part1 - Desy
Transcription
part1 - Desy
From HERA to the LHC H. Jung (DESY) Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 1 From HERA to the LHC H. Jung (DESY) or Why HERA physics is important for discoveries at LHC ! “…The mechanic, who wishes to do his work well, must first sharpen his tools …” —Chapter15, “The Analects” attributed to Confucius, translated by James Legge. (from X. Zu talk at DIS05) Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 2 From HERA to the LHC Many thanks to all conveners and authors ! hepph/0601012 hepph/0601013 Available on request from CERN/DESY libs e ag >6 p 0 5 Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 s Next working group week: 29. Oct. - 2. Nov. 2007, DESY next workshop May 2008 CERN Page 3 From HERA to the LHC H. Jung (DESY) HERA and the structure of the proton QCD is challenging from inclusive x-section measurements to detailed investigations of QCD measurements of hadronic final states: ➔ lead to a detailed understanding of QCD ➔ jets, heavy flavours next lecture: ➔ implications and applications for LHC ➔ PDFs, multiparton interactions, etc lectures based on lecture series: “QCD & collider physics” H.Jung,J. Bartels University HH, 2005 -2007 Contributions to “HERA and the LHC” workshops: www,desy.de/~heralhc Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 4 HERA collider and experiments E pe = 27:6 GeV s = 319 GeV Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Ep = 920 GeV ! E = 54 TeV ¯xed target Page 5 What is HERA doing in Hamburg ? electron proton collider HERA √s = 320 GeV HERA: QCD structure of the proton Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 E pe = 27:6 GeV s = 319 GeV Ep = 920 GeV ! E = 54 TeV ¯xed target Physics Program: structure functions, parton density functions jets heavy quarks diffraction in QCD high energy behavior of QCD precision machine for QCD, like LEP was for electroweak... running until mid 2007 Page 6 How was HERA performing? electron proton collider HERA √s = 320 GeV HERA: QCD structure of the proton Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 7 Why HERA and LHC ? electron proton collider HERA √s = 320 GeV HERA: QCD structure of the proton Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 proton proton collider LHC √s = 14 TeV LHC: Higgs, SUSY etc., but mostly QCD... Page 8 A typical ep event at HERA Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 9 Kinematics d¾ep 2 °¤p 2 = F (y; Q )¾ (W; Q ) °=e 2 dydQ with Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 10 Picture of the Proton Flavor sum rules for proton: Z 1 dx uV (x) = 2 0 Z Z Z 1 dx dV (x) = 1 0 } p=(uud) dx x q(x) » 0:1 [0:9 + 0:95 + 0:85 + 0:7 + 0:35 + 0:15 + 0:1 + 0:05] = 0:1¢4:05 = 0:405 dx x¹ q (x) » 0:1 [0:42 + 0:2 + 0:06 + 0:03 + 0:01] = 0:1 ¢ 0:72 = 0:072 Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 11 Picture of the Proton Flavor sum rules for proton: Z 1 dx uV (x) = 2 0 Z 1 dx dV (x) = 1 0 } p=(uud) Momentum sum of quarks: XZ q 1 0 dx x[q(x) + q¹(x)] » 0:5 Where are the other 50 % of the proton's momentum ? Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 12 Naive picture of the proton: F2 From Halzen & Martin: Quarks & Leptons, p201 Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 13 Structure functions from HERA Proton structure function does not depend on Q2 for large x F2 scales ... Quarks are pointlike constituents of proton BUT things change at smaller x..... and smaller Q2 Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 14 What about the scaling violations ? Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 15 F2(x,Q2): DGLAP evolution equation QPM: F2 is independent of Q2 Q2 dependence of structure function: DokshitzerGribovLipatovAltarelliParisi ➔ Probability to find parton at small x increases with Q2 F2 = ➔ Test of theory: Q2 evolution of F2(x,Q2) !!!!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 16 DGLAP, collinear factorization and Pqq 2 jM Ej = = · ¸ ¢ 4 ¡t^ s^ 2^ uQ 32¼ ¡ + 3 s^ t^ s^t^ · 2 ¸ 2 ¡ 2 ¢ 4 ¡1 Q (1 + z ) 2 32¼ eq ®® s + ¢¢¢ 3 t^ z(1 ¡ z) 2 ¡ e2q ®® s 2 Q2 z= s^ + Q2 integral over kt generates log, BUT what is the lower limit d¾ 2 ®s 1 = ¾0 eq [Pqq (z) + ¢ ¢ ¢ ] 2 2 dk? 2¼ k? 4 1 + z2 Pqq (z) = 3 1¡z ¾ QC DC = 2 ®s ¾0 eq Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 2¼ · Pqq (z) log µ 2 Q (1 ¡ z) Â2 z ¶ 4¼2 ® ¾0 = s^ + ¢¢¢ ¸ Page 17 Collinear factorization 2 qi (x ;¹ ) = qi0 (x) Z ®s + 2¼ q0 (x) 1 x · µ ¶ µ 2¶ µ ¶¸ d» 0 x ¹ x qi (»)Pqq log + Cq + ::: » » Â2 » bare distributions are not measurable (like the bare charges .... ) collinear singularities are absorbed into this bare distributions at a factorization scale ¹2 À Â2 , defining renormalized distributions F2 = x X · µ ¶ µ 2¶ ¸ Z dx2 ®s x Q 2 eq q0 (x) + q0 (x) Pqq log + Cq (z; ::) 2 x2 2¼ x2  Z · µ ¶ µ ¶ µ 2¶ ¸ dx2 x ®s x Q 2 q(x2 ; ¹ ) ± 1 ¡ + Pqq log +C 2 x2 x2 2¼ x2 ¹ now F2 becomes: F2 = x X e2q separating or factorizing the long distance contributions to structure functions is a fundamental property of the theory factorization provides a description for dealing with the logarithmic singularities, there is arbitrariness in how the finite (non-logarithmic) parts are treated. Be aware that factorization is just an approximation to the full story Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 18 Collinear factorization: DGLAP introduce new scale ¹ À  and include soft, non-perturbative physics into renormalised partonZdensity: · µ ¶ µ ¶¸ µ 2¶ 1 2 2 qi (x ;¹ ) = 2 ®s + 2¼ qi0 (x) x d» 0 qi (»)Pqq » x » 0 + g (»)Pqg x » log ¹ Â2 DokshitzerGribovLipatovAltarelliParisi equation (take derivative of the above eq): V.V. Gribov and L.N. Lipatov Sov. J. Nucl. Phys. 438 and 675 (1972) 15, L.N. Lipatov Sov. J. Nucl. Phys 94 (1975) 20, G. Altarelli and G. Parisi Nucl.Phys.B 298 (1977) 126, Y.L. Dokshitser Sov. Phys. JETP 641 (1977) 46 2 dqi (x ;¹ ) ®s = d log ¹2 2¼ Z 1 x · µ ¶ µ ¶¸ d» x x qi (»; ¹2 )Pqq + g(»; ¹2 )Pqg » » » BUT there are also gluons.... 2 dg(x ;¹ ) ®s = d log ¹2 2¼ Z 1 x # µ ¶ µ ¶ d» X x x 2 2 qi (»; ¹ )Pgq + g(»; ¹ )Pgg » » » Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 " i Page 19 What the hell is factorization ? Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 20 Collinear factorization (V h) F2 (x ;Q2 ) = X Z i=f;f¹;G 0 1 (V i) d»C2 à 2 x Q ; 2; » ¹ ! see handbook of pQCD, chapter IV, B ¹2f 2 2 2 ; ® (¹ ) f (»; ¹ ; ¹ ) s i=h f 2 ¹ Factorization Theorem in DIS (Collins, Soper, Sterman, (1989) in Pert. QCD, ed. A.H. Mueller, Wold Scientific, Singapore, p1.) generalization of the parton model result (V i) hard-scattering function C2 is infrared finite and calculable in pQCD, depending only on vector boson V, parton i, and renormalization and factorization scales. It is independent of the identity of hadron h. 2 2 pdf fi=h(»; ¹f ; ¹ ) contains all the infrared sensitivity of cross section, and is specific to hadron h, and depends on factorization scale. It is universal and independent of hard scattering process. Generalization: applies to any DIS cross section defined by a sum over hadronic final states .... but be careful what it really means.... explicit factorization theorems exist for: diffractive DIS (... see above....) Drell Yan (in hadron hadron collisions) single particle inclusive cross sections (fragmentation functions) Page 21 ➔ Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Factorization is an approximation !!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 22 Factorization proofs and all that ... About factorization proofs (Wu-Ki Tung, pQCD and the parton structure of the nucleon, 2001, In *Shifman, M. (ed.): At the frontier of particle physics, vol. 2* 887-971) d¾ = dy XZ a;b 1 xA d»A Z 1 xB ³³ m ´p ´ d^ ¾ (¹) ab a b d»B fA (»A ; ¹)fB (»B ; ¹) +O dy P The problem with Drell-Yan: initial state interactions... factorization here does not hold graph-by-graph but only for all .... Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 23 Factorization is violated ... arXiv:0705.2141v1 [hepph] We come to that point later .... Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 24 Solving the DGLAP equations Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 25 Solving DGLAP equations ... Different methods to solve integro-differential equations brute-force (BF) method (M. Miyama, S. Kumano CPC 94 (1996) 185) df (x) f (x)m+1 ¡ f (x)m = dx ¢xm Z f (x)dx = X f (x)m ¢xm Laguerre method (S. Kumano J.T. Londergan CPC 69 (1992) 373, and L. Schoeffel Nucl.Instrum.Meth.A423:439-445,1999) Mellin transforms (M. Glueck, E. Reya, A. Vogt Z. Phys. C48 (1990) 471) QCDNUM: calculation in a grid in x,Q2 space (M. Botje Eur.Phys.J. C14 (2000) 285-297) CTEQ evolution program in x,Q2 space: http://www.phys.psu.edu/~cteq/ QCDFIT program in x,Q2 space (C. Pascaud, F. Zomer, LAL preprint LAL/94-02, H1-09/94-404,H1-09/94-376) MC method using Markov chains (S. Jadach, M. Skrzypek hep-ph/0504205) Monte Carlo method from iterative procedure brute-force method and MC method are best suited for detailed studies of branching processes !!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 26 We have to deal with divergencies.... collinear divergencies factored into renormalized parton distributions what about soft divergencies ? treated with “plus” prescription 1 1 ! 1¡z 1 ¡z+ Z with 0 1 f (z) dz = (1 ¡ z)+ soft divergency treated with Sudakov form factor: · Z ¢(t) = exp ¡ t0 resulting in @ t @t and µ f ¢ ¶ t 1 = ¢ Z dt t0 0 Z zmax ®s ~ dz P (z) 2¼ 0 1 f (z) ¡ f (1) dz (1 ¡ z) ¸ dz ®s ~ P (z)f (x =z; t) z 2¼ f (x ;t) = ¢(t)f (x ;t0 ) + Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 zmax Z Z t t0 0 dt ¢(t) t0 ¢(t0 ) Z zmax dz ®s ~ P (z)f (x =z; t0) z 2¼ Page 27 Sudakov form factor: all loop resum... g ! gg ® ¹s ® ¹s ~ Splitting Fct P (z) = 1 ¡ z + z + ::: Sudakov form factor .... all loop resummation µ Z ¶ Z 0 dq ®s ~ ¢s = exp ¡ dz P (z) 0 q 2¼ µ Z ¶1 µ Z ¶2 Z Z dq ®s ~ 1 dq ®s ~ ¢s = 1 + ¡ dz P (z) + ¡ dz P (z) ::: q 2¼ 2! q 2¼ " P~ (z) 1 ¡ Z Z dq ®s ~ dz P (z) + q 2¼ Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 # µ Z Z ¶2 1 dq ®s ~ ¡ dz P (z) + :::+ 2! q 2¼ Page 28 and again DGLAP evolution .... @ t f (x ;t) = @t differential form: Z differential form using f =¢s with µ Z ¢s (t) = exp ¡ zmax dz x @ f (x ;t) t = @t ¢s (t) Z Z t t0 ³x ´ dz ®s P+ (z) f ;t z 2¼ z ¶ ®s dt ~ P (z) 0 2¼ t 0 dz ®s P~ (z) ³ x ´ f ;t z 2¼ ¢s (t) z integral form f (x ;t) = f (x ;t0 )¢s (t) + Z dz z Z ³x ´ dt0 ¢s (t) ~ 0 ¢ P (z)f ; t t0 ¢s (t0 ) z no – branching probability from t0 to t Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 29 and again DGLAP evolution .... @ t f (x ;t) = @t differential form: Z differential form using f =¢s with µ Z ¢s (t) = exp ¡ zmax dz x @ f (x ;t) t = @t ¢s (t) Z Z t t0 ³x ´ dz ®s P+ (z) f ;t z 2¼ z We need only: ¶ ®s dt ~ P (z) 0 2¼ t 0 1 P (z) ! 1¡z dz ®s P~ (z) ³ x ´ f ;t z 2¼ ¢s (t) z integral form f (x ;t) = f (x ;t0 )¢s (t) + Z dz z Z ³x ´ dt0 ¢s (t) ~ 0 ¢ P (z)f ; t t0 ¢s (t0 ) z no – branching probability from Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 to Page 30 Solving integral equations Integral equation of Fredholm type: Á(x) = f (x) + ¸ solve it by iteration (Neumann series): Á0 (x) Á1 (x) Á2 (x) Án (x) = = = = f (x) f (x) + ¸ f (x) + ¸ n X Z Z Z b K(x ;y)Á(y)dy a b K(x ;y)f (y)dy a b 2 K(x ;y1 )f (y1 )dy1 + ¸ a Z a b Z b K(x ;y1 )K(y1 ; y2 )f (y2 )dy2 dy1 a ¸i ui (x) i=0 u0 (x) = u1 (x) = f (x) Z b K(x ;y)f (y)dy a un (x) = Z a b Z a b K(x ;y1 )K(y1 ; y2 ) ¢ ¢ ¢ K(yn¡1; yn )f (yn )dy2 ¢ ¢ ¢ dyn with the solution: Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Á(x) = lim qn (x) = lim n!1 n!1 n X ¸i ui (x) i=0 Page 31 DGLAP re-sums leading logs... f (x ;t) = f (x ;t0 )¢s (t) + Z Z dz z ³x ´ dt0 ¢s (t) ~ 0 ¢ P (z)f ; t t0 ¢s (t0 ) z solve integral equation via iteration: f0 (x ;t) f1 (x ;t) = = f (x ;t0 )¢(t) f (x ;t0 )¢(t) + Z from t' to t w/o branching Z t 0 t0 Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 dt ¢(t) t0 ¢(t0 ) branching at t' from t0 to t' w/o branching dz ~ P (z)f (x =z; t0 )¢(t0 ) z Page 32 DGLAP re-sums leading logs... f (x ;t) = f (x ;t0 )¢s (t) + Z dz z Z ³x ´ dt0 ¢s (t) ~ 0 ¢ P (z)f ; t t0 ¢s (t0 ) z solve integral equation via iteration: f0 (x ;t) f1 (x ;t) = = = f2 (x ;t) = f (x ;t) = f (x ;t0 )¢(t) Z from t' to t w/o branching t 0 Z branching at t' from t0 to t' w/o branching dt ¢(t) dz ~ 0 P (z)f (x =z; t )¢(t ) 0 0 0 z t0 t ¢(t ) t f (x ;t0 )¢(t) + log A ¢(t)f (x =z; t0 ) t0 t f (x ;t0 )¢(t) + log A ¢(t)f (x =z; t0 ) + t0 1 2 t log A A ¢(t)f (x =z; t0 ) 2 t0 µ ¶ X 1 t lim fn (x ;t) = lim log n An ¢(t)f (x =z; t0 ) n!1 n!1 n! t0 n f (x ;t0 )¢(t) + log t DGLAP resums to all orders !!!!!!!!!!!!!!!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 33 DGLAP evolution equation... again... for fixed x and Q2 chains with different branchings contribute iterative procedure, spacelike parton showering f (x ;t) = 1 X fk (xk ; tk ) + f0 (x ;t0 )¢s (t) k=1 Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 34 F2(x,Q2): DGLAP evolution equation QPM: F2 is independent of Q2 Q2 dependence of structure function: DokshitzerGribovLipatovAltarelliParisi ➔ Probability to find parton at small x increases with Q2 F2 = ➔ Test of theory: Q2 evolution of F2(x,Q2) !!!!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 35 Is our theory working at all ? Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 36 Q2 dependence of F2(x,Q2) ➔ F2 is rising with Q2 at small x Scaling violations !!!!! ➔ Well described by theory ... ➔ Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 37 x dependence of F2(x,Q2) new level of precision reached: ~1% DGLAP fits data well even at low Q2 strong rise towards small x F2 ~ xq(x,Q2) ➔ probability to find parton at small x increases ➔ How can rising F2 be understood ? ➔ Does rise continue forever ? ➔ What limits F2 ? Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 38 What is happening at small x ? For x ! 0 only gluon splitting function matters: Pgg = 6 Pgg » 6 µ 1¡z z + + z(1 ¡ z) z 1¡z 1 for z ! 0 z ¶ =6 µ 1 1 ¡ 2 + z(1 ¡ z) + z 1¡z ¶ evolution equation is then: f (x ;t) = f (x ;t0 )¢s (t) + Z dz z at small z: ¢s (t) ! 1 3®s x g(x ;t) = ¼ when f (x ;t0 ) Z t t0 d log t 0 Z Z 1 x ³x ´ dt0 ¢s (t) ®s 0 ¢ P (z)f ; t t0 ¢s (t0 ) 2¼ z d» »g(»; t0 ) » with t = ¹2 is neglected (compared to evolved piece .... ) Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 39 Estimates at small x: DLL 3®s x g(x ;t) = ¼ Z t 0 d log t t0 Z 1 x d» »g(»; t0 ) » with t = ¹2 use constant starting distribution at small t: x g1 (x ;t) = x g2 (x ;t) = .. . x gn (x ;t) = x g(x ;t) = x g(x ;t) » 3®s t 1 log log C ¼ t0 x µ ¶2 3®s 1 t 1 1 log log C ¼ 2 t0 2 x µ ¶n 1 1 3®s t 1 log log C n! n! ¼ t0 x ¶n X µ 1 ¶2 µ 3®s t 1 log log C n! ¼ t x 0 n µ r ¶ 3®s t 1 double leading log C exp 2 log log ¼ t0 x approximation (DLL) Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 40 Results from DLL approximation DLL arise from taking small x limit of x g(x ;t) splitting fct: log 1=x from small x limit of splitting fct log t=t0 from t integration... gives evolution length.... ®s softer for running DLL gives rapid increase of gluon density from a flat starting distribution gluons are coupled to F2... strong rise of » µ r ¶ 3®s t 1 C exp 2 log log ¼ t0 x Q2 ~2 F2 at small x: consequences: ● rise continues forever ??? ● what happens when too high gluon density ? ● ● Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 41 Parton Distribution Functions at small x sea quarks dominate Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 gluon density is very large Page 42 PDF uncertainty: improvements Using jets together with F2 (at large Q ) 2 from C. Gwenlan, A. CooperSarkar, C. TargettAdams in HERA – LHC workshop proceedings hepph/0601012 quark and gluon uncertainties high statistics from HERA II is important (assumed 700 pb1) Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Error on LHC jet xsection reduced !!! Page 43 Average of HERA data From M. CooperSakar, C. Gwenlan and S. Glazov Average H1&ZEUS data sets ● Combined PDF fit to H1& ZEUS ● Much reduced uncertainties .... Model independent analysis of data desirable Activities started to get HERA – PDF !!!!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 44 HERA measurements: FL The gluon distribution R. Thorne, hepph/0511351 From J. Feltesse, C. Gwenlan, S. Glazov, M. Klein, S. Moch FL / ®s x g(x ;Q2 ) Precision measurement of FL at ● ● Ep = 460 GeV and 5-10 pb-1 cleanest for gluon crucial test of QCD at higher orders and consistency of theory ➔ Is measured at HERA !! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 45 Structure Functions at HERA Structure Functions at HERA are well described by NLO DGLAP Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 46 Structure Functions at HERA Structure Functions at HERA are well described by NLO DGLAP is that all we can learn ? Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 47 Structure Functions at HERA Structure Functions at HERA are well described by NLO DGLAP HERA and QCD is more and much richer !!! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 48 Conclusions HERA physics is very rich: from inclusive x-section measurements to detailed investigations of QCD measurements of hadronic final states: jets, heavy flavors ➔ lead to a detailed understanding of QCD ➔ what about saturation, diffraction multi-parton interactions ? next lecture ➔ HERA implications for LHC ➔ PDFs, small x, multiple interactions, diffraction Understanding of QCD at high energies is still challenging ! Hannes Jung, From HERA to the LHC, Graduiertenkolleg, Bullay 2007 Page 49