4. Dr. Thomas Rosol
Transcription
4. Dr. Thomas Rosol
Adrenal Glands Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus, Ohio, USA • Most common endocrine organ with chemically-induced lesions • Understanding structure and function is important for interpreting the mechanisms and significance of chemically-induced lesions 01 November 2014 STP-India Bangalore Homeostatic Model of Adrenocortical Growth HPA Axis Rat Adrenal Cortex Zona Glomerulosa (Arcuata) 20% Zona Fasciculata 65% Zone Reticularis 15% Pituitary ACTH (+) Adrenal Capsule cells (Sf1-) Zona glomerulosa cells (Sf1+) Zona fasiculata cells (Sf1+) Zona reticularis cells (Sf1+) Progenitor cells (Sf1+) Subcellular Structure/Function Relationships Hypothalamus AVP CRH Stem cells (Sf1-, Gli1+) CORT: Cortisol (-) Corticosterone (-) • Lipid droplets (cholesterol esters) • Smooth endoplasmic reticulum • Mitochondria • Minimal storage of hormone • Steroids are hydrophobic molecules diffuse out of cells Drugs: Dexamethasone (-) Copyright: Thomas Rosol Ohio State University 2014 1 Steroidogenesis • ACTH (cAMP second messenger) – ĹStAR protein (steroidogenic acute regulator protein) • Moves cholesterol to inner mitochondrial membrane – ĹCyp11A1 • Mitochondria – Side chain cleavage (Cyp11A1) – Hydroxylation to Pregnenalone • SER – Converted to 11-Deoxycorticosterone • Mitochondria – Hydroxylated to Corticosterone or Cortisol Adrenal Cortex: Steroid Hormones Major Glucocorticoids • Cholesterol is precursor • Cortisol • Cytochrome P450 enzymes – Mitochondria, SER, Shuttling • Secretion – – – – Circadian rhythm Nocturnal animals (rats, mice, cats): High at night Daytime animals (dogs, humans): High in morning Decreased secretion with age • Bound in serum (90%) to CBG (transcortin) • Metabolized in liver (hydroxylated and conjugated) Acetate HDL LDL ACAT Cholesterol HO nCEH Pregnenalone HO 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE 3ß-OH-STEROID DE-OH-ASE- O ' 4,5 ISOMERASE CYP17 Progesterone O O CH 2 OH O O HO CYP21 CH 2OH O CYP21 CYP11B2 O Aldosterone CYP11B1 HO 11-DeoxycorticosteroneO CH 2 OH O CYP11B1 HO 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE HO O 3ß-OH-STEROID DE-OH-ASE- O ' 4,5 ISOMERASE Progesterone O O CH 2 OH O O HO CYP21 CH 2OH O CYP21 CYP11B2 O O Aldosterone CYP11B1 HO Cortisol 11-DeoxycorticosteroneO CH 2 OH O HO O O CYP17 17 D -OHHO Pregnenalone Dehydroepiadrosterone O OH CYP17 17 D -OHProgesterone O CH 2 OH O OH O Androstenedione 11-Deoxycortisol CYP11B1 Corticosterone O Cholesterol Esters O OH CYP17 CYP17 17 D -OHProgesterone O Androstenedione CH 2 OH O OH CH 2OH O OH nCEH Pregnenalone HO 11-Deoxycortisol Corticosterone O O StAR O 17D -OHHO Pregnenalone Dehydroepiadrosterone O OH CYP17 Amphibians Reptiles Birds Rats Mice Rabbits (also have cortisol, increases during stress) ACAT Cholesterol HO **CYP11A1** O O OH CYP17 CYP17 – – – – – – ACTH **CYP11A1** HO O Cholesterol Esters cAMP O • Corticosterone – Fish (teleosts) – Hamsters – Dogs (similar to humans) – Cats – Nonhuman primates – Humans CH 2OH O OH Cortisol ACAT: acyl-CoA:cholesterol acyltransferase, nCEH: neutral cholesterol ester hydrolase Copyright: Thomas Rosol Ohio State University 2014 2 Acetate HDL LDL Cholesterol HO CYP11A1 O Pregnenalone HO HO 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE 3ß-OH-STEROID DE-OH-ASE- O ' 4,5 ISOMERASE CYP17 Progesterone O CH2OH O HO O CYP21 CH2OH O O CYP21 CYP11B2 O O Aldosterone CYP11B1 HO HO Corticosterone O HO Cholesterol 17D -OHProgesterone O Androstenedione CH2OH O OH O OH CYP17 Pregnenalone HO HO 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE 3ß-OH-STEROID DE-OH-ASE- O ' 4,5 ISOMERASE CYP17 Progesterone O O CYP21 CH 2 OH O O HO 11-Deoxycortisol CYP11B1 O O O CH 2OH O CYP21 11-DeoxycorticosteroneO O O CH2OH O OH Aldosterone Angiotensin II K+ Cortisol Cholesterol Esters **CYP11A1** 17D -OHHO Pregnenalone Dehydroepiadrosterone O OH CYP17 nCEH CYP11B2 11-DeoxycorticosteroneO CH2OH O O O OH CYP17 CYP17 ACAT Cholesterol HO O HO CH 2 OH O HO O 17 D -OHHO Pregnenalone Dehydroepiadrosterone O OH CYP17 17 D -OHProgesterone O CH 2 OH O OH O Androstenedione 11-Deoxycortisol CYP11B1 Corticosterone O CYP17 CH 2OH O OH Cortisol CYP11A1 O HO 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE 3ß-OH-STEROID DE-OH-ASE- O ' 4,5 ISOMERASE CYP17 Progesterone O O CH2OH O HO O CYP21 CH2OH O CYP21 CYP11B2 O O Aldosterone CYP11B1 HO 11-DeoxycorticosteroneO CH2OH O HO O 17D -OHHO Pregnenalone Dehydroepiadrosterone O OH CYP17 O 17D -OHProgesterone O Androstenedione CH2OH O OH 11-Deoxycortisol CYP11B1 Corticosterone O O O OH CYP17 CYP17 Pregnenalone HO CH2OH O OH Cortisol 17E-HSD: 17E-hydroxysteroid dehydrogenase Cynomolgus Monkey Copyright: Thomas Rosol Ohio State University 2014 Cynomolgus Monkey: CYP17A IHC 3 Cynomolgus Monkey: CYP11B2 IHC Cynomolgus Monkey: Ki-67 Factors Contributing to Chemical Injury of the Adrenal Cortex Species Variations • Rich vascular supply • Sensitivity varies according to species • High lipid content (steroidogenesis) • Variation in pathways of steroid metabolism • Bioactivation by cytochrome P450 enzyme systems to reactive toxic forms • Limited mechanisms of detoxification Ultrastructural Lesions • Variation in xenobiotic metabolism – Dogs and humans are similar (e.g. o,p’-DDD) – Rats susceptible to DMBA Chemical-Induced Injury of the Adrenal Cortex • May be more useful than histopathology – Correlates with mechanism of toxicity – Organelle-specific enzymes • Selected Examples of Mechanisms: – Inhibition of microsomal enzymes Copyright: Thomas Rosol Ohio State University 2014 4 Cholesterol HO Chemical-Induced Injury of the Adrenal Cortex CCl4 CYP11A1 O O OH X CYP17 Pregnenalone HO HO 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE 3ß-OH-STEROID DE-OH-ASE- O ' 4,5 ISOMERASE X CYP17 Progesterone O O X CYP21 CH2OH O HO O CH2OH O X CYP21 CH2OH O OH CYP11B2 O O Aldosterone CYP11B1 HO 11-DeoxycorticosteroneO CH2OH O Lesions: Swollen SER and necrosis • Selected Examples of Mechanisms: – Inhibition of neutral cholesterol ester hydrolase 11-Deoxycortisol CH2OH O OH CYP11B1 HO Corticosterone Cortisol O O O Mechanism: 17D -OHInhibition of HO Pregnenalone Dehydroepiadrosterone microsomal O O OH CYP17 17D - an 21 17D -OHProgesterone Ohydrolases Androstenedione CYP17 Inhibition of Neutral Cholesterol Hydrolase TRIARYL PHOSPHATES Triaryl Phosphate • Cholesterol lipidosis • Adrenal cortical and ovarian interstitial cells Acetate HDL LDL HO X nCEH **CYP11A1** O HO O OH CYP17 Pregnenalone HO CORTICAL LIPIDOSIS: 3 WEEKS Cholesterol Esters ACAT Cholesterol CYP17 O 17 D -OHHO Pregnenalone Dehydroepiadrostero Triaryl Phosphate 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE 3ß-OH-STEROID DE-OH-ASE' 4,5 ISOMERASE O O O Mechanism: Inhibition of neutral cholesterol OH CYP17 CYP17 17 D -OHester hydrolase Progesterone O O Progesterone O Androstenedione CYP21 CH OH CH OH CH OH Lesions: Cytoplasmic lipid droplets in zona CYP21 O O O O HO OH CYP11B2 glomerulosa, reticularis, and fasciculata 2 2 O O Aldosterone CYP11B1 HO 2 11-DeoxycorticosteroneO CH 2 OH O HO Corticosterone O 11-Deoxycortisol CYP11B1 O Copyright: Thomas Rosol Ohio State University 2014 CH 2 OH O OH Cortisol 5 Cortical Lipidosis Chemical-Induced Injury of the Adrenal Cortex • Selected Examples of Mechanisms: – Inhibition of ACAT* Enzyme in Cortical Cells L N *Acyl Coenzyme: Cholesterol Acyl Transferase ACAT-Inhibiting Compounds x Degeneration of zonae fasciculata And reticularis – (Ļ) Mitochondria and SER x Direct cytotoxic effect x Species sensitivity: – Dog > Guinea Pig > Rabbit > Monkey > Rat Chemical-Induced Injury of the Adrenal Cortex • Selected Examples of Mechanisms: Selective Mitochondrial Degeneration with Vacuolation ORTHO, PARA, PRIME DDD (O,P’-DDD) x Zonae fasciculata and reticularis –Selective mitochondrial degeneration x Zona glomerulosa much less sensitive x Species susceptibility: – Dog unusually sensitive Copyright: Thomas Rosol Ohio State University 2014 6 Vacuolation of Mitochondria Cessation of O,P’DDD Therapy Chemical-Induced Injury of the Adrenal Cortex Disruption of Organellar Membrane Turnover • Examples: • Selected Examples of Mechanisms: – Disruption of organellar membrane turnover – Cationic Amphiphilic Compounds (Chloroquine, Triparanol, Chlorophentermine) – Toxin activation of CYP P450 enzymes • Lesion: Phospholipidosis of cortical cells (vacuolation, need EM) Copyright: Thomas Rosol Ohio State University 2014 7 Cortical Phospholipidosis Spontaneous Degenerative Lesions of Adrenal Cortex x Examples in Laboratory Rodents Adrenal Cortex (Rat) Cystic Degeneration Proliferative Lesions of Adrenal Cortex Adrenal Cortex (F344 Rat) Telangiectasis Adrenal Cortex (F344 Rat) Focal (Eosinophilic) Hyperplasia HYPERPLASIA x Spindle Cell (Mice) x Focal (Rats) x Extracortical Nodular (Dog) Copyright: Thomas Rosol Ohio State University 2014 8 BrdU 50 Subcapsular Spindle Cell Hyperplasia x Common in mice x Infrequent in rats and hamsters Adrenal Cortex Adenoma: Rat Proliferative Lesions of the Adrenal Cortex NEOPLASIA Copyright: Thomas Rosol Ohio State University 2014 9 Adrenal Cortex Adenoma: Mouse Subcapsular Type (A and B cells) Mechanism of Induction of Cortical Neoplasia x Hormonal Imbalance: (ĹGonadotropins, esp., ĹLH) – Gonadectomy • Species: Mice, Hamsters, Ferrets, Goats – Transgenic Mice Deficient in Inhibin – Estrogen Receptor Antagonists – Ionizing Radiation, Chemicals (DMBA) • Ovarian Follicle Destruction • (Ļ)E2, (Ĺ) LH Development of the adrenal gland and gonads from the urogenital ridge Adrenocortical Tumors (Human Relevance) • Humans – Adenomas: 5% of people over 50 years, incidentalomas, nonfunctional • Carcinoma is rare (500/yr in USA) • Dogs: Similar to humans – Functional tumors more common • Gonadectomy – Goats, ferrets, hamsters, and mice Bielinska M et al. Vet Pathol 2006;43:97-117 The Stress Response and the Adrenal Cortex • Physiological response to an environmental change • Activation of the HPA axis with increased glucocorticoids • Maximizes survivability and suppresses nonessential functions • Increased gluconeogenesis; decreased insulin sensitivity; diabetogenic • Suppression of reproduction • Regulation of immune function • Increases activity and appetite Copyright: Thomas Rosol Ohio State University 2014 10 Rat Adrenal Glands Normal Chemicals as stressors • The HPA response is not stressor-specific • Chemicals can alter homeostatic balance – Organ effects – Metabolism effects Hypertrophy Increased Adrenal Gland Weight (Adrenal Hypertrophy) • Stress – Known exposure to stress-inducing stimuli – Histopathology (Morphology) – Concurrence with other stress-related changes (e.g., thymic atrophy) – Clinical chemistry • Functional challenge • Differential Diagnosis: Toxic Effect • High doses of test articles – Histopathology (Morphology) – Clinical chemistry • Functional challenge (functional suppression) – Mechanistic studies of adrenal cell function (steroidogenic enzymes) Adrenal Hypertrophy: Significance • Stress-Related – – – – Primary and secondary stress-related effects Less significant finding in toxicology study Cause should be identified Functional significance could be tested Assessment of the HPA Axis • ACTH challenge assay – Tests the integrity of the HPA axis through steroid hormone secretion • Evaluation of in vitro mechanisms – H295R human adrenal cortical cells • Test Compound-Related – – – – Potentially serious Understand mode of action Human relevance Species differences Copyright: Thomas Rosol Ohio State University 2014 • Enzyme inhibition – CYP17, not well expressed in rodent adrenal glands • StAR function (steroidogenic acute regulatory protein; transport protein for cholesterol in mitochondria and rate limiting step in steroidogenesis) • Species differences in susceptibility to toxicants 11 ACTH Stimulation Assay ACTH STIMULATION TEST Rodents 16 – Trough of circadian rhythm • 12 hr light-dark cycle; starting at 6 a.m. • Pre-test sample usually not collected (to avoid stress of blood collection) • Post-ACTH sample at 0.5-2.0 hours 14 PLASMA CORTISOL (ug/dl) • Most sensitive time to measure corticosterone in rodents is about 7-10 a.m. 12 10 8 6 4 2 HYPOADRENOCORTICISM 0 BASELINE PLASMA CORTISOL POST STIMULATION PLASMA CORTISOL ADRENAL MEDULLA • Less common site of toxic manifestations • Proliferative lesions – Important in the rat – Less common in the mouse Epinephrine Copyright: Thomas Rosol Ohio State University 2014 Norepinephrine 12 Immunohistochemistry • Tyrosine hydroxylase: All chromaffin cells – Cytosolic (independent of granules) – All tumors produce this enzyme • Chromogranin A: All chromaffin cells – Secretory Granules (variable in tumors) • PNMT: Only Epinephrine cells – Cytoplasmic (variable in tumors) Tyr Hydroxylase, Chromogranin A PNMT (Epinephrine Cells) Focal Medullary Hypeplasia Focal Medullary Hyperplasia Copyright: Thomas Rosol Ohio State University 2014 13 Adrenal Medulla: Neoplasms Adrenal Medulla: F344 Rat Pheochromocytoma • Secretory Cells – Pheochromocytoma (benign) • • • • May start as hyperplasia Expandsile medullary mass Well differentiated Behavior – Space-occupying mass – Excess catecholamine secretion Interspecies Comparison of Pheochromocytomas Copyright: Thomas Rosol Ohio State University 2014 RAT MOUSE HUMAN x Lifetime Frequency Up to 80% <5% <0.09% x Sex Predilection MALE NONE NONE x Inducing Agents NONE HORMONES DRUGS, TOXINS DIETARY FACTORS NONE x Cell Type NE E+NE E+NE 14 Factors Influencing Incidence of Pheochromocytomas in the Rat • Age • Strain – Holtzman – Wistar 0.5% 67% • Sectioning technic – Single vs. serial – 7.5% of adrenal volume is medulla • Chronic Stress, Ca2+ – Chronic renal and lung disease Agents associated with Pheochromocytomas in Rats x Phosphodiesterase Inhibitors – Indolidan – Isomazole x Dietary Factors – Excess Food – Excess Ca2+, sugars, sugar alcohols Agents associated with Pheochromocytomas in Rats x Hypothalamic-Endocrine – Growth Hormone – Estrogen – Antithyroid Drugs – Alloxan – Neuroleptics x Autonomic Nervous System – Nicotine – Reserpine Agents associated with Pheochromocytomas in Rats x Miscellaneous Factors – Gemfibrozil (Hypolidemic) – Zomepirone (Anti-inflammatory) – Diphenylamine (Anti-oxidant) – Retinol Acetate – 1,4, Dioxane – Ethylene Glycol Monoethyl Ether – P-chloroaniline – Radiation – Chronic Respiratory Disease ADRENAL MEDULLA: NEOPLASMS • Malignant Pheochromocytomas – Local invasion – Invasion into the posterior vena cava Copyright: Thomas Rosol Ohio State University 2014 15 Adrenal Medulla: F344 Rat Malignant Pheochromocytoma Differential Diagnosis of Adrenal Medullary and Cortical Tumors • Chromaffin Reaction – Dichromate fixative oxidizes catecholeamines to form brown-black pigment – Differentiate cortical and medullary neoplasms Adrenal Medulla: Ganglioneuroma Copyright: Thomas Rosol Ohio State University 2014 16 Dual Differentiation (‘Complex’) Pheochromocytoma & Ganglioneuroma Copyright: Thomas Rosol Ohio State University 2014 17