 179.577 149.506 119.436 89.366 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 310.749 261.498 212.247 162.996 113.746 64.495 15.244 325.993 276.742 269.350 178.701 88.051 357.401 266.751 176.102 85.452 354.802 264.152 265.600 171.200 76.801 342.401 248.001 153.601 59.202 324.802 230.402 104.993 209.986 314.979 59.972 164.965 269.958 14.951 119.944 224.937 100 200 300 400 500 600 700 800 900 139.075 278.150 57.225 196.300 335.375 114.449 253.524 32.599 171.674 242.935 125.870 8.805 251.740 134.675 17.610 260.545 143.480 26.415 98.560 197.120 295.680 34.240 132.800 231.360 329.920 68.480 167.040 226.499 92.999 319.498 185.997 52.496 278.996 145.495 11.994 238.494 10 20 30 40 50 60 70 80 90 121.907 243.815 5.722 127.630 249.537 11.445 133.352 255.260 17.167 132.294 264.587 36.881 169.174 301.468 73.761 206.055 338.348 110.642 9.856 19.712 29.568 39.424 49.280 59.136 68.992 78.848 88.704 130.650 261.300 31.950 162.600 293.250 63.900 194.550 325.199 95.849 1 2 3 4 5 6 7 8 9 12.191 24.381 36.572 48.763 60.954 73.144 85.335 97.526 109.717 13.229 26.459 39.688 52.917 66.147 79.376 92.605 105.835 119.064 0.986 1.971 2.957 3.942 4.928 5.914 6.899 7.885 8.870 13.065 26.130 39.195 52.260 65.325 78.390 91.455 104.520 117.585 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.219 2.438 3.657 4.876 6.095 7.314 8.534 9.753 10.972 1.323 2.646 3.969 5.292 6.615 7.938 9.261 10.583 11.906 0.099 0.197 0.296 0.394 0.493 0.591 0.690 0.788 0.887 1.306 2.613 3.919 5.226 6.532 7.839 9.145 10.452 11.758 Table 7.1: Mean motion of the lunar-solar elongation. Here, ∆t = t − t0, ∆D̄ = D̄ − D̄0, ∆F̄M = F̄M − F̄M0, ∆MS = MS − MS0, and ∆MM = MM − MM0. At epoch (t0 = 2 451 545.0 JD), D̄0 = 297.864◦ , F̄M0 = 93.284◦ , MS0 = 357.588◦ , and MM0 = 134.916◦ . Lunar-Solar Syzygies and Eclipses 111 Arg. (◦ ) q1 (◦ ) q2 (◦ ) q3 (◦ ) q4 (◦ ) q5 (◦ ) Arg. (◦ ) q1 (◦ ) q2 (◦ ) q3 (◦ ) q4 (◦ ) q5 (◦ ) 000/(360) 002/(358) 004/(356) 006/(354) 008/(352) 010/(350) 012/(348) 014/(346) 016/(344) 018/(342) 020/(340) 022/(338) 024/(336) 026/(334) 028/(332) 030/(330) 032/(328) 034/(326) 036/(324) 038/(322) 040/(320) 042/(318) 044/(316) 046/(314) 048/(312) 050/(310) 052/(308) 054/(306) 056/(304) 058/(302) 060/(300) 062/(298) 064/(296) 066/(294) 068/(292) 070/(290) 072/(288) 074/(286) 076/(284) 078/(282) 080/(280) 082/(278) 084/(276) 086/(274) 088/(272) 090/(270) 0.000 0.237 0.473 0.709 0.943 1.176 1.408 1.637 1.864 2.088 2.310 2.527 2.741 2.951 3.157 3.358 3.554 3.746 3.931 4.111 4.285 4.454 4.615 4.770 4.919 5.061 5.195 5.323 5.443 5.555 5.660 5.757 5.847 5.929 6.002 6.068 6.126 6.176 6.218 6.252 6.278 6.296 6.306 6.308 6.302 6.289 0.000 0.046 0.093 0.139 0.185 0.230 0.276 0.321 0.366 0.410 0.454 0.497 0.540 0.582 0.623 0.663 0.703 0.742 0.780 0.817 0.853 0.888 0.922 0.955 0.986 1.017 1.046 1.074 1.100 1.125 1.149 1.172 1.193 1.212 1.230 1.247 1.262 1.276 1.288 1.298 1.307 1.314 1.320 1.324 1.326 1.327 0.000 0.045 0.089 0.133 0.177 0.219 0.261 0.301 0.340 0.376 0.411 0.444 0.475 0.504 0.529 0.553 0.573 0.591 0.605 0.617 0.625 0.631 0.633 0.632 0.627 0.620 0.609 0.596 0.579 0.559 0.537 0.511 0.483 0.453 0.420 0.385 0.348 0.309 0.269 0.227 0.184 0.140 0.094 0.049 0.003 -0.044 -0.000 -0.074 -0.148 -0.221 -0.294 -0.367 -0.440 -0.511 -0.583 -0.653 -0.723 -0.791 -0.859 -0.926 -0.991 -1.055 -1.118 -1.179 -1.239 -1.297 -1.354 -1.409 -1.462 -1.513 -1.562 -1.609 -1.655 -1.698 -1.739 -1.778 -1.815 -1.849 -1.881 -1.911 -1.938 -1.963 -1.985 -2.006 -2.023 -2.038 -2.051 -2.061 -2.068 -2.073 -2.075 -2.075 -0.000 -0.004 -0.008 -0.012 -0.017 -0.021 -0.025 -0.029 -0.033 -0.037 -0.041 -0.045 -0.049 -0.052 -0.056 -0.060 -0.063 -0.067 -0.070 -0.074 -0.077 -0.080 -0.083 -0.086 -0.089 -0.092 -0.094 -0.097 -0.099 -0.101 -0.103 -0.106 -0.107 -0.109 -0.111 -0.112 -0.114 -0.115 -0.116 -0.117 -0.118 -0.118 -0.119 -0.119 -0.119 -0.119 090/(270) 092/(268) 094/(266) 096/(264) 098/(262) 100/(260) 102/(258) 104/(256) 106/(254) 108/(252) 110/(250) 112/(248) 114/(246) 116/(244) 118/(242) 120/(240) 122/(238) 124/(236) 126/(234) 128/(232) 130/(230) 132/(228) 134/(226) 136/(224) 138/(222) 140/(220) 142/(218) 144/(216) 146/(214) 148/(212) 150/(210) 152/(208) 154/(206) 156/(204) 158/(202) 160/(200) 162/(198) 164/(196) 166/(194) 168/(192) 170/(190) 172/(188) 174/(186) 176/(184) 178/(182) 180/(180) 6.289 6.268 6.239 6.203 6.160 6.109 6.051 5.986 5.915 5.836 5.751 5.660 5.562 5.458 5.348 5.233 5.111 4.985 4.853 4.716 4.575 4.428 4.277 4.122 3.963 3.799 3.632 3.462 3.288 3.111 2.931 2.748 2.562 2.375 2.184 1.992 1.798 1.603 1.406 1.207 1.008 0.807 0.606 0.404 0.202 0.000 1.327 1.326 1.324 1.320 1.314 1.307 1.298 1.288 1.276 1.262 1.247 1.230 1.212 1.193 1.172 1.149 1.125 1.100 1.074 1.046 1.017 0.986 0.955 0.922 0.888 0.853 0.817 0.780 0.742 0.703 0.663 0.623 0.582 0.540 0.497 0.454 0.410 0.366 0.321 0.276 0.230 0.185 0.139 0.093 0.046 0.000 -0.044 -0.090 -0.136 -0.181 -0.226 -0.270 -0.313 -0.354 -0.394 -0.432 -0.468 -0.501 -0.533 -0.562 -0.589 -0.613 -0.633 -0.651 -0.666 -0.678 -0.687 -0.692 -0.695 -0.693 -0.689 -0.682 -0.671 -0.657 -0.640 -0.620 -0.596 -0.571 -0.542 -0.511 -0.477 -0.441 -0.404 -0.364 -0.322 -0.279 -0.235 -0.189 -0.143 -0.095 -0.048 -0.000 -2.075 -2.073 -2.067 -2.060 -2.050 -2.037 -2.022 -2.004 -1.984 -1.962 -1.937 -1.910 -1.881 -1.850 -1.816 -1.780 -1.742 -1.702 -1.660 -1.616 -1.570 -1.522 -1.473 -1.422 -1.369 -1.314 -1.258 -1.201 -1.142 -1.082 -1.020 -0.958 -0.894 -0.829 -0.764 -0.697 -0.630 -0.561 -0.493 -0.423 -0.354 -0.283 -0.213 -0.142 -0.071 -0.000 -0.119 -0.119 -0.119 -0.119 -0.118 -0.118 -0.117 -0.116 -0.115 -0.114 -0.112 -0.111 -0.109 -0.107 -0.106 -0.103 -0.101 -0.099 -0.097 -0.094 -0.092 -0.089 -0.086 -0.083 -0.080 -0.077 -0.074 -0.070 -0.067 -0.063 -0.060 -0.056 -0.052 -0.049 -0.045 -0.041 -0.037 -0.033 -0.029 -0.025 -0.021 -0.017 -0.012 -0.008 -0.004 -0.000 Table 7.2: Anomalies of the lunar-solar elongation. The common argument corresponds to MM, 2D̄ − MM, D̄, MS, and 2F̄M for the case of q1, q2, q3, q4, and q5, respectively. If the argument is in parenthesies then the anomalies are minus the values shown in the table. 112 01/1/1900 20/1/1901 09/1/1902 28/1/1903 17/1/1904 05/1/1905 24/1/1906 14/1/1907 03/1/1908 22/1/1909 11/1/1910 30/1/1911 19/1/1912 07/1/1913 26/1/1914 15/1/1915 05/1/1916 23/1/1917 12/1/1918 02/1/1919 21/1/1920 09/1/1921 28/1/1922 17/1/1923 06/1/1924 24/1/1925 14/1/1926 03/1/1927 22/1/1928 11/1/1929 29/1/1930 18/1/1931 07/1/1932 25/1/1933 15/1/1934 05/1/1935 24/1/1936 12/1/1937 01/1/1938 20/1/1939 09/1/1940 27/1/1941 16/1/1942 06/1/1943 25/1/1944 14/1/1945 03/1/1946 22/1/1947 11/1/1948 29/1/1949 MODERN ALMAGEST 2415021.07 2415405.10 2415759.37 2416143.18 2416497.16 2416851.26 2417235.21 2417589.74 2417944.40 2418328.50 2418682.98 2419066.89 2419420.95 2419774.94 2420158.78 2420513.10 2420867.69 2421251.81 2421606.44 2421960.84 2422344.71 2422698.72 2423082.50 2423436.61 2423791.03 2424175.10 2424529.77 2424884.35 2425268.33 2425622.50 2426006.29 2426360.28 2426714.48 2427098.46 2427453.06 2427807.72 2428191.80 2428546.18 2428900.28 2429284.06 2429638.09 2430021.96 2430376.39 2430731.02 2431115.14 2431469.71 2431824.00 2432207.84 2432561.83 2432945.62 18/1/1950 07/1/1951 26/1/1952 15/1/1953 05/1/1954 24/1/1955 13/1/1956 01/1/1957 19/1/1958 09/1/1959 28/1/1960 16/1/1961 06/1/1962 25/1/1963 14/1/1964 02/1/1965 21/1/1966 10/1/1967 29/1/1968 18/1/1969 07/1/1970 26/1/1971 16/1/1972 04/1/1973 23/1/1974 12/1/1975 01/1/1976 19/1/1977 09/1/1978 28/1/1979 17/1/1980 06/1/1981 25/1/1982 14/1/1983 03/1/1984 21/1/1985 10/1/1986 29/1/1987 19/1/1988 07/1/1989 26/1/1990 15/1/1991 04/1/1992 22/1/1993 11/1/1994 01/1/1995 20/1/1996 09/1/1997 28/1/1998 17/1/1999 2433299.83 2433654.33 2434038.42 2434393.09 2434747.59 2435131.53 2435485.62 2435839.60 2436223.43 2436577.73 2436961.75 2437316.39 2437671.03 2438055.06 2438409.35 2438763.37 2439147.16 2439501.26 2439885.18 2440239.70 2440594.36 2440978.45 2441332.94 2441687.14 2442070.95 2442424.94 2442779.11 2443163.08 2443517.66 2443901.76 2444256.39 2444610.80 2444994.69 2445348.71 2445702.73 2446086.61 2446441.01 2446825.06 2447179.72 2447534.31 2447918.30 2448272.48 2448626.47 2449010.28 2449364.46 2449718.95 2450103.02 2450457.68 2450841.75 2451196.14 06/1/2000 24/1/2001 13/1/2002 02/1/2003 21/1/2004 10/1/2005 29/1/2006 19/1/2007 08/1/2008 26/1/2009 15/1/2010 04/1/2011 23/1/2012 11/1/2013 01/1/2014 20/1/2015 10/1/2016 27/1/2017 17/1/2018 06/1/2019 24/1/2020 13/1/2021 02/1/2022 21/1/2023 11/1/2024 29/1/2025 18/1/2026 07/1/2027 26/1/2028 14/1/2029 04/1/2030 23/1/2031 12/1/2032 01/1/2033 20/1/2034 09/1/2035 28/1/2036 16/1/2037 05/1/2038 24/1/2039 14/1/2040 02/1/2041 21/1/2042 11/1/2043 30/1/2044 18/1/2045 07/1/2046 26/1/2047 15/1/2048 04/1/2049 2451550.25 2451934.05 2452288.07 2452642.34 2453026.37 2453381.00 2453765.09 2454119.66 2454473.97 2454857.81 2455211.80 2455565.88 2455949.82 2456304.31 2456658.97 2457043.05 2457397.56 2457781.49 2458135.58 2458489.57 2458873.41 2459227.70 2459582.26 2459966.36 2460321.00 2460705.02 2461059.31 2461413.34 2461797.14 2462151.23 2462505.61 2462889.67 2463244.33 2463598.93 2463982.91 2464337.11 2464720.92 2465074.91 2465429.07 2465813.06 2466167.63 2466522.30 2466906.36 2467260.77 2467644.65 2467998.68 2468352.69 2468736.58 2469090.97 2469445.59 23/1/2050 12/1/2051 02/1/2052 19/1/2053 08/1/2054 27/1/2055 16/1/2056 05/1/2057 24/1/2058 14/1/2059 03/1/2060 21/1/2061 10/1/2062 29/1/2063 18/1/2064 06/1/2065 25/1/2066 15/1/2067 05/1/2068 23/1/2069 12/1/2070 01/1/2071 20/1/2072 08/1/2073 27/1/2074 16/1/2075 06/1/2076 24/1/2077 14/1/2078 03/1/2079 22/1/2080 10/1/2081 28/1/2082 18/1/2083 07/1/2084 25/1/2085 15/1/2086 04/1/2087 23/1/2088 11/1/2089 30/1/2090 19/1/2091 09/1/2092 27/1/2093 16/1/2094 06/1/2095 25/1/2096 13/1/2097 02/1/2098 21/1/2099 2469829.70 2470184.29 2470538.61 2470922.45 2471276.44 2471660.25 2472014.42 2472368.90 2472753.00 2473107.66 2473462.19 2473846.12 2474200.23 2474584.01 2474938.03 2475292.30 2475676.33 2476030.96 2476385.61 2476769.64 2477123.96 2477478.00 2477861.78 2478215.85 2478599.77 2478954.26 2479308.92 2479693.03 2480047.54 2480401.77 2480785.57 2481139.55 2481523.38 2481877.65 2482232.21 2482616.33 2482970.97 2483325.41 2483709.30 2484063.34 2484447.11 2484801.19 2485155.56 2485539.63 2485894.29 2486248.90 2486632.90 2486987.11 2487341.11 2487724.89 Table 7.3: Dates and fractional Julian day numbers of the first new moons of the years 1900–2099 CE. Lunar-Solar Syzygies and Eclipses 113 Arg. (◦ ) δβ1 ( ′ ) δβ2 ( ′ ) δβ3 ( ′ ) Arg. (◦ ) 000/360 002/358 004/356 006/354 008/352 010/350 012/348 014/346 016/344 018/342 020/340 022/338 024/336 026/334 028/332 030/330 032/328 034/326 036/324 038/322 040/320 042/318 044/316 046/314 048/312 050/310 052/308 054/306 056/304 058/302 060/300 062/298 064/296 066/294 068/292 070/290 072/288 074/286 076/284 078/282 080/280 082/278 084/276 086/274 088/272 090/270 3.128 3.126 3.120 3.111 3.097 3.080 3.059 3.035 3.007 2.975 2.939 2.900 2.857 2.811 2.762 2.709 2.652 2.593 2.530 2.465 2.396 2.324 2.250 2.173 2.093 2.010 1.926 1.838 1.749 1.657 1.564 1.468 1.371 1.272 1.172 1.070 0.967 0.862 0.757 0.650 0.543 0.435 0.327 0.218 0.109 0.000 0.856 0.855 0.854 0.851 0.847 0.843 0.837 0.830 0.822 0.814 0.804 0.793 0.782 0.769 0.755 0.741 0.726 0.709 0.692 0.674 0.655 0.636 0.615 0.594 0.573 0.550 0.527 0.503 0.478 0.453 0.428 0.402 0.375 0.348 0.321 0.293 0.264 0.236 0.207 0.178 0.149 0.119 0.089 0.060 0.030 0.000 0.267 0.267 0.267 0.266 0.265 0.263 0.261 0.259 0.257 0.254 0.251 0.248 0.244 0.240 0.236 0.231 0.227 0.222 0.216 0.211 0.205 0.199 0.192 0.186 0.179 0.172 0.165 0.157 0.149 0.142 0.134 0.125 0.117 0.109 0.100 0.091 0.083 0.074 0.065 0.056 0.046 0.037 0.028 0.019 0.009 0.000 (180)/(180) (178)/(182) (176)/(184) (174)/(186) (172)/(188) (170)/(190) (168)/(192) (166)/(194) (164)/(196) (162)/(198) (160)/(200) (158)/(202) (156)/(204) (154)/(206) (152)/(208) (150)/(210) (148)/(212) (146)/(214) (144)/(216) (142)/(218) (140)/(220) (138)/(222) (136)/(224) (134)/(226) (132)/(228) (130)/(230) (128)/(232) (126)/(234) (124)/(236) (122)/(238) (120)/(240) (118)/(242) (116)/(244) (114)/(246) (112)/(248) (110)/(250) (108)/(252) (106)/(254) (104)/(256) (102)/(258) (100)/(260) (098)/(262) (096)/(264) (094)/(266) (092)/(268) (090)/(270) Table 7.4: Lunar-solar eclipse functions. The arguments of δβ1, δβ2, and δβ3 are MM, MM, and MS, respectively. δβ1, δβ2, and δβ3 take minus the values shown in the table if their arguments are in parenthesies. 114 MODERN ALMAGEST The Superior Planets 115 8 The Superior Planets 8.1 Determination of Ecliptic Longitude Figure 8.1 compares and contrasts heliocentric and geocentric models of the motion of a superior planet (i.e., a planet which is further from the sun than the earth), P, as seen from the earth, G. The sun is at S. In the heliocentric model, we can write the earth-planet displacement vector, P, as the sum of the earth-sun displacement vector, S, and the sun-planet displacement vector, P ′ . The geocentric model, which is entirely equivalent to the heliocentric model as far as the relative motion of the planet with respect to the earth is concerned, and is much more convenient, relies on the simple vector identity P = S + P ′ ≡ P ′ + S. (8.1) In other words, we can get from the earth to the planet by one of two different routes. The first route corresponds to the heliocentric model, and the second to the geocentric model. In the latter model, P ′ gives the displacement of the so-called guide-point, G ′ , from the earth. Since P ′ is also the displacement of the planet, P, from the sun, S, it is clear that G ′ executes a Keplerian orbit about the earth whose elements are the same as those of the orbit of the planet about the sun. The ellipse traced out by G ′ is termed the deferent. The vector S gives the displacement of the planet from the guide-point. However, S is also the displacement of the sun from the earth. Hence, it is clear that the planet, P, executes a Keplerian orbit about the guide-point, G ′ , whose elements are the same as the sun’s apparent orbit about the earth. The ellipse traced out by P about G ′ is termed the epicycle. deferent planetary orbit S G S P′ Earth’s orbit Heliocentric P P′ G epicycle P G′ P P S Geocentric Figure 8.1: Heliocentric and geocentric models of the motion of a superior planet. Here, S is the sun, G the earth, and P the planet. View is from the northern ecliptic pole. Figure 8.2 illustrates in more detail how the deferent-epicycle model is used to determine the ecliptic longitude of a superior planet. The planet P orbits (counterclockwise) on a small Keplerian 116 MODERN ALMAGEST P ′ a A′ C′ T ′ Π′ ̟′ G′ Υ a G A C ea T Π ̟ Υ Figure 8.2: Planetary longitude model. View is from northern ecliptic pole. orbit Π ′ PA ′ about guide-point G ′ , which, in turn, orbits the earth, G, (counterclockwise) on a large Keplerian orbit ΠG ′ A. As has already been mentioned, the small orbit is termed the epicycle, and the large orbit the deferent. Both orbits are assumed to lie in the plane of the ecliptic. This approximation does not introduce a large error into our calculations because the orbital inclinations of the visible planets to the ecliptic plane are all fairly small. Let C, A, Π, a, e, ̟, and T denote the geometric center, apocenter (i.e., the point of furthest distance from the central object), pericenter (i.e., the point of closest approach to the central object), major radius, eccentricity, longitude of the pericenter, and true anomaly of the deferent, respectively. Let C ′ , A ′ , Π ′ , a ′ , e ′ , ̟ ′ , and T ′ denote the corresponding quantities for the epicycle. P r′ sin µ r′ µ θ G′ G r B r′ cos µ Figure 8.3: The triangle GBP. Let the line GG ′ be produced, and let the perpendicular PB be dropped to it from P, as shown The Superior Planets 117 in Fig. 8.3. The angle µ ≡ PG ′ B is termed the epicyclic anomaly (see Fig. 8.4), and takes the form µ = T ′ + ̟ ′ − T − ̟ = λ̄ ′ + q ′ − λ̄ − q, (8.2) where λ̄ and q are the mean longitude and equation of center for the deferent, whereas λ̄ ′ and q ′ are the corresponding quantities for the epicycle—see Cha. 5. The epicyclic anomaly is generally written in the range 0◦ to 360◦ . The angle θ ≡ PGG ′ is termed the equation of the epicycle, and is usually written in the range −180◦ to +180◦ . It is clear from the figure that tan θ = sin µ , r/r ′ + cos µ (8.3) where r ≡ GG ′ and r ′ ≡ G ′ P are the radial polar coordinates for the deferent and epicycle, respectively. Moreover, according to Equation (4.22), r/r ′ = (a/a ′ ) z, where 1−ζ , 1 − ζ′ z= (8.4) and ζ = e cos M − e 2 sin2 M, (8.5) ζ ′ = e ′ cos M ′ − e ′ 2 sin2 M ′ (8.6) are termed radial anomalies. Finally, the ecliptic longitude of the planet is given by (see Fig. 8.4) (8.7) λ = λ̄ + q + θ. Now, θ(µ, z) ≡ tan−1 sin µ ′ (a/a ) z + cos µ (8.8) is a function of two variables, µ and z. It is impractical to tabulate such a function directly. Fortunately, whilst θ(µ, z) has a strong dependence on µ, it only has a fairly weak dependence on z. In fact, it is easily seen that z varies between zmin = z̄ − δz and zmax = z̄ + δz, where 1 + e e′ , 1 − e′ 2 e + e′ . δz = 1 − e′ 2 z̄ = (8.9) (8.10) Let us define z̄ − z . (8.11) δz This variable takes the value −1 when z = zmax , the value 0 when z = z̄, and the value +1 when z = zmin . Thus, using quadratic interpolation, we can write ξ= θ(µ, z) ≃ Θ−(ξ) δθ−(µ) + θ̄(µ) + Θ+(ξ) δθ+(µ), (8.12) where θ̄(µ) = θ(µ, z̄), (8.13) δθ−(µ) = θ(µ, z̄) − θ(µ, zmax ), (8.14) δθ+(µ) = θ(µ, zmin ) − θ(µ, z̄), (8.15) 118 MODERN ALMAGEST and Θ−(ξ) = −(1/2) ξ (ξ − 1), (8.16) Θ+(ξ) = +(1/2) ξ (ξ + 1). (8.17) This scheme allows us to avoid having to tabulate a two-dimensional function, whilst ensuring that the exact value of θ(µ, z) is obtained when z = z̄, zmin , or zmax . The above interpolation scheme is very similar to that adopted by Ptolemy in the Almagest. Our procedure for determining the ecliptic longitude of a superior planet is described below. It is assumed that the ecliptic longitude, λS, and the radial anomaly, ζS, of the sun have already been calculated. The latter quantity is tabulated as a function of the solar mean anomaly in Table 5.4. In the following, a, e, n, ñ, λ̄0, and M0 represent elements of the orbit of the planet in question about the sun, and eS represents the eccentricity of the sun’s apparent orbit about the earth. (In general, the subscript S denotes the sun.) In particular, a is the major radius of the planetary orbit in units in which the major radius of the sun’s apparent orbit about the earth is unity. The requisite elements for all of the superior planets at the J2000 epoch (t0 = 2 451 545.0 JD) are listed in Table 5.1. The ecliptic longitude of a superior planet is specified by the following formulae: λ̄ = λ̄0 + n (t − t0), (8.18) M = M0 + ñ (t − t0), (8.19) q = 2 e sin M + (5/4) e2 sin 2M, (8.20) ζ = e cos M − e2 sin2 M, (8.21) (8.22) µ = λS − λ̄ − q, θ̄ = θ(µ, z̄) ≡ tan−1 sin µ , a z̄ + cos µ (8.23) δθ− = θ(µ, z̄) − θ(µ, zmax ), (8.24) δθ+ = θ(µ, zmin ) − θ(µ, z̄), (8.25) 1−ζ , 1 − ζS z̄ − z ξ = , δz θ = Θ−(ξ) δθ− + θ̄ + Θ+(ξ) δθ+, (8.28) λ = λ̄ + q + θ. (8.29) z = (8.26) (8.27) Here, z̄ = (1 + e eS)/(1 − eS2), δz = (e + eS)/(1 − eS2), zmin = z̄ − δz, and zmax = z̄ + δz. The constants z̄, δz, zmin , and zmax for each of the superior planets are listed in Table 8.1. Finally, the functions Θ± are tabulated in Table 8.2. For the case of Mars, the above formulae are capable of matching NASA ephemeris data during the years 1995–2006 CE with a mean error of 3 ′ and a maximum error of 14 ′ . For the case of Jupiter, the mean error is 1.6 ′ and the maximum error 4 ′ . Finally, for the case of Saturn, the mean error is 0.5 ′ and the maximum error 1 ′ . The Superior Planets 119 8.2 Mars The ecliptic longitude of Mars can be determined with the aid of Tables 8.3–8.5. Table 8.3 allows the mean longitude, λ̄, and the mean anomaly, M, of Mars to be calculated as functions of time. Next, Table 8.4 permits the equation of center, q, and the radial anomaly, ζ, to be determined as functions of the mean anomaly. Finally, Table 8.5 allows the quantities δθ−, θ̄, and δθ+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is as follows: 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the ecliptic longitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t − t0, where t0 = 2 451 545.0 is the epoch. 2. Calculate the ecliptic longitude, λS, and radial anomaly, ζS, of the sun using the procedure set out in Sect. 5.1. 3. Enter Table 8.3 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆λ̄ and ∆M. If ∆t is negative then the corresponding values are also negative. The value of the mean longitude, λ̄, is the sum of all the ∆λ̄ values plus the value of λ̄ at the epoch. Likewise, the value of the mean anomaly, M, is the sum of all the ∆M values plus the value of M at the epoch. Add as many multiples of 360◦ to λ̄ and M as is required to make them both fall in the range 0◦ to 360◦ . Round M to the nearest degree. 4. Enter Table 8.4 with the value of M and take out the corresponding value of the equation of center, q, and the radial anomaly, ζ. It is necessary to interpolate if M is odd. 5. Form the epicyclic anomaly, µ = λS − λ̄ − q. Add as many multiples of 360◦ to µ as is required to make it fall in the range 0◦ to 360◦ . Round µ to the nearest degree. 6. Enter Table 8.5 with the value of µ and take out the corresponding values of δθ−, θ̄, and δθ+. If µ > 180◦ then it is necessary to make use of the identities δθ± (360◦ − µ) = −δθ± (µ) and θ̄(360◦ − µ) = −θ̄(µ). 7. Form z = (1 − ζ)/(1 − ζS). 8. Obtain the values of z̄ and δz from Table 8.1. Form ξ = (z̄ − z)/δz. 9. Enter Table 8.2 with the value of ξ and take out the corresponding values of Θ− and Θ+. If ξ < 0 then it is necessary to use the identities Θ+(ξ) = −Θ−(−ξ) and Θ−(ξ) = −Θ+(−ξ). 10. Form the equation of the epicycle, θ = Θ− δθ− + θ̄ + Θ+ δθ+. 11. The ecliptic longitude, λ, is the sum of the mean longitude, λ̄, the equation of center, q, and the equation of the epicycle, θ. If necessary convert λ into an angle in the range 0◦ to 360◦ . The decimal fraction can be converted into arc minutes using Table 5.2. Round to the nearest arc minute. The final result can be written in terms of the signs of the zodiac using the table in Sect. 2.6. Two examples of this procedure are given below. 120 MODERN ALMAGEST Example 1: May 5, 2005 CE, 00:00 UT: From Sect. 5.1, t − t0 = 1 950.5 JD, λS = 44.602◦ , MS ≃ 120◦ . Hence, it follows from Table 5.4 that ζS(MS) = −8.56 × 10−3. Making use of Table 8.3, we find: t(JD) λ̄(◦ ) M(◦ ) +1000 +900 +50 +.5 Epoch 164.071 111.664 26.204 0.262 355.460 657.661 297.661 164.021 111.619 26.201 0.262 19.388 321.491 321.491 Modulus Given that M ≃ 321◦ , Table 8.4 yields q(321◦ ) = −7.345◦ , ζ(321◦ ) = 6.912 × 10−2. Thus, µ = λS − λ̄ − q = 44.602 − 297.661 + 7.345 = 114.286 ≃ 114◦ , where we have rounded the epicylic anomaly to the nearest degree. It follows from Table 8.5 that δθ−(114◦ ) = 3.853◦ , θ̄(114◦ ) = 39.209◦ , δθ+(114◦ ) = 4.612◦ . Now, z = (1 − ζ)/(1 − ζS) = (1 − 6.912 × 10−2)/(1 + 8.56 × 10−3) = 0.9230. However, from Table 8.1, z̄ = 1.00184 and δz = 0.11014, so ξ = (z̄ − z)/δz = (1.00184 − 0.9230)/0.11014 ≃ 0.72. According to Table 8.2, Θ−(0.72) = 0.101, Θ+(0.72) = 0.619, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = 0.101 × 3.853 + 39.209 + 0.619 × 4.612 = 42.453◦ . Finally, λ = λ̄ + q + θ = 297.661 − 7.345 + 42.453 = 332.769 ≃ 332◦ 46 ′ . Thus, the ecliptic longitude of Mars at 00:00 UT on May 5, 2005 CE was 2PI46. Example 2: December 25, 1800 CE, 00:00 UT: From Sect. 5.1, t − t0 = −72, 690.5 JD, λS = 273.055◦ , MS ≃ 354◦ . Hence, it follows from Table 5.4 that ζS(MS) = 1.662 × 10−2. Making use of Table 8.3, we find: The Superior Planets 121 t(JD) λ̄(◦ ) M(◦ ) -70,000 -2,000 -600 -90 -.5 Epoch −324.983 −328.142 −314.443 −47.166 −0.262 355.460 −659.536 60.464 −321.453 −328.042 −314.412 −47.162 −0.262 19.388 −991.943 88.057 Modulus Given that M ≃ 88◦ , Table 8.4 yields q(88◦ ) = 10.739◦ , ζ(88◦ ) = −5.45 × 10−3, so µ = λS − λ̄ − q = 273.055 − 60.464 − 10.739 = 201.852 ≃ 202◦ . It follows from Table 8.5 that δθ−(202◦ ) = −5.980◦ , θ̄(202◦ ) = −32.007◦ , δθ+(202◦ ) = −8.955◦ . Now, z = (1 − ζ)/(1 − ζS) = (1 + 5.45 × 10−3)/(1 − 1.662 × 10−2) = 1.02244, so ξ = (z̄ − z)/δz = (1.00184 − 1.02244)/0.11014 ≃ −0.19. According to Table 8.2, Θ−(−0.19) = −0.113, Θ+(−0.19) = −0.077, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = −0.113 × 5.980 − 32.007 − 0.077 × 8.955 = −30.642◦ . Finally, λ = λ̄ + q + θ = 60.464 + 10.739 − 30.642 = 40.561 ≃ 40◦ 34 ′ . Thus, the ecliptic longitude of Mars at 00:00 UT on December 25, 1800 CE was 10TA34. 8.3 Determination of Conjunction, Opposition, and Station Dates Figure 8.4 shows the geocentric orbit of a superior planet. Recall that the vector G ′ P is always parallel to the vector connecting the earth to the sun. It follows that a so-called conjunction, at which the sun lies directly between the planet and the earth, occurs whenever the epicyclic anomaly, µ, takes the value 0◦ . At a conjunction, the planet is furthest from the earth, and has the same ecliptic longitude as the sun, and is, therefore, invisible. Conversely, a so-called opposition, at which the earth lies directly between the planet and the sun, occurs whenever µ = 180◦ . At an opposition, the planet is closest to the earth, and also directly opposite the sun in the sky, and, therefore, at its brightest. Now, a superior planet rotates around the epicycle at a faster angular velocity than its 122 MODERN ALMAGEST P G′ θ λ̄ + q G µ Υ Figure 8.4: The geocentric orbit of a superior planet. Here, G, G ′ , P, µ, θ, λ̄, q, and Υ represent the earth, guide-point, planet, epicyclic anomaly, equation of the epicycle, mean longitude, equation of center, and spring equinox, respectively. View is from northern ecliptic pole. Both G ′ and P orbit counterclockwise. guide-point rotates around the deferent. Moreover, both the planet and guide-point rotate in the same direction. It follows that the planet is traveling backward in the sky (relative to the direction of its mean motion) at opposition. This phenomenon is called retrograde motion. The period of retrograde motion begins and ends at stations—so-called because when the planet reaches them it appears to stand still in the sky for a few days whilst it reverses direction. Tables 8.3–8.5 can be used to determine the dates of the conjunctions, oppositions, and stations of Mars. Consider the first conjunction after the epoch (January 1, 2000 CE). We can estimate the time at which this event occurs by approximating the epicyclic anomaly as the so-called mean epicyclic anomaly: µ ≃ µ̄ = λ̄S − λ̄ = λ̄0S − λ̄0 + (nS − n) (t − t0) = 284.998 + 0.46157617 (t − t0). We obtain t ≃ t0 + (360 − 284.998)/0.46157617 ≃ t0 + 162 JD. A calculation of the epicyclic anomaly at this time, using Tables 8.3–8.5, yields µ = −9.583◦ . Now, the actual conjunction occurs when µ = 0◦ . Hence, our next estimate is t ≃ t0 + 162 + 9.583/0.46157617 ≃ t0 + 183 JD. A calculation of the epicyclic anomaly at this time gives 0.294◦ . Thus, our final estimate is t = t0 + 183 − 0.294/0.461557617 = t0 + 182.4 JD, which corresponds to July 1, 2000 CE. The Superior Planets 123 Consider the first opposition of Mars after the epoch. Our first estimate of the time at which this event takes place is t ≃ t0 + (540 − 284.998)/0.46157617 ≃ t0 + 552 JD. A calculation of the epicyclic anomaly at this time yields µ = 188.649◦ . Now, the actual opposition occurs when µ = 180◦ . Hence, our second estimate is t ≃ t0 + 552 − 8.649/0.46157617 ≃ t0 + 533 JD. A calculation of the epicyclic anomaly at this time gives 181.455◦ . Thus, our third estimate is t ≃ t0 + 533 − 1.455/0.46157617 ≃ t0 + 530 JD. A calculation of the epicyclic anomaly at this time yields 180.244◦ . Hence, our final estimate is t = t0 + 530 − 0.244/0.46157617 = t0 + 529.5 JD, which corresponds to June 13, 2001 CE. Incidentally, it is clear from the above analysis that the mean time period between successive conjunctions, or oppositions, of Mars is 360/0.46157617 = 779.9 JD, which is equivalent to 2.14 years. Let us now consider the stations of Mars. We can approximate the ecliptic longitude of a superior planet as λ ≃ λ̄ + θ̄, (8.30) where θ̄ = tan−1 sin µ̄ , ā + cos µ̄ (8.31) and ā = a z̄. Note that dλ̄/dt = n and dµ̄/dt = nS − n. It follows that dλ ≃n+ dt ā cos µ̄ + 1 (nS − n). 1 + 2 ā cos µ̄ + ā2 (8.32) Now, a station corresponds to dλ/dt = 0 (i.e., a local maximum or minimum of λ), which gives cos µ̄ ≃ − (ā2 + nS/n) . ā (1 + nS/n) (8.33) For the case of Mars, we find that µ̄ = 163.3◦ or 196.7◦ . The first solution corresponds to the socalled retrograde station, at which the planet switches from direct to retrograde motion. The second solution corresponds to the so-called direct station, at which the planet switches from retrograde to direct motion. The mean time interval between a retrograde station and the following opposition, or between an opposition and the following direct station, is (180 − 163.3)/0.46157617 ≃ 36 JD. Unfortunately, the only option for accurately determining the dates at which the stations occur is to calculate the ecliptic longitude of Mars over a range of days centered 36 days before and after its opposition. Table 8.6 shows the conjunctions, oppositions, and stations of Mars for the years 2000–2020 CE, calculated using the techniques described above. 124 MODERN ALMAGEST 8.4 Jupiter The ecliptic longitude of Jupiter can be determined with the aid of Tables 8.7–8.9. Table 8.7 allows the mean longitude, λ̄, and the mean anomaly, M, of Jupiter to be calculated as functions of time. Next, Table 8.8 permits the equation of center, q, and the radial anomaly, ζ, to be determined as functions of the mean anomaly. Finally, Table 8.9 allows the quantities δθ−, θ̄, and δθ+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is analogous to the previously described procedure for using the Mars tables. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From before, t − t0 = 1 950.5 JD, λS = 44.602◦ , MS ≃ 120◦ , and ζS = −8.56 × 10−3. Making use of Table 8.7, we find: t(JD) λ̄(◦ ) M(◦ ) +1000 +900 +50 +.5 Epoch 83.125 74.813 4.156 0.042 34.365 196.501 196.501 83.081 74.773 4.154 0.042 19.348 181.398 181.398 Modulus Given that M ≃ 181◦ , Table 8.8 yields q(181◦ ) = −0.091◦ , ζ(181◦ ) = −4.838 × 10−2. Thus, µ = λS − λ̄ − q = 44.602 − 196.501 + 0.091 = −151.808 ≃ 208◦ , where we have rounded the epicylic anomaly to the nearest degree. It follows from Table 8.9 that δθ−(208◦ ) = −0.447◦ , θ̄(208◦ ) = −6.194◦ , δθ+(208◦ ) = −0.522◦ . Now, z = (1 − ζ)/(1 − ζS) = (1 + 4.838 × 10−2)/(1 + 8.56 × 10−3) = 1.0395. However, from Table 8.1, z̄ = 1.00109 and δz = 0.06512, so ξ = (z̄ − z)/δz = (1.00109 − 1.0395)/0.06512 ≃ −0.59. According to Table 8.2, Θ−(−0.59) = −0.469, Θ+(−0.59) = −0.121, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = 0.469 × 0.447 − 6.194 + 0.121 × 0.522 = −5.921◦ . The Superior Planets 125 Finally, λ = λ̄ + q + θ = 196.501 − 0.091 − 5.921 = 190.489 ≃ 190◦ 29 ′ . Thus, the ecliptic longitude of Jupiter at 00:00 UT on May 5, 2005 CE was 10LI29. The conjunctions, oppositions, and stations of Jupiter can be investigated using analogous methods to those employed earlier to examine the conjunctions, oppositions, and stations of Mars. We find that the mean time period between successive oppositions or conjunctions of Jupiter is 1.09 yr. Furthermore, on average, the retrograde and direct stations of Jupiter occur when the epicyclic anomaly takes the values µ = 125.6◦ and 234.4◦ , respectively. Finally, the mean time period between a retrograde station and the following opposition, or between the opposition and the following direct station, is 60 JD. The conjunctions, oppositions, and stations of Jupiter during the years 2000–2010 CE are shown in Table 8.10. 8.5 Saturn The ecliptic longitude of Saturn can be determined with the aid of Tables 8.11–8.13. Table 8.11 allows the mean longitude, λ̄, and the mean anomaly, M, of Saturn to be calculated as functions of time. Next, Table 8.12 permits the equation of center, q, and the radial anomaly, ζ, to be determined as functions of the mean anomaly. Finally, Table 8.13 allows the quantities δθ−, θ̄, and δθ+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is analogous to the previously described procedure for using the Mars tables. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From before, t − t0 = 1 950.5 JD, λS = 44.602◦ , MS ≃ 120◦ , and ζS = −8.56 × 10−3. Making use of Table 8.11, we find: t(JD) λ̄(◦ ) M(◦ ) +1000 +900 +50 +.5 Epoch 33.508 30.157 1.675 0.017 50.059 115.416 115.416 33.482 30.133 1.674 0.017 317.857 383.163 23.163 Modulus Given that M ≃ 23◦ , Table 8.12 yields q(23◦ ) = 2.561◦ , ζ(23◦ ) = 4.913 × 10−2. Thus, µ = λS − λ̄ − q = 44.602 − 115.416 − 2.561 = −73.375 ≃ 287◦ , where we have rounded the epicylic anomaly to the nearest degree. It follows from Table 8.13 that δθ−(287◦ ) = −0.353◦ , θ̄(287◦ ) = −5.551◦ , δθ+(287◦ ) = −0.405◦ . 126 MODERN ALMAGEST Now, z = (1 − ζ)/(1 − ζS) = (1 − 4.913 × 10−2)/(1 + 8.56 × 10−3) = 0.9428. However, from Table 8.1, z̄ = 1.00118 and δz = 0.07059, so ξ = (z̄ − z)/δz = (1.00118 − 0.9428)/0.07059 ≃ 0.83. According to Table 8.2, Θ−(0.83) = 0.071, Θ+(0.83) = 0.759, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = −0.071 × 0.353 − 5.551 − 0.759 × 0.405 = −5.883◦ . Finally, λ = λ̄ + q + θ = 115.416 + 2.561 − 5.883 = 112.094 ≃ 112◦ 06 ′ . Thus, the ecliptic longitude of Saturn at 00:00 UT on May 5, 2005 CE was 22CN06. The conjunctions, oppositions, and stations of Saturn can be investigated using analogous methods to those employed earlier to examine the conjunctions, oppositions, and stations of Mars. We find that the mean time period between successive oppositions or conjunctions of Saturn is 1.035 yr. Furthermore, on average, the retrograde and direct stations of Saturn occur when the epicyclic anomaly takes the values µ = 114.5◦ and 245.5◦ , respectively. Finally, the mean time period between a retrograde station and the following opposition, or between the opposition and the following direct station, is 69 JD. The conjunctions, oppositions, and stations of Saturn during the years 2000–2010 CE are shown in Table 8.14. The Superior Planets 127 Planet Mercury Venus Mars Jupiter Saturn z̄ δz zmin zmax 1.04774 1.00016 1.00184 1.00109 1.00118 0.23216 0.02349 0.11014 0.06512 0.07059 0.81558 0.97667 0.89170 0.93597 0.93059 1.27990 1.02365 1.11198 1.06602 1.07177 Table 8.1: Constants associated with the epicycles of the inferior and superior planets. ξ Θ− Θ+ ξ Θ− Θ+ ξ Θ− Θ+ ξ Θ− Θ+ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.000 0.005 0.010 0.015 0.019 0.024 0.028 0.033 0.037 0.041 0.045 0.049 0.053 0.057 0.060 0.064 0.067 0.071 0.074 0.077 0.080 0.083 0.086 0.089 0.091 0.094 0.000 0.005 0.010 0.015 0.021 0.026 0.032 0.037 0.043 0.049 0.055 0.061 0.067 0.073 0.080 0.086 0.093 0.099 0.106 0.113 0.120 0.127 0.134 0.141 0.149 0.156 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.094 0.096 0.099 0.101 0.103 0.105 0.107 0.109 0.111 0.112 0.114 0.115 0.117 0.118 0.119 0.120 0.121 0.122 0.123 0.123 0.124 0.124 0.125 0.125 0.125 0.125 0.156 0.164 0.171 0.179 0.187 0.195 0.203 0.211 0.219 0.228 0.236 0.245 0.253 0.262 0.271 0.280 0.289 0.298 0.307 0.317 0.326 0.336 0.345 0.355 0.365 0.375 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.125 0.125 0.125 0.125 0.124 0.124 0.123 0.123 0.122 0.121 0.120 0.119 0.118 0.117 0.115 0.114 0.112 0.111 0.109 0.107 0.105 0.103 0.101 0.099 0.096 0.094 0.375 0.385 0.395 0.405 0.416 0.426 0.437 0.447 0.458 0.469 0.480 0.491 0.502 0.513 0.525 0.536 0.548 0.559 0.571 0.583 0.595 0.607 0.619 0.631 0.644 0.656 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 0.094 0.091 0.089 0.086 0.083 0.080 0.077 0.074 0.071 0.067 0.064 0.060 0.057 0.053 0.049 0.045 0.041 0.037 0.033 0.028 0.024 0.019 0.015 0.010 0.005 0.000 0.656 0.669 0.681 0.694 0.707 0.720 0.733 0.746 0.759 0.773 0.786 0.800 0.813 0.827 0.841 0.855 0.869 0.883 0.897 0.912 0.926 0.941 0.955 0.970 0.985 1.000 Table 8.2: Epicyclic interpolation coefficients. Note that Θ± (ξ) = −Θ∓ (−ξ). 128 MODERN ALMAGEST ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 200.712 41.424 242.135 82.847 283.559 124.271 324.983 165.694 6.406 200.208 40.415 240.623 80.830 281.038 121.246 321.453 161.661 1.868 200.409 40.819 241.228 81.638 282.047 122.456 322.866 163.275 3.685 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 164.071 328.142 132.214 296.285 100.356 264.427 68.498 232.569 36.641 164.021 328.042 132.062 296.083 100.104 264.125 68.145 232.166 36.187 164.041 328.082 132.123 296.164 100.205 264.246 68.287 232.328 36.368 100 200 300 400 500 600 700 800 900 52.407 104.814 157.221 209.628 262.036 314.443 6.850 59.257 111.664 52.402 104.804 157.206 209.608 262.010 314.412 6.815 59.217 111.619 52.404 104.808 157.212 209.616 262.020 314.425 6.829 59.233 111.637 10 20 30 40 50 60 70 80 90 5.241 10.481 15.722 20.963 26.204 31.444 36.685 41.926 47.166 5.240 10.480 15.721 20.961 26.201 31.441 36.681 41.922 47.162 5.240 10.481 15.721 20.962 26.202 31.442 36.683 41.923 47.164 1 2 3 4 5 6 7 8 9 0.524 1.048 1.572 2.096 2.620 3.144 3.668 4.193 4.717 0.524 1.048 1.572 2.096 2.620 3.144 3.668 4.192 4.716 0.524 1.048 1.572 2.096 2.620 3.144 3.668 4.192 4.716 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.052 0.105 0.157 0.210 0.262 0.314 0.367 0.419 0.472 0.052 0.105 0.157 0.210 0.262 0.314 0.367 0.419 0.472 0.052 0.105 0.157 0.210 0.262 0.314 0.367 0.419 0.472 Table 8.3: Mean motion of Mars. Here, ∆t = t − t0, ∆λ̄ = λ̄ − λ̄0, ∆M = M − M0, and ∆F̄ = F̄ − F̄0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 355.460◦ , M0 = 19.388◦ , and F̄0 = 305.796◦ . The Superior Planets 129 M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 0.000 0.417 0.833 1.249 1.662 2.072 2.479 2.882 3.281 3.674 4.062 4.443 4.817 5.184 5.542 5.892 6.233 6.564 6.885 7.195 7.494 7.782 8.059 8.323 8.575 8.814 9.040 9.252 9.452 9.637 9.809 9.967 10.111 10.241 10.357 10.458 10.546 10.619 10.678 10.722 10.753 10.770 10.773 10.763 10.739 10.702 9.339 9.333 9.312 9.279 9.232 9.171 9.098 9.011 8.911 8.799 8.674 8.537 8.388 8.227 8.054 7.870 7.675 7.470 7.254 7.029 6.794 6.550 6.297 6.036 5.768 5.491 5.208 4.919 4.623 4.322 4.016 3.705 3.389 3.071 2.749 2.424 2.097 1.768 1.438 1.107 0.776 0.444 0.114 -0.217 -0.545 -0.872 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 10.702 10.652 10.589 10.514 10.426 10.326 10.214 10.091 9.957 9.811 9.655 9.489 9.313 9.127 8.932 8.727 8.514 8.293 8.064 7.827 7.583 7.332 7.074 6.810 6.540 6.264 5.983 5.696 5.405 5.110 4.810 4.506 4.199 3.889 3.575 3.259 2.940 2.619 2.296 1.971 1.645 1.317 0.989 0.660 0.330 0.000 -0.872 -1.197 -1.519 -1.839 -2.155 -2.468 -2.776 -3.081 -3.380 -3.675 -3.964 -4.248 -4.527 -4.799 -5.065 -5.324 -5.576 -5.822 -6.060 -6.292 -6.515 -6.731 -6.939 -7.139 -7.331 -7.515 -7.690 -7.857 -8.015 -8.165 -8.306 -8.438 -8.562 -8.676 -8.782 -8.878 -8.966 -9.044 -9.113 -9.173 -9.224 -9.265 -9.298 -9.321 -9.335 -9.339 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 0.000 -0.330 -0.660 -0.989 -1.317 -1.645 -1.971 -2.296 -2.619 -2.940 -3.259 -3.575 -3.889 -4.199 -4.506 -4.810 -5.110 -5.405 -5.696 -5.983 -6.264 -6.540 -6.810 -7.074 -7.332 -7.583 -7.827 -8.064 -8.293 -8.514 -8.727 -8.932 -9.127 -9.313 -9.489 -9.655 -9.811 -9.957 -10.091 -10.214 -10.326 -10.426 -10.514 -10.589 -10.652 -10.702 -9.339 -9.335 -9.321 -9.298 -9.265 -9.224 -9.173 -9.113 -9.044 -8.966 -8.878 -8.782 -8.676 -8.562 -8.438 -8.306 -8.165 -8.015 -7.857 -7.690 -7.515 -7.331 -7.139 -6.939 -6.731 -6.515 -6.292 -6.060 -5.822 -5.576 -5.324 -5.065 -4.799 -4.527 -4.248 -3.964 -3.675 -3.380 -3.081 -2.776 -2.468 -2.155 -1.839 -1.519 -1.197 -0.872 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 -10.702 -10.739 -10.763 -10.773 -10.770 -10.753 -10.722 -10.678 -10.619 -10.546 -10.458 -10.357 -10.241 -10.111 -9.967 -9.809 -9.637 -9.452 -9.252 -9.040 -8.814 -8.575 -8.323 -8.059 -7.782 -7.494 -7.195 -6.885 -6.564 -6.233 -5.892 -5.542 -5.184 -4.817 -4.443 -4.062 -3.674 -3.281 -2.882 -2.479 -2.072 -1.662 -1.249 -0.833 -0.417 -0.000 -0.872 -0.545 -0.217 0.114 0.444 0.776 1.107 1.438 1.768 2.097 2.424 2.749 3.071 3.389 3.705 4.016 4.322 4.623 4.919 5.208 5.491 5.768 6.036 6.297 6.550 6.794 7.029 7.254 7.470 7.675 7.870 8.054 8.227 8.388 8.537 8.674 8.799 8.911 9.011 9.098 9.171 9.232 9.279 9.312 9.333 9.339 Table 8.4: Deferential anomalies of Mars. 130 µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 MODERN ALMAGEST δθ− θ̄ 0.000 0.000 0.396 0.792 1.187 1.583 1.979 2.374 2.770 3.165 3.560 3.955 4.350 4.745 5.140 5.534 5.928 6.322 6.716 7.110 7.503 7.896 8.288 8.680 9.072 9.464 9.855 10.246 10.636 11.026 11.415 11.804 12.192 12.580 12.968 13.354 13.741 14.126 14.511 14.896 15.279 15.662 16.045 16.426 16.807 17.187 17.566 0.025 0.049 0.074 0.099 0.123 0.148 0.173 0.197 0.222 0.247 0.272 0.297 0.322 0.347 0.372 0.397 0.422 0.447 0.472 0.497 0.523 0.548 0.573 0.599 0.625 0.650 0.676 0.702 0.728 0.754 0.780 0.806 0.833 0.859 0.886 0.913 0.939 0.966 0.994 1.021 1.048 1.076 1.103 1.131 1.159 δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ 0.000 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 1.159 17.566 17.945 18.322 18.699 19.075 19.450 19.824 20.196 20.568 20.939 21.309 21.677 22.045 22.411 22.776 23.139 23.502 23.863 24.222 24.581 24.938 25.293 25.647 25.999 26.349 26.698 27.045 27.390 27.734 28.075 28.415 28.753 29.088 29.421 29.752 30.081 30.408 30.732 31.054 31.373 31.689 32.003 32.314 32.622 32.927 33.228 1.329 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 2.679 33.228 33.527 33.822 34.114 34.403 34.688 34.969 35.246 35.519 35.788 36.053 36.313 36.568 36.819 37.065 37.306 37.541 37.771 37.996 38.214 38.426 38.632 38.831 39.023 39.209 39.386 39.556 39.718 39.872 40.017 40.153 40.279 40.396 40.502 40.598 40.683 40.756 40.816 40.864 40.899 40.920 40.926 40.918 40.893 40.851 40.793 3.125 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 5.180 40.793 40.716 40.619 40.503 40.366 40.206 40.024 39.817 39.584 39.325 39.038 38.721 38.373 37.992 37.577 37.126 36.638 36.110 35.541 34.929 34.271 33.567 32.813 32.007 31.149 30.235 29.265 28.236 27.146 25.996 24.783 23.506 22.167 20.764 19.299 17.774 16.189 14.549 12.857 11.116 9.333 7.513 5.662 3.788 1.898 0.000 6.547 0.028 0.056 0.084 0.113 0.141 0.169 0.197 0.226 0.254 0.282 0.311 0.339 0.368 0.396 0.425 0.453 0.482 0.511 0.540 0.568 0.597 0.626 0.656 0.685 0.714 0.744 0.773 0.803 0.833 0.863 0.893 0.923 0.953 0.984 1.014 1.045 1.076 1.107 1.138 1.169 1.201 1.233 1.265 1.297 1.329 1.187 1.216 1.244 1.273 1.302 1.331 1.360 1.390 1.419 1.449 1.479 1.510 1.540 1.571 1.602 1.633 1.665 1.696 1.728 1.761 1.793 1.826 1.859 1.893 1.927 1.961 1.995 2.030 2.065 2.100 2.136 2.172 2.209 2.246 2.283 2.321 2.359 2.397 2.436 2.475 2.515 2.555 2.596 2.637 2.679 1.362 1.394 1.427 1.461 1.494 1.528 1.562 1.596 1.630 1.665 1.700 1.735 1.771 1.807 1.843 1.879 1.916 1.953 1.991 2.029 2.067 2.106 2.145 2.184 2.224 2.264 2.305 2.346 2.387 2.429 2.472 2.515 2.558 2.602 2.647 2.692 2.737 2.784 2.830 2.878 2.926 2.975 3.024 3.074 3.125 2.721 2.764 2.807 2.851 2.895 2.940 2.985 3.031 3.078 3.125 3.173 3.221 3.270 3.320 3.370 3.421 3.472 3.525 3.578 3.631 3.686 3.741 3.796 3.853 3.910 3.968 4.026 4.086 4.146 4.206 4.268 4.330 4.393 4.456 4.520 4.584 4.649 4.715 4.780 4.847 4.913 4.980 5.047 5.113 5.180 3.176 3.228 3.281 3.335 3.390 3.445 3.501 3.558 3.616 3.675 3.735 3.796 3.857 3.920 3.984 4.049 4.115 4.182 4.251 4.321 4.391 4.464 4.537 4.612 4.688 4.765 4.844 4.925 5.007 5.091 5.176 5.262 5.351 5.441 5.533 5.626 5.721 5.818 5.917 6.018 6.120 6.224 6.330 6.438 6.547 5.246 5.312 5.378 5.442 5.506 5.568 5.628 5.687 5.744 5.797 5.848 5.895 5.938 5.976 6.009 6.036 6.056 6.069 6.072 6.066 6.050 6.022 5.980 5.925 5.854 5.766 5.660 5.535 5.389 5.221 5.030 4.815 4.576 4.311 4.021 3.707 3.368 3.005 2.621 2.217 1.796 1.360 0.913 0.458 0.000 Table 8.5: Epicyclic anomalies of Mars. All quantities are in degrees. Note that θ̄(360◦ − µ) = −θ̄(µ), and δθ± (360◦ − µ) = −δθ± (µ). 6.658 6.771 6.885 7.001 7.118 7.235 7.354 7.474 7.594 7.714 7.833 7.952 8.069 8.184 8.297 8.405 8.509 8.607 8.698 8.780 8.852 8.911 8.955 8.982 8.988 8.972 8.929 8.855 8.747 8.601 8.411 8.174 7.886 7.541 7.138 6.673 6.145 5.553 4.899 4.186 3.420 2.608 1.760 0.886 0.000 The Superior Planets 131 Event Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Date 01/07/2000 12/05/2001 13/06/2001 19/07/2001 10/08/2002 29/07/2003 28/08/2003 27/09/2003 15/09/2004 02/10/2005 07/11/2005 09/12/2005 23/10/2006 15/11/2007 24/12/2007 31/01/2008 05/12/2008 20/12/2009 29/01/2010 10/03/2010 04/02/2011 24/01/2012 03/03/2012 14/04/2012 17/04/2013 01/03/2014 08/04/2014 20/05/2014 14/06/2015 17/04/2016 22/05/2016 29/06/2016 27/07/2017 27/06/2018 27/07/2018 27/08/2018 02/09/2019 10/09/2020 13/10/2020 13/11/2020 λ 10CN13 29SG00 22SG44 15SG02 18LE05 10PI20 05PI03 29AQ55 23VI06 23TA31 15TA06 08TA24 29LI44 12CN36 02CN45 24GE15 14SG08 19LE35 09LE45 00LE20 15AQ42 23VI01 13VI42 03VI51 28AR06 27LI31 19LI00 09LI04 23GE28 08SG45 01SG43 22SC55 04LE11 09AQ35 04AQ22 28CP43 09VI43 28AR08 20AR59 15AR05 Table 8.6: The conjunctions, oppositions, and stations of Mars during the years 2000–2020 CE. (R) indicates a retrograde station, and (D) a direct station. 132 MODERN ALMAGEST ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 111.251 222.501 333.752 85.003 196.253 307.504 58.755 170.006 281.256 110.810 221.620 332.430 83.240 194.050 304.860 55.670 166.480 277.290 110.812 221.624 332.437 83.249 194.061 304.873 55.685 166.498 277.310 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 83.125 166.250 249.375 332.500 55.625 138.750 221.875 305.001 28.126 83.081 166.162 249.243 332.324 55.405 138.486 221.567 304.648 27.729 83.081 166.162 249.244 332.325 55.406 138.487 221.569 304.650 27.731 100 200 300 400 500 600 700 800 900 8.313 16.625 24.938 33.250 41.563 49.875 58.188 66.500 74.813 8.308 16.616 24.924 33.232 41.541 49.849 58.157 66.465 74.773 8.308 16.616 24.924 33.232 41.541 49.849 58.157 66.465 74.773 10 20 30 40 50 60 70 80 90 0.831 1.663 2.494 3.325 4.156 4.988 5.819 6.650 7.481 0.831 1.662 2.492 3.323 4.154 4.985 5.816 6.646 7.477 0.831 1.662 2.492 3.323 4.154 4.985 5.816 6.646 7.477 1 2 3 4 5 6 7 8 9 0.083 0.166 0.249 0.333 0.416 0.499 0.582 0.665 0.748 0.083 0.166 0.249 0.332 0.415 0.498 0.582 0.665 0.748 0.083 0.166 0.249 0.332 0.415 0.498 0.582 0.665 0.748 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.066 0.075 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.066 0.075 Table 8.7: Mean motion of Jupiter. Here, ∆t = t − t0, ∆λ̄ = λ̄ − λ̄0, ∆M = M − M0, and ∆F̄ = F̄ − F̄0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 34.365◦ , M0 = 19.348◦ , and F̄0 = 293.660◦ . The Superior Planets 133 M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 0.000 0.205 0.410 0.614 0.818 1.020 1.221 1.420 1.617 1.812 2.004 2.194 2.380 2.563 2.742 2.918 3.089 3.256 3.419 3.576 3.729 3.877 4.019 4.156 4.287 4.413 4.532 4.645 4.752 4.853 4.947 5.035 5.116 5.190 5.257 5.318 5.372 5.419 5.459 5.492 5.518 5.537 5.549 5.554 5.553 5.545 4.839 4.835 4.826 4.810 4.787 4.758 4.723 4.681 4.633 4.579 4.519 4.453 4.382 4.304 4.221 4.132 4.038 3.938 3.834 3.724 3.610 3.491 3.368 3.240 3.108 2.973 2.834 2.691 2.545 2.396 2.244 2.089 1.932 1.773 1.611 1.448 1.283 1.117 0.950 0.782 0.613 0.444 0.274 0.105 -0.065 -0.234 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 5.545 5.530 5.508 5.479 5.444 5.403 5.355 5.301 5.241 5.175 5.102 5.024 4.941 4.851 4.757 4.657 4.551 4.441 4.326 4.207 4.082 3.954 3.821 3.684 3.543 3.399 3.251 3.100 2.945 2.787 2.627 2.464 2.298 2.131 1.961 1.789 1.615 1.439 1.263 1.085 0.905 0.725 0.545 0.363 0.182 0.000 -0.234 -0.403 -0.571 -0.737 -0.903 -1.067 -1.230 -1.391 -1.550 -1.707 -1.862 -2.014 -2.163 -2.310 -2.454 -2.595 -2.732 -2.867 -2.997 -3.124 -3.248 -3.367 -3.482 -3.594 -3.701 -3.803 -3.902 -3.995 -4.085 -4.169 -4.249 -4.324 -4.394 -4.459 -4.519 -4.574 -4.624 -4.669 -4.709 -4.743 -4.772 -4.796 -4.815 -4.828 -4.836 -4.839 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 0.000 -0.182 -0.363 -0.545 -0.725 -0.905 -1.085 -1.263 -1.439 -1.615 -1.789 -1.961 -2.131 -2.298 -2.464 -2.627 -2.787 -2.945 -3.100 -3.251 -3.399 -3.543 -3.684 -3.821 -3.954 -4.082 -4.207 -4.326 -4.441 -4.551 -4.657 -4.757 -4.851 -4.941 -5.024 -5.102 -5.175 -5.241 -5.301 -5.355 -5.403 -5.444 -5.479 -5.508 -5.530 -5.545 -4.839 -4.836 -4.828 -4.815 -4.796 -4.772 -4.743 -4.709 -4.669 -4.624 -4.574 -4.519 -4.459 -4.394 -4.324 -4.249 -4.169 -4.085 -3.995 -3.902 -3.803 -3.701 -3.594 -3.482 -3.367 -3.248 -3.124 -2.997 -2.867 -2.732 -2.595 -2.454 -2.310 -2.163 -2.014 -1.862 -1.707 -1.550 -1.391 -1.230 -1.067 -0.903 -0.737 -0.571 -0.403 -0.234 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 -5.545 -5.553 -5.554 -5.549 -5.537 -5.518 -5.492 -5.459 -5.419 -5.372 -5.318 -5.257 -5.190 -5.116 -5.035 -4.947 -4.853 -4.752 -4.645 -4.532 -4.413 -4.287 -4.156 -4.019 -3.877 -3.729 -3.576 -3.419 -3.256 -3.089 -2.918 -2.742 -2.563 -2.380 -2.194 -2.004 -1.812 -1.617 -1.420 -1.221 -1.020 -0.818 -0.614 -0.410 -0.205 -0.000 -0.234 -0.065 0.105 0.274 0.444 0.613 0.782 0.950 1.117 1.283 1.448 1.611 1.773 1.932 2.089 2.244 2.396 2.545 2.691 2.834 2.973 3.108 3.240 3.368 3.491 3.610 3.724 3.834 3.938 4.038 4.132 4.221 4.304 4.382 4.453 4.519 4.579 4.633 4.681 4.723 4.758 4.787 4.810 4.826 4.835 4.839 Table 8.8: Deferential anomalies of Jupiter. 134 MODERN ALMAGEST µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 0.000 0.000 0.161 0.322 0.483 0.644 0.805 0.965 1.126 1.286 1.446 1.606 1.766 1.925 2.084 2.242 2.400 2.558 2.715 2.872 3.028 3.184 3.339 3.494 3.648 3.801 3.954 4.106 4.257 4.407 4.557 4.705 4.853 5.000 5.146 5.292 5.436 5.579 5.721 5.862 6.002 6.141 6.278 6.415 6.550 6.684 6.816 0.000 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 0.366 6.816 6.948 7.077 7.206 7.333 7.459 7.583 7.705 7.826 7.946 8.063 8.180 8.294 8.407 8.517 8.626 8.734 8.839 8.942 9.044 9.143 9.240 9.336 9.429 9.520 9.609 9.696 9.780 9.862 9.942 10.019 10.094 10.167 10.237 10.304 10.369 10.431 10.491 10.548 10.602 10.654 10.702 10.748 10.791 10.831 10.868 0.410 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 0.649 10.868 10.902 10.933 10.961 10.986 11.008 11.026 11.041 11.053 11.062 11.067 11.069 11.068 11.063 11.054 11.042 11.027 11.008 10.985 10.959 10.929 10.895 10.858 10.817 10.772 10.723 10.671 10.614 10.554 10.490 10.422 10.350 10.274 10.194 10.110 10.023 9.931 9.835 9.736 9.632 9.524 9.413 9.297 9.178 9.055 8.927 0.736 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.616 8.927 8.796 8.661 8.522 8.380 8.233 8.083 7.929 7.771 7.610 7.445 7.276 7.104 6.929 6.750 6.568 6.383 6.194 6.003 5.808 5.610 5.410 5.206 5.000 4.792 4.581 4.367 4.151 3.933 3.713 3.491 3.267 3.041 2.814 2.585 2.354 2.123 1.890 1.656 1.421 1.185 0.949 0.712 0.475 0.238 0.000 0.713 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.116 0.125 0.133 0.141 0.149 0.158 0.166 0.174 0.182 0.191 0.199 0.207 0.215 0.223 0.231 0.239 0.248 0.256 0.264 0.272 0.280 0.288 0.296 0.304 0.311 0.319 0.327 0.335 0.343 0.351 0.358 0.366 0.009 0.019 0.028 0.037 0.046 0.056 0.065 0.074 0.084 0.093 0.102 0.111 0.121 0.130 0.139 0.148 0.158 0.167 0.176 0.185 0.194 0.204 0.213 0.222 0.231 0.240 0.249 0.258 0.268 0.277 0.286 0.295 0.304 0.313 0.322 0.331 0.339 0.348 0.357 0.366 0.375 0.384 0.392 0.401 0.410 0.374 0.381 0.389 0.396 0.404 0.411 0.419 0.426 0.434 0.441 0.448 0.455 0.462 0.470 0.477 0.484 0.490 0.497 0.504 0.511 0.517 0.524 0.531 0.537 0.543 0.550 0.556 0.562 0.568 0.574 0.580 0.585 0.591 0.596 0.602 0.607 0.612 0.617 0.622 0.627 0.632 0.636 0.641 0.645 0.649 0.418 0.427 0.436 0.444 0.453 0.461 0.470 0.478 0.486 0.495 0.503 0.511 0.519 0.527 0.535 0.543 0.551 0.559 0.567 0.574 0.582 0.590 0.597 0.605 0.612 0.619 0.626 0.633 0.640 0.647 0.654 0.661 0.667 0.674 0.680 0.686 0.692 0.698 0.704 0.710 0.715 0.721 0.726 0.731 0.736 0.653 0.657 0.661 0.664 0.668 0.671 0.674 0.677 0.680 0.682 0.684 0.686 0.688 0.690 0.692 0.693 0.694 0.695 0.695 0.696 0.696 0.696 0.695 0.695 0.694 0.693 0.691 0.690 0.688 0.686 0.683 0.680 0.677 0.674 0.670 0.666 0.662 0.657 0.652 0.647 0.641 0.636 0.629 0.623 0.616 0.741 0.746 0.750 0.755 0.759 0.763 0.766 0.770 0.773 0.777 0.780 0.782 0.785 0.787 0.789 0.791 0.793 0.794 0.795 0.796 0.796 0.797 0.797 0.796 0.796 0.795 0.794 0.792 0.790 0.788 0.786 0.783 0.780 0.776 0.772 0.768 0.764 0.759 0.753 0.748 0.742 0.735 0.728 0.721 0.713 0.609 0.601 0.593 0.585 0.576 0.567 0.558 0.548 0.538 0.528 0.517 0.506 0.495 0.484 0.472 0.459 0.447 0.434 0.421 0.407 0.393 0.379 0.365 0.350 0.336 0.320 0.305 0.289 0.274 0.258 0.241 0.225 0.208 0.192 0.175 0.158 0.140 0.123 0.106 0.088 0.071 0.053 0.035 0.018 0.000 Table 8.9: Epicyclic anomalies of Jupiter. All quantities are in degrees. Note that θ̄(360◦ − µ) = −θ̄(µ), and δθ± (360◦ − µ) = −δθ± (µ). 0.705 0.697 0.688 0.679 0.669 0.659 0.649 0.638 0.627 0.615 0.603 0.590 0.577 0.564 0.550 0.536 0.522 0.507 0.492 0.476 0.460 0.444 0.427 0.410 0.393 0.375 0.357 0.339 0.321 0.302 0.283 0.264 0.244 0.225 0.205 0.185 0.165 0.145 0.124 0.104 0.083 0.062 0.042 0.021 0.000 The Superior Planets 135 Event Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Date 08/05/2000 29/09/2000 28/11/2000 25/01/2001 14/06/2001 02/11/2001 01/01/2002 01/03/2002 20/07/2002 04/12/2002 02/02/2003 04/04/2003 22/08/2003 04/01/2004 04/03/2004 05/05/2004 22/09/2004 02/02/2005 03/04/2005 05/06/2005 22/10/2005 04/03/2006 04/05/2006 06/07/2006 22/11/2006 06/04/2007 06/06/2007 07/08/2007 23/12/2007 09/05/2008 09/07/2008 08/09/2008 24/01/2009 15/06/2009 14/08/2009 13/10/2009 28/02/2010 23/07/2010 21/09/2010 18/11/2010 λ 17TA53 11GE13 06GE08 01GE10 23GE30 15CN41 10CN37 05CN37 27CN11 18LE06 13LE06 08LE03 28LE55 18VI54 13VI58 08VI55 29VI21 18LI53 14LI00 08LI58 29LI16 18SC54 14SC03 09SC02 29SC34 19SG49 14SG57 09SG58 01CP03 22CP23 17CP30 12CP33 04AQ23 27AQ01 22AQ04 17AQ10 09PI43 03AR20 28PI19 23PI26 Table 8.10: The conjunctions, oppositions, and stations of Jupiter during the years 2000–2010 CE. (R) indicates a retrograde station, and (D) a direct station. 136 MODERN ALMAGEST ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 335.083 310.166 285.249 260.332 235.415 210.498 185.581 160.664 135.747 334.815 309.630 284.446 259.261 234.076 208.891 183.706 158.522 133.337 334.779 309.559 284.338 259.118 233.897 208.677 183.456 158.236 133.015 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 33.508 67.017 100.525 134.033 167.541 201.050 234.558 268.066 301.575 33.482 66.963 100.445 133.926 167.408 200.889 234.371 267.852 301.334 33.478 66.956 100.434 133.912 167.390 200.868 234.346 267.824 301.302 100 200 300 400 500 600 700 800 900 3.351 6.702 10.052 13.403 16.754 20.105 23.456 26.807 30.157 3.348 6.696 10.044 13.393 16.741 20.089 23.437 26.785 30.133 3.348 6.696 10.043 13.391 16.739 20.087 23.435 26.782 30.130 10 20 30 40 50 60 70 80 90 0.335 0.670 1.005 1.340 1.675 2.010 2.346 2.681 3.016 0.335 0.670 1.004 1.339 1.674 2.009 2.344 2.679 3.013 0.335 0.670 1.004 1.339 1.674 2.009 2.343 2.678 3.013 1 2 3 4 5 6 7 8 9 0.034 0.067 0.101 0.134 0.168 0.201 0.235 0.268 0.302 0.033 0.067 0.100 0.134 0.167 0.201 0.234 0.268 0.301 0.033 0.067 0.100 0.134 0.167 0.201 0.234 0.268 0.301 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.003 0.007 0.010 0.013 0.017 0.020 0.023 0.027 0.030 0.003 0.007 0.010 0.013 0.017 0.020 0.023 0.027 0.030 0.003 0.007 0.010 0.013 0.017 0.020 0.023 0.027 0.030 Table 8.11: Mean motion of Saturn. Here, ∆t = t− t0, ∆λ̄ = λ̄− λ̄0, ∆M = M − M0, and ∆F̄ = F̄− F̄0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 50.059◦ , M0 = 317.857◦ , and F̄0 = 296.482◦ . The Superior Planets 137 M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 0.000 0.230 0.459 0.688 0.916 1.143 1.368 1.591 1.811 2.029 2.245 2.456 2.665 2.869 3.070 3.266 3.457 3.644 3.825 4.002 4.172 4.337 4.495 4.648 4.793 4.933 5.065 5.191 5.310 5.421 5.525 5.622 5.711 5.793 5.867 5.933 5.992 6.043 6.086 6.122 6.149 6.169 6.182 6.186 6.183 6.172 5.386 5.383 5.372 5.354 5.328 5.296 5.256 5.209 5.156 5.095 5.027 4.953 4.873 4.785 4.692 4.592 4.486 4.375 4.257 4.134 4.006 3.873 3.735 3.591 3.444 3.292 3.136 2.976 2.813 2.646 2.476 2.302 2.127 1.949 1.768 1.586 1.402 1.217 1.030 0.842 0.654 0.465 0.276 0.087 -0.102 -0.290 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 6.172 6.154 6.128 6.095 6.055 6.007 5.953 5.891 5.823 5.748 5.666 5.578 5.484 5.384 5.277 5.165 5.048 4.924 4.796 4.662 4.524 4.380 4.232 4.080 3.923 3.763 3.598 3.430 3.259 3.084 2.906 2.725 2.542 2.356 2.168 1.977 1.785 1.591 1.396 1.199 1.001 0.802 0.602 0.402 0.201 0.000 -0.290 -0.478 -0.664 -0.850 -1.034 -1.217 -1.397 -1.576 -1.753 -1.927 -2.098 -2.267 -2.433 -2.596 -2.755 -2.911 -3.063 -3.211 -3.356 -3.496 -3.632 -3.764 -3.892 -4.015 -4.133 -4.246 -4.354 -4.458 -4.556 -4.649 -4.737 -4.820 -4.897 -4.969 -5.035 -5.095 -5.150 -5.200 -5.243 -5.281 -5.313 -5.339 -5.360 -5.374 -5.383 -5.386 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 0.000 -0.201 -0.402 -0.602 -0.802 -1.001 -1.199 -1.396 -1.591 -1.785 -1.977 -2.168 -2.356 -2.542 -2.725 -2.906 -3.084 -3.259 -3.430 -3.598 -3.763 -3.923 -4.080 -4.232 -4.380 -4.524 -4.662 -4.796 -4.924 -5.048 -5.165 -5.277 -5.384 -5.484 -5.578 -5.666 -5.748 -5.823 -5.891 -5.953 -6.007 -6.055 -6.095 -6.128 -6.154 -6.172 -5.386 -5.383 -5.374 -5.360 -5.339 -5.313 -5.281 -5.243 -5.200 -5.150 -5.095 -5.035 -4.969 -4.897 -4.820 -4.737 -4.649 -4.556 -4.458 -4.354 -4.246 -4.133 -4.015 -3.892 -3.764 -3.632 -3.496 -3.356 -3.211 -3.063 -2.911 -2.755 -2.596 -2.433 -2.267 -2.098 -1.927 -1.753 -1.576 -1.397 -1.217 -1.034 -0.850 -0.664 -0.478 -0.290 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 -6.172 -6.183 -6.186 -6.182 -6.169 -6.149 -6.122 -6.086 -6.043 -5.992 -5.933 -5.867 -5.793 -5.711 -5.622 -5.525 -5.421 -5.310 -5.191 -5.065 -4.933 -4.793 -4.648 -4.495 -4.337 -4.172 -4.002 -3.825 -3.644 -3.457 -3.266 -3.070 -2.869 -2.665 -2.456 -2.245 -2.029 -1.811 -1.591 -1.368 -1.143 -0.916 -0.688 -0.459 -0.230 -0.000 -0.290 -0.102 0.087 0.276 0.465 0.654 0.842 1.030 1.217 1.402 1.586 1.768 1.949 2.127 2.302 2.476 2.646 2.813 2.976 3.136 3.292 3.444 3.591 3.735 3.873 4.006 4.134 4.257 4.375 4.486 4.592 4.692 4.785 4.873 4.953 5.027 5.095 5.156 5.209 5.256 5.296 5.328 5.354 5.372 5.383 5.386 Table 8.12: Deferential anomalies of Saturn. 138 µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 MODERN ALMAGEST δθ− θ̄ 0.000 0.000 0.095 0.190 0.284 0.379 0.474 0.568 0.662 0.757 0.851 0.945 1.038 1.132 1.225 1.318 1.410 1.502 1.594 1.686 1.777 1.868 1.958 2.048 2.138 2.227 2.315 2.403 2.490 2.577 2.663 2.749 2.834 2.918 3.002 3.085 3.167 3.248 3.329 3.409 3.488 3.566 3.644 3.720 3.796 3.871 3.944 0.006 0.011 0.017 0.023 0.028 0.034 0.040 0.045 0.051 0.057 0.062 0.068 0.074 0.079 0.085 0.090 0.096 0.102 0.107 0.113 0.118 0.124 0.129 0.134 0.140 0.145 0.151 0.156 0.161 0.167 0.172 0.177 0.182 0.188 0.193 0.198 0.203 0.208 0.213 0.218 0.223 0.228 0.233 0.238 0.242 δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ 0.000 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 0.242 3.944 4.017 4.089 4.160 4.230 4.299 4.367 4.433 4.499 4.564 4.627 4.689 4.750 4.810 4.869 4.926 4.982 5.037 5.091 5.143 5.194 5.243 5.292 5.338 5.384 5.428 5.470 5.511 5.551 5.589 5.625 5.660 5.694 5.726 5.756 5.784 5.811 5.837 5.861 5.883 5.903 5.922 5.939 5.954 5.967 5.979 0.276 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 0.391 5.979 5.989 5.997 6.004 6.008 6.011 6.012 6.011 6.008 6.004 5.997 5.989 5.979 5.966 5.952 5.937 5.919 5.899 5.877 5.854 5.828 5.801 5.772 5.740 5.707 5.672 5.635 5.596 5.555 5.512 5.467 5.421 5.372 5.322 5.270 5.215 5.159 5.101 5.042 4.980 4.917 4.851 4.784 4.716 4.645 4.573 0.450 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.322 4.573 4.499 4.423 4.346 4.267 4.186 4.104 4.020 3.935 3.848 3.760 3.670 3.578 3.486 3.392 3.296 3.199 3.101 3.002 2.901 2.800 2.697 2.593 2.488 2.382 2.275 2.167 2.059 1.949 1.839 1.727 1.616 1.503 1.390 1.276 1.162 1.047 0.932 0.816 0.700 0.584 0.467 0.351 0.234 0.117 0.000 0.375 0.006 0.013 0.019 0.026 0.032 0.039 0.045 0.052 0.058 0.064 0.071 0.077 0.084 0.090 0.096 0.103 0.109 0.115 0.122 0.128 0.134 0.141 0.147 0.153 0.159 0.165 0.171 0.178 0.184 0.190 0.196 0.202 0.208 0.214 0.219 0.225 0.231 0.237 0.243 0.248 0.254 0.260 0.265 0.271 0.276 0.247 0.252 0.256 0.261 0.265 0.270 0.274 0.279 0.283 0.287 0.292 0.296 0.300 0.304 0.308 0.312 0.316 0.320 0.323 0.327 0.330 0.334 0.337 0.341 0.344 0.347 0.350 0.353 0.356 0.359 0.362 0.365 0.367 0.370 0.372 0.375 0.377 0.379 0.381 0.383 0.385 0.387 0.388 0.390 0.391 0.282 0.287 0.292 0.298 0.303 0.308 0.313 0.318 0.323 0.328 0.333 0.338 0.343 0.347 0.352 0.356 0.361 0.365 0.370 0.374 0.378 0.382 0.386 0.390 0.394 0.398 0.401 0.405 0.408 0.412 0.415 0.418 0.421 0.424 0.427 0.430 0.433 0.435 0.438 0.440 0.442 0.444 0.446 0.448 0.450 0.393 0.394 0.395 0.396 0.397 0.397 0.398 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.398 0.397 0.397 0.396 0.395 0.394 0.392 0.391 0.389 0.387 0.386 0.384 0.381 0.379 0.377 0.374 0.371 0.368 0.365 0.362 0.359 0.355 0.352 0.348 0.344 0.340 0.336 0.331 0.327 0.322 0.452 0.453 0.454 0.456 0.457 0.458 0.459 0.459 0.460 0.460 0.461 0.461 0.461 0.460 0.460 0.460 0.459 0.458 0.457 0.456 0.455 0.454 0.452 0.450 0.448 0.446 0.444 0.442 0.439 0.437 0.434 0.431 0.427 0.424 0.420 0.417 0.413 0.409 0.404 0.400 0.395 0.390 0.386 0.380 0.375 0.318 0.313 0.308 0.302 0.297 0.292 0.286 0.280 0.274 0.269 0.262 0.256 0.250 0.243 0.237 0.230 0.223 0.216 0.209 0.202 0.195 0.187 0.180 0.172 0.165 0.157 0.149 0.142 0.134 0.126 0.118 0.109 0.101 0.093 0.085 0.076 0.068 0.060 0.051 0.043 0.034 0.026 0.017 0.009 0.000 0.370 0.364 0.358 0.352 0.346 0.340 0.333 0.327 0.320 0.313 0.306 0.299 0.292 0.284 0.276 0.269 0.261 0.253 0.244 0.236 0.228 0.219 0.210 0.202 0.193 0.184 0.175 0.166 0.156 0.147 0.138 0.128 0.118 0.109 0.099 0.089 0.080 0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.000 Table 8.13: Epicyclic anomalies of Saturn. All quantities are in degrees. Note that θ̄(360◦ − µ) = −θ̄(µ), and δθ± (360◦ − µ) = −δθ± (µ). The Superior Planets 139 Event Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Station (R) Opposition Station (D) Conjunction Date 10/05/2000 12/09/2000 19/11/2000 24/01/2001 25/05/2001 26/09/2001 03/12/2001 08/02/2002 09/06/2002 11/10/2002 17/12/2002 22/02/2003 24/06/2003 25/10/2003 31/12/2003 07/03/2004 08/07/2004 08/11/2004 13/01/2005 22/03/2005 23/07/2005 22/11/2005 27/01/2006 05/04/2006 07/08/2006 06/12/2006 10/02/2007 19/04/2007 22/08/2007 19/12/2007 24/02/2008 03/05/2008 04/09/2008 31/12/2008 08/03/2009 17/05/2009 17/09/2009 13/01/2010 22/03/2010 30/05/2010 01/10/2010 λ 20TA26 00GE59 27TA29 24TA03 04GE22 14GE59 11GE29 08GE02 18GE28 29GE06 25GE36 22GE08 02CN39 13CN15 09CN46 06CN17 16CN50 27CN21 23CN52 20CN23 00LE56 11LE19 07LE51 04LE22 14LE51 25LE04 21LE38 18LE09 28LE32 08VI34 05VI10 01VI41 11VI56 21VI46 18VI23 14VI56 25VI01 04LI40 01LI18 27VI51 07LI46 Table 8.14: The conjunctions, oppositions, and stations of Saturn during the years 2000–2010 CE. (R) indicates a retrograde station, and (D) a direct station. 140 MODERN ALMAGEST The Inferior Planets 141 9 The Inferior Planets 9.1 Determination of Ecliptic Longitude Figure 9.1 compares and contrasts heliocentric and geocentric models of the motion of an inferior planet (i.e., a planet which is closer to the sun than the earth), P, as seen from the earth, G. The sun is at S. As before, in the heliocentric model the earth-planet displacement vector, P, is the sum of the earth-sun displacement vector, S, and the sun-planet displacement vector, P ′ . On the other hand, in the geocentric model S gives the displacement of the guide-point, G ′ , from the earth. Since S is also the displacement of the sun, S, from the earth, G, it is clear that G ′ executes a Keplerian orbit about the earth whose elements are the same as those of the apparent orbit of the sun about the earth. This implies that the sun is coincident with G ′ . The ellipse traced out by G ′ is termed the deferent. The vector P ′ gives the displacement of the planet, P, from the guide-point, G ′ . Since P ′ is also the displacement of the planet, P, from the sun, S, it is clear that P executes a Keplerian orbit about the guide-point whose elements are the same as those of the orbit of the planet about the sun. The ellipse traced out by P about G ′ is termed the epicycle. Earth’s orbit P P deferent G P′ P S ′ P P S S planetary orbit epicycle Heliocentric G G′ Geocentric Figure 9.1: Heliocentric and geocentric models of the motion of an inferior planet. Here, S is the sun, G the earth, and P the planet. View is from the northern ecliptic pole. As we have seen, the deferent of a superior planet has the same elements as the planet’s orbit about the sun, whereas the epicycle has the same elements as the sun’s apparent orbit about the earth. On the other hand, the deferent of an inferior planet has the same elements as the sun’s apparent orbit about the earth, whereas the epicycle has the same elements as the planet’s orbit about the sun. It follows that we can formulate a procedure for determining the ecliptic longitude of an inferior planet by simply taking the procedure used in the previous section for determining the ecliptic longitude of a superior planet and exchanging the roles of the sun and the planet. Our procedure is described below. As before, it is assumed that the ecliptic longitude, λS, and the radial anomaly, ζS, of the sun have already been calculated. In the following, a, e, n, ñ, λ̄0, 142 MODERN ALMAGEST and M0 represent elements of the orbit of the planet in question about the sun, whereas eS is the eccentricity of the sun’s apparent orbit about the earth. Again, a is the major radius of the planetary orbit in units in which the major radius of the sun’s apparent orbit about the earth is unity. The requisite elements for all of the inferior planets at the J2000 epoch (t0 = 2 451 545.0 JD) are listed in Table 5.1. The ecliptic longitude of an inferior planet is specified by the following formulae: λ̄ = λ̄0 + n (t − t0), (9.1) M = M0 + ñ (t − t0), (9.2) q = 2 e sin M + (5/4) e 2 sin 2M, (9.3) ζ = e cos M − e 2 sin2 M, (9.4) (9.5) µ = λ̄ + q − λS, θ̄ = θ(µ, z̄) ≡ tan−1 sin µ , a−1 z̄ + cos µ (9.6) δθ− = θ(µ, z̄) − θ(µ, zmax ), (9.7) δθ+ = θ(µ, zmin ) − θ(µ, z̄), (9.8) 1 − ζS , 1−ζ z̄ − z ξ = , δz θ = Θ−(ξ) δθ− + θ̄ + Θ+(ξ) δθ+, z = λ = λS + θ. (9.9) (9.10) (9.11) (9.12) Here, z̄ = (1 + e eS)/(1 − e 2), δz = (e + eS)/(1 − e 2), zmin = z̄ − δz, and zmax = z̄ + δz. The constants z̄, δz, zmin , and zmax for each of the inferior planets are listed in Table. 2.5. Finally, the functions Θ± are tabulated in Table 2.17. For the case of Venus, the above formulae are capable of matching NASA ephemeris data during the years 1995–2006 CE with a mean error of 2 ′ and a maximum error of 10 ′ . For the case of Mercury, given its relatively large eccentricity of 0.205636, it is necessary to modify the formulae slightly by expressing q and ζ to third-order in the eccentricity: q = [2 e − (1/4) e3] sin M + (5/4) e2 sin 2M + (13/12) e3 sin 3M, (9.13) ζ = −(1/2) e2 + [e − (3/8) e3] cos M + (1/2) e2 cos 2M + (3/8) e3 cos 3M. (9.14) With this modification, the mean error is 6 ′ and the maximum error 28 ′ . 9.2 Venus The ecliptic longitude of Venus can be determined with the aid of Tables 9.1–9.3. Table 9.1 allows the mean longitude, λ̄, and the mean anomaly, M, of Venus to be calculated as functions of time. Next, Table 9.2 permits the equation of center, q, and the radial anomaly, ζ, to be determined as functions of the mean anomaly. Finally, Table 9.3 allows the quantities δθ−, θ̄, and δθ+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is as follows: The Inferior Planets 143 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the ecliptic longitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t − t0, where t0 = 2 451 545.0 is the epoch. 2. Calculate the ecliptic longitude, λS, and radial anomaly, ζS, of the sun using the procedure set out in Sect. 5.1. 3. Enter Table 9.1 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆λ̄ and ∆M. If ∆t is negative then the corresponding values are also negative. The value of the mean longitude, λ̄, is the sum of all the ∆λ̄ values plus value of λ̄ at the epoch. Likewise, the value of the mean anomaly, M, is the sum of all the ∆M values plus the value of M at the epoch. Add as many multiples of 360◦ to λ̄ and M as is required to make them both fall in the range 0◦ to 360◦ . Round M to the nearest degree. 4. Enter Table 9.2 with the value of M and take out the corresponding value of the equation of center, q, and the radial anomaly, ζ. It is necessary to interpolate if M is odd. 5. Form the epicyclic anomaly, µ = λ̄ + q − λS. Add as many multiples of 360◦ to µ as is required to make it fall in the range 0◦ to 360◦ . Round µ to the nearest degree. 6. Enter Table 9.3 with the value of µ and take out the corresponding values of δθ−, θ̄, and δθ+. If µ > 180◦ then it is necessary to make use of the identities δθ± (360◦ − µ) = −δθ± (µ) and θ̄(360◦ − µ) = −θ̄(µ). 7. Form z = (1 − ζS)/(1 − ζ). 8. Obtain the values of z̄ and δz from Table 2.5. Form ξ = (z̄ − z)/δz. 9. Enter Table 2.17 with the value of ξ and take out the corresponding values of Θ− and Θ+. If ξ < 0 then it is necessary to use the identities Θ+(ξ) = −Θ−(−ξ) and Θ−(ξ) = −Θ+(−ξ). 10. Form the equation of the epicycle, θ = Θ− δθ− + θ̄ + Θ+ δθ+. 11. The ecliptic longitude, λ, is the sum of the ecliptic longitude of the sun, λS, and the equation of the epicycle, θ. If necessary convert λ into an angle in the range 0◦ to 360◦ . The decimal fraction can be converted into arc minutes using Table 5.2. Round to the nearest arc minute. The final result can be written in terms of the signs of the zodiac using the table in Sect. 2.6. Two examples of this procedure are given below. Example 1: May 5, 2005 CE, 00:00 UT: From Cha. 8, t − t0 = 1 950.5 JD, λS = 44.602◦ , and ζS = −8.56 × 10−3. Making use of Table 9.1, we find: 144 MODERN ALMAGEST t(JD) λ̄(◦ ) M(◦ ) +1000 +900 +50 +.5 Epoch 162.169 1.952 80.108 0.801 181.973 427.003 67.003 162.130 1.917 80.107 0.801 49.237 294.192 294.192 Modulus Given that M ≃ 294◦ , Table 9.2 yields q(294◦ ) = −0.712◦ , ζ(294◦ ) = 2.72 × 10−3, so µ = λ̄ + q − λ̄S = 67.003 − 0.712 − 44.602 = 21.689 ≃ 22◦ . It follows from Table 9.3 that δθ−(22◦ ) = 0.126◦ , θ̄(22◦ ) = 9.212◦ , δθ+(22◦ ) = 0.129◦ . Now, z = (1 − ζS)/(1 − ζ) = (1 + 8.56 × 10−3)/(1 − 2.72 × 10−3) = 1.01131. However, from Table 2.5, z̄ = 1.00016 and δz = 0.02349, so ξ = (z̄ − z)/δz = (1.00016 − 1.01131)/0.02349 ≃ −0.48. According to Table 2.17, Θ−(−0.48) = −0.355, Θ+(−0.48) = −0.125, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = −0.355 × 0.126 + 9.212 − 0.125 × 0.129 = 9.151◦ . Finally, λ = λ̄S + θ = 44.602 + 9.151 = 53.753 ≃ 53◦ 45 ′ . Thus, the ecliptic longitude of Venus at 00:00 UT on May 5, 2005 CE was 23TA45. Example 2: December 25, 1800 CE, 00:00 UT: From Cha. 8, t − t0 = −72 690.5 JD, λS = 273.055◦ , and ζS = 1.662 × 10−2. Making use of Table 9.1, we find: The Inferior Planets 145 t(JD) λ̄(◦ ) M(◦ ) -70,000 -2,000 -600 -90 -.5 Epoch −191.810 −324.337 −241.301 −144.195 −0.801 181.973 −720.471 359.529 −189.128 −324.261 −241.278 −144.192 −0.801 49.237 −850.423 229.577 Modulus Given that M ≃ 230◦ , Table 9.2 yields q(230◦ ) = −0.592◦ , ζ(230◦ ) = −4.38 × 10−3, so µ = λ̄ + q − λ̄S = 359.529 − 0.592 − 273.055 = 85.882 ≃ 86◦ . It follows from Table 9.3 that δθ−(86◦ ) = 0.589◦ , θ̄(86◦ ) = 34.482◦ , δθ+(86◦ ) = 0.607◦ . Now, z = (1 − ζS)/(1 − ζ) = (1 − 1.662 × 10−2)/(1 + 4.38 × 10−3) = 0.97909, so ξ = (z̄ − z)/δz = (1.00016 − 0.97909)/0.02349 ≃ 0.90. According to Table 2.17, Θ−(0.90) = 0.045, Θ+(0.90) = 0.855, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = 0.045 × 0.589 + 34.482 + 0.855 × 0.607 = 35.027◦ . Finally, λ = λ̄S + θ = 273.055 + 35.027 = 308.082 ≃ 308◦ 5 ′ . Thus, the ecliptic longitude of Venus at 00:00 UT on December 25, 1800 CE was 8AQ5. 9.3 Determination of Conjunction and Greatest Elongation Dates The geocentric orbit of an inferior planet is similar to that of the superior planet shown in Fig. 8.4, except for the fact that the sun is coincident with guide-point G ′ in the former case. It follows that it is impossible for an inferior planet to have an opposition with the sun (i.e, for the earth to lie directly between the planet and the sun). However, inferior planets do have two different kinds of conjunctions with the sun. A superior conjuction takes place when the sun lies directly between the planet and the earth. Conversely, an inferior conjunction takes place when the planet lies directly between the sun and the earth. It is clear from Fig. 8.4 that a superior conjunction corresponds to µ = 0◦ , and an inferior conjunction to µ = 180◦ . Now, the equation of the epicycle, θ, measures the angular separation between the planet and the sun (since the sun lies at the guide-point). It 146 MODERN ALMAGEST is evident from Figure 8.4 that θ attains a maximum and a minimum value each time the planet revolves around its epicycle. In other words, there is a limit to how large the angular separation between an inferior planet and the sun can become. The maximum value is termed the greatest eastern elongation of the planet, whereas the modulus of the minimum value is termed the greatest western elongation. Tables 9.1–9.3 can be used to determine the dates of the conjunctions and greatest elongations of Venus. Consider the first superior conjunction after the epoch (January 1, 2000 CE). We can estimate the time at which this event occurs by approximating the epicyclic anomaly as the mean epicyclic anomaly: µ ≃ µ̄ = λ̄ − λ̄S = λ̄0 − λ̄0S + (n − nS) (t − t0) = 261.515 + 0.61652137 (t − t0). Thus, t ≃ t0 + (360 − 261.515)/0.61652137 ≃ t0 + 160 JD. A calculation of the epicyclic anomaly at this time, using Tables 9.1–9.3, yields µ = −1.267◦ . Now, the actual conjunction takes place when µ = 0◦ . Hence, our final estimate is t = t0 + 160 + 1.267/0.61652137 = t0 + 162.1 JD, which corresponds to June 11, 2000 CE. Consider the first inferior conjunction of Venus after the epoch. Our first estimate of the time at which this event takes place is t ≃ t0 + (540 − 261.515)/0.61652137 ≃ t0 + 452 JD. A calculation of the epicyclic anomaly at this time yields µ = 178.900◦ . Now, the actual conjunction takes place when µ = 180◦ . Hence, our final estimate is t = t0 + 452 + 1.100/0.61652137 = t0 + 453.8 JD, which corresponds to March 30, 2001 CE. Incidentally, it is clear from the above analysis that the mean time period between successive superior, or inferior, conjunctions of Venus is 360/0.61652137 = 583.9 JD, which is equivalent to 1.60 years. Consider the greatest elongations of Venus. We can approximate the equation of the epicycle as −1 θ ≃ θ̄ = tan sin µ̄ , −1 ā + cos µ̄ (9.15) where µ̄ is the mean epicyclic anomaly, and ā = a/z̄. It follows that dθ̄ ā−1 cos µ̄ + 1 = . dµ̄ 1 + 2 ā−1 cos µ̄ + ā−2 (9.16) Now, θ̄ attains its maximum or minimum value when dθ̄/dµ̄ = 0: i.e., when µ̄ = cos−1(−ā). (9.17) For the case of Venus, we obtain µ̄ = 136.3◦ or 223.7◦ . The first solution corresponds to the greatest eastern elongation, and the second to the greatest western elongation. Substituting back into The Inferior Planets 147 Eq. (9.15), we find that θ̄ = ±46.3◦ . Hence, the mean value of the greatest eastern or western elongation of Venus is 46.3◦ . The mean time period between a greatest eastern elongation and the following inferior conjunction, or between an inferior conjunction and the following greatest western elongation, is (180 − 136.3)/0.61652137 ≃ 71 JD. Unfortunately, the only option for accurately determining the dates at which the greatest elongations occur is to calculate the equation of the epicycle of Venus over a range of days centered 71 days before and after an inferior conjunction. Table 9.4 shows the conjunctions, and greatest elongations of Venus for the years 2000–2015 CE, calculated using the techniques described above. 9.4 Mercury The ecliptic longitude of Mercury can be determined with the aid of Tables 9.5–9.7. Table 9.5 allows the mean longitude, λ̄, and the mean anomaly, M, of Mercury to be calculated as functions of time. Next, Table 9.6 permits the equation of center, q, and the radial anomaly, ζ, to be determined as functions of the mean anomaly. Finally, Table 9.7 allows the quantities δθ−, θ̄, and δθ+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is analogous to the previously described procedure for using the Venus tables. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From Cha. 8, t − t0 = 1 950.5 JD, λS = 44.602◦ , and ζS = −8.56 × 10−3. Making use of Table 9.5, we find: t(JD) λ̄(◦ ) M(◦ ) +1000 +900 +50 +.5 Epoch 132.377 83.139 204.619 2.046 252.087 647.268 314.268 132.334 83.101 204.617 2.046 174.693 596.791 236.791 Modulus Given that M ≃ 237◦ , Table 9.6 yields q(237◦ ) = −16.974◦ , ζ(237◦ ) = −1.367 × 10−1, so µ = λ̄ + q − λ̄S = 314.268 − 16.974 − 44.602 = 252.692 ≃ 253◦ . It follows from Table 9.7 that δθ−(253◦ ) = −4.005◦ , θ̄(253◦ ) = −21.609◦ , δθ+(253◦ ) = −6.182◦ . Now, z = (1 − ζS)/(1 − ζ) = (1 + 8.56 × 10−3)/(1 + 1.367 × 10−1) = 0.8873. 148 MODERN ALMAGEST However, from Table 2.5, z̄ = 1.04774 and δz = 0.23216, so ξ = (z̄ − z)/δz = (1.04774 − 0.8873)/0.23216 ≃ 0.69. According to Table 2.17, Θ−(0.69) = 0.107, Θ+(0.69) = 0.583, so θ = Θ− δθ− + θ̄ + Θ+ δθ+ = −0.107 × 4.005 − 21.609 − 0.583 × 6.182 = −25.642◦ . Finally, λ = λ̄S + θ = 44.602 − 25.642 = 18.960 ≃ 18◦ 58 ′ . Thus, the ecliptic longitude of Mercury at 00:00 UT on May 5, 2005 CE was 18AR58. The conjunctions and elongations of Mercury can be investigated using analogous methods to those employed earlier to examine the conjunctions and elongations of Venus. We find that the mean time period between successive superior, or inferior, conjunctions of Mercury is 116 days. On average, the greatest eastern and western elongations of Mercury occur when the epicyclic anomaly takes the values µ = 111.7◦ and 248.3◦ , respectively. Furthermore, the mean value of the greatest eastern or western elongation is 21.7◦ . Finally, the mean time period between a greatest eastern elongation and the following inferior conjunction, or between the inferior conjunction and the following greatest western elongation, is 22 JD. The conjunctions and elongations of Mercury during the years 2000–2002 CE are shown in Table 9.8. The Inferior Planets 149 ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 181.687 3.374 185.062 6.749 188.436 10.123 191.810 13.498 195.185 181.304 2.608 183.912 5.216 186.520 7.824 189.128 10.432 191.736 181.381 2.761 184.142 5.523 186.904 8.284 189.665 11.046 192.426 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 162.169 324.337 126.506 288.675 90.844 253.012 55.181 217.350 19.518 162.130 324.261 126.391 288.522 90.652 252.782 54.913 217.043 19.174 162.138 324.276 126.414 288.552 90.690 252.828 54.966 217.105 19.243 100 200 300 400 500 600 700 800 900 160.217 320.434 120.651 280.867 81.084 241.301 41.518 201.735 1.952 160.213 320.426 120.639 280.852 81.065 241.278 41.491 201.704 1.917 160.214 320.428 120.641 280.855 81.069 241.283 41.497 201.710 1.924 10 20 30 40 50 60 70 80 90 16.022 32.043 48.065 64.087 80.108 96.130 112.152 128.173 144.195 16.021 32.043 48.064 64.085 80.107 96.128 112.149 128.170 144.192 16.021 32.043 48.064 64.086 80.107 96.128 112.150 128.171 144.192 1 2 3 4 5 6 7 8 9 1.602 3.204 4.807 6.409 8.011 9.613 11.215 12.817 14.420 1.602 3.204 4.806 6.409 8.011 9.613 11.215 12.817 14.419 1.602 3.204 4.806 6.409 8.011 9.613 11.215 12.817 14.419 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.160 0.320 0.481 0.641 0.801 0.961 1.122 1.282 1.442 0.160 0.320 0.481 0.641 0.801 0.961 1.121 1.282 1.442 0.160 0.320 0.481 0.641 0.801 0.961 1.121 1.282 1.442 Table 9.1: Mean motion of Venus. Here, ∆t = t − t0, ∆λ̄ = λ̄ − λ̄0, ∆M = M − M0, and ∆F̄ = F̄ − F̄0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 181.973◦ , M0 = 49.237◦ , and F̄0 = 105.253◦ . 150 MODERN ALMAGEST M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 0.000 0.027 0.055 0.082 0.109 0.136 0.163 0.189 0.216 0.242 0.268 0.293 0.318 0.343 0.367 0.391 0.414 0.437 0.460 0.481 0.502 0.523 0.543 0.562 0.580 0.598 0.615 0.631 0.647 0.662 0.675 0.688 0.701 0.712 0.722 0.732 0.741 0.748 0.755 0.761 0.766 0.770 0.773 0.775 0.776 0.777 0.678 0.677 0.676 0.674 0.671 0.667 0.663 0.657 0.651 0.644 0.636 0.628 0.618 0.608 0.597 0.586 0.573 0.560 0.547 0.532 0.517 0.502 0.485 0.468 0.451 0.433 0.414 0.395 0.376 0.356 0.335 0.315 0.293 0.272 0.250 0.228 0.205 0.183 0.160 0.137 0.113 0.090 0.066 0.043 0.019 -0.005 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 0.777 0.776 0.774 0.772 0.768 0.764 0.758 0.752 0.745 0.737 0.728 0.718 0.707 0.695 0.683 0.670 0.656 0.641 0.625 0.609 0.592 0.574 0.555 0.536 0.516 0.496 0.475 0.453 0.431 0.409 0.385 0.362 0.338 0.313 0.289 0.263 0.238 0.212 0.186 0.160 0.134 0.107 0.080 0.054 0.027 0.000 -0.005 -0.028 -0.052 -0.075 -0.099 -0.122 -0.145 -0.168 -0.191 -0.214 -0.236 -0.258 -0.279 -0.301 -0.322 -0.342 -0.362 -0.382 -0.401 -0.420 -0.438 -0.456 -0.473 -0.490 -0.506 -0.521 -0.536 -0.550 -0.563 -0.576 -0.588 -0.599 -0.610 -0.620 -0.629 -0.637 -0.645 -0.652 -0.658 -0.663 -0.668 -0.671 -0.674 -0.676 -0.677 -0.678 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 0.000 -0.027 -0.054 -0.080 -0.107 -0.134 -0.160 -0.186 -0.212 -0.238 -0.263 -0.289 -0.313 -0.338 -0.362 -0.385 -0.409 -0.431 -0.453 -0.475 -0.496 -0.516 -0.536 -0.555 -0.574 -0.592 -0.609 -0.625 -0.641 -0.656 -0.670 -0.683 -0.695 -0.707 -0.718 -0.728 -0.737 -0.745 -0.752 -0.758 -0.764 -0.768 -0.772 -0.774 -0.776 -0.777 -0.678 -0.677 -0.676 -0.674 -0.671 -0.668 -0.663 -0.658 -0.652 -0.645 -0.637 -0.629 -0.620 -0.610 -0.599 -0.588 -0.576 -0.563 -0.550 -0.536 -0.521 -0.506 -0.490 -0.473 -0.456 -0.438 -0.420 -0.401 -0.382 -0.362 -0.342 -0.322 -0.301 -0.279 -0.258 -0.236 -0.214 -0.191 -0.168 -0.145 -0.122 -0.099 -0.075 -0.052 -0.028 -0.005 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 -0.777 -0.776 -0.775 -0.773 -0.770 -0.766 -0.761 -0.755 -0.748 -0.741 -0.732 -0.722 -0.712 -0.701 -0.688 -0.675 -0.662 -0.647 -0.631 -0.615 -0.598 -0.580 -0.562 -0.543 -0.523 -0.502 -0.481 -0.460 -0.437 -0.414 -0.391 -0.367 -0.343 -0.318 -0.293 -0.268 -0.242 -0.216 -0.189 -0.163 -0.136 -0.109 -0.082 -0.055 -0.027 -0.000 -0.005 0.019 0.043 0.066 0.090 0.113 0.137 0.160 0.183 0.205 0.228 0.250 0.272 0.293 0.315 0.335 0.356 0.376 0.395 0.414 0.433 0.451 0.468 0.485 0.502 0.517 0.532 0.547 0.560 0.573 0.586 0.597 0.608 0.618 0.628 0.636 0.644 0.651 0.657 0.663 0.667 0.671 0.674 0.676 0.677 0.678 Table 9.2: Deferential anomalies of Venus. The Inferior Planets µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 δθ− θ̄ 0.000 0.000 0.420 0.839 1.259 1.679 2.098 2.518 2.937 3.357 3.776 4.195 4.614 5.033 5.452 5.870 6.289 6.707 7.125 7.543 7.960 8.378 8.795 9.212 9.628 10.045 10.461 10.876 11.292 11.707 12.121 12.536 12.950 13.363 13.776 14.189 14.601 15.013 15.424 15.834 16.245 16.654 17.063 17.472 17.880 18.287 18.694 0.006 0.011 0.017 0.023 0.028 0.034 0.040 0.045 0.051 0.057 0.062 0.068 0.074 0.079 0.085 0.091 0.097 0.102 0.108 0.114 0.120 0.126 0.131 0.137 0.143 0.149 0.155 0.161 0.167 0.173 0.179 0.185 0.191 0.197 0.203 0.209 0.216 0.222 0.228 0.234 0.241 0.247 0.254 0.260 0.267 151 δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ 0.000 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 0.267 18.694 19.100 19.505 19.910 20.314 20.717 21.119 21.521 21.921 22.321 22.720 23.119 23.516 23.912 24.308 24.702 25.095 25.487 25.879 26.269 26.658 27.045 27.432 27.817 28.201 28.583 28.964 29.344 29.722 30.099 30.474 30.847 31.219 31.589 31.958 32.324 32.689 33.052 33.412 33.771 34.127 34.482 34.834 35.183 35.530 35.875 0.274 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 0.629 35.875 36.217 36.557 36.893 37.227 37.558 37.886 38.210 38.531 38.849 39.164 39.474 39.781 40.084 40.383 40.677 40.968 41.253 41.534 41.810 42.081 42.346 42.606 42.860 43.108 43.349 43.585 43.813 44.034 44.248 44.453 44.651 44.840 45.021 45.191 45.353 45.503 45.644 45.772 45.889 45.994 46.085 46.163 46.226 46.274 46.305 0.649 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 1.344 46.305 46.320 46.317 46.294 46.252 46.188 46.102 45.992 45.857 45.695 45.505 45.284 45.032 44.745 44.422 44.060 43.657 43.210 42.716 42.173 41.577 40.923 40.210 39.433 38.587 37.669 36.675 35.599 34.437 33.186 31.840 30.396 28.850 27.200 25.442 23.577 21.604 19.526 17.347 15.071 12.707 10.266 7.760 5.202 2.610 0.000 1.408 0.006 0.012 0.017 0.023 0.029 0.035 0.041 0.046 0.052 0.058 0.064 0.070 0.076 0.082 0.087 0.093 0.099 0.105 0.111 0.117 0.123 0.129 0.135 0.141 0.147 0.153 0.159 0.165 0.172 0.178 0.184 0.190 0.196 0.203 0.209 0.215 0.222 0.228 0.235 0.241 0.248 0.254 0.261 0.267 0.274 0.273 0.280 0.286 0.293 0.300 0.307 0.313 0.320 0.327 0.334 0.341 0.348 0.355 0.363 0.370 0.377 0.385 0.392 0.400 0.407 0.415 0.423 0.431 0.439 0.447 0.455 0.463 0.471 0.480 0.488 0.497 0.506 0.514 0.523 0.532 0.541 0.551 0.560 0.569 0.579 0.589 0.599 0.609 0.619 0.629 0.281 0.288 0.294 0.301 0.308 0.315 0.322 0.329 0.336 0.344 0.351 0.358 0.366 0.373 0.381 0.388 0.396 0.404 0.411 0.419 0.427 0.435 0.443 0.452 0.460 0.468 0.477 0.485 0.494 0.503 0.512 0.521 0.530 0.539 0.548 0.558 0.567 0.577 0.587 0.597 0.607 0.617 0.628 0.638 0.649 0.640 0.650 0.661 0.672 0.683 0.694 0.706 0.718 0.729 0.742 0.754 0.766 0.779 0.792 0.805 0.818 0.832 0.846 0.860 0.874 0.889 0.904 0.919 0.934 0.950 0.966 0.983 1.000 1.017 1.034 1.052 1.070 1.089 1.108 1.127 1.147 1.167 1.188 1.209 1.230 1.252 1.275 1.297 1.321 1.344 0.660 0.671 0.682 0.693 0.705 0.717 0.729 0.741 0.753 0.766 0.779 0.792 0.805 0.818 0.832 0.846 0.860 0.875 0.890 0.905 0.920 0.936 0.952 0.968 0.985 1.002 1.019 1.037 1.055 1.074 1.093 1.112 1.132 1.152 1.173 1.194 1.216 1.238 1.260 1.284 1.307 1.331 1.356 1.382 1.408 1.369 1.393 1.418 1.444 1.470 1.496 1.523 1.550 1.577 1.605 1.632 1.660 1.688 1.715 1.742 1.769 1.795 1.820 1.844 1.867 1.888 1.906 1.921 1.933 1.942 1.945 1.943 1.934 1.918 1.893 1.859 1.814 1.758 1.688 1.604 1.505 1.391 1.261 1.116 0.956 0.783 0.598 0.404 0.204 0.000 Table 9.3: Epicyclic anomalies of Venus. All quantities are in degrees. Note that θ̄(360◦ − µ) = −θ̄(µ), and δθ± (360◦ − µ) = −δθ± (µ). 1.434 1.461 1.489 1.517 1.546 1.575 1.605 1.636 1.667 1.698 1.730 1.762 1.794 1.827 1.859 1.892 1.924 1.955 1.986 2.015 2.043 2.069 2.092 2.112 2.128 2.140 2.146 2.145 2.137 2.119 2.091 2.050 1.996 1.926 1.840 1.735 1.612 1.468 1.305 1.123 0.922 0.707 0.478 0.242 0.000 152 MODERN ALMAGEST Event Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Date 11/06/2000 17/01/2001 30/03/2001 08/06/2001 14/01/2002 22/08/2002 31/10/2002 11/01/2003 18/08/2003 29/03/2004 08/06/2004 17/08/2004 31/03/2005 03/11/2005 13/01/2006 25/03/2006 27/10/2006 09/06/2007 18/08/2007 28/10/2007 09/06/2008 14/01/2009 27/03/2009 05/06/2009 11/01/2010 19/08/2010 29/10/2010 08/01/2011 16/08/2011 27/03/2012 06/06/2012 15/08/2012 28/03/2013 01/11/2013 11/01/2014 23/03/2014 25/10/2014 06/06/2015 15/08/2015 26/10/2015 λ 20GE46 14PI23 09AR36 01TA39 23CP59 15LI08 07SC58 03SG31 25LE20 25TA04 17GE52 09CN29 10AR33 28SG27 23CP36 18AQ07 04SC13 03LE20 24LE45 18VI19 18GE41 12PI03 07AR19 29AR25 21CP24 12LI49 05SC34 01SG06 23LE13 22TA50 15GE43 07CN18 08AR12 26SG02 21CP08 15AQ44 01SC51 01LE09 22LE33 16VI02 Elongation 47.1◦ E 45.8◦ W 46.0◦ E 47.0◦ W 46.0◦ E 45.8◦ W 47.1◦ E 46.5◦ W 45.4◦ E 46.5◦ W 47.1◦ E 45.8◦ W 46.0◦ E 47.0◦ W 46.0◦ E 45.8◦ W 47.1◦ E 46.5◦ W 45.4◦ E 46.4◦ W Table 9.4: The conjunctions and greatest elongations of Venus during the years 2000–2015 CE. The Inferior Planets 153 ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) ∆t(JD) ∆λ̄(◦ ) ∆M(◦ ) ∆F̄(◦ ) 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 243.770 127.541 11.311 255.081 138.852 22.622 266.392 150.162 33.933 243.344 126.688 10.032 253.376 136.720 20.063 263.407 146.751 30.095 243.422 126.844 10.266 253.688 137.110 20.533 263.955 147.377 30.799 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 132.377 264.754 37.131 169.508 301.885 74.262 206.639 339.016 111.393 132.334 264.669 37.003 169.338 301.672 74.006 206.341 338.675 111.010 132.342 264.684 37.027 169.369 301.711 74.053 206.395 338.738 111.080 100 200 300 400 500 600 700 800 900 49.238 98.475 147.713 196.951 246.189 295.426 344.664 33.902 83.139 49.233 98.467 147.700 196.934 246.167 295.401 344.634 33.868 83.101 49.234 98.468 147.703 196.937 246.171 295.405 344.640 33.874 83.108 10 20 30 40 50 60 70 80 90 40.924 81.848 122.771 163.695 204.619 245.543 286.466 327.390 8.314 40.923 81.847 122.770 163.693 204.617 245.540 286.463 327.387 8.310 40.923 81.847 122.770 163.694 204.617 245.541 286.464 327.387 8.311 1 2 3 4 5 6 7 8 9 4.092 8.185 12.277 16.370 20.462 24.554 28.647 32.739 36.831 4.092 8.185 12.277 16.369 20.462 24.554 28.646 32.739 36.831 4.092 8.185 12.277 16.369 20.462 24.554 28.646 32.739 36.831 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.409 0.818 1.228 1.637 2.046 2.455 2.865 3.274 3.683 0.409 0.818 1.228 1.637 2.046 2.455 2.865 3.274 3.683 0.409 0.818 1.228 1.637 2.046 2.455 2.865 3.274 3.683 Table 9.5: Mean motion of Mercury. Here, ∆t = t − t0, ∆λ̄ = λ̄ − λ̄0, ∆M = M − M0, and ∆F̄ = F̄ − F̄0. At epoch (t0 = 2 451 545.0 JD), λ̄0 = 252.087◦ , M0 = 174.693◦ , and F̄0 = 204.436◦ . 154 MODERN ALMAGEST M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ M(◦ ) q(◦ ) 100 ζ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 0.000 1.086 2.169 3.247 4.316 5.376 6.422 7.454 8.467 9.460 10.431 11.377 12.298 13.190 14.052 14.882 15.680 16.443 17.171 17.862 18.517 19.133 19.710 20.249 20.748 21.208 21.629 22.010 22.353 22.656 22.922 23.150 23.342 23.497 23.617 23.703 23.755 23.775 23.764 23.723 23.652 23.553 23.428 23.276 23.100 22.900 20.564 20.544 20.487 20.391 20.257 20.085 19.876 19.631 19.350 19.035 18.685 18.303 17.889 17.445 16.971 16.469 15.941 15.388 14.811 14.212 13.593 12.954 12.299 11.628 10.942 10.245 9.536 8.818 8.091 7.359 6.621 5.880 5.137 4.392 3.648 2.905 2.165 1.429 0.697 -0.030 -0.750 -1.463 -2.168 -2.864 -3.551 -4.229 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 22.900 22.677 22.433 22.168 21.884 21.580 21.259 20.920 20.566 20.195 19.809 19.409 18.996 18.569 18.129 17.677 17.212 16.737 16.250 15.752 15.243 14.724 14.196 13.657 13.109 12.552 11.985 11.410 10.827 10.236 9.637 9.030 8.417 7.796 7.170 6.538 5.900 5.257 4.610 3.959 3.304 2.647 1.987 1.326 0.663 0.000 -4.229 -4.896 -5.552 -6.197 -6.831 -7.452 -8.062 -8.659 -9.243 -9.815 -10.373 -10.918 -11.450 -11.969 -12.473 -12.964 -13.441 -13.904 -14.353 -14.787 -15.207 -15.613 -16.004 -16.380 -16.741 -17.087 -17.418 -17.733 -18.032 -18.316 -18.583 -18.835 -19.070 -19.288 -19.490 -19.675 -19.842 -19.993 -20.126 -20.242 -20.340 -20.420 -20.483 -20.528 -20.555 -20.564 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 0.000 -0.663 -1.326 -1.987 -2.647 -3.304 -3.959 -4.610 -5.257 -5.900 -6.538 -7.170 -7.796 -8.417 -9.030 -9.637 -10.236 -10.827 -11.410 -11.985 -12.552 -13.109 -13.657 -14.196 -14.724 -15.243 -15.752 -16.250 -16.737 -17.212 -17.677 -18.129 -18.569 -18.996 -19.409 -19.809 -20.195 -20.566 -20.920 -21.259 -21.580 -21.884 -22.168 -22.433 -22.677 -22.900 -20.564 -20.555 -20.528 -20.483 -20.420 -20.340 -20.242 -20.126 -19.993 -19.842 -19.675 -19.490 -19.288 -19.070 -18.835 -18.583 -18.316 -18.032 -17.733 -17.418 -17.087 -16.741 -16.380 -16.004 -15.613 -15.207 -14.787 -14.353 -13.904 -13.441 -12.964 -12.473 -11.969 -11.450 -10.918 -10.373 -9.815 -9.243 -8.659 -8.062 -7.452 -6.831 -6.197 -5.552 -4.896 -4.229 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 -22.900 -23.100 -23.276 -23.428 -23.553 -23.652 -23.723 -23.764 -23.775 -23.755 -23.703 -23.617 -23.497 -23.342 -23.150 -22.922 -22.656 -22.353 -22.010 -21.629 -21.208 -20.748 -20.249 -19.710 -19.133 -18.517 -17.862 -17.171 -16.443 -15.680 -14.882 -14.052 -13.190 -12.298 -11.377 -10.431 -9.460 -8.467 -7.454 -6.422 -5.376 -4.316 -3.247 -2.169 -1.086 -0.000 -4.229 -3.551 -2.864 -2.168 -1.463 -0.750 -0.030 0.697 1.429 2.165 2.905 3.648 4.392 5.137 5.880 6.621 7.359 8.091 8.818 9.536 10.245 10.942 11.628 12.299 12.954 13.593 14.212 14.811 15.388 15.941 16.469 16.971 17.445 17.889 18.303 18.685 19.035 19.350 19.631 19.876 20.085 20.257 20.391 20.487 20.544 20.564 Table 9.6: Deferential anomalies of Mercury. The Inferior Planets µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 δθ− θ̄ 0.000 0.000 0.270 0.540 0.809 1.079 1.348 1.618 1.887 2.156 2.425 2.693 2.961 3.229 3.497 3.764 4.031 4.298 4.564 4.829 5.094 5.359 5.622 5.886 6.148 6.410 6.672 6.932 7.192 7.451 7.709 7.967 8.223 8.479 8.734 8.987 9.240 9.491 9.742 9.991 10.240 10.487 10.732 10.977 11.220 11.462 11.702 0.038 0.075 0.113 0.150 0.188 0.225 0.263 0.301 0.338 0.376 0.414 0.451 0.489 0.527 0.564 0.602 0.640 0.678 0.716 0.753 0.791 0.829 0.867 0.905 0.943 0.981 1.019 1.057 1.095 1.133 1.172 1.210 1.248 1.286 1.325 1.363 1.402 1.440 1.479 1.517 1.556 1.594 1.633 1.672 1.711 155 δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ µ δθ− θ̄ δθ+ 0.000 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 1.711 11.702 11.941 12.179 12.415 12.650 12.882 13.114 13.343 13.571 13.797 14.021 14.244 14.464 14.683 14.899 15.113 15.326 15.536 15.743 15.949 16.152 16.353 16.551 16.747 16.940 17.131 17.319 17.504 17.686 17.865 18.042 18.215 18.385 18.552 18.716 18.876 19.033 19.186 19.336 19.482 19.625 19.763 19.898 20.029 20.155 20.277 2.403 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 3.450 20.277 20.395 20.509 20.618 20.722 20.822 20.917 21.007 21.091 21.171 21.246 21.315 21.378 21.436 21.488 21.534 21.575 21.609 21.636 21.658 21.673 21.681 21.682 21.676 21.663 21.643 21.616 21.580 21.538 21.487 21.428 21.361 21.286 21.202 21.109 21.008 20.898 20.778 20.649 20.511 20.363 20.206 20.038 19.861 19.673 19.475 5.113 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 4.257 19.475 19.267 19.048 18.818 18.578 18.326 18.064 17.791 17.506 17.210 16.903 16.585 16.255 15.914 15.561 15.197 14.822 14.436 14.039 13.630 13.211 12.780 12.339 11.888 11.426 10.955 10.474 9.983 9.483 8.974 8.457 7.932 7.399 6.859 6.312 5.759 5.200 4.636 4.067 3.494 2.917 2.337 1.755 1.171 0.586 0.000 7.325 0.052 0.104 0.156 0.208 0.260 0.313 0.365 0.417 0.469 0.521 0.574 0.626 0.678 0.731 0.783 0.836 0.889 0.941 0.994 1.047 1.100 1.153 1.206 1.259 1.312 1.366 1.419 1.473 1.526 1.580 1.634 1.688 1.742 1.796 1.851 1.905 1.960 2.015 2.070 2.125 2.180 2.236 2.291 2.347 2.403 1.749 1.788 1.827 1.866 1.905 1.944 1.983 2.022 2.061 2.100 2.139 2.178 2.217 2.257 2.296 2.335 2.374 2.413 2.453 2.492 2.531 2.570 2.609 2.649 2.688 2.727 2.766 2.805 2.844 2.882 2.921 2.960 2.999 3.037 3.075 3.114 3.152 3.190 3.227 3.265 3.302 3.340 3.377 3.413 3.450 2.459 2.515 2.572 2.628 2.685 2.742 2.799 2.857 2.914 2.972 3.030 3.088 3.146 3.205 3.263 3.322 3.381 3.441 3.500 3.560 3.620 3.680 3.740 3.801 3.862 3.923 3.984 4.045 4.107 4.169 4.231 4.293 4.355 4.417 4.480 4.543 4.606 4.669 4.732 4.795 4.859 4.922 4.986 5.049 5.113 3.486 3.522 3.557 3.592 3.627 3.662 3.696 3.729 3.762 3.795 3.827 3.858 3.889 3.919 3.949 3.977 4.005 4.032 4.059 4.084 4.109 4.132 4.155 4.176 4.197 4.216 4.233 4.250 4.265 4.278 4.291 4.301 4.310 4.317 4.322 4.326 4.327 4.326 4.323 4.318 4.311 4.301 4.289 4.274 4.257 5.177 5.241 5.305 5.368 5.432 5.496 5.559 5.623 5.686 5.749 5.812 5.874 5.937 5.999 6.060 6.121 6.182 6.242 6.301 6.360 6.418 6.475 6.532 6.587 6.641 6.695 6.747 6.797 6.846 6.894 6.940 6.984 7.026 7.067 7.105 7.140 7.173 7.204 7.231 7.256 7.277 7.295 7.309 7.319 7.325 4.237 4.214 4.188 4.159 4.127 4.092 4.053 4.011 3.966 3.917 3.865 3.809 3.749 3.686 3.619 3.548 3.473 3.394 3.311 3.224 3.133 3.039 2.940 2.838 2.732 2.622 2.508 2.391 2.271 2.147 2.019 1.889 1.756 1.620 1.481 1.340 1.197 1.052 0.905 0.756 0.607 0.456 0.304 0.152 0.000 Table 9.7: Epicyclic anomalies of Mercury. All quantities are in degrees. Note that θ̄(360◦ − µ) = −θ̄(µ), and δθ± (360◦ − µ) = −δθ± (µ). 7.327 7.324 7.317 7.304 7.286 7.262 7.233 7.197 7.155 7.106 7.050 6.986 6.915 6.836 6.749 6.654 6.549 6.436 6.314 6.182 6.041 5.890 5.729 5.558 5.377 5.186 4.985 4.774 4.554 4.324 4.084 3.835 3.578 3.312 3.038 2.757 2.469 2.174 1.875 1.570 1.261 0.949 0.634 0.317 0.000 156 MODERN ALMAGEST Event Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Inferior Conjunction Greatest Elongation Superior Conjunction Greatest Elongation Date 15/01/2000 15/02/2000 01/03/2000 28/03/2000 09/05/2000 09/06/2000 06/07/2000 27/07/2000 22/08/2000 06/10/2000 30/10/2000 15/11/2000 25/12/2000 28/01/2001 13/02/2001 11/03/2001 23/04/2001 22/05/2001 16/06/2001 09/07/2001 05/08/2001 19/09/2001 14/10/2001 29/10/2001 04/12/2001 12/01/2002 27/01/2002 21/02/2002 07/04/2002 04/05/2002 27/05/2002 21/06/2002 21/07/2002 01/09/2002 27/09/2002 13/10/2002 14/11/2002 26/12/2002 λ 25CP08 13PI44 11PI23 10PI35 18TA59 13CN27 14CN39 15CN03 29LE16 09SC17 06SC58 04SC02 04CP18 27AQ07 24AQ23 23AQ05 03TA22 24GE13 25GE26 26GE18 13LE32 22LI50 20LI51 17LI50 12SG45 10AQ33 07AQ42 05AQ55 17AR27 04GE54 05GE48 07GE04 28CN06 06LI10 04LI35 01LI44 21SC39 24CP01 Elongation 18.1◦ E 27.9◦ W 24.2◦ E 19.7◦ W 25.6◦ E 19.3◦ W 18.4◦ E 27.5◦ W 22.6◦ E 21.1◦ W 26.6◦ E 18.5◦ W 18.9◦ E 26.6◦ W 21.0◦ E 22.8◦ W 27.3◦ E 18.0◦ W 19.8◦ E Table 9.8: The conjunctions and greatest elongations of Mercury during the years 2000–2002 CE. Planetary Latitudes 157 10 Planetary Latitudes 10.1 Introduction Up to now, we have neglected the fact that the orbits of the five visible planets about the sun are all slightly inclined to the plane of the ecliptic. Of course, these inclinations cause the ecliptic latitudes of the said planets to take small, but non-zero, values. In the following, we shall outline a model which is capable of predicting these values. 10.2 Determination of Ecliptic Latitude of Superior Planet Figure 10.1 shows the orbit of a superior planet. As we have already mentioned, the deferent and epicycle of such a planet have the same elements as the orbit of the planet in question around the sun, and the apparent orbit of the sun around the earth, respectively. It follows that the deferent and epicycle of a superior planet are, respectively, inclined and parallel to the ecliptic plane. (Recall that the ecliptic plane corresponds to the plane of the sun’s apparent orbit about the earth.) Let the plane of the deferent cut the ecliptic plane along the line NGN ′ . Here, N is the point at which the deferent passes through the plane of the ecliptic from south to north, in the direction of the mean planetary motion. This point is called the ascending node. Note that the line NGN ′ must pass through point G, since the earth is common to the plane of the deferent and the ecliptic plane. Now, it follows from simple geometry that the elevation of the guide-point G ′ above of the ecliptic plane satisfies v = r sin i sin F, where r is the length GG ′ , i the fixed inclination of the planetary orbit (and, hence, of the deferent) to the ecliptic plane, and F the angle NGG ′ . The angle F is termed the argument of latitude. We can write (see Cha. 8) F = F̄ + q, (10.1) where F̄ is the mean argument of latitude, and q the equation of center of the deferent. Note that F̄ increases uniformly in time: i.e., F̄ = F̄0 + n̆ (t − t0). (10.2) Now, since the epicycle is parallel to the ecliptic plane, the elevation of the planet above the said plane is the same as that of the guide-point. Hence, from simple geometry, the ecliptic latitude of the planet satisfies v β = ′′ , (10.3) r where r ′′ is the length GP, and we have used the small angle approximation. However, it is apparent from Fig. 8.3 that r ′′ = (r2 + 2 r r ′ cos µ + r ′ 2)1/2, (10.4) where r ′ the length G ′ P, and µ the equation of the epicycle. But, according to the analysis in Cha. 8, r/r ′ = a z, where a is the planetary major radius in units in which the major radius of the sun’s apparent orbit about the earth is unity, and z is defined in Eq. (8.4). Thus, we obtain β = h β0, (10.5) 158 MODERN ALMAGEST where β0(F) = sin i sin F (10.6) is termed the deferential latitude, and i−1/2 h h(µ, z) = 1 + 2 (a z)−1 cos µ + (a z)−2 (10.7) the epicyclic latitude correction factor. P G′ F N G N′ Figure 10.1: Orbit of a superior planet. Here, G, G ′ , P, N, N ′ , and F represent the earth, guide-point, planet, ascending node, descending node, and argument of latitude, respectively. View is from northern ecliptic pole. In the following, a, e, n, ñ, n̆, λ̄0, M0, F̄0, and i are elements of the orbit of the planet in question about the sun, and eS, ζS, and λS are elements of the sun’s apparent orbit about the earth. The requisite elements for all of the superior planets at the J2000 epoch (t0 = 2 451 545.0 JD) are listed in Tables 5.1 and 10.1. Employing a quadratic interpolation scheme to represent F(µ, z) (see Cha. 8), our procedure for determining the ecliptic latitude of a superior planet is summed up by the following formuale: λ̄ = λ̄0 + n (t − t0), (10.8) M = M0 + ñ (t − t0), (10.9) (10.10) F̄ = F̄0 + n̆ (t − t0), 2 q = 2 e sin M + (5/4) e sin 2M, (10.11) ζ = e cos M − e2 sin2 M, (10.12) F = F̄ + q, (10.13) β0 = sin i sin F, (10.14) Planetary Latitudes 159 (10.15) µ = λS − λ̄ − q, h i−1/2 h̄ = h(µ, z̄) ≡ 1 + 2 (a z̄)−1 cos µ + (a z̄)−2 δh− = h(µ, z̄) − h(µ, zmax ), δh+ = h(µ, zmin ) − h(µ, z̄), 1−ζ , 1 − ζS z̄ − z , ξ = δz h = Θ−(ξ) δh− + h̄ + Θ+(ξ) δ h+, z = β = h β0. , (10.16) (10.17) (10.18) (10.19) (10.20) (10.21) (10.22) Here, z̄ = (1 + e eS)/(1 − eS2), δz = (e + eS)/(1 − eS2), zmin = z̄ − δz, and zmax = z̄ + δz. The constants z̄, δz, zmin , and zmax for each of the superior planets are listed in Table 8.1. Finally, the functions Θ± are tabulated in Table 8.2. For the case of Mars, the above formulae are capable of matching NASA ephemeris data during the years 1995–2006 CE with a mean error of 0.3 ′ and a maximum error of 1.5 ′ . For the case of Jupiter, the mean error is 0.2 ′ and the maximum error 0.5 ′ . Finally, for the case of Saturn, the mean error is 0.05 ′ and the maximum error 0.08 ′ . 10.3 Mars The ecliptic latitude of Mars can be determined with the aid of Tables 8.3, 10.2, and 10.3. Table 8.3 allows the mean argument of latitude, F̄, of Mars to be calculated as a function of time. Next, Table 10.2 permits the deferential latitude, β0, to be determined as a function of the true argument of latitude, F. Finally, Table 10.3 allows the quantities δh−, h̄, and δh+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is as follows: 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the ecliptic latitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t − t0, where t0 = 2 451 545.0 is the epoch. 2. Calculate the planetary equation of center, q, ecliptic anomaly, µ, and interpolation parameters Θ+ and Θ− using the procedure set out in Cha. 8. 3. Enter Table 8.3 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆F̄. If ∆t is negative then the corresponding values are also negative. The value of the mean argument of latitude, F̄, is the sum of all the ∆F̄ values plus the value of F̄ at the epoch. 4. Form the true argument of latitude, F = F̄ + q. Add as many multiples of 360◦ to F as is required to make it fall in the range 0◦ to 360◦ . Round F to the nearest degree. 5. Enter Table 10.2 with the value of F and take out the corresponding value of the deferential latitude, β0. It is necessary to interpolate if F is odd. 160 MODERN ALMAGEST 6. Enter Table 10.3 with the value of µ and take out the corresponding values of δh−, h̄, and δh+. If µ > 180◦ then it is necessary to make use of the identities δh± (360◦ − µ) = δh± (µ) and h̄(360◦ − µ) = h̄(µ). 7. Form the epicyclic latitude correction factor, h = Θ− δh− + h̄ + Θ+ δh+. 8. The ecliptic latitude, β, is the product of the deferential latitude, β0, and the epicyclic latitude correction factor, h. The decimal fraction can be converted into arc minutes using Table 5.2. Round to the nearest arc minute. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From Cha. 8, t − t0 = 1 950.5 JD, q = −7.345◦ , µ = 114.286◦ , Θ− = 0.101, and Θ+ = 0.619. Making use of Table 8.3, we find: t(JD) F̄(◦ ) +1000 +900 +50 +.5 Epoch 164.041 111.637 26.202 0.262 305.796 607.938 247.938 Modulus Thus, F = F̄ + q = 247.938 − 7.345 = 240.593 ≃ 241◦ . It follows from Table 10.2 that β0(241◦ ) = −1.615◦ . Since µ ≃ 114◦ , Table 10.3 yields δh−(114◦ ) = −0.017, h̄(114◦ ) = 1.056, δh+(114◦ ) = −0.027, so h = Θ− δh− + h̄ + Θ+ δh+ = −0.101 × 0.017 + 1.056 − 0.619 × 0.027 = 1.038. Finally, β = h β0 = −1.038 × 1.615 = −1.676 ≃ −1◦ 41 ′ . Thus, the ecliptic latitude of Mars at 00:00 UT on May 5, 2005 CE was −1◦ 41 ′ . 10.4 Jupiter The ecliptic latitude of Jupiter can be determined with the aid of Tables 8.7, 10.4, and 10.5. Table 8.7 allows the mean argument of latitude, F̄, of Jupiter to be calculated as a function of time. Next, Table 10.4 permits the deferential latitude, β0, to be determined as a function of the true Planetary Latitudes 161 argument of latitude, F. Finally, Table 10.5 allows the quantities δh−, h̄, and δh+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using these tables is analogous to the previously described procedure for using the Mars tables. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From Cha. 8, t − t0 = 1 950.5 JD, q = −0.091◦ , µ = 208.192◦ , Θ− = −0.469, and Θ+ = −0.121. Making use of Table 8.7, we find: t(JD) F̄(◦ ) +1000 +900 +50 +.5 Epoch 83.081 74.773 4.154 0.042 293.660 455.710 95.710 Modulus Thus, F = F̄ + q = 95.710 − 0.091 = 95.619 ≃ 96◦ . It follows from Table 10.4 that β0(96◦ ) = 1.297◦ . Since µ ≃ 208◦ , Table 10.5 yields δh−(208◦ ) = 0.014, h̄(208◦ ) = 1.197, δh+(208◦ ) = 0.016, so h = Θ− δh− + h̄ + Θ+ δh+ = −0.469 × 0.014 + 1.197 − 0.121 × 0.016 = 1.188. Finally, β = h β0 = 1.188 × 1.297 = 1.541 ≃ 1◦ 32 ′ . Thus, the ecliptic latitude of Jupiter at 00:00 UT on May 5, 2005 CE was 1◦ 32 ′ . 10.5 Saturn The ecliptic latitude of Saturn can be determined with the aid of Tables 8.11, 10.6, and 10.7. Table 8.11 allows the mean argument of latitude, F̄, of Saturn to be calculated as a function of time. Next, Table 10.6 permits the deferential latitude, β0, to be determined as a function of the true argument of latitude, F. Finally, Table 10.7 allows the quantities δh−, h̄, and δh+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using these tables is analogous to the previously described procedure for using the Mars tables. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: 162 MODERN ALMAGEST From Cha. 8, t − t0 = 1 950.5 JD, q = 2.561◦ , µ = 286.625◦ , Θ− = 0.071, and Θ+ = 0.759. Making use of Table 8.11, we find: t(JD) F̄(◦ ) +1000 +900 +50 +.5 Epoch 33.478 30.130 1.674 0.017 296.482 361.781 1.781 Modulus Thus, F = F̄ + q = 1.781 + 2.561 = 4.342 ≃ 4◦ . It follows from Table 10.6 that β0(4◦ ) = 0.173◦ . Since µ ≃ 287◦ , Table 10.7 yields δh−(287◦ ) = −0.002, h̄(287◦ ) = 0.966, δh+(287◦ ) = −0.003, so h = Θ− δh− + h̄ + Θ+ δh+ = −0.071 × 0.002 + 0.966 − 0.759 × 0.003 = 0.964. Finally, β = h β0 = 0.964 × 0.173 = 0.167 ≃ 0◦ 10 ′ . Thus, the ecliptic latitude of Saturn at 00:00 UT on May 5, 2005 CE was 0◦ 10 ′ . 10.6 Determination of Ecliptic Latitude of Inferior Planet Figure 10.2 shows the orbit of an inferior planet. As we have already mentioned, the epicycle and deferent of such a planet have the same elements as the orbit of the planet in question around the sun, and the apparent orbit of the sun around the earth, respectively. It follows that the epicycle and deferent of an inferior planet are, respectively, inclined and parallel to the ecliptic plane. Let the plane of the epicycle cut the ecliptic plane along the line NG ′ N ′ . Here, N is the point at which the epicycle passes through the plane of the ecliptic from south to north, in the direction of the mean planetary motion. This point is called the ascending node. Note that the line NG ′ N ′ must pass through the guide-point, G ′ , since the sun (which is coincident with the guide-point) is common to the plane of the planetary orbit and the ecliptic plane. Now, it follows from simple geometry that the elevation of the planet P above the guide-point, G ′ , satisfies v = r ′ sin i sin F, where r ′ is the length G ′ P, i the fixed inclination of the planetary orbit (and, hence, of the epicycle) to the ecliptic plane, and F the angle NG ′ P. The angle F is termed the argument of latitude. We can write (see Cha. 9) F = F̄ + q, (10.23) Planetary Latitudes 163 where F̄ is the mean argument of latitude, and q the equation of center of the epicycle. Note that F̄ increases uniformly in time: i.e., F̄ = F̄0 + n̆ (t − t0). (10.24) Now, since the deferent is parallel to the ecliptic plane, the elevation of the planet above the said plane is the same as that of the planet above the guide-point. Hence, from simple geometry, the ecliptic latitude of the planet satisfies v β = ′′ , (10.25) r where r ′′ is the length GP, and we have used the small angle approximation. However, it is apparent from Fig. 8.3 that r ′′ = (r2 + 2 r r ′ cos µ + r ′ 2)1/2, (10.26) where r the length GG ′ , and µ the equation of the epicycle. But, according to the analysis in Cha. 9, r ′ /r = a/z, where a is the planetary major radius in units in which the major radius of the sun’s apparent orbit about the earth is unity, and z is defined in Eq. (9.9). Thus, we obtain β = h β0, (10.27) β0(F) = a sin i sin F (10.28) where is termed the epicyclic latitude, and i−1/2 h h(µ, z) = z2 + 2 a z cos µ + a2 (10.29) the deferential latitude correction factor. P N′ F G ′ N G Figure 10.2: Orbit of an inferior planet. Here, G, G ′ , P, N, N ′ , and F represent the earth, guide-point, planet, ascending node, descending node, and argument of latitude, respectively. View is from northern ecliptic pole. 164 MODERN ALMAGEST In the following, a, e, n, ñ, n̆, λ̄0, M0, F̄0, and i are elements of the orbit of the planet in question about the sun, and eS, ζS, and λS are elements of the sun’s apparent orbit about the earth. The requisite elements for all of the superior planets at the J2000 epoch (t0 = 2 451 545.0 JD) are listed in Tables 5.1 and 10.1. Employing a quadratic interpolation scheme to represent F(µ, z) (see Cha. 8), our procedure for determining the ecliptic latitude of a superior planet is summed up by the following formuale: λ̄ = λ̄0 + n (t − t0), (10.30) M = M0 + ñ (t − t0), (10.31) F̄ = F̄0 + n̆ (t − t0), (10.32) q = 2 e sin M + (5/4) e2 sin 2M, 2 (10.33) 2 ζ = e cos M − e sin M, (10.34) F = F̄ + q, (10.35) β0 = a sin i sin F, (10.36) (10.37) µ = λ̄ + q − λ̄S, h i−1/2 h̄ = h(µ, z̄) ≡ z̄2 + 2 a z̄ cos µ + a2 δh− = h(µ, z̄) − h(µ, zmax ), δh+ = h(µ, zmin ) − h(µ, z̄), , (10.38) (10.39) (10.40) 1 − ζS , 1−ζ z̄ − z ξ = , δz h = Θ−(ξ) δh− + h̄ + Θ+(ξ) δ h+, (10.43) β = h β0. (10.44) z = (10.41) (10.42) Here, z̄ = (1 + e eS)/(1 − e2), δz = (e + eS)/(1 − e2), zmin = z̄ − δz, and zmax = z̄ + δz. The constants z̄, δz, zmin , and zmax for each of the inferior planets are listed in Table 8.1. Finally, the functions Θ± are tabulated in Table 8.2. For the case of Venus, the above formulae are capable of matching NASA ephemeris data during the years 1995–2006 CE with a mean error of 0.7 ′ and a maximum error of 1.8 ′ . For the case of Mercury, with the augmentations to the theory described in Cha. 9, the mean error is 1.6 ′ and the maximum error 5 ′ . 10.7 Venus The ecliptic latitude of Venus can be determined with the aid of Tables 9.1, 10.8, and 10.9. Table 9.1 allows the mean argument of latitude, F̄, of Venus to be calculated as a function of time. Next, Table 10.8 permits the epicyclic latitude, β0, to be determined as a function of the true argument of latitude, F. Finally, Table 10.9 allows the quantities δh−, h̄, and δh+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is as follows: Planetary Latitudes 165 1. Determine the fractional Julian day number, t, corresponding to the date and time at which the ecliptic latitude is to be calculated with the aid of Tables 3.1–3.3. Form ∆t = t − t0, where t0 = 2 451 545.0 is the epoch. 2. Calculate the planetary equation of center, q, ecliptic anomaly, µ, and interpolation parameters Θ+ and Θ− using the procedure set out in Cha. 9. 3. Enter Table 9.1 with the digit for each power of 10 in ∆t and take out the corresponding values of ∆F̄. If ∆t is negative then the corresponding values are also negative. The value of the mean argument of latitude, F̄, is the sum of all the ∆F̄ values plus the value of F̄ at the epoch. 4. Form the true argument of latitude, F = F̄ + q. Add as many multiples of 360◦ to F as is required to make it fall in the range 0◦ to 360◦ . Round F to the nearest degree. 5. Enter Table 10.8 with the value of F and take out the corresponding value of the epicyclic latitude, β0. It is necessary to interpolate if F is odd. 6. Enter Table 10.9 with the value of µ and take out the corresponding values of δh−, h̄, and δh+. If µ > 180◦ then it is necessary to make use of the identities δh± (360◦ − µ) = δh± (µ) and h̄(360◦ − µ) = h̄(µ). 7. Form the deferential latitude correction factor, h = Θ− δh− + h̄ + Θ+ δh+. 8. The ecliptic latitude, β, is the product of the epicyclic latitude, β0, and the deferential latitude correction factor, h. The decimal fraction can be converted into arc minutes using Table 5.2. Round to the nearest arc minute. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From Cha. 9, t − t0 = 1 950.5 JD, q = −0.712◦ , µ = 21.689◦ , Θ− = −0.355, and Θ+ = −0.125. Making use of Table 9.1, we find: t(JD) F̄(◦ ) +1000 +900 +50 +.5 Epoch 162.138 1.924 80.107 0.801 105.253 350.223 350.223 Modulus Thus, F = F̄ + q = 350.223 − 0.712 = 349.511 ≃ 350◦ . It follows from Table 10.8 that β0(350◦ ) = −0.423◦ . 166 MODERN ALMAGEST Since µ ≃ 22◦ , Table 10.9 yields δh−(22◦ ) = 0.008, h̄(22◦ ) = 0.591, δh+(22◦ ) = 0.008, so h = Θ− δh− + h̄ + Θ+ δh+ = −0.355 × 0.008 + 0.591 − 0.125 × 0.008 = 0.587. Finally, β = h β0 = −0.587 × 0.423 = −0.248 ≃ −0◦ 15 ′ . Thus, the ecliptic latitude of Venus at 00:00 UT on May 5, 2005 CE was −0◦ 15 ′ . 10.8 Mercury The ecliptic latitude of Mercury can be determined with the aid of Tables 9.5, 10.10, and 10.11. Table 9.5 allows the mean argument of latitude, F̄, of Mercury to be calculated as a function of time. Next, Table 10.10 permits the epicyclic latitude, β0, to be determined as a function of the true argument of latitude, F. Finally, Table 10.11 allows the quantities δh−, h̄, and δh+ to be calculated as functions of the epicyclic anomaly, µ. The procedure for using the tables is analogous to the previously described procedure for using the Venus tables. One example of this procedure is given below. Example: May 5, 2005 CE, 00:00 UT: From Cha. 9, t − t0 = 1 950.5 JD, q = −16.974◦ , µ = 252.692◦ , Θ− = 0.107, and Θ+ = 0.583. Making use of Table 9.5, we find: t(JD) F̄(◦ ) +1000 +900 +50 +.5 Epoch 132.342 83.108 204.617 2.046 204.436 626.549 266.549 Modulus Thus, F = F̄ + q = 266.549 − 16.974 = 249.575 ≃ 250◦ . It follows from Table 10.10 that β0(250◦ ) = −2.511◦ . Since µ ≃ 253◦ , Table 10.11 yields δh−(253◦ ) = 0.184, h̄(253◦ ) = 1.037, δh+(253◦ ) = 0.272, so h = Θ− δh− + h̄ + Θ+ δh+ = 0.107 × 0.184 + 1.037 + 0.583 × 0.272 = 1.215. Planetary Latitudes 167 Finally, β = h β0 = −1.215 × 2.511 = −3.051 ≃ −3◦ 03 ′ . Thus, the ecliptic latitude of Mercury at 00:00 UT on May 5, 2005 CE was −3◦ 03 ′ . 168 MODERN ALMAGEST Object Mercury Venus Mars Jupiter Saturn i(◦ ) 6.9190 3.3692 1.8467 1.3044 2.4860 n̆ (◦ /day) 4.09234221 1.60213807 0.52404094 0.08308122 0.03347795 F̄0 (◦ ) 204.436 105.253 305.796 293.660 296.482 Table 10.1: Additional Keplerian orbital elements for the five visible planets at the J2000 epoch (i.e., 12:00 UT, January 1, 2000 CE, which corresponds to t0 = 2 451 545.0 JD). The elements are optimized for use in the time period 1800 CE to 2050 CE. Source: Jet Propulsion Laboratory (NASA), http://ssd.jpl.nasa.gov/. Planetary Latitudes 169 F(◦ ) β0 (◦ ) F(◦ ) 000/180 002/178 004/176 006/174 008/172 010/170 012/168 014/166 016/164 018/162 020/160 022/158 024/156 026/154 028/152 030/150 032/148 034/146 036/144 038/142 040/140 042/138 044/136 046/134 048/132 050/130 052/128 054/126 056/124 058/122 060/120 062/118 064/116 066/114 068/112 070/110 072/108 074/106 076/104 078/102 080/100 082/098 084/096 086/094 088/092 090/090 0.000 0.064 0.129 0.193 0.257 0.321 0.384 0.447 0.509 0.571 0.631 0.692 0.751 0.809 0.867 0.923 0.978 1.032 1.085 1.137 1.187 1.235 1.283 1.328 1.372 1.414 1.455 1.494 1.531 1.566 1.599 1.630 1.660 1.687 1.712 1.735 1.756 1.775 1.792 1.806 1.818 1.828 1.836 1.842 1.845 1.846 (180)/(360) (182)/(358) (184)/(356) (186)/(354) (188)/(352) (190)/(350) (192)/(348) (194)/(346) (196)/(344) (198)/(342) (200)/(340) (202)/(338) (204)/(336) (206)/(334) (208)/(332) (210)/(330) (212)/(328) (214)/(326) (216)/(324) (218)/(322) (220)/(320) (222)/(318) (224)/(316) (226)/(314) (228)/(312) (230)/(310) (232)/(308) (234)/(306) (236)/(304) (238)/(302) (240)/(300) (242)/(298) (244)/(296) (246)/(294) (248)/(292) (250)/(290) (252)/(288) (254)/(286) (256)/(284) (258)/(282) (260)/(280) (262)/(278) (264)/(276) (266)/(274) (268)/(272) (270)/(270) Table 10.2: Deferential ecliptic latitude of Mars. The latitude is minus the value shown in the table if the argument is in parenthesies. 170 MODERN ALMAGEST µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 -0.025 0.604 0.604 0.604 0.604 0.605 0.605 0.605 0.605 0.606 0.606 0.606 0.607 0.607 0.608 0.609 0.609 0.610 0.611 0.611 0.612 0.613 0.614 0.615 0.616 0.617 0.618 0.619 0.621 0.622 0.623 0.625 0.626 0.627 0.629 0.631 0.632 0.634 0.636 0.637 0.639 0.641 0.643 0.645 0.647 0.649 0.652 -0.028 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 -0.025 0.652 0.654 0.656 0.659 0.661 0.664 0.666 0.669 0.672 0.674 0.677 0.680 0.683 0.686 0.689 0.693 0.696 0.699 0.703 0.706 0.710 0.714 0.718 0.722 0.726 0.730 0.734 0.738 0.743 0.747 0.752 0.757 0.762 0.767 0.772 0.777 0.782 0.788 0.793 0.799 0.805 0.811 0.817 0.823 0.830 0.836 -0.029 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 -0.025 0.836 0.843 0.850 0.857 0.865 0.872 0.880 0.888 0.896 0.904 0.912 0.921 0.930 0.939 0.948 0.958 0.968 0.978 0.988 0.999 1.010 1.021 1.032 1.044 1.056 1.069 1.082 1.095 1.108 1.122 1.137 1.151 1.167 1.182 1.198 1.215 1.232 1.249 1.267 1.286 1.305 1.325 1.345 1.366 1.388 1.410 -0.031 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.015 1.410 1.433 1.457 1.482 1.507 1.533 1.560 1.588 1.616 1.646 1.676 1.708 1.740 1.773 1.807 1.843 1.879 1.916 1.955 1.994 2.034 2.075 2.117 2.160 2.203 2.247 2.292 2.337 2.382 2.427 2.472 2.517 2.560 2.603 2.644 2.683 2.721 2.755 2.787 2.816 2.840 2.861 2.878 2.890 2.897 2.899 0.003 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.029 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.029 -0.029 -0.029 -0.029 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.025 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.023 -0.023 -0.023 -0.023 -0.022 -0.022 -0.022 -0.021 -0.021 -0.021 -0.020 -0.020 -0.019 -0.019 -0.018 -0.018 -0.017 -0.016 -0.015 -0.015 -0.014 -0.013 -0.012 -0.011 -0.010 -0.008 -0.007 -0.006 -0.004 -0.003 -0.001 0.001 0.003 0.005 0.007 0.010 0.012 0.015 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.029 -0.029 -0.029 -0.029 -0.028 -0.028 -0.027 -0.027 -0.027 -0.026 -0.025 -0.025 -0.024 -0.023 -0.023 -0.022 -0.021 -0.020 -0.019 -0.017 -0.016 -0.015 -0.013 -0.011 -0.009 -0.007 -0.005 -0.003 -0.000 0.003 0.018 0.021 0.025 0.028 0.032 0.037 0.041 0.046 0.051 0.057 0.063 0.069 0.076 0.084 0.092 0.100 0.109 0.118 0.128 0.139 0.151 0.163 0.175 0.189 0.202 0.217 0.232 0.248 0.264 0.280 0.297 0.314 0.331 0.348 0.364 0.380 0.395 0.408 0.421 0.432 0.442 0.449 0.455 0.458 0.459 Table 10.3: Epicyclic latitude correction factor for Mars. µ is in degrees. Note that h̄(360◦ −µ) = h̄(µ), and δh± (360◦ − µ) = δh± (µ). 0.006 0.009 0.013 0.017 0.021 0.026 0.031 0.036 0.043 0.049 0.056 0.064 0.073 0.083 0.093 0.104 0.117 0.130 0.145 0.161 0.178 0.197 0.218 0.240 0.265 0.291 0.319 0.349 0.382 0.416 0.453 0.491 0.530 0.571 0.612 0.654 0.694 0.734 0.770 0.804 0.833 0.857 0.874 0.885 0.889 Planetary Latitudes 171 F(◦ ) β0 (◦ ) F(◦ ) 000/180 002/178 004/176 006/174 008/172 010/170 012/168 014/166 016/164 018/162 020/160 022/158 024/156 026/154 028/152 030/150 032/148 034/146 036/144 038/142 040/140 042/138 044/136 046/134 048/132 050/130 052/128 054/126 056/124 058/122 060/120 062/118 064/116 066/114 068/112 070/110 072/108 074/106 076/104 078/102 080/100 082/098 084/096 086/094 088/092 090/090 0.000 0.046 0.091 0.136 0.182 0.226 0.271 0.316 0.360 0.403 0.446 0.489 0.531 0.572 0.612 0.652 0.691 0.729 0.767 0.803 0.838 0.873 0.906 0.938 0.969 0.999 1.028 1.055 1.081 1.106 1.130 1.152 1.172 1.192 1.209 1.226 1.240 1.254 1.266 1.276 1.284 1.292 1.297 1.301 1.303 1.304 (180)/(360) (182)/(358) (184)/(356) (186)/(354) (188)/(352) (190)/(350) (192)/(348) (194)/(346) (196)/(344) (198)/(342) (200)/(340) (202)/(338) (204)/(336) (206)/(334) (208)/(332) (210)/(330) (212)/(328) (214)/(326) (216)/(324) (218)/(322) (220)/(320) (222)/(318) (224)/(316) (226)/(314) (228)/(312) (230)/(310) (232)/(308) (234)/(306) (236)/(304) (238)/(302) (240)/(300) (242)/(298) (244)/(296) (246)/(294) (248)/(292) (250)/(290) (252)/(288) (254)/(286) (256)/(284) (258)/(282) (260)/(280) (262)/(278) (264)/(276) (266)/(274) (268)/(272) (270)/(270) Table 10.4: Deferential ecliptic latitude of Jupiter. The latitude is minus the value shown in the table if the argument is in parenthesies. 172 MODERN ALMAGEST µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 -0.008 0.839 0.839 0.839 0.839 0.839 0.839 0.840 0.840 0.840 0.840 0.841 0.841 0.841 0.842 0.842 0.843 0.843 0.844 0.845 0.845 0.846 0.847 0.847 0.848 0.849 0.850 0.851 0.852 0.853 0.854 0.855 0.856 0.857 0.858 0.859 0.860 0.861 0.863 0.864 0.865 0.867 0.868 0.870 0.871 0.873 0.874 -0.009 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 -0.007 0.874 0.876 0.877 0.879 0.881 0.883 0.884 0.886 0.888 0.890 0.892 0.894 0.896 0.898 0.900 0.902 0.904 0.906 0.909 0.911 0.913 0.916 0.918 0.920 0.923 0.925 0.928 0.930 0.933 0.935 0.938 0.941 0.944 0.946 0.949 0.952 0.955 0.958 0.961 0.964 0.967 0.970 0.973 0.976 0.979 0.982 -0.008 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 -0.002 0.982 0.985 0.988 0.992 0.995 0.998 1.002 1.005 1.008 1.012 1.015 1.019 1.022 1.026 1.029 1.033 1.036 1.040 1.044 1.047 1.051 1.055 1.058 1.062 1.066 1.069 1.073 1.077 1.080 1.084 1.088 1.092 1.095 1.099 1.103 1.107 1.110 1.114 1.118 1.121 1.125 1.129 1.132 1.136 1.140 1.143 -0.003 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.009 1.143 1.147 1.150 1.154 1.157 1.160 1.164 1.167 1.170 1.173 1.177 1.180 1.183 1.186 1.189 1.192 1.194 1.197 1.200 1.202 1.205 1.207 1.210 1.212 1.214 1.216 1.218 1.220 1.222 1.224 1.225 1.227 1.228 1.230 1.231 1.232 1.233 1.234 1.235 1.236 1.236 1.237 1.237 1.237 1.238 1.238 0.010 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.009 0.009 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.009 0.009 0.009 0.010 0.010 0.010 0.009 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 Table 10.5: Epicyclic latitude correction factor for Jupiter. µ is in degrees. Note that h̄(360◦ − µ) = h̄(µ), and δh± (360◦ − µ) = δh± (µ). 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.014 0.015 0.015 0.015 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.021 0.021 Planetary Latitudes 173 F(◦ ) β0 (◦ ) F(◦ ) 000/180 002/178 004/176 006/174 008/172 010/170 012/168 014/166 016/164 018/162 020/160 022/158 024/156 026/154 028/152 030/150 032/148 034/146 036/144 038/142 040/140 042/138 044/136 046/134 048/132 050/130 052/128 054/126 056/124 058/122 060/120 062/118 064/116 066/114 068/112 070/110 072/108 074/106 076/104 078/102 080/100 082/098 084/096 086/094 088/092 090/090 0.000 0.087 0.173 0.260 0.346 0.432 0.517 0.601 0.685 0.768 0.850 0.931 1.011 1.089 1.167 1.243 1.317 1.390 1.461 1.530 1.597 1.663 1.726 1.788 1.847 1.904 1.958 2.011 2.060 2.108 2.152 2.194 2.234 2.270 2.304 2.335 2.364 2.389 2.411 2.431 2.447 2.461 2.472 2.479 2.484 2.485 (180)/(360) (182)/(358) (184)/(356) (186)/(354) (188)/(352) (190)/(350) (192)/(348) (194)/(346) (196)/(344) (198)/(342) (200)/(340) (202)/(338) (204)/(336) (206)/(334) (208)/(332) (210)/(330) (212)/(328) (214)/(326) (216)/(324) (218)/(322) (220)/(320) (222)/(318) (224)/(316) (226)/(314) (228)/(312) (230)/(310) (232)/(308) (234)/(306) (236)/(304) (238)/(302) (240)/(300) (242)/(298) (244)/(296) (246)/(294) (248)/(292) (250)/(290) (252)/(288) (254)/(286) (256)/(284) (258)/(282) (260)/(280) (262)/(278) (264)/(276) (266)/(274) (268)/(272) (270)/(270) Table 10.6: Deferential ecliptic latitude of Saturn. The latitude is minus the value shown in the table if the argument is in parenthesies. 174 MODERN ALMAGEST µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 -0.006 0.905 0.905 0.905 0.905 0.905 0.905 0.906 0.906 0.906 0.906 0.906 0.907 0.907 0.907 0.908 0.908 0.908 0.909 0.909 0.909 0.910 0.910 0.911 0.911 0.912 0.913 0.913 0.914 0.914 0.915 0.916 0.916 0.917 0.918 0.919 0.920 0.920 0.921 0.922 0.923 0.924 0.925 0.926 0.927 0.928 0.929 -0.006 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 -0.005 0.929 0.930 0.931 0.932 0.933 0.934 0.935 0.937 0.938 0.939 0.940 0.942 0.943 0.944 0.945 0.947 0.948 0.949 0.951 0.952 0.954 0.955 0.957 0.958 0.960 0.961 0.963 0.964 0.966 0.967 0.969 0.971 0.972 0.974 0.975 0.977 0.979 0.981 0.982 0.984 0.986 0.987 0.989 0.991 0.993 0.995 -0.005 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 -0.001 0.995 0.996 0.998 1.000 1.002 1.004 1.006 1.007 1.009 1.011 1.013 1.015 1.017 1.019 1.020 1.022 1.024 1.026 1.028 1.030 1.032 1.034 1.036 1.037 1.039 1.041 1.043 1.045 1.047 1.049 1.050 1.052 1.054 1.056 1.058 1.060 1.061 1.063 1.065 1.067 1.068 1.070 1.072 1.073 1.075 1.077 -0.001 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.005 1.077 1.078 1.080 1.081 1.083 1.084 1.086 1.087 1.089 1.090 1.091 1.093 1.094 1.095 1.097 1.098 1.099 1.100 1.101 1.103 1.104 1.105 1.106 1.107 1.107 1.108 1.109 1.110 1.111 1.111 1.112 1.113 1.113 1.114 1.114 1.115 1.115 1.116 1.116 1.116 1.116 1.117 1.117 1.117 1.117 1.117 0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 Table 10.7: Epicyclic latitude correction factor for Saturn. µ is in degrees. Note that h̄(360◦ − µ) = h̄(µ), and δh± (360◦ − µ) = δh± (µ). 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Planetary Latitudes 175 F(◦ ) β0 (◦ ) F(◦ ) 000/180 002/178 004/176 006/174 008/172 010/170 012/168 014/166 016/164 018/162 020/160 022/158 024/156 026/154 028/152 030/150 032/148 034/146 036/144 038/142 040/140 042/138 044/136 046/134 048/132 050/130 052/128 054/126 056/124 058/122 060/120 062/118 064/116 066/114 068/112 070/110 072/108 074/106 076/104 078/102 080/100 082/098 084/096 086/094 088/092 090/090 0.000 0.085 0.170 0.255 0.339 0.423 0.506 0.589 0.671 0.753 0.833 0.912 0.991 1.068 1.143 1.218 1.291 1.362 1.432 1.500 1.566 1.630 1.692 1.752 1.810 1.866 1.919 1.970 2.019 2.066 2.109 2.151 2.189 2.225 2.258 2.289 2.316 2.341 2.363 2.382 2.399 2.412 2.422 2.430 2.434 2.436 (180)/(360) (182)/(358) (184)/(356) (186)/(354) (188)/(352) (190)/(350) (192)/(348) (194)/(346) (196)/(344) (198)/(342) (200)/(340) (202)/(338) (204)/(336) (206)/(334) (208)/(332) (210)/(330) (212)/(328) (214)/(326) (216)/(324) (218)/(322) (220)/(320) (222)/(318) (224)/(316) (226)/(314) (228)/(312) (230)/(310) (232)/(308) (234)/(306) (236)/(304) (238)/(302) (240)/(300) (242)/(298) (244)/(296) (246)/(294) (248)/(292) (250)/(290) (252)/(288) (254)/(286) (256)/(284) (258)/(282) (260)/(280) (262)/(278) (264)/(276) (266)/(274) (268)/(272) (270)/(270) Table 10.8: Epicyclic ecliptic latitude of Venus. The latitude is minus the value shown in the table if the argument is in parenthesies. 176 µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 MODERN ALMAGEST δh− h̄ 0.008 0.580 0.580 0.580 0.580 0.580 0.581 0.581 0.581 0.582 0.582 0.582 0.583 0.583 0.584 0.584 0.585 0.586 0.586 0.587 0.588 0.589 0.590 0.591 0.592 0.593 0.594 0.595 0.596 0.597 0.599 0.600 0.601 0.603 0.604 0.606 0.608 0.609 0.611 0.613 0.614 0.616 0.618 0.620 0.622 0.624 0.627 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ 0.008 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 0.009 0.627 0.629 0.631 0.633 0.636 0.638 0.641 0.643 0.646 0.649 0.652 0.655 0.658 0.661 0.664 0.667 0.670 0.674 0.677 0.681 0.684 0.688 0.692 0.696 0.700 0.704 0.708 0.712 0.717 0.721 0.726 0.730 0.735 0.740 0.745 0.751 0.756 0.761 0.767 0.773 0.778 0.784 0.791 0.797 0.803 0.810 0.009 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 0.012 0.810 0.817 0.824 0.831 0.838 0.846 0.854 0.861 0.870 0.878 0.886 0.895 0.904 0.913 0.923 0.933 0.943 0.953 0.964 0.975 0.986 0.997 1.009 1.021 1.034 1.047 1.060 1.074 1.088 1.103 1.118 1.133 1.149 1.166 1.183 1.200 1.219 1.237 1.257 1.277 1.298 1.319 1.342 1.365 1.389 1.413 0.013 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.032 1.413 1.439 1.466 1.493 1.522 1.552 1.583 1.615 1.648 1.683 1.719 1.756 1.795 1.836 1.878 1.922 1.968 2.016 2.065 2.117 2.170 2.226 2.283 2.343 2.405 2.469 2.535 2.603 2.673 2.744 2.816 2.890 2.964 3.037 3.111 3.182 3.252 3.318 3.380 3.436 3.486 3.529 3.564 3.589 3.604 3.609 0.033 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.018 0.018 0.019 0.019 0.019 0.020 0.020 0.021 0.021 0.022 0.022 0.023 0.024 0.024 0.025 0.026 0.026 0.027 0.028 0.029 0.030 0.031 0.032 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.018 0.018 0.019 0.019 0.019 0.020 0.020 0.021 0.021 0.022 0.022 0.023 0.023 0.024 0.025 0.025 0.026 0.027 0.028 0.029 0.030 0.031 0.032 0.033 0.033 0.034 0.036 0.037 0.039 0.040 0.042 0.044 0.046 0.048 0.050 0.053 0.055 0.058 0.061 0.065 0.068 0.072 0.076 0.081 0.086 0.091 0.097 0.103 0.110 0.117 0.125 0.133 0.142 0.151 0.161 0.172 0.183 0.194 0.205 0.217 0.228 0.239 0.249 0.258 0.267 0.273 0.278 0.281 0.282 0.034 0.035 0.037 0.038 0.040 0.041 0.043 0.045 0.047 0.049 0.052 0.054 0.057 0.060 0.063 0.067 0.071 0.075 0.080 0.085 0.090 0.096 0.102 0.109 0.117 0.125 0.134 0.144 0.155 0.166 0.178 0.191 0.204 0.218 0.232 0.247 0.262 0.276 0.290 0.302 0.313 0.322 0.329 0.333 0.334 Table 10.9: Deferential latitude correction factor for Venus. µ is in degrees. Note that h̄(360◦ − µ) = h̄(µ), and δh± (360◦ − µ) = δh± (µ). Planetary Latitudes 177 F(◦ ) β0 (◦ ) F(◦ ) 000/180 002/178 004/176 006/174 008/172 010/170 012/168 014/166 016/164 018/162 020/160 022/158 024/156 026/154 028/152 030/150 032/148 034/146 036/144 038/142 040/140 042/138 044/136 046/134 048/132 050/130 052/128 054/126 056/124 058/122 060/120 062/118 064/116 066/114 068/112 070/110 072/108 074/106 076/104 078/102 080/100 082/098 084/096 086/094 088/092 090/090 0.000 0.093 0.186 0.279 0.372 0.464 0.556 0.646 0.736 0.826 0.914 1.001 1.087 1.171 1.254 1.336 1.416 1.494 1.570 1.645 1.717 1.788 1.856 1.922 1.986 2.047 2.105 2.162 2.215 2.266 2.314 2.359 2.401 2.441 2.477 2.511 2.541 2.568 2.592 2.613 2.631 2.646 2.657 2.665 2.670 2.672 (180)/(360) (182)/(358) (184)/(356) (186)/(354) (188)/(352) (190)/(350) (192)/(348) (194)/(346) (196)/(344) (198)/(342) (200)/(340) (202)/(338) (204)/(336) (206)/(334) (208)/(332) (210)/(330) (212)/(328) (214)/(326) (216)/(324) (218)/(322) (220)/(320) (222)/(318) (224)/(316) (226)/(314) (228)/(312) (230)/(310) (232)/(308) (234)/(306) (236)/(304) (238)/(302) (240)/(300) (242)/(298) (244)/(296) (246)/(294) (248)/(292) (250)/(290) (252)/(288) (254)/(286) (256)/(284) (258)/(282) (260)/(280) (262)/(278) (264)/(276) (266)/(274) (268)/(272) (270)/(270) Table 10.10: Epicyclic ecliptic latitude of Mercury. The latitude is minus the value shown in the table if the argument is in parenthesies. 178 µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 MODERN ALMAGEST δh− h̄ 0.099 0.719 0.719 0.719 0.719 0.719 0.720 0.720 0.720 0.720 0.721 0.721 0.722 0.722 0.723 0.723 0.724 0.725 0.725 0.726 0.727 0.728 0.729 0.730 0.731 0.732 0.733 0.734 0.735 0.737 0.738 0.739 0.741 0.742 0.743 0.745 0.747 0.748 0.750 0.752 0.754 0.755 0.757 0.759 0.761 0.763 0.765 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.101 0.101 0.101 0.101 0.101 0.101 0.102 0.102 0.102 0.102 0.103 0.103 0.103 0.104 0.104 0.104 0.105 0.105 0.105 0.106 0.106 0.106 0.107 0.107 0.108 0.108 0.109 0.109 0.110 δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ µ δh− h̄ δh+ 0.137 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 0.110 0.765 0.768 0.770 0.772 0.774 0.777 0.779 0.782 0.784 0.787 0.790 0.793 0.795 0.798 0.801 0.804 0.807 0.811 0.814 0.817 0.820 0.824 0.827 0.831 0.835 0.838 0.842 0.846 0.850 0.854 0.858 0.862 0.866 0.871 0.875 0.880 0.884 0.889 0.894 0.899 0.904 0.909 0.914 0.919 0.924 0.930 0.152 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 0.152 0.930 0.935 0.941 0.946 0.952 0.958 0.964 0.970 0.976 0.983 0.989 0.996 1.002 1.009 1.016 1.023 1.030 1.037 1.044 1.052 1.059 1.067 1.074 1.082 1.090 1.098 1.107 1.115 1.123 1.132 1.141 1.149 1.158 1.167 1.176 1.185 1.195 1.204 1.214 1.223 1.233 1.243 1.253 1.263 1.273 1.283 0.217 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0.274 1.283 1.293 1.303 1.313 1.324 1.334 1.344 1.355 1.365 1.375 1.386 1.396 1.406 1.417 1.427 1.437 1.447 1.457 1.467 1.476 1.486 1.495 1.504 1.513 1.522 1.530 1.538 1.546 1.554 1.561 1.568 1.575 1.581 1.587 1.592 1.597 1.602 1.606 1.610 1.613 1.615 1.618 1.619 1.621 1.621 1.622 0.451 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.138 0.138 0.138 0.138 0.138 0.138 0.139 0.139 0.139 0.139 0.140 0.140 0.140 0.141 0.141 0.141 0.142 0.142 0.142 0.143 0.143 0.144 0.144 0.145 0.145 0.146 0.146 0.147 0.147 0.148 0.149 0.149 0.150 0.151 0.151 0.152 0.110 0.111 0.111 0.112 0.112 0.113 0.113 0.114 0.115 0.115 0.116 0.117 0.117 0.118 0.119 0.120 0.120 0.121 0.122 0.123 0.124 0.124 0.125 0.126 0.127 0.128 0.129 0.130 0.131 0.132 0.133 0.135 0.136 0.137 0.138 0.139 0.141 0.142 0.143 0.145 0.146 0.147 0.149 0.150 0.152 0.153 0.154 0.154 0.155 0.156 0.157 0.158 0.159 0.160 0.161 0.162 0.163 0.164 0.165 0.166 0.167 0.168 0.169 0.170 0.172 0.173 0.174 0.176 0.177 0.179 0.180 0.182 0.183 0.185 0.186 0.188 0.190 0.192 0.193 0.195 0.197 0.199 0.201 0.203 0.206 0.208 0.210 0.212 0.215 0.217 0.153 0.155 0.157 0.158 0.160 0.162 0.164 0.165 0.167 0.169 0.171 0.173 0.175 0.178 0.180 0.182 0.184 0.187 0.189 0.192 0.194 0.197 0.199 0.202 0.205 0.208 0.210 0.213 0.216 0.219 0.223 0.226 0.229 0.232 0.236 0.239 0.243 0.246 0.250 0.254 0.258 0.262 0.265 0.269 0.274 0.220 0.222 0.225 0.228 0.231 0.234 0.237 0.240 0.243 0.246 0.250 0.253 0.257 0.261 0.264 0.268 0.272 0.276 0.281 0.285 0.290 0.294 0.299 0.304 0.309 0.315 0.320 0.326 0.331 0.337 0.343 0.350 0.356 0.363 0.370 0.377 0.384 0.392 0.400 0.408 0.416 0.424 0.433 0.442 0.451 0.278 0.282 0.286 0.290 0.295 0.299 0.304 0.308 0.313 0.317 0.322 0.326 0.331 0.335 0.340 0.345 0.349 0.354 0.358 0.363 0.367 0.371 0.376 0.380 0.384 0.388 0.392 0.396 0.399 0.403 0.406 0.409 0.412 0.415 0.417 0.420 0.422 0.424 0.425 0.427 0.428 0.429 0.429 0.430 0.430 0.461 0.471 0.481 0.491 0.501 0.512 0.523 0.534 0.546 0.558 0.570 0.582 0.594 0.607 0.620 0.633 0.646 0.659 0.672 0.686 0.699 0.713 0.726 0.739 0.753 0.766 0.779 0.791 0.804 0.816 0.827 0.838 0.849 0.858 0.868 0.876 0.884 0.891 0.897 0.903 0.907 0.911 0.913 0.914 0.915 Table 10.11: Deferential latitude correction factor for Mercury. µ is in degrees. Note that h̄(360◦ −µ) = h̄(µ), and δh± (360◦ − µ) = δh± (µ). Glossary 179 11 Glossary Altitude: The angle subtended at the observer by the radius vector connecting a celestial object to an observer on the earth’s surface, and the vector’s projection onto the horizontal plane. Object’s above/below the horizon have positive/negative altitudes. Altitude Circle: A great circle on the celestial sphere which passes through the local zenith at a given observation site on the earth’s surface. Anomaly: Any deviation in an orbit from uniform circular motion which is concentric with the central body. Anomaly is also used as another word for angle. Apocenter: Point on a Keplerian orbit which is furthest from the central body. If the central body is the sun, then the apocenter is generally termed the aphelion. Likewise, if the central body is the earth, then the apocenter is termed the apogee. Arctic Circles: Two latitude circles on the earth’s surface which are equidistant from the equator. Above the arctic circles, the sun never sets for part of the year, and never rises for part of the year. Argument of Latitude: Angle subtended at the central body by the radius vectors connecting the central body to the orbiting body, and the central body to the ascending node, in a Keplerian orbit. Ascendent: Point on ecliptic circle which is ascending at any given time on the eastern horizon. Ascending Node: Point on a Keplerian orbit at which the orbital plane crosses the ecliptic plane from south to north in the direction of motion of the orbiting body. Autumnal Equinox: The point at which the ecliptic circle crosses the celestial equator from north to south (in the direction of the sun’s apparent motion along the ecliptic). Azimuth: Angle subtended at the observer by the projection of the vector connecting a celestial object to an observer on the earth’s surface onto the horizontal plane, and the vector connecting the north compass point to the observer. Azimuth increases clockwise (i.e., from the north to the east) looking at the horizontal plane from above. Celestial Axis: An imaginary extension of the earth’s axis of rotation which pierces the celestial sphere at the two celestial poles. The sphere’s diurnal motion is about this axis. Celestial Coordinates: Angular coordinate system whose fundamental plane is the celestial plane, and whose poles are the celestial poles. The polar and azimuthal angles in this system are called declination and right ascension, respectively. Celestial Equator: The intersection of the imagined extension of the earth’s equatorial plane with the celestial sphere. Celestial Plane: The plane containing the earth’s equator. Celestial Poles: The two points at which the celestial axis pierces the celestial sphere. The north celestial pole lies to the north of the celestial plane, whereas the south celestial pole lies to the south. The celestial poles are the only two points on the celestial sphere whose positions are unaffected by diurnal motion. Celestial Sphere: An imaginary sphere of infinite radius which is concentric with the earth. All objects in the sky are thought of as attached to this sphere. Compass Points: At a given observation site on the earth’s surface, the north, east, south, and west compass points lie on the local horizon due north, east, south, and west, respectively, of the observer. 180 MODERN ALMAGEST Conjunction: Two celestial objects are said to be in conjunction when they have the same ecliptic longitude. For an inferior planet in conjunction with the sun, the conjunction is said to be superior if the planet is further from the earth than the sun, and inferior if the sun is further from the earth than the planet. Culmination: A celestial object is said to culminate on a given day when it attains its maximum altitude in the sky. Declination: Angle subtended at the earth’s center by the radius vector connecting a celestial object to the earth’s center, and the vector’s projection onto the celestial plane. Object’s to the north/south of the celestial equator have positive/negative declinations. Deferent: Large circle centered on the sun about which the guide point rotates in a geocentric planetary orbit. Deferential Latitude: Ecliptic latitude a superior planet has by virtue of the inclination of its deferent. Deferential Latitude Correction Factor: Correction to the ecliptic latitude of an inferior planet due to the finite size of its deferent. Diurnal Motion: Daily rotation of the celestial sphere, and the objects attached to it, from east to west (looking south in the earth’s northern hemisphere) about the celestial axis. Eccentricity: Measure of the displacement along the major axis of the central body from the geometric center in a Keplerian orbit. Ecliptic Axis: Normal to the ecliptic plane which passes through the center of the earth. Ecliptic Circle: Apparent path traced out by the sun on the celestial sphere during the course of a year. Ecliptic Coordinates: Angular coordinate system whose fundamental plane is the ecliptic plane, and whose poles are the ecliptic poles. Ecliptic Latitude: Angle subtended at the earth’s center by the radius vector connecting a celestial object to the earth’s center, and the vector’s projection onto the ecliptic plane. Objects to the north/south of the ecliptic circle have positive/ecliptic latitudes. Ecliptic Longitude: Angle subtended at the earth’s center by the projection of the vector connecting a celestial object to the earth’s center onto the ecliptic plane, and the vector connecting the vernal equinox to the earth’s center. Ecliptic longitude increases counter-clockwise (i.e., from the west to the east) looking at the ecliptic plane from the north. Ecliptic Plane: Plane containing the mean orbit of the earth about the sun. Ecliptic Poles: The two points at which the ecliptic axis pierces the celestial sphere. The north ecliptic pole lies to the north of the ecliptic plane, whereas the south ecliptic pole lies to the south. Elongation: Difference in ecliptic longitude between two celestial objects. Epicycle: Small circle, centered on the guide point, about which a planet rotates in a geocentric planetary orbit. Epicyclic Anomaly: Angle subtended between the radius vectors connecting the earth to the guide-point, and the guide-point to the planet, in a geocentric planetary orbit. Epicyclic Latitude: Ecliptic latitude an inferior planet has by virtue of the inclination of its epicycle. Epicyclic Latitude Correction Factor: Correction to the ecliptic latitude of a superior planet due to the finite size of its epicycle. Epoch: Standard time at which the orbital elements of an orbiting body in the solar system are specified. Glossary 181 Equant: Point about which the orbiting body appears to rotate uniformly in a Keplerian orbit of low eccentricity. The equant is diagrammatically opposite the central body with respect to the geometric center of the orbit. Equation of Center: Difference between the true anomaly and the mean anomaly in a Keplerian orbit. Equation of Epicycle: Elongation of a planet from its guide-point in a geocentric planetary orbit. Equation of Time: Time interval between local noon and mean local noon. Equinoxes: The two opposite points on the ecliptic circle which the sun reaches on the days of the year that day and night are equally long. Evection: An anomaly of the moon’s orbit about the earth which is associated with the perturbing influence of the sun. Geocentric Planetary Orbit: An orbit in which a planet rotates about a guide point in a small circle called an epicycle, and the guide point rotates about the earth in a large circle called a deferent. Great Circle: Circle on the surface of a sphere produced by the intersection of a plane which bisects the sphere. Greatest Elongation: Greatest elongation of an inferior planet from the sun. If the planet is to the east/west of the sun then the elongation is called the greatest eastern/western elongation. Guide-Point: Center of an epicycle in a geocentric planetary orbit. Horizon: Tangent plane to the earth’s surface, at a given observation site, which divides the celestial sphere into visible and invisible hemispheres. Horizontal Coordinates: Angular coordinate system whose fundamental plane is the horizontal plane, and whose poles are the zenith and nadir. Horizontal Plane: Plane containing the local horizon. Horoscope: Point on the ecliptic circle which is ascending at a given time on the eastern horizon. Inclination: Maximum angle subtended between the plane of a Keplerian orbit and the ecliptic plane. Inclination of Ecliptic: Inclination of the ecliptic plane to the equatorial plane. Inferior Planet: A planet which is closer to the sun than the earth. Julian Day Number: Number ascribed to a particular day in a scheme in which days are numbered consecutively from January 1, 4713 BCE, which is designated day zero. Julian days start at 12:00 UT. Keplerian Orbit: Ellipse which is confocal with the central object. The radius vector connecting the central and orbiting bodies sweeps out equal areas in equal time intervals. Local Mean Noon: Instant in time at which the mean sun attains its upper transit. Local Noon: Instant in time at which the sun attains its upper transit. Longitude of Ascending Node: Angle subtended at the central body by the radius vectors connecting the central body to the ascending node, and the central body to the vernal equinox, in a Keplerian orbit. Longitude of Pericenter: Angle subtended at the central body by the radius vectors connecting the central body to the pericenter, and the central body to the vernal equinox, in a Keplerian orbit. Major Axis: Longest diameter which passes through the geometric center of a Keplerian orbit. Major Radius: Half the length of the major axis of a Keplerian orbit. 182 MODERN ALMAGEST Mean Anomaly: Angle which would be subtended at the central body by the radius vectors connecting the central body to the orbiting body, and the central body to the pericenter, in a Keplerian orbit, if the orbiting body were to rotate about the central body with a uniform angular velocity. Mean Argument of Latitude: Value the argument of latitude would have if the orbiting body in a Keplerian orbit were to rotate about the central body at a fixed angular velocity. Mean Argument of Latitude at Epoch: Value of the mean argument of latitude of a Keplerian orbit at the epoch. Mean (Ecliptic) Longitude: Value the ecliptic longitude would have if the orbiting body in a Keplerian orbit were to rotate about the central body at a fixed angular velocity. Mean (Ecliptic) Longitude at Epoch: Value of the mean longitude of a Keplerian orbit at the epoch. Mean Solar Day: Time interval between successive local mean noons. Mean Solar Time: Time calculated using the mean sun. Mean Sun: Fictitious body which travels around the celestial equator (from west to east looking south in the earth’s northern hemisphere) at a uniform rate, and completes one orbit every tropical year. Meridian Plane: Plane passing through the zenith and the north and south compass points at a given observation site on the earth’s surface. Minor Axis: The minor axis of a Keplerian orbit is the shortest diameter which passes through the geometric center. Minor Radius: The minor radius of a Keplerian orbit is half the length of the minor axis. Nadir: Point on the celestial sphere which is directly underfoot at a given observation site on the earth’s surface. Opposition: Two celestial objects are said to be in opposition when their ecliptic longitudes differ by 180◦ . Orbital Elements: Eight quantities which completely specify a Keplerian orbit: i.e., major radius, eccentricity, rate of motion of mean longitude, rate of motion of mean anomaly, mean longitude at epoch, mean anomaly at epoch, inclination, rate of motion in mean argument of latitude, mean argument of latitude at epoch. Parallactic Angle: Angle subtended between the ecliptic circle and an altitude circle. Parallax: Apparent change in position of a nearby celestial object in the sky when it is viewed at different points on the earth’s surface. Pericenter: Point on a Keplerian orbit which is closest to the central body. If the central body is the sun, then the pericenter is generally termed the perihelion. Likewise, if the central body is the earth, then the pericenter is termed the perigee. Precession of Equinoxes: A slow movement of the vernal equinox relative to the fixed stars which causes the ecliptic longitude of a fixed star to increase steadily at the rate of 50.3 ′′ per year. Prograde Motion: Motion of a superior planet in the sky in the same direction to that of its mean motion. Radial Anomaly: Difference between the length of the radius vector connecting the central body to the orbiting body, in a Keplerian orbit, and the major radius. Rate of Motion in Mean Anomaly: Time derivative of the mean anomaly of a Keplerian orbit. Rate of Motion in Mean Argument of Latitude: Time derivative of the mean argument of latitude of a Keplerian orbit. Rate of Motion in Mean Longitude: Time derivative of the mean longitude of a Keplerian orbit. Glossary 183 Retrograde Motion: Motion of a superior planet in the sky in the opposite direction to that of its mean motion. Right Ascension: Angle subtended at the earth’s center by the projection of the vector connecting a celestial body to the earth’s center onto the celestial plane, and the vector connecting the vernal equinox to the earth’s center. Right ascension increases counter-clockwise (i.e., from the west to the east) looking at the celestial plane from the north. Seasons: Spring is the time interval between the vernal equinox and the summer solstice, summer the interval between the summer solstice and the autumnal equinox, autumn the interval between the autumnal equinox and the winter solstice, and winter the interval between the winter solstice and the next spring equinox. Sidereal Day: Time interval between successive upper transits of a fixed star. Sidereal Time: Time calculated using the fixed stars. Solar Day: Time interval between successive local noons. Solar Time: Time calculated using the sun. Solstices: The two opposite points on the ecliptic circle which the sun reaches on the longest and shortest days of the year. Station: Point in the orbit of a superior planet at which it switches from prograde to retrograde motion, or vice versa. The former station is called a retrograde station, whereas the latter is called a prograde station. Summer Solstice: Most northerly point on the ecliptic circle. Superior Planet: A planet further from the sun than the earth. Synodic Month: Mean time interval between successive new moons. Syzygy: Conjunction or opposition of the sun and the moon. Transit: On a given day, and at a given observation site on the earth’s surface, a celestial object is said to transit when it crosses the meridian plane. The object simultaneously attains either its highest or lowest altitude in the sky. The transit is called an upper/lower transit when the object attains its highest/lowest altitude. True Anomaly: Angle subtended at the central body by the radius vectors connecting the central body to the orbiting body, and the central body to the pericenter, in a Keplerian orbit. Tropical Year: Time interval between successive vernal equinoxes. Tropics: Two latitude circles on the earth’s surface which are equidistant from the equator. Between the tropics the sun culminates both to the north and south of the zenith during the course of a year. Outside the tropics, the sun culminates either only to the north or only to the south of the zenith. Universal Time: Time defined such that mean local noon coincides with 12:00 UT every day at an observation site of terrestrial longitude 0◦ . Vernal Equinox: Point at which the ecliptic circle crosses the celestial equator from south to north (in the direction of the sun’s apparent motion along the ecliptic). Winter Solstice: Most southerly point on the ecliptic circle. Zenith: Point on the celestial sphere which is directly overhead at a given observation site on the earth’s surface. Zodiac: The signs of the zodiac are conventional names given to 30◦ segments of the ecliptic circle. 184 MODERN ALMAGEST Index of Symbols 185 12 Index of Symbols A: azimuth. MM : mean anomaly of moon. a: major radius, altitude. MS : mean anomaly of sun. aS : major radius of sun. µ: epicyclic anomaly, parallactic angle. α: right ascension. n: rate of motion in mean longitude. ᾱ: right ascension of mean sun. ñ: rate of motion in mean anomaly. b: minor radius. n̆: rate of motion in mean argument of latitude. β: ecliptic latitude. q: equation of center. D: lunar-solar elongation. qi : lunar anomalies. D̄: mean lunar-solar elongation. RE : radius of earth. D̃: semi-mean lunar-solar elongation. RM : radius of moon. δ: declination. RS : radius of sun. δM : parallax of moon. r: radial distance. e: eccentricity. ρS : angular radius of sun. eM : eccentricity of moon. ρM : angular radius of moon. eS : eccentricity of sun. ρU : angular radius of earth’s umbra. ǫ: inclination of ecliptic. t: time. E: elliptic anomaly. t0 : epoch. ζ: radial anomaly. T : true anomaly. θ: equation of epicycle. τ: orbital period. F: argument of latitude. ̟: longitude of perigee. F̄: mean argument of latitude. Ω: longitude of ascending node. F̄0 : mean argument of latitude at epoch. F̄M : mean argument of latitude of moon. λ: ecliptic longitude. λS : ecliptic longitude of sun. λ̄: mean longitude. λ̄0 : mean longitude at epoch. λ̄M : mean longitude of moon. λ̄S : mean longitude of sun. L: terrestrial latitude. M: mean anomaly. M0 : mean anomaly at epoch. 186 MODERN ALMAGEST Bibliography 187 13 Bibliography Primary Sources: The Almagest, C. Ptolemy, tr. G.J. Toomer (Princeton University Press, 1998). On the Revolutions: Nicholas Copernicus Complete Works, N. Copernicus, tr. E. Rosen (The Johns Hopkins University Press, 1992). Selections From Kepler’s Astronomia Nova, J. Kepler, tr. W.H. Donahue (Green Lion Press, 2005). Secondary Sources: The Exact Sciences in Antiquity, O. Neugebauer (Dover, 1969). A Survey of the Almagest, O. Pedersen (Univ Press of Southern Denmark, 1974). The History and Practice of Ancient Astronomy, J. Evans (Oxford University Press, 1998). The Eye of Heaven: Ptolemy, Copernicus, Kepler, O. Gingerich (American Institute of Physics, 1993). Astronomical Algorithms, J. Meeus (Willmann-Bell, 1998). The Discovery of Dynamics: A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories, J. Barbour (Oxford University Press, 2001).